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We propose h̄-expansions as perturbative solutions of quantum extended Snyder and Yang models, with 
h̄-independent classical zero-th order terms responsible for the spontaneous breaking of D = 4 and D = 5
de Sitter symmetries. In such models, with algebraic basis spanned by ô(D, 1) Lie algebra generators, we 
relate the vacuum expectation values (VEV) of the spontaneously broken generators with the Abelian 
set of ten (Snyder, D = 4) or fifteen (Yang, D = 5) antisymmetric tensorial generalized coordinates, 
which are also used as zero order input for obtaining the perturbative solutions of quantum extended 
Snyder and Yang models. In such a way we will attribute to these Abelian generalized coordinates the 
physical meaning of the order parameters describing spontaneous symmetry breaking (SSB). It appears 
that the consecutive terms in h̄-power series can be calculated explicitly if we supplement the SSB order 
parameters by the dual set of tensorial commutative momenta.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
1. Introduction

Snyder and Yang models, proposed in the first half of XX-th 
century [1], [2], were precursors of modern noncommutative ge-
ometry. They are based on the idea of identifying the quantum 
space-time with the operators of a noncommutative algebra. In 
Snyder and Yang models the commutation relation between coor-
dinates is proportional to the curvature of quantum positions [1], 
[2] and Yang model also includes quantum noncommuting mo-
menta [2]. The quantum structure of space-time in these models 
permits to introduce non-trivial commutators between the com-
ponents of quantum position and quantum momenta operators 
without explicitly breaking Lorentz invariance. Such modifications 
of phase space commutation relations are expected in the algebraic 
description of quantum gravity (QG) and are important for inves-
tigating possible physical effects arising as quantum gravitational 
corrections.

The main aim of this paper is to present a novel approach to 
the perturbative solutions of extended Snyder and Yang models 
and disclose in them the spontaneous symmetry breaking (SSB) 
effects. We construct the operator-valued perturbative solutions 
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SCOAP3.
expressed as a power series in the Planck constant h̄, and ex-
plain the role of classical, commutative parts of such solutions as 
providing spontaneous symmetry breaking (SSB). The use of a per-
turbative h̄-expansion of the solutions (see e.g. [3,4]) permits to 
distinguish the classical, commuting terms obtained in the limit 
h̄ = 0, from the remaining h̄-dependent quantum parts. When the 
quantum model is formulated in terms of Lie algebra symmetry 
generators, it is known that the presence of their classical parts 
leads to SSB effects (see e.g. [5–11]). In particular D = 4 extended 
Snyder model [12–17], with its algebraic formulation described by 
ten independent ô(4, 1) symmetry generators (D = 4 de Sitter al-
gebra) fits very well in such a framework.

It is well known that in quantum theories one can consider two 
ways of breaking symmetries. The first, explicit symmetry break-
ing, leads to modified basic symmetry properties of the algebraic 
structure in the quantum models under consideration, e.g. one ob-
tains the modified action integrals, quantum equations of motion 
etc. The second way, SSB, does not change the basic symmetries of 
algebraic structures, but provides the solutions as quantum states 
with broken symmetries. In such a case the SSB effects have been 
considered in Quantum Mechanics (QM) and Quantum Field The-
ory (QFT) models, and in particular in Standard Model (SM), which 
describes the theory of elementary particles by the tools of QFT 
(see e.g. [18,19]). We recall that in SM the suitable SSB of local 
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by 
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gauge symmetries leads to the Higgs mechanism [20,21] generat-
ing the mass parameters which are necessary for the comparison 
with experiment.

In this paper we consider the presence of SSB in the descrip-
tion of quantum space-times and quantum deformed phase spaces. 
By using the tools of noncommutative (NC) geometry (see e.g. 
[22–25]), various NC models (see e.g. [1,2,26–28]) describing D = 4
quantum space-times, quantum deformed phase spaces, as well as 
quantum symmetry groups have been obtained. We recall that the 
first NC models with preserved D = 4 relativistic covariance were 
introduced as early as in 1947 by Snyder [1] and Yang [2]. These 
models and their generalizations were subsequently considered in 
numerous papers (see e.g. [12,13,16,29–32]), where however the 
appearance of SSB effects had not been pointed out.1 In this pa-
per, we will show that the introduction of explicit h̄-dependence 
and the use of perturbation theory described by h̄-power series2

