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Summary:
Strict constraints are imposed on the power factor in the operation of the synchronous ma-
chines for electricity production, which are in place to protect the synchronous generators
from overheating due to the increase in currents from a high power factor. However, by
exploiting the total thermal capacity of the synchronous generator and by keeping temper-
ature development in key points under control, it is possible to relax the constraints on
the power factor. A thermal model of an air-cooled synchronous generator was proposed in
Øyvang (2018) and studied in Lie (2018a). A possible extension of this model is the case
of temperature dependence in the heat capacities of air and water in the counter-current
heat exchanger. To handle this case, it is necessary to solve a nonlinear two-point boundary
value problem numerically for each time step when solving the thermal synchronous gener-
ator model, which is relatively costly for online use. In this thesis work, to speed up the
solution time of the non-ideal heat exchanger sub-model, explicit data-driven models were
developed using linear and nonlinear regression for a variety of conditions and expressed as
a correction expression to the ideal heat exchanger model. Moreover, the execution speed
of the numeric solution of the nonlinear two-point boundary value problem was compared
with that of the explicit data-driven models. Also, the experimental data of Åbjøra was
compared with the predictions of the mechanistic model, and it was observed that even
when extending the model from Lie (2018) with a more realistic heat exchanger model with
temperature dependence in the specific heat capacities of air and water, it was not possible
to get a good fit to the available experimental data. To get improved model fit, one pos-
sibility is to model the system as good as possible with a mechanistic model and then add
a dynamic regression model to describe the difference between the mechanistic model and
the experimental data. In summary: a hybrid mechanistic-empirical model is a hot research
topic. The promise is to get a good model fit, with efficient model simulation.
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Introduction

. Background

Strict constraints are imposed on the power factor in the operation of the synchronous
machines for electricity production. For example, in M. Pandey (2019a), it was reported
that the power factor is constrained to the range [0.85,0.95] in the European hydropower
generation, and below 0.86 in the Norwegian hydropower generation. Furthermore, the
strict constraints are in place to protect the synchronous generators from overheating,
which can occur due to the increase in currents from a high power factor. However,
by exploiting the total thermal capacity of the synchronous generator and by keeping
temperature development in key points under control, it is possible to relax the constraints
on the power factor (Lie, 2018a; Øyvang, 2018).

. Previous Work

A thermal model of an air-cooled synchronous generator was proposed in Øyvang (2018),
and studied in Lie (2018a), M. Pandey (2019a), and M. Pandey (2019b). In M. Pandey
(2019a), the numeric solution of the two-point boundary value problem of the heat ex-
changer sub-model proved to be costly for online use. Specifically, the simulation time
of models 3b and 4b with temperature dependence in the specific heat capacities of air
and water in the heat exchanger sub-model could be improved. Moreover, in Lie (2019b),
ideas relevant to data-driven models and machine learning are described. Particularly, a
simple introduction is given to machine learning and the machine learning package Flux
for the modern computer science language Julia.

. Scope and Outline

In this thesis work, the thermal model of an air-cooled synchronous generator that was
studied in Lie (2018a), is extended with the more realistic case of temperature dependence
in the specific heat capacities of air and water. However, the aim is not to demonstrate the
impact of temperature dependence in the specific heat capacities on the thermal model,
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1 Introduction

but to speed up the solution time of heat exchanger sub-model when the temperature
dependence is considered. Furthermore, explicit data-driven models are developed using
linear and nonlinear regression for a variety of conditions, and their execution speeds are
compared with that of the numeric solution of the nonlinear two-point boundary value
problem. Finally, the experimental data of Åbjøra is compared with the predictions of the
mechanistic model. However, due to time constraints, a data-driven model is not fitted
to Åbjøra experimental data.1

In Chapter 2, first, an overview of the thermal model of an air-cooled synchronous gen-
erator with an ideal heat exchanger model is presented. Second, an overview of the
counter-current heat exchanger model development is given. Third, empirical expressions
in absolute temperature (T ) are introduced to describe the temperature dependence in
the specific heat capacities of air and water in the heat exchanger sub-model. Fourth,
the analytic solution of the ideal heat exchanger model and the numeric solution of the
non-ideal model are compared. Finally, the thermal model of an air-cooled synchronous
generator is implemented in Julia with ideal and non-ideal heat exchanger models and
compared.

In Chapter 3, first, an overview of regression analysis is given. Next, cross-validation
is briefly described. Then, linear and nonlinear regression of the counter-current heat
exchanger model is implemented in the Julia language. Finally, the experimental data of
Åbjøra is compared with the predictions of the mechanistic model.

Chapter 4 will be for results and discussion. Also, Chapter 5 gives the concluding remarks,
and Chapter 6 describes possible future work.

Appendix A contains the tasks description of this thesis work, and Appendix B contains
the code listing in Julia language.

1Task 5 in Appendix A was not carried out in this thesis work.
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Overview of the Thermal Model of an
Air-Cooled Synchronous Generator, With
Ideal and Non-Ideal Heat Exchanger
Model

In this chapter, first, an overview of the thermal model of an air-cooled synchronous gen-
erator with an ideal heat exchanger model is given, which was developed as part of a
group project in course FM1015 Modelling of Dynamic Systems (Lie, 2018a). Next, an
overview of the counter-current heat exchanger model development is presented, and an
efficient explicit/analytic expression is obtained for the case of temperature independence
in heat capacity and/or heat transfer of air/water (the case of an ideal heat exchanger
model) (Lie, 2019a). Then, for the case of temperature dependence in heat capacity
and/or heat transfer of air/water (the case of a non-ideal heat exchanger model), empir-
ical expressions in absolute temperature (T ) are introduced to describe the specific heat
capacity (Lie, 2019a; Murphy, 2020). After that, the analytic solution of the ideal heat
exchanger model and the numeric solution of the non-ideal model are compared. Finally,
the thermal model of an air-cooled synchronous generator is implemented in Julia with
ideal and non-ideal heat exchanger models and compared.

. Overview of the Thermal Model of an Air-Cooled
Synchronous Generator

In a recent group project in course FM1015 Modelling of Dynamic Systems, Lie (2018a),
a dynamic model was proposed to study the temperature evolution in the synchronous
generator. The main ideas were taken from OyvangThomas2019OMTP, but the model
development followed the structure of the course to give experience in formulating and
solving dynamic models of systems. This section is an overview of the model development
and a summary of the key assumptions that were introduced in Lie (2018b). First, the
thermal operation of an air-cooled synchronous generator is described, and the model
objectives are defined. Next, the model is developed in a structure similar to that of
course FM1015 Modelling of Dynamic Systems. At last, a model summary is presented.
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2 Overview of the Thermal Model of an Air-Cooled Synchronous Generator, With Ideal
and Non-Ideal Heat Exchanger Model

Figure 2.1: Thermal operation of an air-cooled synchronous generator (Lie, 2018a).

Figure 2.2: Functional diagram of an air-cooled synchronous generator.

. . Model objectives

An overview of the thermal operation of an air-cooled synchronous generator is shown
in Fig. 2.1. First, the cold air coming out of the heat exchanger is blown by a fan into
the gap between the rotor and the stator, and is heat by heat flow from the rotor (Q̇r2δ )
and by windage and bearing friction (Q̇σ

f ). Then, the air flows through the iron windings
surrounding the copper wires in the stator and is heated by the heat transfer from the
iron (Q̇Fe2a). At last, the air flows through the heat exchanger and is cooled down by cold
water before returning to the air gap between the rotor and the stator.

Based on the project task description and the functional diagram in Fig. 2.2, a DAE
model of the inputs u and outputs y can be developed for the synchronous generator. The
model inputs are:

u = (T c
w, ṁw, ṁa, Ifd, It, Q̇σ

Fe,Ẇf),

and the model outputs are:
y = (Ts,TFe,Tr).
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Symbol Description Unit
Inputs u

T c
w Influent water temperature ◦C

ṁw Water mass flow rate kg/s
ṁa Air mass flow rate kg/s
Ifd Rotor field current A
It Stator terminal current A

Q̇σ
Fe Stator iron generated heat kW

Ẇf Friction work rate in the air gap kW
Outputs y

Ts Stator copper temperature ◦C
Tr Rotor temperature ◦C

TFe Stator iron temperature ◦C

Table 2.1: Description of the inputs and outputs of an air-cooled synchronous generator model.

The inputs and outputs of the model are described in Table 2.1 (Lie, 2018b).

. . Model development

The model development is divided into three steps:

• Step 1: Introduce the relevant balance laws.

• Step 2: Relate the quantities in the balance laws to the inputs and outputs.

• Step 3: Manipulate the model into a suitable form (DAE or ODE) for the computer
language that will be used to describe/solve the model.

. . . Step : Introduce the relevant balance laws

With the model objective specified, the next step is to introduce the necessary balance
laws. Because the model involves flow of mass (air, but also water in the heat exchanger
sub-model), the mass balance is relevant to model development. The total mass balance
is given in Lie (2019a) as:

dm
dt

= ṁi − ṁe. (2.1)

Since the dynamics in the air is much faster than that of the metals, the model develop-
ment can be simplified by neglecting the dynamics/inertia in the air volumes. Then it is
assumed that the air volumes have constant density and no accumulation of mass. This is
a key assumption because the mass balance for the air volumes reduces to ṁi = ṁe under
steady-state conditions, i.e., the model is simplified by reducing the number of differential

23



2 Overview of the Thermal Model of an Air-Cooled Synchronous Generator, With Ideal
and Non-Ideal Heat Exchanger Model

equations. Also, since there is no mass flow in the metals, their masses remain constant,
and their enthalpy flow rates Ḣ ≡ 0. Since there is no change in mass for the air or the
solids, the mass balance is no longer relevant for model development.

However, since the development of the temperature in the system is of interest, the energy
balance is relevant. The thermal energy balance is given in Lie (2019a) as:

dU
dt

= Ḣi − Ḣe −Ẇf −Ẇv + Q̇. (2.2)

The thermal energy balance is simplified by assuming the volume of each subsystem is
constant, so Ẇv = pdV

dt is zero. Moreover, the mechanical power produced from the friction
work in the air volumes is included into the total heat flow Q̇total, so Ẇf = 0. For the metal
volumes, there is no friction. Then, for metals, the thermal energy balance is reduced to
(Lie, 2018b):

dU
dt

= Ḣi − Ḣe + Q̇. (2.3)

. . . Step : Relate the quantities in the balance laws to the inputs and outputs

First, the quantities on the left-hand side in Eq. 2.3 are described for the air volumes
and the metal parts. Since the air volumes have fast dynamics and are assumed to be
in steady-state, dU

dt can be set to zero in their thermal energy balance. In addition, as
mentioned in the task description, it is assumed that the heat conduction in the metal
parts is much larger than the heat transport across the metal boundaries. Then the
metal temperatures can be assumed to be homogeneous within each metal part, which is
indicated by the impeller symbol in Fig. 2.1. A homogeneous system is composed of the
same kind of elements and have a common property throughout. The specific volume for
a homogeneous system is defined in Lie (2019a) as:

V̂ , V
m
. (2.4)

Then the volume can be expressed as V = mV̂ in the following expression for the internal
energy U in the metals (Lie, 2018b):

U = H − pV. (2.5)

Here, the pressure p is the atmospheric pressure pa as mentioned in the project description.
and the enthalpy can be given in terms of specific enthalpy (Lie, 2018b):

H = mĤ. (2.6)
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To describe the specific enthalpy Ĥ, the coefficient of thermal expansion αp is required,
which is defined in Lie (2019a) as:

αp ,
1
V

(
∂V
∂T

)
p
. (2.7)

Also, in Lie (2019a), the differential in specific enthalpy is given by:

dĤ = ĉpdT+V̂ (1−αpT )dp, (2.8)

and the coefficient of thermal expansion for an ideal gas (air in this model) is given as:

αp =
1
T
. (2.9)

Moreover, by inserting the expression of Eq. 2.9 in Eq. 2.8, then the specific enthalpy Ĥ
of air can be described by:

dĤ = ĉpdT ⇒ Ĥ = Ĥ◦+
∫ T

T ◦
ĉpdT. (2.10)

For an ideal solid, αp = 0 as mentioned in Lie (2019a), and the specific enthalpy Ĥ for
the metals is expressed as:

Ĥ = Ĥ◦+
∫ T

T ◦
ĉpdT +V̂ (p− p◦). (2.11)

Typically, the standard state pressure p◦ = 1atm, and as mentioned before, the pressure
in the system is also the atmospheric pressure, then the term V̂ (p− p◦) in Eq. 2.11 can
be set to zero, and the specific enthalpy of the metals is expressed the same as for the
air:

Ĥ = Ĥ◦+
∫ T

T ◦
ĉpdT. (2.12)

As described in Lie (2019), if the heat capacity ĉp is considered temperature independent,
then Eq. 2.12 for the specific enthalpy can be written in the form:

Ĥ(T, p) = Ĥ(T ◦, p◦)+ ĉp(T −T ◦). (2.13)
The temperature T ◦ is taken as 25◦C, and Ĥ(T ◦, p◦) is set to zero (Lie, 2018b). Next,
the quantities on the right-hand side in Eq. 2.3 are described for the air volumes and the
metal parts. The enthalpy flow rate Ḣ is given in Lie (2019a) as:

Ḣ = ṁĤ, (2.14)

here, the specific enthalpy is described by Eq. 2.13 since the heat capacities of air, water
and metals are assumed to be constant (Lie, 2018a). Finally, the flow rates Q̇ in the
thermal energy balance are expressed by Eqs. 2.18, 2.19, 2.25, 2.30,2.35, 2.36, and Eq.
2.46.
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Figure 2.3: Functional diagram of the synchronous generator model with the subsystems.

. . . Step : Manipulate the model into a suitable form

The synchronous generator model can be divided into five subsystems: first air gap, sec-
ond air gap, rotor copper, stator copper, and stator iron. In addition, there is the heat
exchanger sub-model. Figure 2.3 shows a detailed functional diagram of the synchronous
generator model with the subsystems. In this step in the model development, the model
equations are expressed for each subsystem (Lie, 2018b). Table 2.2 describes the param-
eters, the algebraic variables, and the differential variables used in the thermal model of
an air-cooled synchronous generator (Lie, 2018b).

