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Abstract

The modern power system has undergone significant transformations driven by the necessary
for environmental sustainability, technological progress, and evolving energy demands. A
notable distinction between the modern power system and its conventional complement lies
in the increased integration of renewable energy sources (RESs). This shift towards RESs, such
as solar photovoltaics (PV), wind turbines, and hydropower, has significantly reduced carbon
emissions and emphasized environmental sustainability. The modern power system also
encompasses technological advancements in power electronic converters (PECs) and smart
grid infrastructure, as well as a focus on decentralization and distributed energy resources

(DERs) at the local level.

Despite these advancements, the integration of inverter-based resources (IBRs) contains
challenges to grid stability, supply-demand balance, and system frequency control. One of the
key challenges is the reduced system inertia caused by the high penetration of IBRs such as
wind turbines and solar PV. System inertia, represented by the kinetic energy of rotating
masses in conventional generators, helps maintain stable voltage levels and frequency during
contingencies. However, the low inertia of PEC-based technologies limits the system's ability
to withstand disturbances and maintain stable frequency. This reduced inertia and the
intermittent nature of RES generation can lead to frequency fluctuations and instability in the

power grid.

Furthermore, the uncertainties introduced by the stochastic nature of RES generation
complicate the stability and secure operation of IBR-dominated power systems. Fluctuations
in RES output, coupled with varying consumer demand, require effective balancing
mechanisms to ensure a reliable power supply and avoid grid instability. Addressing these
uncertainties necessitates the development of advanced control strategies and system-wide

coordination mechanisms to maintain stability and security in IBR-dominated power systems.

This thesis investigates the stability and secure operation of power systems dominated by

IBRs. It explores the unique dynamic characteristics and operational complexities introduced
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by the high penetration of RESs and reliance on PECs. The research focuses on addressing
challenges related to reduced system inertia, frequency stability, and uncertainties in the
demand/supply chain. It emphasizes the development of advanced modeling techniques,

control algorithms, and optimization methods tailored to IBR-dominated power systems.

The research also emphasizes the significance of day-ahead and online estimation of power
system parameters and time-series data analysis. Online estimation enables continuous
monitoring and estimation of the energy-mix proportion, allowing operators to proactively
manage the system, optimize its performance, and effectively integrate the technologies and
RESs. This thesis utilizes techniques such as deep reinforcement learning (DRL) and online
simulation to develop innovative strategies, control mechanisms, and optimization

frameworks for the secure operation of converter-dominated power systems.

Through comprehensive studies and simulations, this PhD thesis provides valuable insights,
practical strategies, and control mechanisms for enhancing the stability, reliability, and
security of IBR-dominated power systems. The findings contribute to the ongoing efforts of
decarbonization, renewable energy integration, and the transition to a sustainable energy
future. By effectively addressing stability challenges, optimizing resource utilization, and
leveraging advanced technologies, this research paves the way for a secure, reliable, and

resilient power system.

Keywords: Power System Dynamics; Power Electronic Converter; Inverter Based Generators;

Machine Learning.
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1 Introduction

1.1 Background

The modern power system has witnessed significant changes and advancements compared to
conventional power systems. This transformation has been driven by various factors, including
the obligation for environmental sustainability, technological progress, and evolving energy
demands. A comparison between the modern power system and its conventional counterpart
sheds light on the achievements made and the challenges encountered in the energy sector

[1-3].

A noteworthy distinction between the modern power system and the conventional power
system lies in the increased integration of renewable energy sources (RESs). Conventional
power systems heavily rely on fossil fuel-based generation, such as coal and natural gas, which
contribute to greenhouse gas emissions and environmental degradation. In contrast, the
modern power system emphasizes the utilization of RESs like solar photovoltaics (PV), wind
turbines, and hydropower to produce clean and sustainable electricity. This shift towards RES
has resulted in a significant reduction in carbon emissions and an amplified focus on

environmental stewardship [3, 4].

Moreover, the modern power system is marked by technological advancements, particularly
in power electronic converters (PECs) and smart grid infrastructure. PECs, such as inverters
and converters, play a crucial role in integrating RES into the grid, enabling efficient energy
conversion, and facilitating grid stability. Smart grid technologies, encompassing advanced
sensors, communication systems, and automation, have revolutionized power system

management and control [5, 6].

Another key aspect of the modern power system is the increasing emphasis on
decentralization and distributed energy resources (DERs). Conventional power systems
typically rely on large-centralized power plants, with electricity transmitted over long
distances to end consumers. In contrast, the modern power system incorporates DERs like

rooftop solar panels, small wind turbines, and energy storage systems at the local level. This
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decentralized approach allows for greater energy independence, grid resilience, and localized

power generation, reducing transmission losses and enhancing overall system flexibility [7-9].

Despite these advancements, the modern power system faces several challenges. The
integration of inverter-based resources (IBRs) such as solar and wind introduces issues related
to grid stability, supply-demand balance, and system frequency control. Additionally,
managing a diverse energy mix, addressing grid congestion, and mitigating cybersecurity risks
are complex tasks for the modern power system. Efforts are underway to develop advanced
control strategies, energy storage technologies, and grid infrastructure upgrades to overcome

these challenges and ensure the secure and reliable operation of the modern power system

[7, 10-13].
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Figure 1.1: Schematic representation of power system transformation.

Figure 1.1 presents an overview of the transformation of a conventional power system into a
modern power system. This Figure shows that the modern power system is characterized by
the increased integration of RESs, advancements in PECs and smart grid technologies, and a
shift towards decentralization and DERs. While notable progress has been made in achieving
a cleaner and more sustainable energy sector, challenges continue in areas such as grid
stability, irregular generation, and system management. Ongoing research and development
endeavors are focused on tackling these challenges and further enhancing the efficiency,

reliability, and resilience of the modern power system.
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1.2 Problem Statement

The stability and secure operation of IBR-dominated power systems present significant
challenges in the modern energy landscape. With the increasing integration of RESs and PECs,
ensuring the reliable and resilient operation of these systems becomes crucial. IBR-dominated
power systems, characterized by a high penetration of RESs and a reliance on PECs, exhibit
unique dynamic characteristics and operational complexities that can impact system stability

and security [14].

A major challenge in IBR-dominated power systems is the reduced system inertia caused by
the high penetration of IBRs such as wind turbines and solar PV. The low inertia of PEC-based
technologies limits the system's ability to withstand disturbances and maintain stable voltage
levels [15]. Similarly, frequency stability is essential for the reliable and secure delivery of
electricity to consumers [3]. The intermittent nature of RES generation further adds
complexity to maintaining frequency stability, as variations in RES output can interrupt the

balance between power supply and demand [16].

The stochastic nature of RES introduces uncertainties in the demand/supply chain, further
complicating the stability and secure operation of IBR-dominated power systems. Fluctuations
in RES output, coupled with varying consumer demand, require effective balancing
mechanisms to ensure a reliable power supply and avoid grid instability. Developing efficient
control strategies and system-wide coordination mechanisms to address these uncertainties

is crucial for maintaining stability and security in IBR-dominated power systems [17-19].

Furthermore, the increasing complexity of power system dynamics and the integration of new
technologies necessitate the exploration of innovative approaches for stability analysis,
control, and operational planning. Traditional methods and tools used in conventional power
systems may not be sufficient to address the unique challenges posed by IBR-dominated
systems. Therefore, there is an insistent need for research that focuses on developing
advanced modeling techniques, control algorithms, and optimization methods specifically

adapted to the requirements of IBR-dominated power systems [20].
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The problem statement emphasizes the challenges associated with the stability and secure
operation of IBR-dominated power systems. The reduced system inertia, uncertainties
introduced by RES, and the need for advanced modelingand control techniques are critical
issues that require attention. Conducting research in this field is essential for developing
effective strategies, algorithms, and operational frameworks that enhance the stability,
reliability, and security of IBR-dominated power systems, paving the way for a sustainable and

resilient energy future.

1.3 Motivation

To successfully transition to a sustainable and low-carbon energy landscape, it is crucial to
understand and tackle the stability challenges presented by power systems dominated by
IBRs. The integration of RESs offers a substantial reduction in greenhouse gas emissions and
environmental impact when compared to conventional fossil fuel-based generation. However,
the dynamic characteristics of IBRs and their interaction with the power grid introduce
stability challenges that must be resolved for the power system to operate reliably and

sustainably.

Ensuring grid resilience and reliability is of utmost importance. Power systems must maintain
stable frequency, voltage, and power flow to guarantee the dependable delivery of electricity
to consumers. As IBRs become more prevalent, the reduced system inertia and intermittent
nature of RES generation create obstacles to grid stability. By addressing these stability issues

in IBR-dominated systems, the power grid's resilience and reliability can be enhanced [3].

Optimizing resource utilization also serves as a key driver for research in this field. IBR-
dominated power systems comprise a diverse mix of energy resources, including irregular
RESs and controllable PECs. Achieving the most effective utilization of these resources
requires the development of advanced control strategies and coordination mechanisms to

maintain system stability while maximizing the integration of renewable generation [21].

Similarly, technological advancements play a pivotal role in advancing research efforts. With

the progress made in power electronic devices, smart grid technologies, and control systems,
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new opportunities arise to improve the stability of IBR-dominated power systems [22].
Leveraging these technological advancements enables the development of innovative
modeling techniques, control algorithms, and operational strategies that effectively address

the unique challenges posed by IBRs.

Moreover, the transition to a decentralized energy system is a significant motivation for
researching power system stability. The increasing penetration of IBRs and DERs facilitates the
establishment of a more decentralized and resilient energy system [23]. However, this
transition introduces complexities in terms of system operation, coordination, and stability
[24]. By conducting this research work, solutions can be developed to integrate and operate

DERs while maintaining grid stability.

The motivation for conducting this research work arises from the growing significance of RESs
and the shift towards a cleaner and more sustainable power system. Addressing the
challenges associated with frequency stability is essential for the reliable functioning of
frequency-sensitive devices and ensuring overall power system reliability and resilience. The
motivation to conduct research lies in the need to devise effective strategies, control
mechanisms, and mitigation measures. It is aimed to explore innovative solutions that
enhance power systems' ability to accommodate high levels of RES integration while

maintaining stability.

Additionally, the economic implications of power system instability should not be ignored.
Power system operators and market participants must consider the costs associated with
abnormalities and the provision of ancillary services [16]. Conducting new research can
facilitate the development of cost-effective solutions that optimize RES utilization, enhance

system efficiency, and reduce reliance on expensive ancillary services.

The motivation to conduct this research work, particularly in power systems dominated by
IBRs, arises from the vital of addressing the unique challenges presented by the integration of

RESs and PECs. By understanding and mitigating stability issues, it becomes possible to ensure
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the reliable, resilient, and sustainable operation of IBR-dominated power systems, thus

contributing to the global transition towards a clean energy future.

1.4 Research Objectives

The main objective of this PhD study revolves around developing an estimation methodology
to ensure the secure operation of power systems dominated by IBRs under normal conditions
and contingencies. The study comprises three specific objectives that were pursued

throughout the PhD.

a. To create a methodology that can calculate the minimum proportion of technologies
(i.e., synchronous generators, grid-forming converters, grid-following converters, and
flexible demand) to guarantee frequency stability.

b. To create a system architecture and information model suitable for the created
methodology.

c. To evaluate the developed methodology and validation.

The first objective focuses on creating a methodology capable of calculating the minimum
proportion of various technologies, including synchronous generators, grid-forming
converters, grid-following converters, and flexible demand, necessary to maintain frequency
stability. This methodology aims to determine the optimal mix of these technologies to ensure
the system operates within the desired frequency range. By accurately assessing the required

proportions, the methodology contributes to maintaining stable frequency conditions.

The second objective centers around developing a system architecture and information model
that are well-suited for the aforementioned methodology. The information model is designed
to capture and integrate data from diverse sources within the power system, providing a
comprehensive overview of its operation. This architecture and model facilitate the effective
implementation and utilization of the developed estimation methodology. Integrating data
from different levels and considering historical information enhances the precision and

dependability of the estimation process.
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The third objective involves conducting simulations and testing the developed systems to
validate their effectiveness. Day-ahead and online-simulation techniques are employed to
evaluate the suitability and performance of the proposed methodology. The study adheres to
relevant standards and grid codes to assess various system parameters, ensuring that the

developed systems meet the required criteria and operate effectively in practical scenarios.

In summary, this PhD study's scope encompasses the development of an estimation
methodology, supported by a suitable system architecture and information model, to enable
the secure operation of IBR-dominated power systems. The methodology determines the
minimum proportions of power-generating technologies necessary for maintaining frequency
stability. The information model integrates online and historical data from different levels of
the power system, contributing to estimation. By fulfilling these objectives, the study

contributes to advancing secure and reliable operation in IBR-dominated power systems.

1.5 Overall Thesis Layout

This thesis represents the result of the research works conducted during the PhD study. It
encompasses a collection of six scientific publications that are organized and presented across
different chapters. These publications serve as the core foundation for the thesis. Additionally,
other publications result from collaborative research efforts during the PhD period. While
some of these publications may not directly link to the specific research conducted for the
PhD, they have played a valuable role in advancing the necessary knowledge and skills

required to complete this study successfully.

The remaining sections of this thesis are organized as follows:

1.5.1 Chapter 2
This chapter aims to analyze various scenarios, challenges, historical and current research
activities, and potential solutions related to power system dynamics, PECs, and the modern

power system. The insights drawn primarily from Article 1, Article 2, and Article 3 contribute
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valuable knowledge to the research field and underscore the importance of studying RES-

based power systems and their secure operation in the present context.

1.5.2 Chapter 3

This chapter focuses on short-term forecasting of kinetic energy in converter-dominated
power systems. It presents a method using a Bayesian model to estimate the kinetic energy
of the power system by forecasting univariate time-series data. The chapter demonstrates the
effectiveness of the Bayesian model in accurate forecasting and analyzing kinetic energy,
which can be leveraged to estimate system inertia and other dynamic characteristics. The
content of this chapter is primarily based on Article 4, highlighting the significance of time-
series data analysis, specifically kinetic energy, for ensuring the secure operation of converter-
dominated power systems. It serves as a valuable resource for understanding the importance

of time-series data analysis in such systems.

1.5.3 Chapter 4

This chapter presents the findings from the research conducted in Article 5, emphasizing the
effectiveness of the proposed approach in addressing various challenges related to reliability,
system dynamics, stability, control efficiency, and security in IBR-dominated power systems.
It emphasizes the importance of day-ahead estimation for decarbonization and renewable

energy integration, aiming for a sustainable and environmentally friendly energy landscape.

1.5.4 Chapter 5

This chapter emphasizes the significance of online simulation in overcoming challenges
associated with integrating IBRs and managing the dynamic behavior of power systems. The
insights presented in this chapter, derived from the research conducted in Article 6,
demonstrate the effectiveness of the proposed approach in addressing crucial challenges in
IBR-dominated power systems. This chapter serves as a valuable resource, underscoring the
importance of online estimation of power system parameters in ongoing efforts toward

decarbonization and the integration of RESs.
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1.5.5 Chapter 6

This chapter primarily focuses on the comprehensive discussion of the results obtained
throughout the PhD research work. It delves into the relevance of these results and their
contribution to the field and presents an overall conclusion. The chapter thoroughly discusses
and synthesizes the findings, highlighting their significance and implications. It discusses the
research journey, summarizing the key outcomes and drawing conclusions based on the

conducted investigations.
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2 Literature Review

Conventional generators incorporate governor controls that monitor machine speed, allowing
adjustments to the input valve to regulate their speed and maintain system frequency. These
controls ensure that the mechanical power input is adjusted during normal operation and
minor imbalances, restoring the speed and system frequency to their nominal values. In the
case of major disturbances, the governor control minimizes frequency deviations from the
nominal value. Additional control systems and dispatch instructions further assist the system
operator in the real-time management of the generation-demand balance. To mitigate
frequency disturbances, a wide range of frequency control services from generators, loads,
and other devices are deployed over different time intervals. After a significant system
disturbance or imbalance, such as a sudden loss of generation, the frequency can deviate

rapidly from its nominal value [25, 26].

However, the integration of RESs into the modern power system introduces new challenges.
RESs, such as solar and wind, rely on weather conditions and environmental factors, leading
to intermittent and unpredictable energy generation [27]. As power system developers strive
to accommodate a significant share of RESs in the grid, PECs become fundamental
components. Yet, the integration of RESs and PECs; IBRs pose stability concerns for the power
system. Without appropriate modifications, a system heavily reliant on IBRs becomes

vulnerable and unsustainable, ultimately impacting power system operation [28].

In today's technology-driven and automated era, ensuring a stable power supply has become
increasingly critical. Frequency fluctuation stands out as a key factor that can disrupt the
normal operation of the power system, potentially causing widespread blackouts. As the
power system grows more complex due to the rapid expansion of PEC-based technologies and
the prevalence of non-synchronous generators, it becomes essential to thoroughly investigate
the underlying causes and consequences of an unstable power system. Additionally, exploring

control techniques to address these issues is of paramount importance [29, 30].
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To gain a comprehensive understanding of power system dynamics, PECs, and the modern
power system, this chapter aims to analyze various scenarios, challenges, historical and
current research activities, and potential solutions. The content draws primarily from Article
1, Article 2 [3], and Article 3 [31] providing valuable insights into this research domain and

highlighting the significance of studying power system stability in today's context.

2.1 RES-based Future Power System

In this PhD research work, the author is delving into an IBR-dominated power system, one that
hypothesized, is entirely powered by RESs. This raises an important question with far-reaching
implications for the common future: Can a power system that's 100% powered by RESs be
realistically achieved? This question needs deep research and analysis, transcending just

academic interest.

If a global energy system can be created fully powered by RESs, it would be a significant step
towards reducing carbon emissions and fighting climate change. This could be a pivotal point
towards a more sustainable future. However, envisioning a 100% RES-based power system
brings several questions and challenges to the forefront: Are renewable energy technologies
reliable enough to meet global energy demand? How can the intermittency of certain RESs be
addressed to ensure power grid stability? What might be the impact on the existing power
infrastructure? To what extent do political decisions and social viewpoints influence this

transition?

These are not just academic questions but urgent practical issues. The responses to these
guestions will shape the strategies to counter climate change and achieve sustainable
development. In this section, it is aimed to argue on these queries, drawing from recent
research and technological advancements. The goal, through a systematic review, is to assess
the feasibility of a fully RES-based power grid, considering the technological, social, political,
and geographical challenges involved. This sub-section mainly focuses on these discussions,

using insights from Article 1.
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The expedition to decipher the multifaceted implications of fully RESs in power generation

necessitates a comprehensive journey through scholarly and institutional texts. This

expedition unfolds in two primary phases. The initial phase encompasses the selection and

gathering of academic articles that focus solely on RES-powered power systems, giving

precedence to those available in complete English texts for straightforward analysis. The

subsequent phase includes a thorough evaluation of these compiled articles, drawing on their

insights to guide the discourse.
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Figure 2.1: Process followed to identify the reference documents.

The investigation primarily addressed four central research questions as discussed. Figure 2.1

depicts the strategies employed throughout the analysis. The literature survey embraces a

comprehensive approach, utilizing a meticulous keyword search method. The search

parameters, such as "100% Renewable*" AND "power system*" OR "100% Renewable*" AND

"energy system™", aid in identifying articles with these subjects appearing in the title, abstract,
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or keywords. The intention is to uncover scholarly works that address renewable energy
systems and their various subfields. The research influences respected literature databases
like Web of Science and Scopus to accumulate publications related to the chosen keywords. A
July 19, 2023 search yielded 359 and 696 records from Web of Science and Scopus,

respectively.

Moreover, this study incorporates reports issued by various governmental and non-
governmental bodies, such as the International Energy Agency (IEA), International Renewable
Energy Agency (IRENA), National Renewable Energy Laboratory (NREL), Resources for the
Future (RFF), Norwegian Center for Renewable Energy (SFFE), and others. The incorporation
of governmental policies, guidelines, and regulations is crucial when appraising the viability of
a wholly RES-based power grid. Information from relevant governmental reports supplements
the findings to enhance understanding of the regulatory frameworks governing these

technologies worldwide.

The initial engagement with the substantial collection of documents sourced from academic
databases involves an exacting screening process. This process aims to eliminate potential
redundancy in records across the databases. Given the extensive search across two primary
databases, some overlap is imagined. Thus, the initial task is to meticulously sift through each
entry, comparing and discarding identical documents to ensure the distinctiveness of each

record in the dataset.

After the screening process, the unique set of documents undergoes an intensive review. This
process transcends a cursory read-through; it involves an exhaustive inspection of each
document. Each document's title, abstract, and keywords are examined to identify resources
appropriate to the research objectives. This complex process requires a clear comprehension
of the research questions and the selectivity to gauge whether each document could offer
valuable insights or data. Titles offer a concise overview of the content, abstracts provide a
study summary, and keywords help identify primary themes undertaken. This intense
examination facilitates the refining of the document collection, ultimately yielding a

manageable subset of 143 articles aligned with the research theme.
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The filtered collection undergoes further refinement to pinpoint the most beneficial resources
for the investigation. Several eligibility criteria guide this process: (a) relevance to the research
guestions, (b) type of the study, (c) technological focus, (d) time frame, and (e) credibility of
the publishers. Each document must meet these specific requirements to be included in the
study. Adhering to these stringent criteria results in a final compilation of 84 documents.
Selected for their quality and relevance, these documents form the foundation of the
research, granting a more intricate and profound understanding of the research topic. Figure
2.2 visually represents the key terms extracted from our chosen documents. The likelihood

that a given word will appear increases as the size of the font increases.
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Figure 2.2: Word cloud based on the terms used in the published publications.

These 84 documents serve as the primary references for deliberations on the feasibility of a
100% RES-based power system. The information from these sources facilitates a multifaceted
exploration of the topic from technological, socio-economic, political, geographical, and
policymaking perspectives. Each document uniquely highlights different aspects of RESs,
offering valuable insights that guide discussions and shape understanding of the topic. The
selection and analysis of these documents reveal both the challenges and prospects

associated with transitioning to a fully RES-based power system.
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Additionally, this chapter presents a detailed discussion of the INPS as a case study, connecting
discussed points with a practical power system. The INPS has proven to be a successful project
advancing towards a 100% RES goal. The data related to INPS, particularly in this study, are
derived from documents produced by Nordic TSOs, governmental and non-governmental

organizations, and research institutions.

2.1.1 Technical feasibility of 100% RES-based power system

The BP Statistical Review of World Energy documented that fossil fuels accounted for the
largest chunk of the world's energy in 2020, contributing 61.3% of the total. The rest was
generated by nuclear power (10.1%), hydroelectric power (16.1%), wind energy (5.9%), solar
power (3.2%), and other renewable sources (0.9%) [32]. From a humble beginning, renewable
energy is making strides in the electricity generation market due to substantial investment in
RES technologies. The rise in renewable investments from 2004 to 2016 testifies to the
promising emphasis on solar and wind technologies [33, 34]. Consequently, the discourse
concerning the potential of renewables to completely surpass the existing power grid is

intensifying.

In this dissertation, a joint statement by 47 renowned scientists from esteemed institutions
and businesses posited that a quick transition to 100% renewable energy is conceivable, with
the power sector possibly converting by 2030 and other sectors shortly after [35]. This notion
is supported by a study by Zappa et al., who, through the simulation of seven scenarios for the
European power system for 2050, suggested a fully renewable system could operate as

effectively as the current one [36].

In contrast, Heard et al. expressed skepticism about models predicting a renewable future due
to the absence of historical and empirical evidence. They further argued that an electricity
system entirely dependent on renewable energy conflicts with urgent climate change
mitigation measures [37]. Diesendorf et al. pointed out flaws in the critiques of a 100% RES-
based system, including doubtful assumptions, inconsistencies, omissions, errors, and

exaggerations. They contended that a complete transition to renewable energy is technically
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and economically feasible, even though obstructed by political challenges and misinformation

[38].

The Technological Momentum theory asserts that technological progress, which significantly
shapes social evolution, is time-dependent [39]. It underscores the crucial role of engineers,
scientists, and technically oriented managers in system innovation and development. The
Concept of Progress further illuminates how new technologies can address social issues and
contribute to progress and integrity [40]. The rapid pace of technological advancements, as
proposed by Moore's Law in 1965, differs from Eugene E. Selk's linear progression theory [41,
42]. The idea of continual technological evolution is beautifully captured in a metaphor by
Hartshorne and Weisse, emphasizing the dynamic nature of our perceptions and technological

advancements [43].

The energy sector is transforming from conventional power systems primarily dependent on
non-renewable energy sources to PEC-based systems incorporating RESs such as wind, solar,
and hydroelectric power. Owing to their solid-state electronics, PECs offer efficient power
conversion and improved control flexibility [3, 44, 45]. This shift is transforming power
generation and revolutionizing transmission, distribution, and utilization sectors, laying the

groundwork for a more sustainable and robust energy system.

However, RESs face challenges such as high energy costs, inefficiencies in transmission and
storage, and issues with system dynamics and security [37, 46, 47]. Some researchers propose
these challenges can be overcome by employing diverse grid topologies, energy resources,
and control mechanisms [48-50]. Yet, integrating PEC-based RESs into the grid can increase

the system's complexity and vulnerability, potentially leading to blackouts [3].

Several studies have examined the technical viability of achieving a 100% RES-based power
system across different countries and regions, considering various renewable energy sources
and storage technologies. For instance, Turkey has delineated a two-phase plan to transition

from fossil fuels to solar PV and wind power [51]. Similarly, the Middle East/ North Africa
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(MENA) region, Saudi Arabia, Denmark, the Maldives, and China have also demonstrated the

technical and economic viability of a full RES [52-57].

Market design options for a 100% RES-based power system must consider investment
incentives and operational factors to ensure cost recovery and effective resource allocation
[58]. Countries like Barbados, China, Ireland, Sweden, and several European nations offer
examples of how a 100% renewable energy system can be realized, considering system costs,
technology integration, flexibility options, policy, and forecasting models for green electricity

targets [59-63].

Battery technology is necessary for transitioning to terawatt levels of PV, as it can defend
fluctuations and foster higher PV adoption rates [31, 64, 65]. Nigeria and California have
highlighted the viability of a blend of natural gas and RESs for achieving 100% electrification
and a 100% renewable electricity supply, respectively [66, 67]. Likewise, Australia has shown
how spatial and temporal configurations, energy storage, and dispatchable RESs can boost the

feasibility of a 100% national renewable energy supply [68].

Synchronous generators in hydropower, thermal, geothermal, and nuclear plants contribute
to system inertia, providing resilience in emergencies [31, 65]. The optimization of
hydroelectric reservoirs and secondary voltage control can help ensure a balanced and reliable
energy system [69]. Countries with plentiful hydropower resources, like Norway, Iceland,
Paraguay, Costa Rica, Tajikistan, Nepal, and Bhutan, are closer to achieving the goal of 100%
RESs [70]. However, reaching this goal will necessitate substantial time, transformation, and

technological advancement for countries with limited hydropower resources.

2.1.2 Social acceptability of 100% RES-based power system

The successful integration and long-term persistence of renewable energy projects
significantly axis on social acceptance, as evidenced by several studies [52, 71]. The
acceptability factor covers myriad determinants that shape society's stance towards a system
and technology. In the realm of RESs and the prospect of a fully RES-powered grid, social

perspectives play a pivotal role. Interestingly, most Lithuanians exhibit awareness and support
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for renewable energy adoption [71]. African rural areas' receptivity towards RES depends on
a blend of technical, economic, and social factors [72]. Another research underscores that
socio-political, market, and community considerations predominantly shape Colombian
perspectives towards RESs, thereby confirming that policies centered on energy justice and

economic benefits substantially affect the social acceptance of these initiatives [73, 74].

In 2019, approximately 9.916% of the world's population lacked electricity access,
predominantly residing in rural parts of developing and impoverished nations [75]. This brings
to light a major challenge in RES implementation - achieving energy justice. Despite their
considerable potential for renewable energy (around 45% by 2050) [76], Sub-Saharan Africa
could only provide electricity to 46.75% of its population as of 2019 [75].

As environmental concerns accelerate, RESs are emerging as viable alternatives for
decarbonization, especially in countries like the Nordic nations aiming for decarbonization by
2050. This suggests that environmental considerations might drive global RES deployment in
the foreseeable future. The Convergence theory, derived from the Stage of Development
Theory, can aid in overcoming energy equity and economic barriers [77]. Case studies, like
that of Saudi Arabia, spotlight sector integration and potential social impact and advocate the
efficient use of water resources via seawater reverse osmosis (SWRO) to augment public
acceptability [53]. Research in the MENA region [52] emphasizes that job creation and
economic diversification linked to a renewable energy transition can boost social

acceptability.

Moreover, a global transition to 100% RES may generate around 35 million jobs by 2050,
particularly in solar photovoltaic, battery storage, and wind power technology sectors [78].
For instance, a transition strategy for Denmark to achieve 100% decarbonization by 2045 [54]
suggests social costs don't necessarily need to rise during this process, contributing
significantly to social acceptance. The support from the public also strengthens with the

projected job increase and the prospect of economic growth.
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According to the Technological Determinism theory, the progression of technology shapes
societies' structure and inherent values [79], a notion accepted by modern society that sees
technology as a change catalyst. The transition towards sustainable energy systems must
address community acceptability and energy justice to avoid issues related to social exclusion,
community conflict, and environmental degradation [80]. Favorable regulatory frameworks

backed by the government are indispensable for the social acceptance of RESs [81].

Promoting community participation, transparency, and inclusive planning processes can
amplify social acceptance. Research indicates community ownership and participation in
renewable energy projects may boost social acceptance by fostering local ownership, bringing
economic benefits, and enhancing community engagement. Therefore, social acceptability is

an indispensable factor in developing and implementing a fully RES-powered power system.

2.1.3 Geographical complexities for 100% RES-based power system

Establishing a power infrastructure entirely dependent on RESs presents considerable
challenges driven by geographical constraints. Investigations have illuminated how the
availability of resources, such as hydro, wind, solar, and even fossil resources, display distinct
variances across geographical landscapes [51, 52]. For instance, the Middle East region
demonstrates considerable solar potential and moderate wind potential, although it has
limited resources for hydropower [70, 82]. On the contrary, most European countries show
lower potential for solar energy. Figure 2.3 and Figure 2.4 illustrate the worldwide electricity
distribution generated from diverse sources in 2020. Figure 2.3 scales the share of
hydroelectric power from 0 to 100%, indicating that some nations are entirely reliant on

hydropower.

On the other hand, the share of wind power is scaled up to 60%, suggesting that it accounts
for only a minor part of the overall supply. Similarly, Figure 2.4 scales the fossil fuel power
share from 0 to 100%, illustrating that certain nations rely entirely on fossil fuels. On the other
hand, the power share for solar energy is scaled up to 5%, indicating it provides only a tiny

proportion of the total supply. According to the data, some countries are exclusively

20



Shrestha: Estimation of the energy-mix proportion for the secure operation of converter dominated

power system

dependent on a single source, such as hydropower or fossil fuels, while others utilize a blend
of various sources. These variations can be attributed to factors such as energy resource

scarcity, political divide, or a combination of both [70, 82].

(a) Share of electricity that comes from hydropower
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Figure 2.3: The share of electricity comes from hydro and wind resources [32, 33].

Geographical constraints also introduce unique challenges and opportunities. The Maldives, a
low-lying archipelago nation, faces land scarcity, emphasizing the necessity to explore floating
offshore technologies [56]. A study in Australia examines the potential geographical
configurations for a reliable, cost-effective renewable energy system, taking into account the
availability and unpredictability of wind and solar resources [68]. Research on Barbados
acknowledges the need for imported biodiesel due to specific wind and sunlight patterns,

underscoring the crucial influence of resource availability on system design [59]. China focuses
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on the spatial distribution of wind, solar, biomass, and hydropower resources, which
significantly influences the feasibility and scale of renewable energy deployment [60].
Scotland's grid largely benefits from wind power due to the country's abundant wind
resources and favorable geographical position [83]. Cameroon's high solar resource potential
and advantageous geographical location make PV the most promising technology for

establishing a sustainable energy system [81].

(a) Share of electricity that comes from solar
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(b) Share of electricity that comes from fossil fuels
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L s

Figure 2.4: The share of electricity comes from solar sources and fossil fuels [32, 33].

In Denmark, the roadmap for a decarbonized society considers geographical characteristics
like wind resource availability when constructing a renewable energy system [54]. A case study
of an abandoned island underscores the significance of location and conditions for

determining the optimal mode of energy delivery [84]. Geographical variations affect the
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feasibility of integrating renewable energy systems at a European level, underscoring the need

for enhanced transmission capacity and cross-border collaboration [36].

Overcoming geographical limitations and establishing a sustainable transition to RES-based
power systems require customized solutions encompassing a range of renewable energy
technologies, international collaboration, and supportive policies. Strategies such as
identifying suitable sites for RESs, enhancing the efficiency of transmission networks, and
exploring various energy storage options to mitigate fluctuations and mismatches between

supply and demand are imperative to circumvent geographical restrictions.

2.1.4 Role of political support for 100% RES-based power system

Transitioning to a fully RES-based power system is a complex process that is significantly
influenced by various political factors. Among these factors, regulatory frameworks, policy
incentives, and the availability of political will are the most obvious. Governments and
policymakers have a crucial role in creating policies and regulations that stimulate the
deployment of renewable energy and its seamless integration into the existing power grid. A

stable and clear regulatory framework is a prerequisite in this regard [36, 56].

However, this process is not devoid of political challenges. For instance, the cooperation of
several governments, the conclusion of international agreements, and the consideration of
geopolitical factors can pose hurdles. Infrastructure development, such as that needed for
cross-border data transmission, requires coordination among various political entities [36,

56].

The path towards a RES-based system is not devoid of obstacles. Resistance from mandatory
industries, barriers to renewable energy deployment, a lack of supportive policies and
incentives, and the complexities of integrating RES into current power systems can impede
the transition [84]. To overcome these barriers, sustained political commitment, stability, and
a conducive policy environment are required [81]. Such an environment should stimulate RES

investments and advance the licensing process. Hence, a decisive public investment and a
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clear policy direction are paramount in driving the transition. Without these, the transition

could be hindered, regardless of its technical feasibility [54].

Various studies provide evidence of the importance of supportive policy frameworks and
political commitment. Saudi Arabia's Vision 2030 aims to reduce the nation's dependence on
oil and diversify the economy, emphasizing the importance of strong political will and
supportive policies for a successful transition [53]. Similarly, research in the MENA region
points out the necessity of regional collaboration and political stability for large-scale
integration of RESs [52]. Studies focused on Indonesia's power system transition underline the
need for significant investments, increased use of solar PV and BESS technologies, and
comprehensive planning that considers geographical constraints and technical possibilities

[85].

Various technologies like carbon capture and storage and nuclear power need political backing
along with clear policy objectives [60]. These elements can drive the necessary
transformations and investments across all sectors of the energy system. Including
policymakers, stakeholders, and the general public in debates and decision-making processes,
education on the benefits of RESs; and building consensus are key strategies to overcome
political barriers [80]. Aligning energy policies and goals with broader political contexts and

priorities is essential for a successful transition [86].

Political issues and partisanship can significantly impact the adoption of renewable energy
technologies in certain regions, notably in some countries that are heavily dependent on fossil
fuels [87]. However, evidence suggests that an understanding of basic science and cognitive
sophistication can foster pro-science attitudes and mitigate the impact of political disputes on
perceptions of scientific disciplines [88]. This suggests that even in politically contentious
issues, familiarity with fundamental science can promote pro-science sentiments, thus

highlighting the role of basic scientific knowledge in shaping attitudes toward science [89].
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2.1.5 Case study of Integrated Nordic Power System (INPS)

2.1.5.1 The 2020 target

The Nordic-grid nations, encompassing Denmark, Finland, Norway, and Sweden, have
committed to EU Directives, including the Renewable Energy Directive (RED). This directive
aims to ensure that RES constitutes 20% of the EU's total energy and 10% of the transportation
sector specifically by 2020. Figure 2.5 illustrates the proportions of RESs used in these
countries from 2004 to 2020, following their National Renewable Energy Action Plans
(NREAPs) set for 2020. The Nordic grid, a collaborative venture involving Finland, Sweden,

Norway, and Denmark, has significantly reduced the region's overall carbon footprint [90].

Transmission system operators (TSOs), such as Fingrid, Energinet, Statnett, and Svenska
Kraftnat, are responsible for the competitive nature of the regional power market. The
collaborative mechanism of the Nordic grid members has enabled them to achieve their RES
targets ahead of the scheduled timeline. This region's substantial evolution as an energy-
intensive area can be partially attributed to the abundant natural resources, like wind, timber,

minerals, and hydroelectric potential, playing a significant role in its progression [90].

The diverse energy mix and regional cooperation have enabled Denmark to reach its overall
RES target in 2015, Finland and Norway in 2014, and Sweden as early as 2013, as indicated in
Figure 2.5 [90]. The TSOs in the Nordic grid employ their forecasts to ensure the uninterrupted
operation of the energy system. They devise and implement effective strategies for managing
the generation and transmission of renewable energy. Other stakeholders, such as demand

aggregators and energy suppliers further utilize these projections.

2.1.5.2 The energy transition toward 2030 and 2050 targets

Building on the prior target of 20% renewable energy by 2020, the RED 2018/2001/EU, issued
in 2018, set a renewed goal of at least 32% renewable energy by 2030. This objective
surpassed the European Green Deal adopted in December 2019. On July 14, 2021, the
European Commission announced revised climate targets for 2030, aiming to increase the

renewable energy target to 40% of the EU's energy mix. Subsequently, on May 18, 2022, the
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Commission introduced the REPowerEU plan to expedite the green transition and reduce
dependence on Russian fossil fuels, intending to diversify energy supplies within the EU. The
plan includes measures to reduce energy consumption, encourage clean energy sources, and
reach a target of 45% renewable energy in the transport, power generation, and industrial

sectors by 2030 [91].

(a) ——Denmark Total Share of RESs Denmark Target 2020 (b) ——Finland Total Share of RESs Finland Target 2020
2004 2004
2020 4% 2005 2020 5% 2005
40% 40%
2019 35% 2006 2019 % 2006

30%

2018 2007 2018 2007
2017 2008 5017 2008
2016 2009 2016 2009
2015 2010 2015 2010
2014 2011 2014 2011
2013 2012 2013 2012
(c) ——Sweden Total Share of RESs Sweden Target 2020 (d) ——Norway Total Share of RESs Norway Target 2020
2004 2004
2020  70% 2005 2020  80% 2005
60% 70%
2019 2006 2019 2006
2018 2007 2018 2007
2017 2008 2017 2008
2016 2009 2016 2009
2015 2010 2015 2010
2014 2011 2014 2011
2013 2012 2013 2012

Figure 2.5: Overall share of energy from RESs between 2004-2020 along with NREAP targets,
(a) Denmark, (b) Finland, (c) Sweden, and (d) Norway.
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In light of these global developments and objectives, the four Nordic TSOs unveiled the Nordic
Grid Development Perspective (NGDP) 2021 report [92]. The report emphasizes the ambitions
of these four Nordic countries, where Finland aims to achieve carbon neutrality by 2035,
Sweden by 2045, Denmark by 2050, and Norway aspires to become a low-emission society by
2050, as shown in Table 2.1. The report also denotes an increase in energy consumption in all
Nordic countries, along with efforts to enhance renewable electricity production and decrease
dependence on traditional thermal plants. The 2050 target is to achieve decarbonization
across all Nordic countries, with nations rapidly escalating renewable energy production

capacity and investing in necessary infrastructure.

