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Abstract

This thesis investigates the constraints put on hidden-variables models by Hardy’s argument.
We provide a detailed derivation of three different presentations of Hardy’s argument and
demonstrate that a class of hidden-variables models cannot reproduce the predictions calculated
from the mathematical formalism of quantum mechanics. This demonstration utilises a valuation
function that, under mild criteria, fails to assign pre-existing values to certain physical quantities
in specified pure quantum states. We elaborate upon and clarify the distinction between the
quantum mechanical framework and the hidden-variables model, which has been left implicit by
other authors. We address the limitations of the argument when applied to maximally entangled
states, and substantiate the assertion that the argument remains valid for all pure entangled
states, excluding those that are maximally entangled.

1 Introduction

The objective of this thesis is to provide a detailed derivation of the argument known as ’Hardy’s Paradox’ –
originally presented by Lucien Hardy and subsequently reformulated by Sheldon Goldstein – while elucidating
certain aspects and limitations of the argument previously left implicit by other authors. Hardy’s argument is a
thought experiment which provides insight into the non-classical aspects of quantum mechanics, and it highlights
the conditions that hidden-variables theories must meet to match the predictions of quantum mechanics, which
experimental results have consistently supported.

Hidden-variables models became a field of interest in the early years of quantum theory and sought to replace
the probabilistic description of quantum theory with a deterministic theory. The debate about quantum theory
intensified following the publication of a paper by Einstein, Podolsky, and Rosen, in which they argued that
the quantum theoretical description of reality was incomplete [1]. The paper has had a significant impact on
subsequent discussions and research, as well as on the interpretation of quantum theory. In the paper, the
authors makes the crucial assumption that a measurement on one part of a system cannot affect the outcome
of a measurement on a different system which is spatially separated, a principle which subsequently became
known as locality. Furthermore, the authors assume a kind of realism which satisfies a criterion of reality which
they define. The authors proposed resolution to the apparent incompleteness of quantum theory was that there
existed some additional elements of reality which determine the outcome of measurements. These elements of
reality is often referred to as hidden-variables. However, the authors left open the question of the details of such
a theory.

The debate about hidden-variables models was substantially influenced by John Stewart Bell, who in 1964
proposed an empirical test of local realism, known as Bell’s Theorem [2]. The empirical test relies on an inequality
which is violated by quantum theory, but should hold for local hidden-variables models. As Bell himself said:
”If [a hidden-variable theory] is local it will not agree with quantum mechanics, and if it agrees with quantum
mechanics it will not be local.” [3]. One such Bell inequality was proposed by John Clauser, Michael Horne, Abner
Shimony, and Richard Holt in 1969, known as the CHSH inequality [4]. Subsequent experiments have shown
that the inequality is violated, thereby lending credence to quantum theory. Furthermore, Bell contributed
in showing the Kochen-Specker theorem which highlights that properties of quantum systems are inherently
dependent on the context in which they are measured [5]. It shows that there is no consistent way of assigning
pre-existing values to the properties of some quantum systems. Further work on contextuality has been done
by David Mermin, who showed a state-independent contextuality argument with two qubits [6]. An experiment
proposed by Daniel M. Greenberger, Michael A. Horne, and Anton Zeilinger, known as the GHZ experiment,
provides an empirical test of local realism in the same manner as Bell’s inequality. However, unlike Bell’s, this
experiment does not rely on inequalities [7]. The results of experiments agree with the predictions of quantum
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mechanics, and in 2022 Anton Zeilinger won a shared Nobel prize for his contributions to experiments with
entangled photons, which established the violation of Bell inequalities.

Similarly to the GHZ experiment, Hardy’s argument does not rely on inequalities. However, unlike the
GHZ experiment, Hardy’s argument does not apply to all iterations of the experiment. In this thesis we will
present the argument put forward by Lucian Hardy in his paper ”Quantum Mechanics, Local Realistic Theories,
and Lorentz-Invariant Realistic Theories” [8] and his work in extending the argument to almost all entangled
states in ”Nonlocality for Two Particles without Inequalities for Almost All Entangled States” [9]. Then we
shall present Sheldon Goldstein’s formulation of Hardy’s argument, originally presented in Goldstein’s paper
”Nonlocality without inequalities for almost all entangled states for two particles” [10]. In each case, we will use the
mathematical framework of quantum mechanics to calculate the probabilities of various measurement outcomes.
We will then demonstrate that a local hidden-variables model cannot reproduce these predictions. Furthermore,
we will elucidate the significance of the results from the calculations of the probabilities of various measurement
outcomes through explicit descriptions. In addition, we will utilise a notation which distinguishes between the
physical quantity, the operator which represents the physical quantity, and the result of a measurement of a
physical quantity. After the presentation of each argument, its limitations will be considered and comments on
its important qualities will be made.

2 Theory

The mathematics and terminology required to follow the arguments in this thesis is presented in this section.
This involves the basics of the mathematical formalism of quantum mechanics, including composite systems, a
brief introduction to hidden-variables models and the terms realism, locality, and local realism, the properties of
the valuation map, and the notation regarding the probability of the value of a measurement outcome.

2.1 The quantum mechanical formalism

Quantum theory, in its conventional formulation, is built on the theory of Hilbert spaces and (linear) operators
[11][12]. A complex Hilbert space H is a vector space over the field C equipped with a sesquilinear and positive
definite map ⟨·|·⟩ : H ×H → C called the inner product. As is customary in physics, we let the inner product
be linear in the second argument and antilinear in the first. Then, the inner product satisfies the following
properties.

⟨u|v⟩ = ⟨v|u⟩, (Conjugate symmetric)

⟨u|αv1 + βv2⟩ = α ⟨u|v1⟩+ β ⟨u|v2⟩ ∀u, v ∈ H, α, β ∈ C, (Linear in the second argument)

⟨u|u⟩ ≥ 0 ∀u ∈ H, and ⟨u|u⟩ = 0 ⇐⇒ u = 0. (Positive definite)

Following the common bra-ket notation, or Dirac notation, we will often label elements of H as kets, e.g. |u⟩,
and their duals as bras, e.g. ⟨u|, which is possible due to the Riesz representation theorem. The dual, ⟨u|, is a
linear functional which maps elements of H to C, ⟨u| : H → C, by |v⟩ 7→ ⟨u|v⟩. The norm induced by the inner
product,

∥∥|u⟩∥∥ :=
√
⟨u|u⟩, defines the length of vectors in the Hilbert space, and an element |u⟩ ∈ H such that∥∥|u⟩∥∥ =

√
⟨u|u⟩ = 1 is called a unit vector. Pure quantum states of a system are unit vectors in the Hilbert

space, and the state of a quantum system is denoted |ψ⟩. In this thesis, we will consider only pure quantum
states in finite-dimensional Hilbert spaces, hereafter referred to simply as states.

An operator Â on the Hilbert space H is a linear map Â : H → H. A self-adjoint operator is a linear operator
that satisfies ⟨Âu|v⟩ = ⟨u|Âv⟩ for all u and v in H, and the set of all self-adjoint operators on a Hilbert space
H is denoted LS (H). In addition, any self-adjoint operator has real eigenvalues. The set of eigenvalues of an
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operator will sometimes be referred to as the spectrum of the operator. In standard quantum mechanics, self-
adjoint operators on the Hilbert space are called observables, and measurable physical quantities are represented
by observables. Notationally, the physical quantity A is represented by the observable Â. The result of a
measurement of a physical quantity A is in the spectrum of the observable Â representing the physical quantity,
however, the results of measurements and the probabilities of the different outcomes will be considered in more
detail in a following section.