permits to provide the SSB interpretation of the obtained results.
The plan of our paper is the following. In next Sec. 2 we present 

a short algebraic description of quantum Snyder model with two 
deformation parameters: the elementary length l, often identified 
with Planck length lP , and the universal Planck constant h̄ charac-
terizing quantum theories.3 The h̄-dependent D = 4 dS algebra ba-
sis of Snyder algebra can be treated as the relativistic dS extension 
from ô(3) to ô(4, 1) of the h̄-dependent nonrelativistic D = 3 angu-
lar momentum algebra, which is well-known from basic textbooks 
on QM. Further, we describe in the presence of SSB, the reducible 
structure of Hilbert spaces of states with irreducible components 
labelled by the order parameters which characterize the sponta-
neously broken solutions. For simplicity, in Snyder model, we will 
consider the degeneracy of quantum states parametrized by the 
four-vector parameter aμ describing the curved translations in the 
coset ô(4, 1)/ô(3, 1). It appears that the vacuum state ||0〉〉 in Sny-
der model is degenerate, given by the direct integral of irreducible 
vacua |0; aμ〉.4 In Sec. 3 we consider the h̄-perturbative solution 
of spontaneously broken Snyder model with explicit formulae pro-
viding the first- and second-order terms. In Sec. 4 we deal with 
quantum D = 4 Yang model which is described algebraically by 
D = 5 dS algebra. Very recently such models were studied and 
generalized (see [43–45]) with the participation of the authors of 
the present paper. Further in Sec. 4 we consider the h̄-perturbative 
solutions of Yang model and present explicitly the leading term 
linear in h̄. Finally, Sec. 5 contains a short discussion of results 
and provides new suggestions about the continuation of present 
research and proposes the possible generalizations.

2. Quantum D = 4 Snyder model and spontaneously broken 
D = 4 dS symmetries

a) Algebraic description of quantum D = 4 Snyder model
The algebraic D = 4 Snyder model is determined by the quantum 

1 It should be recalled, however, that in [14,15,32,33] the Snyder-type models 
were solved perturbatively as embedded in the canonical vectorial and tensorial 
Heisenberg algebras [34,35] but without introducing the SSB interpretation.

2 For the discussion of h̄-power expansions in quantum theories, see e.g. [4].
3 If we follow the standard description of quantum theory defined by the pas-

sage from Poisson brackets to quantum commutators (see e.g. [36]), the limit h̄ → 0
of the quantum commutators describes the transition from quantum to classical 
theory. In this paper we study the h̄ → 0 limit of perturbative h̄ expansion as de-
scribing the Abelian SSB parameters. However, it should be mentioned that recently 
such prescription has been challenged. In particular in quantum gravity were stud-
ied models with quantum solutions which contain “side by side” both classical and 
quantum parts (see e.g. [37–39]).

4 The direct integrals of Hilbert spaces for reducible quantum fields satisfying 
Wightman axioms were first considered by Borchers [40]; see also Haag [41], who 
considered the spontaneously broken quantum states in BCS model [42] describing 
superconductivity.
2

NC space-time position generators x̂μ and Lorentz-algebra genera-
tors Mμν satisfying the following relation5

[x̂μ, x̂ν ] = i
l2

h̄
M̂μν, (1)

where l is an elementary length, μ, ν = 0, 1, 2, 3, and

[M̂μν, M̂ρτ ] = ih̄(ημρ M̂ντ −ημτ M̂νρ +ηντ M̂μρ −ηνρ M̂μτ ), (2)

[M̂μν, x̂ρ ] = ih̄(ημρ x̂ν − ηνρ x̂μ). (3)

Relations (3) show that Snyder quantum space-time coordinates x̂μ

describe a Lorentz-covariant four-vector. Using the Compton length 
formula, l = h̄

