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Abstract: This paper presents a new hybrid ensemble modeling method called BBO-DE-STreeEns
for land-slide susceptibility mapping in Than Uyen district, Vietnam. The method uses subbagging
and random subspacing to generate subdatasets for constituent classifiers of the ensemble model,
and a split-point and attribute reduced classifier (SPAARC) decision tree algorithm to build each
classifier. To optimize hyperparameters of the ensemble model, a hybridization of biogeography-
based optimization (BBO) and differential evolution (DE) algorithms is adopted. The land-slide
database for the study area includes 114 landslide locations, 114 non-landslide locations, and ten
influencing factors: elevation, slope, curvature, aspect, relief amplitude, soil type, geology, distance
to faults, distance to roads, and distance to rivers. The database was used to build and verify
the BBO-DE-StreeEns model, and standard statistical metrics, namely, positive predictive value
(PPV), negative predictive value (NPV), sensitivity (Sen), specificity (Spe), accuracy (Acc), Fscore,
Cohen’s Kappa, and the area under the ROC curve (AUC), were calculated to evaluate prediction
power. Logistic regression, multi-layer perceptron neural network, support vector machine, and
SPAARC were used as benchmark models. The results show that the proposed model outperforms
the benchmarks with a high prediction power (PPV = 90.3%, NPV = 83.8%, Sen = 82.4%, Spe = 91.2%,
Acc = 86.8%, Fscore = 0.862, Kappa = 0.735, and AUC = 0.940). Therefore, the BBO-DE-StreeEns
method is a promising tool for landslide susceptibility mapping.

Keywords: landslide; BBO; DE; SPAARC ensemble; GIS; Vietnam

1. Introduction

Landslides are a significant geohazard that continues to cause thousands of deaths
and USD 100 million in damage annually worldwide [1–3]. With the increase in extreme
precipitation and typhoon events [4,5], especially in developing countries’ mountainous
regions, the number of landslide occurrences is expected to grow [6]. Vietnam is located in
Southeast Asia, which is considered as one of the world’s most disaster-prone regions [7].
Therefore, the accurate spatial prediction of landslides is essential to mitigate these risks.

According to the literature, machine learning methods are preferred over statistical
methods in landslide susceptibility mapping [8–14] due to the availability of geospatial
data and the development of machine learning and optimization algorithms on various
open-source platforms, such as Weka [15], Python [16], and Google TensorFlow [17]. This
is especially true when dealing with a large number of influencing factors and limited
landslide data [18]. Ensemble modeling, where multiple constituent models form the final
model, has improved the reliability of landslide susceptibility mapping [19–24]. Among
machine learning algorithms, decision tree-based ensemble algorithms have been found to
produce superior results, making them a popular choice [10]. Additionally, these algorithms
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are highly resistant to overfitting, making them reliable for this type of analysis. In fact,
increasing the number of trees in a forest can improve its capacity and validation-set error
rate [25,26].

Random forest [26] is a well-established decision tree-based ensemble algorithm with
a reputation for high accuracy and efficient processing speed, making it a popular choice in
new research. It relies on the classification and regression tree (CART) algorithm [15,27]
to create its base classifiers. However, further research is needed to enhance algorithm
efficiency and increase processing speed without sacrificing accuracy [28–32]. In particular,
fast model building is essential for constructing optimized models that require iterative
refinement to achieve the optimal solution.

The SPAARC decision tree algorithm has been proposed as a solution to reduce the
computational workload of decision tree induction in a study [28]. SPAARC was tested
against an implementation of the CART algorithm in Weka [15] on 14 freely available
datasets from the University of California, Irvine (UCI) machine learning data repository [33].
The experimental results demonstrated that SPAARC can reduce model build times by
up to 70% while maintaining classification accuracy [28]. However, the study did not
investigate how SPAARC performs in an ensemble framework, and there is a need for
new ensemble modeling methods in landslide susceptibility mapping that can enhance the
reliability of the maps and draw reasonable conclusions.

To address this need, in this study, a new homogeneous ensemble modeling method
called BBO-DE-StreeEns is proposed. This method employs subbagging [30] and random
subsampling [34] to generate subdatasets for the constituent decision trees of the ensemble.
The SPAARC decision tree algorithm is then used to build the decision trees, and a hy-
bridization of BBO [35] and DE [36] algorithms is used to optimize the hyperparameters of
the ensemble model. The proposed method is verified through a case study in Than Uyen
district, Lai Chau province, Vietnam, where landslides have been a recurring problem.

Four benchmark models were employed for comparison, namely, logistic regression,
multi-layer perceptron neural network, support vector machine, and the SPAARC.

The remainder of the paper is organized into several sections. Section 2 provides a
review of the background of the employed methods. Section 3 presents a general description
of the study area and landslide database. Section 4 describes the proposed BBO-DE-StreeEns
method used to derive landslide susceptibility. The experimental results of the study are
reported in Section 5, followed by a discussion. Finally, concluding remarks are presented
in the last section.

2. Background of Methods Used

In this study, we investigated the effectiveness of an ensemble model of SPAARC
decision trees [28] for evaluating landslide susceptibility in Than Uyen district, Lai Chau
province, Vietnam. To the best of our knowledge, this is the first attempt to propose
an ensemble model of SPAARC decision trees for assessing landslide susceptibility. The
decision to use an ensemble model was based on the fact that ensemble learning utilizing
decision trees has been shown to reduce bias and variance, as well as mitigate overfitting,
without requiring pruning for each individual tree [25].

