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ABSTRACT: Solvent management is one of the important current
challenges in post combustion carbon capture (PCC) technology
development. Using large-scale 1960 h test campaign data
(Technology Centre Mongstad, Norway, 2015 MEA Test), we
demonstrate a combination of multivariate methods (PLS-R,
MSPC) and process analytical spectroscopy (FT-IR) as a tool to
monitor and control PCC process performance. Two MEA solvent
monitoring models, total inorganic carbon (TIC) content and total
alkalinity (TA), were prepared. In long-term solvent monitoring,
PLS-R model prediction uncertainty increased due to gradual
solvent changes, e.g., solvent degradation and impurity accumu-
lation. Hence, we show a specific model update methodology to
keep the models updated, leading to good long-term monitoring
ability of the TIC and TA models. In addition to reliable long-term solvent monitoring ability, a new principle for follow-up of
thermal solvent reclaiming was demonstrated. This shows that the need for solvent reclaiming can be quantified. Furthermore, this
methodology is an indicator to see the actual solvent deviation from the fresh solvent. This quantification may provide an input for
“start” and “end of reclaiming operation” identification. Hence, we demonstrate that it is possible to extract information for process
performance follow-up, solvent monitoring, and solvent reclaiming from a single spectroscopic instrument.

1. INTRODUCTION
The devastating environmental impacts of climate change are
the biggest challenges of the 21st century. Post-combustion
carbon capture (PCC) is an essential effort to eliminate the
anthropogenic CO2 emissions from burning of fossil fuels. The
gas−liquid absorption−desorption process is the most prevail-
ing abatement technology available in the industry. The 30 wt %
aqueous monoethanolamine (MEA) solution is considered a
typical benchmark solvent for CO2 capture.1 High energy
penalty for solvent regeneration2 corrosivity of the solvent,3,4

high solvent losses due to oxidative and thermal degrada-
tions,5−9 and environmental concerns due to possible
emissions10 are major issues that still need to be addressed for
an effective operation of PCC.
In order to maintain optimal performance of the CO2 capture

process, it needs to be monitored and controlled. The
application of process analytical technology (PAT) using
spectroscopy is an important approach for enhanced control
of CO2 capture operations. Spectroscopy is a powerful non-
invasive analytical technique for chemical analyses giving direct
speciation measurements at molecular level. Partial least squares
regression (PLS-R) is a valuable statistical method to extract

quantitative chemical information from spectroscopic data. PLS-
R models have been successfully used by us for online
monitoring/speciation of MEA solvent-based CO2 capture.

11,12

Furthermore, preparation of Fourier-transform infrared (FTIR)
spectroscopy-based PLS-R models for MEA solvent is
published.13−15 This contribution demonstrates application of
PAT and spectroscopy for solvent degradation follow up
exemplified by the use of available test campaign data of the
TCM MEA2 campaign.
In terms of solvent management, spectroscopy is useful since

it is sensitive to molecular change of the chemical system. PLS-R
models are useful for extraction of specific chemical information
of interest, for instance total solvent alkalinity, total inorganic
carbon, etc. from spectroscopic data. These data are useful to

Received: January 13, 2023
Revised: June 6, 2023
Accepted: June 6, 2023
Published: June 16, 2023

Articlepubs.acs.org/IECR

© 2023 The Authors. Published by
American Chemical Society

9747
https://doi.org/10.1021/acs.iecr.3c00134
Ind. Eng. Chem. Res. 2023, 62, 9747−9754

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
E

R
SI

T
Y

 O
F 

SO
U

T
H

 E
A

ST
E

R
N

 N
O

R
W

A
Y

 o
n 

Ju
ne

 3
0,

 2
02

3 
at

 1
4:

29
:3

5 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jayangi+D.+Wagaarachchige"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zulkifli+Idris"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ayandeh+Khatibzadeh"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Audun+Drageset"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Klaus-J.+Jens"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Maths+Halstensen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Maths+Halstensen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.iecr.3c00134&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c00134?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c00134?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c00134?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c00134?fig=abs1&ref=pdf
https://pubs.acs.org/toc/iecred/62/25?ref=pdf
https://pubs.acs.org/toc/iecred/62/25?ref=pdf
https://pubs.acs.org/toc/iecred/62/25?ref=pdf
https://pubs.acs.org/toc/iecred/62/25?ref=pdf
pubs.acs.org/IECR?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.iecr.3c00134?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/IECR?ref=pdf
https://pubs.acs.org/IECR?ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://acsopenscience.org/open-access/licensing-options/


give an early warning of upcoming chemical solvent change. As
the solvent composition changes in service (i.e., solvent
degradation and accumulation of flue gas impurities contents),
the PLS-Rmodel of themonitoring loopmust be updated to stay
representative for the state of the process. A deviation of the
PLS-R model prediction parameters [i.e., Q-residual (Q) and
Hotelling’s T2 (T2)] is an indication of a deviation between
actual solvent state and fresh solvent. Multivariate statistical
process control (MSPC) is a method that can be used in process
control with the use of, e.g., PLS-R models diagnostic measures
such as Q and T2.16,17 Hence, suitable process control decisions
for solvent management can be taken accordingly.
The Technology Centre Mongstad (TCM) is one of the

largest global post-combustion CO2 capture test centers which
holds the most advanced test arena for CO2 capture. Until now,
several test campaigns using aqueous 30 wt %MEA solvent have
been demonstrated and the outcomes from these campaigns
have been published.10,18−22 The University of South-Eastern
Norway (USN) received a comprehensive data set of TCM’s
2015 campaign (MEA2) for chemometric evaluation.
This paper presents a FTIR-based PAT approach using PLS-R

models for continuous process monitoring and solvent
degradation detection in an amine-based CO2 capture plant
using data from the TCM plant.

2. MATERIALS AND METHODS
2.1. Materials. In this study, TCM-MEA2 campaign FTIR

spectra and corresponding analytical data were utilized. All data
used are off-line sample measurements that were obtained from
the same sampling point (Lean stream) of the TCM Amine
Plant located at Mongstad, Norway.
FTIR spectra of 125 samples were measured during the total

campaign period using a Bruker ALPHA ATR-FTIR spec-
trometer with a diamond crystal and were used as input data to
the PLS-R models. Furthermore, TCM provided the total
inorganic carbon (TIC) and total alkalinity (TA) analysis data
(reference data) that were recorded during the actual campaign
period corresponding to the given spectra. The reference data
were used as the response output variables of the PLS-R models
that were prepared in this work. The details are shown in Table
1.

2.1.1. Origin of Data: The 2015 TCM-DA MEA2 Campaign.
MEA2 is a 1960 h operation which started on 6th of July 2015
and lasted until 17th October, 2015.10 The base case testing was
performed on 7th September, 2015 in the steady state condition
after approximately 8 weeks since startup.18 Morken et al.
illustrated the overall campaign operational hours,10 whereas
Gjernes et al. tabulated the overall test activities.20 This
operation was mainly conducted using a combined-cycle gas
turbine-based combined-heat-and-power (CHP) plant flue gas
that contains about 3.5%CO2.

20 Furthermore, a mixture of CHP
and RFCC (residual fluidized catalytic cracker)/RFCC flue gas

alone was used for a few days.20 This work contributed to several
TCM authored publications on aqueous MEA-based CO2
capture by covering solvent emissions and degradation,10

corrosion,21 and reclaiming.19 Thermal reclaiming was
performed for 92 h after 1830 (day 77) h of campaign
operation. After the reclaiming process was completed, the
operation continued for another 28 h. Hence, the MEA2
campaign mainly comprises of the primary stages of an amine-
based CO2 capture plant operation.