Table 2.1: Trend of electrical power generation and consumption in Nordic countries** [92]

Components Finland Sweden Denmark Norway
Hydroelectric power = = = +
Onshore wind power +++ +++ + +
Offshore wind power +(+) +(+) +++ ++

Solar
power and energy . . o .
storage
Nuclear power = =(-) = =
Other thermal power - - - -
Electricity consumption +++ ++ +++ +++
P-2-X +++ +++ +++ +
Demand-side response
+ + + +
(excluding P-2-X)
o Moderate Moderate
Electricity balance Balanced Export
export export
Decarbonization year
. 2035/2035 2040/2045 2030/2050 2040/2050
(sector/society)

* Decarbonisation in terms of the overall energy sector includes all forms of energy consumption like electricity, cooking, transportation,
industries, heating, cooling, and so on.

** +increase, - decrease, = remain at a similar level. The categories for different countries should not be compared to each other.

In 2022, the Nordic TSOs published a report [93], which delivers an exhaustive analysis of

strategies and actions required to address the climate challenge by 2030. The green energy

strategy outlined in the report covers four interconnected elements: electrification, increased

generation from variable and renewable wind power sources; flexibility to manage the
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variability of renewable energy, and sector integration, optimizing the energy system across

different infrastructures, promoting synergy and efficiency.

To project the percentage of RESs in Nordic countries, the Nordic Energy Research platform
offers critical insights, as depicted in Figure 2.6 [94]. This graph exhibits two scenarios: the
Carbon Neutral Nordic (CNN) and the Nordic Powerhouse (NPH). The CNN scenario
contemplates the most cost-effective route while considering current governmental plans,
strategies, and ambitions. It visualizes the outcomes of stated tactics and goals that are yet to
be implemented. The forecast indicates the need for increased production of renewable

energy and heat to satisfy the demand for clean energy in various sectors.

140%
—e— CNN DK
—e— CNNFI
—-=—CNN NO
—=— CNN SE

120%

100%

80%

Percentage
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40%
20%

0%
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Figure 2.6: Forecast of the total share of RESs in Nordic countries.

The NPH scenario investigates the potential of the Nordic countries to play a more substantial
role in the broader European energy transformation. It visualizes the Nordic countries as
providers of affordable clean energy, hosts of more low-carbon businesses and services,
exporters of low-carbon goods and energy sources, and increased exports of carbon-free steel
and aluminum. Applying these scenarios, it is projected that Denmark will lead the transition
to a green economy, with a projected 100% share of RES by around 2042, followed by Norway

around 2048-2050. Finland and Sweden are projected to account for between 40% and 60%
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of their respective RES shares by 2050 [96]. These projections underscore the potential for

significant progress in the transition to renewable energy in Nordic countries.

2.1.5.3 INPS toward 100% RES

The transition towards a RES-powered grid system requires thoroughly examining the
demand-supply balance. Climate change and the construction of more small hydropower
plants are expected to increase Norway's annual hydropower output. Meanwhile, in Finland
and Sweden, where large-scale hydropower use is not feasible, there is an uptick in onshore
wind power generation, with Sweden's growth rate potentially slowing down. Land-based
wind energy offers the most substantial return on investment among RESs in these countries.
However, local opposition has slowed the growth of the onshore wind industry in Denmark
and Norway. These countries instead focus on offshore wind development opportunities. The
PV has a slower development rate than wind farms across the Nordic countries, and future
capacity will likely come from rooftop and commercial installations [95]. Figure 2.7(b) presents
TSOs' predictions for RES energy generation until 2040 under the CNN Scenario, showing the

significant contributions of wind and photovoltaics to overall production [92].

The growing interest in electric vehicles (EVs) and government goals to eliminate fossil fuel
use is anticipated to drive the increased adoption of electric vehicles [96]. Moreover, the
Nordic countries' access to clean, economic power and advanced infrastructure makes them
attractive locations for data centers. Various sectoral changes, such as the electrification of
both direct and indirect processes, could impact power demand. However, overall
consumption is still expected to rise, despite the use of P2X and Vehicle-to-Grid (V2G)
technologies to meet peak demand. Figure 2.7(a) portrays the breakdown of energy use in
Nordic countries by industry, with transportation, heating, data centers, and P2X applications

projected to be the main drivers of future demand [92].

The Nordic countries' transition to renewable energy is met with public and government
support, recognizing the importance of RES, and reducing carbon footprints. The Nordic

Council of Ministers' Nordic Co-operation Program on Energy Policy 2022-24 aims to make the
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Nordic region the world's most sustainable and integrated region by 2030, promoting well-

being, inclusion, equality, interconnection, cultural exchanges, and connectivity [97].
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Figure 2.7: (a) Nordic electricity consumption, (b) Nordic renewable electricity production

capacity, and (c) Nordic electricity balance from 2020 to 2040 under CNN Scenario [92].

Figure 2.8: Projected electricity balance (TWh) in the Nordic bidding zones in 2030 and 2040

under the Climate Neutral Nordics Scenario [92].
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Figure 2.9: Power flows (TWh) among Nordic bidding zones in 2020 and projected values for

2040 under the Climate Neutral Nordics Scenario [92].

The geographic diversity of the Nordic countries dictates their renewable energy potentials.
While Norway and Sweden have substantial hydropower potential, Denmark and Finland have
limited access to this type of energy. Nevertheless, Denmark has excelled in harnessing wind
energy and has become an industry leader. Figure 2.8 displays the power balance for 2020,
with projections for the electricity balance in 2030 and 2040 in the Nordic bidding zone under
the Climate Neutral Nordics Scenario [92]. Despite these geographical variations, the Nordic
countries have managed to maintain interconnected and synchronized electricity grids,
facilitating a balance between supply and demand. This example of international cooperation
showcases the fruitful outcomes that can be achieved through collaborative efforts. Figure 2.9
provides anticipated values for 2040, and the power flows in 2020 between the Nordic bidding
zones, highlighting the successful cooperation between the Nordic TSOs and their crucial role

in ensuring a secure and functioning power system [92].

2.1.6 Isit feasible?

The complexity of transitioning to a fully RES-based power system necessitates an integrated

approach that addresses technical, social, political, and geographical considerations.
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Technological advancements and continuous innovation are critical for harnessing a diverse
array of RES, ensuring grid stability, and addressing the intermittency of renewable energy. In
parallel, social and political factors play an instrumental role, requiring strong political will,

supportive policies, and robust regulatory frameworks that promote the deployment of RES.

Incorporating RES into power systems is a technical endeavor and a socio-political process.
The engagement of public stakeholders and the creation of supportive regulatory
environments are pivotal to navigating through political and social resistance. At the same
time, the geographical disparities and regional variations in resource availability demand that

the transition strategies be tailored to the unique contexts of each region.

The Nordic countries' electricity grid demonstrates the feasibility of a 100% RES-based power
system. Through collaborative efforts and inter-regional projects, they have shown that an
integrated synchronous grid system can accommodate diverse geographical and political
contexts and still be effective. Such alliances illustrate how countries can overcome

geographical and resource constraints when working together towards a common goal.

In conclusion, the path towards a 100% RES-based power system is layered with challenges
that demand concerted efforts, innovative technological advancements, and dedicated
international collaboration. Despite the difficulties, its profound benefits in terms of cost
reduction, socio-economic development, and environmental sustainability make it a
compelling and necessary goal. The task ahead is formidable, involving significant investment,
technological progression, and careful planning. But with a multifaceted approach that
addresses the technical, social, political, and geographical aspects, the goal of a 100% RES-
based power system can be realized, contributing to a sustainable future for generations to

come.

2.2 Previous Studies

The operation of power systems has become increasingly complex with the introduction of
IBRs and evolving policies. In order to ensure secure and reliable power system operation, it
is crucial to identify techno-economic approaches and technologies. Previous research has
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proposed different concepts to tackle these challenges; however, the intricate nature of the
framework and potential uncertainties can lead to impractical outcomes and implementation
difficulties in real-world settings [98, 99]. Therefore, there is a need for a comprehensive study
of unique and practical methods to overcome existing and future challenges associated with

upgrading power system structures and operational approaches.

The modern power system emphasizes integrating techno-economic operations while
considering environmental constraints. Operational constraints can be enhanced by either
replacing the control system with an optimized approach or incorporating an optimized
supervisory system without modifying the main system [100]. The latter option is more
practical and popular in rapidly growing systems. However, the increasing integration of IBRs
presents new challenges, such as unbalanced frequency resilience and low grid inertia [101].
Consequently, practical tools are needed to dynamically monitor, analyze, improve, and
visualize system characteristics [102]. It is evident that conventional control technologies are

insufficient for a modern power system, necessitating a new approach.

Previous studies have utilized the concept of Battery Energy Storage Systems (BESS) to
regulate power system frequency [103, 104]. Another study proposed a self-tuning PID
controller using fuzzy logic and thyristor-controlled series compensation (TCSC) to enhance
transient stability [105]. Similarly, a controller based on fuzzy logic and a neural network was
suggested in [106]. To improve the first swing stability of a power system, compensators like
the Static VAR Compensator (SVC) and Static Compensator (STATCOM) were employed with a
discontinuous control strategy [107, 108]. In [109], a controller was discussed to enhance
transient stability through synchronous generator extraction. Teng et al. introduced the
integration of Electric Vehicles (EVs) to improve the frequency response of the Great Britain
power system [110], while Liu et al. investigated the effects of EV integration on secondary
frequency control [111]. The integration of EVs as Distributed Energy Resources (DERs) is
widely adopted in modern power systems to enhance frequency quality. Additionally, studies

have explored the application of demand-side management (DSM) concepts for power system
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security [112-114]. Various techniques have been proposed to address stability issues in IBR-

based power systems, taking into account multiple variables.

Time /
Economic - ~
Dispatch Method DSM Method ]
1 Hour BESS
[ AGC Method ] L )
1 Minute - ( )
Governor Control EV Charging
Method [ DDC Method ]
1 Second \ J

Generator Side Control  Energy Storage Devices Demand Side Control

Figure 2.10: General techniques for regulating the frequency in RES-based power systems.

Figure 2.10 illustrates the classification of frequency control techniques. The regulation of
power system frequency has been extensively studied, with Automatic Generation Control
(AGC) being a traditional method through generator control. AGC adjusts the rate of
generation based on frequency monitoring to maintain regulation. Researchers have applied
optimization tools and objective functions to identify optimal parameters for AGC controllers,
such as the Harmony Search (HS) algorithm and Integral Square Time Square Error (ISTSE)
[115]. Additionally, the implementation of Superconducting Magnetic Energy Storage (SMES)
in conjunction with AGC has been explored to analyze controller performance and power
system behavior [116]. The stability of the system and optimization of controller parameters
have been investigated using Lyapunov's second law [117]. Detailed transient analysis of
individual AGC within a multi-source power system has also been conducted. Artificial Neural
Network (ANN) techniques have been employed to analyze AGC problems [118]. Novel
approaches, including the combination of the Tilted Integral Derivative (TID) controller and
the Teaching Learning Based Optimization and Pattern Search (hTLBO-PS) approach, have
been suggested for AGC in a deregulated environment [119]. Furthermore, an Ecological
Population Cooperative Control (EPCC) strategy based on a Multi-Agent System Stochastic
Consensus Game (MAS-SCG) has been proposed for AGC in an islanded smart grid [120].

Parameter-plane approaches have been used to identify optimal controller parameters, and
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sensitivity analysis has been performed to examine stability via AGC [121]. A hybrid technique
combining the Firefly Algorithm and Pattern Search Method has been proposed for AGC in
multi-area power systems [121]. AGC is a general technique for regulating system frequency
through control of generator-side parameters, operating in the secondary response, and

taking a few minutes.

The Model Predictive Control (MPC) method has also gained popularity in power system
control. Various studies have utilized MPC for different applications in power systems. For
instance, Cui et al. proposed a Multimodal Long Short-Term Memory (M-LSTM) deep learning
approach for Composite Load Modeling(CLM) to determine time-varying variables [122]. An
MPC-based method with Superconducting Magnetic Energy Storage (SMEA) units was
developed to enhance transient stability [123]. MPC has also been used for frequency
regulation in wind energy integrated power systems [124], power system stability
improvement through a hybrid control system combining MPC and Neural Network [125], and
control of thyristor firing angle for transient stability improvement [126]. The concept of
Transient Energy Function (TEF) has been combined with MPC to achieve multiple Unified
Power Flow Controller (UPFC) operations and enhance system stability [127]. MPC has been
implemented in various applications, including TCSC control, damping oscillated power in an
HVDC system, managing distributed generated energy, and stabilizing the grid after
contingencies [128-131]. MPC offers a plug-and-play structure that enables easy redesign and

evaluation of the controller structure.

Similarly, Dynamic Demand Control (DDC) has been proposed as an approach for regulating
grid frequency. Shrot et al. introduced DDC as a technique for frequency stabilization [132].
Zhu et al. investigated Robust Load Frequency Control (RLFC) along with DDC for power system
regulation [133]. Qingxin et al. proposed a Thermostatic Load Control (TLC) strategy based on
DDC, utilizing thermostatic loads such as HVAC units and Electric Water Heaters (EWHSs) [134].
A hybrid DDC concept has been introduced to provide rapid and steady regulation of primary
and secondary frequency [135]. Various studies have examined the effects of DDC on

frequency and highlighted the need for randomization to minimize oscillatory instabilities
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[132, 136, 137]. DDC is valued for its fast response, flexible operation, and economic

efficiency.

Researchers have developed ideas and strategies to address associated issues as grids evolve
and new technologies are integrated. While efforts have been focused on maintaining stable
voltage, rotor angle, and frequency, research on online or real-time management of
instability, a major cause of blackouts, has been limited [138, 139]. Effective and reliable
techniques for resolving frequency management problems in low-inertia systems have been
discovered through research experiments. Inertial support has been identified as a promising
approach, but long-lasting and practically applicable solutions are still needed [140]. The
management features and operating principles of revolving power systems have the potential
to solve problems in modern power systems through the development of new technologies

or the proper planning, management, and implementation of operational strategies.

The advancements in regulating PECs have emphasized the significance of components and
technological progress. Grid-forming (GFM) converters can adjust frequency and voltage
amplitude at the Point of Common Coupling (PCC) and offer advantages over grid-following
(GFL) converters, particularly in weak power systems [5, 6]. However, challenges arise in
studying GFM due to limited current in the PEC during significant disturbances [141]. The
potential of versatile GFM in addressing power system issues is being investigated, requiring
further research to understand its features, reactions, and effects. GFL, while limited by its
reliance on grid synchronization, can play a crucial role in resolving challenges when
implemented with the planning approach [142-145]. Operational strategies, including
comprehensive recovery strategies, have been discussed to preserve power system reliability.

The literature highlights the need for solutions related to IBRs and low-inertial systems.

2.3 Power System Stability

The stability of electrical power systems is a critical concern, and various stability issues can
arise. Traditionally, stability issues were classified into three types: rotor angle instability,

frequency instability, and voltage instability. Rotor angle stability is essential for system
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synchronization and requires quick resolution for transient-state and steady-state stability.
Effective solutions for rotor angle instability include Power System Stabilizers (PSS), PEC-based
exciters, and generator-tripping protection mechanisms. Frequency stability refers to
maintaining the operating frequency within an acceptable range and can be restored in a few
seconds to several minutes. Voltage stability plays a vital role in keeping the receiving end
voltage within an acceptable range and requires a similar time frame for restoration.
Restoration of long-term voltage stability requires HVDC interconnections, adjustable tap
transformers, and generator excitation current limiters [146]. Short-term voltage stability can

be addressed by Automatic Voltage Regulators (AVR), excitation systems, and induction

motors.
Power system stability
Ability to return the power system
into its original status
Rotor angle stability Frequency stability Voltage stability
Ability to maintain the Ability to maintain the steady Ability to maintain the desirable
synchronism frequency voltage level
Small disturbance angle stability Transient stability Small disturbance voltage stability Large disturbance voltage stability
Ability to maintain the Ability to maintain the Ability to regulate the desirable Ability to regulate the desirable
synchronism during small angle synchronism during large angle voltage level during small voltage voltage level during large voltage
disturbance disturbance disturbance disturbance
I I
Short or Mid-term stability Long term stability
Fast or/ and slow dynamics Slow dynamics
(0 to a few seconds) (a fewto 10s of minutes)
l New forms of stability issues in modern power system
Non-oscillatory instability Oscillatory stability Converter driven stability Resonance stability
Situation of insufficient Situation of insufficient damping Lack of physical inertia/ low Oscillation from unknown/
synchronization torque torque inertia undefined sources/ loads

Figure 2.11: Power system stability classification.

In modern power systems, integrating PEC-based technologies introduces two additional
stability issues: converter-driven stability and resonance stability. Converter-driven stability

pertains to oscillations caused by cross-coupling between dynamic electromechanical devices
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and transients in the grid networks. Resonance stability occurs due to insufficient energy

dissipation within the system, leading to periodic oscillations [1, 147-149].

The integration of IBRs in the power system introduces instability due to two primary factors.
Firstly, the high penetration of PEC-based resources like solar photovoltaics (PV) and wind
turbines reduces system inertia, posing a challenge in balancing the demand-supply chain.
Addressing this factor is crucial for system stability. Secondly, RESs exhibit unpredictable
patterns, making predicting the time series values of demand and generation difficult. The
presence of non-synchronous generators with PECs diminishes system inertia and increases
the risk of unstable frequency. A system with low inertia can lead to frequency fluctuations
and power system blackouts. Upgrading protection equipment with conventional operation
settings becomes necessary to accommodate the significant integration of PEC-based

technologies [17-19].

2.3.1 Rotor Angle Stability

Rotor angle stability is a crucial aspect of power system operation, ensuring the dependability
and stability of the grid. It involves maintaining relative rotor angles within acceptable limits,
even in the face of disturbances or variations in the power system. Power systems' smooth
and secure operation relies on rotor angle stability, as it directly impacts the dynamic behavior
of generators and their ability to withstand system-wide disturbances. Consequently, rotor
angle stability is one of the most critical factors in ensuring the reliability of power systems

[150].

The dynamics of power systems are experiencing significant changes due to the increasing
integration of IBRs. These changes introduce new challenges to rotor angle stability, primarily
stemming from the reduced fraction of synchronous generators and evolving power
generation and control methods. The introduction of variable and intermittent power
generation from RES, like wind turbines and solar photovoltaic systems, adds unpredictability
to the system. Combined with the lower inertia of RES-based generators, this unpredictability

can lead to variations in rotor angles, potentially undermining rotor angle stability. In addition,
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the utilization of PEC technologies for regulating active and reactive power on both the

generation and load sides has further effects on the dynamics of the rotor angle [15, 151].

Understanding rotor angle stability and taking measures to improve it are crucial for modern
power systems' reliable and secure functioning. Rotor angles can deviate from their steady-
state values when disturbances occur, such as sudden load changes or network malfunctions.
Excessive rotor angle deviations can trigger unstable oscillations and system-wide instabilities,
posing significant risks to power system stability and reliability. Researchers and industry
professionals can pave the way for innovative solutions that preserve stability and drive the
transition towards a sustainable and resilient power grid by investigating the complex

relationships and factors influencing rotor angle dynamics.

2.3.1.1 Parametric Sensitivity of the Rotor Angle Stability Indicators

The evaluation and monitoring of rotor angle stability indicators are crucial for assessing the
stability of power systems. These indicators provide valuable insights into the dynamic
behavior of synchronous generators, helping identify potential stability issues that can impact
the safe and reliable operation of the grid. By analyzing rotor angle stability indicators, system
operators and engineers can take proactive measures to preserve stability, prevent cascading
failures, and optimize the utilization of power system resources. These indicators are typically
derived from analyzing the dynamics of generator rotor angles and related system variables,
such as electrical power outputs, voltages, and currents. They offer quantitative metrics that
indicate the proximity of the power system to instability. Commonly used indicators include

the critical fault clearing time (CCT), damping ratio (), and eigenvalues [15].

The rotor angle stability index considers the rotor angles of generators and the corresponding
power flows to quantify the system's proximity to instability. It provides a numerical value
representing the stability margin, enabling system operators to identify potential stability
limits. The CCT represents the time required for a disturbance to be considered eliminated
from the system to prevent instability. It provides valuable information for emergency control
actions and decision-making during fault conditions. Whereas the damping ratio (¢) reflects

the rate at which oscillations diminish over time, indicating the system's ability to recover and
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maintain stable operation. Eigenvalues also contribute to and demonstrate the stability of the
system. Mathematical expressions, as shown in Equation 2.1, Equation 2.2, and Equation 2.3,
represent the CCT, overall system frequency, and damping for a power system, respectively

[31, 65, 152].

Here in Equations, Hsys is the inertia constant of the system, ws is the angular frequency, Pmax
is the maximum rated power, &ccr is the critical power angle, &¢ is the initial power angle, and

Kp is the damping constant for the equivalent system.

4H .
Teer= " (8ccr = o) [ins] Equation 2.1
Ws Pmax
Ws Pmax €0S8p . '
Wsys = [—————[in rad/s] Equation 2.2
2Hsys
Z = l K Wg £ . 53
"2 " | 2Hgys Prax co5 8 quation 2.

As a case study, the IEEE 39 Bus New England power system is investigated to demonstrate
how important it is for power systems to maintain rotor angle stability. Ten generators make
up this power system, along with 39 buses and 33 connecting lines. As shown by the blue lines
in Figure 2.12, the system can be conceptually broken up into three distinct sections based on
its location: west, north, and south. The West region is an aggregated power system that has
several machines (G1), the North region contains three generators (G8, G9, and G10), and the
South region consists of six generators (G2, G3, G4, G5, G6, and G7). In Figure 2.12, Generator
buses are indicated with red points, PQ buses are blue points, and transmission wires are
yellow lines. To model and simulate the various components of the power system, DigSILENT
PowerFactory software, in conjunction with the DigSILENT Programming Language (DPL) [153,
154] is used. To do a sensitivity analysis of the inertia constant, three different scenarios have
been considered, each with six different sub-cases. The various possibilities are outlined in
Table 2.2. In the first possible scenario, the inertia level of the West and South areas is typical,
whereas the North area's inertia level is considered quite low. In the second scenario, the level

of inertia in the South area is low; in the third scenario, the level of inertia is low in both the
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North and South areas. The nominal values of the inertia constants are received from the
source [155], and we investigate the system's response to low inertia values in six sub-cases:

base case H, 0.9H, 0.8H, 0.7H, 0.6H, and 0.5H.

Figure 2.12: IEEE 39 Bus New England electricity system with three zones.

Table 2.2: Assumed cases for the sensitivity analysis.

Scenarios West North South
a Normal Low Normal
b Normal Normal Low
C Normal Low Low
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Figure 2.13: Sensitivity analysis of inertia constant with the CCTs for three scenarios.

During the analysis process, a fault is deliberately introduced into a transmission line, and the
CCTs for each transmission line are observed. Figure 2.13 illustrates the CCTs obtained for
different values of the inertia constant across the three scenarios outlined in Table 2.2. It is

evident from the figure that the CCTs generally decrease as the inertia constant decreases.
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Notably, scenario 'c' exhibits a higher rate of difference compared to the other two scenarios

due to the overall reduction in system inertia (H, > H, > H..). The slope of the graph in Figure

2.13 indicates the difference rate of CCTs among the scenarios, with scenario 'c' displaying the

highest difference rate. Furthermore, the transmission lines near G1 consistently exhibit

higher CCTs compared to others. To investigate this further, the CCTs in different areas of the

power system are examined across various scenarios and sub-cases; detailed information on

the CCTs can be found in Table 2.3.

Table 2.3: CCTs in different areas for different scenarios.

Scenarios a(s) b (s) c(s)
Base case 0.9960 0.9960 0.9960
0.9H 0.9810 0.9505 0.9090
0.8H 0.8790 0.8560 0.7575
West
0.7H 0.8790 0.7195 0.6740
0.6H 0.8785 0.6285 0.5905
0.5H 0.8330 0.5680 0.4995
Base case 0.2033 0.2033 0.2033
0.9H 0.1986 0.1966 0.1901
0.8H 0.1911 0.1873 0.1741
North
0.7H 0.1817 0.1778 0.1608
0.6H 0.1693 0.1663 0.1446
0.5H 0.1589 0.1531 0.1276
Base case 0.2415 0.2415 0.2415
0.9H 0.2415 0.2265 0.2255
0.8H 0.2415 0.2093 0.2083
South
0.7H 0.2405 0.1951 0.1941
0.6H 0.2405 0.1761 0.1701
0.5H 0.2405 0.1580 0.1549

Table 2.3 reveals that in all cases, the CCT values decrease from top to bottom and left to right

in correspondence with the decreasing inertia constant. In scenario 'a', where only the inertia

of the North area is reduced, Table 2.3 demonstrates that the decreased inertia affects the

CCTs throughout the entire power system. However, the North area experiences a higher rate

of difference, whereas the other two scenarios exhibit lower rates. Similarly, in scenario 'b’,
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the South area shows a higher difference rate due to the reduced inertia in that region.
Notably, scenario 'c' has a more significant impact since the reduced inertia is greater in
comparison to the other scenarios (involving decreased inertia in both the North and South
areas). This highlights the dependency of CCTs on the location within the power system.
Furthermore, the CCTs for all components demonstrate a consistent reduction with varying
inertia at specific locations. This data unequivocally shows that the CCTs decrease as the
inertia decreases in any section of the multi-machine power system, albeit with a more

pronounced effect in local areas and a lesser impact in neighboring regions.
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Figure 2.14: Damping with the increasing order of inertia constant for three scenarios.

This is only one illustration of how a low moment of inertia might influence a transmission
line. However, when a bus system is regarded in place of a transmission line, it has the same
impact as the transmission line. Like how increasing inertia has significant impacts on
frequency and voltage variations, lowering inertia does the same. Figure 2.14 illustrates the
sensitivity of the damping with respect to the inertia constant for the various situations that
were assumed. According to the findings, there is a negative correlation between the rise in

the inertia constant and the damping. In addition to this, it has been seen that the slope of
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the drop is steeper in scenario 'b' than it is in scenario 'a,' and scenario 'c' also has a steeper

drop than the other three scenarios.

2.3.1.2 Rotor Angle Stability in IBR-dominated Power System

In traditional power systems, the shape, frequency, and damping factor of rotor oscillations
are highly affected by the number and type of synchronous generators that are connected to
the grid. However, as the number of IBRs increases, the number of synchronous generators
decreases. This means that the system has little or no inertia. Because of this, there are clear
changes in the way the power system works and looks, which leads to several problems. PEC
technologies, which are built into IBR systems, make it possible to handle active and reactive
power on both the generation and load sides, which can help keep the rotor angle and
frequency stable. Still, the lower system inertia that comes with IBRs can make it hard to keep
frequency balance when there are big changes in output or load that happen quickly. To solve
the problems caused by rotor angle stability in an IBR-dominated power system, it isimportant

to do a complete study and assessment.

As mentioned in Subsection 2.2.1.1, the analysis shows that CCT values rely greatly on the
power system's inertia constant. As the inertia constant goes down, the CCT values of all parts
of the multi-machine power system go down noticeably. This effect is more noticeable in the
local area than in nearby areas. The third of the cases looked at shows big differences in
performance due to a big drop in system inertia. Even though all scenarios and sub-cases show
stability, a drop in the inertia constant has a big effect on all indicators of rotor angle stability.
Notably, as the inertia constant goes down, voltage, frequency, and generator speed all
change in noticeable ways, in conclusion, it is important to think about rotor angle stability in
an IBR-dominated power system. The drop in system inertia and the stability problems that

come with it are big problems that need to be solved well.

2.3.2 Frequency Stability

Maintaining stable frequency is essential for a power system's reliable and efficient operation.

The frequency of a power system is carefully controlled within an acceptable range to balance
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the generation capacity with the total load, ensuring a consistent supply of electrical power.
However, imbalances between generation and demand can lead to frequency deviations,
which can significantly affect power system operation, reliability, and security. These
deviations can impact load performance, cause transmission line overloading, result in

protection failures, and reduce equipment efficiency [146].

Frequency fluctuations occur when the system has a difference between the supplied and
demanded power. Mathematically, this can be expressed as Py, (t) # P, (t), where Py (t)
represents the mechanical or generated power and P, (t) represents the electrical load at a
specific moment in time. The system's frequency is directly proportional to the speed of the
generator. An increase in rotor speed leads to an increase in system frequency, while a
decrease in rotor speed corresponds to a decrease in frequency. When the system demand
increases, the rotor speed gradually decreases, causing a decrease in frequency (i.e., Py (t) <
P; (t)). Conversely, when the system load decreases, the rotor speed and frequency increase
(i.e., Py(t) > P.(t)). Therefore, to prevent frequency deviations, the generated power must
match the sum of the demand power and power losses. This relationship between frequency
and power deviation can be mathematically expressed using the swing equation, as shown in

Equation 2.4,

Practical cases have shown frequency sensitivity to various factors, highlighting the need to
understand the dynamics through specific examples. One such example is the Royal Wedding
of Prince William and Catherine on April 29, 2011, which provides insights into the relationship
between electricity demand and system frequency. The event witnessed significant
fluctuations in electricity demand, leading to drastic changes in frequency. The operation of
numerous electronic appliances during the event resulted in a high load demand, causing a
sudden rise of 2,300 MW within a few minutes, followed by a drop of 3,100 MW. These sharp
fluctuations in demand pose challenges in maintaining frequency within acceptable limits,
highlighting the importance of frequency stability even during infrequent special events. The

change in electricity demand and system frequency for that day can be shown in Figure 2.15.
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Figure 2.16: Frequency fluctuation in the British power system during the failure of the
Sizewell B nuclear power plant on 28 May 2008 [156].

Another example that demonstrates the significance of frequency stability is the failure of the
Sizewell B nuclear power plant on May 28, 2008, in the Great Britain power system. The
incident resulted in three power system failures and one embedded generation failure,
leading to a total failure of 1,993 MW within a short period of 3.5 minutes. The capacity of the
failed power system exceeded the actual reserve capacity, making it difficult to balance
generation and demand. As a consequence, the frequency exceeded the acceptable limit,
necessitating a controlled power cut-off of 546 MW in a specific part of the city for stability
maintenance. This incident highlights the importance of considering frequency stability and
the challenges associated with significant generation changes within a short time frame. The
frequency fluctuation in the British power system during the failure of the Sizewell B nuclear

power plant can be shown in Figure 2.16.

Overall, these specific examples emphasize the critical role of frequency stability in the proper
operation of a power system. Fluctuations in electricity demand, whether due to special
events or unexpected failures, can lead to drastic changes in frequency, posing challenges to
system stability. Understanding the dynamics and factors influencing frequency stability is
essential for system operators and engineers to implement measures that ensure reliable and
secure power system operation. Further research in this area can focus on developing
advanced monitoring and control techniques to enhance frequency stability and mitigate the

risks associated with significant demand fluctuations and unexpected failures.

2.3.2.1 Frequency Response and Regulation Techniques

To ensure the maintenance of an acceptable frequency range, the power system relies on the
injection and withdrawal of generated power. This process must be responsive and rapid to
accommodate dynamic load changes and achieve supply-demand balance. The power system
incorporates flexible power generation that can be adjusted according to load variations,
thereby regulating the system frequency [157]. This regulation is an ongoing and continuous

process. In the context of the Great Britain power system, Figure 2.15 demonstrates significant
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fluctuations in demand, with a sudden rise of 2,300 MW and a subsequent drop of 3,100 MW

within a short period.

Nevertheless, the system managed to maintain its frequency within the range of 49.8 Hz to
50.2 Hz. This process is known as frequency regulation within a power system. Each power
system has a predefined normal operating frequency band (NOFB) that it aims to maintain.
The restrictions may vary from nation to country, but a general idea of the nominal frequency

interval and the critical frequency interval can be seen in Table 2.4.

Table 2.4: Nominal and critical frequency intervals in the power systems.

Country Nominal frequency (Hz) Critical frequency (Hz) References
Great Britain 49.5-50.5 47-52 [158-160]
Germany 49.5-50.5 47-52 [160-162]
France 49.5-50.5 47-52 [160, 161]
Belgium 49.5-50.5 47-52 [160]
Austria 49.5-50.5 47.5-51.5 [160]
Australia 49.75-50.25 47-52 [163-165]
Ireland 49.8-50.2 47-52 [160]
Italy 49.1-50.1 47.5-51.5 [160]
Poland 49.5-50.5 47-52 [160]
Denmark 49.9-50.1 47.5-51 [166-168]
China 49.8-50.2 48-51 [169]

Frequency instability in power systems arises due to disparities between electric generation
and demand, leading to power deviations. To ensure effective operation, power systems
employ various means to balance the demand-supply chain. For extensive systems, a
significant reservoir can be utilized, while Battery Energy Storage Systems (BESS) are suitable
for smaller systems [170]. However, relying solely on these approaches may not be sufficient
to maintain equilibrium in real-time scenarios. Hence, generating plants must possess flexible
generation capabilities, which support instant balancing and mitigate potential failure risks
[170, 171]. Moreover, critical issues can emerge from significant deviations occurring within
short periods, necessitating proper management for overall system protection. Consequently,

power systems implement control mechanisms at different levels to maintain the NOFB and
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safeguard the entire system. These control levels include: (a) primary control, (b) secondary
control, (c) tertiary control, and (d) emergency control. Figure 2.17 illustrates conventional
power system frequency control techniques aimed at minimizing frequency deviations within

an acceptable range to ensure secure and reliable operation.

Additionally, Figure 2.18 presents the frequency response of the power system under various
control actions, showcasing their respective characteristics. The primary control action
depicted in Figure 2.18 is the initial and fastest response, while secondary and tertiary control
actions exhibit slower activation times. It should be noted that the specific response times and

control actions may vary across different nations and power systems.
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Figure 2.17: Frequency control techniques/ loops in a power system.

Frequency control is a crucial aspect of maintaining the stability and reliability of a power
system. In conventional power systems, frequency is directly related to the angular velocity
of the rotor, which means that controlling the rotor speed is essential for frequency control.
The primary frequency control technique, implemented through the governor mechanism,
regulates the flow of water/steam based on rotor speed sensing to maintain the speed of the
turbine-generator set. This technique is responsible for correcting low speed and frequency

deviations within seconds, acting as the initial line of defense in frequency control [172].
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Figure 2.18: Frequency response of the power system under different control actions.

However, in cases where frequency deviations exceed a certain threshold, the primary
frequency control alone may not be sufficient to restore system frequency. This calls for
implementing the secondary frequency control technique, also known as Load Frequency
Control (LFC). The secondary control technique utilizes spinning and non-spinning reserve
capacities to balance the load and control the frequency. It employs automatic and centralized
controls, utilizing the system's reserve capacity to restore the frequency within a few minutes
to several minutes. The secondary control technique consists of unit-level and system-level
controls, with unit-level controllers monitoring system variables and requiring action from the
primary control, while the Automatic Generation Control (AGC) system coordinates power
generation adjustments among all power generators. AGC and LFC aim to maintain system
frequency by coordinating power exchange with neighboring control areas, aiming for a lower

Area Control Error (ACE) value in each power plant area [173-177].

The tertiary stage of frequency control comes into play during severe supply-demand
imbalances caused by sharp frequency deviations. It involves manual or automatic control
techniques to adjust the working rate of power generation. Tertiary control encompasses
adjustment, rescheduling, and deployment of new power generators, and it takes a longer
duration, ranging from tens of minutes to hours, to restore the secondary control reserves.

Tertiary control can be seen as an economic dispatch method and is typically employed in a
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fully deregulated market framework. It supports the secondary control by coordinating
reserves and relieving the secondary control response to approach a lower value of ACE. In
situations where frequency deviations exceed acceptable limits and control techniques fail,
standby supplies or emergency actions such as Under Frequency Load Shedding (UFLS)
schemes or disconnection of generation stations may be necessary to prevent cascading faults

and system blackouts [177-179].

In conclusion, frequency control in power systems involves multiple stages: primary frequency
control for immediate correction of small deviations, secondary frequency control for longer
duration frequency restoration utilizing reserve capacities, and tertiary frequency control for
managing severe supply-demand imbalances. These control techniques are vital for
maintaining system stability and reliability, and their proper implementation ensures the
smooth operation of power systems even in the face of disturbances and fluctuations in load
and generation. Future research in this area can focus on developing advanced control
strategies and coordination techniques to enhance the efficiency and effectiveness of

frequency control in modern power systems.

2.3.2.2 Frequency Stability in IBR-dominated Power System

The modern power system is undergoing significant transformations in generation,
transmission, distribution, and utilization, driven by the rapid growth of PEC-based
technologies and the integration of IBRs. These transformations involve the extensive
integration of PEC-based RESs, such as solar PV and wind turbines, in the generation, as well
as the dependence on PECs for appliances and control methods in other sectors. However,
these advancements have also introduced challenges related to short-term frequency
instability in the power system for two reasons. Firstly, the high penetration of PEC-based RESs
reduces system inertia, and secondly, the unpredictable patterns of RESs make it challenging

to balance the demand-supply chain [180].

The modern power system is undergoing significant transformations driven by the integration

of PEC-based technologies and the increasing penetration of RESs. The integration of RESs,
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such as solar PV and wind turbines, has led to challenges related to short-term frequency
instability in the power system. Two main reasons contribute to this instability: the reduction
of system inertia due to the high penetration of PEC-based RESs and the unpredictable nature
of RESs, which makes it challenging to balance the demand-supply chain. These rapid changes
have made the modern power system more complex [180]. Solar and wind resources exhibit
stochastic characteristics, with variable power generation trends occurring over different
timescales. Similarly, power demand in the system also exhibits stochastic behavior with
continuous variations. The modern power system experiences short-term variations in both
generation and load within minutes and hours. Various studies have been conducted to
forecast solar and wind power generation to reduce uncertainty in the power system.
However, forecasted results may not be highly accurate on an exact timescale, leading to
significant deviations in system frequency, especially in low-inertia power grids. The increasing
penetration of PECs amplifies the stochastic variations in active power generation, which can

result in unpredictable situations within the system [181-188].

In a conventional power system, synchronous generators contribute to system inertia, which
is essential for maintaining system frequency. The rotation of synchronous machines is
directly linked to the system frequency, and the inertia these machines provide helps minimize
initial frequency deviations. The total mechanical inertia of the system exhibits resistive
properties against changes in machine rotation, ensuring frequency stability. Equation 1
highlights how a slight imbalance between power generation and load can lead to frequency
deviations in a power system. A more detailed representation of Equation 4 is provided in
Equation 2.5 and Equation 2.6, considering the inertia constant (H), system frequency (f),
rated power of the machine (S), kinetic energy (E«in), equivalent inertia of the entire power
system (Hsys), system base power (Ssys), and the inertia (H;) and rated power (S) of i™® machines

[189].