First air gap equations:

dUδ
a

dt
= Ḣc

a − Ḣδ
a + Q̇r2δ + Q̇σ

f ≈ 0 (2.15)

Ḣc
a = ṁaĤc

a (2.16)

Ĥc
a = Ĥ◦

a + ĉp,a(T c
a −T ◦

a ) (2.17)
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Q̇σ
f = 0.8Ẇf (2.18)

Q̇r2δ = U Ar2δ (Tr −T δ
a ) (2.19)

Ḣδ
a = ṁaĤδ

a (2.20)

Ĥδ
a = Ĥ◦

a + ĉp,a(T δ
a −T ◦

a ). (2.21)

Second air gap equations:
dUh

a
dt

= Ḣδ
a − Ḣh

a + Q̇Fe2a ≈ 0 (2.22)

Ḣh
a = ṁaĤh

a (2.23)

Ĥh
a = Ĥ◦

a + ĉp,a(T h
a −T ◦

a ) (2.24)

Q̇Fe2a = U AFe2a(TFe −T h
a ). (2.25)

Rotor copper equations:
dUr

dt
= Q̇σ

r − Q̇r2δ (2.26)

Ur = Hr − paVr (2.27)

Hr = mrĤr (2.28)

Ĥr = Ĥ◦
Cu + ĉp,Cu(Tr −T ◦

Cu) (2.29)

Q̇σ
r = 1.1RrI2

fd. (2.30)

Stator copper equations:
dUs

dt
= Q̇σ

s − Q̇s2Fe (2.31)

Us = Hs − paVs (2.32)

Hs = msĤs (2.33)

Ĥs = Ĥ◦
Cu + ĉp,Cu(Ts −T ◦

Cu) (2.34)

Q̇σ
s = 3RsI2

t (2.35)

Q̇s2Fe = U As2Fe(Ts −TFe). (2.36)

Stator iron equations:
dUFe

dt
= Q̇σ

Fe − Q̇Fe2a + Q̇s2Fe (2.37)

UFe = HFe − paVFe (2.38)

HFe = mFeĤFe (2.39)
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ĤFe = Ĥ◦
Fe + ĉp,Fe(TFe −T ◦

Fe). (2.40)
Finally, the heat exchanger explicit equations taken from the task description:

T h
w =

Nw
St(1− exp(−N△

St ))T
h

a +N△
St exp(−N△

St )T
c

w

Nw
St −Na

St exp(−N△
St )

(2.41)

T c
a =

N△
St T h

a +Na
St(1− exp(−N△

St ))T
c

w

Nw
St −Na

St exp(−N△
St )

, (2.42)

here,
N△

St = Nw
St −Na

St, (2.43)

and,
Nw

St =
U Ax

ĉp,wṁw
(2.44)

Na
St =

U Ax

ĉp,aṁa
. (2.45)

Here, U Ax = 1
1

hAax +
1

hAwx
. Optionally, the heat transfer from water to air can also be

calculated from:

Q̇w2a =
exp(−N△

St )−1
1

ĉp,aṁa
exp(−N△

St )−
1

ĉp,wṁw

(T c
w −T h

a ), (2.46)

here, it is important to highlight that It is not necessary to compute Q̇w2a or T h
w to solve

the thermal model of an air-cooled synchronous generator. However, computing these
quantities give insight into the thermal operation of the model. Also, it is important to
highlight that T h

w, T c
a , and Q̇w2a are functions of the specific heat capacities of air and

water (ĉp,a and ĉp,w) . In Lie (2018a), ĉp,a and ĉp,w were assumed to be constant, but for a
more realistic heat exchanger model, it is possible to extend the model in Lie (2018a), with
the case of temperature dependence in heat capacity and/or heat transfer of air/water.

Symbol Description Unit
Differential variables x

Ur Internal energy of rotor kJ
Us Internal energy of stator copper kJ
UFe Internal energy of stator iron kJ

Algebraic variables z

Table 2.2: Description of the parameters, the algebraic variables, and the differential variables used in
the thermal model of an air-cooled synchronous generator.
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Symbol Description Unit
Tr Rotor temperature ◦C
Ts Stator copper temperature ◦C
TFe Stator iron temperature ◦C
T h

w Hot water temperature ◦C
T h

a Hot air temperature ◦C
T c

a Cold air temperature ◦C
T δ

a Air gap temperature ◦C
Ḣδ

a Enthalpy flow rate of air in the gap kJ/s
Ḣc

a Enthalpy flow rate of cold air kJ/s
Ḣh

a Enthalpy flow rate of hot air kJ/s
Hr Enthalpy of rotor kJ
Hs Enthalpy of stator copper kJ
HFe Enthalpy of stator iron kJ
Ĥδ

a Specific enthalpy of air in the gap kJ/kg
Ĥc

a Specific enthalpy of cold air kJ/kg
Ĥh

a Specific enthalpy of hot air kJ/kg
Ĥr Specific enthalpy of rotor kJ/kg
Ĥs Specific enthalpy of stator copper kJ/kg
ĤFe Specific enthalpy of stator iron kJ/kg
Na

St Stanton number of air −
Nw

St Stanton number of water −
N△

St Difference in Stanton numbers −
Q̇σ

r Heat source in the rotor copper kW
Q̇σ

s Heat source in the stator copper kW
Q̇σ

Fe Heat source in the stator iron kW
Q̇r2δ Heat loss from rotor to air gap kW
Q̇s2Fe Heat loss from stator copper to iron kW
Q̇Fe2a Heat loss from stator iron to air kW
Q̇w2a Heat transfer from water to air kW
Q̇σ

f Friction heating rate in the air gap kW
Parameters θ

ĉp,a Specific heat capacity, air kJ/kg/K
ĉp,w Specific heat capacity, water kJ/kg/K
ĉp,Cu Specific heat capacity, copper kJ/kg/K
ĉp,Fe Specific heat capacity, iron kJ/kg/K
pa Atmospheric pressure Pa
U Ax Heat transfer, air to water kW/K
hAax Heat transfer, air side of the heat exchanger kW/K

Table 2.2: Description of the parameters, the algebraic variables, and the differential variables used in
the thermal model of an air-cooled synchronous generator.
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Symbol Description Unit
hAwx Heat transfer, water side of the heat exchanger kW/K
U Ar2δ Heat transfer, rotor to air gap kW/K
U AFe2a Heat transfer, stator iron to air kW/K
U As2Fe Heat transfer, stator copper to iron kW/K
Ĥ◦

a Reference specific enthalpy of air kJ/kg
Ĥ◦

Cu Reference specific enthalpy of copper kJ/kg
Ĥ◦

Fe Reference specific enthalpy of iron kJ/kg
T ◦

a Reference temperature of air ◦C
T ◦

Cu Reference temperature of copper ◦C
T ◦

Fe Reference temperature of iron ◦C
mr Mass of rotor kg
ms Mass of stator copper kg
mFe Mass of stator iron kg
Rr Rotor copper ohmic resistance kΩ
Rs Stator copper ohmic resistance kΩ

Table 2.2: Description of the parameters, the algebraic variables, and the differential variables used in
the thermal model of an air-cooled synchronous generator.

. . Model summary.

The model can be expressed in the standard DAE form, which is a suitable form for the
Modelica computer language:

dx
dt

= f (x, z, u; θ)

0 = g(x, z, u; θ)

y = h(x, z, u; θ).

The inputs (u) and the outputs (y) are described in Table 2.1.Also, the parameters (θ),
the algebraic variables (z), and the differential variables (x) are described in Table 2.2.
The model consists of 32 independent equations (Eqs. 2.15 − 2.46), and 32 unknowns
(dim x + dim z), which makes it a well-posed model that does not require any further
re-formulation before implementation in computer (Lie, 2018b).
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. Overview of the Counter-Current Heat Exchanger Model
Development

The explicit expressions of T h
w and T c

a in Eqs. 2.41 and 2.42 are only valid for an ideal heat
exchanger model. If the specific heat capacities of air and water depended on temperature,
then a nonlinear two-point boundary value problem is formed, which require a numerical
method to solve. In this section, an overview of the counter-current heat exchanger model
development is presented to demonstrate how a linear/nonlinear two-point boundary value
problem may form depending on the assumption of temperature dependence in the specific
heat capacities of air and water.

Thermal models of distributed heat exchangers are developed in Modeling of Dynamic
Systems lecture notes (Lie, 2019a). The focus of the model development is the tube-and-
shell type of heat exchangers. The tube-and-shell is a common type of heat exchangers
where one fluid flows inside a tube, and the other fluid flows outside of the tube, between
the tube and the shell. Models are developed for the three primary forms of flow configu-
rations in Fig. 2.4: (1) cross-current heat exchangers, (2) parallel flow or co-current heat
exchangers, (3) counter-current heat exchangers. During this work, the focus will be on
the counter-current flow arrangement.

In Lie (2019a), the model development starts by introducing the required balance laws:

1. The total mass balance as in Eq. 2.1:

dm
dt

= ṁi − ṁe.

2. The thermal energy balance as in Eq. 2.2:
dU
dt

= Ḣi − Ḣe −Ẇf −Ẇv + Q̇.

Next, some simplifying assumptions are introduced. The first assumption is the assump-
tion of steady-state conditions for the mass balance for both fluids in the heat exchanger.
Under steady-state conditions, the left-hand side of the mass balance equation dm

dt be-
comes zero, which leads to a constant mass flow rate at the inlet and outlet of both shell
side and tube side of the counter-current heat exchanger. That is, the mass balance for
the tube side reduces to:

ṁt
i = ṁt

e. (2.47)
Similarly, the mass balance for the shell side reduces to:

ṁs
i = ṁs

e. (2.48)

The second simplifying assumption relates to the work terms in the thermal energy bal-
ance. The friction term Ẇf is neglected. Also, the volume of both sides, the tube side,
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Figure 2.4: Tube-and-shell heat exchangers, with cross-current (a), co-current (b), and counter-current
(c) flow configurations (Lie, 2019a).
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Tube

Shell

Figure 2.5: Distributed model of a counter-current heat exchanger (Lie, 2019a).

and the shell side can be assumed constant. Therefore the volume work Ẇv = pdV
dt can

be set to zero. In other words, the volume work is also neglected. The reduced thermal
energy balance for both fluids in the counter-current heat exchanger:

dU
dt

= Ḣi − Ḣe + Q̇. (2.49)

Figure 2.5 shows the model of the counter-current heat exchanger, where the model is
treated as a large number of connected homogeneous systems. Then, the third assumption
is the perfect mixing in the volume defined by x ∈ [ξ ,ξ +△x]. The influent and effluent
enthalpy flow rates for the tube side can be expressed as (Lie, 2019a):

Ḣ t
i = ṁtĤ t

ξ (2.50)

Ḣ t
e = ṁtĤ t

ξ+△x. (2.51)

The heat flow Q̇ from the tube side to the shell side is denoted as:

Q̇ =−Q̇t2s
ξ , (2.52)

Here, the heat diffusion in the x-direction is neglected. For the interval/segment defined
by x ∈ [ξ ,ξ +△x], the heat flow is expressed as:

Q̇t2s
ξ+△x = Q̇′

t2s,ξ+△x△x. (2.53)

The internal energy U for each segment is expressed as:

U t
ξ+△x =△xρtAtÛ t

ξ+△x. (2.54)
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Then, the thermal energy balance for the tube side becomes:
d
dt
(△xρtAtÛ t

ξ+△x) = ṁtĤ t
ξ − ṁtĤ t

ξ+△x − Q̇′
t2s,ξ+△x△x. (2.55)

In the previous expression, ξ is valid for any position x ∈ [0,Lx], where Lx is the length of
the heat exchanger. By generalizing ξ to any position and letting △x → 0, the previous
formulation reduces to:

ρtAt
∂Ût

∂ t
=−ṁt

∂ Ĥt

∂x
− Q̇

′
t2s, (2.56)

Here, the overall heat transfer across the layers of the solid material between the two
fluids is given as:

Q̇′
t2s = U ℘(Tt −Ts). (2.57)

With negligible pressure drop and constant density in the fluids, the internal energy and
specific enthalpy are approximated as:

∂Û ≈ ĉv∂T (2.58)

∂ Ĥ ≈ ĉp∂T, (2.59)
which leads to the formulation of a Partial Differential Equation for the tube side:

ρtAtĉv,t
∂Tt

∂ t
=−ṁtĉp,t

∂Tt

∂x
−U ℘(Tt −Ts). (2.60)

Similarly, the shell side PDE is formed:

ρsAsĉv,s
∂Ts

∂ t
= ṁsĉp,s

∂Ts

∂x
+U ℘(Tt −Ts). (2.61)

In distributed systems such as this model of the heat exchanger, the dependent variables
(temperatures of tube and shell side in this case) are functions of time and one more
spatial variable. Since the dynamics of the heat exchanger is faster than the dynamics of
the synchronous generator, the energy balance for both fluids can be assumed to be in
steady-state, i.e., ∂T

∂ t = 0 and both PDEs reduce to ordinary differential equations. The
resulting two ODEs form the steady-state model:

dTt

dx
=− U ℘

ĉp,tṁt
(Tt −Ts) (2.62)

dTs

dx
=− U ℘

ĉp,sṁs
(Tt −Ts). (2.63)

If U ℘
ĉpṁ is constant with respect to x, then a linear, space invariant boundary value problem

is formed (an ideal heat exchanger model is formed):

d
dx

(
Tt
Ts

)
=

(
− U ℘

ĉp,tṁt

U ℘
ĉp,tṁt

− U ℘
ĉp,sṁs

U ℘
ĉp,sṁs

)(
Tt
Ts

)
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The solution of this model for the known inputs T t
i and T s

i is discussed in Problem 8.2 in
Lie (2019a), and is found to be

Tt(x) =
1

αt −αs

[
(αte(αs−αt)x −αs)T t

i +(αt −αte(αs−αt)x)T s
e

]
(2.64)

Ts(x) =
1

αt −αs

[
(αte(αs−αt)x −αs)T t

i +(αt −αse(αs−αt)x)T s
e

]
. (2.65)

Here,
αt ,

U ℘
ĉp,tṁt

(2.66)

αs ,
U ℘

ĉp,sṁs
. (2.67)

An implicit expressions for the effluent temperatures T t
e and T s

e can be obtained, but
an explicit form is more efficient. To formulate the explicit expressions for the effluent
temperatures, the definition of Stanton number is utilized. The Stanton number NSt is
defined as:

NSt ,
NNu

NReNPr
=

hL
k

ρvD
µ

µ ĉp
k

=
hL

ρvDĉp
=

hLD
ρvD2ĉp

=
hA

ṁĉp
. (2.68)

At x = Lx in Eqs. 2.64 and 2.65, αt and αs can be expressed by the respective Stanton
number NSt:

αtLx = Nt
St, (2.69)

and,
αsLx = Ns

St. (2.70)
Here, ℘Lx = Ax is the heat transfer area. The explicit expressions for the effluent temper-
atures Tt(x = 0) = T t

i , and Ts(x = Lx) = T s
i are:

T t
e =

Nt
St(1− exp(Ns

St −Nt
St))T

s
i +(Nt

St −Ns
St)exp(Ns

St −Nt
St)T

t
i

Nt
St −Ns

St exp(Ns
St −Nt

St)
(2.71)

T s
e =

(Nt
St −Ns

St)T
s

i +Ns
St(1− exp(Ns

St −Nt
St))T

t
i

Nt
St −Ns

St exp(Ns
St −Nt

St)
. (2.72)

This analytic expression is only valid for the case of αt and αs being independent of x.
If any of the overall heat transfer coefficient U , the perimeter ℘, or the specific heat
capacities ĉp varies with x, then a numerical solution is necessary. In this work, it is of
interest to study the non-ideal case of temperature-dependent heat capacity ĉp, where αt
and αs are no longer independent of x. This leads to a nonlinear two-point boundary value
problem, where the numerical solution is computationally expensive. It is of interest to
investigate an alternative strategy that does not involve an iterative method, namely, a
strategy that combines a data-driven model with a mechanistic model.
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As a final point, in the thermal model of an air-cooled synchronous generator, T t
e is the

temperature of hot water (T h
w) coming out of the heat exchanger in Eq. 2.41, and T s

e is
the temperature of the cold air (T c

a ) coming into the air-cooled synchronous generator
model in Eq. 2.42, i.e., the air is flowing in the shell and the water is flowing inside the
tube.