A class of operators called projection operators are self-adjoint operators which satisfy Q̂ = Q̂2. A rank
one projection operator is a linear map |u⟩⟨u| : H → H, which maps elements of H to itself by |v⟩ 7→ ⟨u|v⟩ |u⟩.
By the spectral theorem, any self-adjoint operator with non-degenerate eigenvalues can be written as a sum of
projection operators onto its eigenspaces multiplied with the corresponding eigenvalue for that eigenspace, that
is, Â =

∑
i aiQ̂i. The spectral theorem holds for self-adjoint operators with degenerate eigenvalues, but we will

limit our discussion to the non-degenerate case.

In quantum mechanics a composite quantum system, that is, a system of more than one particle, is described
by the tensor product of the individual systems. The tensor product satisfies

c
(
|ϕ⟩ ⊗ |φ⟩

)
=
(
c |ϕ⟩

)
⊗ |φ⟩ = |ϕ⟩ ⊗

(
c |φ⟩

)
,

|ϕ⟩ ⊗
(
|φ⟩+ |ψ⟩

)
= |ϕ⟩ ⊗ |φ⟩+ |ϕ⟩ ⊗ |ψ⟩ ,(

|ϕ⟩+ |ψ⟩
)
⊗ |φ⟩ = |ϕ⟩ ⊗ |φ⟩+ |ψ⟩ ⊗ |φ⟩ ,

for all |ϕ⟩ ∈ H1, |φ⟩ ∈ H2, and c ∈ C. The tensor product space, H1⊗H2, of the individual vector spaces H1 and
H2, is a complex Hilbert space H with an inner product ⟨ϕ1 ⊗ φ1|ϕ2 ⊗ φ2⟩ := ⟨ϕ1|ϕ2⟩ ⟨φ1|φ2⟩. As an example,
consider a composite quantum system described by two complex Hilbert spaces H1 and H2, with orthonormal
bases B1 =

{
|ϕi⟩

}
and B2 =

{∣∣φj〉}. Then, H has an orthonormal basis B =
{
|ϕ⟩ |φ⟩

∣∣ ∀ |ϕ⟩ ∈ B1, |φ⟩ ∈ B2

}
,

where |ϕ⟩ |φ⟩ := |ϕ⟩⊗ |φ⟩. Note that the dimension of the vector space H is the product of the dimensions of H1

and H2, dim (H) = dim (H1)dim (H2). Operators on H may be defined through Â1B̂2 := Â ⊗ B̂, where Â and
B̂ are operators on H1 and H2 respectively. An element |χ⟩ of H can be expressed as

|χ⟩ =
∑
i,j

cij |ϕi⟩
∣∣φj〉 .

where the elements cij form a dim (H1) × dim (H2) matrix C [11]. The matrix C has a singular value
decomposition C = UDV , where U and V are unitary matrices and D is a diagonal matrix. The diagonal
entries in the diagonal matrix D are non-negative real numbers called the singular values of C and are denoted
by λk. If we assume that dim (H1) = dim (H2) = d, then, |χ⟩ can be written as

|χ⟩ =
d∑

i,j=1

 d∑
k,l=1

UklλkVklδkl

 |ϕi⟩
∣∣φj〉 = d∑

k=1

λk

 d∑
i=1

Uik |ϕi⟩

⊗

 d∑
j=1

Vkj
∣∣φj〉

 .

A different choice of bases for H1 and H2, B′
1 = {un} and B′

2 = {vm} such that un :=
∑d
i=1 Uik |ϕi⟩, and vm :=∑d

j=1 Vkj
∣∣φj〉, form an orthonormal basis for H1 and H2 respectively. Then, B′ =

{
|u⟩ |v⟩

∣∣ ∀ |u⟩ ∈ B′
1, |v⟩ ∈ B′

2

}
is an orthonormal basis for H. Therefore, the vector |χ⟩, written in terms of the vectors in the B′ basis is

|χ⟩ =
m∑
k=1

λk |uk⟩ |vk⟩ ,

which is known as the Schmidt decomposition, where m is called its Schmidt rank. The vector |χ⟩ is called
factorised if m = 1, that is, if |χ⟩ = λk |u⟩ |v⟩, otherwise it is called entangled. Entangled vectors where the
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Schmidt coefficient λk is equal for all k are called maximally entangled, and maximally entangled states are
maximally entangled unit vectors.

2.2 Local realism and hidden-variables models

Local realism is comprised of two concepts locality and realism. Realism is the concept of physical objects having
definite values for their properties (physical quantities), even when those properties are not being observed or
measured, and that those properties are independent of the act of observation. The authors of [1] define a
sufficient criterion of reality as

”If, without in any way disturbing a system, we can predict with certainty the value of a physical
quantity, then there exists an element of physical reality corresponding to this physical quantity.”.

This criterion, unlike determinism, doesn’t assert that all elements of reality have predictable values. Instead,
it contends that if a value is predictable, there must be an element of reality to account for this predictability
[13]. (The discussion of determinism is beyond the scope of this thesis, but an introduction to determinism is
presented in [14]).

The principle of locality refers to the assumption that any physical effects or interactions between objects
occur only through local interactions. As Albert Einstein says in his autobiographical notes [15],

”But on one supposition we should, in my opinion, absolutely hold fast: the real factual situation of
the system S2 is independent of what is done with the system S1, which is spatially separated from
the former.”.

That is, any interaction with system S1, has no effect on system S2, except through local interactions. The
conjunction of locality and realism is referred to by the term local realism.

The claim of hidden-variables theories is that different outcomes of measurements obtained from identical
quantum states are due to the fact that the system is in a different microstate, determined by some unmeasurable
quantity or quantities known as hidden variables [16]. A state ϕ in a hidden-variables model is a function of the
quantum state ψ and the hidden variables ξ, that is, ϕ (ψ, ξ). Furthermore, hidden-variables models, with the
assumption of faithful measurements, claim that the outcome of a measurement reveals the hidden value of the
physical quantity without disturbing it. Moreover, such models, when assuming the principle of locality, posit that
the measurement of a physical quantity in one system does not influence the hidden values of physical quantities
in other spatially separated systems. In contrast, quantum mechanics predicts the result of a measurement of
a physical quantity in a given quantum state as a probability distribution over the spectrum of the observable
representing the physical quantity. It also proposes that the values of physical quantities in entangled systems are
correlated in a non-local manner. The predictions of quantum mechanics is in agreement with experiments, and
therefore, any hidden-variables model which seeks to describe physical reality must reproduce those predictions.
However, as will be shown in this thesis, no hidden-variables model which assumes faithful measurements, and
whose predictions fulfil the criterion of reality and locality, can reproduce the predictions of quantum mechanics.