2.2. Methods. Figure 1 lists the three key stages of the data
analysis hierarchy employed in this work. Figure 2 illustrates the
main chemometric activities in each stage which are listed in
Figure 1�using PLS-R model of CO2 (TIC-1). The same
approach was followed in the analysis work on the total alkalinity
model (TA-1). All the abbreviations/statistical paraments used
in this work are tabulated in Table 2.
2.2.1. Stage 1: Preparation of the Initial Models (TIC-1 and

TA-1). As shown in Figure 1, Stage 1, PLS-R models for CO2
(TIC-1) and total alkalinity (TA-1) species groups were initially
prepared. The PLS-R algorithm known as NIPALS (nonlinear
iterative partial least squares) was used in the model
preparation.23,24 Campaign data gathered up to 15th August
2015 (approximately initial 600 h of operation) were selected for
calibration and validation processes of the TIC-1 and TA-1
models.10 This was done to select the samples representing the
non-degraded/fresh solvent. The infrared (IR) vibration band
assignment of the chemical species was used to ensure only
relevant variable ranges were used in the modeling. The FTIR
spectra were preprocessed using the baseline correction method
called Whittaker filter to remove unwanted baseline variation.25

The models were validated using an independent test data sets
which were obtained from the same initial 600 h MEA2
operation. Average model prediction errors were calculated as
residual Y-variance of prediction which are denoted as root
mean square error of prediction (RMSEP) (eq 1).23 The
optimal number of latent variables (LVs)23 in the models were
selected to attain the lowest values of RMSEP. Then, the models
(TIC-1 and TA-1) were used for the prediction of the complete
set of spectra of the MEA2 campaign.

y y

I
RMSEP

( )i
I

1 predicted reference
2

= =

(1)

where i�no of samples; ypredicted�predicted value; and
yreference�measured value.
2.2.2. Stage 2: Refining PLS-R Models to Handle a

Degraded Solvent. During the second stage, important
statistical parameters23 of TIC-1 and TA-1 predictions, such
as Q residuals (Q), Hotelling’s T2 (T2), and leverages were
recorded to adopt the models to the degraded solvent. All the
spectral samples of theMEA2 campaign weremapped in the plot
of T2 versus Q which is an important tool in fault detection.
Recorded prediction leverages were used to select new samples
for the model updating step which is described in Section
2.2.3.2.
2.2.3. Stage 3: Applications of PLS-R Model’s Prediction

Statistics for Degrading Solvent Monitoring and Manage-
ment. In the third stage, three different chemometric
approaches were explored to demonstrate how the PLS-R
model statistical parameters can be used to update the model to
stabilize predictions during the whole operation, and how the
model residuals are useful for solvent management.

Table 1. Details of the Reference Data Used for the
Preparation of Models (MEA2 Campaign)

reference analysis
method10

species
group

reference
analysis unit

number of
reference data

total alkalinity amine
species

mol/kg 103

total inorganic
carbon

CO2 species mol/kg 120
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2.2.3.1. MSPC Demonstration. The plot of T2 versus Q of
TIC-1 model is used for MSPC demonstration. Moreover,
calculated Q were used to check the lack-of-fit of the models for

the entire campaign period. All the results are discussed in

Section 3.2.

Figure 1. Main stages of chemometric analysis.

Figure 2. Illustration of the main chemometric stages using the model�TIC-1.
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2.2.3.2. Model Updating. TIC-1 and TA-1 models were
improved for reliable long-term predictions. Here, TIC-1 and
TA-1 models were converted to upgraded models (TIC-2 and
TA-2) for a better predictions of in the degraded/changed
solvent conditions using a calibration transfer method26 called
model updating (MUP).27,28 In order to convert the models, a
few new calibration samples were selected to describe the
solvent degradation/change of the total campaign. These
samples were selected using prediction leverage versus samples
(time) plot, as shown in Figure 2 stage 2. These selected samples
were formerly studied by visualization of spectra to identify the
spectral quality of the samples, prior to incorporating them in
the available models. The model updating approach comprises
several iterations to arrive at properly updated predictionmodels
(TIC-2 and TA-2). Section 3.3 discusses the results of model
updating approach of TIC and TA models.
All data analysis were performed on the MATLAB platform

using PLS Toolbox 8.6.2 software.