. Temperature Dependence of the Specific Heat Capacity

In Eq. 2.12 for the specific enthalpy, ĉp is considered temperature independent. If ĉp
depends on temperature, then the specific enthalpy would be expressed as:

Ĥ = Ĥ◦+
∫ T

T ◦
ĉp(T )dT, (2.73)

here, the specific heat capacity is a function of the temperature, unlike Eq. 2.12, where it
is a scalar quantity. In Lie (2019a), it is mentioned that the molar heat capacity (c̃p) is
often expressed as a polynomial in absolute temperature (T ). In addition, Murphy (2020),
state that the molar heat capacity can either be expressed as a polynomial in T or as an
empirical power series in T , depending on which function fits the measured data better.
In Poling, Prausnitz, and O’Connell (2001), as cited in Lie (2019a), the dimensionless
molar heat capacity (

c̃p
R ) is given as:

c̃p

R
= a0 +a1T +a2T 2 +a3T 3 +a4T 4, (2.74)

here, R is the ideal gas constant. Also, in Mcbride (1993), the dimensionless molar heat
capacity (

c̃◦p
R ) at a standard state of (298.15K,1bar) is given as:

c̃◦p
R

= a0 +a1T +a2T 2 +a3T 3 +a4T 4, (2.75)

Alternatively, in McBride (2002), the dimensionless molar heat capacity (
c̃◦p
R ) at a standard

state of (298.15K,1bar) is given as:

c̃◦p
R

= a1T−2 +a2T−1 +a3 +a4T +a5T 2 +a6T 3 +a7T 4. (2.76)

In Eqs. 2.74, 2.75, and 2.76, ai(i = 1, . . . , 7) are called the temperature coefficients, and
they differ from one reference to another. Apart from this, the molar heat capacity
can be converted to the specific heat capacity by multiplying the c̃p by the molar mass
(also known as the molecular weight). Finally, In Bergman et al. (2011), the thermo-
physical properties of air at atmospheric pressure is given over the temperature range
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of (100− 3000K), and the thermophysical properties of saturated water is given over
the temperature range of (273.15− 647.3K). In this work, the experimental data from
Bergman et al. (2011), is fitted over a relevant temperature range, and compared with
the power series of McBride (2002).

Furthermore, in this work, the specific heat capacities in the expression for Q̇w2a in Eq.2.46
will be kept constant since it is not necessary to compute Q̇w2a to solve the thermal model
of the generator.

. Analytic vs. Numeric Solution of the Counter-current Heat
Exchanger Model

In Section 2.2, an analytical solution (Eqs 2.64 and 2.65) was obtained to the linear,
space invariant boundary value problem of an ideal heat exchanger model (Lie, 2019a).
However, when extending the thermal model of an air-cooled synchronous generator from
Lie (2018a) with a more realistic heat exchanger model, specifically, a model with tem-
perature dependence in heat capacity and/or heat transfer of air/water, the specific heat
capacity is no longer a scalar quantity, but a function of temperature, which leads to a
nonlinear two-point boundary value problem. In Section 2.3, the temperature dependence
in the specific heat capacity was discussed, and it was found that the ĉp(T ) can either be
expressed as a polynomial in T or as an empirical power series in T (Lie, 2019a; Murphy,
2020). In this section, the analytic solution of the ideal heat exchanger model and the
numeric solution of the non-ideal model are compared.1

. . The analytic solution (exact solution)

For an ideal heat exchanger model (for the case of temperature independence in heat
capacity and/or heat transfer of air/water), a linear, space invariant boundary value
problem was formed, to which the analytical solution was expressed in Eqs 2.64 and 2.65
as:

Tt(x) =
1

αt −αs

[
(αte(αs−αt)x −αs)T t

i +(αt −αte(αs−αt)x)T s
e

]
Ts(x) =

1
αt −αs

[
(αte(αs−αt)x −αs)T t

i +(αt −αse(αs−αt)x)T s
e

]
.

1All the code presented in Section 2.4 are part of the Jupyter Notebook “Counter-current Heat Exchanger
Models” in Appendix B.1.
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Then, by utilizing the definition of Stanton number, an explicit expressions for the effluent
temperatures were obtained in Eqs 2.71 and 2.72 as:

T t
e =

Nt
St(1− exp(Ns

St −Nt
St))T

s
i +(Nt

St −Ns
St)exp(Ns

St −Nt
St)T

t
i

Nt
St −Ns

St exp(Ns
St −Nt

St)

T s
e =

(Nt
St −Ns

St)T
s

i +Ns
St(1− exp(Ns

St −Nt
St))T

t
i

Nt
St −Ns

St exp(Ns
St −Nt

St)
.

For air and water, the Stanton numbers are given in Eqs. 2.44 and 2.45 as:

Nw
St =

U Ax

ĉp,wṁw

Na
St =

U Ax

ĉp,aṁa
.

When solving the dynamic thermal model of the generator using the DAE solvers of Julia
or OpenModelica, for each time step, the previous expressions for T t

e and T s
e (T h

w and T c
a )

are evaluated relatively fast compared to the numeric solution of the heat exchanger model,
where a numerical method is applied to solve the two-point boundary value problem with
respect to x, where x ∈ [0,Lx]. In addition, as mentioned in Section 2.1, it is not necessary
to compute T h

w to solve the thermal model of the generator.

. . Implementation of the analytic model in Julia

By substituting the explicit expression for T s
e in the expressions for Tt(x) and Ts(x), it is

possible to evaluate the temperatures of air and water for the interval x ∈ [0,Lx], where
Lx is the length of the heat exchanger. In the Julia code below,2 the expressions for T s

e ,
Tt(x), and Ts(x) are wrapped in a function to make the comparison between the analytic
and numeric solutions simpler (the expressions are computed in the lines 9−11).

2The package minted with the syntax highlighting library Pygments was used to print out this code
snippet (Poore, 2020).
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Symbol Description Value Unit
Inputs u

T c
w Cold water temperature 3.8 ◦C

T h
a Hot air temperature 39.12 ◦C

ṁw Water mass flow rate 53.9 kg/s
ṁa Air mass flow rate 49.2 kg/s

Parameters θ
ĉp,a Specific heat capacity, air 1.15 kJ/kg/K
ĉp,w Specific heat capacity, water 4.2 kJ/kg/K
U Ax Heat transfer, air to water 44.46 kW/K
hAax Heat transfer, air side of the heat exchanger 55.6 kW/K
hAwx Heat transfer, water side of the heat exchanger 222 kW/K

Table 2.3: Operating conditions for the ideal heat exchanger model.

1 function hex_a(inputs,par,x)
2 Twc, Tah, mdw, mda = inputs
3 UAx, chpw, chpa = par
4 # Stanton numbers for air and water.
5 NSta = UAx/chpa/mda # Stanton number for air, -
6 NStw = UAx/chpw/mdw # Stanton number for water, -
7 NStd = NStw - NSta
8 #
9 Tac = (NStd*Tah + NSta*(1-exp(-NStd))*Twc)/(NStw-NSta*exp(-NStd))

10 Tw(x) = ((NStw*exp(-NStd*x)-NSta)*Twc+(NStw - NStw*exp(-NStd*x))*Tac)/NStd
11 Ta(x) = ((NSta*exp(-NStd*x)-NSta)*Twc+(NStw - NSta*exp(-NStd*x))*Tac)/NStd
12 return [Tw(x), Ta(x)]
13 end

Here, the function (hex_a) takes the inputs, the parameters, and the interval x as argu-
ments (The main reason to pass them as arguments is to avoid the problems associated
with global variables), and return the temperature of air and water along the heat ex-
changer length.

Figure 2.6 shows the simulation result for the temperature profile along the length of ideal
heat exchanger model, where the model operating conditions are specified in Table 2.3
(Lie, 2018b).

. . The numeric solution (approximate solution)

A steady-state model of a counter-current heat exchanger, in general, leads to a two-point
boundary value problem, which can be solved numerically. In this work, the numerical
solution is obtained by utilizing the boundary value problem (BVP) solvers available in
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Figure 2.6: Analytic solution of the ideal heat exchanger model.

DifferentialEquations.jl Julia package (Rackauckas and Nie, 2017). Alternatively, the
component package BoundaryValueDiffEq.jl of the DifferentialEquations ecosystem can
be used. In addition, there are several methods that can be used in the solver, these
methods are categorized based on the problem type:

1. BVProblem, for general boundary conditions.

• Shooting: in this method, the problem is treated as an initial value problem
where the initial conditions are varied until the boundary conditions are met.

• GeneralMIRK4: is described in the documentation as a 4th order collocation
method.

2. TwoPointBVProblem, for boundary conditions that are defined at the beginning
and the end of the integration interval.

• MIRK4: is similar to GeneralMIRK4, a 4th order collocation method, but it
is only compatible with TwoPointBVProblem problem type.

In this work, the execution speed of each of the three methods was compared using the
package BenchmarkTools.jl, and based on the benchmark results shown in Table 2.4,
the method Shooting achieved the fastest execution speed, and thus will be used in the
comparison with the analytic solution or in the comparison with the hybrid model (The
combination of the mechanistic and the data-driven models).
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Method Median time (ms) Mean time (ms)
Shooting 20.064 21.741
GeneralMIRK4 846.158 849.103
MIRK4 867.653 873.557

Table 2.4: Benchmark results for the numeric solution of a non-ideal heat exchanger model. To make
the comparison fair, the step size was fixed to the value of 0.01 (an optional argument dtmax
was passed to the solver for the Shooting method). Otherwise, the Shooting method would
perform 20 times better.

. . . Model implementation of the ideal case of temperature independence in the
specific heat capacities of air and water in the heat exchanger

The model of the ideal case of temperature independence in the specific heat capacities
of air and water is implemented in the code below.

1 function hex_n_Cp_T_indep(inputs,par,x)
2 # The function for the ODE.
3 function hex_i!(dy,y,par,x)
4 # Interior of heat exchanger with temperature independent heat capacity
5 mdw, mda = par[3],par[4]
6 UAx, cp_w, cp_a = par[5],par[6],par[7]
7 #
8 Tw,Ta = y
9 dy[1] = -UAx/(mdw*cp_w)*(Tw - Ta)

10 dy[2] = -UAx/(mda*cp_a)*(Tw - Ta)
11 end
12 #
13 # Boundaries of heat exchanger with temperature independent heat capacity
14 function hex_b!(residual, y, par, x)
15 Twc,Tah = par[1],par[2]
16 residual[1] = y[1][1]-Twc # y[1] is the beginning of the spatial span
17 residual[2] = y[end][2]-Tah # y[end] is the ending of the spatial

span↪→

18 end
19 #
20 u0 = [0.0, 0.0] # The initial condition.
21 prob_hex = BVProblem(hex_i!, hex_b!, u0, x, [inputs par])
22 sol_hex = solve(prob_hex, Shooting(Vern7()), dtmax=0.01) # Three solvers are

available. Shooting is the fastest.↪→

23 return sol_hex # dtmax: Maximum dt for adaptive timestepping.
24 end

Here, the main function (hex_n_Cp_T_indep) consists of the initial condition (line
20), the two-point boundary value problem definition (line 21), the solver (line 22), and
two sub-functions:
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Figure 2.7: Numeric solution of the ideal heat exchanger model.

1. hex_i!: The function for the ODE. The parameters of the heat exchanger (ĉp,a,
ĉp,w, and U Ax) are passed to this function, in addition to the inputs and ṁa and
ṁw.

2. hex_b!: The boundary condition function. This function takes the boundary
conditions T c

w and T h
a .

In addition, the main function takes the inputs, the parameters, and the interval x as
arguments and returns the temperature profile along the heat exchanger length in a similar
manner to the analytic model. Also, depending on which type of problem was chosen
(BVProblem or TwoPointBVProblem) in the line 21, the appropriate method should be
passed to the solver in line 22. It is important to add that, the third optional argument in
the solver dtmax is the maximum step size for adaptive time-stepping, but in the context
of the heat exchanger problem, it refers to spatial-stepping instead. By calling the main
function, it is possible to obtain the temperature profile along the heat exchanger length.
Figure 2.7 shows the Numeric solution of the ideal heat exchanger model.

. . . Comparison between the analytic solution and the numeric solution of the ideal
case of temperature independence in the specific heat capacities of air and water

The main goal for implementing the numeric solver of the ideal case of temperature
independence in the specific heat capacities of air and water is to check and see if the
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Figure 2.8: Analytic vs. numeric solution of the ideal heat exchanger model.

Model Median time (ms) Mean time (ms)
The analytic solution 0.009 0.01063
The numeric solution 4.487 5.310

Table 2.5: Benchmark results for the ideal heat exchanger model.

analytic solution in 2.6 matches the numeric solution of the ideal case. Figure 2.8 shows
a comparison between the analytic and the numeric solutions of the ideal heat exchanger
model, and since the solutions match, then it is safe to proceed to the next step, and
obtain the solution for the non-ideal case of temperature dependence in the specific heat
capacities of air and water.

Before proceeding to the non-ideal heat exchanger model, it is of interest to compare
the computation time between the two solutions in Fig. 2.8. The benchmark results are
summarized in Table 2.5. Moreover, the benchmark results indicate that when solving the
dynamic thermal model of the generator, for each time step, the numeric model obtain a
solution in a mean time of 5.310ms, while the analytic expressions are evaluated in a mean
time of 10.630 µs . Besides, when solving the dynamic thermal model of the generator
using the analytical solution of the heat exchanger model, there is no need to evaluate the
temperature along the heat exchanger length, and the explicit expressions for the effluent
temperatures that were obtained in Eqs 2.71 and 2.72 should be used instead, i.e., the
analytic solution is much faster.
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. . . Model implementation of the non-ideal case of temperature dependence in the
specific heat capacities of air and water in the heat exchanger

The model of the non-ideal case of temperature dependence in the specific heat capacities
of air and water is implemented in the code below. The model implementation is the same
as the previous code for the ideal case of temperature independence in the specific heat
capacities of air and water except for, of course, the specific heat capacities are no longer
constant parameters, which can be observed in the lines 9 and 10 in the code where the
specific heat capacities are functions of temperature.

1 function hex_n_Cp_T_dep(inputs,par,x)
2 # The function for the ODE.
3 function hex_i!(dy,y,par,x)
4 # Interior of heat exchanger with temperature dependent heat capacity
5 mdw, mda = par[3],par[4]
6 UAx, cp_w, cp_a = par[5],par[6],par[7]
7 #
8 Tw,Ta = y
9 dy[1] = -UAx/(mdw*cp_w(Tw))*(Tw - Ta)

10 dy[2] = -UAx/(mda*cp_a(Ta))*(Tw - Ta)
11 end
12 #
13 # Boundaries of heat exchanger with temperature dependent heat capacity
14 function hex_b!(residual, y, par, x)
15 Twc,Tah = par[1],par[2]
16 residual[1] = y[1][1]-Twc # y[1] is the beginning of the spatial span
17 residual[2] = y[end][2]-Tah # y[end] is the ending of the spatial

span↪→

18 end
19 #
20 u0 = [0.0, 0.0] # The initial condition.
21 prob_hex = BVProblem(hex_i!, hex_b!, u0, x, [inputs par])
22 sol_hex = solve(prob_hex, Shooting(Vern7()), dtmax=0.01) # Three solvers are

available. Shooting is the fastest.↪→

23 return sol_hex # dtmax: Maximum dt for adaptive timestepping.
24 end

At the beginning of this work, the temperature dependence in the specific heat capacities
was implemented using the expressions for the dimensionless molar heat capacity (

c̃◦p
R )

in Mcbride (1993), and McBride (2002), but later on, it was implemented by fitting a
polynomial to the experimental data in Bergman et al. (2011), since the coefficients in
Mcbride (1993) and McBride (2002) were obtained by fitting a polynomial/power-series
over a large interval that is irrelevant to this work (The power series in McBride (2002), is
valid over the ranges of 273.15K to 373.15K for water, and 200K to 1000K for air, which
is irrelevant to this work). In Julia, it is possible to construct a polynomial of degree n
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that goes through the points specified by x and y of the experimental data (x,y) using
polyfit of the Julia package Polynomials.jl, as shown below.