2.3 Valuation map

In this section the definition of the valuation map, e.g. [17], will be presented, and some important properties
will be derived. In quantum theory, the value of a measurement outcome of a physical quantity A represented
by the observable Â, in a quantum state ψ, is given by a valuation map which maps observables to real-valued
scalars, that is, vψ : LS (H) → R, where LS (H) is the set of observables on the Hilbert space H. As we
will see, if the valuation map is required to satisfy some mild conditions, it cannot assign pre-existing values to
physical quantities which satisfy the criterion of reality in a manner which reproduces the predictions of quantum
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mechanics.

The valuation map is assumed to have the property that the valuation of an observable is in the spectrum of
the observable,

vψ (Â) ∈ spec (Â) . (SPEC)

In the case of an observables on a finite dimensional Hilbert space, the spectrum of the observable is the set of
eigenvalues of the observable. As a second assumption, the valuation map is assumed to satisfy the functional
relation

vψ
(
fo (Â)

)
= f

(
vψ (Â)

)
, (FUNC)

where f : R → R and fo (Â) :=
∑
i f (ai)Qi. Note that for any self-adjoint operator, that is A = A∗, and

f : R → R, fo (A) = fo (A)
∗. As a consequence of (SPEC) and (FUNC) the valuation map satisfies the

multiplicative property

vψ (Â) vψ (B̂) = vψ (ÂB̂) , (MULT)

for commuting observables Â and B̂, that is Â and B̂ such that [Â, B̂] := ÂB̂ − B̂Â = 0. To show that
this property is satisfied we will first show that commuting observables share an eigenvector basis. Consider
an arbitrary eigenstate |ψi⟩ of Â, then, for commuting observables Â and B̂, ÂB̂ |ψi⟩ = B̂Â |ψi⟩ = aiB̂ |ψi⟩.
Therefore, B̂ |ψi⟩ is an eigenstate of Â with eigenvalue ai, and since B̂ |ψi⟩ and |ψi⟩ is both eigenstates of Â, they
are related by a constant bi. Then, B̂ |ψ⟩ = bi |ψ⟩, which means that |ψi⟩ is an eigenstate of B̂ with eigenvalue
bi. The argument holds for all eigenstates of Â and B̂, and therefore, Â and B̂ share an eigenvector basis.
Since Â and B̂ share an eigenvector basis, the spectral decomposition of Â and B̂ share a set of projection
operators {Q̂i} such that Â =

∑
i aiQ̂i and B̂ =

∑
i biQ̂i. Consider an operator Ĉ =

∑
i ciQ̂i, and two

functions g : R → R and h : R → R such that g (ci) = ai and h (ci) = bi. Then, Â and B̂ are related
to the observable Ĉ through go (Ĉ) =

∑
i g (ci) Q̂i = Â and ho (Ĉ) =

∑
i h (ci) Q̂i = B̂. Therefore, vψ (ÂB̂)

can be written as vψ
(
go (Ĉ)ho (Ĉ)

)
. Consider a function Ωo (Ĉ) :=

∑
iΩ (ci) Q̂i, where Ω (ci) := g (ci)h (ci).

Then, vψ
(
go (Ĉ)ho (Ĉ)

)
= vψ

(
Ωo (Ĉ)

)
, which by (FUNC) is equal to Ω

(
vψ (Ĉ)

)
. The definition of Ω gives

Ω
(
vψ (Ĉ)

)
= g

(
vψ (Ĉ)

)
h
(
vψ (Ĉ)

)
, which by (FUNC) is equal to vψ

(
go (Ĉ)

)
vψ
(
ho (Ĉ)

)
. Substituting in

go (Ĉ) = Â and ho (Ĉ) = B̂, the expression is shown to be equal to vψ (Â) vψ (B̂). Then it is shown that
vψ (ÂB̂) = vψ (Â) vψ (B̂).

2.4 Probability notation

In the quantum mechanical formalism, by the Born rule, the probability of obtaining the outcome ai in a
measurement of the physical quantity A represented by the observable Â in the quantum state |ψ⟩, that is
vψ (Â) = ai, is

PAψ (ai) =
∥∥Q̂i |ψ⟩∥∥2 ,

where Q̂i is the projection onto the ai eigenspace of Â. Note that, if the quantum state |ψ⟩ is an eigenstate of the
observable Â such that Â |ψ⟩ = ai |ψ⟩, then vψ (Â) = ai with probability equal to unity, and consequently there
exist an element of physical reality corresponding to the physical quantity A with the value ai. More directly,
the criterion of reality is satisfied, and therefore, we say that the physical quantity A has the value ai in the
quantum state |ψ⟩. Similarly for a two particle system, for physical quantities A and B of particle 1 and particle
2 respectively, represented by the operators Â =

∑
i aiQ̂i and B̂ =

∑
j bjR̂j . The probability of obtaining the
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outcome ai and bi in a joint measurement of A and B in the quantum state |ψ⟩ is

PA,Bψ (ai, bi) =
∥∥Q̂1iR̂2i |ψ⟩

∥∥2 ,
where Q̂1iR̂2i := Q̂i ⊗ R̂i, with Q̂i as the projection onto the ai eigenspace of Â for particle 1 and R̂i as the
projection onto the bi eigenspace of B̂ for particle 2. In the following sections, the questions which will be
answered concern the probability of different valuations of projections, and therefore we will limit the discussion
of probabilities to cases where the observables are projections, in which case vψ (Q̂) ∈ {0, 1}, for a projection
operator Q̂. If the observables on particle 1 and particle 2 are two projection operators Q̂ and R̂ respectively,
representing physical quantities Q and R, then the probability of obtaining the outcome 1 for both quantities,
that is, vψ (Q̂) = 1 and vψ (R̂) = 1 may be simplified to vψ (Q̂) vψ (R̂) = vψ (Q̂1R̂2) = 1 by use of the property
(MULT). Then, the probability of obtaining the outcome 1 for both Q and R is

PQ1R2

ψ (1) =
∥∥Q̂1R̂2 |ψ⟩

∥∥2 .
If PQ1R2

ψ (1) = 1, then the criterion of reality is satisfied, and therefore both Q and R have value 1 in the quantum
state |ψ⟩. If PQ1R2

ψ (1) = 0, then PQ1R2

ψ (0) = 1, which means that vψ (Q1R2) = vψ (Q1) vψ (R2) = 0, in which
case it is shown that Q1 and R2 cannot simultaneously have the value 1. The probability of obtaining the outcome
0 for a projection operator Q̂, is equal to the probability of obtaining the outcome 1 for the complement operator
Q̂∁ := I− Q̂, since there are only two possible outcomes for a valuation of a projection, that is, vψ (Q̂) ∈ {0, 1}. If
PQ

∁

ψ (1) = 1, then PQψ (1) = 0 and PQψ (0) = 1, in which case, the complement of the physical quantity Q satisfies
the criterion of reality, and we say that Q has value 0 in the quantum state |ψ⟩. For two projection operators
Q̂ and R̂, on particle 1 and particle 2 respectively, the probability of obtaining the outcome 0 for both physical
quantities Q and R, that is, vψ (Q̂) = 0 and vψ (R̂) = 0, is

P
Q∁

1R
∁
2

ψ (1) =
∥∥∥Q̂∁

1R̂
∁
2 |ψ⟩

∥∥∥2 =
∥∥(I− Q̂1 − R̂2 + Q̂1R̂2) |ψ⟩

∥∥2 .
If PQ

∁
1R

∁
2

ψ (1) = 1, then the physical quantities Q and R both have the value 0 in the quantum state |ψ⟩. It is
also possible to define conditional probabilities, that is, the probability of obtaining a valuation vψ (Q̂) = i, given
that vψ (R̂) = j. The definition of conditional probabilities

P (A | B) =
P (A ∩B)

P (B)
,

shows that the probability of obtaining vψ (Q̂) = 1, given vψ (R̂) = 1, for the physical quantities Q and R, is

P
Q|R
ψ (1 | 1) =

∥∥Q̂1R̂2 |ψ⟩
∥∥2∥∥R̂2 |ψ⟩
∥∥2 , if

∥∥R̂2 |ψ⟩
∥∥2 ̸= 0.