Mc , after setting c = 1 in relation (1), we are led to the 
following form6

[x̂μ, x̂ν ] = i
h̄

M2
M̂μν, (4)

where M is an elementary mass (e.g. Planck mass). If we introduce

M̂4μ = Mx̂μ, (5)

one can describe the relations (2)-(4) as providing D = 4 de Sitter 
algebra

[M̂ AB , M̂C D ] = ih̄(ηAC M̂B D − ηAD M̂BC + ηB D M̂ AC − ηBC M̂ AD),

(6)

with A, B, = 0, 1, 2, 3, 4.
Originally, the Snyder model (2)-(4) was introduced by adding 

to Snyder quantum space-time x̂μ the commuting four-momenta 
pμ , what leads to the description of Snyder quantum phase space 
[1], [46]. In such a case the generators M̂μν can be expressed in 
terms of the quantum phase space coordinates (x̂μ , pμ), which af-
ter the use of relations (2)-(4) and Jacobi identities lead to the 
set of quantum-deformed Lorentz-covariant Heisenberg algebras 
[31,46,47]. The structure constants of the algebra (6) are propor-
tional to the Planck constant h̄. Special realization of algebras (2)
and (6) in symmetric ordering can be written as power series in 
structure constants i.e. power series in h̄ [34]. All other realizations 
could be obtained using similarity transformations from special re-
alization in symmetric ordering, for extended Snyder model see 
e.g. [14]. In the limit h̄ → 0, the de Sitter algebra (6) becomes an 
Abelian algebra. In the limit M → ∞ Snyder algebra (4) reduces to 
[xμ, xν ] = 0, where xμ are the commutative coordinates.

b) Spontaneous breaking of D = 4 dS symmetries
In this paper we investigate the class of models with independent 
generators x̂μ , M̂μν satisfying eqs. (2)-(4), which define7 a ten-
dimensional independent algebraic basis of D = 4 Snyder model. 
Such models were studied during the last twenty years and were 
named alternative [12] or extended [13–17,33]. They were solved 
perturbatively in terms of tensorial canonical quantum phase space 
coordinates (xAB ; p AB) ≡ (xμν, Mxμ; pμν, pμ), where8

5 For simplicity we put c = 1, because our paper is not aimed at the consideration 
of relativistic corrections, characterized by inverse powers of c. We stress, however, 
that the quantum nature of the model considered here is underlined by the explicit 
dependence on the Planck constant h̄, in agreement with the historic formulation 
of the Snyder model [1].

6 If c = 1, the length l and the mass M are related by the “quantum” mass-length 
relation l = h̄/M , see e.g. [4].

7 We will consider the most physical D = 4 case, but the results can be extended 
in a straightforward way to any dimension D ≥ 2, with the Snyder algebras spanned 
by generators of ô(D, 1).

8 In some of our papers (see e.g. [14], [16], [34]) we used the tensorial canonical 
Heisenberg algebras, but we did not consider their explicit h̄-dependence. In most 
of our earlier papers, related with Snyder models, [13–17,33] we considered the 
Heisenberg algebra relations (7) with h̄ = 1.
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[xAB , xC D ] = [p AB , pC D ] = 0,

[xAB , pC D ] = ih̄(ηACηB D − ηADηBC ).
(7)

The novelty of this paper is to express the generators M̂ AB as 
an algebraic h̄-power series and consider the zero-th order terms 
M̂(0)

AB = xAB as representing Nambu-Goldstone (NG) modes which 
describe the spontaneous symmetry breaking of D = 4 de Sitter 
symmetry. One can study the following two particular choices:

i) xμ �= 0, xμν = 0. In such a case the Lorentz symmetry is not 
broken, and the NG modes are determined by the parametrization 
of the coset ô(4, 1)/ô(3, 1), which describes the curved de Sitter 
translations (see e.g. [48]).

ii) xμ = 0, xμν �= 0. This case corresponds to spontaneously bro-
ken Lorentz symmetries (see e.g. [6], [10], [11], [52]).

The canonical coordinates xAB (see (7)) are given by the classi-
cal h̄-independent part of the h̄-expansions,

x̂μ = x(cl)
μ + x̂(q)

μ , M̂μν = x(cl)
μν + x̂(q)

μν, (8)

where xμ and xμν describe the zero-th order in the h̄-power ex-
pansions and describe the classical parts of the generators M̂ AB . In 
quantum models with preserved D = 4 dS symmetries the classi-
cal parts of h̄-power series vanish and one can introduce a unique 
(invariant under symmetries) cyclic vacuum state |0〉 (〈0 | 0〉 = 1), 
which satisfies the relations

x̂(q)
μ |0〉 = 0, x̂(q)

μν |0〉 = 0. (9)

In general case, if xAB �= 0, one should introduce the degenerate 
continuous set of vacua |0; xAB 〉. The commuting coordinates xAB

define the order parameters which describe spontaneously broken 
rotations in the planes (A, B)9 which are the Abelian subgroups of 
spontaneously broken D = 4 de Sitter symmetry.