2.1. SPAARC Decision Tree Algorithm

The SPAARC decision tree algorithm is an extension of the CART algorithm, originally
implemented in Weka [37]. The SPAARC algorithm integrates two key components, namely,
node attribute sampling (NAS) and split-point sampling (SPS), to accelerate the decision
tree induction process while maintaining classification accuracy [28]. NAS dynamically
selects a subset of non-class attributes to test at each node, thereby avoiding computation
of information gain for every attribute and reducing processing time. The attribute with
the maximum information gain is always chosen for splitting at each node. On the other
hand, SPS finds a suitable split-point for a numerical attribute at each node. In contrast to
CART [31], SPS divides the attribute range into k equal-width intervals and tests only k − 1
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possible split-points. If the number of distinct attribute values, represented by l, is less than
the specified value of k, the number of possible split-points is limited to l − 1. Conversely,
if the attribute has too many distinct values (where k is significantly less than l), SPS can
assist in reducing the number of possible split-point tests. The results of experiments
on 14 classification datasets from the UCI machine learning repository [32] revealed that
SPAARC significantly reduced the decision tree building time and outperformed CART
in terms of classification accuracy in 7 of the 14 datasets. Using k = 10, SPAARC reduced
the total building time by more than 48% (58.499 s vs. 112.55 s) without compromising
classification accuracy. The datasets used in the experiments were Mfeat-fourier, Mfeat-
zernike, Page-blocks, Pen-digits, Segment, Waveform, Optical digits, Spambase, EEG eye
state, Crowdsource map, Wine quality, Shuttle, Sensorless drive, and Skin segment [28].

Similar to the random forest algorithm [26], our ensemble model also includes a
hyperparameter that needs to be optimized, which is referred to as the TotalTrees and
represents the number of SPAARC decision trees within the forest.

2.2. Subbagging and Random Subspacing

It is widely recognized that when the constituent decision trees are relatively uncor-
related, the resulting ensemble model is likely to be more accurate for classification [25].
To promote such diversity within the ensemble model in this study, two techniques were
employed: subbagging and random subspacing.

Subbagging (or subsample aggregating) [30] is a technique used as an alternative
to bootstrap aggregating (or bagging) in the random forest algorithm [26]. Bagging is a
technique used to reduce variance and overfitting in the constituent trees by generating
distinct subdatasets to build decision trees through random sampling with replacement.
On average, 63.2% of the examples in a subdataset will be distinct, while the rest will
be duplicated. In subbagging, a proportion of examples are selected at random without
replacement. For example, half-subbagging will randomly select half of the examples in
the full dataset each time. The hyperparameter to be optimized for subbagging is the
proportion of examples to be sampled, which we refer to as the SizePercentage.

Random subspacing [26] is a technique used to increase the diversity of decision trees
and reduce variance. Unlike bagging, which randomly samples data with replacement,
random subspacing randomly selects subsets of features to be used at each tree node. This
approach helps reduce processing time by only considering a proportion of the attribute
space for splitting. Additionally, it can help prevent overfitting and improve model accuracy
by introducing more randomness and diversity in the trees.

In this study, we made a slight modification to the random subspacing method [26]
by randomly selecting an attribute subspace for each SPAARC decision tree, rather than
for each tree node. This modification was made to increase the diversity of the constituent
trees in the ensemble model. As a result, we need to optimize another hyperparameter
called subSpaceSize, which determines the proportion of the attribute space to be selected
for each tree.

2.3. Hybrid BBO-DE Optimization

As mentioned earlier, our ensemble model has three hyperparameters that need to be
optimized: TotalTrees (the number of constituent trees), SizePercentage (the proportion of data
in Subbagging), and subSpaceSize (the proportion of attribute space in random subspacing).
To accomplish this optimization task, we employ a hybrid BBO-DE optimization method in
this study.

Differential evolution (DE) is a population-based stochastic metaheuristic, originally
proposed by Storn and Price [36], that has gained popularity in solving optimization
problems due to its simplicity, speed, and robustness [38]. However, DE is known to suffer
from certain drawbacks such as stagnation and premature convergence [39,40]. Although
DE is proficient at exploring the search space, it can be slow in locating the global optimum,
indicating a better exploration ability than exploitation [41].
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Biogeography-based optimization (BBO) is a bio-inspired optimization algorithm that
was introduced by Simon [35] based on the biogeography theory, which is a study of how
nature distributes species and optimizes environments for life. BBO has been shown to
be effective for solving a wide range of optimization problems, including those typically
tackled by genetic algorithms (GAs) and particle swarm optimization (PSO) [42]. To solve
an optimization problem using BBO, a population of candidate solutions is created, where
each solution is represented as a vector of independent variables. These variables can be
thought of as suitability index variables (SIVs) in biogeography. Good solutions correspond
to habitats with a high habitat suitability index (HSI), while poor solutions correspond
to habitats with a low HSI. The HSI is similar to the fitness value in other bio-inspired
optimization algorithms, such as GAs and PSO. BBO employs the migration operator to
exchange SIVs among solutions. This sharing of SIVs allows the acceptance of new SIVs
by poor solutions, which in turn may lead to an improvement in their quality. In addition
to migration, BBO employs the mutation operator to model cataclysmic events that can
dramatically change the HSI of a natural habitat. If a solution is selected for mutation, a
randomly chosen SIV is replaced by a new, randomly generated SIV. Mutation increases
population diversity and provides low and high HSI solutions with the opportunity to
improve. Ma and Simon conducted a study comparing BBO with five other state-of-the-art
optimization algorithms, including ant colony optimization (ACO), DE, evolution strategies
(ESs), GAs, and PSO, across 25 Monte Carlo simulations [42]. The results revealed that
BBO outperformed the other algorithms for 9 out of 13 benchmark functions, while PSO
was the most effective for three functions. For the remaining function, both BBO and PSO
performed equally well. This suggests that BBO has good exploitation ability.