If PQ|R
ψ (1 | 1) = 1, then the physical quantity Q has value 1 if the physical quantity R has value 1. Note that

for probabilities where vψ (Q̂) = 0 or vψ (R̂) = 0 is considered, a change of operator to Q̂∁ or R̂∁, allows the
probability to be written in the form given above.

We now turn our attention to the argument put forward by Lucien Hardy [8], his extension to the argument
[9], and Goldstein’s formulation of Hardy’s argument [10].

3 Hardy’s argument

In his articles ”Quantum Mechanics, Local Realistic Theories, and Lorentz-Invariant Realistic Theories” [8] and
”Nonlocality for Two Particles without Inequalities for Almost All Entangled States” [9], Lucien Hardy presented
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arguments which show that the predictions of quantum mechanics are inconsistent with the predictions of a
class of hidden-variables models. The inconsistency is shown by defining a set of observables that, in a specific
state, have no consistent assignment of hidden variables that will reproduce the results calculated from the
quantum mechanical formalism. Given that the predictions of the quantum mechanical formalism align with
experimental results, any competing theory seeking to describe physical reality must likewise replicate these
predictions. Therefore, the class of hidden-variables models shown to be inconsistent with the predictions of
quantum mechanics is effectively ruled out.

3.1 The two Mach-Zehnder interferometer argument

In this subsection, a detailed account of Hardy’s argument from [8] is presented, and the contradiction which the
argument arrives at is shown, using the valuation function. The argument involves two spin-1/2 particles, one
electron and one positron, each passing through respective Mach-Zehnder interferometers consisting of two beam-
splitters (BS). The interferometers are set up such that they overlap, allowing the two particles to annihilate with
each other at a point P, as shown in Figure 1. The figure is made to look similar to the figure in [8], but with
different notation. To show Hardy’s argument, the development of the state |ψ⟩ from its initial state to its final
state before detection is derived in four different cases, where the difference between the cases is the placement
or removal of beam-splitters in the second layer of the Mach-Zehnder interferometers, that is, the placement or
removal of BS2

1 or BS2
2 . The different configurations lead to different states before detection, and to different

valuations of the observables Ĉ1, D̂1, Ĉ2, and D̂2. From the valuations of the observables in the four different
cases, one can observe that there is no consistent valuation of the observables in a local hidden variables model
that reproduce the predictions of quantum mechanics.

Figure 1: Two overlapping Mach Zehnder interferometers.

3.1.1 Definition of bases, beam-splitters, and initial state

The thought experiment involves two spin-1/2 particles – a positron and an electron, which we label as particle
1 and particle 2 respectively. The quantum state of each individual particle is a unit vector in a 2-dimensional
complex Hilbert space Hn

∼= C2, where n refers to the number assigned to the particles, and n ∈ {1, 2}. Let
B1
n denote the orthonormal basis for the initial state of particle n, with B1

n =
{
|rn⟩ , |sn⟩

}
, where |rn⟩ =

(
1
0

)
and |sn⟩ =

(
0
1

)
is the standard basis for particle n. The initial state of the positron, particle 1, is |s1⟩, and

the initial state of the electron, particle 2, is |s2⟩. The state of the composite system, consisting of the two
particles, is described by the tensor product of the individual systems. Thus, the state of the composite system
is in the 4-dimensional complex Hilbert space H = H1 ⊗ H2, and the initial state is |ψ⟩ = |s1⟩ |s2⟩. After
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particle n passes through a beam-splitter in the first layer, BS1
n, we choose to represent the state of the particle

as a linear combination of the vectors in the basis B2
n =

{
|vn⟩ , |un⟩

}
. Further, after particle n passes through

the second layer, BS2
n, we choose to represent the state of the particle is described as a linear combination

of the vectors in the basis B3
n =

{
|cn⟩ , |dn⟩

}
. The state of the composite system is described in either of

the three bases B1 =
{
|r1⟩ |r2⟩ , |r1⟩ |s2⟩ , |s1⟩ |r2⟩ , |s1⟩ |s2⟩

}
, B2 =

{
|u1⟩ |u2⟩ , |u1⟩ |v2⟩ , |v1⟩ |u2⟩ , |v1⟩ |v2⟩

}
, or

B3 =
{
|c1⟩ |c2⟩ , |c1⟩ |d2⟩ , |d1⟩ |c2⟩ , |d1⟩ |d2⟩

}
. The action of a beam-splitter in the first layer of the interferometer

is

Fn : |sn⟩ →
(
i |un⟩+ |vn⟩

)
/
√
2,

and the action of a beam-splitter in the second layer of the interferometer, that is BS2
1 or BS2

2 , is

Sn :

|un⟩ →
(
|cn⟩+ i |dn⟩

)
/
√
2

|vn⟩ →
(
i |cn⟩+ |dn⟩

)
/
√
2

.

Furthermore, the absence of a beam-splitter in the second layer, that is, the absence of BS2
1 or BS2

2 , will have
the effect

Xn :

|un⟩ → |cn⟩

|vn⟩ → |dn⟩
.

Note that n, in the definition of Fn, Sn, and Xn, indicates which particle the transformation acts upon, and
consequently which factor of the tensor product the transformation acts upon. Having defined the bases, initial
state of the system, and action of the beam-splitters, the state before detection of can be derived.

3.1.2 Transformations of the state

Let the initial state of the system be

|ψ⟩ = |s1⟩ |s2⟩ .

The state of the composite system will be derived in four different cases, where the configurations of the
interferometers of the second layer of beam-splitters are different in each case. In all four cases the beam-
splitters in the first layer are present, but a beam-splitter in the second layer may be present or absent. The four
cases are

1. Neither beam-splitter in the second layer is present.

2. BS2
1 is present, but BS2

2 is absent.

3. BS2
2 is present, but BS2

1 is absent.

4. Both beam-splitters in the second layer are present.

In each case, let |ψm⟩ denote the state of the system before detection, where m indicates which case the state
corresponds to. Then, the state before detection in the four different cases are

|ψ1⟩ = (X1X2) (F1F2) |ψ⟩ , |ψ2⟩ = (S1X2) (F1F2) |ψ⟩ , |ψ3⟩ = (X1S2) (F1F2) |ψ⟩ , |ψ4⟩ = (S1S2) (F1F2) |ψ⟩ .

In each case the state of the system after passing through the first layer of the beam-splitters is F1F2 |ψ⟩.
Therefore, to simplify future calculations, the state of the system after passing through the first layer of beam-
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splitters will be denoted
∣∣ψ′〉, where

∣∣ψ′〉 = F1 |s1⟩F2 |s2⟩ =
1

2

(
− |u1⟩ |u2⟩+ i |u1⟩ |v2⟩+ i |v1⟩ |u2⟩+ |v1⟩ |v2⟩

)
.