Let us discuss the D = 4 Snyder model with spontaneous 
symmetry breaking, which is generated by the curved D = 4 dS 
translations, parametrized by a constant four-vector aμ (see e.g. 
[48,49]).10 In such a case the SSB is generated by the action of 
nonlinear unitary representation U (aμ) on the NC curved space-
time coordinates x̂μ , which results in the following inhomoge-
neous nonlinear formulae [48,49]:

x̂(aμ)μ = U−1(aμ)x̂μU (aμ) = x̂μ + aμ + O (x̂μ;aμ) (10)

where O (x̂μ; aμ) contains higher powers of x̂μ . In such a case 
one can introduce the continuous sets of degenerate vacuum states 
|0; aμ〉 and the aμ-dependent Hilbert spaces H(aμ), with different 
values of aμ linked by the unitary representation U (aμ) as follows:

|0;aμ〉 → |0;aμ + a′
μ〉 = U (a′

μ)|0;aμ〉 (11)

and

H(aμ) → H(aμ + a′
μ) = U (a′

μ)H(aμ), (12)

i.e. to each Hilbert space H(aμ) there exists an associated spon-
taneously broken set of vacua states (11). The total Hilbert space 
H describing whole spontaneously broken quantum system can be 
described by the direct integral of Hilbert spaces H(aμ),11 with 

9 If A = 0 the rotational symmetry is ô(1, 1), if A = 1, . . . , 4 we deal with SSB of 
ô(2) rotations.
10 In [48,49], the analogous case of nonlinear curved D = 4 AdS translations is 

considered.
11 The direct integrals of Hilbert spaces and degenerated vacua for reducible quan-

tum fields satisfying Wightman axioms were considered in [40]. In [41] was con-
sidered the quantum BCS model [51], and in [50] was studied a toy model of QFT 
with degenerate vacuum and reducible Hilbert spaces.
3

all possible values of the numerical parameters aν described by a 
classical manifold V with Lebesgue measure dμ

H =
⊕aν∫
V

dμH(aν). (13)

Analogously, the reducible degenerated vacuum ||0〉〉 covariant un-
der the spontaneously broken curved translation symmetries can 
be defined by the formula

||0〉〉 =
⊕aν∫
V

dμ|0;aν〉. (14)

3. h̄-perturbative solutions of spontaneously broken D = 4
Snyder model

We firstly apply the scheme of perturbative h̄-expansions to 
the extended Snyder model (see, e.g. (1)-(5)), with the algebra 
described by ô (4,1) generators M̂ AB = (M̂μν, M̂4μ = Mx̂μ). We 
expand the generators M̂ AB in the following h̄-power series:

M̂ AB = M(0)
AB + h̄M̂(1)

AB + h̄2M̂(2)
AB + ... (15)

where

M(0)
AB ≡ M(cl)

AB = lim
h̄→0

M̂ AB = 〈〈0||M̂ AB ||0〉〉 (16)

or equivalently (see (9))

M(0)
AB ≡ xAB = (

xμν, Mxμ

)
(17)

where xAB are the order parameters describing the SSB of the 
ten one-dimensional (pseudo-) orthogonal symmetries generated 
by M̂ AB on all planes (A, B), where (A, B = 0, 1, 2, 3, 4), of D = 5
space-time with signature ηAB = diag(−1, 1, 1, 1, 1)).

One can deduce from the relations (1)-(5) the iterated set of 
algebraic equations determining the perturbative quantum terms 
M̂(n)

AB (n = 1, 2, 3, ...) as functions of xAB , describing Nambu-
Goldstone (NG) degrees of freedom xAB and dual momenta p AB , 
which satisfy together the generalized canonical quantum phase 
space relations (7). The most general case, when all xAB �= 0, 
describes the situation when all the D = 4 deS symmetries are 
spontaneously broken.

a) Perturbative h̄-expansion: first order in h̄
From relation (6) one gets:[

xAB , M̂C D
(1)

]
+

[
M̂ AB

(1), xC D

]
= i(ηAC xB D − ηAD xBC − ηBC xAD + ηB D xAC )

(18)

and relations (3), (4) lead to[
xμν, M̂ρσ

(1)
]
−

[
xρσ , M̂μν

(1)
]