The relationship between system inertia and the kinetic energy of machines in the power
system is evident from the equations provided. The system inertia increases in direct

proportion to the kinetic energy of the machine, assuming a constant rated power. In
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conventional power systems, synchronous generators serve as both a source of kinetic energy
and system inertia. However, the modern power system exhibits reduced kinetic energy and
inertia due to the increasing adoption of IBRs. These technologies are widely utilized in
appliances and equipment control mechanisms, significantly reducing inertia. The rate of IBR

integration is rising steadily, leading to a steep decline in system inertia [190].

_U®0®)/2 _ Ekin _ HiSi

H i .
S S Seys Equation 2.5
Hyy = Ceinsys Yie i HiSi Equation 2.6
Y Ssys Ssys

Maintaining synchronism and uniform frequency is crucial in a power system with multiple
generators. However, significant power deviations can cause individual generators to lose
synchronization, resulting in fluctuating motion around the Centre of Inertia (COIl) (see
Equation 2.7 and Equation 2.8). Each unit's frequency may differ, leading to oscillatory
behavior. The extent of oscillation depends on the power deviation between generations.
Py, (t) and load P, (t), as depicted in Equation 2.4. However, the frequencies of individual units
are close to the COI, and the damping and inertial forces among the units strive to restore
system-wide synchronization. A control mechanism must be activated if these forces fail to

maintain the system's stability [191, 192].

Equation 2.8 and Equation 2.9 highlight the direct relationship between system frequency, its
rate of change, and the inertia of the power grid. Reduced system inertia results in higher
frequency fluctuations. Figure 2.19 (a) and (b) visually analyze these issues, illustrating
frequency dynamics at different inertial constants and power deviations. Figure 2.19 (a)
demonstrates that lower system inertia leads to higher frequency deviations, potentially
resulting in an unstable power system. Similarly, Figure 2.19 (b) showcases the dynamic
characteristics of the frequency with changing power deviations—the analysis employed

transfer function constants obtained from a reference book [146].
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Figure 2.19: Frequency dynamics at different (a) inertial constant, and (b) power deviation.

The integration of IBRs in a power system not only affects frequency stability but also gives
rise to other stability issues. The synchronous generators linked to the grid directly affect the
system's stability in terms of rotor angle and small signals [193]. When there are more IBRs in
the power system, there are fewer synchronous generators. This can change the form,
frequency, and damping factor of rotor oscillation [149]. Also, power system stabilizers that

are tied to synchronous generators can not be used with the power system. As disturbances

55



Shrestha: Estimation of the energy-mix proportion for the secure operation of converter dominated

power system

increase, transient instability may occur due to changes in power flow through tie-lines [194].
Rotor angle stability is closely related to frequency stability, as the rotor speed of generators
is adjusted in response to system frequency [15]. PEC-based technologies, capable of
controlling active and reactive power on both the generation and load sides, can be utilized
to address rotor angle stability and frequency stability concerns [195, 196]. Moreover, low
inertia power systems may struggle to maintain frequency balance during significant

deviations resulting from rapid generation/load changes [197].

2.3.3 Voltage Stability

Voltage stability is a critical aspect of power systems, ensuring reliable and secure electrical
network operation. It refers to a power system's ability to maintain acceptable voltage levels
within predetermined limits under normal conditions and in the face of disturbances. If not
properly managed, voltage instability can lead to voltage collapse, causing widespread
blackouts and severe damage to electrical equipment. Reactive power plays a crucial role in
understanding voltage stability; it is essential for maintaining voltage levels and supporting

the transmission and distribution of electrical energy [194].

Voltage instability happens when a disturbance, an increase in load demand, or a change in
the system causes the voltage to drop in a way that can not be stopped. The primary factor
contributing to instability is the power system's inability to meet the demand for reactive
power. Voltage stability issues often arise in heavily stressed systems, where factors such as
the strength of the transmission network, power transfer levels, generator reactive
power/voltage control limits, load characteristics, and reactive compensation devices

significantly impact the system's stability [194].

Voltage stability can be broadly defined as the system's ability to maintain steady, acceptable
voltages at all buses following a disturbance or contingency. It is affected by the power
system's ability to meet the demand for active and reactive power flow through the
transmission network. Small disturbance voltage stability refers to the system's ability to

maintain steady-state stability, where voltages near the loads remain close to their pre-
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disturbance values. Analysing voltage stability typically involves simulating the power system

using nonlinear differential-algebraic equations [198].

Several indices are employed to assess voltage stability and measure a power system's overall
stability. These include the voltage stability margin (VSM) and the voltage stability index (VSI).
These indices help evaluate the system's proximity to voltage collapse and provide valuable
insights into its stability characteristics. Ensuring voltage stability is crucial for the reliable and
secure operation of power systems. Achieving a balance between reactive power supply and
demand is essential to avoid deviations that can result in voltage instability and potential
system collapse. Robust analysis techniques, such as monitoring eigenvalues and employing
appropriate voltage control devices like capacitor banks at different buses, are essential for

maintaining voltage stability in both transmission and distribution systems [199].

In summary, voltage stability plays a vital role in power system operation, enabling the
maintenance of acceptable voltage levels. By understanding and managing reactive power,
analyzing voltage stability through various indices, and implementing appropriate control
measures, power system operators can ensure the reliable and secure operation of electrical

networks while mitigating the risks associated with voltage instability.

2.3.3.1 \Voltage Stability in IBR-dominated Power System

Keeping the voltage stable in an IBR-dominated power system is a unique problem that needs
creative solutions. As more and more RESs like solar and wind power connect to the power
grid through IBRs, keeping the voltage stable is important for the system to work well.
Reactive power is mostly made by synchronous machines in standard power systems, but IBRs
don't have the ability to make reactive power on their own [200]. This makes the balance

between reactive power supply and demand a very important issue.

One of the biggest problems with power systems that are mostly made up of IBRs is that their
output can change and isn't always predictable. Solar and wind resources can vary depending
on the weather and how often they are used. This can cause real-world power output to

change quickly. These changes in real power generation have a direct effect on reactive power
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usage, which causes voltage changes and could make voltage stability less stable. Because of

this, effective plans are needed to lessen these effects and keep the voltage stable.

It is important to fix gaps in reactive power in IBR-dominated power systems. Coordinated
reactive power control is a potential way to handle both traditional and IBR-based reactive
power sources in a coordinated way. Advanced control methods and communication
infrastructure allow the best use of available reactive power resources to meet the system's
demand, which helps keep the voltage stable. Coordinated control can use real-time tracking
and control systems to make sure that the reactive power output of IBRs and other

compensating devices is adjusted on time, which reduces the risk of voltage instability [201].

In IBR-dominated power systems, keeping the voltage stable is a big job for voltage control
and compensation equipment. Devices like on-load tap changers and shunt capacitors make
it possible to control voltage and compensate for gaps in reactive power. These devices give
you more options for controlling voltage levels, making up for reactive power demand, and
improving the general stability of the system. Voltage regulation devices can compensate for
voltage changes caused by changes in IBR output by changing tap positions on the fly and

adding or taking away reactive power as needed [202].

Integration of BESS is a creative way to improve voltage stability in power systems that are
controlled by IBR. BESS can act as a buffer by keeping extra energy when production is high
and releasing it when demand is high or when IBR output changes. By giving reactive power
support quickly, BESS can help control voltage levels and stop voltage changes caused by
changes in IBR output. Implementing BESS along with IBRs and other types of generation
sources can make it much easier for the system to keep the voltage stable even when working

conditions change [203].

In IBR-dominated power systems, proactive voltage stability management is only possible with
the help of advanced tracking and control systems. When real-time measurements are
combined with predictive algorithms, voltage changes, and possible instability can be

detected early on. These systems make it easy to take corrective steps quickly, like changing
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the settings for reactive power control or turning on voltage regulation devices, so that
voltage instability doesn't happen. Power system operators can deal with problems with
voltage stability in IBR-dominated environments by using insights from data and smart control

methods [7, 204].

In the end, voltage stability in power systems that are controlled by IBR needs careful thought
and the use of new strategies. Keeping the voltage stable requires coordinated control of
reactive power, devices that change the voltage, BESS, and advanced tracking and control
systems. As the use of renewable energy continues to grow, more research and development
are needed to improve voltage stability techniques and make sure that IBR-dominated power
systems work reliably and safely. By managing reactive power balance well and using current
control technologies, the stage for a future with sustainable energy while keeping the power

grids stable can be settled.

2.3.4 Converter-driven Stability

In recent years, there has been a lot of growth in the use of RESs like wind power and
photovoltaics (PVs). This has been made possible by PECs, which turn the changeable output
of RESs into stable electrical energy for the power grid. However, the presence of IBRs in the
system introduces new challenges, particularly in terms of converter-driven stability. Modal
resonances and interactions between different IBRs and weak grids cause these problems.
These things can worsen dynamic performance and threaten the whole system's security. Due
to the wide use of Voltage Source Converter (VSC) technology, converter-driven stability in
RES integration is very different from that of traditional synchronous engines. IBRs use control
loops and methods with fast response times, such as phase-locked loops (PLL) and inner-
current control loops. However, because these controls have a long-time scale, they can cross-
couple with the electrical dynamics of machines and the electromagnetic transients of the
network. This can cause oscillations that are unstable over a wide range of frequencies [205-
207]. Stability effects caused by the converter can be put into two groups: fast interactions
and slow interactions. Dynamic problems caused by the control systems of devices that use

power electronics and their interactions with fast-response components are what make fast
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interactions happen. On the other hand, slow interactions happen when there are interactions
with parts of the power system that respond slowly. The parts that follow give more

information about these groups:

2.3.4.1 Fast-Interaction Converter-Driven Stability

This group includes instability caused by interactions between power electronic-based
systems, like converters, HVDC, and FACTS, and fast-response components, like transmission
networks and synchronous generators. Harmonic instability, multi-resonance, and high-

frequency oscillations caused by switches and control interactions are some examples.

(a) Instability in harmony: Harmonic instability is a type of instability caused by fast, dynamic
reactions between power electronic converters and passive system components. High-
frequency waves are caused by these interactions between the fast inner-current loops of
converters and passive components [208, 209]. Harmonic instabilities can be caused by
resonances in parallel or series, switching at high frequencies, or interactions between
converters that are linked to the grid [209-211]. There are some case studies and findings of

harmonic instability in different power systems [212-214].

(b) High-Frequency Oscillations: High and very high-frequency oscillations have been seen in
large wind power plants linked to VSC-HVDC systems, which makes stability hard to achieve
[215]. The paper talks about the waves' frequency range, what causes them, and how they
might be stopped [213, 216]. It also shows how important well-tuned control strategies, like
virtual synchronous machine controllers, are for lowering the number of fast oscillations

[213].

2.3.4.2 Slow-Interaction Converter-Driven Stability

This group focuses on the instability caused by the dynamic interactions between power
electronic devices and slow-response components, such as the electromechanical dynamics

of synchronous generators. Low-frequency waves and weak systems are two good examples.

60



Shrestha: Estimation of the energy-mix proportion for the secure operation of converter dominated

power system

(a) Low-frequency oscillations: Slow-Interaction Converter Driven Stability involves slow
dynamic interactions between the controls of the converter and the electromechanical
dynamics of synchronous engines or weak grids. Low-frequency waves that aren't stable can
happen when converter control loops and other system parts interact [209]. [217] shows case
studies of low-frequency oscillations in power systems with converter-based generators, like
windmills with direct-drive permanent-magnet generators (PMGs). Similarly, [218] talks about
how the system's strength, the PLL's tuning, and the control methods affect low-frequency

oscillations.

(b) Weak System Stability: Weak system stability looks at the problems with power transfer
limits and how converters can change their phase in weak networks [17-20]. Stability is looked
at in terms of how converter control loops, PLL performance, and power transfer limits affect
it. Research articles [217, 219], talk about possible methods, such as coordinated control of

multiple converters and control strategies that make a grid.

In conclusion, converter-driven stability includes a wide range of dynamic phenomena and
problems that happen when converter-based systems, like CIGs, are added to the power grid.
Understanding both fast and slow interactions is important for making effective control
methods that can fix these problems and make power systems more stable and reliable. The
goal of ongoing studies and improvements in converter control technologies is to find ways to

deal with these problems and make the power grid more stable and reliable.

2.3.5 Resonance Stability

Resonance stability within an IBR-based power system refers to the occurrence of periodic
energy exchange in an oscillatory manner. This phenomenon amplifies voltage, current, and
torque parameters while hindering the dissipation of energy, resulting in significant
oscillations that can affect both electrical and mechanical components. There are two distinct
types of resonance stability: (a) torsional resonance, and (b) electrical resonance. Torsional
resonance is primarily observed in conventional power systems with synchronous generators,

whereas electrical resonance is more prevalent in systems utilizing IBRs, particularly variable-
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speed induction generators found in wind turbines. These resonances pose challenges by
causing disturbances in current, voltage, and electrical torque, impacting the overall system

performance [193, 207].

The occurrence of resonance in a power system stems from inadequate dissipation of energy,
leading to periodic energy exchange in an oscillatory fashion. This amplifies voltage, current,
and torque magnitudes, and when these magnitudes surpass certain thresholds, resonance
instability arises. Resonance stability encompasses subsynchronous resonance (SSR), which
can manifest as either electromechanical resonance or purely electrical resonance. SSR can
occur in two forms: resonance between series compensation and the mechanical torsional
frequencies of the turbine-generator shaft and resonance between series compensation and
the electrical characteristics of the generator. The former, known as the Induction Generator
Effect, arises from interactions between the series compensated electrical network and the

mechanical modes of torsional oscillations on the turbine-generator shaft [193, 207].

SSR occurs when there is significant energy exchange between the network and a turbine
generator at one or more of the natural sub-synchronous torsional oscillation modes within
the combined turbine generator mechanical shaft [220]. These oscillations can exhibit poor
damping, no damping, or even negative damping, posing a threat to the mechanical integrity
of the turbine-generator shaft. Device-dependent subsynchronous oscillations occur due to
the interaction between fast-acting control devices, such as HVDC lines, static VAR
compensators, static synchronous compensators, and power system stabilizers with the
torsional mechanical modes of nearby turbine-generators [220, 221]. It is important to note
that Device-dependent subsynchronous oscillations can have both detrimental and beneficial

interactions, as some interactions enhance torsional damping [222].

SSR mainly involves torsional interactions and resonance in power systems employing
conventional turbine-generators, with the Induction Generator Effect not observed in actual
power systems utilizing conventional synchronous generation. However, it was predicted that
variable-speed induction generators used in doubly-fed induction generators would be highly

susceptible to Induction Generator Effect SSR [223]. This susceptibility arises due to the direct
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grid connection of a variable-speed doubly-fed induction generators generator, making it an
induction generator capable of experiencing electrical resonance with series compensation
[207]. Self-excitation SSR occurs when the series capacitor forms a resonant circuit at sub-
synchronous frequencies, with the effective inductance of the induction generator [224]. If
the total negative resistance surpasses the positive resistance near the resonant frequencies,
self-excitation SSR takes place. This resonance primarily leads to large current and voltage
oscillations that can damage electrical equipment within the generators and transmission
system and may also result in mechanical damage to the turbine-generator assembly, such as
the gear box [207, 224]. Incorporating additional controllers into the doubly-fed induction
generator converter controls has been demonstrated to mitigate and dampen resonant

oscillations [207, 225].
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3 Time-series analysis of kinetic energy in power system

analysis

Estimating kinetic energy from time-series data is a crucial aspect of energy research and
power system management. Kinetic energy, representing the energy associated with object
movement, holds significant importance in various sectors, such as renewable energy
integration, grid stability, and demand forecasting. Accurate estimation of kinetic energy using
time-series data enables improved planning, operation, and control of power systems. By
analyzing historical patterns and trends in kinetic energy, researchers and practitioners gain
valuable insights into the behavior and dynamics of energy systems. This knowledge aids in
optimizing renewable energy generation and consumption, enhancing grid reliability, and
mitigating potential risks and uncertainties. Understanding the temporal variations of kinetic
energy empowers stakeholders to make informed decisions regarding energy infrastructure

investments, load balancing, and integrating intermittent renewable sources into the grid.

Furthermore, accurate estimation of kinetic energy through time-series analysis facilitates
short-term and long-term forecasting, which is vital for efficient energy management.
Forecasting kinetic energy patterns assists in planning energy generation and storage
capacities, optimizing energy dispatch, and managing demand response programs. It also
supports the development of strategies for grid stability, frequency regulation, and reliable
power supply, particularly in converter-dominated power systems with high levels of
intermittent renewable energy sources. The study of time-series data estimation of kinetic
energy also contributes to the advancement of data-driven models and algorithms. It involves
developing and applying statistical and machine learning techniques to analyze and predict
energy patterns accurately. These models can capture the complex interactions and
dependencies within energy systems, leading to more precise estimations and improved
system operation. Moreover, the findings from such studies can inform the development of
predictive control strategies, enabling real-time adjustments and optimization of energy

resources. By accurately forecasting and analyzing kinetic energy patterns, power system
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operators can make informed decisions, develop effective strategies, and pave the way for a

more sustainable and resilient energy future.

This chapter focuses primarily on the short-term forecasting of kinetic energy in converter-
dominated power systems, and its main objective is to analyze the importance of time-series
data analysis of kinetic energy in power system analysis, especially the modern power system
dominated by IBRs. This sub-section presents the prospective for estimating power systems'
dynamic characteristics by forecasting time-series kinetic energy data. The content of this

chapter is primarily derived from Article 4 [190].

3.1 Methodology used to forecast the time-series data sets

3.1.1 Data sets

The main objective of this sub-section is to analyze the importance of time-series data on
kinetic energy in power system analysis. The time-series data on kinetic energy obtained from
the Integrated Nordic Power System (INPS) is utilized for that. The kinetic energy data for the
INPS in 2019 is obtained from FINGRID's web portal [226]. A total of 525,604 samples were
collected, with measurements taken every minute. Upon reviewing the raw datasets, it was
discovered that some entries were of the NaN (not a number) type. These observations served
as aninitial indication of outliers within the collected data. Ensuring high-quality data is crucial
for accurate analysis and proper visualization of results. Presenting flawed visualizations
resulting from poor data can lead to audience misinterpretation. Therefore, the raw data
underwent initial processing to minimize potential errors by filtering and addressing missing
values. Out of the 525,604 samples, 9,273 samples (approximately 1.76%) are missing and
replaced with the corresponding column's mean values. The minimum and maximum values
recorded for kinetic energy in 2019 were 126 GWs and 273 GWs, respectively. Similarly, the
mean and median values of the entire sample set are determined to be 194.1 GWSs and 191
GWs, with a standard deviation of 27.6. Figure 3.1 displays the frequency characteristics over
the entire year, while Figure 3.2 illustrates the kinetic energy of the Nordic grid. Both figures

are provided below for reference.
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Figure 3.1: Plot of the datasets of frequency for one year.
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Figure 3.3: Seasonal variations of KE: (a) annual, (b) weekly, and (c) daily.
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To gain a deeper understanding of the data, box plots can be employed to visualize its
characteristics. As depicted in Figure 3.3 (a), the case study results indicate that the amount
of kinetic energy depends on prevailing weather conditions. Higher values are observed during
the winter, while lower values are observed during the summer. Figure 3.3 (b) and (c) present
the weekly and daily variations in kinetic energy. Interestingly, these figures demonstrate that
kinetic energy is higher than the average during office hours but lower during non-working
hours and holidays. This disparity can be attributed to the fact that kinetic energy production

is directly proportional to the duration of productive activity.

3.1.2 Bayesian model

Bayes' theorem is a crucial principle in probability theory that enables us to adjust our beliefs
and determine the probability of an event based on new evidence. It establishes a
mathematical connection between the conditional probability of an event given another
event and the prior probability of the events in question. Utilizing Bayes' theorem allows us
to integrate fresh information and update our initial assumptions, resulting in more precise
and well-informed probabilistic forecasts. This theorem has broad applications across
disciplines such as statistics, machine learning, and data science, empowering us to make

improved decisions and derive significant insights from observed data [227, 228].

In Bayes's theorem, the probability of event X occurring, given the occurrence of event Y, can
be calculated using Equation 3.1 when X and Y are two events. Equation 3.1 represents the
joint probability of the two events and does not exhibit symmetrical characteristics. Within
Equation 3.1, the terms are defined as follows: P(X]|Y) is referred to as the posterior
probability, P(X) as the prior probability, P(Y|X) as the likelihood, and P(Y) as the evidence. If
the prior probability, likelihood, and evidence values are known, the posterior probability can

be easily determined.
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P(XNY) _ P(X).P(Y|X)
P(Y)  P(Y)

P(X|Y) = Equation 3.1

In traditional linear regression estimation, Equation 3.2 is employed along with a normally
distributed error term (e, ~ Normal (0, ¢%)). However, the accuracy of estimation can be
improved by utilizing Bayes' theorem. By applying Bayes' theorem to linear regression,
Equation 3.3 presents the updated posterior distribution, while Equation 3.4 represents the
likelihood function. In these equations, f refers to the coefficient and ¢° denotes the variance.
This incorporation of Bayes' theorem allows for more precise estimation in linear regression

analysis.
Y, =BX; + € Equation 3.2

H(p, 6?|Yy) o F(Yi|B, 0®) * P(B, %) Equation 3.3

=BxpT (v-BXp)

F(YiB, ) = 2nd?) % e 207 Equation 3.4

As given by Equation 3.1, the probability of conditional events can be identified if the values
of the other three parameters are available. However, Stan’s LM-BFGS [229] is used as the
optimization algorithm in this study. By using Stan’s Limited Memory Broyden-Fletcher-
Goldfarb-Shanno (LM-BFGS), the new value (x;,4) can be obtained as given in Equation 3.5
[230], where a; is the step length that should be satisfy the Wolfe conditions, V f; is the

gradient, and H; is the updated Hessian approximation (n*n symmetric) at the iteration.
Xep1 = X¢ — aH{V f; Equation 3.5

The accuracy and efficiency of the LM-BFGS model in estimation heavily rely on the sensitivity
of the Hessian approximation, denoted as H;. This approximation involves replacing the
vector pair (s;, y;) with the most recent pair (s;, y¢) at each new iteration, which is then
updated accordingly. For instance, if the current iterate is x;, the set of vector pairs at the tth
iteration will be (s;, y;) where i ranges from (t—m) to (t — 1). The initial Hessian approximation,

tth

H?, is considered and continuously updated up to the iteration until H; satisfies the
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condition described in Equation 3.6. The workflow followed for LM-BFGS in this study is

depicted in Figure 3.4.

H=WVI,. .. VL )H? (Vi oo ... Vec) + peem VE 4 VI 21) Secm
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= Equation 3.7
Pt T s quation 3.
Ve =1— psiye Equation 3.8
St = Xpp1 — Xt Equation 3.9
Ve =Vfir1 =V f; Equation 3.10
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Figure 3.4: Flow chart of the LM-BFGS algorithm.
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3.1.3 Optimization

Time-series data refers to a collection of observations, often taken at regular time intervals,
although this is not always the case. Unlike models that consider the temporal dependence in
the data, the described model approaches the forecasting problem as a curve-fitting exercise.
It assumes that the factors influencing the data are functions of time since the data itself is a
function of time. These factors are not treated separately since the model disregards temporal
dependencies and focuses solely on the time component of the output. To optimize this

model, one strategy is to experiment with different training datasets.

| Set the number of training data set =0 |

| Increase the number of training data set by 15 |4—

Extract the defined number of training data set

v

Train the model

L

Compute and save the RMSE

!

a = number of training data

}

b = length (training data set)

Figure 3.5: Flow chart of the optimization process.

The specific question being addressed is how many training datasets are required for short-
term forecasting of kinetic energy with the least margin of error. An optimization model is
developed to address this question, and the flow chart for this model is presented in Figure

3.5. The available data consists of a total of 525,604 observations. Initially, this data is divided
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into a training set and a test set. The test set comprises the most recent 30 minutes of data,
organized at minute intervals, while the training set consists of the remaining data and serves

as the main dataset for training.

Using the training dataset, the model predicts the kinetic energy for the subsequent half an
hour. The RMSE is then computed by comparing the predicted output with the test dataset.
The number of training datasets is gradually increased by 15, and the aforementioned process
is repeated. At each stage, the calculated RMSE is logged and plotted against the total number
of training samples. Ultimately, the number of samples that yield the lowest RMSE value is
considered the best option. This iterative procedure helps determine the optimal number of

training datasets for achieving the most accurate short-term kinetic energy forecasts.

3.1.4 Performance evaluation index

Itis crucial to evaluate and validate the performance of a developed model. The data undergo
training using optimal regression coefficients and are then used for in-sample forecasting. A
subset of samples is allocated for validation to assess the accuracy of the results. To evaluate
the performance of the model and understand the nature of kinetic energy, popular measures
such as Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), Root Mean

Square Error (RMSE), and Mean Absolute Scaled Error (MASE) are employed.

n -
MAPE = lz iy Equation 3.11
Nlaj=1 Vi
MAE =% n i — $il Equation 3.12
RMSE =\/%Z?=1(yi — §))2 Equation 3.13
1N
MASE = — szolejl Equation 3.14

77 D=z Vi~ Vical
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These measures, described in the above equations, utilize the actual values (y;), forecasted
values (§;), and the corresponding errors (e; = y; - §;) at the j" iteration fortime t (t=1, 2,...,
T), where the training set is considered. For the evaluation and validation of the kinetic energy
datasets, a platform called EXPLORATORY [231] is utilized. This platform facilitates the

assessment of performance and validation of the model's results.

3.2 Characteristics of the model and relevance of this study

Figure 3.6 focuses primarily on the characteristics of the forecasted values and the training
datasets of kinetic energy used for evaluation. Figure 3.6 (a) illustrates the data nature of
training, testing, and forecasting using the Bayesian model, while Figure 3.6 (b) shows the
same data nature using the ARIMA model, which was used for comparison purposes.
Comparing the two figures, it is observed that the forecasted and testing variables for the
Bayesian model exhibit close alignment, indicating good accuracy. In contrast, the forecasted
variables in the ARIMA model display similar characteristics. Still, the accuracy is not as good
compared to the Bayesian model, as there are some discrepancies between the testing and

forecasted values.
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Figure 3.6: Results showing the nature of training, testing, and forecasted values for (a) the
Bayesian model and (b) the ARIMA model.

Furthermore, Figure 3.7 (a) depicts the current trend of kinetic energy and its development
pattern for the datasets. The application of the Bayesian model does not show any trend-
altering points, indicating its strong performance in accurately capturing the trend. However,
the ARIMA model illustrates the point at which the trend shifts, albeit with some points for

improvement, as shown in Figure 3.7 (b). Both figures suggest that the presented Bayesian

model performs better than the ARIMA model.
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Figure 3.7: Results showing the trend and trend-changing pattern for (a) the Bayesian model

and (b) the ARIMA model.

The performance metrics of the Bayesian model are calculated as follows: RMSE (4.67), MAE
(3.865), MAPE (0.048), and MASE (8.15). In contrast, the ARIMA model yielded the following
performance metric values: RMSE (6.15), MAE (4.680), MAPE (0.069), and MASE (12.34). The
comparison between the two models confirms that the Bayesian model outperforms the
ARIMA model in terms of accuracy. It is worth noting that these values could potentially be
further improved by increasing the number of MCMC samples. Figure 3.8 provides the
performance metrics for the Bayesian model at different MCMC sample numbers,

demonstrating that the optimal value is achieved with 200 MCMC samples for analysis.
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Figure 3.8: Effect of the Bayesian inference on the performance metrics
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Figure 3.9: RMSE at different numbers of training sets during short-term forecasting

Finally, Figure 3.9 displays the RMSE for different numbers of training sets used to compute
predictions for the next 30 minutes. The minimum RMSE value of 1.54504 is attained when
utilizing a total of 10,830 minutes (or 180.5 hours) of training samples. This result indicates

that the training dataset of 10,830 minutes is sufficient for predicting kinetic energy
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(specifically for the considered case study and the datasets) with an accuracy of 1.54504 RMSE

for short-term outcomes (i.e., 30 minutes).

3.3 Importance of time-series analysis in power system analysis

Estimating kinetic energy from time-series data is a crucial aspect of energy research and
power system management. Kinetic energy, representing the energy associated with object
movement, holds significant importance in various sectors, such as renewable energy
integration, grid stability, and demand forecasting. Accurate estimation of kinetic energy using
time-series data enables improved planning, operation, and control of power systems. By
analyzing historical patterns and trends in kinetic energy, researchers and practitioners gain
valuable insights into the behavior and dynamics of energy systems. This knowledge aids in
optimizing renewable energy generation and consumption, enhancing grid reliability, and
mitigating potential risks and uncertainties. Understanding the temporal variations of kinetic
energy empowers stakeholders to make informed decisions regarding energy infrastructure

investments, load balancing, and integrating intermittent renewable sources into the grid.

Furthermore, precise estimation of kinetic energy through time-series analysis facilitates
short-term and long-term forecasting, which is vital for efficient energy management.
Forecasting kinetic energy patterns assists in planning energy generation and storage
capacities, optimizing energy dispatch, and managing demand response programs. It also
supports the development of strategies for grid stability, frequency regulation, and reliable
power supply, particularly in converter-dominated power systems with high levels of
intermittent renewable energy sources. The study of time-series data estimation of kinetic
energy also contributes to the advancement of data-driven models and algorithms. It involves
developing and applying statistical and machine learning techniques to analyze and predict
energy patterns accurately. These models can capture the complex interactions and
dependencies within energy systems, leading to more precise estimations and improved
system operation. Moreover, the findings from such studies can inform the development of
predictive control strategies, enabling real-time adjustments and optimization of energy

resources. By accurately forecasting and analyzing kinetic energy patterns, power system

77



Shrestha: Estimation of the energy-mix proportion for the secure operation of converter dominated

power system

operators can make informed decisions, develop effective strategies, and pave the way for a

more sustainable and resilient energy future.
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4 Day-ahead estimation of the energy-mix proportion

The day-ahead estimation of power system parameters plays a crucial role in the context of
IBRs and the global transition towards a sustainable future. As countries increasingly
incorporate RESs into their power grids to address environmental concerns and achieve net-
zero emissions, integrating IBRs presents technical challenges related to reliability, system
dynamics, stability, and control efficiency. Using IBRs complicates the power grid and reduces
system inertia, which can impact overall performance and stability. Additionally, the
stochastic nature of RESs like solar and wind introduces demand and supply chain
complexities. Therefore, efficient day-ahead estimation of power system parameters
becomes vital in managing short-term demand-supply imbalances caused by the variability of
RESs. By utilizing historical time-series data and employing data-driven models, day-ahead
estimation enables the identification of optimal energy-mix proportions and the scheduling of
power producers, considering constraints and objective functions related to generation costs,
reserve scheduling, system strength, and overall security. Such estimation practices
contribute to the reliable and sustainable operation of power systems in compliance with

regulatory requirements, facilitating a greener and more resilient energy future.

With the objective of ensuring the secure functioning of converter-dominated power systems,
this chapter focuses on estimating the optimal day-ahead energy-mix proportion of the
power-generating technologies. It utilizes time-series data obtained from the TSOs of the
Nordic grid to estimate day-ahead values using a data-driven model. These estimated values
are then used to determine the optimal scheduling of power-generating technologies,
considering different power-generating technologies such as synchronous generators, grid-
following converters, and grid-forming converters. Based on the research conducted in Article
5 [232], the findings presented in this chapter highlight the proposed approach's effectiveness
in addressing the IBR-dominated power systems. This chapter is a valuable resource to
underscore the significance of day-ahead estimation of power system parameters in the
ongoing efforts of decarbonization, renewable energy integration, and combatting global

warming.
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4.1 Methodology used for day-ahead estimation

This section provides a detailed exploration of the chosen approaches and the underlying
assumptions made to support the investigation. Methodologies, including a power system
model, data-driven forecasting model, and optimal energy-mix generation and reserve
scheduling model, have been carefully considered. Figure 4.1 provides an overview and
summary of this approach. The power system model encompasses all the necessary
components to meet grid standard requirements. Real-world data collected from power
systems worldwide serves as a valuable source of independent and variable time series data,
including power production and consumption. A data-driven forecasting model is employed
to forecast the time series data for the following day based on the available time series data
used for estimating day-ahead values. The model for optimal energy-mix generation and
reserve scheduling considers the power system's constraints and anticipated time series data
related to power generation and consumption. The most efficient scheduling of power-
generating technologies is determined by analyzing the reactions of different power-
generating technologies. Techno-economic impact evaluations aid in determining the optimal
distribution of components, while the reserve schedule ensures the uninterrupted and secure

operation of the power system.

Time Series Data of k days

— l—
3 X = (X1, X2, X3, cevene Xk)
°
o
£
£
g Data forecasting for 24 hours (X:1)
>
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g Update X
&

Optimal energy-mix generation and | |
reserve schedule for the 24 hours

Figure 4.1: An overview of the adopted approach.

4.1.1 Power system components

An approach is utilized to investigate day-ahead scheduling with an optimal energy-mix

proportion for the secure operation of a converter-dominated power system, as depicted in
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Figure 4.1. This model serves as the basis for exploring and analyzing the day-ahead scheduling
strategies with an optimal energy-mix. The primary network under investigation is the IEEE 9
bus power system, illustrated in Figure 4.2. Table 4.1 provides the ratings for the generators
and load centers incorporated in the IEEE 9 bus power system. Furthermore, it is assumed that
the primary network operates at a voltage of 230 kV and a frequency of 50 Hz. For a more
comprehensive understanding of the power system model, the book authored by P.M.
Anderson [233], contains all the necessary information. Specifically, it is assumed that the first
generator represents a synchronous generator (a hydroelectric plant), the second generator
includes a Battery Energy Storage System (BESS) with a grid-following converter, and the third
generator encompasses a wind turbine with a grid-forming converter. Figure 4.3 provides an
overview of the system under analysis, giving a holistic view of its configuration and

components.

Figure 4.2: Single line diagram of IEEE 9 bus system.

O

Figure 4.3: Overview of the considered power system.
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Table 4.1: Rating of the generators and the loads in the considered power system

Parameters Values

Generator 1 163 MW (1.025 pu) at 18 kV

Generator 2 72.19 (1.04 pu) at 16.5 kV

Generator 3 85 MW (1.025 pu) at 13.8 kV
Load 1 100 MW/ 35 MVAR
Load 2 125 MW/ 50 MVAR
Load 3 90 MW/ 30 MVAR

The model for the synchronous generator used can be defined by Equation 4.1 and Equation
4.2. Equation 4.1 relates to the mechanical power P, ; and the damping torque coefficient D;
of the i*" generator. Similarly, §; represents the rotor angle in radians, w; denotes the shaft
speed in per unit (pu), w, is the nominal speed in pu, and H; represents the inertia constant
in MJ/MVA. The derivative with respect to time is denoted by the symbol (). Additionally, 7,
represents the armature resistance, i,; and iy ; represent the g- and d-axis components of

stator current, while v, ; and v, ; denote g-axis and d-axis components of the voltage [234].

8; = wo(w; — 1) Equation 4.1
2H;w;6; = —Diwo(w; — 1) + Py — Wqilqi + Vailai + Talai” + .
5 Equation 4.2
ralq,i )

Similarly, the grid-forming converter employs the grid-forming virtual emulator described in
[235]; the mathematical representation of this emulator is expressed by Equation 4.3 and
Equation 4.4. Here in these Equations, P; represents the active power output of the it"
generator, while w; and 6; denote the frequency and voltage angles. Additionally, the positive

parameters ri; and d; are referred to as the virtual inertia constant and virtual damping

constant, respectively.

0; = w; Equation 4.3
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mi &w; = —d;j w; — P; Equation 4.4

Conversely, the mathematical representation of the grid-following converter can be expressed
as Equation 4.5 and Equation 4.6 [235]. In these equations, T; represents the filter time
constant, while Kp ; and K; ; are the proportional and integral gain constants, respectively, for

the component. The symbol (") indicates that the value is estimated.

A

0, = o; Equation 4.5

Tiw;\i = _é)\i - Kp'ivq’i - KI,i qu,i dt Equation 4.6

4.1.2 Data sets

To conduct the analysis, actual data on hydropower production, wind power output, and load
consumption are utilized. The data initially collected for the INPS is subsequently reduced in
size to comply with the specifications of the IEEE 9 bus standard. The data on hydropower
output specifically originates from Finland but is considered valid for all Nordic countries, as
the seasonal streamflow trends for different rivers in these countries exhibit comparable
patterns [236, 237]. However, the wind power and load consumption data are taken for INPS
from the FINGRID's web portal [226]. The data spans from January 1, 2021, to December 31,

2021, with a resolution of three minutes.

Upon examining the raw datasets, it is observed that some entries are of the NaN type
(indicating missing or invalid values), while others appeared to be sourced from incorrect
columns. These observations indicate the presence of extreme values within the collected
datasets. To better understand the data distribution and conduct a thorough analysis,
histograms based on normal distributions are employed, as shown in Figure 4.4. The
hydropower histogram demonstrates that most values fall within the range of zero to 3,688.96
MW. Similarly, load consumption ranges from 4,245.98 to 15,006.4 MW, and wind power
ranges from zero to 2,915.54 MW. Qutliers that fall outside these range boundaries are

identified.
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Figure 4.4: Normal distribution of datasets for (a) hydropower, (b) wind power, and (c) load

consumption.

During the analysis process, a total of 763 outliers were identified in the hydropower dataset,
one outlier in the wind power dataset, and 768 outliers in the load consumption dataset, out
of 174,988 samples in total. These outliers are subsequently replaced with the mean values of
their respective columns: 944.27 MW for wind power, 1,609.8 MW for hydropower, and 9,668

MW for load consumption.

Before proceeding with the analysis, the data undergo pre-processing to refine outliers and
are then scaled down to adhere to the specifications of the IEEE 9-bus standard. Normalization
technique is applied to achieve the desired data form, as shown in Equation 4.7 [238].

_  Xj—min(X)

1™ max(X)-min(x) *0Q Equation 4.7

In this equation, X; represents the i" value, max(X) denotes the maximum value, and
min(X) represents the minimum value for the respective datasets. The maximum values (Q)
derived from the power ratings of the generators and load consumption (as indicated in Table
4.1) are used for normalization. The scaling down of the data occurs as part of this pre-
processing step. The scaled datasets are subsequently utilized in conjunction with the
forecasting model to provide values for the parameters one day in advance, specifically for

wind power and load consumption.
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Given that hydropower production is heavily influenced by the water flow, which typically
exhibits minimal changes over short time periods (assuming no significant weather variations,
such as rainfall), it is reasonable to consider the water discharge as a constant value for the
entire day when performing day-ahead estimation. Monthly forecasting can be utilized for
hydropower production, taking into account its dependency on the water flow. Conversely, as
wind power and load consumption are subject to random variations, accurate predictions are
crucial in studying these phenomena. Therefore, the importance of forecasting the next day's
wind power production and load demand is emphasized in this study, with a primary focus on

this aspect of forecasting.

4.1.3 Operation and reserve scheduling model

For optimization purposes, cost is considered as the objective function, which is
mathematically represented by Equation 4.8. This allowed them to identify the most efficient
allocation of energy-generating technologies. The objective functions in this study are
categorized into four aspects: (a) the cost of energy generation, including the charging and
discharging cost of the BESS; (b) the service fee provided by power generators to enhance the
power system's strength; (c) the cost of generator start-up and shutdown; and (d) the cost of

energy reserve.