1 using Polynomials
2 #
3 # Data for water and air from Incropera et al (temperature and specific heat

capacities)↪→

4 T_w_I = [273.15, 275.0, 280.0, 285.0, 290.0, 295.0, 300.0, 305.0, 310.0, 315.0,
320.0, 325.0, 330.0, 335.0, 340.0, 345.0, 350.0, 355.0, 360.0, 365.0,
370.0].-273.15

↪→

↪→

5 cp_w_I = [4.217,4.211,4.198,4.189,4.184,4.181,4.179,4.178,4.178,4.179,4.18
,4.182,4.184,4.186,4.188,4.191,4.195,4.199,4.203,4.209,4.214]↪→

6 T_a_I = [100.0, 150.0, 200.0, 250.0, 300.0, 350.0, 400.0].-273.15
7 cp_a_I = [1.032, 1.012, 1.007, 1.006, 1.007, 1.009, 1.014]
8 #
9 # polyfit(x, y, n)

10 #
11 polynomial_w = polyfit(T_w_I, cp_w_I, 7) # Cp is expressed as a polynomial in

temperature for water.↪→

12 polynomial_a = polyfit(T_a_I, cp_a_I, 5) # Cp is expressed as a polynomial in
temperature for air.↪→

Also, the following function was used to select the proper degree for the polynomial
without overfitting the data, for example, Fig. 2.9 shows the output of the function for
the water experimental data in Bergman et al. (2011), where it can be seen that a 7th
order polynomial fits the data well.

1 # This function is used to select the proper polynomial degree
2 function findbestfit(y,x)
3 RMSE = Array{Float64}(undef, length(y)-1);
4 for i in 1:(length(y)-1)
5 p=polyfit(x, y,i)
6 RMSE[i]=sqrt(sum((y-p(x)).^2) / (length(y))) # Root Mean Square Error
7 # println("Degree ", i," with RMSE: ", RMSE[i])
8 end
9 plot(1:(length(y)-1),RMSE,ylabel="RMSE",xlabel="Degree of Polynomial")

10 end
11 # Example: findbestfit(cp_w_I,T_w_I)

The temperature dependence in the specific heat capacities was implemented using the
dimensionless molar heat capacity in McBride (2002) in the following code. To convert
the dimensionless molar heat capacities to specific heat capacities, the expressions were
multiplied by the universal gas constant and divided over the molar mass in lines 9 and
10.
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Figure 2.9: Output of the function findbestfit for the water experimental data. The function findbestfit
use the RMSE as a measure to help select the degree of the polynomial, while avoiding
overfitting the data.

1 # H2O (L)
2 c_w = [1.326371304e+09, -2.448295388e+07, 1.879428776e+05, -7.678995050e+02,

1.761556813e+00, -2.151167128e-03, 1.092570813e-06]↪→

3 # AIR CALCULATED FROM INGREDIENTS %N2=78.084 %O2=20.9476 %AR=0.9365 %CO2=0.0319
4 c_a = [1.009950160e+04, -1.968275610e+02, 5.009155110e+00, -5.761013730e-03,

1.066859930e-05, -7.940297970e-09, 2.185231910e-12]↪→

5 const Mw = 18.01528 # Molecular weight of Water, g/mol
6 const Ma = 28.96518 # Molecular weight of Air, g/mol ## AIR CALCULATED FROM

INGREDIENTS %N2=78.084 %O2=20.9476 %AR=0.9365 %CO2=0.0319↪→

7 const R = 8.31446261815324 # The Universal gas constant, J*K−1*mol−1
8 #
9 Cp_w_nasa(x) = (R/Mw)*(c_w[1]*(x+273.15)^-2 + c_w[2]*(x+273.15)^-1 + c_w[3] +

c_w[4]*(x+273.15) + c_w[5]*(x+273.15)^2 + c_w[6]*(x+273.15)^3 +
c_w[7]*(x+273.15)^4) # Valid for 273.15 - 373.15 K

↪→

↪→

10 Cp_a_nasa(x) = (R/Ma)*(c_a[1]*(x+273.15)^-2 + c_a[2]*(x+273.15)^-1 + c_a[3] +
c_a[4]*(x+273.15) + c_a[5]*(x+273.15)^2 + c_a[6]*(x+273.15)^3 +
c_a[7]*(x+273.15)^4) # Valid for 200 - 1000 K

↪→

↪→

Figure 2.10 shows a comparison between the polynomials constructed from the experi-
mental data of Bergman et al. (2011) and the specific heat capacities functions obtained
using the dimensionless molar heat capacity in McBride (2002). Furthermore, it can be
seen in Fig.2.10 that the polynomials constructed from Bergman et al. (2011) fit the
experimental data better than the specific heat capacities functions obtained using the
dimensionless molar heat capacity in McBride (2002)
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Figure 2.10: Comparison between the polynomials constructed from the experimental data of Bergman
et al. (2011) and the specific heat capacities functions obtained using the dimensionless molar
heat capacity in McBride (2002).

During this work, the supervisor, wrote the following functions that fit the experimental
data of Bergman et al. (2011), these functions achieve a good correlation while using the
lowest polynomial order possible. In addition, the coefficients in the functions are scaled
as close as possible to one.

1 # BL heat capacities
2 function cp_a(x) # For air.
3 cp_a0 = 1.007
4 y = x+273.15
5 y0 = 300
6 return cp_a0*(299.94 +

1.008*(y-y0)+1.2e-4*(y-y0)^2+5.9e-7*(y-y0)^3+2.56e-9*(y-y0)^4)/y↪→

7 end
8 #
9 function cp_w(x) For water.

10 cp_w0 = 4.179
11 y = x+273.15
12 y0 = 300
13 return cp_w0*(0.9998-6.6e-5*(y-y0) +

6.39e-6*(y-y0)^2-1.145e-7*(y-y0)^3+8.9e-10*(y-y0)^4)↪→

14 end

Moreover, Fig. 2.11 shows a comparison between the supervisor functions and the func-
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Figure 2.11: Comparison between the polynomials constructed using polyfit and the functions con-
structed by the supervisor (BL fit) for the experimental data in Bergman et al. (2011).

tions obtained using polyfit.

Finally, the supervisor functions were used to obtain the numeric solution of the non-ideal
case of temperature dependence in the specific heat capacities of air and water for the heat
exchanger model. Figure 2.12 shows the numeric Solution of the non-ideal heat exchanger
model when ĉp(T ).

. . . Comparison between the analytic solution and the numeric solution of the
non-ideal case of temperature dependence in the specific heat capacities of air and
water

Figure 2.13 shows a comparison between the analytic solution and the numeric solution
when ĉp(T ).

Also, it is of interest to compare the computation time between the two numeric solutions.
The benchmark results are summarized in Table 2.6, which shows the non-ideal case of
temperature dependence almost five times slower than the ideal case.
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Figure 2.12: Numeric solution of the non-ideal heat exchanger model when ĉp(T ).

Figure 2.13: Analytic solution vs. numeric solution when ĉp(T ).
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Model Median time (ms) Mean time (ms)
The numeric solution when ĉp 3.990 4.798
The numeric solution when ĉp(T ) 19.061 20.630

Table 2.6: Benchmark results for the non-ideal heat exchanger model.

. Implementation of the Thermal Model of an Air-Cooled
Synchronous Generator in Julia with Ideal and Non-Ideal
Heat Exchanger Models

The DAE model of the air-cooled synchronous generator is implemented in Appendix B.2
as an ODE function called DAE_Model_Synchronous_Generator. Furthermore,
the ODE function is part of the DAEProblem definition which is solved by a DAE
solver (IDA) from the Julia package Sundials.jl. In addition, the previous heat exchanger
models where implemented in the lines 98− 121 of the ODE function as shown in the
code below.

98 ## Heat exchanger temperatures
99 u_hex = [Twc Tah mdw mda]

100 if f == hex_a
101 xspan_a = collect(0:0.01:1) # step size for the analytic model is specified

here.↪→

102 par_hex_a = [UAx chpw chpa]
103 sol_analytic = map(x -> hex_a(u_hex, par_hex_a, x), xspan_a) |> vec2vec
104 out[30] = - Twh + sol_analytic[1][end]
105 out[31] = - Tac + sol_analytic[end][1]
106 elseif f == hex_n_Cp_T_dep
107 xspan_n = (0.0, 1.0)
108 par_hex_n_Cp_T_dep = [UAx cp_w cp_a] # Here, cp_w and cp_a are functions.
109 sol_numeric_Cp_T_dep = hex_n_Cp_T_dep(u_hex, par_hex_n_Cp_T_dep, xspan_n);
110 out[30] = - Twh + sol_numeric_Cp_T_dep.u[end][1]
111 out[31] = - Tac + sol_numeric_Cp_T_dep.u[1][end]
112 elseif f == hex_n_Cp_T_indep
113 xspan_n = (0.0, 1.0)
114 par_hex_n_Cp_T_indep = [UAx chpw chpa] # Here, chpw and chpa are constants.
115 sol_numeric_Cp_T_indep = hex_n_Cp_T_indep(u_hex, par_hex_n_Cp_T_indep, xspan_n);
116 out[30] = - Twh +sol_numeric_Cp_T_indep.u[end][1]
117 out[31] = - Tac + sol_numeric_Cp_T_indep.u[1][end]
118 else
119 InterruptException()
120 println("Invalid Heat-Exchanger function name")
121 end

In this code, it is important to highlight that the heat exchanger model is solved for
each time step in the DAE solver to obtain T h

w and T c
a . Next the following models are
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2.5 Implementation of the Thermal Model of an Air-Cooled Synchronous Generator in
Julia with Ideal and Non-Ideal Heat Exchanger Models

Model Median time (ms) Mean time (ms)
Model 1 5.387 6.604
Model 2 2428 2398
Model 3 9796 9796

Table 2.7: Benchmark results for the thermal model of an air-cooled synchronous generator.

compared:

1. Model 1: Air-cooled synchronous generator with the analytic heat exchanger model.

2. Model 2: Air-cooled synchronous generator with the numeric ideal heat exchanger
model.

3. Model 3: Air-cooled synchronous generator with the numeric non-ideal heat ex-
changer model.

In model 1, the explicit expressions of Eqs 2.71 and 2.72 are used, whereas in model 2 and
model 3, the thermal model of an air-cooled synchronous generator have to be solved in
two stages, in the first stage, the two-point boundary value problem of the heat exchanger
model is solved numerically (using one of the BVP solvers mentioned earlier), and in the
second stage, the DAE model of the air-cooled synchronous generator is solved using the
DAE solver (IDA).

Then, the generator model outputs y (the generator metal temperatures) are selected for
comparison, and as expected,3 Fig. 2.14 shows no difference between the metal temper-
atures of model 1 and model 2 (since the numeric solution of the ideal heat exchanger is
the same as the analytic), on the other hand, the temperature dependence in the specific
heat capacities in model 3 decreased the metal temperatures about 3.3◦C as shown in
Fig. 2.15

Finally, Table 2.7 summarizes the execution speed:

3There should not be any difference in the generator metal temperatures since analytic and the numeric
solution of the ideal heat exchanger model matched in Fig. 2.8.
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2 Overview of the Thermal Model of an Air-Cooled Synchronous Generator, With Ideal
and Non-Ideal Heat Exchanger Model

Figure 2.14: Analytic vs. numeric solution of the thermal model of an air-cooled synchronous generator
with an ideal heat exchanger model.

Figure 2.15: Analytic vs. numeric solution of the thermal model of an air-cooled synchronous generator
with a non-ideal heat exchanger model.
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Counter-Current Heat Exchanger
Regression Model

In Chapter 2, the benchmark results in Table 2.5 and Table 2.6 for the heat exchanger
model, and the benchmark results in Table 2.7 for the thermal model of an air-cooled
synchronous generator show that the numeric solution of the linear two-point boundary
value problem is slower than analytic solution for the ideal heat exchanger model. More
importantly, the benchmark results show a very long simulation time for the numeric
solution of the nonlinear two-point boundary value problem for the case of temperature
dependence in the specific heat capacities of air and water. In this work, one of the
objectives is to speed up the solution time through the following strategy:

• First, both the ideal and the non-ideal heat exchanger models are solved many times
off-line for a variety of conditions (T c

w, T h
a , ṁw, and ṁa), and the results (T h

w and T c
a

) are stored in a data matrix.

• Second, a regression model is fitted to the data to form explicit expressions of T h
w

and T c
a for the case of temperature dependence in the specific heat capacities of air

and water. In addition, two types of regression models are considered:

1. Linear regression methods as in Chemometrics.

2. Nonlinear regression methods such as in Neural Networks.

• Finally, the thermal model of the synchronous generator is solved using a hybrid
heat exchanger model that combines the mechanistic model with the regression
model, and the benchmark results are compared to that of Table 2.7.

. Overview of Regression Analysis

Regression analysis is a set of mathematical methods used to model the relationship
between a variable of interest, called the regressand, and a set of predictor variables called

53



3 Counter-Current Heat Exchanger Regression Model

the regressors. It is used widely and intensively in almost all scientific disciplines and has
become an integral part of quantitative research (Gujarati, 2019).1

Regression analysis is mainly used for two distinct purposes, prediction, where it overlaps
with the field of machine learning, and hypothesis testing. If the aim is prediction, then
regression analysis is used to estimate the parameters of a predictive model to an observed
data set of values of the regressand and the regressor variables. Only after developing
the predictive model, also called the regression model, a prediction of the regressand
for additional values of the regressor variables is possible. In practice, all the analysis
is based on sample data because one rarely observes the true population of interest of
some phenomenon. If the aim is hypothesis testing, then regression analysis is used to
draw conclusions about how the population of regressand relates to the population of the
regressor based on the sample data (Gujarati, 2019).1

In this work, the focus will be on the first of the two aims of regression analysis. The goal
is to predict the output temperatures of air and water, of the non-ideal heat exchanger
model using a regression model. Two different types of regression models are considered;
linear regression methods as in Chemometrics, and nonlinear regression methods such as
in Neural Networks.

. . Linear regression

Given a data set {yi, x1i, x2i, . . . , xki}n
i=1 of n observations, a generic linear regression model

can be expressed as (Gujarati, 2019; Chatterjee and Simonoff, 2013):1

yi = β1x1i +β2x2i +β3x3i + . . .+βkxki + εi, i = 1,2,3, . . . ,n, (3.1)

here, y is the regressand; alternative names are dependent variable, response, explained
variable, and endogenous variable. x1, x2, . . . , xk are called the regressor variables; other
names that are used interchangeably are independent variable, explanatory variable, pre-
dictor, covariates, and exogenous variable. In this work, the neutral terms regressand
and regressor are used. β1,β2, . . . ,βk are the population regression coefficients or regres-
sion parameters. ε is the stochastic error term, also called the disturbance term. The
disturbance term ε accounts for all additional factors or uncontrolled influences which
affect the regressand yi other than the regressors x1, x2, . . . , xk. The subscript i refers to
the observation in the data set (Gujarati, 2019).1

It is important to mention that the term linear in linear regression means that the re-
gressand is a linear function of the regression parameters; it does not have to be a linear

1Wikipedia contributors (Mar. 2020g). Regression analysis — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Regression_analysis&oldid=944367056.
[Online; accessed 12-April-2020]
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3.1 Overview of Regression Analysis

function of the regressors variables. It is equally important to understand that the values
of the regressand and the regressors are known from the data set; they are the observed
values. However, the values of the population regression coefficients are unknown. The
goal in linear regression is to estimate these coefficients using one of many available es-
timation methods. One of the common estimation techniques is the method of ordinary
least squares (OLS), also known as Linear least squares (Gujarati, 2019; Chatterjee and
Simonoff, 2013).2

In this work, matrix notation is used to simplify the representation of calculations that are
made in linear regression, and to make use of the Array data structure in Julia language.
Equation 3.1 represents a system of equations that can be stacked together and written
in matrix notation as (Gujarati, 2019):

y = Xβ + ε, (3.2)

here, y and ε are n× 1 column vectors, and β is an k× 1 column vector, while X is the
regressor matrix of size n× k. Alternative names for X are the data matrix, the design
matrix and the model matrix.3 The columns of the data matrix are not necessarily the
regressors but can be any functions of them, such as cross-product or quadratic terms
(Marquardt, 1980). Equation 3.2 can be written out fully as (Gujarati, 2019; Helwig,
2017): 

y1
y2
y3
...

yn

=

 x11 x21 x31 . . . xk 1
... ... ... . . . ...

x1n x2n x3n . . . xk n




β1
β2
β3
...