Hybrid algorithms (HAs) combine the strengths of multiple algorithms into a single,
more powerful optimization tool. By combining the best aspects of each constituent
algorithm, HAs can often outperform individual algorithms alone [41]. In [42], several HAs
were proposed that integrate BBO with DE at both the iteration and algorithm levels. By
combining the exploration ability of DE with the exploitation ability of BBO, these HAs are
highly effective.

The iteration-level hybridization strategy is simple. In each iteration of the proposed
hybrid algorithm, DE and BBO are executed sequentially. First, DE, with its good explo-
ration ability, is utilized to explore the search space and locate the region of the global
minimum. Then, BBO, with its strong exploitation ability, is used to further exploit the
identified region and find better solutions [43,44]. This iteration-level hybridization strategy
allows the strengths of both DE and BBO to be combined effectively and helps overcome
the weaknesses of each algorithm.

The algorithm-level hybridization involves multiple subpopulations running indepen-
dently and periodically exchanging information with one another. In the hybrid BBO-DE
optimization, DE subpopulations are combined using ideas from biogeography, allowing
for effective information exchange among subpopulations [42]. The synergy of exploration
and exploitation abilities of DE and BBO, respectively, leads to improved performance of
the HAs compared to the constituent algorithms alone. Experiments have shown that the
algorithm-level hybridization performs better than the iteration-level one, with the former
outperforming the latter for 11 out of 13 benchmark functions [42]. This is likely due to
the more effective interaction of the subpopulations in the algorithm-level hybridization.
Hence, for the optimization of our ensemble model, we have utilized the hybrid BBO-DE
optimization approach with algorithm-level hybridization.

3. Study Area and Landslide Data
3.1. Description of the Study Area

Than Uyen district is situated in the southeastern part of Lai Chau province, which is
located in the northwest region of Vietnam. It is positioned between longitudes 103◦35’E
and 103◦53’E, as well as latitudes 21◦40’N and 22◦08’N, covering an area of 792.53 km2

(Figure 1).
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Figure 1. Location of Than Uyen district.

Than Uyen lies within the Nam Mu river basin, which is a level-1 tributary of the Da
River. The district is characterized by medium-high mountains, and its terrain is notably
complex and strongly dissected. To the east lies the Hoang Lien Son mountain range, while
to the west are mountains that run in a northwest–southeast direction, alternating with
deep valleys. The district has a relatively high river and stream density of 1.5–1.7 km/km2.
Than Uyen is divided into three distinct areas: the eastern area, which comprises the
mountainside of the Fansipan range with rugged terrain and steep slopes; the western
area, which contains the low mountains of the Pu San Cap range with elevations ranging
from 600 to 1800 m above sea level; and the middle area, which is a valley composed of
intermingled low hills and mountains, as well as plains with altitudes ranging from 500 to
650 m [45,46].

Than Uyen is located in a monsoonal region that experiences distinct rainy and dry
seasons. The rainy season lasts from April to October, with the heaviest rainfall occurring
in June and July. The dry season, on the other hand, extends from November to March of
the following year. The district receives an average rainfall of 1800 to 2200 mm per year,
with an average temperature ranging from 22 to 23 ◦C. The average humidity is around
80% [45,46].

Than Uyen has a relatively dense road network that includes several crucial routes.
These include National Road 32, which connects the district to Lai Chau city and Yen Bai
province, National Road 279, which connects Than Uyen to Dien Bien and Son La provinces,
and Provincial Road 106, which runs from Muong Kim to Khoen On. Additionally, there
are inter-commune and inter-village routes that connect residential areas. However, most
of the roads in Than Uyen are winding and include many steep passes and roadside slopes,
making them susceptible to landslides during the rainy season [45,46].

The study area exhibits significant and intricate tectonic activity, evident by prominent
deep faults running in the northwest–southeast direction, and younger transverse faults in
the north–south direction. These geological features have led to intense weathering and
substantial rock disintegration, resulting in extensive zones of weak stability that extend
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over hundreds of meters. These unstable areas create a high potential for landslides to
occur [45,46].

Based on the petrological composition, structures, textures, physical–mechanical
properties, and thickness of weathered layers, the engineering geology of the study area
has been divided into the following sub-engineering geological complexes: the quaternary
sedimentary complex consists of loose and poorly stable rock and soil; the terrigenous
sedimentary complex formation of Yen Chau consists of partially solid and partially loose
rock and soil, with stability ranging from poor to moderate; the terrigenous sedimentary
complex formation of Suoi Bang consists of partially solid and partially loose rock and
soil, with stability ranging from poor to moderate; the carbonate–terrigenous sedimentary
complex of Pac Ma limestone consists of solid and partially solid rock with stability ranging
from moderate to high; the carbonate–terrigenous sedimentary complex formation of
Muong Trai consists of partially solid and partially loose rock and soil with moderate
stability; the igneous rocks of the Pu Sam Cap and Phu Sa Phin complexes and Tu Le and
Ngoi Thia formations consist of solid and partially solid rocks with stability ranging from
moderate to high [45,46].

As of 31 December 2017, the population of Than Uyen district was 66,589, with a
total of 13,838 households, out of which 3340 were classified as poor. Unfortunately, some
residents of the district have built their homes along roads, directly beneath roadside slopes
that pose a significant risk of landslides [47].

In recent years, Than Uyen has been one of the mountainous regions severely affected
by natural disasters, particularly landslides. The causes of these landslides are multifaceted
and stem from various natural, environmental, and social factors. The construction of new
roads and urban areas in the region has been identified as a significant contributor to the
increase in landslides caused by human activities [45,46].