14 Up Down | Down reserve reserve
Z (Cg,t Pt tCge Uge T Coe Uge "+ Cyt PgEeve)
minz 99 Equation 4.8
Dis is Charge Charge
teT + z (C : Cot "Pert )
e€e

In Equation 4.8, the cost parameters for energy, generator start-up, generator shut-down, and

reserve are denoted as C},, Cé’f, clev™, and Cj5emve, respectively. Similarly, p2F and pc’“‘”’e

charge represent the cost parameters

denote the energy supplied/consumed, while ¢2¢ and C,;
during the discharging and charging process of the BESS. The energy generated by the
generators at time t is represented by p,,, and the reserved energy is denoted as p}¥°™°.

Furthermore, u Y and ug¢¥™ are binary variables indicating the start-up and shutdown of the
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generating units, respectively. The ¢}, signifies the cost parameters for energy generated by

different power producers.

These cost parameters vary for each power generator based on their resources and
characteristics. For example, the energy cost generated by RESs is relatively higher than non-
renewable sources due to incentives provided by society towards RESs. Synchronous
generators are often the preferred choice when discussing RESs, as they are easy to start and
shut down and offer reliable supply and system security. Grid-forming converters and virtual
inertia are effective methods to enhance system strength and stability. Similarly, the BESS can
serve as an additional frequency service provider. Considering each energy producer's distinct
characteristics and contributions to the overall power system quality, it is crucial to conduct a
comprehensive cost analysis that considers the individual service costs of multiple generators.
The distribution of cost parameters for generated energy is presented in Equation 4.9 and

Equation 4.10, where C;f represents the real cost parameter for energy generation from

various generators, and Cj° is the cost parameter for the service provided by different

SS

price 1S unit price and LF® is location factor,

generators to improve system strength,
respectively. These parameters contribute to the calculation of the total cost of generated

energy.
C;t = C;,f + C5° Equation 4.9

$ .
s = C38 (M_VA) X LF3S x p5s (MVA) Equation 4.10

price

4.1.4 Constraints

To ensure the secure operation of the considered power system and identify accurate
optimization of the cost function, several constraints need to be considered. Equation 4.11
represents the relationship between variables associated with generator operation, start-up,
and shut-down, while Equation 4.12 imposes constraints on the variables related to start-up

and shut-down. The variables, Ug%, U;? and U22*™ correspond to unit commitment, start-up,

86



Shrestha: Estimation of the energy-mix proportion for the secure operation of converter dominated

power system

and shutdown of the generating technology at time t. It is crucial for generators to operate

within a reasonable range and comply with grid requirements during start-up and shutdown.

on on _ ., Up Down ;
Ugt —Ugi—1 = Uy — Ugp Equation 4.11
Up Down ;
Uge + uge " =1 Equation 4.12

Likewise, Equation 4.13 establishes the relationship between the power generated by the

generator and the maximum and minimum ramp rates at which the generator can operate.
The upper and lower bounds for the ramp rates are denoted as leql,]f and RP;?W”,
respectively, while pg, represents the power generated by each power-generating
technology at time t. Furthermore, Equation 4.14 sets a constraint on the amount of energy

that should be reserved to ensure sufficient supply. The minimum, maximum, and available

reserve bounds are denoted by pg‘i“, Py, and pg$€TVe, respectively.

g.t
ug,'éRP;,?W" <Py, — Py, < ug,’%RPgL,’f Equation 4.13
pgnin < Py + PREETVE < pnax Equation 4.14

Ensuring the stability of the phase angle is addressed in Equation 4.15, where the minimum
and maximum limits of the phase angle are represented by ¢;"" and 6;"**, respectively, and
(6, — 65,) represents the phase angle differences. Additionally, Equation 4.16 outlines the

prerequisites that must be met before any generators can begin producing active electricity.
O < 6, — Oy < G50 Equation 4.15

ugh pinin < p . < ug pmax Equation 4.16

4.1.5 Indicator of power system strength

The system non-synchronous penetration (SNSP) ratio is considered as a crucial indicator of
system strength to identify the secure operating level of the IBR-dominated power system. It

serves as a measure to assess the integration of non-synchronous generators into the power
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system and is calculated by using Equation 4.17 [239]. While analyzing, various scenarios were
simulated to determine the secure operating level of the power system, considering load and
PEC-based generation disturbances. The worst-case scenario involved adjusting the
generation dispatch until satisfactory results are obtained. The SNSP ratio is then calculated
to establish the maximum limit for the SNSP ratio, expressed as a percentage. The relationship
between the maximum threshold and secure operational SNSP ratios depends on the
contingency event with the most significant impact on RoCoF and frequency control. Figure

4.5 provides a detailed overview of the procedures used to determine these limits.

Non - Synchronous Generation + Net Interconnector Imports

SNSP (%) = x100 Equation 4.17

Demand + Net Interconnector Exports

Power System model

y

Increase the percential changes in the load
disturbance/ PEC —based generation

y

Measuring real-time frequency

RoCoF is in
limit?

Power System is in
normal operation

frequendy is in
limit or/ and
saturated in
10s ?

System is unstable. Measure the
threshold values and parameters

Figure 4.5: Processes to identify the threshold values and secure function conditions of the

considered power system model.
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4.1.6 Data-driven model for day-ahead forecasting

The primary objective is to estimate the energy-mix proportions for the next day, ensuring the
reliable functioning of the power system. To achieve this, Long Short-Term Memory (LSTM) is
considered a suitable option due to its ability to handle complex datasets and patterns. LSTM,
an improvement over Recurrent Neural Networks (RNN), addresses the challenge of learning
long-term dependencies. Developed by Google DeepMind, LSTM incorporates an extended
memory function, enabling it to retain information over longer periods. The addition of four
gates - input, forget, update, and output - is a crucial modification that enhances LSTM's
performance. The forget gate controls the update of the memory cell and the transfer of data
to existing and new memory cells. The update gate determines whether the memory cell
should be updated and the information it acquires from the previous step. Lastly, the output
gate determines the values of the subsequent hidden layer. The expressions of these four

gates are given below [240].

I; = o(W;[a®=2,X®] + b)) Equation 4.18

I; = o(Wr[a=2,X®] + by) Equation 4.19
ru = tanh(W, [a"~1, X9] + b,,) Equation 4.20
I = o(Wo[a=1, X9 + by) Equation 4.21

Here in these Equations, the weight matrices and bias vectors of the recurrent network are
represented by W and b, respectively, while the states of the neurons are denoted by a and
X . The activation function is represented by o. In this process, Equation 4.22 allows to
determine the current state of the time-series model, and Equation 4.23 calculates the output

value using the four gates.
hy = tanh(Wyphe_q + Wipxt) Equation 4.22

Vi = Whyht Equation 4.23
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Here in these Equations, the current state is denoted as h, € (—1,1)", the previous state as
h:_4, the output as y; € R, and the input as x; € R’. The weight of the recurrent neuron is
represented by W, € R™?, the weight of the input neuron by W,,;,, the weight of the output
neuron by Wy,, and the bias vector parameters to be learned during model training by b €
R™. Figure 4.6 provides an overview of the LSTM model architecture used in this study, where
the inputs are the recorded data of power production and load consumption, and the output

is a day-ahead estimation of the parameters.

Input values of wind power (p,,) and
load consumptions (1) for k days

B [pw,lr Pw,2, Pw,3) Pw,4 < - --pw,k]
[N O
Hidden layer 1 Hidden layer 2

t layer

(T
Y

LSTM Network

Y

_ pw,k+1]
Loyt

Output values of wind power (p,,) and load
consumptions (1) for k+1 day

Figure 4.6: Overview of the data-driven model.

4.1.6.1 Hyperparameter tuning

In the realm of neural network analysis, selecting appropriate values for hyperparameters is
vital for achieving optimal performance. These hyperparameters have a significant impact on
the network's learning behavior and capacity. However, determining suitable hyperparameter

values is often challenging and requires meticulous fine-tuning. To address this issue, the
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Bayesian optimization algorithm is adopted as a highly effective method for determining the
values of network hyperparameters. This approach utilizes objective function evaluations to
educate a Gaussian process model, and it is leveraged with the deep learning application

integrated with MATLAB software for optimization [241].

During the hyperparameter tuning process, an optimization function called
valErrorFun(optVars), specifically designed for tuning the variables, is employed. Table 4.2
provides a comprehensive overview of the specified ranges for the other parameters involved.
When developing the model architecture, crucial considerations included determining the
number of hidden layers and the number of neurons within each layer. The choice of
activation function played a vital role in introducing non-linearity and determining the
activation of specific neurons based on weighted sums and biases. Similarly, the optimal
learning rate varied based on the presented data and the network being trained. To prevent
underfitting and overfitting, regularization played a significant role. Various hyperparameter
values are explored, taking into account their respective weights and their impact on the

optimization process.

Table 4.2: Hyperparameters ranges/ types for tuning

Parameters Value/ types
Number of hidden layers Z[1, 5]
Number of units in the hidden layer 7 [10, 200]
Activation function [tanh, relu, sigmoid]
Learning rate R [0.00001, 1]
Dropout value R [0.1,0.7]
L2 Regularization R [1e-10, 1e-2]

Figure 4.7 graphically demonstrates the relationship between the objective function's minimal
values and the function evaluation when Bayesian optimization is employed to obtain the
optimal hyperparameter values. The observed and estimated values of the objective function,
after conducting the simulation for one hundred epochs, are found to be 0.055348 and
0.0892, respectively. The significant hyperparameters are identified through the output of

Bayesian optimization. A comprehensive listing of all the employed hyperparameters for the
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presented LSTM model can be found in Table 4.3. These endeavors aimed to ensure that the

neural network model could operate at its best performance level by determining appropriate

hyperparameter values through Bayesian optimization.

Table 4.3: Hyperparameters for the presented LSTM model

Parameters Value/ types
Optimizer Adam
Maximum Epoch 100
Mini batch size 32
Dropout value 0.5
Number of hidden layers 2
. 197 hidden units, tanh activation function, uniform
1st hidden layer e
initializer

2nd hidden layer

197 hidden units, sigmoid activation function,
uniform initializer

Initial learning rate 0.001
Learn rate schedule piecewise
L2 Regularization 0.00518

Input weight initializer

Glorot, with LR 1 and L2 factor 1

Recurrent weight initializer

Orthogonal, with LR 1 and L2 factor 1

Bias Initializer

Unit-forget-gate, with LR 1 and L2 factor O

Min objective vs. Number of function evaluations

Min observed objective
Estimated min objective -1.2

Min objective

1 1 1 1 | D

50 60 70 80 90 100

Function evaluations

Figure 4.7: Minimum objective vs. number of function evaluations.
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4.1.6.2 Performance evaluation

Figure 4.8 illustrates the model's error progression with increasing epochs, indicating an
improvement in training performance. At 100 epochs, the RMSE is measured as 0.1352, while
the loss function yields a value of 0.0183. Both indicators exhibit significant initial decreases,
but the subsequent rate of change becomes minor, resulting in a steady decline. Considering
the negligible rate of change beyond this point, a total of 100 epochs is selected for their

model analysis.
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Figure 4.8: Loss function with epochs/ iterations.

To assess the model's performance, regressions are conducted on the training, testing, and
overall datasets for both wind power output and load consumption. These regressions are
performed on two separate sets of data. Figure 4.9 presents these regression graphs, offering
a comprehensive overview. The dataset is split into two parts: training (80%) and testing (20%)
using the 'dataPartitioning(opt, data)' method [242]. The train-test split technique is

employed to accurately evaluate the model's performance when making predictions on
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unseen data, thus providing a robust assessment. The rank correlation values for all examples
are found to exceed 0.980, indicating the effectiveness of the provided model. This signifies a
strong association between the predicted and actual values, highlighting the model's
capability to capture meaningful patterns and accurately estimate wind power output and

load consumption.
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Figure 4.9: Normalized regression of LSTM model for (a) load training data, (b) load testing

data, (c) load all data, (d) wind training data, (e) wind testing data, and (f) wind all data.

4.2 Results

The model begins by utilizing data to estimate the factors affecting power generation and

consumption for the upcoming day. These estimated values are then input into a dynamic
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model of the power system, which incorporates an optimization model. The objective is to
determine the optimal proportion of energy-mix for the day ahead. In the scenario being
examined here, the power system consists of a SG, wind turbines with GFL, and BESS with
GFM. When power-generating technologies operate under their typical conditions, they have
certain ratings that apply to their performance. These ratings are taken into account when
determining the sizes of these technologies. Figure 4.10 (a) presents the percentage of total
installed capacity contributed by each of the three types of power-generating technologies.
Considering this aspect, the provided model dynamically optimizes the power ratings of these
technologies for the day-ahead scenario and allocates resources accordingly to accommodate
any changes. On the other hand, Figure 4.10 (b) illustrates the hourly energy delivery from

each of these power-generating technologies for the examined one-day-ahead scenario.
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Figure 4.10: (a) proportion of installed capacity of the power-generating technologies, and (b)

hourly generated electricity at the day-ahead scenario.

Figure 4.11 (a) illustrates the power quantities supplied and used by these components, along
with the optimal power they supply. When the GFL value is positive, it indicates that the BESS
is being discharged. Conversely, when the GFL value is negative, the BESS is being charged
from the grid using power generated by other sources. Figure 4.11 (b) provides an overview
of the SoC level of the BESS system in the day-ahead simulation scenario. The lowest SoC
recorded during this specific one-day simulation is forty percent, which falls well within the
permissible range, as evident from the figure. Similarly, Figure 4.11 (c) displays the total

system frequency, which is measured in this simulation model. The frequency appears to
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exhibit less variance under normal operating conditions and remains within the conventional
frequency constraints set by Nordic TSOs. This indicates that the frequency is within
acceptable limits. Finally, Figure 4.11 (d) illustrates the range of the SNSP ratio observed in the
researched condition, spanning from 28% to 64%. These findings pertain to the regular
operation of the power system, with the maximum SNSP ratio determined as 64%.
Consequently, it is reasonable to conclude that the SNSP value of 64% falls within a safe

operating range for the investigated power system.
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Figure 4.11: (a) Power generated through power-generating technologies, (b) SoC of BESS, (c)

system frequency, and (d) SNSP values for 24 hours-time spans (samples per unit of time).

However, the power grid must be prepared to handle unexpected disruptions that can impact

the electrical system's performance. Various disturbances can affect a power system, each
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exhibiting unique characteristics and symptoms. These disturbances can manifest as different
types of faults, including line-to-line faults, line-to-ground faults, multiple-line-to-ground
faults, and others. Additionally, sudden changes in load or power generation, such as the
addition or removal of a significant load, can adversely affect the overall performance of the
power system. Consequently, it becomes imperative to conduct a contingency analysis to

assess the system's operation and ensure its safety.
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Figure 4.12: System’s responses (i.e., frequency, generation, voltage, load, and SNSP) at AP, =

0.30 pu.

In this study, the power system model is perturbed by introducing an external disturbance,
and the time-domain simulation method is employed to analyze the system's response to this
disturbance. Figure 4.12 graphically depicts the alterations in the power system's

characteristics resulting from a 30% increase in load (i.e., AP,= 0.30 pu). At the 25-second
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mark, when the load is increased, the terminal voltages and frequencies of all generating units
begin to decrease, albeit with some variation. This behavior is observed when the load
experiences an increase. However, during the same period, the generating units respond by
increasing their production to meet the demand reliably. This allows the system to maintain
stability and adequately supply demand within seconds. Although it takes slightly longer to
reach the saturation level when a significant load increase, such as 30%, most parameters
achieve or approach saturation within three seconds, ensuring continued secure supply to the
grid. Furthermore, before the disturbance, the SNSP ratio for the considered power system is

43%. However, after the disturbance (applying AP, = 0.30 pu), the SNSP ratio increased to 57%.

In order to conduct a comprehensive investigation, adjustments have been made to the load
disturbance level, and maximum values for the SNSP ratio have been determined. The power
system model is initially run under normal conditions, and then various load disturbances are
introduced for analysis, observing the system's responses to these disturbances. During this
analysis, it has been observed that the system becomes unstable when the load disturbance
reaches 38% of the total load. This percentage represents the technical limit of the load
disturbance for the current investigation. A detailed overview of the procedures followed to

establish this limit can be found in Figure 4.5.

Load Disturbance [%] Max SNSP [%]
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Figure 4.13: Maximum SNSP ratio values at different load disturbances.

98



Shrestha: Estimation of the energy-mix proportion for the secure operation of converter dominated

power system

Figure 4.13 displays the maximum SNSP ratio values for each load disturbance, which have
been determined through extensive analysis. Under normal operating conditions, the SNSP
ratio is observed to be 43%, as depicted in the figure. With each increment in the load
disturbance, the SNSP ratio gradually increases. It is crucial to maintain this limit to ensure
system stability. In the specific operating mode under examination, the maximum load
disturbance that can occur without surpassing the stability threshold is 38%. At this level, the
highest attainable SNSP ratio is found to be 59%, which can be considered a critical limit for

electricity generation technologies.

4.3 Conclusions

In conclusion, day-ahead estimation can play a vital role in ensuring the secure operation of
power systems. It involves utilizing data and dynamic models to estimate the factors
influencing power generation and consumption for the upcoming day, thereby determining
the optimal energy-mix proportion. The insights gained from day-ahead estimation are
invaluable in understanding the system's behavior under various scenarios, including load
disturbances and external disruptions. This knowledge enables the identification of potential
issues and their impact on critical system parameters like terminal voltages, frequencies, and

SNSP ratios.

Through contingency evaluations, day-ahead estimation facilitates the assessment of system
safety and stability. It helps establish crucial limits, such as maximum load disturbance levels,
which must not be exceeded to maintain stability. These insights empower grid operators and
decision-makers to make informed choices, implement preventive measures, and mitigate
risks, thus ensuring the reliable and secure operation of the power system. Day-ahead
estimation serves as an indispensable tool for proactive system management, enabling
stakeholders to anticipate and prepare for potential disruptions, optimize resource allocation,
and maintain stability and performance within acceptable boundaries. By providing an
advanced understanding of the system's behavior, day-ahead estimation significantly
contributes to the efficient and secure operation of power systems, even in the face of

changing demands and external uncertainties.

99



Shrestha: Estimation of the energy-mix proportion for the secure operation of converter dominated

power system

100



Shrestha: Estimation of the energy-mix proportion for the secure operation of converter dominated

power system

5 On-line estimation of the energy-mix proportion

Online simulation has become essential for planning and operating modern power systems.
The primary objective is to achieve voltage, rotor angle, and frequency stability, preventing
instability and minimizing the risk of blackouts. Through extensive research experiments and
simulations, effective techniques have been discovered to manage frequency in low-inertia

systems and enhance overall power system reliability.

By connecting the power of online simulation, researchers and operators can develop
innovative strategies to overcome the challenges associated with integrating IBRs and dealing
with the dynamic behavior of power systems. This includes the development of advanced
frequency management techniques and the utilization of cutting-edge PECs. Additionally,
machine learning methods provide efficient and robust solutions for estimating the
proportion of electricity generated by different sources and ensuring the secure operation of

IBR-based power systems.

The insights presented in this chapter, based on the research conducted in Article 6, highlight
the effectiveness of the proposed approach in addressing key challenges related to reliability,
system dynamics, stability, control efficiency, and security in IBR-dominated power systems.
This chapter serves as a valuable resource emphasizing the importance of online estimation
of power system parameters in ongoing efforts toward decarbonization and RESs integration.
By enabling secure and optimized operation of renewable energy-dominated power systems,
this approach contributes to the overarching goal of achieving a sustainable and

environmentally friendly energy landscape.

5.1 Methodology used for on-line estimation

Ensuring a balanced supply-demand in a power system is crucial for maintaining stable power
quality. This requires analyzing simultaneous equations with various variables to determine
the proportion of power-generating technologies needed to operate the system safely.
However, traditional model-based simulation approaches can be computationally intensive

and time-consuming, especially as the size of the case study and the number of variables
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increases. To address this issue, this study adopted a deep reinforcement learning (DRL)

method that estimates the energy-mix proportion in a converter-dominated power system.

The proposed DRL method utilized a data-driven approach, reducing the computational power
and time required for estimation. By considering percentile variations of the load and
generations, the threshold values for secure power system operation can be identified. The
study aimed to ensure that the power system can operate securely under normal conditions

and unforeseen events.
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Figure 5.1: Overview of the methodology for online electricity-mix estimation.

Figure 5.1 illustrates the adopted approach involving connecting a benchmark power system
to the IEEE 9 bus system as the primary network. A power system model is simulated in
MATLAB/Simulink, incorporating various power-generating technologies to generate data for
training the DRL model. The data is collected under varied system loads and generations
during contingency scenarios, and the simulation results are used to develop a contingency
plan. The DRL algorithm runs on Python using OpenAl Gym to create a reinforcement learning

environment, while the power system operates within the time-domain framework provided
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by MATLAB Simulink. The integration of these two frameworks is achieved using the Python
interpreter. The main objective of this integration is to perform online testing and analyze the
performance of the proposed methodology, ensuring its validation. The subsequent sections
of this chapter delve into the details of the data generation process and the live model used

in the study.

5.1.1 Power system components

The power system model and its components, which have been discussed in detail in
subsection 4.1.1 of the previous chapter, are utilized in this study without any modifications.
The power system model and its network configuration remain the same throughout the

research.

5.1.2 Data sets

To gather data for training the DRL model, an offline simulation of the power system model is
performed using MATLAB/Simulink. The simulation considered various scenarios with
different system loads and generations to account for contingency situations. The parameters
related to the power system components are recorded during the simulation and used as a

training set for the DRL model.

In the data collection process, particular attention is given to the patterns of variation in the
parameters. Rapid load changes are applied, ranging from 1.00 pu to 1.25 pu, while the
generation from the GFM varies from 0.75 pu to 1.0 pu, and the generation from the SG
changes from 0.75 pu to 1.0 pu. All the setpoints considered in the data collection process are
listed in Table 5.1. During the data generation, the switch in the power system model is
opened and closed at different time points to observe the system's response. The scope values
for the parameters are recorded, and the sampling time and frame for the measurements are
defined. The data are collected at a resolution of 10 milliseconds over time periods ranging
from 20 to 50 seconds. In total, 792,000 separate data sets were gathered through the

sampling process.
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Table 5.1: Considered variations on generations and load to collect datasets.
Parameters Values

Load applied [1.0, 1.05,1.10, 1.15, 1.20, 1.25] pu

GFM generation [0.75, 0.80, 0.85, 0.90, 0.95, 1.0] pu

SG generation [0.75, 0.80, 0.85, 0.90, 0.95, 1.0] pu
Switching close [25, 35, 45] second marks
Switching open [30, 40, 50] second marks

To simulate real-world conditions, white Gaussian noise with a noise power of 5e-6 and a
sample time of 0.01 is introduced during the data collection process. The excitation signals for
the load disturbances are used to collect the data. Figure 5.2 provides an example of the

generated data, depicting a sample scenario with a system load (P;) of 0.25 pu, an SG

generation of 0.85 pu, and a GFM generation of 1.0 pu.
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Figure 5.2: Sample of frequency, power generation, voltage, and load for AP, =0.25 pu at 0.85
pu of SG and 1.0 pu of GFM.
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5.1.3 Indicator to assess the power system's robustness

Ensuring power quality and system security are primary concerns in both normal operations
and contingencies. To analyze the characteristics of power system components, data patterns
with load and power generation variations are collected, focusing on assessing the
performance and safe operation during disturbances. The entire creation and operation of the

benchmark system adhered to the grid code of the Nordic TSO.

Several significant constraints are considered during power system operation, including
variables related to generator operation, ramp rates, energy reserve requirements, phase
angle stability, BESS SoC, and short circuit level (SCL) (as discussed in subsection 4.1.4). System
strength is employed as an indicator to assess the minimum level of security necessary for the

power system.

As the penetration of PEC-based technologies increases, the displacement of SGs within the
power system reduces system strength, necessitating a higher level of strength to ensure
proper operation. Parameters such as the short circuit ratio (SCR), X/R ratio, and SCL are used
to measure the system's secure operating level [243]. In this study, the SCLs are adopted as
indicators of power system strength, specifically at the point of interconnections (POI) for
each power-generating technology. SCL can be monitored using both natural and artificial
disturbances [244]. However, the hybrid approach is used in this study, incorporating white
noise as an artificial disturbance and frequent load and generation changes as natural
disturbances. The minimum SCL value required for a strong grid is measured, and this value is

considered during online testing to identify the energy-mix proportion for system security.

5.1.4 Data-driven model

The approach used in this study is summarized in Figure 5.1, highlighting the significant role
of the DRL technique employed. By employing a data-driven methodology, the provided DRL
model acts as a decision-making tool to enhance procedural efficiency and generate optimal

outcomes. Specifically, this study utilizes the Deep Q-Network (DQN) technology, a form of
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DRL that aims to interact with the environment while training an agent to adopt an optimal

policy that maximizes expected rewards.

Q-learning, as a model-free reinforcement learning method, employed in this study, offers
simplicity compared to other advanced policy gradient techniques. It can be conceptualized
as an approach to asynchronous dynamic programming, allowing agents to learn optimal
behavior by experiencing the consequences of their actions instead of constructing domain
mappings. This perspective enables agents to learn effective behavior in Markovian domains

by gaining experience from other domains [245].

The decision-making process is modeled as a set of five tuples denoted by S,A,P,R, and Y.
S represents the state space, A represents the action space, P represents the probability of
transitioning between states, R represents the reward function, and Y represents the
discount factor. The goal of interacting with the environment is to maximize the total reward
accumulated during the training process [246, 247]. Equation 5.1 is utilized to determine the
optimal action-value function, where each state can be reached from the starting point in a
single step [246]. The value R;, , represents the reward for taking action A to transition from
state S to state S’, while the discount factor y € [0, 1] determines the extent to which future

rewards are considered valuable.

n
G, = z Y¥*Re,,, Equation 5.1
k=0

The primary objective of DRL is to establish an optimal mapping between states and actions.
In this study, this objective is achieved by constructing a Q-value, also known as the "optimal
action value," and updating its value as the algorithm explores and learns from the
environment. In hypothetical state-action pairings denoted as (S', A'), the state S’

corresponds to the highest value associated with the action A for that state (S, 4).

Equation 5.2 considers only the immediate and future rewards, without specifying the relative

importance of maintaining present benefits versus the impact of future rewards on the
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current decision-making process [248]. To address this, a learning rate a is introduced to
determine the proportion of current rewards that should be retained. Similarly, the discount
factor, denoted by y, diminishes the influence of future rewards. Considering these factors,

the action-value function is updated, resulting in the modified version shown in Equation 5.3.
Q:(S,A) =E[Riy1+ v X maxQ(S' +A")] Equation 5.2
Q:(5,A) =1 —a)+ a[Riy1 + ¥ X max,Q(S"'+ A")] Equation 5.3

In Q-learning, the value function update typically involves using the hard max operator.
However, in this work, the Dynamic Boltzmann softmax operator (DBSO), VS € § defined in
Equation 5.4, is employed to optimize and update the value function. In Equation 5.4, 3,
represents a state-independent sequence, which is a non-negative variable that needs to be
regularly updated. To dynamically update the DBSO, processes like those described in
Equation 5.5 and Equation 5.6 were utilized. These Equations specify the procedures for

updating and adapting the DBSO in the learning process [249].

Yaca ePteSAq(s,4)

boltzg, (Q(S,)) = > oFOGA Equation 5.4
VS, A,Q41(S,A) « 2 p(S" 1S, A)[r(S,A) +yVe(S] Equation 5.5
VS, Vi11(S) « boltzg, (Q¢41(S,7)) Equation 5.6

In DRL, an agent interacts with its environment by taking actions and receiving rewards based
on the successful completion of state-action pairs. To enable appropriate action selection for
experienced conditions, the DRL agent needs to interact with and train itself on specific
environmental circumstances. As the environment cannot have an unlimited number of
states, a policy is necessary. This study proposes a suitable policy by combining a neural
network with optimal values obtained from the Q policy, forming the Deep Q-Network (DQN)
approach. This combination allows for the determination of the appropriate policy, as

depicted in Figure 5.3, which illustrates the cognitive process underlying the paradigm.
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Figure 5.3: Overview of the adopted DQN-learning approach.

The DQN approach improves upon Q-learning by utilizing a neural network to approximate
the action-value function Q, (S, A). Through Q-learning, an agent learns to act in a manner
that maximizes the projected cumulative reward, R; = Z?’:to yEtR,, and subsequently
applies that knowledge [250]. This involves learning to behave in a way that maximizes the
potential for receiving rewards, R;. By estimating the value of each action in each state using
the action-value function Q, (S, A), the action with the highest value is selected. The iterative
updating process, known as the Bellman equation (Equation 5.2), considers both the reward
obtained from taking an action and the expected future reward from the next state, aiming to

maximize the likelihood of achieving the desired outcome.

The DQN algorithm incorporates experience replay, which is a significant advancement [251].
This allows the agent to learn from past mistakes by maintaining a memory buffer of previous
experiences in the form of tuples (S, 4, R,S’). Random samples from this buffer are used as
input for training the neural network. This process continued until the neural network is fully
trained. The benefit of this approach is that learning is more consistent, and the correlation
between experiences is reduced. Using Huber loss (Equation 5.7 and Equation 5.8) helps
minimize errors during batch transitions by taking advantage of the sampled values from the
replay memory [252]. In Equation 5.7 and Equation 5.8), § signifies the temporal difference

error.

1 .
L= EZ(S,A,R,S')EB L(d) Equat|0n 5.7

152 for|6] <1
L(8) =12 Equation 5.8

1 .
6] — > otherwise
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Equation 5.9

8= Qr(S,4) = (Res1 + v X max,Q(S' + A))

Table 5.2: Performance index and hyperparameters for the DQN agent.

layers

Parameters Value/ types
Optimizer Adam
Epochs 2000
Batch size 200
Discount factor 0.99
Number of hidden 5

1st hidden layer

20 hidden units, tanh activation function, input dimension =3,
uniform initializer

2nd hidden layer

20 hidden units, relu activation function, uniform initializer

output layer

1-unit, linear activation function, uniform initializer

Exploration rate

0.99

Learning rate

0.001

Table 5.3: Hyperparameters ranges/ types for tuning.

Parameters Value/ types
[100, 200, 300, 400, 500]
[0.95, 0.96, 0.97, 0.98, 0.99]
[1,2,3,4,5, 6]
[10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
[10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
[tanh, relu]

[0.0001, 0.001, 0.01, 0.1]

Batch size

Discount factor

Number of hidden layers

Number of units in 1st hidden layer

Number of units in 2nd hidden layer

Activation function

Learning rate

Furthermore, an enhancement known as the target network, which is a separate neural
network with specific parameters used to compute target values, is employed [253]. The
neural network took the current state of the environment as input and generated estimated
action values for all possible actions. The difference between the predicted action and target
values derived from the Bellman equation is used to calculate the loss. The Bellman equation
is used to establish the target values. By employing a neural network and obtaining optimal
values for the policy from the DBSO, the most effective policy is calculated and successfully

implemented, referred to as DQN. Table 5.2 provides an overview of the performance indexes
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and hyperparameters adopted for the DQN in this work. The deep learning application
provided by the MATLAB software is used for the hyperparameter tuning. Table 5.3 presents

the value ranges used in the process of hyperparameter tuning.

5.1.4.1 State, reward, and action spaces

The state spaces in the DRL agent correspond to variables that serve as inputs. In this study,
the power system's critical components monitored for secure operation include frequencies,
voltages, and SCLs at the POls, total active load, and active power generated by GFM. These
components are considered as inputs, and their associated reward spaces are taken into
account. Based on the reward computed, the DRL agent proposes control actions for the
power system. The determination of the reward follows the approach outlined in Equation
5.10. When the frequency is close to 50 Hz, a reward is granted, and deductions are applied

for more significant deviations.

Similarly, 1.00 pu values represent set points for voltages, and rewards are given for voltage
deviations within specific thresholds. The SCLs at each POl are also considered in determining
the reward, with secure conditions receiving positive rewards and insecure conditions
receiving negative rewards. Given the importance of SCL for system security, it carries more

weight in this study's reward calculation.

1 for |df| < 0.1Hz
T = 0 for0.1 < |df| < 0.2Hz Equation 5.10
—elarlt otherwise

The action spaces, on the other hand, entail incremental adjustments made to the generator
set points for SG (APsg) and GFL (APgp;,) as a result of training interactions between the DRL
agent and the environment. These adjustments pertain to the actual generator set points
rather than the ideal set points. Although the training objective is to achieve a secure state in
a single step, a well-trained DRL agent is expected to adaptively reach the secure state during

the online testing phase through multiple adjustment stages. Therefore, while the training

110



Shrestha: Estimation of the energy-mix proportion for the secure operation of converter dominated

power system

goal is to attain a secure state in one step, the agent's ability to adapt during online testing

reflects its training to achieve such a secure state.

5.1.4.2 Performance evaluation

In the final stage of the modeling framework, this study incorporated an analysis of statistical
performance measures to evaluate the model's performance. The indicator used is MAPE,

which is employed to assess the accuracy of the model.

5.2 Results

5.2.1 Offline training

An offline training phase was conducted using the available data to prepare the neural
network for reinforcement learning. Algorithm 1 outlines the procedure followed in this study.
A total of 792,000 samples were collected, each with a resolution of 10 milliseconds, taken
over time intervals ranging from 20 to 50 seconds. The samples were then utilized for training
and validating the DQN model. The dataset was split into a training set (95% of the data) and
a validation set (5%) using random data splitting. The epsilon greedy exploration strategy was
employed to allow the DON model to explore the environment and acquire useful knowledge.

The hyperparameters used in training the DQN model are listed in Table 5.2.
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Figure 5.4: Graphical representation of datasets as the function of Psg, Pgrm, Pgrr, and load.
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Algorithm 1

1 Initialize the neural network
2 Tune the hyperparameters and train the neural network using previously available data.
3 Create a reinforcement learning environment in OpenAl gym for reinforcement learning.
A. Initialize action discretization strategy and observation space using gym.
B. Define a method for dynamic exploration and exploitation rate.
Initialize the communication between reinforcement learning agents in Python
and MATLAB Simulink environment.

Control the Simulink environment using a reinforcement learning agent and collect the

4
feedback as a reward from the environment.
A Give a reward to the associated action based on equation 19.
B. Optimize the neural network using the Boltzmann optimization method.

5 Repeat step 4 until the training is complete.
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Figure 5.5: Loss function of DNQ model with increasing Epochs.

Figure 5.4 illustrates the datasets, showing the relationship between the load and the power
generated by SG, GFL, and GFM. It is evident from the data that SG and GFM provide electricity
for lower loads, while all power-generating technologies increase their production as demand

increases. GFL serves as a supplementary power source when GFM supply is insufficient or for
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heavy loads. SG appears to be the primary power source for all load levels, with GFL

contributing more for higher loads.

These datasets are used for training, and the loss function during the training of the DQN
model is depicted in Figure 5.5. As the number of epochs increases, there is a significant
decrease in the loss function value until it reaches a stable point around 300 epochs. After 400
epochs, the loss function continues to decrease but with slight fluctuations. Figure 5.6
demonstrates the results of applying the regression method to both the training and
validation processes. Overall, the DQN model exhibits satisfactory performance considering

the datasets and conditions under consideration, as evident from Figure 5.5 and Figure 5.6.

Figure 5.6: Normalized regression plots for Pggy.: (a) training, and (b) validation.

5.2.2 Online testing

During online testing, random variations in a portion of the total load are introduced at regular
intervals of one second. The online testing was performed in a combined Python and Simulink
environment to simulate different scenarios and assess the model's performance. The effects
of these load changes on the power system are observed and analyzed. The online testing
period spans one minute, allowing for an evaluation of the model's response. The results of

the online testing are presented in Figure 5.7.
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Figure 5.7: Performances of the system for 60 seconds of online testing.

Each power-generating technology exhibits its response in terms of total load, frequency,
terminal voltage, and produced power. The model incorporates a reward function to assess
the system's performance. As the load changes, the power-generating technologies adjust
their generation levels to maintain the supply-demand balance within their operational
constraints. The frequency deviation remains within the standard limit specified by the INPS
regulation despite fluctuations caused by load variations. The voltage deviation is relatively
low for GFM and GFL during rapid load shifts, while SG experiences a larger deviation. When

considering the power generated by these technologies, it is important to note the constraints
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on increasing or decreasing generation levels and the availability of the sources. GFL appears
to play a significant role in maintaining system equilibrium. The environment provides regular
rewards to the DQN model, which are considered and illustrated in Figure 5.7. These rewards

are based on predefined criteria established for the reward function.

Pgg MVA]

P ey [MVA]

Pr, [MVA]

175 180 185 190 195 200 205 210
PLoad[MVA]

Figure 5.8: Distribution of generations from three power-generating technologies with load

for 60 seconds of online testing.

During the one-minute online testing period, the distribution of power generated by the
different power-generating technologies concerning the load is shown in Figure 5.8. As
mentioned earlier, the load undergoes random and unpredictable shifts at a one-second

interval. Figure 5.8 (a-c) depicts the power distribution of the three power-generating
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technologies, highlighting their roles in meeting the demand and ensuring system reliability.

Among them, the GFL stands out as the most versatile and reliable technology, consistently

delivering power even during high-demand periods. This can be observed in Figure 5.9, which

displays a distinct distribution pattern for GFL with the load.
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Figure 5.9: Bivariate histogram of generations from three power-generating technologies with

respect to total load.
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Figure 5.10 illustrates the distribution of the measured SCL values at the POls of the three
power-generating technologies during the one-minute online testing. Each technology
contributes to the individual SCL values as the power system operates online. Notably, the SCL
value at the POI of SG is higher compared to the other sites. This is due to the relatively higher
SCLs provided by SG compared to GFM and GFL. Looking at this figure, it is evident that the
SCL values at each POI exceed 1.6 pu, with the majority of the values exceeding 1.9 pu. This

reflects the robustness of the evaluated power system during its online operation.

5.3 Conclusion

This chapter identifies that the online estimation of the energy-mix proportion can play a
crucial role in ensuring the secure operation of converter-dominated power systems.
Researchers and operators can accurately estimate the contribution of different power-
generating technologies within the system by utilizing advanced techniques such as DRL. This
estimation provides valuable insights into the system's dynamics and enables proactive
decision-making to maintain stability and reliability. The importance of online estimation lies
in its ability to address the challenges posed by integrating new technologies and the

unpredictable nature of RESs and load variations.

The presented framework, utilizing DRL and online estimation, offers significant advantages
for the secure operation of converter-dominated power systems. The robustness of the well-
trained DRL agent, as demonstrated in the study, ensures optimal performance even in the
face of uncertainties and fluctuations. By implementing online estimation of the energy-mix
proportion, power system operators gain valuable insights into the behavior and performance
of different power-generating technologies. This information enables them to make informed
decisions, optimize resource allocation, and implement preventive measures to mitigate risks

and ensure reliable and secure operations.