βk

+


ε1
ε2
ε3
...

εn

 . (3.3)

The regression in 3.3 is known as Multiple Linear Regression if the number of regressors
k > 1. Otherwise, if k = 1, it is known as a simple linear regression. If the number of the
regressand m > 1, then the regression is known as Multivariate Linear Regression, and the
model is called a general linear model (Helwig, 2017).4 In Multivariate Linear Regression,

2Wikipedia contributors (Apr. 2020e). Linear regression — Wikipedia, The Free Encyclopedia. https:
//en.wikipedia.org/w/index.php?title=Linear_regression&oldid=948596126. [Online;
accessed 12-April-2020]

3Wikipedia contributors (Jan. 2020c). Design matrix — Wikipedia, The Free Encyclopedia. https:
//en.wikipedia.org/w/index.php?title=Design_matrix&oldid=937659051. [Online; accessed
12-April-2020]

4Wikipedia contributors (Dec. 2019b). General linear model — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=General_linear_model&oldid=932027631.
[Online; accessed 13-April-2020]

55

https://en.wikipedia.org/w/index.php?title=Linear_regression&oldid=948596126
https://en.wikipedia.org/w/index.php?title=Linear_regression&oldid=948596126
https://en.wikipedia.org/w/index.php?title=Design_matrix&oldid=937659051
https://en.wikipedia.org/w/index.php?title=Design_matrix&oldid=937659051
https://en.wikipedia.org/w/index.php?title=General_linear_model&oldid=932027631


3 Counter-Current Heat Exchanger Regression Model

Eq. 3.3 takes the form (Helwig, 2017): y11 . . . ym1
... . . . ...

y1n . . . ymn

=

 x11 x21 . . . xk 1
... ... . . . ...

x1n x2n . . . xk n


 β11 . . . βm1

... . . . ...
β1k . . . βmk

+

 ε11 . . . εm1
... . . . ...

ε1n . . . εmn

 ,

(3.4)

here, Y and ε are n×m matrices, and β is a matrix of size k×m, Usually, a constant
regressor that takes the value of 1 is introduced to each observation in the data set. The
constant regressor coefficient β1 is called the intercept. The other regression parameters
β2, . . . ,βk, are known as the partial regression coefficients because they relate the change
in the regressand when the regressor associated with it change while all other regressors
are held constant (Gujarati, 2019; Chatterjee and Simonoff, 2013).2

By including a constant regressor in the data matrix, Eq. 3.4 is expressed as: y11 . . . ym1
... . . . ...

y1n . . . ymn

=

 1 x21 . . . xk 1
... ... . . . ...
1 x2n . . . xk n


 β11 . . . βm1

... . . . ...
β1k . . . βmk

+

 ε11 . . . εm1
... . . . ...

ε1n . . . εmn

 .

(3.5)
The model in Eq. 3.5 is based on the population of interest that is the focus of some
statistical analysis. Therefore, it is known as the population regression model. However,
as mentioned before, one rarely observes the true population of interest, and the estimation
is based on sample data. Using the sample data, an estimate β̂ of the population regression
coefficients can be made (Gujarati, 2019).

. . . Ordinary least squares (OSL)

To estimate the regression coefficients using the method of ordinary least squares, one can
begin with the matrix form of the multiple linear regression model (Gujarati, 2019):

y = Xβ̂ + e. (3.6)

The disturbance term ε is replaced by e, a vector of residuals. Also, the regression
parameters β is replaced by β̂ , a vector of estimators of β . The residual is the sample
equivalent of the disturbance term (Gujarati, 2019). The disturbance term is the difference
between the actual values of the regressand and the population mean. On the other hand,
the residual is the difference between the actual values of the regressand and the sample
mean.5 Using Eq. 3.6 the residual can be expressed as:

e = y−Xβ̂ . (3.7)
5Wikipedia contributors (Apr. 2020d). Errors and residuals — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Errors_and_residuals&oldid=949672133.
[Online; accessed 13-April-2020]
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3.1 Overview of Regression Analysis

Figure 3.1: Hypothetical scattergram (Gujarati, 2019).

Figure 3.1 shows an example of a hypothetical Scattergram where the residual is the
vertical distance between the data points (yi, the actual values) and the straight line.
The straight line in Fig. 3.1 is the ordinary least-squares regression line, which is an
estimate of the true population regression line. Also, it can be seen that residual for
some of the observations have a negative value while others have a positive value. The
aim is to find an estimate of the regression coefficients that make the sum of residuals
as small as possible, ideally zero. In ordinary least squares, one minimizes the sum of
squared residuals (SSR) instead of the sum of residuals to avoid problems associated with
the sign of the residuals.6 In this work, the term residual sum of squares (RSS) will
be used instead of SSR. In the hypothetical Scattergram, ordinary least squares found
the best-fitting line, which is the case for the simple linear regression. If there were two
regressors, ordinary least squares would have found a regression plane or a regression
surface (Gujarati, 2019; Chatterjee and Simonoff, 2013).

The residual sum of squares can be minimized by taking the derivative with respect to
the unknown β̂ and setting the resulting equations to zero (Gujarati, 2019). First, the

6The sum of squared residuals is also called the sum of squared estimate of errors (SSE).
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3 Counter-Current Heat Exchanger Regression Model

residual sum of squares is expressed in matrix notation:

∑e2
i = eᵀe

=
(

y−Xβ̂
)ᵀ(

y−Xβ̂
)

=
(

yᵀ− β̂ᵀXᵀ
)(

y−Xβ̂
)

= yᵀy−2β̂ᵀXᵀy+ β̂ᵀXᵀXβ̂ ,

(3.8)

where yᵀXβ̂ = β̂ᵀXᵀy by matrix transpose properties. Second, taking the derivative of
Eq. 3.8 with respect to β̂ :

∂eᵀe

∂ β̂
=−2Xᵀy+2XᵀXβ̂ . (3.9)

Next, setting the derivative to zero:

0 =−2Xᵀy+2XᵀXβ̂ . (3.10)

Then, move the term with β̂ to the left hand side:

XᵀXβ̂ = Xᵀy. (3.11)

Note that XᵀX is a square matrix. If the inverse of XᵀX exists, then it is possible to
premultiply the expression with the inverse (XᵀX)−1 to obtain an expression for β̂ :

(XᵀX)−1(XᵀX)β̂ = (XᵀX)−1Xᵀy, (3.12)

here (XᵀX)−1(XᵀX) = I, which is the identity matrix, and Iβ̂ = β̂ . Finally, the regression
coefficients are given by (Gujarati, 2019; Chatterjee and Simonoff, 2013):

β̂ = (XᵀX)−1Xᵀy. (3.13)

Its worth mentioning that the inverse of XᵀX exists only if the number of the observations
n is larger than the number of the regressors k, which is when the matrix X is of full column
rank . After obtaining an estimate of the population regression coefficients, the regression
function is expressed as (Gujarati, 2019):

ŷ = Xβ̂ , (3.14)

here, ŷis called the predicted value of y; it is an estimation of the population mean response
for a given value of the regressand (Gujarati, 2019; Kiernan, 2018).
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3.1 Overview of Regression Analysis

. . . The coefficient of determination (R2)

There are several statistics to compare different regression models that use OLS estima-
tion. The coefficient of determination is one statistic that describes how well the model
fits a set of observations.7 Specifically, the coefficient of determination measures the per-
centage of the variance in the regressand that is predictable from the regressors; R2 is a
relative measure of the goodness-of-fit of the model and is defined as (Gujarati, 2019):8

R2 =
Explained sum of squares

Total sum of squares
=

ESS
TSS

. (3.15)

The total sum of squares (TSS) for a zero-intercept multivariate regression model is given
by:9

TSS =
n

∑
i=1

y2
i , (3.16)

or in matrix notation as:
TSS = YᵀY. (3.17)

However, if the model contained an intercept, then the total sum of squares needs to be
mean-corrected (Gujarati, 2019; Chatterjee and Simonoff, 2013; Helwig, 2017):

TSS =
n

∑
i=1

(yi − ȳ)2, (3.18)

where, ȳ is the mean of the regressand observations:

ȳ =
1
n

n

∑
i=1

yi. (3.19)

In matrix notation, Eq. 3.18 is expressed as (Gujarati, 2019):

TSS = YᵀY−nȳ2. (3.20)

7The coefficient of determination should not be confused with the coefficient of multiple correlation,
which is the square root of R2.

8Wikipedia contributors (Mar. 2020a). Coefficient of determination — Wikipedia, The Free Encyclope-
dia. https://en.wikipedia.org/w/index.php?title=Coefficient_of_determination&oldid=
946053744. [Online; accessed 13-April-2020]

9In some literature, the symbol SStot is used instead of TSS.
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3 Counter-Current Heat Exchanger Regression Model

It is possible to partition TSS in Eq. 3.18 as (Helwig, 2017):10

TSS =
n

∑
i=1

(yi − ȳ)2

=
n

∑
i=1

(yi − ŷi + ŷi − ȳ)2

=
n

∑
i=1

(yi − ŷi)
2 +

n

∑
i=1

(ŷi − ȳ)2 +2
n

∑
i=1

(yi − ŷi)(ŷi − ȳ)

=
n

∑
i=1

(yi − ŷi)
2 +

n

∑
i=1

(ŷi − ȳ)2 +2
n

∑
i=1

(ŷi − ȳ)ei.

(3.21)

The last term in the previous expression is zero because one of the properties of OSL is
that the sum of the residuals is zero (Gujarati, 2019).10 Therefore,

TSS =
n

∑
i=1

(ŷi − ȳ)2 +
n

∑
i=1

(yi − ŷi)
2. (3.22)

The first term on the right-hand side in the previous expression is the mean-corrected
explained sum of squares (Gujarati, 2019; Chatterjee and Simonoff, 2013):11

ESS =
n

∑
i=1

(ŷi − ȳ)2. (3.23)

In matrix notation, ESS is expressed as (Gujarati, 2019):

ESS = β̂ᵀXᵀXβ̂ −nȳ2. (3.24)

For regression through the origin ESS = ∑n
i=1 ŷ2

i , or in matrix notation, ESS = β̂ᵀXᵀXβ̂ .
The last term in Eq. 3.22 is the residual sum of squares (RSS) (Gujarati, 2019; Chatterjee
and Simonoff, 2013):12

RSS =
n

∑
i=1

(yi − ŷi)
2. (3.25)

In matrix notation, the residual sum of squares can be expressed by Eq. 3.8:

∑e2
i = eᵀe. (3.26)

10Wikipedia contributors (Nov. 2019a). Explained sum of squares — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Explained_sum_of_squares&oldid=925963298.
[Online; accessed 13-April-2020]

11Explained sum of squares is also called the regression sum of squares (SSreg).
12In some literature, the symbol SSres is used instead of RSS.
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Figure 3.2: A visual interpretation of the coefficient of determination.8

Accordingly, the coefficient of determination for a model with an intercept can be ex-
pressed as (Gujarati, 2019):8

R2 =
β̂ᵀXᵀXβ̂ −nȳ2

YᵀY−nȳ2 , (3.27)

and for a zero-intercept model as:

R2 =
β̂ᵀXᵀXβ̂

YᵀY
. (3.28)

Alternatively, the coefficient of determination can be expressed in terms of RSS as (Gu-
jarati, 2019; Chatterjee and Simonoff, 2013):8

R2 = 1− Residual sum of squares
Total sum of squares

= 1− RSS
TSS

= 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 .

(3.29)

Figure 3.2 shows a visual interpretation of R2. In the figure, the blue area on the right
is equal (yi − ŷi)

2, and the red area on the left is (yi − ȳ)2 for some observations, i.e., the
coefficient of determination is:

R2 = 1− ∑Area in blue
∑Area in red

. (3.30)
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Sum of squares (SS) The degrees of freedom (df)
ESS = ∑n

i=1(ŷi − ȳ)2 dfreg = k
RSS = ∑n

i=1(yi − ŷi)
2 dfres = n− k

TSS = ∑n
i=1(yi − ȳ)2 dftot = n−1

Table 3.1: Sum of squares and their corresponding degrees of freedom. k is the number regression pa-
rameters, and n is the number of observations (Gujarati, 2019; Chatterjee and Simonoff, 2013;
Helwig, 2017; S. Pandey and Bright, 2008; Nau, 2014).8

Similarly, R2 for a model with an intercept is expressed as:

R2 = 1− eᵀe
YᵀY−nȳ2 , (3.31)

and for a zero-intercept model as:

R2 = 1− eᵀe
YᵀY

. (3.32)

A helpful property of R2 is that normally it ranges 0 to 1, where a value of one indicates
a perfect fit, and a value of zero indicates no improvement over the so called mean model,
which makes assessing the goodness-of-fit of the model more intuitive.13 On the other
hand, a well-known property of R2 is that it increases every time additional regressor
is added to the model despite no improvement in the model’s fit. Then, R2 must be
adjusted to incorporates the model’s degrees of freedom (df) to make it an unbiased
estimator. The degrees of freedom adjust R2 for the number of regressors relative to the
number of observations (Gujarati, 2019; Chatterjee and Simonoff, 2013).8

Table 3.1 summarizes the previously mentioned Sum of squares and their corresponding
degrees of freedom.14

The adjusted R2 is denoted R̄2 and is expressed as (Gujarati, 2019):

R̄2 = 1−
RSS
dfres
TSS
dftot

= 1− RSS
TSS

× dftot

dfres

= 1− (1−R2)
dftot

dfres

= 1− (1−R2)
n−1
n− k

.

(3.33)

13In a zero-intercept model (regression through the origin), the last term in Eq. 3.21 can take a negative
value. Then R2 will take a negative value, which means that the mean ȳ (which is a horizontal line)
describes the data better than the regression model.

14In Helwig (2017), The degrees of freedom in Multivariate Linear Regression are multiplied by the
number of regressands m.
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It is worth mentioning that R̄2can take a negative value if the number of regression
parameters are larger than the number of observations.

. . . The standard error of the regression

If the main aim of the regression model is prediction, then there is one statistic that takes
precedence over the others, namely the root mean square error (RMSE) (Grace-Martin,
2008). When adjusted for the degrees of freedom for the residuals, then it is called the
standard error of the regression or the Standard Error of the Estimate.15 RMSE is defined
as:16,17,18

RMSE =
√

Mean Square Error

=

√
∑n

i=1(yi − ŷi)2

n

=

√
RSS

n
,

(3.34)

where n is the number of observation. On the other hand, the standard error of the
regression is the standard deviation of the residuals, and is defined as:15,19,18

s =

√
∑n

i=1(yi − ŷi)2

n− k
, (3.35)

here, k is the number of parameters in the model. If the number of observations was much
larger than the number of coefficients in the regression model, then the difference between
RMSE and the standard error of the regression will be small. A helpful property of the
standard error of the regression is that it have same unit of the regressand, and unlike R2

or R̄2 it is an absolute measure of goodness-of-fit, where a lower value indicates a better
fit (Grace-Martin, 2008).