3.2. Landslide Data
3.2.1. Historical Landslides

The landslide inventory map of Than Uyen district (Figure 1) used in this study was
derived from the “Investigation, Assessment, and Warning Zonation for Landslides in
the Mountainous Regions of Vietnam” project. This national state-funded project was
conducted by the Vietnam Institute of Geosciences and Mineral Resources, Ministry of
Natural Resources and Environment, and has been ongoing since 2012 [45,46].

In this project, from air-photo interpretation, 3D relief analysis based on 1:10,000
scale topographical maps, the analysis of other types (satellite and radar) of remote sens-
ing images, and field surveys, a total of 114 landslides were identified in Than Uyen
district [45,46]. The landslides were triggered by rainfall and occurred within the past
decade. They were found to be concentrated along both positive and negative roadside
slopes, with particularly high occurrence rates along National Road 279 from Sap Nguoi
village to Khau Co pass, as well as Provincial Road 106 from Muong Kim to Khoen On,
and inter-commune roads from Muong Kim to Ta Mung and from Than Uyen to Pha Mu.
Importantly, we did not observe any landslide events in the district that were triggered by
earthquakes during the study period.

Based on the field research and analysis, we found that the landslides in the study
area were primarily triggered by heavy thunderstorms, particularly when the total daily
rainfall exceeded 100 mm. During these events, the soil and rock mixture on the slopes
became saturated with water, causing a reduction in shear strength and ultimately resulting
in instability and failure. Figure 2 shows two photos of a landslide in the study area.



Remote Sens. 2023, 15, 2187 7 of 21

Figure 2. Two photos of the landslide on the slope wall of National Road 279, near the right bank
of Nam Kim stream, Na Pa village, Muong Kim commune, Than Uyen district. Source: Vietnam
Institute of Geosciences and Mineral Resources.

3.2.2. Influencing Factors

Based on the above analysis of the landslide inventory and the examination of the
geo-environmental features of the study area, we identified ten factors that are believed to
influence the occurrences of landslides in this area. These factors consist of elevation, slope,
curvature, aspect, relief amplitude, soil type, geology, distance to faults, distance to roads,
and distance to rivers. These factors have been carefully selected based on their potential
impact on the stability of the terrain and the likelihood of landslide occurrences. They have
been extensively employed in previous studies on landslide susceptibility analysis. Their
efficacy and significance in predicting landslide occurrences have been well-documented
in the literature [48–50].

Elevation is an important factor in the occurrence of landslides, as it can significantly
influence slope angle, gravitational force, and the distribution of climate and vegetation
cover [51]. To incorporate this factor into our analysis, we used an elevation map (Figure 3a)
of the study area, which was derived from a digital elevation model (DEM) generated from
the national topographic map of Vietnam at a scale of 1:50,000.

The slope gradient is a crucial factor in landslide studies, with steeper slopes being
more likely to experience landslides [52]. Additionally, the curvature of the slope—which
refers to changes in slope angle or direction—is an important consideration for landslide
modeling, as it can significantly impact the stability of the slope material. Specifically, areas
with a high absolute value of curvature, such as convex or concave slopes, are more prone
to landslides than areas with a lower absolute value of curvature [53]. To account for these
factors, we generated slope (Figure 3b) and curvature (Figure 3c) maps of the study area,
both of which were derived from the DEM mentioned earlier.

Aspect, which refers to the compass direction of a slope and is measured in degrees
from north in a clockwise direction, can influence a range of environmental factors including
rainfall, sunlight, drying winds, and solar radiation. These factors, in turn, can impact
soil moisture and the likelihood of landslides [54]. To account for the influence of aspect
on landslide occurrence, we generated an aspect map (Figure 3d) with nine conventional
classes that were extracted from the DEM used in this study.

Relief amplitude, which is defined as the maximum difference in height per unit area,
is an important factor that can influence the gravitational potential energy of a rock mass
and, consequently, the occurrence of landslides [55]. To account for the influence of relief
amplitude on landslide occurrence in the study area, we generated a relief amplitude map
(Figure 3e) using the Focal Statistic module in ArcGIS Pro software with a unit area size of
20 × 20 pixels.
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Figure 3. Cont.
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Figure 3. Landslide influencing factors: (a) elevation; (b) slope; (c) curvature; (d) aspect; (e) relief
amplitude; (f) soil type; (g) geology; (h) distance to fault; (i) distance to road; and (j) distance to river.

Soil type is an important factor in landslide susceptibility mapping because it has a
significant influence on soil properties such as permeability, shear strength, and density,
which affect the soil’s ability to hold and drain water [56]. The soil type map used in
this study was derived from the national pedology map with a scale of 1:100,000, and
it consisted of 11 soil types, including multi-origin diluvial soil (D), yellow–red soil on
granite (Fa), yellow–red soil changed by cultivation (Fl), pale yellow soil on sandstone
(Fq), yellow–red soil on clay and metamorphic rocks (Fs), red–brown soil on limestone (Fv),
yellow–red humus soil on granite (Ha), pale yellow humus on sandstone (Hq), yellow–red
humus soil on clay rocks (Hs), alluvial soil (P), and stream alluvial soil (Ph). Figure 3f
presents the distribution of soil types in the study area.

The geology setting should be considered in landslide studies because it plays a critical
role in determining the type and structure of the underlying rock formations, which can
significantly affect the stability of slopes [57]. The geology map (Figure 3g) of the study
area was extracted from the national geological map and shows 12 geological units present
in the study area, including the Muong Trai formation (MT) consisting of MT Lower, MT
Middle, and MT Upper in the Middle Triassic and Late Ladinian, Pac Ma limestone in the
Late Triassic and Late Carnian, Suoi Bang (SB) formation composed of SB Upper and SB
Lower in the Late Triassic and Norian-Rhaetian, Quaternary sediment, Phu Sa Phin (PSP)
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complex in the Late Mesozoic and Early Cenozoic, Ngoi Thia (NT volcanic) formation in
the Cretaceous, Yen Chau (YC Lower) formation in the Late Cretaceous, Pu Sam Cap (PS)
complex in the Paleogen, and Tu Le (TL) formation in the Cretaceous.