In conclusion, online estimation of the energy-mix proportion is a crucial way to maintain
converter-dominated power systems' stability and reliability. It empowers operators to

proactively manage the system, optimize its performance, and effectively integrate new
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technologies and RESs. By leveraging advanced techniques such as DRL, online estimation
offers a promising approach for securing modern power systems in the face of evolving grid

topologies and the increasing adoption of renewable energy.
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6 Discussion and Conclusions

6.1 Discussion on Results

The overall discussion of this PhD study encompasses the key findings and their significance
in the context of power system stability and the integration of IBRs. This study has highlighted
the growing importance of RESs and the need to address the challenges associated with
frequency stability and system dynamics. One of the primary focuses of this PhD study has
been developing effective strategies and control mechanisms to ensure the reliable operation
of power systems dominated by IBRs. By exploring innovative solutions, such as advanced
frequency management techniques and the utilization of cutting-edge PECs, the research has
contributed to enhancing the ability of power systems to adapt to high levels of RES

integration while maintaining stability.

In the involved areas of this PhD study, the lines of each article connect to form a
comprehensive plot on the potential and challenges of an IBR-dominated power system. The
transition towards such a system, powered entirely by RESs, is not simply a scientific pursuit
but a fundamental question impacting global sustainability and climate action path. A
graphical overview of the interconnections among the presented articles can be seen in Figure

6.1.

Research Hypothesis and Literature Review

Theoritical Foundation and Research Formulations

Articel 3
. Article 5 Article 6
Article 2 Article 4

Figure 6.1: Interconnections and synergies among research articles.
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The foundational pillars of this PhD study, Article 1 and Article 2, lay the groundwork by
guestioning the feasibility and stability of a RES-driven power grid. While Article 1 explores
the broader consequences encompassing technological, social, and political challenges,
Article 2 thoroughly explores stability issues, highlighting the criticality of frequency stability

in modern power systems and the strategies to address potential difficulties.

Building upon this foundation, Articles 3 and 4 take a deeper jump into specific aspects of
power system dynamics. Article 3, with its extensive analysis of rotor angle stability indicators,
illuminates the profound sensitivity of power system stability to system inertia. It underscores
the cascading effects that experienced changes in inertia can have on system dynamics, a
crucial insight for designing future power systems. Alongside, Article 4 brings forward the
potential of data-driven approaches, especially Bayesian models, for kinetic energy
forecasting in converter-dominated systems. It emphasizes the appropriateness of time-series

data analysis in shaping a secure operational landscape for such power systems.

The success of this research work is achieved in Article 5 and Article 6, where theory meets
application. Article 5, leveraging time-series data, pioneers a methodology for estimating the
optimal energy mix, a step crucial for ensuring the secure operation of converter-dominated
systems. This is further complemented by Article 6, which serves as a testimony to the
robustness and applicability of the proposed methodologies, emphasizing the potential of

online estimations in real-world scenarios.

In essence, this complement of articles dips a complete picture, transitioning from conceptual
hypotheses to concrete solutions. The journey from the theoretical foundations in Article 1
and Article 2 to the practical applications in Article 5 and Article 6 characterizes the tendency
of research: to question, to explore, and finally, to resolve. While self-contained in its
objective, each article contributes to a larger narrative, emphasizing the interconnection and
synergies driving IBR-dominated power systems' evolution. The concluded knowledge from
this research promises to help shape the future of power systems, supporting a sustainable,

renewable, and stable energy paradigm.

120



Shrestha: Estimation of the energy-mix proportion for the secure operation of converter dominated

power system

6.2 Strengths of the study

The strength of this PhD study lies in its multi-faceted and comprehensive approach to
addressing the challenges and potentialities of an IBR-dominated power system. With a vision
rooted in the global obligation of sustainability, this PhD study doesn't merely explore the
feasibility of a power system driven entirely by RESs but examines the sophisticated

distinctions that motivate such a transition.

First, the study is grounded in a robust foundation, as seen through Article 1 and Article 2.
These initial articles ensure that the research is not built on assumptions but is secured in a
complete literature review and hypothesis-driven exploration. By questioning the broader
implications of a RES-based power system from technological, social, and political

perspectives, the research sets a complete stage for subsequent investigations.

Furthermore, the PhD work exhibits a commendable balance between theoretical constructs
and practical applications. While Article 3 and Article 4 provide a detailed analysis of specific
aspects of power system dynamics and its analysis, Article 5 and Article 6 transition these
insights into actionable methodologies. This flow from concept to application is a feature of
impactful research, ensuring that the findings are not confined to academic strips but have

real-world implications and utility.

Another strength is the study's emphasis on data-driven approaches, illustrated by the
innovative use of data-driven models and time-series data analysis. In an era where data is
indicated as the new fuel, this research harnesses it thoughtfully, highlighting its potential in
shaping a secure operational landscape for power systems. Such methodologies improve the
research's relevance in the modern era and cover the way for future explorations in the

domain.

Lastly, the interconnection and synergies evident across the articles bring out the study's
coherence. Rather than being isolated pieces, each article contributes to a larger narrative,

emphasizing the holistic vision of the PhD Candidate. This coherence ensures readers and
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stakeholders can trace the logical progression and appreciate the cumulative knowledge

presented.

In conclusion, the PhD study indicates rigorous academic pursuit combined with a vision for
sustainable futures. Its strength is reflected in its comprehensive approach, balance between
theory and application, innovative methodologies, and cohesive narrative. Such research
advances academic understanding and promises to guide the trajectory of global energy

systems toward sustainability.

6.3 Limitations of the study

No matter how thoroughly conducted, every comprehensive research inherently has some
limitations, and this PhD study is no exception. Recognizing these limitations is crucial not as
a sign of weakness but as an acknowledgment of areas that might benefit from further

exploration and refinement in future research endeavors.

One of the significant limitations is the validation of the results in a real-time experimental
setup, specifically within a laboratory-based environment. While the study extensively utilizes
data-driven methodologies and models, the absence of real-time validation means some
findings might not translate effortlessly when applied in practical scenarios. Laboratory-based
environments provide an invaluable platform to test theories and results under controlled
conditions, allowing researchers to capture touches and potential issues that might not be
evident in simulations alone. By not leveraging this setup, there's an inherent risk of
overlooking practical challenges or system behaviors that could critically impact the

implementation of the study's recommendations.

Moreover, the foundational elements of the study, especially as showcased in Article 1 and
Article 2, are primarily built upon existing literature. While providing a robust starting point,
such an approach also risks inheriting biases or potential gaps from referenced works. The
evolving nature of RES technologies and the dynamic global power landscape means that
relying heavily on prior research could accidentally miss capturing some existing
characteristics.
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The specific models and methodologies adopted, as detailed in Articles 3 through 6, present
their own set of challenges. For instance, the Bayesian model from Article 4, while powerful,
is contingent on the quality of prior data and foundational assumptions. Any inconsistencies

in these initial inputs can lead to forecasts that misalign with the actual system dynamics.

Furthermore, the study's choice to examine specific scenarios and systems, such as the 39 Bus
New England power system and IEEE Bus power system, adds depth but potentially sacrifices
broader applicability. Power infrastructures across various regions, influenced by inconsistent
socio-political, geographical, and infrastructural factors, may not align perfectly with the

findings from this specific study.

Another potential limitation could restrict the study's emphasis on data-driven
methodologies. While the power of data in modern research is undisputable, over-reliance on
it might sometimes doubtful qualitative aspects that are harder to quantify but equally
significant. Factors such as social perceptions, political will, or even grassroots movements can
play pivotal roles in the adoption and success of RES-driven power systems, and these might

not always be captured in numerical models or algorithms.

6.4 Recommendation for future works

This PhD study on IBR-dominated power systems has illustrated several possibilities for future
research, particularly in addressing the noted gaps and constraints. Central to these
recommendations is the establishment of experimental frameworks in laboratory settings
that carefully emulate the complex realities of power systems. Such environments are needed
for comprehensive testing of theoretical models and algorithms, thereby confirming their

practical applicability and effectiveness in real-world scenarios.

A pivotal recommendation involves the implementation of Virtual Hardware-in-the-Loop (HIL)
simulations. These simulations are practiced at recreating complex power system conditions,
enabling extensive testing across a field of operational states, some of which might be

impractical or hazardous to replicate physically. The utilization of Virtual HIL is key in
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thoroughly examining various critical scenarios, ultimately enhancing the durability and

adaptability of the proposed models.

Concurrently, advancing the development of sophisticated HIL systems is essential. These
systems should encompass not just the electrical aspects of power systems but also their
control, communication, and operational dynamics. The integration of artificial intelligence
and machine learning within these HIL systems could further augment their capability to
simulate unpredictable scenarios and evaluate theoretical models, thereby identifying

potential errors and optimizing experimental designs.

Moreover, stochastic considerations in power system research are vital, particularly in
managing the variability of power generation from RESs like solar and wind, and in adapting
to fluctuating load demands. Developing stochastic models that accurately predict the
uncertainties associated with renewable energy generation and load consumption is crucial.
These models should employ probabilistic methods to account for the unpredictability
inherent in RESs and demand patterns, aiding in the efficient management of power systems

and ensuring a harmonious balance between supply and demand.

The rise of distributed prosumers marks a significant shift in energy network dynamics, with
power generation becoming increasingly decentralized. This evolution introduces
considerable variability and stochastic behavior in power generation and demand. Future
research should aim to integrate the role of distributed prosumers into stochastic models for
power system analysis, developing algorithms to predict and manage the intermittent and
variable energy flow. Investigating the potential of distributed prosumers in enhancing grid
resilience, and optimizing their participation through incentives and technological innovations
such as smart grid technologies, and Al-driven energy management systems, is also

recommended.

Collaboration with industry stakeholders forms another critical component of future research.
Engaging with industry partners allows for the incorporation of cutting-edge technology and

practical insights, ensuring that research is aligned with contemporary industry standards. A
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multidisciplinary approach, bringing together expertise from computer science, engineering,
and data analytics, is also recommended to develop more comprehensive validation
platforms. These platforms would simulate not only the physical aspects of power systems
but also their digital and data-driven components, providing a more thorough understanding
of modern power system operations. This collaborative and interdisciplinary approach
promises to advance power system research, aligning it closely with the evolving demands of

modern energy ecosystems.

6.5 Practical implementations

This PhD study is conducted in the domain of IBR-dominated power systems and the possibility
of a 100% RES-based energy infrastructure. With the global shift toward RES picking up

momentum, such research projects have presented applications with vast and diverse utility.

An understanding of rotor angle stability indicators and the sophisticated relationship
between system inertia provides a framework for critical infrastructure investment decisions.
This research offers invaluable insights for localities that are at the edge of transitioning to a
RES-dominated energy framework. It explains how the extant infrastructure might need
recalibration, be it enhancements or modifications, in the face of an evolving energy situation.
The dilemma of maintaining grid equilibrium is increased when one considers the intermittent
nature of many RESs. For example, by harnessing knowledge about rotor angle stability and
the dynamics of kinetic energy, these innovations empower TSOs to perform real-time
decisions. Such proactive steps can safeguard a steady energy output and prevent potential

grid disturbances.

Furthermore, this research serves as a supportive reference for energy strategists and
policymakers. The data regarding the ideal proportions for a day-ahead energy mix presents
a tangible blueprint. With this at their disposal, these stakeholders can predict future energy
necessities, factor in periodic fluctuations, and carefully integrate both conventional and RESs
to provide for these needs. In an era where the world is navigating the elaborate network of

ensuring energy reliability while also addressing environmental concerns, this research
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emerges as a guide. Regulatory entities can utilize its findings to craft policies that champion
the cause of RES adoption. The holistic perspective of this research, which incorporates
technological, financial, and social sides, is crucial. It can be the foundation of policies that not
only push RES investments but also prioritize the crucial aspect of grid resilience and

steadiness.

6.6 Conclusions

This PhD study presents an in-depth exploration of the complexities of power system
dynamics, focusing on RES-based and converter-dominated power systems. Through a
collection of six scientific publications, this PhD study bridges traditional understanding with
current challenges and potential solutions. The study explores the significance of time-series
data analysis, day-ahead estimation, and the effectiveness of online simulation in tackling
challenges arising from the integration of IBRs. The research also discusses the effectiveness
of various methods in ensuring reliability, system stability, and efficient control in IBR-
dominated systems. In conclusion, through a comprehensive discussion and synthesis of the
findings, this PhD study contributes valuable insights to the academic community and provides
a roadmap for sustainable and environmentally conscious advancements in the power system

domain.
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Abstract: Stable power supply has become a crucial thing in the current era of technology and au-
tomation. Although the power system has multiple stability issues and causes, frequency fluctuation
plays a vital role in normal operation, whereby a system with significant frequency deviation can
lead to the needless blackouts of the whole power system. With the rapid growth in power electronic
converter (PEC)-based technologies and the huge penetration of nonsynchronous generators, the
modern power system is becoming more complex by the day. This paper provides a comprehensive
study on the stability issues that occur in modern power systems, mainly due to PEC-based technol-
ogy integration. The in-depth reasons and the impacts of unstable power systems, along with their
controlling techniques, are discussed to generate a clear understanding. Furthermore, the importance
of frequency stability in a power system is discussed with respect to some important events that
occurred in the past. This paper also discusses some potential techniques that could be performed to
overcome the existing and/or upcoming challenges in the upgrading power system.
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2021, 14,4184, httpe://dot.org/ for the environmental, financial, technological, social, health, and other sectors. The pene-
102300/ entisled tration of RESs can help to reduce the greenhouse emissions generated from thermal power
plants and, hence, most countries have developed policies to enhance the implementation
of renewable energy by integrating a new form of RESs into the national /international
grid system [1]. However, there are numerous challenges in RESs such as high cost, low
reliability, poor power quality, and problems in maintenance and monitoring activities [2].
Because of the periodic nature and dependency on weather and environmental factors,
the characteristics of the energy generated from RESs such as solar and wind energy are
unreliable and unpredictable, resulting in unstable conditions of the main power system [3].
The disturbances created by the unpredictable generation of power from these resources
published maps and institutional affil-  aVe become an issue in the current power system, and power system developers are in
. a transition phase to penetrate a significant portion of RESs into the main grid [4,5]. In

addition, these resources contain PECs as the fundamental units, which lead to stability

issues in the power system. If the system is not modified, having a significant proportion
of RESs and PECs means a vulnerable and unsustainable system, which will significantly
affect the operation of the power system [6].

Figure 1 presents a classification of the stability issues that occur in electrical power
systems. In conventional definitions, there are three types of stability issues: (a) rotor angle
instability, (b) frequency instability, and (c) voltage instability. Among these three stability
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prevented through generator tripping. Similarly, frequency stability indicates the power
system’s ability to maintain its operating frequency within an acceptable range, whereby
instability can occur because of supply /demand unbalance. It takes a few seconds to several
minutes for restoration, and this is considered a short-term and/or long-term stability
problem. On the other hand, the voltage stability of a power system plays a vital role in
maintaining the receiving end voltage within an acceptable range; it takes a few seconds to
several minutes for restoration, and this is, thus, considered a short-term and/or long-term
stability problem [7]. For short-term voltage stability, automatic voltage regulators (AVR),
excitation systems, and induction motors can be used, whereas HVDC interconnections,
adjustable tap transformers, and generator excitation current limiters can be used for long-
term voltage stability restoration. However, modern power systems contain a considerable
number of PEC-based technologies, and they have undergone significant transformation
in the last decade; hence, new elements have been introduced in terms of power system
stability: (a) converter driven stability and (b) resonance stability [8-11]. Converter-driven
stability concerns the oscillation within a power system because of the cross-coupling
phenomenon between dynamic electromechanical devices and the transient nature of
electromagnetic grid networks [11]. On the other hand, resonance stability takes into
account periodic and insufficient energy dissipation within a system, resulting in a form of
oscillation [10].
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Figure 1. Power system stability classification.

A power system with RES integration can become unstable for two main reasons:
(a) the high penetration of PEC-based energy resources such as solar PV and wind turbine
reducing the system inertia; (b) RESs being unable to balance the demand/supply chain
because of their unpredictable patterns [12-14]. Predicting the time-series value of the
demand and generation is very complex and slow; thus, systems can achieve stability
by solely focusing on the demand. The high penetration of nonsynchronous generators
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with PECs reduces system inertia and increases the potential of unstable frequency in
a power system. Frequency fluctuation plays a vital role in normal operation, whereby
a system with comparatively low inertia can lead to needless blackouts of the power
system [15]. A drop in system inertia leads to a significant rise in RoCoF and increases the
value of nadir frequency. However, most power systems contain protection equipment
with conventional operation settings, which need to be upgraded following the massive
integration of PEC-based technologies [16]. Several research and development activities
have been conducted on voltage stability, rotor angle stability, and frequency control
methods. However, limited research activities have considered real-time stability control,
despite them being the primary reason behind the numerous blackouts recorded in the last
few years [17].

With the introduction of new concepts (i.e., PEC-based technologies) and policies,
operation is becoming more complex; hence, some technoeconomic approaches and tech-
nologies have to be identified that guarantee the secure and reliable operation of the power
system. Several research works have tried to address the issues by proposing various
concepts. However, a complex framework in which neglects potential uncertainties may
lead to impractical results, with problems arising during the real-world implementation of
the proposed method [18,19]. Hence, a detailed study on unique and practical methods
should be conducted to overcome the existing and/or upcoming challenges in upgrading
the power system structure and operation approaches.

The aim of this paper was to present comprehensive information on the stability issues
in modern power systems as a result of the high penetration of PEC-based technologies and
unpredictable RESs such as solar and wind energy. Furthermore, the objective of this article
was to provide a detailed survey on frequency stability issues and their potential solutions
via published scientific documents. This paper first introduces the background and a basic
overview of the stability problems faced by modern power systems. Section 2 presents an
overview of the comprehensive works conducted previously by various researchers and
institutions. Section 3 covers the frequency stability concepts in depth, along with their
response, regulations, control approaches, and impact on the power system. Some case
studies are discussed to analyze the importance of frequency stability in modern power
systems. The most important topic of this article (i.e., frequency stability in PEC-based
power systems) is discussed in Section 4. The issues of short-term frequency instability and
the challenges caused by PEC-based technologies in power systems are discussed in detail.
Furthermore, potential solutions are discussed. Lastly, in Section 5, conclusions are drawn
and discussed.

2. Previous Studies

Modern power systems are more focused on technoeconomic operation, along with
environmental constraints. To improve the operational constraints, the regulatory body
can replace the control system with an optimized approach and /or include an optimized
supervisory system without modification in the main system [20]. The inclusion of a
new control system may become expensive, since the existing system has to be replaced,
whereas the second approach is quite popular and practical in rapidly growing systems.
However, with the increasing trend of RES integration and PEC-based technologies, existing
power systems face new challenges such as unbalanced frequency resilience and low
grid inertia [21]; hence, tools need to be introduced that dynamically monitor, analyze,
improve, and visualize the system characteristics [22]. It is clear that conventional control
technologies are not appropriate for modern power systems; thus, a new way of thinking
is necessary [23].

The concept of battery energy storage systems (BESSs) was used to regulate the fre-
quency of a power system in [24,25]. In [26], a self-tuning PID controller was indigested to
increase transient stability by using fuzzy logic and thyristor-controlled series compensa-
tion (TCSC). Similarly, in [27], a controller was proposed using fuzzy logic and a neural
network. Compensators such as static VAR compensators (SVCs) and static compensators
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(STATCOMs) have been used to improve the first swing stability of power systems via a
discontinuous control strategy [28,29]. A controller was discussed for the improvement
of transient stability through the extraction of a synchronous generator in [30]. Teng et al.
introduced the concept of EV integration to improve the frequency response of the Great
Britain power system [31], while Liu et al. presented the effects on secondary frequency
control via EV integration [32]. Integrating EVs as a distributed energy resource (DER)
is highly adopted in modern power systems to improve the frequency quality. Similarly,
some studies have presented the application of demand-side management (DSM) in power
system security [33-35]. Likewise, various techniques have been proposed and investigated
to address the stability issues that occur in PEC-based power systems. Figure 2 presents
the classification of frequency control techniques.

Time
SN
) Economic - ~
Dispatch Method l DSM Method I
1Hour§ S——————/ BESS
AGC Method
1 Minute 4
Governor EV Charging
Control Method L ) l DIE Method l
1 Second . /
Gencrator Side Control Energy Storage Devices Demand Side Control

Figure 2. General techniques for regulating frequency in RES-based power systems.

Numerous researches have presented automatic generation control (AGC) as a tradi-
tional method to regulate power systems. Usually, the frequency of a system is monitored,
whereas the AGC maintains regulation by varying the rate of generation. Behera et al.
adopted the harmony search (HS) algorithm as the optimization tool and integral square
time square error (ISTSE) as the objective function to identify the best parameters in the
controller [36]. AGC was implemented using superconducting magnetic energy storage
(SMES) to analyze the performance of both the controller and the power system in [37]. The
authors optimized the controller parameters for system stability by using the second law
of Lyapunov. In [38], the authors suggested a combined approach using a tilted integral
derivative (TID) controller and teaching/learning-based optimization and pattern search
(hTLBO-PS) as a new AGC method under a deregulated environment. In [39], an ecological
population cooperative control (EPCC) strategy was proposed as an AGC for an islanded
smart grid. The authors used the concept of a multiagent system stochastic consensus game
(MAS-SCG) to determine the optimal power command for controlling the isolated grid in
an optimal cooperative mode. Ramakrishna et al. conducted a detailed transient analysis
for individual AGC within a multisource power system [40]. Similarly, an artificial neural
network (ANN) was applied to analyze AGC problems in [41]. In [42], the parameter-plane
approach was applied to identify the optimal controller parameters, and a sensitivity
analysis was carried out to examine stability via AGC. Similarly, in [43], a hybrid technique
was proposed for AGC of multiarea power systems by combining the firefly algorithm and
pattern search method. As shown in Figure 2, AGC is a general technique that regulates
system frequency by controlling the generator-side parameters. Although it works as a
secondary response and takes a few minutes, it is considered a fundamental method for
the frequency regulation of power systems.

Model predictive control (MPC) is another popular method. Cui et al. proposed a
multimodal long short-term memory (M-LSTM) deep learning approach to determine
the time-varying variables of composite load modeling (CLM) for a system-wide load
study [44]. Similarly, a time-varying model was proposed to identify the parameters for
CLM in [45]. A time-varying model was presented to measure the penetration level of
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solar PV in a distribution system in [46]. A method based on MPC was developed to
enhance the transient stability of a power system using superconducting magnetic energy
storage (SMEA) units [47]. In [48], an approach was presented to determine the real-time
system’s scheme and regulate the voltage within a limit. Ersdal et al. investigated an
MPC-based control method to regulate frequency in a wind-energy-integrated power
system by considering three different disturbances: positive, negative, and neutral [49]. A
hybrid control system consisting of the MPC method and a neural network was studied to
improve the stability of a power system in [50]. A combination of feedback linearization
and MPC approaches was used to control the firing angle of a thyristor to improve the
transient stability of a system through the regulation of TCSC reactance [51]. Furthermore,
the concept of transient energy function (TEF) was combined with MPC to obtain multiple
unified power flow controllers (UPFCs), thereby improving system stability [52]. In [20],
the authors presented a controlling approach by utilizing the secondary frequency of
the power system, whereby a hierarchical-based MPC was used to regulate the primary
and secondary frequency. Gomez et al. proposed the concept of a distributed MPC, in
which the droop and transferred power were taken as the input parameters to control the
frequency and voltage of the microgrid system [53]. Similarly, MPC has been implemented
in diverse applications such as to control the TCSC for the enhancement of transient
stability [54], to damp out the oscillated power in an HVDC system [55], to manage the
distributed generated energy [56], and to stabilize the grid after a contingency [23]. As with
other techniques, the important feature of MPC is its plug-and-play structure, facilitating
redesign and theoretical evaluation of the structure of a controller. In previous research
works, the MPC concept was widely used in the regulation of power systems, especially in
terms of frequency stability.

Similarly, various researches presented the dynamic demand control (DDC) approach
for regulating the grid frequency. Shrot et al. proposed this concept as a new technique for
frequency stabilization in 2007 [57]. Shi et al. presented a comprehensive review of DDC
along, with an algorithm and a future vision for system frequency regulation [58]. This
study also discussed the various technical and practical factors that play an essential role
in the implementation of a DDC approach. Since the individual load is stochastic, and the
power system contains a massive number of loads, the adopted approach must identify
the predictable pattern for all loads, as well as their generation, and it must provide an
appropriate control step to maintain the regulation [58]. On the other hand, Zhu et al.
investigated robust load frequency control (RLFC) along with DDC for the regulation
of power systems via communication networks [59]. The authors used communication
networks in load frequency control (LFC) together with DDC in demand-side response
(DSR) to aggregate the well-regulated loads. Qingxin et al. proposed a thermostatic load
control (TLC) strategy, a form of DDC, in which thermostatic loads were used, i.e., heating,
ventilation, and air-conditioning (HVAC) units and electric water heaters (EWHs) [60]. A
hybrid DDC concept was introduced to provide a rapid and steady regulation of primary
and secondary frequency in [61], by replacing the generator reserves. A D-partition method-
based LFC approach was proposed for DGs by implementing a PI controller using the
conventional Ziegler-Nichols method [62]. A detailed study on the effects of DDC on
the frequency was presented in [63], in which it was observed that DDC can minimize
the variance (around 30-40%) of the fluctuation. However, in the DDC method, the
randomization of each iteration is necessary to minimize the oscillatory instabilities of
the frequency [57,64]. As with other conventional techniques, DDC is adopted for its fast
response, flexible operation, and economic efficiency.

3. Frequency Stability in Power Systems

To operate a power system in a reliable and efficient manner, different parameters
must be within an acceptable limit. Among the numerous parameters, stable frequency is
one that plays an essential role in the proper operation of a power system. Basically, the
frequency of a system should be maintained within an acceptable range, thereby preventing
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issues such as the total generation capacity trying to balance the total load. However, both
generation and demand change dynamically, which may lead to an imbalance between the
total generation and total demand within that system for an instant of time. This imbalance
creates a frequency deviation. If the deviation is within an acceptable range, there will
be no significant impact; however, if it crosses a certain threshold, it will affect the power
system’s operation, reliability, efficiency, and security, as well as degrade load performance,
overload transmission lines, and lead to protection failures [7].

Mathematically, frequency fluctuation occurs when the supply/demand balance
within a system deviates from the norm (i.e., Py(f) # Pr(t)). Here, Py(t) is the mechanical
power/generated power, and Py (t) is the electrical load at an instant of time. Basically, the
system frequency is directly proportional to the generator’s speed; the system'’s frequency
increases with an increase in rotor speed and vice versa. When the system demand
increases, the speed of the rotor decreases slowly, and similar results occur in the case of
frequency (i.e., Py(t) < Pp(t)). Similarly, the rotor speed and the frequency increase with a
decrease in order of the system load (i.e., Pp(t) > Pr(t)). Hence, the generated power must
be equal to the sum of the demand power and power losses; otherwise, frequency deviation
will occur. Mathematically, the relationship between frequency and power deviation within
a system can be expressed by the swing equation, as given below.

2

=P 0
However, in practical cases, the frequency is sensitive to different factors, which are not
considered in this study. Nevertheless, the characteristics of the dynamics can be discussed
by considering some examples. The authors took two incidents from the Great Britain
power system for discussion. Figure 3 shows the dynamic changes in electricity demand
and system frequency in the Great Britain power system during the Royal Wedding of
Prince William and Catherine on 29 April 2011. Here, significant rises and falls in the
electricity demand can be observed, which resulted in drastic frequency fluctuation. Royal
Weddings are considered special events in the history of Great Britain, and most British
people attended the event whether physically or virtually. Because of the operation of a
large number of electronic appliances, the load demand on that day was very high in Great
Britain. However, such special events are few in number and should not be missed; hence,
as shown in Figure 3, the total electric demand rose significantly during that event, but
dropped shortly after its completion. On that day, the British power system observed a
demand rise of 2300 MW within a few minutes, followed by a power drop of 3100 MW.
This type of sharp rise and fall can cause significant fluctuation in the system frequency,
hindering its maintenance within the acceptable range. Similarly, Figure 4 presents the
frequency fluctuation in the Great Britain power system during the failure of the Sizewell B
nuclear power plant on 28 May 2008. As shown in Figure 4, the power system faced three
power system failures and one embedded generation failure (i.e., 1993 MW of total failure)
in a cascading manner within just 3.5 min. The capacity of the failed power system was
higher than the actual reserve capacity of the power system; thus, balance could not be
achieved. As such, the frequency crossed the acceptable limit, and the electrical supply (i.e.,
546 MW) of a certain part of the city was cut off for stability maintenance. This accident
occurred because of enormous changes on the generation side within a small period. Hence,

frequency stability is vital for the proper operation of a power system.
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Figure 3. Change in electricity demand and system frequency in the Great Britain power system during the Royal Wedding
of Prince William and Catherine on 29 April 2011 [65].
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Figure 4. Frequency fluctuation in the Great Britain power system during the failure of the Sizewell B nuclear power plant
on 28 May 2008 [65].
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3.1. Frequency Response and Regulation Techniques

To maintain an acceptable frequency range, regular injection and/or withdrawal of
generated power takes place. This process must quickly respond to dynamic load changes
and establish supply /demand (or energy) balance. The power system is flexible in terms
of power generation, which can be maintained during load changes so as to regulate the
system frequency [66]. This is a continuous process. As shown in Figure 3, significant rises
(2300 MW) and drops (3100 MW) in demand could be observed in the Great Britain power
system within a short period (the Royal Wedding). However, the frequency of the system
was maintained within the range of 49.8 Hz to 50.2 Hz; this process is called frequency
regulation. In every power system, there is a predefined normal operating frequency band
(NOFB) to maintain the system. Table 1 presents an overview of the nominal frequency
interval and the critical frequency interval of different countries.

Table 1. Nominal and critical frequency intervals in the power systems of different countries.

Country Nomina(l;zr)equency Criticalﬂl_‘lrze)quency Refeisiices
Great Britain 49.5-50.5 47-52 [67-69]
Germany 49.5-50.5 47-52 [69-71]
France 49.5-50.5 47-52 [69,70]
Belgium 49.5-50.5 47-52 [69]
Austria 49.5-50.5 47.5-51.5 [69]
Australia 49.75-50.25 47-52 [72-74]
Ireland 49.8-50.2 47-52 [69]
Italy 49.1-50.1 47.5-51.5 [69]
Poland 49.5-50.5 47-52 [69]
Denmark 49.9-50.1 47.5-51 [75-77]
China 49.8-50.2 48-51 [78]

Because of the differences in electric generation and demand, systems can face power
deviation, which further results in frequency instability. For proper and effective operation
of a power system, it may balance the demand/supply chain by introducing, for example,
a significant reservoir for an extensive system or a BESS for a small system [79]. However,
this approach may not be sufficient to maintain the equilibrium state on a real-time basis;
thus, the generating plant must have the feature of flexible generation. Flexible generation
may support the system in providing instant balance and reducing the potential causes of
failure [79,80]. In addition, some critical issues may occur following large deviations within
a short period, which must be handled for the protection of the whole power system. Hence,
control measures are implemented at different levels to maintain the NOFB and to protect
the whole power system: (a) primary control, (b) secondary control, (c) tertiary control, and
(d) emergency control. Figure 5 shows the frequency control techniques of a conventional
power system used to maintain the frequency deviation within an acceptable range in
order to operate the system securely and reliably. Similarly, Figure 6 presents the frequency
response of a power system under various control actions and their characteristics. As
shown in Figure 6, the primary control method is the first action taken by the system for
stability, which is fast compared to measures. Similarly, secondary and tertiary control
actions are activated more slowly than primary control. The response time for the various
control actions is given in the same figure; however, these may vary for different nations
and power systems. For a detailed comparison, Table 2 provides a list of control methods
and their response periods in various countries.

168



Shrestha: Estimation of the energy-mix proportion for the secure operation of converter dominated

power system

Energies 2021, 14, 4184 9 of 28
‘LAPm Af
Secondary control (AGC/ LFC) Af Primary control (Droop)
ACE 3
PI Speed .| Speed _._< : ).
— P> 4
Controller Changer | AP | Governor ‘M > ‘—‘@
Water flow
Tertiary control
(Generation control/ tripping) Emergency control (UFLS)
System ——b[ Protective devices ]-_
operator

® Valve

# Turbine @ Generator @ Load

Figure 5. Frequency control techniques/loops in a power system.
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Figure 6. Frequency response of a power system under different control actions.

In a power system, the system frequency is directly related to the angular velocity
of the rotor (i.e., f o Ns); frequency increases with the increase in rotor speed and vice
versa. Hence, frequency control in a conventional power system is akin to the control of
rotor speed. At the first stage, the aim is to maintain the speed of the turbine/generator
set (i.e., rotor) through the application of a governor mechanism, which senses the rotor
speed and regulates the flow of water/steam. A small deviation in speed and frequency
can be restored by locally changing the mechanical power outputs. This technique is
automatic and based on a drop in the generator, which regulates the frequency disturbance
within a few seconds. This is the first stage of the frequency control mechanism and
works as the first line of defense in a power system, and it is considered the primary
frequency control technique. The primary frequency control technique is very critical for the
restoration; therefore, it should meet the standards and specifications for deployment start,
full availability, deployment end, droop setting, full deployment, frequency characteristics,
and controller insensitivity [81].
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Table 2. Frequency control responses in different countries.

Country

Primary Control

Secondary Control

Others

References

Great Britain

Active power of the
generation unit
increases/decreases
within 10 to 30 s of the
frequency deviation.

Active power of the
generation unit
increases/decreases
within 30 s to 30 min of
the frequency
deviation.

High-frequency response is in action,
which acts within 10 s of the frequency
deviation.

[67,68]

Germany

The generation unit can
achieve 100% of active
power changes within
30 s and maintain
frequency for the next
15 min.

The generation unit is
able to achieve 100% of
active power changes
within 5 min.

Minutes reserve is adopted, which
responds within 15 min. The power
supply must be delivered for at least
7.5 min of the specific quarter hours.

[69-71]

China

Active power of the
generation unit
increases/decreases
within 3 to 15 s of the
frequency deviation.

Active power of the
generation unit
increases/decreases for
a maximum of 1 min.

Power plants are capable of setting
and enforcing automatic control for
the active power and power ramp rate
(e.g., an integrated wind power plant

contains 1 min and 10 min ramp rates).

During the period of severing
deviation, power plants can instantly
control their generation as instructed

by the TSO.

[78,82,83]

France/Italy

50% of active power
increases/decreases
within 15 s and 100%
within 30 s, continued
for a maximum of
15 min.

Activated within 30 s
and continued for a
maximum of 15 min.

Tertiary control is adopted, which
activates along with secondary
control, and continues for a maximum
of 15 min.

[69,70]

Denmark

A droop of
18,000 MW /Hz is
maintained.

Reserve control is adopted, where the
system is regulated within 2 to 3 min
of 0.01 Hz frequency deviation. If the
deviation becomes higher than
0.05 Hz, 50% of system reserve is
distributed within 5 s, and 100% is
distributed within 30 s.

[69,75-77)

India

The generation unit
must provide a
response to changes of
5% droop (i.e., 40% of
active power changes
with a frequency
change of 1 Hz).

A 30 s delay is
provided to activate the
secondary reserves,
which are entirely
activated within 15 min
and continued for a
maximum of 30 min.

A tertiary control mechanism is
available as a supportive method of
secondary control. Tertiary control is
fully activated within 15 min and
continued for a maximum period of
60 min. Moreover, UFLS is
implemented with three thresholds
(e.g., adopted thresholds in the south
of India are 49.5 Hz and 0.2 Hz /s,
49.3 Hz and 0.2 Hz/s, and 49.3 Hz
and 0.3 Hz/s).

[84-87]
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When the frequency deviation increases and the system enters into non-normal op-
eration, the primary frequency control technique may be unable to restore the system
frequency; hence, an additional technique is required for system restoration. The second
stage of frequency restoration in a power system is called the secondary frequency con-
trol technique. Basically, the primary frequency control technique is used to control the
frequency in the short term, whereas the secondary is used to direct the primary one to
prevent the system frequency from exceeding the desired limits for a long period [88]. The
required power at this stage is delivered by both the spinning and the non-spinning reserve
capacities for the balancing of system load and frequency, which is also called the load
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frequency control (LFC) method [89]. The secondary frequency control technique conducts
automatic and centralized control by utilizing the system reserve capacity and restores
the system frequency within a few minutes [90]. There are two types of control: (a) unit
level and (b) system level. In the unit-level secondary control, the reference value of load-
frequency adjustment for the governor is managed by a unit load controller, whereas an
automatic generation control (AGC) system is used as the system-level secondary control
technique. The unit-level controllers simply supervise the controlling variables that can
influence system operation and require primary control actions [90]. On the other hand,
the coordination of all power generators within a power system is managed by the AGC,
but the AGC is not responsible for direct changes in system frequency; it simply oversees
the controllers in initiating primary control actions (as a secondary control method) [91,92].
One of the main objectives of the AGC and/or LEC is to maintain the system frequency by
coordinating and exchanging the power (i.e., AP;;,) with the neighboring control area for a
specified period. The area control error (ACE), i.e., a measurement of the actual imbalance
of real power in an interconnected power system, is calculated and used to command the
controllers with some processed control signals. In the case of stable system frequency,
a lower value of ACE (i.e., close to zero) is expected in each power plant area [79]. The
deployment time, controller organization, controller cycle time, and controller types should
be specified during the secondary control of frequency in a power system [81].

The third stage of the frequency control method is called the tertiary frequency con-
trol technique, which is a manual (or automatic) control technique involving a change
in the working rate of power generation. It is conducted during situations of serious
supply/demand unbalance following sharp frequency deviations, whereby the secondary
control is unable to restore the system. It adopts the concepts of adjustment, rescheduling,
and deployment of new power generators, and it can take from tens of minutes to hours
for the restoration of sufficient secondary control reserve [89]. This technique can be con-
sidered the economic dispatch method, and it is implemented in a completely deregulated
market setting [93]. Furthermore, tertiary frequency control can be considered a supportive
action for secondary control, since it is intended to coordinate the reserves and relieve
the secondary control response by lowering the value (near zero) of ACE [94]. Because of
disturbances on the generation and/or demand side, if the frequency deviation crosses the
acceptable limits and the control techniques fail to restore the system, standby supplies or
emergency actions need to be applied to minimize the risk of cascade faults or even system
blackouts. A scheme such as under frequency load shedding (UFLS) is used in cases of
insufficient generation and/or significant frequency drop. Similarly, generation stations
are disconnected in the case of excess generation and/or frequency increases.

3.2. Case Studies

Numerous consequences of frequency instability can occur, with the failure and /or
system blackout being the major ones. System blackouts happen when some fault occurs in
the power system (i.e., power plant and/or transmission medium), and significant power
is lost in a part of or the whole power system. A significant drop in power supply on
the consumer side (because of the fault) may create power deviation, which may lead
to frequency deviation outside of the acceptable range. At first, the control mechanisms
discussed in Section 3.1 try to restore the power system; if these are unsuccessful, the system
faces cascading failures and even system blackout can occur. In the past, there have been
many such cases of blackouts all over the world. Most events occurred because of system
failures in terms of generation and transmission lines. The major causes of these failures
were either technical issues or natural hazards. Some of the cases are discussed below.