15Wikipedia contributors (Apr. 2020f). Ordinary least squares — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Ordinary_least_squares&oldid=948717245.
[Online; accessed 13-April-2020]

16Wikipedia contributors (Feb. 2020h). Root-mean-square deviation — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Root- mean- square_deviation&oldid=
941256353. [Online; accessed 13-April-2020]

17RMSE is also known as the root mean square deviation (RMSD).
18NobleProg, ed. (June 2014). Standard Error of the Estimate - Training Material. https://training-

course-material.com/training/Standard_Error_of_the_Estimate. [Online; accessed 13-April-
2020]

19The standard error of the regression is also called the residual standard error.
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. Cross-Validation

Cross-validation, also called out-of-sample testing, is any of the various model valida-
tion procedures in which the model’s predictive ability is tested for accuracy. In cross-
validation, the sample data is partitioned into complementary subsets called the training
dataset and the validation dataset. The training dataset is used to train/build or esti-
mate the model parameters, and the validation dataset is used to evaluate the model’s
predictive performance. For the evaluation purpose it is common to use single-parameter
indicators of goodness-of-fit, such as R2 and RMSE. The process of partitioning, train-
ing, and evaluation is considered a single run or one round of cross-validation. In most
methods of cross-validation, multiple runs are usually performed to reduce the variability
of the validation results, the results of multiple runs are typically averaged together. The
goal in cross-validation is to obtain a consistent accuracy for the training and validation
data sets, which is an indication that the model will continue to be accurate when applied
to an entirely new set of data. In addition, cross-validation is used to detect issues such as
model overfitting. Figure 3.3 shows how that total error varies as the model complexity
increase.20 Cross-validation methods can be classified into two types according to the way
the original sample is divided (Allen, 2017):21,22

1. Exhaustive cross-validation: as the name implies, these methods considers all pos-
sible ways to divide the original sample.

2. Non-exhaustive cross-validation: the methods that do not consider all possible ways
to divide the original sample.

One of the simplest methods is the Holdout method: it is a non-exhaustive cross-validation
method, where the data is split randomly into two datasets; a training set to estimate
the model’s parameters and test set to assess the performance of the model. The training
dataset is typically larger than the test set. Also, the Holdout method involves a single
run, but it can be repeated multiple times to improve its strength as a validation method.22

The Holdout method is relatively easy to program in Julia, but for more complex methods,
the package MLBase.jl can be used, it contains the following cross-validation schemes:

1. Exhaustive methods:

• Leave-one-out cross-validation (LOOCV).
20DataVedas (Mar. 2018). REGULARIZED REGRESSION ALGORITHMS | Data Vedas. en-US.

https://www.datavedas.com/regularized- regression- algorithms/. [Online; accessed 11-
April-2020]

21Wikipedia contributors (Aug. 2019c). Regression validation — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Regression_validation&oldid=913207226.
[Online; accessed 13-April-2020]

22Wikipedia contributors (Apr. 2020b). Cross-validation (statistics) — Wikipedia, The Free Encyclope-
dia. https://en.wikipedia.org/w/index.php?title=Cross-validation_(statistics)&oldid=
948965871. [Online; accessed 13-April-2020]
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3.3 Linear Regression of the Counter-Current Heat Exchanger Model

Figure 3.3: Model overfitting.20

2. Non-exhaustive methods:

• k-fold cross-validation (k-fold).

• Repeated random sub-sampling validation, also known as Monte Carlo cross-
validation.

. Linear Regression of the Counter-Current Heat Exchanger
Model

To reiterate what was mentioned at the beginning of this chapter, one of the objectives
in this work is to speed up the solution time of the non-ideal heat exchanger model (the
case of temperature dependence in the specific heat capacities of air and water). Then, in
this section, to speed up the solution time, an explicit data-driven model for the non-ideal
heat exchanger model is developed by linear regression, which is expressed as a correction
expression to the ideal heat exchanger model. Also, when solving the dynamic thermal
model of the generator, the explicit data-driven model (which is fast) is used instead of
solving a nonlinear two-point boundary value problem (which is slow) in each time step
of the DAE solver.
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3 Counter-Current Heat Exchanger Regression Model

. . Implementation of linear regression in Julia

Based on the information presented in Section 3.1, linear regression of the of the counter-
current heat exchanger model is implemented in Appendix B.3. In this work, first, the
ideal and the non-ideal heat exchanger models are solved for a variety of conditions (T c

w,
T h

a , ṁw, and ṁa) to generate data matrices of the analytic (a data matrix of T h,A
w and

T c,A
a ) and the numeric (a data matrix of T h,N

w and T c,N
a ) solutions, respectively.23 Then,

linear regression is carried out on the data matrices to estimate the parameters (β̂ ) of the
regression model. Next, once the parameters are known, prediction of T h,R

w and T c,R
a is

performed using Eq. 3.14.24 The following code illustrate:

1 ####### Generating the dataset #######
2 # Experimental ranges
3 n_Tw = 20
4 n_Ta = 20
5 ngrid = n_Tw*n_Ta
6 #
7 r_Twc = range(4.,30.,length=n_Tw)
8 r_Tah = range(40.,100.,length=n_Ta)
9 #

10 T_grid = [[Twc,Tah] for Twc in r_Twc, Tah in r_Tah]
11 TTAgrid_c1 = Matrix{Float64}(undef,2,ngrid)
12 TTNgrid_c1 = Matrix{Float64}(undef,2,ngrid);
13 ####### Solving model for all inputs #######
14 for i in 1:ngrid
15 Twc,Tah = T_grid[i]
16 u_hex = [Twc Tah mdw mda]
17 sol_analytic = map(dx -> hex_a(u_hex, par_hex_a, dx), xspan_a)
18 TTAgrid_c1[:,i] .= [sol_analytic[end][1],sol_analytic[1][end]]
19 sol_numeric = hex_n(u_hex, par_hex_n, xspan_n)
20 TTNgrid_c1[:,i] .= [sol_numeric[end][1],sol_numeric[1][end]]
21 end
22 ####### Estimating the Parameters of the Model #######
23 X = (phi_m.(mat2vec(TTAgrid_c1);n=1) |> x -> reduce(hcat,x))'
24 Y = TTNgrid_c1';
25 beta = inv(X'X)X'Y
26 #
27 # However, in practice, the backslash operator \ is used in the calculation of beta
28 # since not all matrices are well defined with full-rank.
29 beta = (X'X)\X'Y
30 # or
31 beta = X\Y
32 ####### Predicting new values #######
33 ŷ = X*beta;

23In this work, the design matrix is a polynomial of the regressors T h,A
w and T c,A

a .
24In this work, the superscript R is used for the predicted values of T h

w and T c
a from the regression model.
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3.3 Linear Regression of the Counter-Current Heat Exchanger Model

. . The best-fit model and regression validation

To assess the predictive ability of the regression model, several datasets under the following
conditions were generated:

• Case 1: Constant mass flow rates (ṁw and ṁa), and variable influent temperatures
(T c

w and T h
a ).

• Case 2: Constant influent temperatures (T c
w and T h

a ), and variable mass flow rates
(ṁw and ṁa).

– Case A: Mass flow rates are generated in a high range, including the values
used in case 1.

– Case B: Mass flow rates are generated to a lower range than case (2.A). Here,
the aim is to evaluate the impact of low mass flow rates on the goodness-of-fit.

• Case 3: Variable influent temperatures (T c
w and T h

a ) and mass flow rates (ṁw and
ṁa).

– Case A: Influent temperatures are generated in the same range as case 1, and
the mass flow rates are generated in the same range as case (2.A).

– Case B: The datasets are generated in a wider range as in the case of (3.C).
However, in this case, the mass flow rates are also regressors. The aim, in
this case, is to evaluate the impact of mass flow rates as regressors on the
goodness-of-fit and to compare the goodness of fit with nonlinear regression
later on.

– Case C: This case is the same as case (3.A), except the data is generated for
a wider range. The goal here is to compare the goodness of fit with nonlinear
regression later on.

More details about each case can be found in Appendix B.3. Moreover, to find the
model that best describes the data, two functions were made in Julia to ease the process.
The first function (goodness_of_fit) was made to find the polynomial order of the
design matrix that gives the highest adjusted R-squared and the least standard error
of the regression. The second function (multiple_Holdout) runs the holdout method
multiple times and returns an average of adjusted R-squared, an average of the standard
error of the regression, and an average of RMSE(the root-mean-square error will be used
in comparison with the nonlinear models). The second function aims to validate the
regression models by repeated random sampling of the datasets.25

25Both goodness_of_fit and multiple_Holdout generate the polynomial of the design matrix using
phi_m, a function made by the supervisor.
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3 Counter-Current Heat Exchanger Regression Model

Figure 3.4: Case 1: R̄2 vs. model order.

. . . Simulation results of case 1

In this case, the impact of influent temperatures (T c
w and T h

a ) on the goodness-of-fit is
evaluated. First, the best-fit polynomial order of the design matrix is found using the
goodness_of_fit function. Figure 3.4 and Fig. 3.5 show the impact of increasing
the polynomial order of the design matrix on the adjusted R-squared (R̄2), and on the
standard error of the regression, respectively.

Based on Fig. 3.4 and Fig. 3.5, the following models were chosen to demonstrate the
goodness of fit:

• Model 1: The design matrix has a 1st order polynomial.

• Model 2: The design matrix has a 6th order polynomial.

• Model 3: The design matrix has a 12th order polynomial.

Next, Fig. 3.6 shows a comparison between the regression models and the numerical
solution of the nonlinear two-point boundary value problem for models 1, 2, and 3. In
addition, Fig. 3.7, Fig. 3.8, and Fig. 3.9 show the residuals, and the errors in T h

w
and T c

a (regressed vs. analytic model) for models 1, 2, and 3, respectively. Finally, the
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3.3 Linear Regression of the Counter-Current Heat Exchanger Model

Figure 3.5: Case 1: The standard error of the regression vs. model order.

Model Avg. s, ◦C Avg. RMSE, ◦C Avg. R̄2, −
order T h

w T c
a T h

w T c
a T h

w T c
a

1st 0.01797396 0.0190537 0.00450191 0.00505826 0.99938061 0.99944294
6th 8.062e−5 9.369e−5 9.7e−7 1.96e−6 0.99999987 0.99999979

12th 0.41295796 0.59963816 1.39820202 2.9637627 0.80846771 0.67603817

Table 3.2: Case 1: Validation results.

function multiple_Holdout is used to validate the three models. Table 3.2 summarizes
the validation results.26

. . . Simulation results of case 2.A

In this case, the impact of mass flow rates (ṁw and ṁa) on the goodness-of-fit is evaluated.
Similarly to case 1, first, the best-fit polynomial order of the design matrix is found using
the goodness_of_fit function. Figure 3.10 and Fig. 3.11 show the impact of increasing
the polynomial order of the design matrix on the adjusted R-squared (R̄2), and on the
standard error of the regression, respectively.
26In Table 3.2, the results were rounded to the 8th digit after the decimal point. Also, as mentioned in

Section 3.1, s is the symbol for the standard error of the regression.
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3 Counter-Current Heat Exchanger Regression Model

Figure 3.6: Case 1: Comparison between the regression models (the surfaces in the figure) and the nu-
merical solution of the nonlinear two-point boundary value problem (the data points) for a
1st order, a 6th order, and a 12th order polynomial regression models.
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3.3 Linear Regression of the Counter-Current Heat Exchanger Model

Figure 3.7: Case 1: The residuals, and the errors in T h
w and T c

a , regressed vs. analytic model (1st order
model).
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3 Counter-Current Heat Exchanger Regression Model

Figure 3.8: Case 1: The residuals, and the errors in T h
w and T c

a , regressed vs. analytic model (6th order
model).
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3.3 Linear Regression of the Counter-Current Heat Exchanger Model

Figure 3.9: Case 1: The residuals, and the errors in T h
w and T c

a , regressed vs. analytic model (12th order
model).
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3 Counter-Current Heat Exchanger Regression Model

Figure 3.10: Case 2: R̄2 vs. model order.

Figure 3.11: Case 2: The standard error of the regression vs. model order.
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3.3 Linear Regression of the Counter-Current Heat Exchanger Model

Model Avg. s, ◦C Avg. RMSE, ◦C Avg. R̄2, −
order T h

w T c
a T h

w T c
a T h

w T c
a

1st 0.0257428 0.0503602 0.00923701 0.03534026 0.99172604 0.98918441
6th 4.705e−5 8.981e−5 7.0e−8 1.9e−7 0.99999994 0.99999994

18th 0.64079578 0.94432409 0.296523 0.64326974 0.73520221 0.80353184

Table 3.3: Case 2: Validation results.

Based on Fig. 3.10 and Fig. 3.11, the following models were chosen to demonstrate the
goodness of fit:

• Model 1: The design matrix has a 1st order polynomial.

• Model 2: The design matrix has a 6th order polynomial.

• Model 3: The design matrix has a 18th order polynomial.

Next, Fig. 3.12 shows a comparison between the regression models and the numerical
solution of the nonlinear two-point boundary value problem for models 1, 2, and 3. In
addition, Fig. 3.13, Fig. 3.14, and Fig. 3.15 show the residuals, and the errors in T h

w
and T c

a (regressed vs. analytic model) for models 1, 2, and 3, respectively. Finally, the
function multiple_Holdout is used to validate the three models. Table 3.3 summarizes
the validation results.

. . . Simulation results of case 2.B

In this case, the mass flow rates (ṁw and ṁa) were taken down to a lower range to
observe the impact on the goodness-of-fit. In a similar manner to the previous cases, first,
the best-fit polynomial order of the design matrix is found using the goodness_of_fit
function. Figure 3.16 and Fig. 3.17 show the impact of increasing the polynomial order
of the design matrix on the adjusted R-squared (R̄2), and on the standard error of the
regression, respectively.

Based on Fig. 3.16 and Fig. 3.17, the following models were chosen to demonstrate the
goodness of fit:

• Model 1: The design matrix has a 1st order polynomial.

• Model 2: The design matrix has a 6th order polynomial.

• Model 3: The design matrix has a 18th order polynomial.

Next, Fig. 3.18 shows a comparison between the regression models and the numerical
solution of the nonlinear two-point boundary value problem for models 1, 2, and 3. Fi-
nally, the function multiple_Holdout is used to validate the three models. Table 3.4
summarizes the validation results.
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3 Counter-Current Heat Exchanger Regression Model

Figure 3.12: Case 2: Comparison between the regression models (the surfaces in the figure) and the
numerical solution of the nonlinear two-point boundary value problem (the data points) for
a 1st order, a 6th order, and an 18th order polynomial regression models.
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3.3 Linear Regression of the Counter-Current Heat Exchanger Model

Figure 3.13: Case 2: The residuals, and the errors in T h
w and T c

a , regressed vs. analytic model (1st order
model).
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3 Counter-Current Heat Exchanger Regression Model

Figure 3.14: Case 2: The residuals, and the errors in T h
w and T c

a , regressed vs. analytic model (6th order
model).
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3.3 Linear Regression of the Counter-Current Heat Exchanger Model

Figure 3.15: Case 2: The residuals, and the errors in T h
w and T c

a , regressed vs. analytic model (18th order
model).
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3 Counter-Current Heat Exchanger Regression Model

Figure 3.16: Case 2.B: R̄2 vs. model order.