Faults are fractures or breaks in the Earth’s crust along which movement occurs.
Tectonic forces, such as the movement of tectonic plates, or other geological processes such
as folding or shearing, can cause faults, and they can significantly impact slope stability [58].
To assess the potential influence of faults on landslide occurrence in the study area, we
generated a distance to faults map (Figure 3h) using the geological and mineral resources
map of Vietnam at a scale of 1:200,000. The buffer tool in ArcGIS Pro software was used to
categorize the map into six distance buffers: 0–200 m, 200–400 m, 400–600 m, 600–800 m,
800–1000 m, and >1000 m.

Distance to roads is an important anthropogenic factor that can significantly impact
landslides, as road cuts and embankments can cause slope instability [59]. In the study
area, field investigations have revealed that many landslides have been triggered by road
construction activities [45,46]. To generate a distance to road map for the study area, we
first extracted the road network from the national topographic maps of Vietnam at a scale
of 1:50,000. Next, using the Buffer tool in ArcGIS Pro software, we created a distance to
road map (Figure 3i) with four buffer categories: 0–40 m, 40–80 m, 80–120 m, and >120 m.

Rivers can play a significant role in soil and rock saturation on slopes, which can
increase the susceptibility of these slopes to instability and landslides. When rivers flow
over or near slopes, they can deposit water into the soil and rock material, increasing its
weight and reducing its shear strength. This, in turn, decreases the slope’s stability and
increases the risk of landslides [60,61]. Therefore, in this study, the distance to rivers was
also included as a factor influencing landslides. The river network was extracted from the
topographic map with a scale of 1:10,000 to create the distance to river map (Figure 3j). The
buffer tool in ArcGIS Pro software was used to create four categories based on the distance
from the river: 0–40 m, 40–80 m, 80–120 m, and >120 m.

4. The Proposed Hybrid BBO-DE Optimized SPAARC Tree Ensemble for Landslide
Susceptibility Mapping

The flowchart for the proposed BBO-DE-STreeEns method for landslide susceptibility
mapping is illustrated in Figure 4. To derive the landslide inventory and influencing factors,
multisource geospatial data were processed using ArcGIS Pro 2.8 and stored in a landslide
database in file geodatabase format. The influencing factors were converted to a 20 × 20 m
grid cell and normalized within the range of [0.001–0.999]. The BBO-DE-STreeEns model
was implemented by the authors in Matlab R2022a. The STreeEns model can be accessed
through the Python Weka Wrapper API [15], while the Matlab code for the BBO-DE model
can be found in [23].

4.1. Building the Landslide Database

In this study, 114 landslide locations were randomly divided into two subsets: a
training set comprising 80 cells, which accounts for 70% of the total, and a validation
set comprising 34 cells. Each of these landslide cells was labeled with a value of 1. To
avoid potential bias caused by uneven proportions of landslide and non-landslide data, an
equal number of grid cells were randomly sampled from areas without landslides. These
non-landslide cells were labeled with a value of 0 and added to the training and valida-
tion sets. Therefore, both the training and validation sets contained 160 and 68 samples,
respectively, with an equal number of landslide and non-landslide pixels in each. The
training set was utilized to train the landslide models, while the validation set was used for
model validation.
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Figure 4. The flowchart of the proposed BBO-DE-STreeEns for landslide susceptible mapping.

To build the landslide database, the values of the ten influencing factors of all the pixels
were extracted. The database comprises a dependent variable (label) and ten independent
variables. Among the independent variables, six are categorical (aspect, soil type, geology,
distance to road, distance to river, and distance to fault) and four are continuous (elevation,
slope, curvature, and relief amplitude).

4.2. Cost Function and Hyperparameter Optimization

In order to achieve the best performance, the BBO-DE-StreeEns model effectiveness is
dependent on the careful selection of three hyperparameters: TotalTrees, SizePercentage,
and subSpaceSize. TotalTrees represents the number of SPAARC decision trees in the model,
while SizePercentage indicates the proportion of data in subbagging, and subSpaceSize
determines the proportion of the attribute space in random subspacing. In this study, to
optimize the hyperparameters, the hybrid (algorithm-level) BBO-DE optimization was uti-
lized, and the mean absolute error (MAE) was employed as the cost function (Equation (1)).

MAE =
1
n∑n

i=1

∣∣LSi − ˆLSi
∣∣ (1)

where LSi represents the predicted landslide susceptibility (LS) value for the i-th sample,
and ˆLSi is the corresponding actual LS value, and n is the total number of samples in the
training dataset.
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In this study, a three-dimensional search space was defined for the hybrid BBO-DE
algorithm. The first dimension is TotalTrees, with values ranging from 1 to 2000. The second
dimension is SizePercentage, with values ranging from 0.1 to 1.0. The third dimension is
subSpaceSize, with values ranging from 0.3 to 0.9.

4.3. Performance Assessment

It is customary practice to assess model performance using both training and validation
datasets [62–64]. The performance of the model on the training dataset indicates how well
the model is able to fit the data, while the performance on the validation dataset reflects its
predictive capability.

In this study, we utilized multiple performance metrics including the receiver oper-
ating characteristic (ROC) curve and area under the ROC curve (AUC) to evaluate the
classification capacity of the landslide models. These metrics were employed to compare
the performances of the different models under consideration. The ROC curve and AUC
provide an overall measure of the model’s predictive accuracy, while other performance
metrics offer insights into the model’s predictive capability.