3.2.1. Power System Blackout in Great Britain on 28 May 2008

Around 0.5 million people and several industries, businesses, and railways across Lon-
don, Cheshire, Merseyside, and East Anglia were affected by the power loss on 28 May 2008.
It started when the Longannet power station went offline because of some technical issues
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after maintenance. Within 2 min, the Sizewell B nuclear plant also faced issues and failed
to produce power. After another minute, embedded generators also faced problems and
were removed from the Great Britain power system. Figure 4 provides a clear picture of
the events and the frequency fluctuation as a result of these failures. As shown in Figure 4,
the power system lost around 1993 MW of power within 3.5 min, which could not be
restored by the reserved capacity of the system; thus, the system failed to operate within
an acceptable frequency range. As a result, around 546 MW of load was automatically shut
down as per the protection precautions [95,96].

3.2.2. Power System Blackout in Northern and Eastern India on 30 and 31 July 2012

The Indian power system faced a large failure on 30 and 31 July 2012, which affected
around 700 million people from 20 states of the country. As per the inquiry committee,
the Central Electricity Regulatory Commission (CERA), the major reasons behind these
blackouts were system failures due to some technical and seasonal issues. The day before-
hand, the Indian power system faced five issues in the transmission lines: (a) unplanned
shutdown of 400 kV Bina-Gwalior-Agra II transmission line, (b) trip of 220 kV Kota-Badod
transmission line, (c) phase-to-earth fault in 220 kV Binmal-Sirohi transmission line, (d) trip
of 400 kV Bhinmal-Kankroli transmission line, and (e) emergency outage of 400 kV Zerda-
Kankroli transmission line. The first blackout occurred on 30 July, which affected eight
states of the country. Just before this incident, the demand of the Northern Region was
calculated to be around 35,669 MW, whereas the generation was only 32,636. At the same
time, the system frequency was measured to be 49.68 Hz. The major reasons behind the
blackout on 30 July were (a) unplanned shutdown of 400 kV Bina-Gwalior-Agra II trans-
mission line, which created electrical stress on other transmission lines, (b) unscheduled
importation of power to the Northern Region from the Eastern Region in large amounts,
(c) lack of proper monitoring and coordination by the power utilities, since no action was
taken to reduce the total transfer capability after the transmission line failures, (d) stoppage
of a few power generation plants, and (e) power swing in the Eastern Region because of
the unscheduled import/export and transmission line failure. This blackout affected all
sectors and was completely restored after 13.5 h. Then, 21 h later, three regions (Northern,
Eastern, and Northeastern) faced similar issues, whereby consumers (around 48 GW) were
disturbed. However, immediate actions were taken at that instant, and the system was
recovered after 8.5 h. During the blackouts, some regions faced issues of overfrequency
and high voltages, because of the unscheduled stoppage of power export to other states.
Figure 7a,b show the frequency dynamics at different locations of Northern India during
the blackouts on 30 and 31 July 2012 [87].

3.2.3. Series of Blackouts in Venezuela in 2019

Venezuela faced a long series of power system failures and blackouts in 2019, which
affected millions of people, and many people even lost their life. During these blackouts, the
transportation, airport, telecommunication, industrial, hospital, education, water services,
food products, and household sectors were affected. The major reasons behind these
system outages were considered to be irregular system maintenance, mishandling of the
system, and lack of technical human resources. The first series of nationwide outages
started on 7 March 2019, when a bush fire occurred near the Malena substation in eastern
Venezuela, where around 70-80% of the country’s electricity is generated by the Guri dam
electricity plant (10,235 MW installed capacity and 47,000 GWh annual generation). The fire
affected the 765 kV transmission line between the San Gerénimo B and Malena substations,
further resulting in the overload and failure of alternative routes. It took more than 7 days
to restore the system and provide electricity. Roughly 1.5 weeks later, the power system
failed a second time, which affected 14 states of Venezuela, before recovering after 3 days.
A similar problem was recorded after just 24 h of system restoration. System failures were
also observed in April and July in numerous states [97-99].
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Figure 7. Frequency dynamics at different locations during the blackouts in India (a) on 30 July and
(b) on 31 July [87].

3.2.4. Power System Blackouts in Australia

Australia faced a power system blackout on 28 September 2016, when a 275 kV single-
circuit transmission line and 275 kV double-circuit transmission line were damaged by
tornadoes. Several failures were observed in a cascading manner just after the shutdown
of the transmission lines. Six voltage dips were observed in the South Australian power
system after the failures. Nine local wind farms reduced their production as per their
protection features, which resulted in 456 MW of power reduction within 7 s (the total
demand of the South Australian system was 1826 MW at that instant). There was an attempt
to address the reduction in generation by importing power, but this was unsuccessful
because of the failure of the Heywood interconnector. Then, the South Australian grid
went into isolated mode, and the whole system experienced a blackout in an attempt
to maintain the isolated system frequency within acceptable limits. Figure 8 presents
the actual dynamics of the South Australian wind farms, along with their generated and
reduced power profile, during the system failures. Similarly, Figure 9 shows the frequencies
of various sections of the South Australian grid during the system failure. During this
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event, the system frequency dropped to 47 Hz from 49.5 Hz in just 0.4 s with an average
RoCoF of 6.25 Hz/s. The system was restored in around 4.5 h for 40% of consumers and
around 8 h for 80-90% of consumers. Complete restoration was achieved in 12 days via
bypassing the transmission lines [73].
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Figure 8. Dynamics of wind farms in South Australian power system during the incident on 28 September 2016 [73].
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174



Shrestha: Estimation of the energy-mix proportion for the secure operation of converter dominated

power system

Energies 2021, 14, 4184 150f 28

Furthermore, similar events were also recorded on 1 November 2015 (110,000 house-
holds affected), 1 December 2016 (200,000 households affected and restored after 1 h),
27 December 2016 (125,000 households affected and restored after 4 days), 20 January 2017
(58,000 households affected), 8 February 2017 (90,000 households affected), and 25 August
2018 in the Australian power system. These events highlighted the vulnerability and
sensitivity of the Australian power system. The major issues behind these frequent failures
are considered to be the high penetration of PEC-based technologies and the unpredictable
nature of RESs, as well as the damage of transmission lines from natural disasters [74].

3.2.5. Power System Blackouts in California, USA

California is the state that has faced the greatest number of system failures in the
history of the USA. From 2008 to 2017, 4297 power outages were recorded just in Califor-
nia [100]. It is quite challenging to cover all failures; thus, this subsection only discusses
the blackout that occurred in California last year. On 14 August 2020, a giant rolling
blackout was implemented in California because of the high electrical demand. Because of
a huge wildfire, the maximum temperature of California reached up to 130 °C. Because
of the COVID-19 pandemic, most people were also staying at their homes and using their
electrical appliances. Furthermore, the extreme heatwave forced people to operate their
air-conditioning units, which significantly increased the total system demand. According
to the data from the California Energy Commission, a large proportion of electricity is
generated from RESs, with plans to increase the proportion to 60% by 2030. In 2019, 21.04%
of electricity in California was generated by solar and wind energy resources [101]. On
14 August, a 470 MW solar power plant and several wind power plants (1000 MW total pro-
duction) failed because of the excessive demand [102]. At the same time, so-called reliable
power generators unexpectedly went offline [103]. The rolling blackout was implemented
at around 6:30 p.m., when the power generation from solar power plants was disappearing,
and continued until 9:00 p.m. [104]. According to various statements, it seems that this
incident occurred because of the supply deficit compared to the high demand.

Several initial causes can lead to system outages. A previous study [105] presented
statistical data from a survey conducted from 2011 to 2019 in some parts of the world,
showing that around 50% of system blackouts were initiated due to bad weather and falling
of trees, 31.8% were initiated due to equipment and human failures, 10.6% were initiated
due to some form of vehicle accidents, 1.5% were initiated due to animal activities, and
6.1% were initiated due to overdemand of electricity. In 2017, the USA faced a total of
3526 outages with a total duration of 284,086 min and an average duration of 81 min [106].
Around 36 million people were affected by these events. In the USA, the power outages
were caused by seven significant reasons, with bad weather and falling of trees contributing
a significant proportion (i.e., 1159 events). Moreover, 791 outage events were caused by
human and equipment errors, 444 were caused by vehicle accidents, 173 were caused by
animal activities, seven were caused by overdemand, 244 were planned outages, 15 were
caused by theft/vandalism, and 693 events resulted from unknown causes in 2017 [106].

3.2.6. Inferences

As we all know, wind energy is quite unpredictable, and solar power plants only
produce energy during the daytime; thus, some form of a reliable power plant must be
present as a backup. The power system must maintain frequency within an acceptable
range; otherwise, the system may fail. When failure occurs, unbalance is created within
that power system, which may lead to system blackouts if not resolved properly. The five
cases presented above provide a clear map of the importance of frequency stability for
the reliable operation of a power system. Among the five case studies, the blackout of
Great Britain was caused by power generation failure; 1993 MW of generation was lost
within 3.5 min, which could not be recovered by the system in time. The system blackouts
in India were the results of transmission line failures. Similarly, in Venezuela, a large
proportion of generation was isolated because of transmission line failure. However, in
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the cases of Australia and California, natural disasters were the cause of system failures.
In all cases, power systems suffered from instability. Because of the supply/demand
unbalance, some parts of or the whole power system faced problems, resulting in forced or
rolling blackouts. The British, Indian, and Venezuelan power systems are mainly supplied
via conventional power generators (i.e., synchronous generators). However, in Australia
and California, a large proportion of electricity is produced through PEC-based RESs. In
comparison to conventional power systems, modern power systems with significant PEC-
based technologies record a high number of system outages. Numerous statements have
been made on the penetration of RESs and their issues. With the increase in PEC-based
technologies, systems are becoming more complex; therefore, advanced technologies and
appropriate approaches must be introduced into the modern power systems.

4. Open Issues of Frequency Instability and the Way Forward

Modern power systems are adopting a significant transformation in generation, trans-
mission, distribution, and utilization levels with the introduction of rapidly growing
PEC-based technologies, due to the massive integration of PEC-based RESs, including solar
PV and wind turbines, whereas the appliances and control methods in other sectors are
dependent on the PECs. As discussed in Section 1, short-term frequency instability can
occur in modern power systems because of two main reasons: (a) the high penetration of
PEC-based energy resources such as solar PV and wind turbine reducing the system inertia,
and (b) RESs being unable to balance the demand/supply chain because of their unpre-
dictable patterns. Modern power systems are becoming more complex because of these
rapid transformations. This section presents the issues caused by these transformations in
detail, and some of the potential solutions are thoroughly discussed.

4.1. Issues of PEC-Based Technologies in a Power System

RESs, especially solar and wind energy, are stochastic in nature. The solar and wind
resources have variable trends over multiple timescales (daily and seasonal). On the other
hand, demand is also stochastic and varies continuously. In modern power systems, both
the generation and the load vary over periods of minutes and hours [107]. Numerous
studies have been conducted on the forecasting of solar and wind power generation, which
have been further implemented to reduce the uncertainty of power systems [108-115].
However, the forecasted results are not accurate for an exact time scale and may create
a drastic deviation in the system frequency, especially in a low-inertia power grid [107].
Thus, the increase in PEC penetration increases the stochastic variation of the active power
generation in a power system, which may lead to unpredictable situations within that
system [116].

In the conventional power system, synchronous generators work as the source of
inertia since the rotating mass provides the physical characteristics within that system. The
system frequency is directly associated with the rotation of the machine, and the system
inertia created by the synchronous machine helps to maintain the system frequency by
minimizing the initial frequency deviations. To do this, the total mechanical inertia has
some resistive properties (in virtual mode) with respect to changing the rotation of the
machine [117]. As given by Equation (1), a small unbalance in power generation and load
can create a frequency deviation within a power system. The frequency response of a
power system under an unbalanced condition can be seen in Figure 6. An extended form
of Equation (1) is given in Equations (2) and (3). Here, H is the inertia constant, f is the
system frequency, S is the rated power of machine, Ey;, is the kinetic energy, Hyys is the
equivalent inertia of the whole power system, Syys is the system base, and H; and §; are the
inertia and rated power of the i-th machine.
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o Ekin, sys :1:1 HiSi (3)
sYS —Ss}/s —Ssys .

H

From the above equations, it is clear that the system inertia is directly proportional
to the kinetic energy of the machine for a constant rated power; with an increase in the
proportion of kinetic energy (i.e., synchronous type generation), the system inertia increases.
The conventional power system contains synchronous generators as the source of kinetic
energy, as well as the system inertia, but modern power systems have both less kinetic
energy and less inertia. On the other hand, most appliances and the equipment control
mechanisms adopted in modern power systems are based on PEC technologies, which
significantly reduces the inertia. The rate of inclusion of such technologies is increasing
day by day, resulting in decreases in system inertia at a drastic rate [118].

In a power system with multiple generators, each machine should run at the same
frequency (i.e., synchronism). If a big power deviation takes place, individual power
generators within a power system may lose synchronization, followed by dissimilar fluc-
tuating motions around the center of inertia (COI) [119,120]. At this stage, the frequency
of each unit may not be the same, instead presenting an oscillating tendency. The rate of
oscillation is dependent on the difference between Py;(t) and Py (f), as given in Equation (1).
However, the frequency of each unit is closed to the COI (see Equations (4) and (5)), and
the damping and inertial forces among the units try to pull the whole system back into
synchronization [120]. If these forces are unable to maintain the system in its original
state, some form of control mechanism should be activated to maintain system stability.
From Equations (5) and (6), it is clear that the system frequency and its changing rate are
directly related to the inertia of the power grid. A lower system inertia leads to a higher
fluctuation of frequency. For a better visualization of these issues, Figure 10a,b can be
analyzed, which present the frequency dynamics for different inertial constants and power
deviations. From Figure 10a, it can be seen that the reduced system inertia creates a higher
frequency deviation, which may lead to an unstable power system. Similarly, Figure 10b
shows the dynamic characteristics of the frequency with changes in the power deviation.
Here, for analysis, the values of the constants in the transfer function were taken from [7].

" HS:f;
_ i=1 Ti9ifi
fecor = 3 HS, 4)
AP
feoi(t) =1+ T t. (5)
RoCoF = Z?IP ; (6)
sys

In addition to frequency fluctuation, the huge penetration of PEC technologies creates
other stability issues in a power system. The rotor angle stability and the small-signal
stability of a power system are directly linked to the synchronous generators connected
to the grid [121]. The huge penetration of PEC-based RESs reduces the proportion of
synchronous generators in a power system, which may affect the shape, frequency, and
damping factor of the rotor oscillation [10]. Furthermore, the power system is unable to use
the power system stabilizer connected to the synchronous generator. In the case of large
disturbances, transient instability may also occur in the system via changing the power flow
in tie-lines [122]. The frequency stability is also linked to the rotor angle stability since the
rotor speed of the generators is adjusted on the basis of the system’s frequency [123]. Since
PEC-based technologies have the ability to control the active and reactive power on both
the generation and the load sides, they can be used to maintain rotor angle stability and
the frequency stability in the pipeline [116,124]. Furthermore, a low-inertia power system
would be capable of maintaining the frequency balance during a significant deviation via
rapid generation/load changes [125].
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Figure 10. Frequency dynamics for (a) different inertial constants and (b) different power deviations.

On the other hand, PEC-based technologies introduce two new forms of stability
issues: resonance and converter-driven stability. The first (i.e., resonance stability) occurs
during the periodic exchange of energy in an oscillatory manner because of the insufficient
dissipation of energy while magnifying the magnitude of the parameters (i.e., voltage,
current, torque, etc.) [10]. Two types of resonance stability exist: (a) torsional and (b) elec-
trical resonance. Torsional resonance basically occurs in conventional power systems that
contain synchronous generators, whereas electrical resonance occurs in systems containing
RESs (especially variable-speed induction generators in wind turbines). This resonance can
lead to large oscillations in current and voltage, as well as large perturbations in electrical
torque, which further impact the electrical and mechanical components [10]. Similarly,
the second (i.e., converter-driven stability) is fully associated with PEC control and occurs
in the form of oscillation due to the cross-coupling phenomenon between the dynamic
electromechanical devices and the transient nature of electromagnetic grid networks [11].

4.2. Future Studies

According to the literature, the adopted approach of system stability involves the
control of appropriate mechanisms by taking into consideration some response parame-
ters. However, with respect to the abovementioned issues, the classical methods cannot
effectively address the problems because of their slow response, low accuracy, and poor
robustness. Generation-side control approaches are mostly focused on the supply/demand
balance, whereas frequency fluctuation issues can be effectively addressed by demand-side
control methods [126,127]. Response parameters such as RoCoF, nadir frequency, and
OD are important indicators of the system’s status, allowing intelligent selection of the
appropriate control approach. To regulate the system’s characteristics and maintain system
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stability, the real-time response must be measured within microseconds, for which an
efficient and intelligent controller is necessary. The response time is the primary concern
during the implementation of a control mechanism in the system. Moreover, the power
generation characteristics from RESs are unpredictable and fluctuate drastically; thus, the
controller must be robust so that it can handle abnormal situations. The system is required
to manage and protect the components from failure. Furthermore, most studies were
conducted for the integration of big plants such as solar farms and wind farms; however, in
current practice, people are installing distributed energy systems on smaller scales [128,129].
Various trading practices and control mechanisms are being introduced, which further
leads to problems in system operation and protection [130,131]. Such problems must be
addressed by bottom-up approaches and not only for big power plants. Several studies
have been conducted to address the issues of low-inertia power systems, but concrete
results were not achieved with practical and efficient validation, and several limitations
were identified. Some potential fields of study are discussed in this section to address the
current issues of PEC-dominated power systems.

4.2.1. Grid-Forming Power Converters

Conventional inverters were designed to work as current sources concerning the grid
parameters, whereby synchronous generators are basically used as the reference system (i.e.,
slack bus), and the generators connected to the inverter act as the power contributors (i.e.,
following type). These conventional inverters use PLL to synchronize the connected power
generators to the power grid [132]. However, the inverter must be able to handle occasional
perturbations such as sudden voltage fluctuations and phase changes so as to re-establish
the system synchronization [133]. With the increase in the proportion of nonsynchronous
generators, modern power systems are becoming dominated by PEC technologies, and the
concept of grid-following inverters is becoming outdated due to the need for a reference
system (i.e., synchronous generator) to maintain the parameters [107]. Hence, a form of
PEC-based resource must be introduced into modern power systems to set the relevant
parameters, instead of following the existing values (as done by grid-following inverters).

A grid-forming power converter is a power electronic unit that helps to control the
voltage amplitude and frequency (i.e., magnitude and angle of the voltage) at the point of
common coupling (PCC) within a power system [134,135]. Its main function is to regulate
the output voltage and/or current so that the system frequency and the voltage remain in
an acceptable range. Since a grid-forming converter is capable of injecting instantaneous
active and reactive power for frequency and voltage regulation within a system, it can
be considered as the slack bus unit in an isolated energy system [134,136]. However,
it can be used in both isolated and grid-connected mode, behaving as a synchronous
generator in traditional power systems [134]. Basically, the grid-forming inverter adopts
four techniques, as shown in Figure 11. The concept of the grid-forming inverter with new
adaptations can address the above-discussed issues, but its actual characteristics, response,
and impact are unknown [137]. Numerous studies have proposed adaptions, along with
a description of their performance, in the past few years. One of the popular methods
used with synchronous generators and inverters is droop control, which established a
linear relationship between frequency (active power) and voltage (reactive power) [138].
A fractional-order controller for a grid-forming inverter was proposed with the target
group of high-energy applications, but the system dynamics were found to be slow and
unstable [139,140]. Virtual oscillator control-based strategies were proposed in [141,142]
for performance improvement, but these approaches are still in the experimental phase
and need genuine validation. A sliding mode control was proposed for an AC voltage loop
with an inner current loop in [143], but this concept is quite complicated and suffers from
high computational cost. Similarly, state-feedback control techniques for direct AC voltage
control within a grid-forming inverter have coupling issues with the active power [144].
From the studies taken from the literature, it can be observed that the adaptation processes
of new concepts with grid-forming inverters are in progress, but no practical and reliable
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solutions have been obtained to date. Some significant research can be done in this sector
for the advancement of this concept in the future. For example, the combination of multiple
grid-forming concepts (e.g., a hybrid model of a virtual oscillator and matching control)
can be conducted by highlighting the strengths and neglecting the drawbacks of specific
methods (i.e., the virtual oscillator control method has the best large-signal behavior, while
matching control method is more robust; thus, a better result can be achieved through their
combination) [145].

Droop
control

Virtual Grid-
synchronous

forming
control
techniques

Matching
machine control

control

Virtual
oscillator
control

Figure 11. Different techniques used in grid-forming converters.

4.2.2. VPP /VSG with a New Dimension

PEC-based generators use a droop control mechanism to maintain frequency, but most
of them adopt the approach of power sharing in a steady-state but not transient mode [146].
In addition, the droop control mechanism lacks technical parameters, including system
inertia, which was addressed by the introduction of a concept called virtual power plant
(VPP) or virtual synchronous generator (VSG) [147,148]. The VPP produces the required
inertia virtually by introducing an appropriate amount of power, and the inertia minimized
the variation in frequency (both primary and secondary) caused by various factors and
events [16,149]. The ability to introduce appropriate power (both active and reactive) for
the stability of frequency and voltage is an essential characteristic of an effective VPP [150].
However, it takes a few minutes to switch RESs (especially wind energy) from one steady
state to another state during normal operation. Hence, a BESS is always introduced along
with VPPs to maintain balanced energy conditions and provide virtual inertia during the
transient stage [150,151]. On the other hand, the complexity may be increased with an
increase in the number of VPPs within the system [152,153].

These challenges can be addressed by maintaining efficient coordination among the
VPPs that link and share the required inertial proportion [154]. In order to achieve this
objective, intelligent architecture can be introduced to monitor, estimate, and control the
parameters on a real-time basis. An example of an intelligent architecture is presented in
Figure 12. In the proposed system, the distributed VPPs and BESSs provide virtual inertia
for their respective RESs, whereby all systems are controlled via the hierarchical control
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architecture. A short-term time-series forecasting model can be developed to forecast the
electrical parameters within the power system, which can be utilized to identify optimum
coordination among the associated technologies (i.e., size and location of the VPPs, PECs,
and grid parameters), such that the system can be securely and reliably operated. A
deep learning-based hierarchical control mechanism can be developed to coordinate the
distributed and central control system, as well as dynamically oversee the whole power
system for normal operation. The proposed model is based on a distributed concept,
which can manage the allocation of power, thereby controlling the whole power system.
Various platforms can be used to develop this real-time tool, which allows interpreting
and visualizing the data received from hardware in a user-friendly way. One of the main
concerns during the design and implementation of the proposed system is that the central
control must work in proactive way, since the communication process (i.e., data sending
and receiving) takes some time, which may delay the whole control process. For this, the
optimization and forecasting models must be efficient and accurate so that the system can
promptly predict the characteristics and introduce actions at the right time.
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Figure 12. System overview of architecture with intelligent optimization and decision-making model.

4.2.3. Other Solutions

With the identified problem of frequency control in low-inertia power systems, numer-
ous potential solutions have been invented and/or are undergoing investigation. Several
research articles have proposed efficient and robust methods to address the frequency
control issues of low-inertia systems, as listed in Table 3.
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Table 3. List of possible concepts to address the issues occurring in PEC-based power systems.
Concept Features References

Inertia emulation via electronic
components and BESSs

This concept introduces electronic devices such as

supercapacitors or BESSs to provide the inertial response to the

power system during a fault or unstable situation (i.e., the

condition of frequency deviation). The reduced power during

power system unbalance or fault can be compensated for by the [155]
introduced components to support the frequency response,

similarly to conventional synchronous generators. Additionally,

this concept helps in system synchronization by providing

virtual control methods.

Incentivizing synchronous condensers or
high-inertia generators

Synchronous condensers can be introduced to provide the

inertia and short-circuit power in low-inertia grid systems via

voltage recovery concepts during system instability. Generally,

this technique considers the emulated generators as

conventional generators, which can provide the required inertia [156,157]
and the active and reactive powers. One of the complexities of

this technique is the requirement of an optimized technique for

the selection of appropriate capacities and the locations of

emulated generators.

Curtailment methods and grid code than adopting new technologies. Furthermore, the existing grid
modification

Power production limits, instantaneous combined cycle

generation limits, or price signals can be used to increase the

inertia contribution. This approach is mostly based on the

planning and operation of the existing power system, rather

5 . [137,158]
code can be changed to maintain the system during acceptable

system instability. For example, the operational settings of the
existing control equipment can be revised so as to increase the
acceptable limit, whereby no automatic shutdown would take
place during small levels of deviation.

5. Conclusions

The introduction of PEC-based technologies is drastically reducing system inertia,
thereby leading to numerous issues in power system stability. The inclusion of inertial
support might be the best option, but this requires robust, secure, reliable, and practical
solutions to maintain the system within an acceptable inertia level. Researches have been
conducted to address the problems of low-inertia systems due to PEC-based technologies.
However, the proposed studies did not yield concrete results with practical and efficient
validation, and several limitations were highlighted. Nevertheless, there are many research
gaps in this area which can be filled in the future. On the basis of the studies taken
from the literature, two major tasks were identified to address the discussed issues: (a)
modification of the grid codes as per the current situation, as well as the adaptation
of the new operational strategies; (b) introduction of a new device (maybe PEC-based)
for this specific purpose. According to a previous study, the following improvements
are recommended: (a) intelligent PEC-based technologies to improve the time response,
accuracy, and robustness of controllers and their combinations, (b) intelligent techniques
to optimize the rating and coordination of integrated RESs, and (c) intelligent models to
optimize the size, number, and location of BESSs within the VPP configuration.
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Abstract: With the increasing penetration rate of Power Electronic Converter (PEC) based technolo-
gies, the electrical power systems are facing the problem of transient stability since the PEC based
technologies do not contribute to the system inertia, and the proportion of synchronous generators
(i.e., the source of inertia) is in decreasing rate. In addition, PEC based technologies’ components
have poor inherent damping. It is very important to analyze the system characteristics of a power
system to minimize the potential instabilities during the contingencies. This paper presents the
parametric sensitivity analysis of the rotor angle stability indicators for the 39-bus New England
power system. The indicators of rotor angle stability analysis such as critical fault clearing time
(CCT), Eigenvalue points, damping ratio, frequency deviation, voltage deviation, and generator’s
speed deviation are identified and analyzed for three case scenarios; each scenario has six sub-cases
with different inertia constants. The results show that the CCTs for each component will be reduced
if the inertia reduces at any section of a multi-machine power system. Although the applied three
scenarios with six sub-cases are identified to be stable in this analysis, the decreasing inertia constant
has significant impact on the power system dynamics.

Keywords: power system dynamics; power system stability; low inertial power system

1. Introduction

Power systems have become more complex than in the past, caused by the integration
of numerous Distributed Generation Resources (DGRs) and the rapidly growing power
electronic converter (PEC) based technologies. The modern power system faces complex
transformation in all levels, such as generation, transmission, distribution, and utiliza-
tion [1]. With this rapid transformation, the modern power system faces significant changes
in the power system dynamics; one of the main reasons behind this is reduction of system
inertia because of these PEC-based technologies [2]. In the conventional power system,
most of the power generators were of the synchronous type; they are characterized as the
source of rotational inertia in a power system, whereas in a modern power system, the
proportion of synchronous generators is at a decreasing rate [3]. Moreover, the PEC-based
technologies adopted in the generation (e.g., kinetic energy less solar PV and doubly-fed
induction generator based wind turbines), transmission line (e.g., HVDC), distribution
system (e.g., controllers), and utilization level (e.g., controller based equipment) do not
contribute to the system inertia, which results in a drop of system inertia in the modern
power system, resulting in drastic changes in the system dynamics [4]. Not only these
but the transient stability of the DGR integrated power system is also highly sensitive
to the proportion of the penetration level, fault location and its severity [5]. Titlens et al.
presented a detailed study on the relevance of inertia in the operation and control of a
power system, which shows that the decreasing system inertia results in the high Rate of
Change of Frequency (RoCoF) values and frequency deviation, which may increase the
system instability [6]. The DGRs are integrated into the distribution lines at a low voltage
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level, which increases the amount of fault current [7]. Hence the penetration of DGRs on
a considerable scale can lead to problems in overall frequency response, transient stabil-
ity, fault rid-through capability, voltage response, load-following capability and system
regulation [8].

Impact assessment is an important task from the planning and operation prospects
since an unidentified proportion of parameters may create system instability and even
system blackouts, especially after a fault within that system. Some studies had been
conducted to assess system performance and their sensitivity under a different mode
of operations. Jorge performed an assessment on the frequency and transient stability
of the RESs penetrated grid, in which the author focused on the transient instability
in the power system by considering the grid parameters [9]. A study [10], proposed a
systematic approach to analyzing the transient stability of the 39-bus New England power
system, where the authors considered the generator-based threshold as a limit function.
Similarly, Perilla et al. investigated the degree of the transient stability enhancement in
the wind turbine integrated power system via parametric sensitivity and sophisticated
approaches [11]. Sajadi et al. presented a comprehensive study on established transient
stability indicators including rotor angle difference, rate of machine acceleration, and
transient potential and kinetic energies [12]. Tamimi et al. investigated the impact of
penetration levels of solar PV through small-signal stability for the real data of Ontario
power system and its neighboring system, which concluded that the distributed solar
systems are more advantageous than the single solar farm considering the stability of a
power system [13]. However, the eigenvalue analysis showed that the DGR penetration
has no significant impacts on small-signal stability [13]. On the other hand, Pieter Tielens
concluded that the eigenvalues move toward the negative of the real part with poor
damping with the decreasing inertia, and the system stability becomes sensitive with the
generation plant’s location [14]. Wang et al. conducted a study on the CCTs for a micro-
grid system under fault conditions, which concluded that the CCTs are highly sensitive
to the DGR penetration level and the wind turbine crowbar protection insertion time [15].
Sadhana et al. conducted the small signal stability analysis for the grid-tied DGR with
the effect of uncertain wind turbine penetration by using Lyapunov’s stability criteria and
concluded that the wind penetration has no effects on the low-frequency oscillation at a
remote area [16].

Studies conducted for a variety of case studies present different results and conclu-
sions, which may mislead the audience. The same factors that have been found to be
sensitive for a case have not been found to be sensitive for other cases. However, the
parametric sensitivity analysis is very important to analyze the power system dynamics,
which can help to reduce the potential effects on a specific case system. Hence, this paper
is conducted to analyze the parametric sensitivity of the rotor angle stability indicators of a
multi-machine power system. The major contributions of this paper are as follows:

a.  Transient stability assessment and small-signal stability assessment are conducted
to calculate the indicators considering the three scenarios and six sub-cases. The
DIgSILENT Programming Language (DPL) is used as the scripting tool for the
execution task, and the case study of 39 Bus New England power system is taken
for this study. Statistical analysis has been performed to analyze and visualize the
characteristics of the indicators in different cases and sub-cases.

b.  The assessments have been conducted for both the transmission lines and the bus sys-
tems. Different DPL has been implemented to evaluate the indicators for both systems.
¢ The area-wise impact of reduced inertia has been discussed within a multi-machine

power system. For this, the inertia of an area is reduced, and its impacts on over-
all system have been observed. From this analysis, it is found that the reduced
inertia affects the local area significantly, whereas the neighboring areas have been
less affected.

The authors of this paper aim to present the parametric sensitivity analysis of the rotor
angle stability indicators with the power system inertia, which may help to analyze the
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dynamics of that system under its normal operation as well as in contingency. This paper
first discussed the stability problems that occur in the power system by DGR penetration
via previously published works. Section 2 presents the adopted methodology and the
assumptions made during the analysis. The obtained results are discussed in Section 3,
based on which conclusions have been drawn and discussed in Section 4.

2. Method and Assumptions

CCT is the time interval up to which the occurred fault must be cleared so that the
system retains its stability, and it is important to analyze the performance evaluation that
can be depended on various factors such as inertia constant of a machine, system frequency,
critical clearing angle and the initial power angle [17]. CCT has an important role in the
power system since the system must restore its original state within that time. A lower
value of CCT leads to system instability if the system is unable to retain its original state
within that value of time. Similarly, the eigenvalue is the next indicator used in the rotor
angle stability analysis. The eigenvalues are the system modes (or value of the system
property) that provide the status of a system in a linear invariant system. It must require
to be stable of all modes for a stable power system; all of the conjugated eigenvalues
(x %+ jw) must have the negative valued real part. For a stable power system, it is also
desired that the oscillations of electromechanical machines must be damped out as soon as
possible. For simplicity, the outcomes of the eigenvalue analysis are presented in the form
of damped frequency and damping for each system mode. During the analysis, the system
is considered as the classic one; hence, there are 2*n modes for n number of generators (e.g.,
20 modes for 10 generators). The small-signal stability analysis should be conducted for
the obtained modes.

The parametric sensitivity analysis is the study of uncertainty; how a parameter within
a function differs from the changes in other values. It has an important role in the system
performance assessment from the planning prospects. The main objective of this paper is
to present the parametric sensitivity analysis of the rotor angle stability indicators with the
power system inertia (i.e., Tccr, A, w and {). However, the rotor angle stability analysis is
highly dimensioned and non-linear from the mathematical point of view, and is presented
by a set of differential-algebraic equations as given in Equation (1) [14]:

ax
- P(XY,P) (1)
Here, F is the function, X (X € R"*) is the vector state variables, Y (Y € R") is the vector
of algebraic variables, and P (P € R"?) is the vector of parameters, for the electromechanical
dynamics within a power system. Equation (1) presents the dynamics of the power system
network, static loads and the generator’s stator equation. The dynamics of a synchronous
machine can be described by the following differential equation (i.e., swing equation):

2 5 _ -,
ws Ot? - Srated

@

Here H is the inertia constant in MJ/MVA, S,;.; is the rating of that machines in MVA,
Py, and P, are the mechanical and electrical power in MW, and ws is the angular frequency.
The simplified swing equation for a multi-machine system can be written as follows:

ZHsys aztssys
ws ot

=Py — P [m Pul (3)
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However, if the small signal approximation is considered for a multi-machine power
system, the dynamic behaviour of an equivalent system can be expressed as Equation (4),
where Kp is the damping constant for the equivalent system, and dy is the initial power angle.

2Hsys azdgys sys -
W, 9E + Kp TR Pax €05 (80)dsys = 0 @

Equations (5)—(7) present the mathematical expressions for the CCT, overall system
frequency and the damping for a power system. From the Equations, the indicators are
found to be dependent on the system inertia.

4H,ys :
Teer =\l p.or (6ccr — 4o ) [ins] (5)
_ |ws Pyaxcosdy .
Wsys= 4 | 2H,y, [inrad/s] (6)
1 s
¢ ==Kp . (7)

2 2Hsys Piax cosdp

In this paper, the parametric sensitivity analysis of such indicators has been conducted
with respect to the inertia constants. From these mathematical expressions, it can be
concluded that the rotor angle stability indicators are dependent on the system inertia
constant, and the stability analysis of such indicators can be conducted concerning system
inertia for a specific case, which further helps to analyze the system dynamics under
different operating conditions.

This paper takes the IEEE 39 Bus New England power system as the case study that
contains ten generators, 39 buses and 33 connecting lines as shown in Figure 1. The total
system is divided into three parts (i.e., West, North and South) based on their geographical
structure and separated by the blue lines as shown in Figure 1. The West area is considered
as a single generator for the aggregated power system containing multi-machines (i.e., G1),
whereas the North area contains three generators (i.e., G8, G9, and G10) and the South
area contains six generators (i.e., G2, G3, G4, G5, G6, and G7). All of the components of
the power system are modelled in a powerful tool called DIgSILENT PowerFactory for
the analysis, and the DISILENT Programming Language (DPL) is used as the scripting
tool for the execution task. The DPL files created to evaluate the CCTs for transmission
lines and Bus systems can be found in [18,19]. Similarly, the information of the compo-
nents is referred to from a paper [20]. After the interfacing of DPLs with the network in
DIgSILENT PowerFactory, the transient stability assessment is conducted to evaluate the
values of CCTs and the small-signal stability assessment for the eigenvalues, damping, and
damped frequency.

For the sensitivity analysis of the inertia constant, three scenarios and six sub-cases for
each scenario have been considered in this study. As shown in Table 1, in the first scenario,
the inertia level of the West and South areas was taken as normal and that of the North
area is considered as low. Similarly, the inertia level of the South area is taken as low in the
second scenario, whereas both areas (North and South) are considered with low inertia
levels in the third scenario. The nominal values of the inertia constants are considered as
the original value taken from the source [20], whereas for low inertia value, five steps (i.e.,
50, 60, 70, 80, and 90% of nominal inertia value) have been implemented and analyzed with
six sub-cases (i.e., base case H, 0.9H, 0.8H, 0.7H, 0.6H, and 0.5H). The important indicators
of the power system stability such as CCTs, eigenvalue points, damping, and damped
frequency are identified for these three scenarios and the sub-cases, and the conclusions
have been drawn from the observed results.
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Figure 1. The divided three zones of IEEE 39 Bus New England power system. Here in the Figure, the Generator buses
are presented with the red place-marks, PQ buses are with the blue place-marks, and the transmission lines are with

yellow lines.
Table 1. Assumed cases for the sensitivity analysis.

Scenarios West North South
a Normal Low Normal

Normal Normal Low

c Normal Low Low

3. Simulation Outcomes

For the case study of 39 Bus New England power system, the CCTs at each transmis-
sion line have been identified by considering the three scenarios and six sub-cases. During
the analysis, at first, a fault is created in a line, and the DPL is used to identify the CCTs
for each transmission line. The results obtained from the simulation have been visualized
and presented in Figure 2. Figure 2a—c presents the CCTs obtained at each transmission
line at different values of inertia constant (i.e., H, 0.9H, 0.8H, 0.7H, 0.6H, and 0.5H), and
categorized for the three scenarios as given in Table 1. In most of the transmission lines,
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the CCTs decrease with the decrease in inertia constant, which can be seen in the figure
clearly. In comparison to scenario ‘a’, scenario ‘b’ has more difference rate, while scenario
‘c’ has more difference rate than the other two scenarios since the overall system inertia
is decreased in the same way (i.e., H, > Hj, > H;). In Figure 2, the slope of the graph
indicates the difference rate of the CCTs for the scenarios, where it is found to be higher in
scenario ‘c’ in comparison to the other two scenarios. In all of the scenarios, the CCTs for
the transmission lines near the G1 (i.e., Line 0304, Line 01-39, Line 09-39, and Line 01-02)
are observed to be quite higher than compared to others. To investigate the reason behind
this, the CCTs at separate areas of the power system have been identified in different
scenarios with all sub-cases. The detailed information on the CCTs is listed in Table 2.

Table 2. CCTs in different areas of 33-bus New England system at different scenarios.