Figure 3.17: Case 2.B: The standard error of the regression vs. model order.
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3.3 Linear Regression of the Counter-Current Heat Exchanger Model

Figure 3.18: Case 2.B: Comparison between the regression models (the surfaces in the figure) and the
numerical solution of the nonlinear two-point boundary value problem (the data points) for
a 1st order, a 6th order, and an 18th order polynomial regression models.

81



3 Counter-Current Heat Exchanger Regression Model

Model Avg. s, ◦C Avg. RMSE, ◦C Avg. R̄2, −
order T h

w T c
a T h

w T c
a T h

w T c
a

1st 0.05227211 0.10468139 0.0381016 0.15271355 0.98457848 0.97338327
6th 0.00070054 0.00151362 6.16e−6 2.806e−5 0.99999751 0.99999512

18th 2.86256012 3.58890931 8.46572521 12.65635149 −1.07405676 −0.57264847

Table 3.4: Case 2.B: Validation results.

Figure 3.19: Case 3.A: R̄2 vs. model order.

. . . Simulation results of case 3.A

This case is the most comprehensive yet, that is because the dataset is generated on a
wider range than previously. In a similar manner to the previous cases, first, the best-fit
polynomial order of the design matrix is found using the goodness_of_fit function.
Figure 3.19 and Fig. 3.20 show the impact of increasing the polynomial order of the
design matrix on the adjusted R-squared (R̄2), and on the standard error of the regression,
respectively.

Based on Fig. 3.19 and Fig. 3.20, the following models were chosen to demonstrate the
goodness of fit:

• Model 1: The design matrix has a 1st order polynomial.

• Model 2: The design matrix has a 6th order polynomial.
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3.3 Linear Regression of the Counter-Current Heat Exchanger Model

Figure 3.20: Case 3.A: The standard error of the regression vs. model order.

Model Avg. s, ◦C Avg. RMSE, ◦C Avg. R̄2, −
order T h

w T c
a T h

w T c
a T h

w T c
a

1st 0.0775944 0.20320863 0.10555031 0.72372327 0.98797304 0.94702488
6th 0.07866278 0.20599263 0.09975618 0.68380548 0.98862523 0.94991916

18th 2.82202043 3.55549681 71.74191069 111.37147539 −4.03230806 −4.15195954

Table 3.5: Case 3.A: Validation results.

• Model 3: The design matrix has a 18th order polynomial.

Next, Fig. 3.21 shows a comparison between the regression models and the numerical
solution of the nonlinear two-point boundary value problem for models 1, 2, and 3. In
addition, Fig. 3.22, Fig. 3.23, and Fig. 3.24 show the residuals, and the errors in T h

w
and T c

a (regressed vs. analytic model) for models 1, 2, and 3, respectively. Finally, the
function multiple_Holdout is used to validate the three models. Table 3.5 summarizes
the validation results.

. . . Simulation results of case 3.B

In this case, the impact of adding the mass flow rates as regressors on the goodness-of-fit
is examined. In a similar manner to the previous cases, first, the best-fit polynomial
order of the design matrix is found using the goodness_of_fit function. Figure 3.25
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3 Counter-Current Heat Exchanger Regression Model

Figure 3.21: Case 3.A: Comparison between the regression models (the surfaces in the figure) and the
numerical solution of the nonlinear two-point boundary value problem (the data points) for
a 1st order, a 6th order, and an 18th order polynomial regression models.
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3.3 Linear Regression of the Counter-Current Heat Exchanger Model

Figure 3.22: Case 3.A: The residuals, and the errors in T h
w and T c

a , regressed vs. analytic model (1st order
model).
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3 Counter-Current Heat Exchanger Regression Model

Figure 3.23: Case 3.A: The residuals, and the errors in T h
w and T c

a , regressed vs. analytic model (6th order
model).
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Figure 3.24: Case 3.A: The residuals, and the errors in T h
w and T c

a , regressed vs. analytic model (18th
order model).

87



3 Counter-Current Heat Exchanger Regression Model

Figure 3.25: Case 3.B: R̄2 vs. model order.

Model Avg. s, ◦C Avg. RMSE, ◦C Avg. R̄2, −
order T h

w T c
a T h

w T c
a T h

w T c
a

1st 0.05293457 0.10581149 0.19796433 0.79091089 0.98482044 0.96653181
6th 0.04148825 0.06945538 0.11662211 0.32683733 0.99105622 0.98617308

Table 3.6: Case 3.B: Validation results.

and Fig. 3.26 show the impact of increasing the polynomial order of the design matrix on
the adjusted R-squared (R̄2), and on the standard error of the regression, respectively.

Based on Fig. 3.25 and Fig. 3.26, the following models were chosen to demonstrate the
goodness of fit:

• Model 1: The design matrix has a 1st order polynomial.

• Model 2: The design matrix has a 6th order polynomial.

Next, Fig. 3.27 shows a comparison between the regression models and the numerical so-
lution of the nonlinear two-point boundary value problem for the two models. Finally, the
function multiple_Holdout is used to validate the two models. Table 3.6 summarizes
the validation results.
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3.4 Nonlinear Regression

Figure 3.26: Case 3.B: The standard error of the regression vs. model order.

Model Avg. s, ◦C Avg. RMSE, ◦C Avg. R̄2, −
order T h

w T c
a T h

w T c
a T h

w T c
a

1st 0.05941832 0.12447671 0.24952088 1.09498773 0.98087158 0.9536708
6th 0.05634448 0.11860076 0.22325409 0.98907569 0.98288539 0.95815315

Table 3.7: Case 3.C: Validation results.

. . . Simulation results of case 3.C

In a similar manner to the previous cases, first, the best-fit polynomial order of the
design matrix is found using the goodness_of_fit function. Figure 3.28 and Fig. 3.29
show the impact of increasing the polynomial order of the design matrix on the adjusted
R-squared (R̄2), and on the standard error of the regression, respectively. Then, the
function multiple_Holdout is used to validate the two models. Table 3.7 summarizes
the validation results.

. Nonlinear Regression

In this work, the nonlinear regression of the counter-current heat exchanger model is
implemented in Julia in Appendix B.4 using the package Flux.jl (Innes et al., 2018).
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3 Counter-Current Heat Exchanger Regression Model

Figure 3.27: Case 3.B: Comparison between the regression models (the surfaces in the figure) and the
numerical solution of the nonlinear two-point boundary value problem (the data points) for
a 1st order and a 6th order polynomial regression models.

90



3.4 Nonlinear Regression

Figure 3.28: Case 3.C: R̄2 vs. model order.

Figure 3.29: Case 3.C: The standard error of the regression vs. model order.
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3 Counter-Current Heat Exchanger Regression Model

Figure 3.30: Matrix form of a feedforward neural network with two dense layers and an activation function
in between them.

Moreover, the nonlinear mapping between the analytic solution of the ideal counter-
current heat exchanger model and the numeric solution of the non-ideal heat exchanger
model (the case of temperature dependence in the specific heat capacities of air and water)
is achieved using the logistic (also known as sigmoid) activation function (σ), which is
introduced between two linear layers in the classical Feedforward Neural Network (FNN).
Furthermore, the FNN is implemented using the description in Lie (2019b) and Flux
documentation.

In this work, the nonlinear regression model is composed of two dense layers with the
non-linearity (σ) between them as illustrated in Fig. 3.30. Also, note that the activation
function of the second layer is the identity function (σ(Ŷ2) = Ŷ2).

In a similar manner to linear regression, to select the dimension (out) of the layers in
Fig. 3.30 that gives the best fit, the function multiple_Holdout was created to run
the multiple holdout method. In addition, the datasets were generated under the same
conditions of case 3 of linear regression. The results of the multiple holdout method are
presented in Fig. 3.31. It is important to add that the datasets are normalized before
model training begins. Normalization is performed to bring the values of the regressors
to a common scale, where each regressor influences the result according to its importance
as a predictor. The following formula is used to normalize the data:27

27Swetha Lakshmanan (May 17, 2019). How, When and Why Should You Normalize/ Standardize/
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3.5 Comparison of the Execution Speed of the Hybrid and the Numeric Non-Ideal Heat
Exchanger Models

Model Median time (ms) Mean time (ms)
Hybrid solution (Linear regression) 0.0264 0.035998
Hybrid solution (Nonlinear regression) 0.00123 0.001502
Numeric solution 19.316 21.540

Table 3.8: Benchmark results: Hybrid vs. numeric solution of the non-ideal heat exchanger model.

Xnorm =
X −Xmin

Xmax −Xmin
(3.36)

According to Lakshmanan (2019), the approach to normalization in Eq. 3.36 is sensitive
to outliers. For example, Fig. 3.32 shows the data, the data after normalization, and
the results of the nonlinear regression for a model trained using the dataset of case (3.C),
respectively.

. Comparison of the Execution Speed of the Hybrid and the
Numeric Non-Ideal Heat Exchanger Models

In Section 2.4, the execution speed of the non-ideal heat exchanger model with temper-
ature dependence in the specific heat capacities of air and water was compared to the
execution speed of the ideal heat exchanger model. In addition, the execution speed of
the thermal model of an air-cooled synchronous generator was compared in Table 2.7 for
the heat exchanger models. In this section, the execution speeds of the data-driven models
of the heat exchanger, which were developed in Section 3.3 and Section 3.4, are compared
to the execution speed of the non-ideal heat exchanger model (temperature dependence in
the specific heat capacities requires solving a nonlinear two-point boundary value problem
numerically).

The comparison of the execution speeds is implemented in Appendix B.5, where the
explicit data-driven models are expressed as a correction expression to the ideal heat
exchanger model. Furthermore, the combination of the mechanistic model of the heat
exchanger and the data-driven models forms the hybrid heat exchanger model. Moreover,
Table 3.8 shows a comparison of the execution speeds of the hybrid and the numeric
solution of the non-ideal heat exchanger model. Also, Table 3.9 shows a comparison of
the execution speeds of the hybrid and the numeric solution of the thermal model of an
air-cooled synchronous generator with the non-ideal heat exchanger model.

Rescale Your Data? Medium. https://medium.com/@swethalakshmanan14/how-when-and-why-
should- you- normalize- standardize- rescale- your- data- 3f083def38ff. [Online; accessed
09-May-2020]
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3 Counter-Current Heat Exchanger Regression Model

Figure 3.31: Nonlinear regression validation results. The Y-axis is the average RMSE for three models,
each trained on a random sample for 10000 epoch.
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3.5 Comparison of the Execution Speed of the Hybrid and the Numeric Non-Ideal Heat
Exchanger Models

Figure 3.32: Example of nonlinear regression using normalized data.
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Model Median time (s) Mean time (s)
Hybrid solution (Linear regression) 0.016633 0.019648
Hybrid solution (Nonlinear regression) 0.002216 0.002676
Numeric solution 9.673 9.673

Table 3.9: Benchmark results: Hybrid vs. numeric solution of the thermal model of an air-cooled syn-
chronous generator with the non-ideal heat exchanger model.

Model Median time (ms) Mean time (ms)
Hybrid solution (Linear regression) 0.0008535 0.001466
Hybrid solution (Nonlinear regression) 0.00125 0.001469
Numeric solution 19.316 21.540

Table 3.10: Benchmark results for case 4: Hybrid vs. numeric solution of the non-ideal heat exchanger
model.

In addition to Table 3.8 and Table 3.9, Fig. 3.33 compares the metal temperatures of the
data-driven models with the metal temperatures obtained using the numeric solver for
the thermal model of an air-cooled synchronous generator with temperature dependence
in the specific heat capacities of water and air.

Finally, new models were created to improve the previous results using a new dataset
(case 4) that was generated in Appendix B.3 and Appendix B.4. The new dataset cover
a wide range of possible value of ṁw, ṁa, T c

w, and T h
a , but improves the goodness-of-fit.

The reasoning behind this new dataset is discussed in Chapter 4. Table 3.10, Table 3.11,
and Fig. 3.34 show the improved results.

. Comparison of the Mechanistic Model Predictions and
Åbjøra Experimental Data

In Øyvang (2018), a heat-run test was performed for the 103MVA hydro-generator located
at Åbjøra in Norway, and measurements of currents, voltage, power, and temperatures
were taken for 600min from a cold-start. Also, the cold-run lasted up to 53min, after

Model Median time (s) Mean time (s)
Hybrid solution (Linear regression) 0.002052 0.002497
Hybrid solution (Nonlinear regression) 0.002312 0.002745
Numeric solution 9.673 9.673

Table 3.11: Benchmark results for case 4: Hybrid vs. numeric solution of the thermal model of an air-
cooled synchronous generator with the non-ideal heat exchanger model.
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3.6 Comparison of the Mechanistic Model Predictions and Åbjøra Experimental Data

Figure 3.33: Hybrid solution using linear regression (upper figure), and the hybrid solution using nonlinear
regression (lower figure) of the thermal model of an air-cooled synchronous generator.
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3 Counter-Current Heat Exchanger Regression Model

Figure 3.34: Hybrid solution using linear regression (upper figure), and the hybrid solution using nonlinear
regression (lower figure) of the thermal model of an air-cooled synchronous generator for case
4.
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3.6 Comparison of the Mechanistic Model Predictions and Åbjøra Experimental Data

Symbol Description Unit
Ifd Rotor field current A
It Stator terminal current A
T c

w Cold water temperature ◦C
T h

w Hot water temperature ◦C
T h

a Hot air temperature ◦C
T c

a Cold air temperature ◦C
Ts Temperature of stator copper ◦C
TFe Temperature of stator iron ◦C

Table 3.12: Quantities relevant to the comparison of the mechanistic model predictions and Åbjøra ex-
perimental data.

which the field current was increased. In addition, in M. Pandey (2019a), several thermal
models of an air-cooled synchronous generator were developed, and the predictions of the
thermal models were compared with the experimental data of Øyvang (2018).

In this work, in a similar manner to M. Pandey (2019a), the experimental data of the
heat-run test is compared with the predictions of the mechanistic model. However, due
to time constraints, parameter optimization is not carried out. The comparison of the
mechanistic model predictions and Åbjøra experimental data is implemented in Appendix
B.6, and the relevant quantities to the comparison are described in Table 3.12. Figure
3.35 shows the comparison of the mechanistic model predictions and Åbjøra experimental
data. Moreover, in Fig. 3.35, the hybrid thermal model of an air-cooled synchronous
generator (linear regression using case 4 datasets) is compared with the experimental
data of Åbjøra to highlight the impact of the temperature dependence in the specific heat
capacities of air and water in the heat exchanger model.

Finally, to describe the error in the mechanistic model (the error between the predictions
and the experimental data), the data used in the development of an empirical/data-
driven/machine learning model must be informative, that is the data should contain
relevant information to the model, and specifically to the model objectives (Lie, 2019a).
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3 Counter-Current Heat Exchanger Regression Model

Figure 3.35: Comparison of the hybrid model predictions (When ĉp(T )) and Åbjøra experimental data
(Figures on the left). Comparison of the mechanistic model predictions and Åbjøra experi-
mental data (Figures on the right).
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Results and Discussion

This chapter summarizes the results of the work carried out in earlier chapters and dis-
cusses key findings. First, the results of the comparison between the analytic and the
numeric solution of the counter-current heat exchanger models are presented. Second,
the results of the regression of the counter-current heat exchanger model are examined
and explained. Third, the execution speeds of the data-driven models and the numeric
solution of the non-ideal heat exchanger model are analyzed and compared. Finally, the
comparison between the predictions of the mechanistic model and Åbjøra experimental
data are presented.