= i(ημρxνσ − ημσ xνρ − ηνρxμσ + ηνσ xμρ),
(19)

[
xμ, M̂ρσ

(1)
]
−

[
xρσ , x̂μ

(1)
]

= i(ημσ xρ − ημρxσ ), (20)

[
xμ, x̂ν

(1)
]
−

[
xν, x̂μ

(1)
]

= i

M2
xμν. (21)

In order to solve the relations (18)-(21) we employ the generalized 
momenta p AB = (

pμν, pμ

)
(see (7)). From (19) and (20) one can 

obtain a particular solution, given by

h̄M̂(1)
μν;S = 1 (

xμ
ρ pνρ − xν

ρ pμρ

) + xμpν − xν pμ (22)

2
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and in consistency with (21)

h̄x̂(1)
μ;S = − 1

2M2
xμρ pρ. (23)

The general first order solution depends on one free parameter 
[14] and can be obtained by a suitable choice of similarity trans-
formations of the particular solutions (22), (23).

b) Perturbative h̄-expansion: second order in h̄
The second order counterpart of relation (18) looks as follows:[

xAB , M̂(2)
C D

]
−

[
xC D , M̂(2)

AB

]
+

[
M̂(1)

AB , M̂(1)
C D

]

= i(ηAC M̂(1)
B D + ηB D M̂(1)

AC − ηBC M̂(1)
AD − ηAD M̂(1)

BC )

(24)

which leads to:[
xμν, M̂(2)

ρσ

]
−

[
xρσ , M̂(2)

μν

]

= i(ημρ M̂(1)
νσ + ηνσ M̂(1)

μρ − ηνρ M̂(1)
μσ − ημσ M̂(1)

νρ )

−
[

M̂(1)
μν, M̂(1)

ρσ

]
,

(25)

[
xμ, M̂(2)

ρσ

]
−

[
xρσ , x̂(2)

μ

]
= i(ημσ x̂(1)

ρ − ημρ x̂(1)
σ ) −

[
x̂(1)
μ , M̂(1)

ρσ

]
,

(26)[
xμ, x̂(2)

σ

]
−

[
xσ , x̂(2)

μ

]
= i

M2
M̂(1)

μσ −
[

x̂(1)
μ , x̂(1)

σ

]
. (27)

Substituting in (25)-(27) the solutions (22), (23) one gets the par-
ticular solution, to second order in h̄12:

h̄2M̂(2)
μν;S = − 1

12

(
xμρ pρσ pνσ − xνρ pρσ pμσ − 2xρσ pμρ pνσ

)
,

(28)

h̄2x̂(2)
μ;S = 1

M2

(
xρ pρ pμ + 1

4

(
xμρ pρσ pσ + xρσ pρ pμσ

))
. (29)

General solutions in the second h̄-order can be obtained from the 
formulae (28), (29) by performing suitable similarity transforma-
tions. One can also show that, in the perturbative n-th order in h̄, 
the solutions (x̂(n)

μ;S , M̂
(n)
μν;S) are n-linear in momenta pμ, pμν (see 

also [14], [16]).

4. Quantum D = 4 Yang model and spontaneously broken 
algebra ô (5,1)

In the following we will apply our method to D = 4 Yang model 
(see e.g. [2], [53–55]), algebraically described by fifteen generators 
of D = 5 dS algebra ô(5, 1) (K , L = 0, 1, 2, 3, 4, 5)

M̂K L =
(

M̂μν, M̂4μ = Mx̂μ, M̂5μ = Rq̂μ, M̂45 = M Rr̂
)

(30)

satisfying the following relation

[M̂K L, M̂ P R ] = ih̄(ηK P M̂LR − ηK R M̂L P + ηLR M̂K P − ηL P M̂K R).

(31)

The D = 4 Yang model describes a D = 4 Lorentz-covariant 
quantum-deformed relativistic Heisenberg algebra with two defor-
mation parameters (M, R) of length dimensions [M] = L−1, [R] = L

12 The subscript S denotes the Snyder case. The factor h̄ on the left hand side 
in (22), (23) and h̄2 in (28), (29) reflect the property that we deal with quantum-
mechanical momenta satisfying the relations (7), proportional to h̄ (one can recall 
the space-time realization pμ = −ih̄∂μ). Relation (22) describes generalized an-
gular momentum, in space-time realization, given by the h̄-independent formula 
M(1)