The problem addressed in this study is binary classification of landslide samples. True
positive (TP) represents the number of correctly predicted landslide samples, while false
negative (FN) refers to the number of landslide samples that were predicted incorrectly.
True negative (TN) is the number of non-landslide samples that are correctly predicted, and
false positive (FP) is the number of non-landslide samples that are incorrectly predicted [65].

To evaluate the performance of the models, several performance metrics are computed,
including positive predictive value (PPV), negative predictive value (NPV), sensitivity
(Sen) (also known as true positive rate (TPR)), specificity (Spe), false positive rate (FPR),
accuracy (Acc), F1 Score (Fscore), and Cohen’s Kappa coefficient (Kappa). These metrics
are calculated as follows [65]:

PPV =
TP

TP + FP
; NPV =

TN
TN + FN

; Sen =
TP

TP + FN
; Spe =

TN
TN + FP

; (2)

FPR =
FP

FP + TN
; Acc =

TP + TN
TP + TN + FP + FN

; Fscore =
2 × TP

2 × TP + FP + FN
; (3)

Kappa =
2 × (TP × TN − FN × FP)

(TP + FP)× (FP + TN) + (TP + FN)× (FN + TN)
(4)

The ROC curve is a graphical representation of the performance of a classifier at different
classification thresholds. It plots the FPR on the x-axis and the TPR on the y-axis [65]. The
AUC measures the overall performance of the classifier across all possible classification
thresholds. A higher AUC value indicates better performance of the model, with values
ranging from 0.5 to 1.0 [65]. In the context of landslide modeling, AUC is considered
a standard technique for evaluating the overall performance of models. According to
Peterson et al. [66], an AUC value between 0.5 and 0.6 indicates very poor performance,
while values between 0.6 and 0.7, 0.7 and 0.8, 0.8 and 0.9, and 0.9 and 1.0 correspond to
poor, moderate, good, and very good performance, respectively. Therefore, AUC provides a
valuable measure of the model’s predictive accuracy and can help to identify the threshold
at which the model performs optimally.

4.4. Benchmark Models and Comparison

To assess the performance of the proposed BBO-DE-StreeEns model and establish
its merit, we compared it against four benchmark models: logistic regression (LRegr),
Multi-layer perceptron neural network (MLPNeuNet), support vector machine (SVM), and
SPAARC. For the MLPNeuNet model, we selected the network structure with one input
layer, one hidden layer with eight neurons, and one output layer, as it demonstrated the
best performance through a trial-and-error test previously described in [67]. The SVM
model utilized the radial basis function kernel, and we determined the optimal values
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for the C and Gamma parameters to be 0.9 and 0.185, respectively, through a grid search
method outlined in Fayed and Atiya (2019). As for the SPAARC model, we utilized the
default parameters, which included a minimum number of samples at the terminal node
of 2 and a training size percentage of 1.0. By comparing the performance of the BBO-DE-
StreeEns model with these benchmark models, we were able to validate its effectiveness
and establish its superiority over the models.

To determine whether the performance of the proposed BBO-DE-StreeEns model and
the benchmark models differed significantly, we used the Wilcoxon signed-rank test, which
offers a pairwise comparison of landslide models [68]. The null hypothesis states that there
is no difference between the two landslide models. The significance level for rejecting
the null hypothesis is α = 0.05. To assess the significance of the difference between a pair
of landslide models, we calculate the p-value and z-value. If the p-value is less than the
significance level and the z-value is greater than 1.96 or less than −1.96, then we reject the
null hypothesis, and the difference is considered statistically significant [69].

5. Results and Analysis
5.1. Model Results and Assessment

The five landslide susceptibility models, BBO-DE-StreeEns, LRegr, MLPNeuNet, SVM,
and SPAARC, were successfully trained using the training dataset with ten-fold cross-validation.

Table 1 shows the results of training the five landslide susceptibility models using
the training dataset and ten-fold cross-validation to mitigate the risk of overfitting. The
hyperparameter values for the BBO-DE-StreeEns model were optimized to TotalTrees = 30,
SizePercentage = 0.9, and subSpaceSize = 0.5. All models performed well with the training
data, but the BBO-DE-StreeEns (AUC = 0.987, Kappa = 0.875, Fscore = 0.939, and Acc = 93.8)
and SPAARC (AUC = 0.950, Kappa = 0.875, Fscore = 0.940, and Acc = 93.8) models achieved
the best performance. The LRegr, MLPNeuNet, and SVM models had similar performances
(Table 1).

Table 1. Performance metrics of the proposed BBO-DE-STreeEns model and the benchmarks on the
training dataset.

Model

Performance Metrics

TP TN FN FP PPV
(%)

NPV
(%)

Sen
(%)

Spe
(%)

Acc
(%) Fscore Kappa AUC

BBO-DE-STreeEns 77 73 3 7 91.7 96.1 96.3 91.3 93.8 0.939 0.875 0.987
LRegr 60 63 20 17 77.9 75.9 75.0 78.8 76.9 0.764 0.538 0.855

MLPNeuNet 61 63 19 17 78.2 76.8 76.3 78.8 77.5 0.772 0.550 0.859
SPAARC 78 72 2 8 90.7 97.3 97.5 90.0 93.8 0.940 0.875 0.950

SVM 57 67 23 13 81.4 74.4 71.3 83.8 77.5 0.760 0.550 0.855

Assessing the prediction capability of landslide models is crucial to determine their
effectiveness. To this end, the validation dataset was used, and the results are presented in
Table 2. The performance of the five models shows a degree of variation, with the BBO-
DE-StreeEns model (AUC = 0.940, Kappa = 0.735, Fscore = 0.862, and Acc = 86.8) and the
SPAARC model (AUC = 0.915, Kappa = 0.676, Fscore = 0.836, and Acc = 83.5) demonstrating
the highest prediction capabilities. These models achieved excellent statistical metrics,
indicating their superior performance. The LRegr model (AUC = 0.853, Kappa = 0.539,
Fscore = 0.750, and Acc = 76.5) performed well and followed behind. The SVM model
(AUC = 0.767, Kappa = 0.529, Fscore = 0.750, and Acc = 76.5) and the MLPNeuNet model
(AUC = 0.748, Kappa = 0.294, Fscore = 0.684, and Acc = 64.7) also exhibited satisfactory
prediction capability (Table 2).