. Analytic vs. Numeric Solution of the Counter-current Heat
Exchanger Model

In Chapter 2, an overview of the thermal model of an air-cooled synchronous genera-
tor with ideal and non-ideal heat exchanger models was given. Also, the impact of the
temperature dependence in the specific heat capacities of air and water on the solution
of the heat exchanger sub-model was discussed. In particular, it was discussed how a
linear/nonlinear two-point boundary value problem may form depending on the assump-
tion of temperature dependence in the specific heat capacities. Moreover, in Appendix
B.2, the solution of the thermal model of an air-cooled synchronous generator with ideal
and non-ideal heat exchanger models was implemented, and it was highlighted how the
linear/nonlinear two-point boundary value problem of the heat exchanger sub-model is
solved for each time step in the dynamic model.

In addition, as mentioned in the task background in Appendix A, the numerical solution of
the linear/nonlinear two-point boundary value problem is relatively costly for online use,
which was verified in the benchmark results of Table 2.4, Table 2.5, Table 2.6, and Table
2.7. For convenience, Table 4.1 summarizes the benchmark results that was presented
in the previous tables. It can be seen in Table 4.1 that the numeric solution when the
specific heat capacities depend on temperature is about 4 to 5 times slower than the
numeric solution when the specific heat capacities does not depend on temperature. Also,
Table 4.1 shows that the analytic solution is about 350 to 450 times faster than the
numeric solution for the case of temperature independence in the specific heat capacities
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4 Results and Discussion

Benchmark results of the BVP solvers available in Julia language when
ĉp(T ) in the heat exchanger sub-model

Method Median time (ms) Mean time (ms)
Shooting 20.064 21.741
GeneralMIRK4 846.158 849.103
MIRK4 867.653 873.557

Benchmark results of the heat exchanger sub-model
Model Median time (ms) Mean time (ms)
The analytic solution 0.009 0.01063
The numeric solution when ĉp 3.990 4.798
The numeric solution when ĉp(T ) 19.061 20.630
Benchmark results of the thermal model of an air-cooled synchronous generator
Model Median time (ms) Mean time (ms)
The analytic solution 5.387 6.604
The numeric solution when ĉp 2428 2398
The numeric solution when ĉp(T ) 9796 9796

Table 4.1: Summary of the benchmark results of Chapter 2.

of air and water. Overall, this confirms the need for an explicit data-driven model to
speed up not only the solution time of the heat exchanger sub-model when solving the
dynamic thermal model of the generator for online use, but also to reduce the simulation
time of state estimation reported in M. Pandey (2019a) of model 3b and model 4b and
online parameters optimization of the thermal models in M. Pandey (2019b).

Furthermore, Fig. 2.13 shows that the cold air temperature (T c
a ) is affected more than the

hot water temperature (T h
w) by the temperature dependence in the specific heat capacities,

which is reflected in the temperatures of the synchronous generator metals in Fig. 2.15
by a decrease of about 3.3◦C.

Finally, it is important to add that the temperature dependence in the specific heat capac-
ities was implemented by fitting a polynomial to the experimental data in Bergman et al.
(2011) over the interval (0,100)◦C for water, and over the interval (−173.15,126.85)◦C
for air. As a consequence, the numerical solution of the non-ideal heat exchanger model
is only valid when the model is solved over temperatures in these intervals, and possibly
for temperatures in the immediate vicinity.
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4.2 Regression of the Counter-Current Heat Exchanger Model

. Regression of the Counter-Current Heat Exchanger Model

In this work, one of the main tasks is to speed up the solution time of the non-ideal heat
exchanger model (the case of temperature dependence in the specific heat capacities of
air and water), which was carried out in Chapter 3. Particularly, explicit data-driven
models for the non-ideal heat exchanger model were developed by linear and nonlinear
regression, which were expressed as a correction expression to the ideal heat exchanger
model. Also, when solving the dynamic thermal model of the generator, the explicit
data-driven models (which are fast) were used instead of solving the nonlinear two-point
boundary value problem (which is slow) in each time step of the DAE solver.

. . Results and discussion of the linear regression of the counter-current
heat exchanger model

In Appendix B.3, linear regression of the heat exchanger model was implemented, and
several datasets were generated under a variety of conditions to study the predictive ability
of the regression model. First, the results of cases 1 and 2 will be discussed.

. . . Datasets of cases 1 and 2

By a brief look at Figs. 3.4, 3.5, 3.10, 3.11, 3.16, and Fig. 3.17 one can tell that a 6th
order polynomial in the design matrix of the model gives the best measures of goodness-
of-fit for both cases 1 and 2, where the goodness-of-fit of the model is measured by the
standard error of the regression and the adjusted coefficient of determination. Moreover,
the figures show model overfitting, which was briefly described in Section 3.2 and verified
in the validation results of Section 3.3.

In addition, a 1st order, a 6th order, and a 12th order models were chosen to visualize the
goodness-of-fit of case 1 in Fig. 3.6, and a 1st order, a 6th order, and an 18th models were
chosen to to visualize the goodness-of-fit of case 2.A in Fig. 3.12 and of case 2.B in Fig.
3.18. Mainly, the aim in Fig. 3.6, Fig. 3.12, and Fig. 3.18 is to inspect if the regression
surface overlaps or not with the data points. If the surface overlaps, then the standard
error of the regression is low. Similarly, R̄2 is high when the regression surface overlaps
with the data points.

Alternatively, one can analyze the residuals, and the errors in T h
w and T c

a for the regression
models by inspecting Figs. 3.7, 3.8, 3.9, 3.13, 3.14, and Fig. 3.15. However, all the models
discussed in this section so far were based on the regression of the complete dataset, which
is not a good indicator of the models’ predictive accuracy. Furthermore, to obtain a better
assessment of the models’ predictive ability, cross-validation of the datasets was carried
out. Specifically, the multiple holdout method was used in this work.
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4 Results and Discussion

Case 1
Model Avg. s, ◦C Avg. R̄2, −
order T h

w T c
a T h

w T c
a

1st 0.01797396 0.0190537 0.99938061 0.99944294
6th 8.062e−5 9.369e−5 0.99999987 0.99999979

Case 2.A
Model Avg. s, ◦C Avg. R̄2, −
order T h

w T c
a T h

w T c
a

1st 0.0257428 0.0503602 0.99172604 0.98918441
6th 4.705e−5 8.981e−5 0.99999994 0.99999994

Case 2.B
Model Avg. s, ◦C Avg. R̄2, −
order T h

w T c
a T h

w T c
a

1st 0.05227211 0.10468139 0.98457848 0.97338327
6th 0.00070054 0.00151362 0.99999751 0.99999512

Table 4.2: Summary of the validation results of cases 1 and 2.

To reemphasize what was mentioned in Chapter 3, the holdout method normally involves
a single run, but it can be repeated multiple times to improve its strength as a validation
method. Furthermore, Table 4.2 summarizes the relevant validation results of cases 1 and
2 that was presented in Section 3.3 and confirms that a 6th order polynomial in the design
matrix of the model gives the best measures of goodness-of-fit for both case 1 and case 2.
Also, Table 4.2 shows that T h

w has a lower standard error of the regression compared to T c
a .

Moreover, comparing the results of case 2.A with those of case 2.B , it can be seen that
the standard error of the regression is higher for case 2.B, which means that increasing
the dataset range to include lower values of ṁw and ṁa have a negative impact on the
linear regression. Finally, based on the results of Table 4.2 and the previous figures, a 1st
or a 2nd order regression model may be sufficient as a correction expression to the ideal
heat exchanger model.

. . . Datasets of case 3

In the datasets of case 3, both the influent temperatures and the mass flow rates were var-
ied to further analyze the linear regression of the counter-current heat exchanger model.

Table 4.3 summarizes the relevant validation results of case 3, which was presented in
Section 3.3. First, comparing the results of case 3 with those of cases 1 and 2, it can be
observed that the standard error of the regression is higher for case 3. Next, comparing
the results of case 3.C with case 3.B, it can be observed that including the mass flow rates
as regressors in case 3.B decreases the standard error of the regression. Then, comparing
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4.2 Regression of the Counter-Current Heat Exchanger Model

Case 3.A
Model Avg. s, ◦C Avg. R̄2, −
order T h

w T c
a T h

w T c
a

1st 0.0775944 0.20320863 0.98797304 0.94702488
6th 0.07866278 0.20599263 0.98862523 0.94991916

Case 3.B
Model Avg. s, ◦C Avg. R̄2, −
order T h

w T c
a T h

w T c
a

1st 0.05293457 0.10581149 0.98482044 0.96653181
6th 0.04148825 0.06945538 0.99105622 0.98617308

Case 3.C
Model Avg. s, ◦C Avg. R̄2, −
order T h

w T c
a T h

w T c
a

1st 0.05941832 0.12447671 0.98087158 0.9536708
6th 0.05634448 0.11860076 0.98288539 0.95815315

Table 4.3: Summary of the validation results of case 3.

the standard error of the regression of T h
w to that of T c

a , it can be observed that T h
w has

a lower standard error of the regression compared to T c
a , which is consistent with the

results of Table 4.2. Similarly, based on the results of Table 4.3 and the figures of case 3
in Section 3.3, one can observe that a 6th order model fits the generated datasets best.
Finally, based on the regression results of cases 1, 2, and 3, the selection of the dataset
range and the regressors is clearly essential in linear regression.

. . Results and discussion of the nonlinear regression of the
counter-current heat exchanger model

In this work, due to time constraints and the nature of machine learning, nonlinear re-
gression of the counter-current heat exchanger model was not investigated thoroughly as
linear regression. However, important results were obtained for a two-layer FNN.

First, for numeric reasons, as mentioned in Lie (2019b), the datasets were normalized as
in Fig. 3.32. Next, validation tests were carried out for the datasets of case 3, and the
results of the validation were summarized in Fig. 3.31, where RMSE was chosen as the
measure of goodness-of-fit. Also, Fig. 3.31 shows that the best-fit dimension (out) of
the two-layer FNN in Fig. 3.30 is somewhere between 70 and 80. In addition, the figure
shows slightly higher RMSE values to those reported in linear regression for the datasets
of case 3.1 However, in this work, the two-layer FNN models were only trained for 10000

1The results (RMSE values) of the validation tests for the nonlinear regression of the counter-current
heat exchanger model are available in Appendix B.4.
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4 Results and Discussion

Hybrid vs. numeric solution of the non-ideal heat exchanger model
Model Median time (ms) Mean time (ms)
Hybrid solution (Linear regression) 0.0264 0.035998
Hybrid solution (Nonlinear regression) 0.00123 0.001502
Numeric solution 19.316 21.540

Hybrid vs. numeric solution of the thermal model of an air-cooled
synchronous generator with the non-ideal heat exchanger model

Model Median time (s) Mean time (s)
Hybrid solution (Linear regression) 0.016633 0.019648
Hybrid solution (Nonlinear regression) 0.002216 0.002676
Numeric solution 9.673 9.673

Table 4.4: Summary of the benchmark results of case 3.B.

epochs during the validation test, which may explain this finding, but further analysis is
required.

. Execution Speed of the Data-Driven Models and the
Numeric Non-Ideal Heat Exchanger Model

The comparison of the execution speeds of the hybrid and the numeric non-ideal heat
exchanger models was carried out in Appendix B.5 and presented in Section 3.5.

First, the models which are based on the dataset of case 3.B were used for comparison.
However, based on the results of Table 3.8 and Table 3.9, which are summarized in Table
4.4, a new dataset (case 4) was created to fix the inconsistency between the execution
speeds of the hybrid solutions and to improve goodness-of-fit.

Moreover, the source of the inconsistency was the implementation of the linear regression
model in Appendix B.5. Specifically, the use of the function phi_m to generate the
polynomial of the design matrix, which was verified by using a low order model that does
not require the use of the function. Also, the new dataset achieved a better RMSE for
the nonlinear regression model, which can be verified by examining Figs. 3.33 and 3.34.
Finally, Table 4.5 summarizes the execution speed of the new dataset and shows a faster
execution speed for the data-driven models compared to the numeric solutions.
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4.4 Predictions of the Mechanistic Model and Åbjøra Experimental Data

Hybrid vs. numeric solution of the non-ideal heat exchanger model
Model Median time (ms) Mean time (ms)
Hybrid solution (Linear regression) 0.0008535 0.001466
Hybrid solution (Nonlinear regression) 0.00125 0.001469
Numeric solution 19.316 21.540

Hybrid vs. numeric solution of the thermal model of an air-cooled
synchronous generator with the non-ideal heat exchanger model

Model Median time (s) Mean time (s)
Hybrid solution (Linear regression) 0.002052 0.002497
Hybrid solution (Nonlinear regression) 0.002312 0.002745
Numeric solution 9.673 9.673

Table 4.5: Summary of the benchmark results of case 4.

. Predictions of the Mechanistic Model and Åbjøra
Experimental Data

In Section 3.6, the experimental data of Åbjøra was compared with the predictions of the
mechanistic model. Also, it was observed in Fig. 3.35 that even when extending the model
from Lie (2018a) with a more realistic heat exchanger model with temperature dependence
in the specific heat capacities of air and water, it was not possible to get a good fit to
the available experimental data. Moreover, due to time constraints, an empirical model
was not fitted to the experimental data of Åbjøra, which opens the possibility for future
work.
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Conclusion

In this thesis, an overview of the thermal model of an air-cooled synchronous generator
that was proposed in Øyvang (2018), and studied in Lie (2018a) was given, and the possi-
ble extension of the heat exchanger sub-model with the case of temperature dependence in
the specific heat capacities of air and water was discussed. Furthermore, to speed up the
solution time of the non-ideal heat exchanger sub-model, explicit data-driven models were
developed using linear and nonlinear regression for a variety of conditions and expressed
as a correction expression to the ideal heat exchanger model. Moreover, the execution
speed of the numeric solution of the nonlinear two-point boundary value problem was
compared with that of the explicit data-driven models, and the results showed a faster
execution speed for the data-driven models. In addition, the experimental data of Åbjøra
was compared with the predictions of the mechanistic model, and it was observed that
even when extending the model from Lie (2018a) with a more realistic heat exchanger
model with temperature dependence in the specific heat capacities of air and water, it
was not possible to get a good fit to the available experimental data.
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Future Work

A hybrid mechanistic-empirical model is a hot research topic that applies to many disci-
plines. However, to be specific to the topics presented in this work:

1. Reduction of the simulation time of the state estimation reported in M. Pandey
(2019a) of model 3b and model 4b.

2. Fitting an empirical model to the experimental data of Åbjøra.
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Code listing

In this work, all the code is implemented in Julia using Jupyter graphical notebook and
is available in the following GitHub repository:

https://github.com/KhaledAleikish/MasterThesis2020/tree/master/Jupyter_Notebooks

B. Counter-current Heat Exchanger Models

Jupyter notebook 1

B. Thermal Model of an Air-Cooled Synchronous Generator,
With Ideal and Non-Ideal Heat Exchanger Model

Jupyter notebook 2

B. Linear Regression of the Counter-Current Heat Exchanger
Model

Jupyter notebook 3

B. Nonlinear Regression of the Counter-Current Heat
Exchanger Model

Jupyter notebook 4
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B. Comparison of the Execution Speed of the Hybrid
Non-Ideal Heat Exchanger Model and the Numeric Solver

Jupyter notebook 5

B. Comparison of the Predictions From the Mechanistic
Model With Those of the Experiments

Jupyter notebook 6
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