Scenarios al(s) b (s) c(s)

Base case 0.9960 0.9960 0.9960

09H 0.9810 0.9505 0.9090

0.8H 0.8790 0.8560 0.7575

West 0.7H 0.8790 0.7195 0.6740
0.6H 0.8785 0.6285 0.5905

0.5H 0.8330 0.5680 0.4995

Base case 0.2033 0.2033 0.2033

09H 0.1986 0.1966 0.1901

0.8H 0.1911 0.1873 0.1741

North 0.7H 01817 01778 0.1608
0.6H 0.1693 0.1663 0.1446

05H 0.1589 0.1531 0.1276

Base case 0.2415 0.2415 0.2415

09H 02415 0.2265 0.2255

0.8H 0.2415 0.2093 0.2083

South 0.7H 0.2405 0.1951 0.1941
0.6H 02405 01761 0.1701

05H 0.2405 0.1580 0.1549

As given in Table 2, in all of the cases, the values of CCTs are decreasing from top to
down and left to right, since the inertia constant is decreasing in the same order. In scenario
‘a’, only the inertia of the North area is reduced, but Table 2 shows that the decreased inertia
affects the CCTs at all the power systems. However, the difference rate is observed to be
higher in the North area and lower in the other two scenarios. Similarly, in scenario ‘b’,
the difference rate is higher in the South area, since the inertia of the South area is reduced
in this scenario. Significant effects can be observed in scenario ‘c’, since the decreased
inertia in that scenario is higher in comparison to other scenarios (decreased inertia in the
North and South area). From this, it is clear that the CCTs depend on the location. Not
only that, the CCTs for all of the components are observed to be reduced with a certain
difference rate with the change in inertia at a place. From this data, it is clearly shown
that the CCTs of all components decrease with the decrease in inertia at any section of the
multi-machine power system, although the effect is higher in the local area and less in the
neighboring areas.

On the other side, Figure 3 presents the characteristics of the CCTs for the bus system
after disturbance. A similar process to transmission line has been applied to analyze the
CCTs at the bus system by creating a fault at a specified bus bar. Like Figure 2, Figure 3a—
presents the CCTs obtained at different bus bars at different values of inertia constant (i.e.,
H, 0.9H, 0.8H, 0.7H, 0.6H, and 0.5H), but in this stage, the authors have selected a sampled
number of buses (i.e., Bus 1, Bus 6, Bus 16, Bus 19, and Bus 29). There is no reason behind
the selection of the specified buses; it is just a collection of buses from diverse areas for the
purpose of analyzing their nature. From this analysis, it is observed that the CCTs for the
buses show the same nature as for the transmission lines: decrease with the decreasing
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system inertia. The decreasing rate of CCTs in scenario ‘a” is lower than that of scenario ‘b’,

and that in scenario ‘b’ is lower than that of scenario ‘c’.
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Figure 2. Sensitivity analysis of inertia constant with the CCTs at transmission lines for three scenarios (a), (b) and (c).
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Figure 3. Sensitivity analysis of inertia constant with the CCTs at buses for three scenarios (a), (b) and (c).

Similarly, Figure 4 presents the frequency dynamics at the buses, when the system
inertia of all systems differs. At this stage, the inertia of all generators has been changed,
and the frequency dynamics are analyzed. As shown in Figure 4, the first spike just after the
fault is similar in all cases, but the magnitude of other spikes increases with the decreasing
system inertia, although the natures of the spikes are similar. At the original system inertia,
the peak frequency is calculated to be 60.68 Hz, whereas the value is calculated to be
61.39 Hz when the system inertia is set to 50%. The number of wave cycle is also increasing
for a constant time period of 5 s with the decreasing order of system inertia. A similar effect
can be shown in the voltage deviation: higher swing nature with reduced system inertia,
as shown in Figure 5. Similarly, the speed deviation of the generators is also affected with
the system inertia. As shown in Figure 6, the speed deviation of the generator increases
with the decreases in system inertia. The maximum speed deviation is observed in the
Generator 7, which is calculated to be 0.8Hz at original system inertia and 1.5 Hz at 0.5H.
From all these characteristics, it is observed that the indicators of the power system stability
are dependent on the system inertia.
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Figure 5. Voltage deviation (in %) at buses with different generator inertia constants.
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Figure 6. Speed deviation in the generators at different inertia constants.

On the other side, the small-signal stability analysis is conducted to analyze the
stability of the case study with the decreasing system inertia constants. The small-signal
stability analysis is conducted through the eigenvalue analysis, and the results are shown
in Figure 7. Figure 7a—c is the graphs that show the nature of real and imaginary values
of eigenvalue points for the three scenarios. It is clearly shown that all of the eigenvalue
points lie on negative real parts, which means the system is stable for all of the scenarios.
However, the eigenvalue locus can be easily traced for scenario ‘a’, in comparison to the
other two scenarios. From the figures, it is observed that the eigenvalue points scatter more
with the decrease in inertia constant.

Similarly, Figure 8 presents the sensitivity of the damping with the inertia constant
for the assumed scenarios. The results show that the damping decreases with the increase
in the inertia constant. Moreover, it is observed that the slope of the drop is higher in
scenario ‘b’ than that in scenario ‘a’, and also scenario ‘c” has a higher drop than the others.
For the first scenario, the peak value of damping for Mode 19 is 0.097143 at 0.5H inertia
constant and reached 0.05441 at the base case. In contrast, the peak values for Mode 19 in
the second and third scenarios are 0.10565 and 0.108539. From these figures, it is clear that
the damping is highly sensitive to the inertia constant.

200



Shrestha: Estimation of the energy-mix proportion for the secure operation of converter dominated

power system

Energies 2021, 14, 5023

110f13

(a) . -
T 1
- b 2 ® o See

= 5 >
]
Real - o E
0.12 0.1 -0.08 -0.06 004 002 _ o
- s o o 8% g

o % | o®® 15

< 15

" 20

( ) L : g e o 7 — 15

) <l :..‘..‘\.\. - 10
oo o00ee 5 >
Real sme o .E
0.12 0.1 -0.08 006 L 004, 002 5 0%
o0 00 0..' ° P E

° -10

? .0 : ": pBiEisY ‘] -15

e o

20

20

(C) LS % % 15

L ] L

& % ° . p '..0....}?‘ o 10
® ° e o oo 5 >
Real eococe o 3
0.12 0.1 008 006, 904, 002 % og

o, 9,0 ® s

0 o % L o 00 0 F X . -0 =

- : ¢ Qe b s -15

20

Figure 7. Eigenvalue points for three scenarios (a), (b) and (c).
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4. Discussion and Conclusions

With the increasing concern on renewable energy generation and the rapid devel-
opment in power electronic converter-based technologies, modern power systems are
adopting a new form of architecture and operational strategies. The whole power system is
getting into massive transformation including generation, transmission, and distribution as
well as in utilization level. Most of the modern power generators are renewable types like
solar PV, wind turbine, hydropower, bioenergy, and so on, among which the proportion of
solar and wind energy generators are in increasing order. A similar transformation can be
observed in the transmission line in the forms of HVDC, in distribution line in the forms of
various controllers, and in utilization level in the forms of electronic devices. Overall, the
proportion of synchronous generators is at decreasing rate in the modern power system,
which is also considered as the source of inertia. Moreover, the PEC based technologies
adopted all around the modern power system contain zero or less system inertia. These
transformations introduce various issues as the result of distinct changes in the power
system dynamics and their characteristics. The unpredictable RESs like solar and wind
with low inertia and stochastic demand have a higher potentiality of vulnerability since
unpredictable power unbalance can create frequent frequency deviation and lead to system
instability. To address the problem, we must understand the dynamics of the system and
their dependencies on various parameters.

A number of studies have been conducted to analyze the performance of the modern
power system and evaluate the sensitivity under different operational statuses. However,
the same factor was found to be sensitive for a case study and not sensitive for others,
which creates confusion on the dependency of the system on the system’s parameters.
Hence, parametric sensitivity analysis is very important to analyze the power system
dynamics that can help to minimize the potential impacts.

This paper presents the parametric sensitivity analysis of the rotor angle stability
indicators for the case study of the 39-bus New England power system. Two power
system analysis studies are used in this assessment: transient and small-signal stability
analysis. The studies have been used to identify and analyze the values of indicators
(i.e., CCTs, eigenvalue points, damping ratio, frequency deviation, voltage deviation and
generator’s speed deviation). The sensitivity analysis of the inertia constant with respect to
the indicators has been performed by considering three scenarios and six sub-cases. Besides
that, the nature of system frequency, speed of the generators, and the voltage profile of the
buses are also analyzed as the performance matrixes.

From this study, it is shown that the CCT values are highly dependent on the inertia
constant within the power system and decrease significantly with the decreases in the
inertia constant. Furthermore, the CCTs of all components decrease with the decrease in
inertia at any section of the multi-machine power system, although the effect is higher
in the local area and less in the neighboring areas. Among the considered scenarios, the
third scenario has significant performance deviations in comparison to the other two
scenarios since the third scenario has a significant drop in system inertia. Although all of
the scenarios and sub-cases are found to be stable, the decreasing inertia constant affects
all of the rotor angle stability indicators significantly. With the decreasing inertia constant,
the voltage, frequency, and generator speed are observed to highly deviate. Hence, this
study concluded that the power system stability is highly sensitive to the system inertia.
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Abstract: Withthe massive penetration of electronic power converter (EPC)-based technologies,
numerous issues are being noticed in the modern power system that may directly affect system
dynamics and operational security. The estimation of system performance parameters is especially
important for transmission system operators (TSOs) in order to operate a power system securely. This
paper presents a Bayesian model to forecast short-term kinetic energy time series data for a power
system, which can thus help TSOs to operate a respective power system securely. A Markov chain
Monte Carlo (MCMC) method used as a No-U-Turn sampler and Stan’s limited-memory Broyden-
Fletcher-Goldfarb-Shanno (LM-BFGS) algorithm is used as the optimization method here. The
concept of decomposable time series modeling is adopted to analyze the seasonal characteristics of
datasets, and numerous performance measurement matrices are used for model validation. Besides,
an autoregressive integrated moving average (ARIMA) model is used to compare the results of the
presented model. At last, the optimal size of the training dataset is identified, which is required to
forecast the 30-min values of the kinetic energy with a low error. In this study, one-year univariate
data (1-min resolution) for the integrated Nordic power system (INPS) are used to forecast the kinetic
energy for sequences of 30 min (i.e., short-term sequences). Performance evaluation metrics such
as the root-mean-square error (RMSE), mean absolute error (MAE), mean absolute percentage error
(MAPE), and mean absolute scaled error (MASE) of the proposed model are calculated here to be
4.67,3.865, 0.048, and 8.15, respectively. In addition, the performance matrices can be improved by
up to 3.28, 2.67, 0.034, and 5.62, respectively, by increasing MCMC sampling. Similarly, 180.5 h of
historic data is sufficient to forecast short-term results for the case study here with an accuracy of
1.54504 for the RMSE.

Keywords: time series model; Bayesian model; ARIMA model; performance matrix; power system
dynamics

1. Introduction

With the increasing concern over clean and sustainable energy and rapid growth in
electronic power converter (EPC)-based technologies, modern power systems are experi-
encing vast transformation in all sectors, including generation, transmission, distribution,
and even utilization. The generation sector is presently integrating EPC-based renewable
energy resources (RESs), including photovoltaic panels and wind turbines, whereas the
control mechanisms of other sectors are dependent on EPCs. At the same time, the propor-
tion of synchronous generators is reducing in modern power systems, and synchronous
generators are considered to be the main source of system inertia. In comparison to the
conventional operation mode, the huge penetration of EPC-based technologies presents
several changes in the operating dynamics of a modern power system. The major change
is a significant drop in system inertia, which may directly affect the frequency quality,
and operational security of power supply [1,2]. Frequency quality has an important role
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regarding the smooth operation of a power system, where low system inertia can initiate
accidental system blackouts [3]. Furthermore, the transient stability of a modern power
system is also highly sensitive to the penetration level of EPC-based technologies, along
with the given fault location and its severity [4].

Estimating power system performance indicators is an important task that must
be conducted for the secure and reliable operation of a power system, especially after
disturbance. Numerous studies have been conducted and many are still in the research and
development phase to obtain the best solution for estimating system inertia and securing
a power system from potential disturbances. Most of studies have focused on frequency
quality measurement and monitoring techniques which are further used to estimate the
inertia. The work in [5] presented an ambient wide-area measurement technique to estimate
power system inertia, in which the authors took the ambient frequency and the active power
of the power system by using phasor measurement units (PMU). Similarly, Zhang et al.
proposed a synchrophasor measurement-based method to estimate the equivalent inertia of
a system containing a wind power plant [6]. Fereidouni et al. proposed an online security
assessment tool for the South West Interconnected System in Australia, which monitored
and forecasted system inertia on an online basis and estimated parameters such as load
damping factors and demand-side inertia [7]. Dynamic regressor extension and mixing
procedures have been proposed with the aim to develop an online estimator of power
system inertia. In such case, some authors have used a non-linear and aggregated power
system model [8]. A swing equation and PMU-based inertia estimation technique for wind
power plants has been proposed, where the synchrophasor measurements are taken from a
real-time digital simulator using industrial PMUs [9]. Similarly, another study has utilized
frequency and voltage response just after disturbance to estimate the inertia by combining
two separate approaches (i.e., R for the frequency response and V for the power change
due to the load voltage dependency) [10].

The main complication for system inertia estimation methods is that the inertial
response between controllers and stabilizers cannot be distinguished, and the system
dynamics cannot be analyzed during the normal operation [5]; however, there have been
no attempts to estimate system inertia more accurately by forecasting the continuously
available data from the power system, such as kinetic energy and power deviations. As
such, the discussed issues can be addressed in a more practical way. There are some
research articles in which system frequency, nadir frequency, power generation, and load
have been used to forecast system performance [11-13]. A number of studies have been
conducted to forecast the short-term time series data of load as an indicator for a power
system [14-16]. A previous paper from the authors presented a structural time series-based
model to forecast the kinetic energy of a power system for a short period, which concluded
that the identified value of kinetic energy can be used to estimate the system inertia on a
real-time basis [17]. This research article is based on further investigation of that research
article and presents a new forecasting method to estimate system performance indicators.
Though described in detail further below, the following summarizes the main contributions
of this paper:

(a) A Bayesian model used to forecast the univariate time series data of kinetic energy is
presented. One year of data for the kinetic energy of the INPS are used to forecast for
the next 30 min of data. The results of the presented model are evaluated with other
performance metrics and are found to within acceptable limits. Further, the results
are cross-checked with the results of the ARIMA model.

(b) The optimum training dataset size required to forecast 30-min values of the kinetic
energy via an optimization technique is identified. There may be a considerable
number of historical data, and this will result in a greater computational time if all of
the data are used in the forecasting process. It is also very important to obtain results
as quickly as possible, since decisions (i.e., control actions) must be made at the right
time. Hence, determining the optimal training dataset size could be significant in
terms of optimizing the required computational time and memory.
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The authors of this paper aim to present a method that forecasts the time series data
of kinetic energy as an important parameter of a power system. A dataset containing a
year of time series data for the INPS (1 sample per minute) is used to forecast short-term
results (i.e., the next 30 min) using the Bayesian model presented here. The forecasted
time series data of the kinetic energy can be utilized to estimate the system indicators and
manage the whole system during normal operation, as well as in case of contingencies.
This paper first introduces the background and the problems that arise because of the
huge penetration of EPC-based technologies in power grids. The issues regarding a
modern power system with massively EPC-based technologies are briefly discussed. In
Section 2, the adopted methodologies are described in detail. The models for time series
forecasting, their mathematical formulations, and the performance measurement metrics
are additionally discussed in detail. Section 3 presents the results of this paper. Finally, the
conclusions of this work are presented in Section 4.

2. Methodology

This section is focused on the description of the adopted methodology, which can be
seen in Figure 1. A detailed description of the adopted methodology may be seen below.

Power System

Interconnected Nordic Power Systems

Raw Dataset

Bayesian model ARIMA model

! - Forecasting time series data Forecasting time series data
I - Optimizing the required =~ |l————————————
' number of training data set

! Error analysis (MAPE. MAE. MASE and RMSE)
" Model verification
} Future works and recommendations

Figure 1. Adopted workflow.

2.1. Data Types and Preparation

The data for the kinetic energy of the INPS for 2019 were taken from the web portal
of FINGRID (Finland’s transmission system operator). Data were collected each minute,
amounting to 525,604 samples in total. The minimum and maximum values of the kinetic
energy in 2019 were recorded as 126 GW and 273 GW. Similarly, the mean and median
values of the total samples were obtained to be 194.1 GW and 191 GW with a standard
deviation of 27.6.
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It is important to have reliable and accurate data to correctly analyze performance
and visualize results. Incorrect visualization is a result of unreliable data and may mislead
viewers. Hence, the raw data here were first processed to minimize possible errors by fil-
tering and fulfilling missing values. In this study, the raw sample sets were passed through
a kernel filter to reject errors and a regression impulsion method was used to fulfil the
missing values. Overall, 9273 samples were missed among the total set of 525,604 samples
(i.e., 1.76%), which were then fulfilled via the regression impulsion method.

2.2. Model Selection

The samples that the authors took were of a univariate type, and the best way to ana-
lyze univariate data is with a structural time series model. Various research articles [18,19]
have presented structure time series models based on the concept of decomposition for
univariate samples. Authors have segregated time series data into different components,
like the trend, seasonal, and irregular components. In this research article, the authors
adopted the same concept of the structural time series model and decomposed the whole
time series model into three components as shown in Equation (1).

y(t) = gt) + s(t) + e (1

where g(f) is the logistic growth (i.e., trend of the data), s(f) is periodic changes, and ¢; is the
error that provides some random nature of the result. In the presented model, the logistic
growth is just a regressor of time with several linear and non-linear fitting and calculated
by using Equation (2). In Equation (2), C is the carrying capacity, r is the growth rate, and
m is the offset parameter.
€
g(t) = T7erEm ()
The carrying capacity and growth rate are not constant values and instead vary with
time. Incorrect assumptions may lead to incorrect interpretations. Hence, time-dependent
carry capacity (i.e., C;) and growth rate (i.e., 1) were considered. Now, the revised relation
for the logistic growth is given by Equation (3).
Ci

g(t) - 1.4 e—(H-a[f]‘ro'](t—m—a[.‘]‘r Y) ®

where 4 is the rate of change within the rate adjustment vector (5 e RS) with S; change
points and Y is the adjustment correction vector for offset parameters. Similarly, a[]” is a
vector which is defined as below:

e s G
aj[t] = { é: [l(f):l1e7z¢i]s,e and aj[t] € (0, 1)% 4
Similarly, the seasonal variation s(t) of the time series parameters can be determined
using the Fourier series given in Equation (5). The seasonal variation contains multi-period
constraints, such as seasonal changes and human behaviors, which cannot be forecasted
by the logistic growth accurately, hence the Fourier series is used to model the periodic
functions of time. In the presented model, the parameters (i.e., ay, by, a2, by, ... , an, by) with
the N Fourier order are used in modeling to identify the seasonal variation for P period.

2nmt ., 2nrt
) G)

N
s(t) = Z,,:l(a,,cos 3 + bysin B

After segregating the time series data into three components, the authors implemented
a Bayesian model to forecasting the time series data of kinetic energy. A Bayesian model
was selected for this study because it forecasts the future by using a combination of
available information and a source of uncertainty in the form of a predictive distribution
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with improved accuracy. Later, the ARIMA model was used to compare the results of these
two models. The details of these two models are discussed below.

2.2.1. Bayesian Approach

Bayes theorem is widely used in the field of data analysis and is often used to analyze
the conditional probability of numerous events, such as forecasting hierarchically struc-
tured time series data [20], seasonal time series data [21,22], multi-step-ahead time series
prediction [23], general estimation and prediction [24], and statistical analysis [25,26]. A
Bayesian approach has been presented to forecast univariate time series data by implement-
ing a technique of sampling the future in [27]. A Bayesian time series forecasting model
with the change point and anomaly detection was proposed in [28], where the authors
implemented an iterative algorithm with a Kalman filter and smoothing in their analysis,
along with a Markov chain Monte Carlo (MCMC) method. Maarten et al. presented that
learning Bayesian networks could be used to analyze the time series data of clinical param-
eters and concluded that the model learning methods could find a good predictive model
with a reduced computational time and good interpretation [29]. In [23], the combination
of a Kalman filtering model and echoing neural networks was used to predict multi-step-
ahead time series data (i.e., a dynamic Bayesian network). Panagiotelis et al. presented
a Bayesian density method to forecast intraday electricity prices by using multi-variate
skewed t-distributions and a MCMC method [30]. Not only these but there are also the
diverse applications of the Bayes theorem.

Theoretically, in Bayes theorem, if X and Y are two events, then the probability of
event X with the occurrence of event Y can be calculated using Equation (6). This is the joint
probability of two events and does not suggest symmetrical characteristics. In Equation (6),
Bayes theorem is defined with the following terms: P(X|Y), posterior probability; P(X),
prior; P(Y'1X), likelihood; and P(Y), evidence. If the value of the prior, likelihood, and
evidence is known, the posterior probability can be calculated mathematically.

P(X)- P(Y|X)

P(XIY) = =5

, for P(Y) #0 (6)

For the specific case of kinetic energy, the relation for the joint distribution over
the random inputs is described by Equation (7). Here, P indicates the joint probability
distribution function for the conditional probability in the form of P(KE | pa(KE)), where
KE; (KE; € KE) denotes the variables to be analyzed (i.e., kinetic energy) with the influence
of their parent variables pa(KE;). The parent variables include the historical values of the
parameter (i.e., historical values of KE), which must be considered during the forecasting
of new values.

P(KEy, KEy, KE;, ..., KE,) = [T, P(KE; |pa(KE;)) @)

In the conventional manner of estimation via linear regression, Equation (8) is applied
with the normally distributed error (e~Normal(0, 2)); however, by using Bayes theorem,
the estimation can be made more accurate, since, in estimation, Bayesian theory minimizes
the posterior expected values of the loss function. In a single sentence, the Bayesian model
minimizes the posterior expected loss and maximizes the posterior expectation of a given
function. By adopting the Bayes theorem in the linear regression, Equation (9) presents
the revised posterior distribution, and Equation (10) gives the likelihood function. In the
equations, B is the coefficient and ¢ is the variance.

Y[ = BX, + € (8)

H(B, 2| Yy) o F(Y¢ 1B, 0-2) *P(B, 0_2) 5
—gx)T (Yi-B

F(Yi|B,0?) = (2n0?)~T/2 B o
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H= (VF; ...

As given by Equation (6), the probabilities of conditional events can be identified if the
values of the other three parameters are known. In this paper, the authors have calculated
the probability of a posterior event and applied it in the forecasting of kinetic energy
by using Stan’s limited-memory Broyden-Fletcher-Goldfarb-Shanno (LM-BFGS) [31]
algorithm as an optimization technique. The LM-BFGS algorithm is very popular in
parameter estimation applications and is a quasi-network method, which approximates the
BFGS algorithm by utilizing the potential less memory and computational time. The main
objective of LF-BFGS is to minimize the unhindered errors within functions. Also, the new
value (x;41) can be obtained using Stan’s LM-BFGS algorithm as given in Equation (11) [32],
where a; is the step length that should be satisfy the Wolfe conditions (i.e., sufficient
decrease and curvature conditions in line searching method), V f; is the gradient, and H; is

the updated Hessian approximation (n*n symmetric) at the iteration.

Xt1= Xt — 0 Hy V fy

(11)

In the LM-BFGS algorithm, the estimation of H; is quite sensitive, which determines
the accuracy and efficiency of the model. In comparison to a BFGS algorithm, the LM-BFGS
algorithm is capable of computing problems in large iterations with less cost and storage
by maintaining simple and compact approximations [32]. The workflow that was followed
for the LM-BFGS algorithm in this study is shown in Figure 2. In this approximation, the
vector pair in the set of (s;, y;) is replaced by the newest set of pairs (s, y;) at each new
iteration and is updated accordingly. For example, if the latest iteration is x;, then the set

of vector pair will be (s;, y;) at the t-th iteration (i =t — m, ..

., —1). The initial Hessian

approximation HY is considered and continuously identifies updates up to t-th iteration

until H; satisfies the relationship given in Equation (12).

./
Yt st

V;l;,”) H[O (Viem - Vic1)+0t-m (V,tl cee
-

where, py = ——, Vi =1 —pssTyt, 5t = X41 — X, and yr = Vi — V fi.

Consider an initial value
for xo, m, and H?, and
seta, =1landr=0

!

Iterate Equation 11

fori=t—m,..

a, satisfy
Wolfe
conditions

Update H, using
Equation 12

|

| t=t+1

1
|

vT

V,t,,,_;,z) SI—nt«LlS;r_,,,_H(V.‘—m+2 v Vic ) oot Pt—1 5!—157_1

E
l—m+1) Sl—mS;_m(Vl—nHl cee Vl—1)+f7t—m+l

(12)

Figure 2. Flow chart of the limited-memory Broyden-Fletcher-Goldfarb-Shanno (LM-BFGS) algorithm.
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Further, a MCMC method is used as a No-U-Turn sampler in this study. With an
auxiliary variable u and target distribution f(0), Equation (13) is used to find the sample
6, and Equation (14) is used to find the marginal distribution of joint distribution f (i, 6).
In these equations, 77(0) is a kernel of the target distribution and z is equal to [ 77(6)d6.
Using these equations,  can be sampled from the joint distribution and the auxiliary
variable can be neglected, which is simply referred to as slice sampling [33]. In this
sampling process, the alternative sampling of u and 6 is carried out, where 6 is fixed
initially and sampled for u such that the condition given in Equation (13) will be satisfied
(i.e., 0 <u < m(8) —p(ul6)~uniform(0, 7w(6)). After that, a horizontal slice region S is
formed from the sample 6 (S = (0: u < 7(0)) [34].

_ [ Lifo <u < n),
He 0= { 0 otherwise (13)
/f(u, 8)du = /On(g)%du - @ = £(0) (14)

After slice sampling, the No-U-Turn sampler initiates with the uniformity as given
in Equation (15); however, its efficiency is highly dependent on the probability of the
acceptance. The step size will be small for a high acceptance probability that requires many
leapfrog steps to generate the subset of candidate (6 | p) states [34].

p(ulf)~ uniform(O,e“"Sf(ﬂ)’% P'MTp) ) (15)

2.2.2. ARIMA Approach

An autoregressive integrated moving average (ARIMA) model is a statistical method
which is highly used in statistical analysis and the forecasting of time series data. This
method uses the concept of a linear combination of past events/values by identifying
the dependency of observation and residual errors (¢;). In an ARIMA model, the process
(Zr =Yt — Y;4) is modeled as Z; = jt + €;, where the residual errors can be described with
Equation (16) [25] and the forecasting of the time series predictors (Y}) can be performed
with the autoregressive method as given in Equation (17). In the equations, L is the lag
operator, 0i is the moving average parameters, p is the order of the lagged observation, d is
the degree of difference, and u; is the white noise defined by (1;~Normal (0, 72)). This study
uses these concepts and equations to forecast the short-term values of the kinetic energy
for validation. A platform called EXPLORATORY has previously been used to perform
short-term forecasting with an ARIMA model [35].

€=Pr€p1+... + (pp €—pt+ut — 91 Up—1 — e 9,, Ut—q (16)
where ¢(L) €; = 0(L) u; for polynomials with the lag operator (L4 Xy = Xs_y).
Yi=(01-L)"Xrand (1-Y 7 oiL)Y, =1+ Y 6iL))e; 17)

2.2.3. Optimization

A set of data can most often, but not always, be observed in terms of equally spaced
time intervals and can thus be termed as time series data. Unlike other models that account
for a temporally dependent structure in the data, the presented model treats the forecasting
problem as a curve-fitting exercise. Since these data are a function of time, while modeling,
it is assumed that the factors affecting these data are a function of time as well and are
not dealt with separately. As this model does not account for temporal dependencies and
the output of the model is strictly a function of time, one of the methods to optimize the
model is to experiment with the training datasets. This suggests the following question:
What training dataset size does the model require for the short-term forecasting of kinetic
energy with the least margin error? Hence, an optimization model was created to answer
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this question and is shown in Figure 3. At first, the available data (i.e., 525,604 samples)
were divided into training and test sets, where the test set contained the last 30 min of
data (arranged in minute intervals), and the rest of the data were considered to belong
to the training set. Then, with the help of the training dataset, the model predicts the
kinetic energy for the next 30 min. The forecasted output and the test dataset are then
used to compute the RMSE. The number of training sets was incremented by 15 and the
aforementioned process was repeated continuously. The RMSE computed at each step was
recorded and plotted against the number of training samples. In the end, the number of
the samples with the lowest resulting value for RMSE was considered to be optimal.

l Set the number of training data set =0 I

I Increase the number of training data set by 15 l‘—

[ Extract the defined number of training data set ]
!

I Train the model ]
'

I Compute and save the RMSE I
|

I a = number of training data l
|

| b = len (training data set) I

No

Figure 3. Flow chart of the optimization process.

2.3. Performance Evaluation and Validation

After developing a model, performance evaluation and validation are critical in
research and development activities. In this study, a Bayesian model is used to forecast the
time series data of kinetic energy within the INPS. The pre-processed data are firstly trained
with ideal regression coefficients and an in-sample forecast is produced. In this process, a
group of test samples is used for the validation of the results. The size of the test sample
was considered to be 30 (i.e., 30 min), since this study is focused on forecasting for a short-
term period. Similarly, the proportion of training and validation samples was considered
to be 70/30. Figure 4 presents the distributions of the training, testing, and validation
samples among the total samples. The forecasting technique used in this study was of an
in-sample type. After analyzing the performance of the model and the nature of the kinetic
energy, model validation was computed using popular measures like the mean absolute
percentage error (MAPE), mean absolute error (MAE), root-mean-square error (RMSE), and
mean absolute scaled error (MASE) as given in Equation (18). In Equation (18), y; and 7;
indicate the actual and forecasted values, ¢; is the error (i.e y; — ;) at the j-th iteration, and
the training set is considered for time f (t=1, 2, ... T). A platform called EXPLORATORY
is used for the performance evaluation and validation of the datasets [35]. EXPLORATORY
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uses R as the programming platform and provides the facility of data extraction, data
wrangling, data analysis, data visualization, and so on via machine learning algorithms.

MAPE = 1T, %55, MAE = 3T |y — 9, RMSE

1 5y e 18)
B )2 _ i o lejl (
=\/5 Lic1(vi ¥i)” and MASE = . ——

Test samples
l<——————Train samples __><Vsaaligaptlgg >|
Total samples

Figure 4. Method of performance evaluation and validation.

3. Results

The main objective of this research paper was to analyze the time series data of
kinetic energy and forecast short-term results that could be used for the estimation of
power system performance indicators to ensure the secure operation of that system. To
achieve this objective, the authors selected the case of the INPS, which interconnects the
transmission systems of Norway, Sweden, and eastern Denmark. The respective TSOs
have time series data of kinetic energy since 2015, which presents a great opportunity for
performance estimation. Hence, the authors took the time series data (one sample per
minute) of kinetic energy within the INPS for the whole year of 2019 and utilized the data
for further investigation. The characteristics of the data can be visualized as per the box
plots given in Figure 5. As shown in Figure 5a, the kinetic energy of the case study was
found to be dependent on the weather, where it was comparatively high in winter and
low in summer. Figure 5b,c present the weekly and daily characteristics of the kinetic
energy, from which it may be observed that the amount of kinetic energy is above average
during working hours and below average during non-working hours and holiday periods.
Figure 6a,b gives the actual trend of the kinetic energy for the daily and annual period of
2019. A trend with the recorded maximum and minimum values of the kinetic energy can
be observed. Overall, for the specific case study of the INPS, the nature of kinetic energy
was found to be dependent on the working period and the weather.

Figure 7 is focused on the characteristics of the forecasted data, along with the training
and testing samples of kinetic energy. In this study, the kinetic energy was forecasted
for 30 min. Figure 7a presents the nature of the training, testing, and the forecasted data
obtained using the Bayesian model, whereas Figure 7c present the present trend of the
kinetic energy and the changing patterns for the datasets. No changing trend points were
identified that contributed to the trend variation of the kinetic energy when the Bayesian
model is implemented. On the other hand, Figure 7b presents the nature of the training,
testing, and the forecasted data for the ARIMA model, and Figure 7d presents the trend
for the samples. The changing trend point was observed when the ARIMA model was
implemented to forecast the data of kinetic energy within the INPS. Figure 8 shows a
zoomed window for the last five hours that presents a clear comparison of the results for
the proposed Bayesian model and the ARIMA model. After the short-term forecasting of
the collected datasets, the results were used to validate accuracy and for future analysis.
The values of RMSE, MAE, MAPE and MASE for the presented Bayesian model were
calculated to be 4.67, 3.865, 0.048 and 8.15, which could be further improved by increasing
the MCMC sampling. Figure 9 presents the performance metrics of the Bayesian model
with different MCMC sampling values, and it is clearly shown that the optimum value is
achieved with 200 MCMC samples. At this instant, the values of RMSE, MAE, MAPE, and
MASE were identified to be 3.28, 2.67, 0.034, and 5.62. On the other hand, the values of the
performance metrics for the ARIMA model were calculated to be 6.15, 4.680, 0.069, and
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12.34. From the comparison of both models, the presented Bayesian model was found to be
more accurate than the ARIMA model.
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Figure 6. Seasonal trend kinetic energy: (a) daily and (b) annual.
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Figure 7. Results showing the nature of training, testing, and forecasted values by using (a) the Bayesian model and
(b) ARIMA model. Similarly, (c,d) the trend and changing trend patterns for the Bayesian and ARIMA models are shown.
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Figure 8. Zoomed window for the last five hours (a) for the Bayesian and (b) ARIMA models.

Similarly, Figure 10 presents the RMSE for a different number of training sets at which
forecasting was computed for the next 30 min. The minimum RMSE (i.e., 1.54504) was
obtained when 10,830 min of training samples was used. From this result, it is clear that
a training data set of 10,830 min (or 180.5 h) is optimal to forecast the kinetic energy (for
the specific case of INPS) for a short-term result (i.e., 30 min) with a value of 1.54504 for
the RMSE.
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4. Discussion and Conclusions

With the rapid development of new RESs, most countries are promoting these sources
and interconnecting them into their power systems, since conventional power production
necessitates the production greenhouse emissions and thus is not sustainable. At the current
stage, most power systems are adopting such changes not only in the generation, but
also regarding the transformation that occurs in transmission, distribution, and utilization
because of the flexibility of EPC-based technologies. Because of this transformation, modern
power systems are facing numerous issues. The major issues include maintaining proper
frequency quality and an insufficient system rotational inertia within the power system
to ensure operational security. In a conventional power system, the large proportion of
synchronous generators acts as the source of inertia, which helps the overall system to
maintain system frequency by providing inertial support during contingencies; however,
unpredictable power sources with low inertia and flexible demand increase vulnerability
to system instability in modern power systems since frequent power unbalance can create
frequency deviations and this lead to system instability.

There are several power generators within a power system which must be synchro-
nized and operated with the same frequency. During a power deviation event, if the
deviation is comparatively high, then each individual machine tends to fluctuate around
the centre of inertia (COI) and operate with a dissimilar frequency to other machines, which
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may result in system oscillation; however, the frequency of an individual machine close
to the COI and some forms of inertial and damping forces attempt to maintain the syn-
chronicity by pulling their frequencies toward the COL. If these forces become insufficient
to recover synchronicity, a control mechanism must be applied to recover them, otherwise,
the whole power system may undergo an unstable situation and system blackouts may
even occur. The stability of a power system is directly dependent on the rate of change
of frequency (RoCoF) and the nadir frequency, which are closely associated with system
inertia. With an increasing frequency deviation and nadir frequency, an additional control
mechanism must be introduced at the right time such that the system operates securely.
Also, low system inertia decreases the critical fault clearing time (CCT), which means the
minimum time to restore the system to an original stage is drastically decreasing in modern
power systems. Hence, the estimation of system inertia, frequency, and/or nadir frequency
is especially important for modern power systems.

Several research works have been conducted to estimate performance indicators such
that power systems can be operated securely; however, most of them are focused on
the measurement and estimation of frequency and nadir frequency. Some researchers
have tried to estimate system inertia by taking the parameters from a power system
during contingencies; however, one of the most complicated parts of estimation is that
an inertial response cannot be distinguished by controlling units, and it is quite difficult
to analyze dynamic performance in normal conditions. Forecasting system parameters
such as frequency, nadir frequency, power generation, power consumption, and system
inertia can be a good option, but this requires additional computational work with complex
models and high response times for computation. A practical method that uses available
resources is necessary to provide accurate and fast results to estimate system indicators.

This paper presents a practical method to estimate the dynamic characteristics of a
power system by forecasting univariate time series data of kinetic energy. A Bayesian
model is used to forecast the time series data of the kinetic energy, and a decomposable
approach is used to analyze the characteristics of the dataset. From this study, it is found
that the kinetic energy can be forecasted and analyzed using the Bayesian model with an
acceptable accuracy limit and can be utilized in the estimation of the system inertia and
the dynamic characteristics of a power system. Furthermore, the accuracy of the model
can be improved by increasing the number of MCMC samples. In the considered case
study, the optimized number of MCMC samples was found to be 200. A comparison of the
results shows that the presented model is more accurate than an ARIMA model. For the
specific data type in this study, a historic data quantity of 180.5 h was sufficient to forecast
short-term results (i.e., 30 min) with a value of 1.54504 for the RMSE.
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ARTICLE INFO ABSTRACT
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Advancements in various scientific fields have encouraged the development of novel tools, techniques, compo-
nents, methodologies, and innovations aimed at addressing the challenges encountered in modern power systems
dominated by inverter-based resources (IBRs). This paper focuses on a concept that leverages historical time-
series data ol d from tr system (TSOs) to enhance the secure management and oper-
ation of power systems. By employing a data-driven model, the day-ahead values of power generation and load
consumption are estimated and integrated with a dynamic model of the power system for further analysis. To
optimize energy generation and ensure grid stability, an energy-mix operation and reserve scheduling model is
utilized. This model optimally combines different power-generating technologies, including synchronous gen-
erators (SGs), grid-following converters (GFLs), and grid-forming converters (GFMs), to meet the energy de-
mands of the day while enhancing the overall system strength. The findings are supported by quantitative
analysis utilizing variables such as frequency, power production, terminal voltages, and system non-synchronous
penetration (SNSP). Simulation results d ate that impl ing the proposed concept enables the power
system under consideration to operate securely, even in the face of a 38% increase in immediate load, with a
maximum SNSP ratio of 59%. These findings highlight the effectiveness of the proposed approach in addressing
the reliability, system dynamics, stability, control efficiency, and security challenges posed by IBR-dominated
power systems. Furthermore, it is believed that this research contributes to the ongoing efforts in decarbon-

ization, renewable energy integration, and combating global warming by facilitating the secure and optimized

operation of

energy-d

d power sy

1. Introduction

As people’s knowledge of environmental issues and concerns about
sustainability, renewable energy sources (RESs) have witnessed a rise in
popularity in recent years. Due to environmental concerns and techno-
logical advancement, most countries are incorporating RESs into their
grid and planning to make them 100% renewable [1]. The 26th United
Nations Climate Change Conference (COP26) was kicked off on 1st
November 2021 and mentioned different actions that should be con-
ducted as soon as possible [2]. The major objectives of that conference
were: (a) secure global net-zero emissions by mid-century, (b) keep
1.5 °C of global warming compared with pre-industrial levels within
reach, (c¢) commit to mobilizing USD 100 billion per year by 2025 to help
developing countries deal with the adverse effects of climate change,

* Corresponding author.
** Corresponding author.

and (d) finalize the set of rules guiding the implementation of the Paris
Agreement [2]. These objectives show the interest in renewable energy
and RES-based power systems in the current era.