However, the state |u1⟩ |u2⟩ expresses a state where the positron and the electron annihilate each other. Therefore,
we rewrite |u1⟩ |u2⟩ as |γ⟩, and get

∣∣ψ′〉 = 1

2

(
− |γ⟩+ i |u1⟩ |v2⟩+ i |v1⟩ |u2⟩+ |v1⟩ |v2⟩

)
.

Then, the state before detection in each of the four cases is

|ψ1⟩ = X1X2

∣∣ψ′〉 , |ψ2⟩ = S1X2

∣∣ψ′〉 , |ψ3⟩ = X1S2

∣∣ψ′〉 , |ψ4⟩ = S1S2

∣∣ψ′〉 .
The state before detection in case 1 is

|ψ1⟩ = X1X2

∣∣ψ′〉 = 1

2

(
− |γ⟩+ i |c1⟩ |d2⟩+ i |d1⟩ |c2⟩+ |d1⟩ |d2⟩

)
. (1)

The state before detection in case 2 is

|ψ2⟩ = S1X2

∣∣ψ′〉 = 1

2
√
2

(
−
√
2 |γ⟩ − |c1⟩ |c2⟩+ 2i |c1⟩ |d2⟩+ |d1⟩ |c2⟩

)
. (2)

The state before detection in case 3 is

|ψ3⟩ = X1S2

∣∣ψ′〉 = 1

2
√
2

(
−
√
2 |γ⟩ − |c1⟩ |c2⟩+ i |c1⟩ |d2⟩+ 2i |d1⟩ |c2⟩

)
. (3)

Finally, the state before detection in case 4 is

|ψ4⟩ =S1S2

∣∣ψ′〉 = 1

4

(
− |γ⟩ − 3 |c1⟩ |c2⟩+ i |c1⟩ |d2⟩+ i |d1⟩ |c2⟩ − |d1⟩ |d2⟩

)
. (4)

3.1.3 Definition of observables and calculation of probabilities

We will show that there is a tension between hidden-variables theories and quantum mechanics by providing a set
of observables that have no consistent assignment of hidden-variables that will reproduce the results calculated
from the quantum mechanical formalism. Let the observables Ĉ1, D̂1, Ĉ2, and D̂2, be defined by

Ĉ1 = |c1⟩⟨c1| ⊗ I, D̂1 = |d1⟩⟨d1| ⊗ I,

Ĉ2 = I⊗ |c2⟩⟨c2|, D̂2 = I⊗ |d2⟩⟨d2| ,

First, the probability of obtaining the outcome vψ1
(Ĉ1) = 1 and vψ1

(Ĉ2) = 1 in a measurement of the physical
quantities C1 and C2 in the in the state |ψ1⟩, that is, the probability of vψ1

(Ĉ1Ĉ2) = 1 is

PC1C2

ψ1
(1) =

∥∥Ĉ1Ĉ2 |ψ1⟩
∥∥2 =

∥∥∥∥12(−Ĉ1Ĉ2 |γ⟩+ iĈ1Ĉ2 |c1⟩ |d2⟩+ iĈ1Ĉ2 |d1⟩ |c2⟩+ Ĉ1Ĉ2 |d1⟩ |d2⟩
)∥∥∥∥2 = 0.

This shows that the valuation vψ1
(Ĉ1Ĉ2) = 1 is impossible, that is, C1 and C2 cannot simultaneously have the

value 1 in the state |ψ1⟩. Second, the probability of obtaining the outcome vψ2
(Ĉ2) = 1 given that vψ2

(D̂1) = 1

in the state |ψ2⟩ is

P
C2|D1

ψ2
(1 | 1) =

∥∥Ĉ2D̂1 |ψ2⟩
∥∥2∥∥D̂1 |ψ2⟩
∥∥2 ,
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where

D̂1 |ψ2⟩ =
1

2
√
2

(
−
√
2D̂1 |γ⟩ − D̂1 |c1⟩ |c2⟩+ 2iD̂1 |c1⟩ |d2⟩+ D̂1 |d1⟩ |c2⟩

)
=

1

2
√
2
|d1⟩ |c2⟩ .

Then,

P
C2|D1

ψ2
(1 | 1) =

∥∥∥∥∥2
√
2

2
√
2
Ĉ2 |d1⟩ |c2⟩

∥∥∥∥∥
2

=
∥∥|d1⟩ |c2⟩∥∥2 = 1.

Therefore, if vψ2 (D̂1) = 1 then vψ2 (Ĉ2) = 1 in the state |ψ2⟩, that is, vψ2 (D̂1) = 1 =⇒ vψ2 (Ĉ2) = 1. Third,
the probability of obtaining the outcome vψ3 (Ĉ2) = 1 given that vψ3 (D̂2) = 1 in the state |ψ3⟩ is

P
C1|D2

ψ3
(1 | 1) =

∥∥Ĉ1D̂2 |ψ3⟩
∥∥2∥∥D̂2 |ψ3⟩
∥∥2 ,

where

D̂2 |ψ3⟩ =
1

2
√
2

(
−
√
2D̂2 |γ⟩ − D̂2 |c1⟩ |c2⟩+ iD̂2 |c1⟩ |d2⟩+ 2iD̂2 |d1⟩ |c2⟩

)
=

i

2
√
2
|c1⟩ |d2⟩ .

Then,

P
C1|D2

ψ3
(1 | 1) =

∥∥∥∥∥ i2
√
2

2
√
2
Ĉ1 |c1⟩ |d2⟩

∥∥∥∥∥
2

=
∥∥i |c1⟩ |d2⟩∥∥2 = 1.

Bearing a similarity to the last result, if vψ2
(D̂2) = 1 then vψ2

(Ĉ1) = 1 in the state |ψ3⟩, that is,
vψ3

(D̂2) = 1 =⇒ vψ3
(Ĉ1) = 1. Finally, the probability of obtaining the outcome vψ4

(D̂1) = 1 and vψ4
(D̂2) = 1

in a measurement of the physical quantitiesD1 andD2 in the in the state |ψ4⟩, that is, the probability of obtaining
the outcome vψ4

(D̂1D̂2) = 1 is

PD1D2

ψ4
(1) =

∥∥D̂1D̂2 |ψ4⟩
∥∥2 =

∥∥∥∥−1

4
|d1⟩ |d2⟩

∥∥∥∥2 =
1

16
.