μν = i (x[μ∂ν] + 1
2 x[μ ρ∂ν]ρ

)
. In the general case, the coefficients M(n)

AB in (15) are 
proportional to n-th powers of the canonical momenta (7) and are h̄-independent.
4

and one dimensionless scalar Abelian ô (2) generator r̂. In the gen-
eral case one can introduce in the Yang model fifteen Abelian NG 
modes xK L = −xLK , which break spontaneously the ô (5,1) sym-
metry

xK L = (
xμν, Mxμ, Rqμ, M Rr

)
. (32)

In order to solve the Yang model by using a perturbative h̄-
expansion one should introduce fifteen canonically conjugated 
commuting NG momenta

pK L = (
pμν, pμ,kμ, s

)
. (33)

The variables (32), (33) satisfy D = 5 extension of the canonical 
commutation relations (7), with the following Lorentz-covariant 
additional relations

[
qμ,kν

] = ih̄ημν, [r, s] = ih̄. (34)

Using the variables (32), (33) we present below the first order h̄-
perturbative solution of the Yang model.

a) Algebraic description of D = 4 Yang model
The Yang model was obtained in [2] as a group-theoretic ex-

tension by momentum sector of the extended Snyder model. Such 
an extension can be obtained by the Born map applied to the Sny-
der model generators x̂μ → p̂μ , M̂μν → M̂μν and adding the Born 
map-invariant scalar generator r̂.

In the Yang model we extend the relations (2)-(4) by the fol-
lowing set of algebraic equations13

[
q̂μ, q̂ν

] = i
h̄

R2
M̂μν, (35)

[
x̂μ, q̂ν

] = i
h̄

M R
ημν M̂45, M̂45 = M R · r̂, (36)[

M̂μν, q̂ρ

]
= ih̄

(
ημρ q̂ν − ηνρ q̂μ

)
, (37)

[
r̂, x̂μ

] = ih̄

M2
q̂μ, (38)

[
r̂, q̂μ

] = − ih̄

R2
x̂μ (39)

where q̂μ = q(cl)
μ + q̂(q)

μ , r̂ = r(cl) + r̂(q) . It should be added that 
in the Yang model the original phase space variables (x̂μ, ̂qμ)

represent the generalized set of quantum coordinates, which 
can be doubled by Hopf-algebraic duality relations (x̂μ, ̂qμ →
x̂μ, ̂qμ; p̂μ, ̂kμ). In the limit R → ∞, the Yang model becomes the 
Snyder model, while for M → ∞, we obtain the inhomogeneous 
D = 4 de Sitter algebra in momentum space. When both M → ∞
and R → ∞ Yang model gives rise to the semidirect product of 
Poincaré algebra and commutative four-momenta, supplemented 
by a scalar variable.

b) h̄-perturbative expansion of Yang model - linear terms
We obtain the first order h̄-approximation of the algebraic so-
lutions of the Yang model if in the h̄-expansions of the solu-
tions (2)-(4) and (35)-(39) we consider the linear h̄-terms. Besides 
(19)-(21) one gets

[
qμ, q̂ν

(1)
]
−

[
qν, q̂μ

(1)
]

= i

R2
xμν, (40)[

xμ, q̂ν
(1)

]
−

[
qν, x̂μ

(1)
]

= irημν,
(

r ≡ r̂(0)
)

, (41)

13 In Yang model we denote curved noncommutative momenta by q̂μ , while q̂(0)
μ =

qμ describe their classical commutative limit. The canonically dual coordinates are 
kμ (see (34)) which are different from xμ . Obviously, we assume that [r̂, M̂μν ] = 0.



J. Lukierski, S. Meljanac, S. Mignemi et al. Physics Letters B 847 (2023) 138261
[
xμν, q̂ρ

(1)
]
+

[
M̂μν

(1),qρ

]
= i

(
ημρqν − ηνρqμ

)
, (42)

[
r, x̂μ

(1)
]
+

[
r̂(1), xμ

]
= i

M2
qμ, (43)

[
r, q̂μ

(1)
]
+

[
r̂(1),qμ

]
= − i

R2
xμ. (44)