3. RESULTS AND DISCUSSION
3.1. Preparation of Initial PLS-R Models. The use of

authentic industrial data will make the PLS-R models more
tolerant to the actual process variations by the assimilation of
realistic dynamic process variations. In this work, initial PLS-R

models (TIC-1 and TA-1) were prepared for the demonstration
of the and solvent change detection and PLS-R model updating
during long-term operation.
Spectral preprocessing is a significant step of PLS-R model

calibration using spectroscopic data. To extract chemical species
variation, specific IR bands (Figure 3) are selected to improve
the ratio of signal-to-noise. Initially, all spectra were baseline-
corrected using the Whittaker filter with Lambda and Rho at
1000 and 0.001, respectively.25 The raw spectra and
preprocessed spectra of the MEA2 campaign are shown in
Figure 3a,b. Additionally, Figure 3b indicates the variable ranges
used in the TIC (blue shade) and total alkalinity (red shade)
models.
The preferred method for preparing a robust model is

selection of the specific IR vibrational bands of the specific
species/group to be investigated. Table 3 summarizes the main
selected species, the corresponding IR bands selected for
models, model variable ranges, and reference literature.
Two models (TIC-1 and TA-1) were calibrated with test set

validation. The used number of samples are presented in Table
4. Figure 4a,b depict the measured versus predicted plots of
TIC-1 and TA-1 models, respectively. These figures indicate
that the regression line of the models (fit line: red color) sets
very close to the targeted line (1:1 line: green color). Model

Table 2. Abbreviations/Statistical Parameters Used in the Chemometric Study

abbreviation/statistical
parameter standfor description

PLS-R models partial least regression models prediction models prepared using NIPALS algorithm; input variable is a part of a FTIR
spectrum; output variables are total inorganic content (TIC) and total alkalinity values
(TA)

TIC-1 initial model of TIC initial prediction model prepared for TIC
TA-1 initial model of TA initial prediction model prepared for TA
TIC-2 updated model of TIC updated prediction model for TIC
TA-2 updated model of TA updated prediction model for TA
RMSEP average model prediction error used to compare the model predictability and to select optimum latent variables (LVs)
LVs latent variables indicate number of components of PLS-R models
Q residual (Q) quantification of the spectral information which

not utilized in the PLS-R model prediction
indicate unusual spectral changes. Increase of Q indicate the more altered solvent
condition than the fresh solvent state

leverage measure of the effect of a sample on a PLS-R
model/distance of a sample from PLS-R model
centre

used to find suitable samples to use in model updating

Hotelling’s T2 (T2) measure of the distance of sample from the centre
of PLS-R model

in principle leverage andHotelling’sT2 indicate samemeaning; Hotelling’sT2 (T2) values
are the standard for MSPC statistics (stage 2)

Figure 3. FTIR spectra of the MEA2 Campaign (a) raw spectra (full spectral range), (b) preprocessed spectra (1900−650 cm−1), (1−8) are IR bands
assignments according to Table 3, red shade�total alkalinity, and blue shade�TIC.
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performance indicators�model range, RMSEP, number of LVs
used, and R2 predicted�are tabulated in Table 4.

3.2. Follow-Up and Control of Solvent Reclaiming.
Reclaiming is an important part of CO2 capture solvent
management. Thermal solvent reclaiming has been practiced
in the gas sweetening industry for a long time31 and
recommendations vary on the maximum allowable amount of
degraded solvent/contaminants.32 The end point of thermal
reclaiming has also been connected to the reclaimer temper-
ature.33 In conclusion, a more detailed method for thermal
reclaimer follow-up seems desirable. We assess MSPC as a
potential concept for thermal reclaimer follow-up and control.
MSPC is an effective concept to follow-up and control of solvent
reclaiming. One of the pillars of MSPC is PLS-R models which

contribute by effective extraction of the information about the
solvent changes from spectroscopic data (i.e., FTIR).23