That is, we expect the outcome vψ4
(D̂1D̂2) = 1 to be obtained in 1/16 of the experiments. In summary,

PC1C2

ψ1
(1) = 0, (5)

P
C2|D1

ψ2
(1 | 1) = 1, (6)

P
C1|D2

ψ3
(1 | 1) = 1, (7)

PD1D2

ψ4
(1) = 1/16. (8)

3.1.4 Hardy’s argument

We will now argue that hidden-variables model which satisfies the criterion of reality and locality is inconsistent
with the predictions, (5)-(8), calculated from the quantum mechanical formalism. Consider an ensemble of
systems prepared in an identical quantum state on which we perform measurements. Further, consider an
instance in which the outcome vψ4

(D̂1D̂2) = 1 is obtained. Then, by use of the property (MULT), the valuation
vψ4

(D̂1D̂2) = 1 can be written as vψ4
(D̂1) vψ4

(D̂2) = 1. The observables D̂1 and D̂2 are projections and
therefore, for the product vψ4

(D̂1) vψ4
(D̂2) to be equal to 1, (SPEC) implies that

vψ4 (D̂1) = 1, and vψ4 (D̂2) = 1.
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From the hidden-variables theory perspective, if we assume faithful measurements, that is, that we obtain the
hidden pre-existing value of the physical quantity which we measure without disturbing it. Then we can say that
D1 and D2 both have value 1 in the state |ψ4⟩ in the particular instance which we are considering.

Furthermore, if we assume that the principle of locality holds, then the valuations vψ4 (D̂1) and vψ2 (D̂1)

should have the same value due to the fact that nothing that is local to particle 1 has changed between cases 2
and 4. That is, in both cases, particle 1 interacts with the beam-splitter BS1

1 , and subsequently, it can travel
freely through the path labelled |v1⟩ to BS2

1 , or it can travel through the path labelled |u1⟩, where it will either
annihilate with particle 2 or travel freely. In either case, the only difference between cases 2 and 4 are the
placement or absence of BS2

2 , which particle 1 does not interact with. Similarly, vψ4
(D̂2) must be equal to

vψ3
(D̂2). That is,

vψ4 (D̂1) = 1 ⇔ vψ2 (D̂1) = 1, and

vψ4
(D̂2) = 1 ⇔ vψ3

(D̂2) = 1.

Then, from (6) and (7),

vψ2
(D̂1) = 1 ⇔ vψ2

(Ĉ2) = 1, and

vψ3 (D̂2) = 1 ⇔ vψ3 (Ĉ1) = 1.

However, nothing that is local to particle 2 has changed between cases 2 and 1. Therefore, vψ2
(Ĉ2) = vψ1

(Ĉ2) =

1. And by similar argument for particle 1 in cases 3 and 1, vψ3
(Ĉ1) = vψ1

(Ĉ1) = 1. Therefore, vψ1
(Ĉ1) = 1

and vψ1
(Ĉ2) = 1, which by (MULT) implies that

vψ1
(Ĉ1Ĉ2) = 1. (9)

Then, there is contradiction between (5) and (9). From the perspective of a hidden-variables theory, in the
instances where we find that D1 and D2 have value 1, (6) and (7) satisfy the criterion of reality and imply that
C1 and C2 must simultaneously have value 1, if we assume that the principle of locality holds. However, the
complement of (5) satisfies the criterion of reality, and therefore either or both of C1 and C2 must have a value
of 0, which shows the contradiction.

The contradiction shows that, in 1/16’th of the experiments, there is no consistent way of assigning hidden
variables to the observables that will reproduce the predictions quantum mechanics. A notable feature of Hardy’s
argument is that it does not rely on inequalities, as opposed to Bell’s inequality [2], but bares similarity to a
GHZ-argument [7] in that if the result vψ4

(D̂1D̂2) = 1 is obtained, then the inconsistency argument follows.
However, Hardy’s argument is not as strong as the GHZ-argument as it only shows an inconsistency for 1/16’th
of experiments compared to the GHZ-argument which shows the inconsistency for every run of the experiment.

3.2 Hardy’s extension of the argument

In 1993 Hardy published an extension of his argument in the article ”Nonlocality for Two Particles without
Inequalities for Almost All Entangled States” [9]. In the article he extends the proof from the specific entangled
state covered by the Mach-Zehnder interferometer argument, to almost all entangled states. Surprisingly, he
discovers that the argument fails if the system is in maximally entangled states, which is curious, as one expects
maximally entangled states to exhibit the most non-classical characteristics. Hardy makes his argument by
considering an arbitrary initial entangled state in three different bases, from which he presents four different
representations of the state, where the four different observables Û1, Û2, D̂1, and D̂2 can be seen to have no
consistent hidden-variables assignment. In this section, we will present a detailed derivation of Hardy’s extension
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to the argument, along with comments on why this argument fails in maximally entangled states. The notation
will be consistent with the notation employed in the Mach-Zehnder argument, but note that the relation between
the bases has changed and that the initial state is an arbitrary entangled state.

3.2.1 Bases and representations of the state

The argument involves two spin-1/2 particles, where the state of each particle is a unit vector in a 2-dimensional
complex Hilbert space Hn. The three bases for each particle are B1

n =
{
|rn⟩ , |sn⟩

}
, where |rn⟩ =

(
1
0

)
and

|sn⟩ =
(
0
1

)
is the standard basis for particle n, B2

n =
{
|un⟩ , |vn⟩

}
, and B3

n =
{
|cn⟩ , |dn⟩

}
. The state of

the composite system is in a 4-dimensional complex Hilbert space, H = H1 ⊗ H2 and will described by
a linear combination of vectors from the three different bases B1 =

{
|r1⟩ |r2⟩ , |r1⟩ |s2⟩ , |s1⟩ |r2⟩ , |s1⟩ |s2⟩

}
,

B2 =
{
|u1⟩ |u2⟩ , |u1⟩ |v2⟩ , |v1⟩ |u2⟩ , |v1⟩ |v2⟩

}
, or B3 =

{
|c1⟩ |c2⟩ , |c1⟩ |d2⟩ , |d1⟩ |c2⟩ , |d1⟩ |d2⟩

}
. The basis vectors

in B1 expressed in terms of the basis vectors in B2 are

|rn⟩ = b |un⟩+ ia |vn⟩ , |sn⟩ = ia |un⟩+ b |vn⟩ , where a, b ∈ C and |a|2 +|b|2 = 1.

The basis vectors in B2 expressed in terms of the basis vectors in B1 are

|un⟩ = b |rn⟩ − ia |sn⟩ , |vn⟩ = −ia |rn⟩+ b |sn⟩ ,

Similarly, the basis vectors in B2 expressed in terms of the basis vectors in B3 are

|un⟩ = A |cn⟩ −B |dn⟩ , |vn⟩ = B |cn⟩+A |dn⟩ ,

and the basis vectors in B3 expressed in terms of the basis vectors in B2 are

|cn⟩ = A |un⟩+B |vn⟩ , |dn⟩ = −B |un⟩+A |vn⟩ ,

where

A =

√
αβ

1−|αβ|
, and B =

|α| −|β|√
1−|αβ|

, with α, β ∈ R and α2 + β2 = 1.

The state of the composite system in terms of the vectors in the B1 basis is

|ψ⟩ = α |r1⟩ |r2⟩ − β |s1⟩ |s2⟩ .

Then, the state |ψ⟩ expressed as a linear combination of the vectors in the B2 basis is

|ψ⟩ = α
(
b |u1⟩+ ia |v1⟩

) (
b |u2⟩+ ia |v2⟩

)
− β

(
ia |u1⟩+ b |v1⟩

)(
ia |u1⟩+ b |v1⟩

)
,

=
(
αb2 + βa2

)
|u1⟩ |u2⟩+ i

(
αab− βab

)
|u1⟩ |v2⟩+ i

(
αab− βab

)
|v1⟩ |u2⟩ −

(
αa2 + βb

2
)
|v1⟩ |v2⟩ .