For the extended Snyder model, in the first order, we obtained the 
formulas (22), (23). In Yang model, due to the presence of addi-
tional coordinates (qμ, r) and momenta (kμ, s), see (32), (33), one 
should extend the formulae (22), (23) by terms which are linear 
in momenta (kμ, s), see (33). We get (a, b, c, d are numerical con-
stants):

h̄M̂(1)
μν;Y = 1

2

(
xμ

ρ pνρ − xν
ρ pμρ

)+ xμpν − xν pμ −qμkν +qνkμ,

(45)

h̄x̂(1)
μ;Y = − 1

2M2
xμρ pρ + axμρkρ + brkμ + cqμs, (46)

and add the following formulae for the first order solutions of q̂μ

and r̂:

h̄q̂μ
(1) = − 1

2R2
xμρkρ + ãxμρ pρ + b̃rpμ + c̃xμs, (47)

h̄r̂(1) = dqρ pρ + f xρkρ, (48)

which depend on five additional numerical constants ã, ̃b, ̃c, d and 
f . The equations (40)-(44) impose the following constraints on the 
eight parameters in (46)-(48):

a + ã = 0, b̃ = b +1, c −d = 1

M2
, c̃ − f = − 1

R2
(49)

and, in formulae (46)-(48), imply the absence of terms propor-
tional to pμν . We see therefore that the solutions of equations 
(40)-(44) which are linear in h̄ contain four unconstrained numer-
ical parameters a, b, c, f .

The above calculation can be extended to higher orders in h̄, 
what we plan to present in a forthcoming publication.

5. Outlook and final remarks

The basic idea of Snyder and Yang models relies on the use of 
D = 4 and D = 5 de Sitter algebras for the algebraic description 
of, respectively, relativistic noncommutative quantum space-times 
and quantum phase spaces with noncommutative four-momenta. 
In this paper, the quantum nature of Snyder and Yang models has 
been underlined by considering their explicit dependence on the 
Planck constant h̄, in agreement with the first historical formula-
tions of both models [1], [2]. By using h̄ as an expansion parameter 
in the perturbative solutions, we were able to interpret the gener-
alized tensorial coordinates, introduced in our earlier papers (see 
e.g. [14–17], [34]) and we present them here as appearing due to 
the effects of spontaneous symmetry breaking of D = 4 and D = 5
de Sitter symmetries. We should also add that Snyder and Yang 
models can be considered as providing examples of the noncom-
mutative space-times and quantum deformed phase spaces which 
are considered in quantum gravity studies as the physics related 
applications of noncommutative geometry.

In our future work we plan to study the generalizations and 
modifications of the models considered here, in particular:

i) The κ-deformed extended Snyder models (see [13], [16], [56]) 
were obtained by adding to the basic deformation parameter M
the second parameter κ with mass-like dimension, in a way which 
leads in the limit M → ∞ to the well-known κ-deformed quantum 
Minkowski space-time (see e.g. [57], [58]). Similarly in Yang model 
5

with the pair of basic deformation parameters M and R (see Sec. 4) 
one can add a pair of parameters (κ , κ̃) and introduce doubly κ-
deformed Yang models with κ-deformed coordinate sector and κ̃-
deformed momenta [59].

ii) Snyder and Yang models are obtained by quantum group-
theoretic constructions, exploiting the D = 4 and D = 5 de Sitter 
algebras. However, several Yang-like models, describing quantum 
deformed Lorentz-covariant phase spaces were introduced by di-
rect algebraic methods as well, based e.g. on the use of Jacobi 
identities (see e.g. [28], [60], [61]).

iii) The relativistic Snyder and Yang models are described alge-
braically in an equivalent way by D = 4 and D = 5 dS algebras. 
It is interesting to ask the fate of this equivalence if we consider 
quantum dS algebras as Hopf algebras with nonprimitive coalge-
bra sector. In such a case we can introduce the corresponding 
quantum-deformed Snyder models if the quantum Lorentz algebra 
is (in the Hopf-algebraic sense) the quantum subalgebra of prop-
erly chosen quantum dS algebras (for the choice of such quantum 
dS algebras, see e.g. [62]).

iv) In the Hopf-algebraic framework of quantum groups the 
generalized quantum phase spaces can be obtained as the Heisen-
berg double algebra H = H � H̃ (see e.g. [35,63,64]), where H
describes quantum-deformed algebra with Hopf symmetries, H̃ is 
the quantum Hopf group dual (in Hopf sense) to H, and � repre-
sents the so-called smash product (see e.g. [65]). In such a scheme 
the Planck constant h̄ appears as introduced in the Hopfian dual-
ization procedure.14
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