In this work, the T2 andQ statistics is made by mapping all T2

versus MEA2 campaign samples’ Q values of TIC-1 model
predictions (Figure 5a). Furthermore, Q values of MEA2
samples were plotted versus the days of operation (Figure 5b).
Figure 5a shows the process variations in the MEA2 operation.
The blue shaded area holds the campaign samples which agree
with solvent composition at the start of operation. The samples
in the red shaded area indicate the samples deviating from the
average of model population (fresh solvent condition).
Increased Q values indicates increased deviation. In addition,
the red dashed lines separate the 95% confidence level of Q and
T2.
Figure 5a is a plot showing solvent degradation during the

CO2 capture process. Figure 5b depicts that the deviation of the
Q residual is drastically increasing after day 27. (Date: 23 August
2015; @around 800 h of operation).10 This deviation of the Q
residuals indicates the difference between the current solvent
state and the fresh solvent. According to Morken et al., the day
27 sample consists of about 0.5 wt % of heat stable salts (HSS)
based on MEA weight, 3000 mg/L of anionic IC species, and
30,000 mg/L of main amine degradation products.10 The
observations in the T2 and Q statistics (Figure 5a) agree hence
with the campaign sample analytics result. Furthermore, the plot
indicates that Qs of the sample recorded on the day 77 and
onward decrease and finally closely resemble the calibration
samples. Solvent reclaiming started on day 77 of the campaign
corresponding to samples collected on 12th October 2015 at
around 1852 operation hours. Furthermore, this implies that the
T2 and Q statistics have the ability to detect/indicate sufficient
time/extent of reclaiming of the degraded solvent.
According to Figure 5b, Q show an increasing trend in three

different stages starting from mid of August 2015 until solvent
reclaiming initiation on 12th October 2015. A similar trend was
observed by Flø et al. by solvent viscosity measurements at two
different temperatures (30 °C and 60 °C).19 This observation
demonstrates that physical solvent changes influence the solvent
spectra and correlate with prediction residual spectra (Q
residual). In addition, the variation of HSS concentrations
displays a similar tendency.10 Therefore, Qs are mimicking both
the physical and chemical variations observed during the MEA2
campaign operation.

Table 3. PLS-R Model Species, Identified IR Bands,
Corresponding Literature IR Bands, and Variable Ranges of
the Models

models species

identified
IR bands
(cm−1)

corresponding
literature IR
bands (cm−1)

variable ranges
of models
(cm−1)

TIC MEACOO− 1562 (1) 1568,14,29
156430

[1590−1467],
[1407−1301]

1486 (2) 148614,29

1320 (3) 132214

CO3
2− 1387 (4) 1388,14,30

138629

HCO3
− 1362 (5) 1360,14,30

total
alkalinity

MEA 1020 (6) 102414 [1670−1590],
[1113−944]

MEAH+ 1638 (7) 163414

1067 (8) 1069,14 1064,30
106629

Table 4. Calibration and Validation Details of the Models
(TIC-1 and TA-1)

model number of samples

model
range
mol/kg

RMSEP
mol/kg LVs

R2

(pred)

calibration
set

validation
set

TIC-1 17 16 1.1−1.5 0.024264 1 0.977
TA-1 13 13 4.5−5.2 0.039841 2 0.948

Figure 4. Measured vs Predicted plots of (a) TIC-1 and (b) TA-1.

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.3c00134
Ind. Eng. Chem. Res. 2023, 62, 9747−9754

9751

https://pubs.acs.org/doi/10.1021/acs.iecr.3c00134?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c00134?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c00134?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c00134?fig=fig4&ref=pdf
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.3c00134?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Although the initial PLS-R models are useful for MSPC, they
must be updated during the time of operation for reliable online
monitoring. In this case, the T2 and Q statistics are useful for
detection of the time to update the corresponding model. The
adaptation of PLS-R models for prediction of the degraded
solvent system is described in the following section.

3.3. Preparation of Updated (TIC-2 and TA-2) Models.
Industrial PAT applications will fail if not model adaptation is
carried out during the long-term use. PLS-R model calibration
transfer methods are selected consequently based on the nature
of the changes in the measuring environment, i.e., chemical
changes, physical changes, instrument changes, etc. An

Figure 5. TIC-1 model (a) T2 vs Q (b) days of operation; shaded areas: blue: gives the samples complementary with the model calibration samples,
red: indicate the sample difference from the average of sample population.