As a part of Hardy’s argument |ψ⟩ should not contain a |u1⟩ |u2⟩ term, giving us the condition αb2 + βa2 = 0.
By choosing appropriate phases for a and b, the constant K1 = 1/

√
|α| +|β| can be made to be real. Then, the

condition on a and b is

a = K1

√
α, and b = iK1

√
β.

By substituting in for a and b in the expression for |ψ⟩, the expression is rewritten as

|ψ⟩ = −
(√

αβ |u1⟩ |v2⟩+
√
αβ |v1⟩ |u2⟩+

(
|α| −|β|

)
|v1⟩ |v2⟩

)
,
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where the factor of −1 can be dropped without affecting the probabilities. Additionally, we observe that the
state can be written in the equivalent form

|ψ⟩ = αβ

|α| −|β|

((
|u1⟩+

|α| −|β|√
αβ

|v1⟩
)(

|u2⟩+
|α| −|β|√

αβ
|v2⟩

)
− |u1⟩ |u2⟩

)
.

If we define

N =
1−|αβ|
|α| −|β|

,

and note that

NA2 =

(
1−|αβ|

)
(αβ)(

|α| −|β|
) (

1−|αβ|
) =

αβ

|α| −|β|
, and

B

A
=

(
|α| −|β|

)√
1−|αβ|

√
αβ
√
1−|αβ|

=
|α| −|β|√

αβ
.

Then, the state |ψ⟩ may be expressed by

|ψ⟩ = NA2

((
|u1⟩+

B

A
|v1⟩

)(
|u2⟩+

B

A
|v2⟩

)
− |u1⟩ |u2⟩

)
,

= N
((
A |u1⟩+B |v1⟩

) (
A |u2⟩+B |v2⟩

)
−A2 |u1⟩ |u2⟩

)
. (10)

By substituting |cn⟩ = A |un⟩+B |vn⟩ the state can be rewritten as

|ψ⟩ = N
(
|c1⟩ |c2⟩ −A2 |u1⟩ |u2⟩

)
. (11)

From the representations (10) and (11) of the state |ψ⟩ it is possible to construct four equivalent representations
of the state. The first is achieved by expanding the terms in (10),

|ψ⟩1 = N
(
AB |u1⟩ |v2⟩+AB |v1⟩ |u2⟩+B2 |v1⟩ |v2⟩

)
. (12)

The second representation is achieved by substituting |c2⟩ = A |u2⟩+B |v2⟩, and |u1⟩ = A |c1⟩ −B |d1⟩, in (11),
giving

|ψ⟩2 = N
(
|c1⟩

(
A |u2⟩+B |v2⟩

)
−A2

(
A |c1⟩ −B |d1⟩

)
|u2⟩

)
. (13)

The third representation is achieved by substituting |c1⟩ = A |u1⟩ + B |v1⟩, and |u2⟩ = A |c2⟩ − B |d2⟩, in (11),
giving

|ψ⟩3 = N
((
A |u1⟩+B |v1⟩

)
|c2⟩ −A2 |u1⟩

(
A |c2⟩ −B |d2⟩

) )
. (14)

The fourth, and last, representation of the state is achieved by substituting |u1⟩ = A |c1⟩ − B |d1⟩ and
|u2⟩ = A |c2⟩ −B |d2⟩ in (11), giving

|ψ⟩4 = N
(
|c1⟩ |c2⟩ −A2

(
A |c1⟩ −B |d1⟩

) (
A |c2⟩ −B |d2⟩

) )
. (15)

Given the four different but equivalent representations (12), (13), (14), and (15), of the state |ψ⟩, it is possible
to define a set of observables which can be seen to have no possible consistent assignment of hidden variables.
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3.2.2 Observables and probabilities

Let the operators representing the four different physical quantities U1, U2, D1, and D2, be defined as

Û1 = |u1⟩⟨u1| ⊗ I, D̂1 = |d1⟩⟨d1| ⊗ I,

Û2 = I⊗ |u2⟩⟨u2| , D̂2 = I⊗ |d2⟩⟨d2| ,

The probability of obtaining the outcome vψ (Û1) = 1 and vψ (Û2) = 1 is

PU1U2

ψ (1) =
∥∥Û1Û2 |ψ⟩1

∥∥2 = 0.

Therefore, U1 and U2 cannot simultaneously have value 1. The probability of obtaining the outcome vψ (Û2) = 1

given that vψ (D̂1) = 1, in the state |ψ⟩ is

P
U2|D1

ψ (1 | 1) =
∥∥D̂1Û2 |ψ⟩2

∥∥2∥∥D̂1 |ψ⟩2
∥∥2 ,

where

D̂1 |ψ⟩2 = N
(
D̂1 |c1⟩

(
A |u2⟩+B |v2⟩

)
−A2

(
AD̂1 |c1⟩ −BD̂1 |d1⟩

)
|u2⟩

)
= NA2B |d1⟩ |u2⟩ .

Therefore,

P
U2|D1

ψ (1 | 1) =

∥∥∥∥∥NA2BÛ2 |d1⟩ |u2⟩
NA2B

∥∥∥∥∥
2

=
∥∥|d1⟩ |u2⟩∥∥2 = 1.

Therefore, if vψ (D̂1) = 1 then vψ (Û2) = 1 in the state |ψ⟩, that is, vψ (D̂1) = 1 =⇒ vψ (Û2) = 1. Similarly,
the probability of obtaining the outcome vψ (Û1) = 1 given that vψ (D̂2) = 1, in the state |ψ⟩ is

P
U1|D2

ψ (1 | 1) =
∥∥Û1D̂2 |ψ⟩3

∥∥2∥∥D̂2 |ψ⟩3
∥∥2 ,

where

D̂2 |ψ⟩3 = N
((
A |u1⟩+B |v1⟩

)
D̂2 |c2⟩ −A2 |u1⟩

(
AD̂2 |c2⟩ −BD̂2 |d2⟩

) )
= NA2B |u1⟩ |d2⟩ .

Therefore,

P
U1|D2

ψ (1 | 1) =

∥∥∥∥∥NA2BÛ1 |u1⟩ |d2⟩
NA2B

∥∥∥∥∥
2

=
∥∥|u1⟩ |d2⟩∥∥2 = 1.

Therefore, if vψ (D̂2) = 1 then vψ (Û1) = 1 in the state |ψ⟩, that is, vψ (D̂2) = 1 =⇒ vψ (Û1) = 1. The
probability of obtaining the outcome vψ (D̂1) = 1 and vψ (D̂2) = 1 is

PD1D2

ψ (1) =
∥∥D̂1D̂2 |ψ⟩4

∥∥2 =
∣∣∣NA2B2

∣∣∣2 .
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Note that
∣∣NA2B2

∣∣2 =

(
|αβ|(|α|−|β|)

1−|αβ|

)2

> 0 is greater than 0 except when |α| = |β|, in which case the state is a

maximally entangled state. In summary,

PU1U2

ψ (1) = 0, (16)

P
U2|D1

ψ (1 | 1) = 1, (17)

P
U1|D2

ψ (1 | 1) = 1, (18)

PD1D2

ψ (1) =
∣∣∣NA2B2

∣∣∣2 . (19)

3.2.3 Hardy’s argument

The argument follows the same structure as the argument presented in the two Mach-Zehnder interferometers
argument. However, in the argument presented in this section, the four different representations of the state are
all equivalent descriptions of one state. Consequently, there is no need to consider the valuations of different
states, which makes the argument more immediate. Consider an ensemble of systems, prepared in identical
quantum states, on which we perform measurements. The result vψ (D̂1D̂2) = 1 will be obtained with probability∣∣NA2B2

∣∣2. In experiments where vψ (D̂1D̂2) = 1 is obtained, by (MULT) and (SPEC)

vψ (D̂1D̂2) = vψ (D̂1) vψ (D̂2) = 1 =⇒ vψ (D̂1) = 1, and vψ (D̂2) = 1.