However, there are a lot of issues that should be discussed while
talking about the RES-based power system. Reliability, system dy-
namics, stability, control efficiency, security, and other associated con-
cerns [3], are among the most significant technical challenges faced by
the RES industry. Studies [4,5], discussed that the increased usage of
power electronic converter (PEC)-based RES complicates the power
grid, and may affect the overall performance. The high penetration of
PEC-based energy resources, such as wind turbines and solar PV, reduces
the system’s inertia. As a result of the low inertia of PEC-based tech-
nologies, the crucial fault clearance time is drastically shortened [6,7].
These complexities can also contribute to the instability of the power
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system [2]. Also, these RESs are of a stochastic nature, which may
introduce complexities in the demand/supply chain within a power
system. Introducing an efficient and sufficient reserve to the power
system can be a good option to address the challenges of short-term
demand/ supply unbalance because of the stochastic nature of RESs
8,9].

Research has been carried out in a variety of dimensions to address
the issues of modern power systems caused by the growing penetration
of RESs. Technological developments in components such as inverters,
converters, controllers, and so on are the essential sectors that can
contribute to the secure operation of the power system. In a similar vein,
the operating principle and management features of revolving power
systems can play major roles in addressing the issues. Researchers are
developing a wide variety of ideas and strategies to address the issues
that have been identified as being caused by the rapidly shifting topol-
ogies of grids and the incorporation of new technology. For example,
research papers [9-12] looked at the management of power system se-
curity by using economic measurements and the look-ahead dispatch
approach. A detailed recovery plan is considered in these papers that
guarantees the security of the power system with a possible minimum
cost. On the other hand, a method of dynamic rescheduling has been
proposed by Zhao et al. [13] for the large roll-out of connected power
infrastructure for plug-in electric vehicles operating in extreme condi-
tions. During the rescheduling process, the authors examined the sto-
chastic nature of wind energy and used a real-value and binary particle
swarm optimization technique to design the outputs of the project.
Ardakani et al. [14], presented a linear chance-constrained optimiza-
tion-based approach that dispatches and reserves the energy/ power for
a day-ahead electricity market so that the RES integrated grid achieves
reliable and secure operating points against the contingencies. Differ-
ently, Tang et al. [15], presented a stochastic unit commitment model
that explores the ability of battery energy storage systems (BESS) to
provide grid services by combining energy and reserve markets. It is
shown that this model solves the uncertainty of RESs and demand by
analyzing BESSs and generators’ reserves. Similarly, Zuo et al. [16],
studied the performance of a low-inertial power system with grid-
following (GFL) and grid-forming (GFM) power converters and a
BESS. The authors of this study provided a model with a day-ahead
scheduling layer to analyze daily system frequency containment using
a day-long time-domain simulation.

While much of the existing literature has explored various dimensions
of RES-integrated power systems, there’s still a marked lack of focus on
optimizing the day-ahead energy portfolio in grids largely dependent on
converters, especially those that take advantage of real-time data from
transmission system operators (TSOs). Previous studies often simplify the
complexities of the grid, overlooking the subtleties of time-series data or
failing to examine the coordinated interaction among diverse power-
generating technologies in day-ahead planning. Additionally, there has
been insufficient emphasis on the nuanced balance between cost fac-
tors—from energy production to system integrity—and grid stability. This
paper seeks to address these gaps by harnessing detailed time-series data
from the TSOs of the Nordic grid. It is aimed at a more dynamic, cost-
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effective, and reliable energy configuration that can serve as a practical
guide for TSOs. It promotes the optimized use of renewables, contributing
to climate mitigation through emission reduction. Concurrently, it is
assumed to strengthen grid resilience, offering more dependable solutions
for managing the fluctuating nature of renewable energy, a key consid-
eration for climate adaptation. By spotlighting a grid with a high share of
RES, this research sets the stage for designing power systems that are
sustainable, resilient, and economically sound in a world increasingly
faced with climate-induced challenges.

This paper deals with the estimation of the optimal day-ahead en-
ergy-mix proportion that would ensure the secure functioning of a
power system dominated by converters. To accomplish this goal, this
paper uses the time-series data that is accessible on a time-series basis
from the TSOs of the Nordic countries. The time-series data is used to
estimate the day-ahead values using a data-driven model, which is then
utilized to determine the optimal scheduling of the power producers
using a model of energy generation and reserve scheduling. Required
constraints are taken into consideration during the process of deter-
mining the optimal mix of energy from different power-generating
technologies (i.e., synchronous generator (SG), GFL, and GFM). The
cost of the energy generated from different generators, including
charging and discharging of the BESS, generator start-up and shut-down
cost, energy reserve cost, and service cost toward system strength are the
terms of the objective function. This is done in order to ensure that the
secure operation of the power system can be guaranteed in accordance
with the regulations of the Nordic TSOs. Throughout the contents, the
major contributions of this paper are as follows:

(a) Propose a concept that takes the historical time-series data from
the TSOs, estimates a day-long operation stage, and evaluates
how securely the power system is operating on a daily basis. This
study estimates the best energy-mix proportions for every 24 h
utilizing time-series data of generation and consumption of the
Nordic grid with a resolution of three minutes.

(b) Data-driven model has been used to forecast the day-ahead values
of the parameters that should be required to identify the optimal
energy-mix proportion. A long short-term memory (LSTM)
network as the forecasting model has been used to achieve state-
of-the-art results.

(c) In order to ensure the secure functioning of the system, a model
for energy-mix operation and reserve scheduling is utilized. The
terms of the objective function include the costs related to gen-
eration, operation, maintenance, and system strength.

The presented paper is organized with the following structure. It
begins by providing a historical context and an overview of the issues
that have surfaced as a result of the widespread adoption of PEC-based
technologies in the power grid. The challenges faced by today's power
systems, which are reliant on huge amounts of PEC technology, are
briefly highlighted. The approaches and presumptions that are used are
laid out in Section 2. The datasets and systems that are taken into
consideration are also described in detail. In Section 3, the data-driven
model has been described that is used for forecasting purposes. In Sec
tion 4, the results of the investigation are presented and then thoroughly
examined. Finally, the conclusions have been discussed in Section 5.

2. Methodology and assumptions

This section’s primary focus is on describing the approaches that are
ultimately chosen, as well as the assumptions that are made. Fig. 1
provides a summary of the approaches that are taken into consideration.
The approach contains a power system model 1, a data-driven fore-
casting model 2, and the optimal energy-mix generation and reserve
schedule model 3. First, it comes with a model of the power system 1, all
of the components of which have been detailed according to the grid
standard. The real-world power system provided the source for the
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Fig. 2. (a) Overview of the considered system, and (b) Single line diagram of
IEEE 9 bus system.

Table 1

Rating of the generators and the loads in the considered power system.
Parameters Values
Generator 1 163 MW (1.025 pu) at 18 kV
Generator 2 72.19 MW (1.04 pu) at 16.5 kV
Generator 3 85 MW (1.025 pu) at 13.8 kv
Load 1 100 MW/ 35 MVAR
Load 2 125 MW/ 50 MVAR
Load 3 90 MW/ 30 MVAR

independent and variable time series data, which included parameters
like power production and consumption. To begin, the time series data
has been utilized to make an estimate of the values for the day ahead.
The forecasting of the time series data for a day is done with the help of a
data-driven forecasting model 2. The optimal scheduling of the power-
generating technologies has been determined with an energy genera-
tion and reserve schedule model 3 after taking into account the con-
straints imposed by the power system as well as the time series data that
is anticipated for the generation and consumption of power. The
response of power-generating technologies such as SG, GFL, and GFM
have been analyzed during optimal scheduling. An evaluation of the
techno-economic impact is carried out while the appropriate distribu-
tion of the components is determined. It is also believed that the reserve
schedule ensures the secure operation of the power system. All of these
investigations have been conducted with MATLAB software, which
contains both the simulation tools as well as the ANN features. The
following sub-sections will provide a more in-depth discussion of each
component and technique, including all of their particulars.
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2.1. Power system components

As discussed in the previous section with Fig. 1, a standard power
system model 1 is used to explore day-ahead scheduling with optimal
energy-mix for the secure operation of a converter-dominated power
system. This is conducted in order to find the best possible solution. The
considered system’s overview is depicted in Fig. 2(a). The IEEE 9 bus
power system as shown in Fig. 2(b) is taken into consideration as the
primary network. The rating of the generators and the load centers in the
considered IEEE 9 bus power system are given in Table 1. It is also
considered that the primary network operates at 230 kV and 50 Hz. Book
by P.M. Anderson et al. [17] contains all of the information that is
necessary to understand the power system model in further depth.
During the course of the investigation, the authors made several as-
sumptions, which can be shown in Fig. 2(a). It is assumed that the first
generator is a SG, the second one is a BESS with a GFL, and the third
generator contains a wind turbine with a GFM. In this particular
investigation, both the dynamic properties of the generations and the
load consumption are taken into consideration. The entirety of the
system is created using MATLAB Simulink and the time domain is the
simulation framework.

The model of the SG used in this study can be defined with Equations
(1) and (2). Here in Equations (1) and (2), &; is the rotor angle in rad, a;
is the shaft speed and @, is the nominal speed in pu, H; is the inertia
constant in MJ/MVA, P,,; is the mechanical power, and D; is the
damping torque coefficient of i generator. The () sign indicates the
derivative with respect to time. Similarly, r, is the armature resistance,
vqi and v,4; represent the q-axis and d-axis components of the voltage,
and i;; and i, represent the q- and d-axis components of stator current
[18].

b = wy(w; — 1) 1

2H w0 = — Diwo(@; — 1)+ Pni — (Vgiigi + Vaiiai + raiai® + raig?) — (2)

Similarly, the grid-forming virtual emulator given in [19], is used as
the GFM. A power electronic equipment called a GFM can vary the
amplitude (i.e. magnitude and angle) of voltage and frequency at the
Point of Common Coupling (PCC) [20,21]. GFM's major duty is to adjust
the output voltage and/or current to keep the system frequency and
voltage steady. A GFM can be considered as the slack-bus unit in an
isolated energy system since it can inject instantaneous active and
reactive power for frequency and voltage management [20,22]. It can be
mathematically presented as (3) and (4) [19]. Here, ; and 6; are the
frequency and angle of voltage, and P, is the active power generated by
the " generator. Similarly, m; and d ; are the positive values, known as
virtual inertia constant and virtual damping constant.

0 =, 3)

;= — 17, w; — P; “)

On the other side, GFLs operate as regulated current sources and use
a phase-locked loop (PLL) to track the grid phase angle to keep the
converters synced with the power grid [23]. In order to regulate the flow
of current, one uses the observed phase angle. It regulates the active and
reactive currents injected into the electrical grid to accomplish the
desired power injection [24]. In the event of a power outage, the grid-
following converter simply maintains the output current at the same
level as before. However, it is unable to regulate the grid's frequency and
voltage directly and must rely on either an additional voltage source or
the grid itself [25]. The mathematical representation of the GFL can be
presented as (5) and (6) [19].

b= (5)

=
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Here, 7 is the filter time constant, and Kp; and K;; are proportional
and integral gain constants of the component. Here in these Equations,
the sign () indicates the estimated one.

2.2. Datasets

This analysis made use of real data for hydropower production, wind
power production, and load consumption. The data are collected for the
Nordic grid, and then they are scaled down in order to make them
compatible with the IEEE 9 bus standard. Firstly, the data related to
power generation and load consumption for the Nordic grid have been
taken from the FINGRID TSO [26]. The data on hydropower production
is taken from Finland and assumed that it is valid for all Nordic countries
since the seasonal streamflow for different rivers from these countries
seems to be in similar trends [27,28]. The data is collected throughout
the year 2021, and their resolution is three minutes. After observing the
raw datasets, it is identified that some of the datasets are not a number
(NaN) type, and some seem to be coming from the wrong column. These
observations provide a preliminary idea about the outliers within the
collected datasets. For detailed investigation, the distribution of datasets
is analyzed with the help of normal distribution (i.e., histogram). From
the histogram, it is identified that the normal distribution of hydropower
lies from minimum zero to a maximum of 3,688.96 MW. Similarly, the
minimum and maximum values for wind power may vary from zero to
2,915.54 MW, and those values for load consumption may vary from
4,245.98 to 15,006.4 MW. The datasets that are outside of these limits
are considered to be outliers. During the analysis, it is identified that, out
of 174,988 samples, 763 outliers have been identified in the hydropower
dataset, one in wind power, and 768 in the load consumption datasets.

The identified outliers are then replaced with the mean values of the
specific column (i.e., 944.27 for wind power, 1,609.8 for hydropower,
and 9,668.44 for load consumption). It is believed that the new dataset
reflects all of the qualities of the parameters, despite the fact that the
data quality has been enhanced.

The seasonal pattern of the power generators from hydropower and
wind power, as well as the load consumption, are evaluated for the
purpose of providing a more in-depth understanding of the raw datasets.
The box plots that display the monthly, weekly, and daily trend of the
power-related parameters are shown in Fig. 3(a-i). It is clear from
looking at Fig. 3(a-i) that the power production from wind and hydro-
power and the load consumption are subject to large amounts of vari-
ation. The wind profile is subject to random variation, and the load
consumption is contingent on the nature of the consumer, which also
exhibits a random nature. Hence, wind power generation and load
consumption cannot be controlled, and it is independent. The trend of
hydropower output, on the other hand, can be controlled to balance the
supply-demand chain, and is considered to be dependent.

After the data have been preprocessed to get rid of any outliers, the
data are next scaled down to comply with the requirements of the IEEE
9-bus standard. Normalization technique, as given in Equation (7) [29],
is used to scale down the datasets so that the data can be achieved in the
required form.

_ Xi-minX)
4= max(X) — min(X) 0 @)

Here in Equation (7), X; is the i" value, max(X) is the maximum value
and min(X) is the minimum value within the specific datasets. When
performing the work of scaling down the data, the power rating of the
power-generating technologies and the load consumption, as shown in
Table 1, are used as maximum values Q that are needed for normaliza-
tion. Also, the ratings of the power generators vary from zero to their



Shrestha: Estimation of the energy-mix proportion for the secure operation of converter dominated

power system

A. Shrestha et al.

International Journal of Electrical Power and Energy Systems 155 (2024) 109560

(a) 21 (b)

g
3

Hydropower [MW]
3
3

8
Wind power [MW]

o 8 8 8 8

240 (i
C
gzzo
200
180
3
2
§ 160
B 10
3
120

0 5 10 15
Time «10*

0 5 10 15

Time «10* Time «10*

Fig. 4. Down-scaled profile of (a) hydropower, (b) wind power, and (c) load consumption (samples per unit of time).

Power System model

i) Increase the percential changes in the load
disturb PEC —based g

!

Measuring real-time frequency

RoCoF is in
limit?

Power System is in
normal operation

Countingency occured

Nadir
frequendy is in
limit or/ and
saturated in
10s 2

No

System is unstable. Measure the
threshold values and parameters

Fig. 5. Processes to determine the threshold values and secure function con-
ditions for the considered power system model.

maximum values (as recorded in the datasets); max(X) is considered to
be the maximum recorded value, whereas the min(X) is considered to be
zero. Fig. 4 presents the characteristics of the scaled datasets, which are
employed in this inquiry alongside the forecasting model 2 that provides
the values for the parameters one day in advance (especially wind power
and load consumption). A detailed description of the forecasting model
2 used in this study is presented in Section 3.

It is possible to consider the discharge of the water as a constant
value for the entire day when analyzing the day-ahead estimation
because hydropower production is entirely dependent on the flow of the
water, and the flow of the water does not change significantly over short
periods of time (assuming there are no significant changes in the
weather, including rain). However, it is necessary to make frequent
forecasts; monthly forecasting can be used for hydropower production.
Whereas the nature of wind and the load consumption is stochastic;
possibly perfect prediction is required while analyzing it. Hence, this
paper highlighted the importance and mainly focused on the day-ahead
forecasting of the two parameters: wind power production and load
demand.

2.3. Energy-mix operation and reserve scheduling model for secure
operation

As described in the introduction section, the main objective of this
paper is to identify the optimal energy-mix proportion for the day-ahead
operation of a RES-based power grid in a secure way. To identify the
optimal proportion of the energy-generating technologies, the authors
considered the cost as the objective function, which can be described by
Equation (8). In this paper, four terms have been considered as the
objective functions: (a) cost of the energy generated through different
generators including charging and discharging of the BESS, (b) service
charge provided by different power generators to maximize the power
system strength, (c) generator start-up and shut-down cost, and (d) en-
ergy reserve cost.

2

minz =7 ] ®)
- +3(carnly - capii)
ece

; Up.,, Up Down _, Down reservereserve
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Here in Equation, G}, Cg‘,’ , Ci2™, and C™ are the cost parameters
of the energy, generator start-up, generator shutdown, and reserve,
respectively. Similarly, C% and CEi™ are the cost parameters, whereas

pPs and pi™® are the energy supplied/ consumed while discharging and

charging the BESS. pg, and p7* are generated energy by the generators
at t time and the reserved energy. On the other hand, ug‘,’ and uf_‘,""" are
the unit variables that define the startup and shutdown of the generating
units. Similarly, the G, is the cost parameters of the energy from
different power producers, which are different for different power
generators as per their resources and characteristics. For example, the
cost of energy/ power generated through RESs is comparatively higher
than that from non-renewable energy, since the community has allo-
cated some incentive toward the RESs [30]. When we are talking about
RESs, the SG comes as the first choice, since it is flexible to start and shut
down, and also it can provide reliable supply and security toward the
power system operation. On the other hand, introducing GFM/ virtual
inertia is one of the best solutions that can support improving the system
strength as well as power system stability. Similarly, BESS can be
considered as a form of service provider for additional frequency service
[31]. Hence, different energy/ power producer has different character-
istics and their own role in the power system’s quality, hence, it is most
important to analyze the service cost for different generators carefully,
while analyzing the cost functions. Equation (9) gives the distribution of
the cost parameters for the generated energy, where Cf, is the actual cost
parameter for the generated energy from different generators, and Cy' is
a cost parameter for the service provided by different generators to
improve the system strength.

Cu=Ci+¢ ©®

The idea of system strength is highly complicated and is still in the
process of development; it is connected to the benefits of security,
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Table 2

Hyperparameters ranges/ types for tuning.
Parameters Value/ types
Number of hidden layers Z[1,5]
Number of units in hidden layer Z[10, 200]
Activation function [tanh, relu, sigmoid]
Learning rate 1#[0.00001, 1]
Dropout value r[0.1, 0.7]
L2 Regularization Rlle-10, 1e-2]

efficiency, and resiliency that the power system offers to consumers,
participants, and investors [32]. In a simple sentence, the displacement
of a SG within a power system decreases the system strength, but the
increasing penetration should have a higher system strength level to
operate the power system in a secure way. Even if the idea of system
strength is not popular in the Nordic grid at the present time, this study
makes an attempt to incorporate the cost associated with system
strength into the calculation of the cost parameters. The idea of system
strength is fairly common in Australia, and the Australian Energy Market
Operator (AEMO) is responsible for determining the limit of system
strength needs for the whole Australian electricity grid every five years
[33]. After that, the local transmission network service providers (TNSP)

Min objective vs.

are accountable for making and acquiring services to solve the system
strength deficit in accordance with AEMO’s directives. If the connection
of generators that need system strength is the source of part of these
costs being spent, then the generation in question should also share some
of the costs associated with these services, as represented in the system
strength mitigation requirement [34]. Hence, the cost related to system
strength (i.e., C;’) is also included in this study, which can be calculated
by using Equation (10).

x LF® x p3(MVA) (10)

-6 ()

price

Here in Equation (10), Cy;;., is the system strength unit price, and the
LF* is the system strength location factor; both factors are fixed by the
authority every five years (especially for the Australian grid). Similarly,
pg is the specified amount of system strength service, which is fixed at
the stage of integration with the national grid. The cost parameters used
in this paper are taken from regulations established by authorities from
Australia, and the USA [35-37].

In order to optimize the cost function for the task at hand, certain
constraints are taken into consideration. Equation (11) gives the rela-
tionship between the variables that are relevant to the in-operation,
startup, and shutdown, while Equation (12) places constraints on the
variables that are associated with the startup and the shutdown [16]. It
is most important to be under a suitable range for the startup and
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Table 3
Hyperparameters for the presented LSTM model.
Parameters Value/ types
Optimizer Adam
Loss MSE
Maximum Epoch 100
Mini batch size 32
Dropout value 0.5
Number of hidden layers 2
1st hidden layer 197 hidden units, tanh activation function, uniform
initializer
2nd hidden layer 197 hidden units, sigmoid activation function, uniform
initializer
Initial learning rate 0.001
Learn rate schedule piecewise
L2 Regularization 0.00518

Glorot, with LR 1 and L2 factor 1
Orthogonal, with LR 1 and L2 factor 1

Input weight initializer
Recurrent weight
initializer

Bias Initializer Unit-forget-gate, with LR 1 and L2 factor 0
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Fig. 8. Loss function with epochs/ iterations.

shutdown of the generators; the generators should follow the grid
standards.

Wy = U _ l[ﬁ;,,.-u an

(23 g1 84
ule - pdom < (12)
In a similar manner, Equation (13) [16], describes the link between
the amount of energy generated by the generator and the maximum and
minimum ramp rates at which the generators may operate, where RPg’;
and RPY}™ are the upper and lower bounds of the ramp rates, and Pg, is
the power generated for the individual power-generating technologies at
t. Ramp rate, also known as the maximum technical capability of a

generating plant, is essentially the rating of power that can be changed
each minute, and every country defines its values to manage its power
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systems. As an illustration, the Nordic TSOs' maximum ramping speed
for flow changes is 30 MW/minute, while their maximum ramp
changing rates for trading plans from one hour to the next are 600 MW.

USRPO™™ < pg, =Py, SUGRPY a3

Similarly, the constraint of the bound for the energy that should be
reserved to give a sufficient supply is given in Equation (14) [16], where
P, P, and PEy™ are the minimum, maximum and available reserve
bounds. The constraint for the phase angle stability is given in (15),
where ¢ and 63" are the minimum and maximum limits of the phase
angle, and (0; —0s) indicates the differences in the phase angles.

gl RS el 3l (14)

07" < 6, — 6, < 6™ (15)

Finally, the conditions for active power generation by all of the
generators are given in Equation (16) [16]. In addition to this, it is
considered that the BESS has not been discharged when the state of
charge (SoC) becomes 30% or below, and no charging after the SoC
becomes 99%.

WP < pyy < U (16)

i =

One of the important factors used in this paper is system strength or
system service cost, for which the system non-synchronous penetration
(SNSP) ratio is considered as the metric. SNSP is the ratio of the real-time
power generated through the non-SG and net HVDC interconnector
import to total demand and HVDC interconnector export. It is mathe-
matically expressed by Equation (17), and it provides a single constraint
that encapsulates the issues of transient, voltage and frequency stabil-
ities, and the consequences of transmission faults. Despite being an es-
timate, the measure has a reasonable real-time indication and can be
used for operational as well as planning purposes [38].

_ Non — Synchronous Generation + Net Interconnector Imports

SNSP (%) =

Demand + Net Interconnector Exports
x 100
a7)

However, the next objective of this paper is to identify the secure
operating level of the power system; the authors simulated the power
system model with a variety of plausible contingencies by increasing
disturbances in load and PEC-based generation. In the worst credible
scenario, generation dispatch is changed until the power system model is
satisfied. From this condition, the SNSP ratio value is derived, indicating
the power system’s maximum SNSP ratio limit. Both the maximum
threshold and secure functioning SNSP ratios are stated in percentage.
Maximum threshold SNSP ratio and secure operational SNSP ratio are
related by whichever credible contingency event has the largest influ-
ence on the rate of change of frequency (RoCoF) and frequency control.
The detailed processes of getting these limits are given in Fig. 5.

3. Data-driven forecasting model

Data-driven model has been shown to be effective and is achieving a
high level of accuracy in a variety of application fields, including med-
icine [39,40], agriculture [41,42], weather [43], power/energy systems
[44-49], space [50,51], finance [52,53], and so on. Many ideas have
gained widespread recognition, including feedforward networks,
recurrent neural networks (RNNs), convolution neural networks
(CNNs), and many others. Research articles [45-47,50,54-57] give a
comparative review of artificial neural networks (ANNs) applicable to a
variety of domains. Each one of them comes with a unique set of benefits
and downsides. In this study, the authors adopted the Long Short-Term
Memory (LSTM) network because of the following reasons: (a) handling
long-term dependencies, (b) dealing with non-linear patterns, and (c)
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Fig. 9. Normalized regression of LSTM model for (a) load training data, (b) load testing data, (c) load all data, (d) wind training data, (e) wind testing data, and (f)

wind all data.

robust to noise [ 58,59]. Because of the discussed characteristics, LSTMs
are well-suited for time series forecasting, and they have been effectively
employed in a wide variety of real-world problems including time series
forecasting. As discussed in the introduction and methodology sections,
the main objective of this paper is to estimate the day-ahead energy-mix
proportions within a power system so that the power system can operate
in a secure way. To obtain this objective, the power generations and load
consumptions must be forecasted for the next 24 h, for which LSTMs
could be a good option since it has all of the features that need to handle
considered datasets and patterns of the outputs that are needed for
further investigation.

LSTM is an expanded version of the RNN, which addresses the
fundamental problem of having difficulties in learning long-term de-
pendencies. In contrast to RNN, LSTM is equipped with a feature known
as extended memory, which gives it the capacity to remember infor-
mation for a longer time. The most significant improvement that has
been made to the LSTM model is the inclusion of four gates, which are as
follows: (a) input, (b) forget, (c) update, and (d) output. The forget gate
determines whether the memory cell will be updated and controls how
much information the current memory cell will receive from a potential
new memory cell (19). On the other hand, the update gate determines
whether the memory cell will be updated and determines how much
information the current memory cell will receive from a memory cell
from the previous step (20). Finally, the output gate is responsible for
determining the values of the following hidden layer (21). [60]

L =o(W;[a" ", X"] +b) (18)
Iy =o(W[a"",X"] +b) (19)
Tu = tanh(W, [a" " X" ] +b,) (20)

Lo =a(Wo[a" ", X" ] +by) (21)

Here in these Equations, W and b are the weight matrices and bias
vectors of the recurrent network, a and X are the states of the neurons,
and o is the activation function. Using these four gates, the current state
of the time-series model can be determined by using Equation (22), and
the output can be calculated by using Equation (23). [60]

hy = tanh(Wy by + W) (22)

yi = Wihy (23)

Going through detail, h, € (—141)" is the current state, h, ; is the
previous state, y; € R! is the output, x; € R' is the input, Wj;, € R"* is the
weight of the recurrent neuron, Wy, is the weight of the input neuron,
Wiy is the weight of the output neuron, b € R" is the bias vector pa-
rameters that need to be learned while model training. Fig. 6 presents
the basic overview of the architecture of the LSTM model for the case of
this study, where the main target is to forecast the day-ahead values of
two variables; wind power and load consumption.

When performing analysis with a neural network, it is essential to
have suitable values for several hyperparameters. The models’ potential
for performance-impacting learning behavior can be somewhat regu-
lated by the hyperparameters, which play a role in this process. One of
the most challenging aspects of utilizing data-driven models is deter-
mining which hyperparameters are appropriate to use. The selection of
these hyperparameters can be difficult, and tuning them can take a
significant amount of effort. As a consequence of this, the authors
decided to utilize Bayesian optimization in order to locate the optimal
values for the network hyperparameters. This methodology makes use of
objective function evaluations in order to educate a Gaussian process
model on the objective function that it keeps internally. For this opti-
mization, the authors used the deep learning application provided by
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Fig. 10. Outputs (zoomed) for (a) load consumption with LSTM model, (b) load consumption with MLP model, (¢) wind power with LSTM model, and (d) wind

power with MLP model (samples per unit of time).

Table 4

Error indexes of the presented LSTM and MLP models.
Indexes LSTM MLP
MSE 0.0183 0.2125
RMSE 0.1352 0.4609
NRMSE 0.0046 0.0090

MATLAB software [61]. When tuning hyperparameters, a function
known as valErrorFun(optVars), which is an optimization function, is
taken into consideration. Different ranges for the other parameters have
also been provided, which are listed in Table 2. Some of the most
important characteristics to consider while designing the architecture of
the model are the number of hidden layers and the number of neurons in
each layer. On the other hand, the activation function plays an essential
role in adding non-linearity and deciding which neuron should be
engaged by computing the weighted sum and bias. In a manner com-
parable to this, the optimal learning rate might change based on the data
provided and the network that is being trained. Similarly, the impor-
tance of regularization cannot be overstated when it comes to prevent-
ing both underfitting and overfitting. In order to facilitate the
optimization processes, different potential values have been proposed,
each of which takes into account the weight that each of these hyper-
parameters carries. Fig. 7 illustrates the relationship that exists between
the minimal values of the objective function and the evaluation of the
function whenever Bayesian optimization is used to determine the
optimal values for the hyperparameters. When the simulation is run for a
total of 100 epochs, as shown in Fig. 7, the observed and estimated
values of the objective function come out to be 0.055348 and 0.0892,
respectively. Based on the results provided by the Bayesian optimiza-
tion, the important hyperparameters have been identified. The full list of
the hyperparameters that are utilized for the presented LSTM model is
given in Table 3.

Fig. 8 illustrates the errors of the model with epochs, which shows
that the training performance of the model improves with the increase in
the epoch or/ and iterations. The root mean square error (RMSE) is
identified to be 0.1352 at the 100 epochs, whereas the loss function is
calculated to be 0.0183. Both of the indicators seem to have decreased at
starting in a significant amount, but the rate of change in the remaining

parts is quite low, although the values are continuously decreasing. The
authors decided to analyze the model for 100 epochs since the rate of
change after that point is not significant; it changes at small rates.
During the investigation of the performance of the presented model, the
regressions of the model have been plotted for the training, testing, and
all data sets for both wind power production and load consumption. All
of these plots are given in Fig. 9. During the performance analysis of the
presented model, the whole dataset has been divided into two sections:
training (80%) and testing (20%). The data partitioning approach
‘dataPartitioning(opt,data)’ is used to divide the datasets, which imple-
ments the gradient aggregation [62]. This is the case where the data on
load consumption and wind power are utilized to make forecasts by
utilizing the proposed model. The train-test split procedure is used to
estimate the performance of algorithms when they are used to make
predictions on data that was not used to train the model. The rank
correlation values for all of the cases are identified as being higher than
0.980, which indicates the strength of the presented model.

For comparison, the authors also analyzed the datasets with next
data-driven model namely, multilayer perceptron (MLP). Similar to
LSTM, Bayesian optimization (i.e., trainbr) is used to find the hyper-
parameters for MLP. For MLP, it is identified that there are two feed-
forward levels, with the layers consisting of eighty-nine neuron units.
Other hyperparameters include the dropout value 0.2, the starting
learning rate ‘0.005/, learn rate schedule "piecewise’, linear regulariza-
tion ‘0.00012', activation function ‘sigmoid’, optimizer ‘adam’, and so
on. The results for power consumption by utilizing LSTM and MLP
models are shown in Fig. 10 (a and b), while the outputs for wind power
production within the power system are shown in Fig. 10 (c and d). The
error indexes such as Mean Square Error (MSE), Root Mean Square Error
(RMSE), and Normalized Root Mean Square Error (NRMSE) have been
determined for both models and listed in Table 4. From these figures, the
presented LSTM model appears to be a good fit for the datasets and the
hyperparameters of the models that are being considered.

4. Result and discussion
Section 3 provides a comprehensive breakdown of the forecasting

model and the values, whereas Section 2.1 looks into the specifics of the
power system that is taken into consideration. Detailed descriptions of

233



Shrestha: Estimation of the energy-mix proportion for the secure operation of converter dominated

power system

234

A. Shrestha et al.

Power [GW]

SoC [%]

50.00001

3
8
s §

Frequency [Hz]

30 1 t 3 1 t 1 @

20 L i I

1 2 3 4 5 6 7 8
Time [x 10* Second]

Fig. 11. (a) Power generated through generators, (b) SoC of BESS, (c) system
frequency, and (d) SNSP values, for 24 h-time spans (samples per unit of time).

the data-driven model and the considered hyperparameters are dis-
cussed in Section 3. Whereas this section primarily centers around the
results obtained from incorporating the day-ahead generation and
consumption data into the dynamic model of the power system.

To begin with, the data-driven model estimates the variables of
power generation and consumption for the next day. After that, these
values are inputted into a dynamic model of the power system that

International Journal of Electrical Power and Energy Systems 155 (2024) 109560

includes an optimization model in order to arrive at a day-ahead optimal
energy-mix proportion. It is assumed that the power system is supplied
by a SG, wind turbines equipped with GFL, and BESS equipped with
GFM in the condition that is being studied here. The optimal amounts of
power that are supplied by and consumed by these components are
shown in Fig. 11 (a). Here in Fig. 11 (a), when the value of the GFL is
positive, the BESS is being discharged. When the value of the GFL is
negative, the BESS is charged from the grid with the electricity gener-
ated by other generators. The SoC level of the BESS is presented in
Fig. 11 (b) for the day ahead simulation scenario. It can be seen from
looking at this figure that the minimum SoC that is recorded in this
particular one-day simulation is 40 percent, which is well within the
acceptable range of values. Similarly, Fig. 11 (c) illustrates the overall
system frequency of the power system that is taken into consideration
for this simulation model. Under these normal operating conditions, the
frequency appears to be fluctuating with less variation, and it falls
within the standard frequency limitations allocated by Nordic TSOs.

As discussed in subsection 2.3, the SNSP ratio is computed as the
metric to use for the power system in the day-ahead scenario that is
taken into consideration. Since the examined power system does not
feature an HVDC exchange network, both the import and export values
of the interconnector are taken to be zero for the sake of this paper’s
usual formulation, which is slightly different than Equation (17). It is
identified that the SNSP ratio for the investigated situation ranges
anywhere from 28% all the way up to 64%, as shown in Fig. 11 (d).
These findings pertain to the normal functioning of the power system,
where the maximum SNSP ratio is recognized as being 64%. Because of
this, it can be assumed that the SNSP value of 64% is within a secure
limit for running the power system that is being investigated.

There are certain ratings that apply to power-producing technologies
while they are functioning under normal operating conditions. These
ratings were taken into consideration when choosing the sizes for those
technologies. Fig. 12 (a) illustrates the proportion of total installed ca-
pacity that is contributed by each of these three forms of power-
generating technologies. In light of this consideration, the proposed
model optimizes the power ratings of the technologies dynamically for
the day-ahead scenario and allocates resources in accordance with these
changes. Fig. 12 (b) depicts the hourly amount of energy supplied by
each of these power-generating technologies for the analyzed day-ahead
scenario.

However, the operation of the electrical system can be disturbed at
any moment in time, and the power grid must be able to withstand that.
A power system is susceptible to a wide variety of disturbances, each of
which manifests itself in its own distinctive way. There are different
types of faults, but some of the more prevalent ones are line-to-line
faults, line-to-ground faults, multiple-line-to-ground faults, and so on
[17]. Similarly, the sudden addition or subtraction of a large load or/and
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Fig. 12. Figure showing the (a) proportion of installed capacity, and (b) hourly generated electricity at the day-ahead scenario, for the power-generating

technologies.
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Fig. 13. System’s responses (i.e., frequency, generation, voltage, load, and SNSP) at AP, = 0.30 pu.

power generation is considered a common disturbance in a power sys-
tem, which can affect the performance of the overall power system.
Therefore, it is essential to conduct a contingency analysis to evaluate
the performance of the power system and ensure its security. Here in this
paper, a disturbance is introduced into the model, and the responses to
this disturbance have been evaluated using time-domain simulation.
Fig. 13 provides a visual representation of the power system’s parame-
ters as they change in response to an increase in load of 30% (i.e., AP,=
0.30 pu). As can be seen in Fig. 13, when a load is raised at the 25-second
mark, the terminal voltages and frequencies of all generating units begin
to decrease, albeit with some degree of variation. At the same time, they
boosted their generation in order to fulfill the demand in a secure
manner. This allowed for the demand to be met in a manner that was
modified within a few seconds and maintained the system'’s stability.
Because a 30% increase in load is significant, it takes a few seconds to
maintain the saturation level. Similarly, the voltage level drops quite a
bit farther at that precise moment. Nevertheless, within three seconds,
most of the parameters achieve/ tend to achieve saturation, and they
continue to supply the grid in a secure manner. In addition to that,
before disturbance, the SNSP ratio for the considered power system
seems to be 43%, whereas the value reached 57% when AP, = 0.30 puis
applied.

In order to conduct a comprehensive study, the level of load distur-
bance has been adjusted, and the maximum values of the SNSP ratio
have been determined. The model of the power system is initially run
under normal conditions, and then load disturbances are incorporated
into the process. For analysis, different load disturbances are introduced,
and the post-disturbance responses are observed. However, as soon as
the disturbance reaches 38% of the total load, the system goes into an
unstable state. This percentage is determined to be the technical limit of
the load disturbance for the scenario that is being studied. The detailed
processes of identifying this limit are given in Fig. 5. Fig. 14 displays the
maximum SNSP ratio values that have been determined for each of these

load disturbances. As shown in the figure, the SNSP ratio is observed to
be 43% while operating under normal conditions, and it grows larger
with each rise in the disturbance load ratings. The highest load distur-
bance that can happen while the power system is running in the mode
being looked at is 38%, and this limit must be kept in order to keep
things stable. It has been determined that the maximum SNSP ratio
value for this stage is 59%, which can be considered the critical limit for
power-generating technologies.

5. Conclusion

This paper presents a concept that utilizes historical time-series data
from TSOs to estimate the day-long operation and evaluate the secure
functioning of a power system on a daily basis. By leveraging the
available datasets for the Nordic grid, the paper employs a data-driven
model to forecast power generation and load consumption. Through
the establishment of an energy-mix operation and reserve schedule
model, this paper optimizes the selection of power-generating technol-
ogies and ensures sufficient reserves for secure system operation. Dy-
namic simulations, encompassing a 24-hour period and considering
dynamic data on power generation and load consumption, are con-
ducted to determine the optimal energy mix for the day ahead.
Furthermore, contingency conditions are analyzed to assess the
robustness of the power system model. Quantitative analysis, incorpo-
rating factors such as frequency, power generation, terminal voltages,
and SNSP value, confirms the effectiveness of the proposed concept.
Simulation results demonstrate that the considered power system can
continue to operate securely even with an immediate 38% increase in
total load, with a maximum SNSP value of 59%. While the highest SNSP
value observed during normal operation is 64%, it exceeds 59% only for
a brief period. Based on the low probability of encountering an imme-
diate load increase of 38% together with an SNSP value exceeding 59%,
it can be concluded that the power system is expected to function
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