Figure 6. Total campaign predictions using (a) TIC-1 model, (b) TA-1 model, (c) TIC-2 model [improved: prediction error (RMSEP) reduced
around 50%], and (d) TA-2 model [improved: prediction error (RMSEP) reduced around 50%].
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applicable model updating method for CO2 capture solvent
degradation is discussed below.
Figure 6a,b illustrates the total campaign prediction models of

TIC-1 and TA-1, respectively. These plots indicate that the
prediction error (RMSEP) of the TIC-1 and TA-1 models are
increased by 70 and 123%, respectively, as time passes. Increase
of the RMSEPs suggest that these model predictions develop a
higher uncertainty over time in operation. In this context, the
initial calibration data set needs to be expanded to obtain stable
predictions during the total campaign. In order to expand the
calibration data set of the models, a sufficient number of new
samples need to be integrated. This is an iterative trial-and-error
method across the total run time. In selecting new samples for a
model renewal, leverage or T2 values are helpful statistical
parameters.
Proper sampling techniques are essential to minimize

sampling uncertainties/errors. Furthermore, identification of
new samples needs to be done carefully since the selected sample
may have a higher tendency for being an outlier. Visual
observation of raw spectra of the samples is commonly used in
identifying erroneous spectra. In addition, corresponding
reference values (e.g., species concentration) of the selected
samples should be acquired.
TIC-1 and TA-1 models were improved by adding 9 and 8

new data, respectively. Prediction parameters of the initial
models (TIC-1 and TA-1) and updated models (TIC-2 and TA-
2) are tabulated in Table 5, which indicates that the RMSEPs of

the updated models were reduced by about 50% compared to
the initial models. In agreement with Figure 6c,d, the prediction
slopes of the TIC-2 and TA-2 models are improved�0.992 and
0.957, respectively. The number of latent variables of the
updated models are also limited to three components, implying
that the models are more robust in the predictive nature.

4. CONCLUSIONS
MEA speciation models from the Technology Centre Mongstad
2015 MEA 2 Test campaign were developed. On this basis, two
MEA solvent monitoring models, total inorganic carbon (TIC)
content and total alkalinity (TA), were prepared. In addition, the
ability of the models to cope with ongoing solvent change during
the test campaign was demonstrated by application of a specific
model update methodology.
Finally, to the best of our knowledge, a new method for

solvent monitoring and management has been discovered and
demonstrated. The need for solvent reclaiming can be quantified
by the combination of statistical TIC or TA prediction model
residuals. This methodology also provides “start” and “end of
reclaiming operation” identification.
Hence, we demonstrate using large scale test campaign data

that it is possible to monitor and follow-up process performance
including solvent reclaiming operation and solvent monitoring
using a single spectroscopic instrument.

Further development work is in progress on the issue of
reclaiming monitoring and optimization.
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■ ABBREVIATIONS
TCM-DA CO2 Technology Center Mongstad
CO2 carbon dioxide
PLS-R partial least squares regression
MSPC multivariate statistical process control
Q Q-Residual
T2 Hotelling’s T2

HSS heat stable salts
MEA monoethanolamine
USN University of South-Eastern Norway
PACT pilot-scale advanced capture technology

Table 5. Initial Models and Updated Models’ Performance
Statistics

model parameters TIC models total alkalinity models

TIC-1 TIC-2 TA-1 TA-2

RMSEP (mol/kg) 0.0415 0.0206 0.0953 0.0514
R2 (predicted) 0.985 0.992 0.882 0.920
LVs 1 3 2 3
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ATR-FTIR attenuated total reflectance-Fourier transform
infrared spectroscopy

CHP combined heat and power
RFCC residual fluidized catalytic cracker
TIC total inorganic content
TA total alkalinity
IR infrared
L leverage
NIPALS nonlinear iterative partial least squares
LVs latent variables
RMSEP root mean square error of prediction
MUP model updating
PAT process analytical technology
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