Remote Sens. 2023, 15, 2187 14 of 21

Table 2. Prediction performance of the proposed BBO-DE-StreeEns model and the benchmarks on
the validation set.

Model

Prediction Metrics

TP TN FN FP PPV
(%)

NPV
(%)

Sen
(%)

Spe
(%)

Acc
(%) Fscore Kappa AUC

BBO-DE-STreeEns 28 31 6 3 90.3 83.8 82.4 91.2 86.8 0.862 0.735 0.940
LRegr 24 28 10 6 80.0 73.7 70.6 82.4 76.5 0.750 0.529 0.853

MLPNeuNet 26 18 8 16 61.9 69.2 76.5 52.9 64.7 0.684 0.294 0.748
SPAARC 28 29 6 5 84.8 82.9 82.4 85.3 83.8 0.836 0.676 0.915

SVM 24 28 10 6 80.0 73.7 70.6 82.4 76.5 0.750 0.529 0.767

To determine whether the BBO-DE-StreeEns model has a statistically significant dif-
ference in prediction performance compared to other models, a Wilcoxon signed rank test
was conducted and the results are presented in Table 3. The test was performed on 10 pairs
of models. All pairs, except for LRegr vs. SVM (p-value = 0.716 and z-value = 0.364),
showed a significant difference in prediction performance. The z-values for the pairs were
found to be greater than the standard value of 1.96, indicating a significant difference in
the prediction performance of the models. Additionally, the p-values for the pairs were
less than 0.05, further confirming the statistical significance of the results. These findings
confirm that the BBO-DE-StreeEns model has the best prediction power in this study.

Table 3. Statistical tests of the proposed BBO-DE-STreeEns model and the other models.

No. Pairwise Comparison z-Value p-Value Significance

1 BBO-DE-STreeEns vs. LRegr 2.528 0.011 Yes
2 BBO-DE-STreeEns vs. MLPNeuNet 3.962 <0.001 Yes
3 BBO-DE-STreeEns vs. SPAARC 5.719 <0.001 Yes
4 BBO-DE-STreeEns vs. SVM 4.740 <0.001 Yes
5 LRegr vs. MLPNeuNet 5.635 <0.001 Yes
6 LRegr vs. SPAARC 2.719 0.005 Yes
7 LRegr vs. SVM 0.364 0.716 No
8 MLPNeuNet vs. SPAARC 4.175 <0.001 Yes
9 MLPNeuNet vs. SVM 3.919 <0.001 Yes
10 SPAARC vs. SVM 7.253 <0.001 Yes

5.2. The Role of the Landslide Influencing Factors

To determine the contribution of ten landslide influencing factors to the BBO-DE-
StreeEns model, we employed the wrapper algorithm [70], using five-fold cross-validations
to avoid potential bias [71]. The results are presented in Table 4 and Figure 5. Our analysis
revealed that slope has the highest role (score value = 0.299), followed by distance to road
(score value = 0.224) and elevation (score value = 0.142). The remaining factors had a lower
contribution to the BBO-DE-StreeEns model, with score values ranging from 0.026 (distance
to river) to 0.084 (distance to fault) (Table 4).

Table 4. The role of the ten influencing factors.

No. Ranking Score Value
1 Slope 0.299
2 Distance to Road 0.224
3 Elevation 0.142
4 Distance to Fault 0.084
5 Relief Amplitude 0.063
6 Soil Type 0.049
7 Geology 0.047
8 Curvature 0.036
9 Aspect 0.029
10 Distance to River 0.026
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Figure 5. The role of the influencing factors.

5.3. Landslide Susceptibility Map

Given the superior performance of the BBO-DE-StreeEns model on the landslide data,
it was employed to calculate the landslide susceptibility index for each pixel of Than Uyen
district. The index values ranged from a minimum of 0.062 to a maximum of 0.910. The
resulting output was then exported to the landslide geodatabase as described in Section 4.1.

To create a landslide susceptibility map, it is common practice to divide the map into
four categories [72,73] based on the susceptibility levels: very high, high, moderate, and
low. In this study, the boundaries between these categories were established by analyzing
a graph presented in Figure 6. The graph was constructed by plotting the percentage of
landslides against the percentage of the susceptibility map, which follows the method
described in [74]. Based on the analysis of the graph, the resulting categories were assigned
as follows: 10% for the low category, 20% for each of the moderate and high categories,
and 50% for the very high category, covering the entire study area. The threshold values
were then determined in descending order at 0.737, 0.674, and 0.502 (Figure 6). The final
landslide susceptibility map for Than Uyen district, using the BBO-DE-StreeEns model,
was generated based on these threshold values, and is presented in Figure 7.

Figure 6. Percentage of landslides vs. percentage of susceptibility map for Than Uyen district.
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Figure 7. The landslide susceptibility map for Than Uyen district using the BBO-DE-STreeEns.

Table 5 displays the characteristics of the landslide susceptibility map divided into four
categories. The results indicate that the very high, high, moderate, and low susceptibility
categories cover 78.9 km2, 157.8 km2, 157.8 km2, and 394.5 km2, respectively. It is worth
noting that the very high and high susceptibility categories together account for 83.33%
of the total landslide locations, highlighting their significance in terms of landslide risk in
the area.

Table 5. Characteristics of the four susceptibility categories of the BBO-DE-StreeEns model.

No Susceptibility
Index

Landslide
Location (%)

Verbal
Description

Susceptibility
Map (%)

Areas
(km2)

1 0.062–0.508 12.28 Low 50.00 394.5
2 0.508–0.606 4.39 Moderate 20.00 157.8
3 0.606–0.737 20.17 High 20.00 157.8
4 0.737–0.910 63.16 Very High 10.00 78.9

6. Discussion

Landslides are a highly destructive natural hazard that claims thousands of lives
and causes economic losses estimated at USD 20 billion annually [2]. Improper land
use planning and climate change are exacerbating landslide occurrences in mountainous
regions across the globe [75]. Thus, accurate landslide susceptibility prediction models are
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critical to mitigate its impacts. In this study, we developed and validated a novel ensemble
machine learning model, the BBO-DE-StreeEns, for landslide susceptibility mapping in
Than Uyen district, located in the northwest mountainous area of Vietnam, where landslides
and floods are recurring problems.

The BBO-DE-StreeEns model leverages the SPAARC Tree algorithm to build trees
through subbagging and random subspacing, while the hybrid BBO-DE algorithm opti-
mizes the model’s hyperparameters. Decision tree algorithms, especially when integrated
into ensemble models, have been shown to be highly efficient in various spatial domains,
including landslide prediction [76]. The superior predictive power of the BBO-DE-StreeEns
model in this study validates this assertion.

Although the performance of the BBO-DE-StreeEns model was heavily influenced by
the hyperparameters TotalTrees, SizePercentage, and subSpaceSize, there are no established
guidelines on the best values for them. Therefore, the successful search for and optimization
of these hyperparameters by the hybrid BBO-DE algorithm indicate its effectiveness.

The BBO-DE-StreeEns model outperformed benchmarks such as LRegr, MLPNeuNet,
SVM, and SPAARC, confirming the effectiveness of combining BBO-DE, SPAARC Tree,
subbagging, and random subspacing for landslide susceptibility mapping.

Of the ten landslide factors considered, slope and distance to roads emerged as the
most critical factors. This finding is reasonable given that Than Uyen is a mountainous
district where slope areas comprise over 90% of the total area. Landslides in this district
mainly occur on slopes between 16 and 34 degrees, with many occurring near road systems.
The road sections cutting through slopes are significant contributors to landslide failures.

The landslide samples in this study are predominantly distributed along roads, which
may introduce incompleteness bias in the landslide inventory data. This type of bias is
a common issue in landslide inventory data that can significantly impact the accuracy
and reliability of landslide susceptibility models, particularly for large study areas [77–79].
To address the potential impact of incompleteness bias in landslide susceptibility model-
ing, various strategies have been proposed in the literature. For example, incorporating
multi-source data such as field surveys, remote sensing, and historical records can help
generate a more comprehensive landslide inventory, as conducted in this study. Another
approach involves incorporating random effect variables in statistical models to account
for the potential incompleteness bias in the inventory data [77–79]. Additionally, sensitivity
analysis can be used to evaluate the robustness of modeling results to different levels of
completeness in the inventory data [77]. Furthermore, a combination of non-spatial and
spatial cross-validation techniques can help assess the model performance in different parts
of the study area and detect the potential impact of incompleteness bias in the landslide
inventory data. Comparing the results of non-spatial and spatial cross-validation can
identify areas where the model is particularly sensitive to the completeness of the inventory
data [77–79].

Several studies have incorporated rainfall-related factors into landslide modeling to
account for the impact of rainfall on landslide occurrences [80–82]. These models have
used projections of changes in the rainfall regime under various climate change scenarios
to investigate how landslide susceptibility may evolve over time. However, it is crucial to
acknowledge that uncertainties in rainfall predictions can potentially affect the reliability
of landslide susceptibility predictions [81]. Regrettably, in the present study, we were
unable to incorporate rainfall as an influencing factor in the landslide models due to the
unavailability of accurate and detailed rainfall data for the study area.

7. Conclusions

In this study, we proposed a new ensemble model, the BBO-DE-StreeEns, for land-
slide susceptibility mapping. The model was developed and evaluated using a landslide
database from Than Uyen district, which consisted of 114 landslide locations, 114 non-
landslide ones, and ten influencing factors. In addition, we compared the proposed model
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with four benchmark models, namely, LRegr, MLPNeuNet, SVM, and SPAARC, to assess
its performance. Based on our findings, we draw the following conclusions:

• The combination of BBO-DE, SPAARC, subbagging, and random subspacing formed
a powerful new ensemble model for accurate landslide susceptibility mapping.

• The BBO-DE-StreeEns model demonstrated superior performance compared to bench-
mark models such as LRegr, MLPNeuNet, SVM, and SPAARC. This highlights its
potential as a highly accurate solution for landslide susceptibility mapping.

• Ten landslide influencing factors, namely, elevation, slope, curvature, aspect, relief
amplitude, soil type, geology, distance to faults, distance to roads, and distance to
rivers, were selected based on the analysis of the landslide inventory and the geo-
environmental characteristics of the study area. As all these factors had a score value
of importance greater than zero and the landslide model performed well, these factors
are all significant in predicting landslide occurrence in the study area.

• Among the ten factors considered, slope and distance to roads were identified as the
most significant factors contributing to landslide occurrences in Than Uyen district.

• The landslide susceptibility map generated by our study provides valuable informa-
tion for authorities and policymakers in Than Uyen district for land-use planning and
territory management decision-making.
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