Then, from (17) and (18)

vψ (D̂1) = 1 =⇒ vψ (Û2) = 1, and vψ (D̂2) = 1 =⇒ vψ (Û1) = 1.

Therefore, vψ (Û2) = 1 and vψ (Û1) = 1, which by (MULT) is equal to vψ (Û1Û2) = 1. Therefore,

vψ (D̂1D̂2) = 1 =⇒ vψ (Û1Û2) = 1,

which contradicts (16).

In the perspective of hidden-variables theories, if we assume faithful measurements, and that the principle
of locality holds, that is, that a measurement on one particle does not affect the hidden value of the physical
quantities of the other particle. Then, in the instances where the outcome vψ (D̂1D̂2) = 1 is obtained, we can say
that D1 and D2 have the hidden value 1, and that (17) and (18) satisfies the criterion of reality which implies
that U1 and U2 have value 1. However, the complement of (16) satisfies the criterion of reality and imply that
either or both of U1 and U2 must have a value of 0, which shows the contradiction.

The contradiction shows that there are no hidden-variables assignment which is able to reproduce the
predictions of quantum mechanics. Notably, the argument holds for all states of the form |ψ⟩ = α |r1⟩ |r2⟩ −
β |s1⟩ |s2⟩, where |α|2 +|β|2 = 1, except when |α| = |β|, the reason for which will be explained shortly. Therefore,
the argument shows that there is a Hardy-type contradiction for almost all entangled states.

3.2.4 The maximum probability of obtaining the contradiction

The maximum probability of obtaining vψ (D̂1D̂2) = 1, is found by maximising

∣∣∣NA2B2
∣∣∣2 =

(
|αβ|

(
|α| −|β|

)
1−|αβ|

)2

,
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Recall that α and β are real numbers such that |α|2 +|β|2 = 1. Then,
∣∣NA2B2

∣∣2 may be written as a function of
x = |α| and y = |β|

∣∣∣NA2B2
∣∣∣2 =

(
xy (x− y)

1− xy

)2

,

where x and y are real numbers in the interval [0, 1] such that x2+y2 = 1. By using the constraint y =
√
1− x2,∣∣NA2B2

∣∣2 can be written as a function

f (x) =

x
√
1− x2

(
x−

√
1− x2

)
1− x

√
1− x2


2

.

The stationary points are found by solving for x such that

d

dx
f (x) =

2x
(
x−

√
1− x2

)(
x5 + x4

√
1− x2 − 4x3 + 2x2

√
1− x2 + 2x−

√
1− x2

)
(
1− x

√
1− x2

)3 = 0.

The solution which give the maximum value of
∣∣NA2B2

∣∣2 is xmax =

√
1
2

(
1 +

√
6
√
5− 13

)
, and therefore the

maximum probability of obtaining vψ (D̂1D̂2) = 1 is

f (xmax) =
1

2

(
5
√
5− 11

)
≈ 0.09.

Then,

|α| =

√√√√1

2

(
1 +

√
6
√
5 − 13

)
≈ 0.9070, |β| = 1− 1

2

(
1 +

√
6
√
5 − 13

)
≈ 0.4211,

and the state in which the probability of obtaining vψ (D̂1D̂2) = 1 is at its maximum is

|ψmax⟩ = 0.9070 |r1⟩ |r2⟩ − 0.4211 |s1⟩ |s2⟩ .

3.2.5 Considerations for maximally entangled states

Hardy’s argument can be seen to fail in maximally entangled states by considering the representations of the
state

|ψ⟩1 = NAB |u1⟩ |v2⟩+NAB |v1⟩ |u2⟩+NB2 |v1⟩ |v2⟩ ,

|ψ⟩2 = NA |c1⟩ |u2⟩+NB |c1⟩ |v2⟩ −NA2A |c1⟩ |u2⟩ −NA2B |d1⟩ |u2⟩ ,

|ψ⟩3 = NA |u1⟩ |c2⟩+NB |v1⟩ |c2⟩ −NA2A |u1⟩ |c2⟩ −NA2B |u1⟩ |d2⟩ ,

|ψ⟩4 = N |c1⟩ |c2⟩ −NA4 |c1⟩ |c2⟩+NA3B |c1⟩ |d2⟩+NA3B |d1⟩ |c2⟩ −NA2B2 |d1⟩ |d2⟩ .

The factors that appear in the expansions of the different representations of the state are NAB, NB2, NA, NB,
NA3, NA2B, N , NA4, NA3B, and NA2B2. Recall that

N =
1−|αβ|
|α| −|β|

, A =

√
αβ

1−|αβ|
, B =

|α| −|β|√
1−|αβ|

.
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Then it is clear that some of the terms diverge when the state is maximally entangled since |α| = |β| in such
states. The terms that diverge are the terms which have a factor of either of the following,

N =
1−|αβ|
|α| −|β|

, NA =

√
αβ
(
1−|αβ|

)
|α| −|β|

, NA3 =

√
|αβ|3(∣∣α−|β|
∣∣) (1−|αβ|

) , NA4 =
|αβ|2(

|α| −|β|
) (

1−|αβ|
) .

Since some terms diverge, Hardy’s argument will not hold in maximally entangled states.

Additionally, the argument fails because the observables commute in general when |α| = |β|, in which case
classical behaviour is expected. In order to show that the observables commute, we express the observables in
terms of the vectors in the B1 basis, and show that the condition |α| = |β| gives a commutator equal to zero. The
|un⟩ vectors expressed in terms of the vectors in the B1 basis are

|un⟩ = b |rn⟩ − ia |sn⟩ .

Recall that a = a = K1
√
α and b = iK1

√
β, where K1 = 1/

√
|α| +|β|. Then,

|un⟩ = −iK1

(√
β |rn⟩+

√
α |sn⟩

)
.

Therefore, the observables Ûn expressed in terms of the vectors in the B1 basis are

Ûn = |un⟩⟨un| = K2
1

(
β |rn⟩⟨rn|+

√
αβ |rn⟩⟨sn|+

√
αβ |sn⟩⟨rn|+ α |sn⟩⟨sn|

)
.

Similarly, the observables D̂n expressed in terms of the vectors in the B1 basis are

|dn⟩ = −
(
Bb+Aia

)
|rn⟩+ (Bia+Ab) |sn⟩ = −i

 √
β3 |rn⟩ −

√
α3 |sn⟩√(

1−|αβ|
) (
|α|+|β|

)
 .

By simplifying the denominator,√(
1−|αβ|

) (
|α|+|β|

)
= |α| −|α|2|β|+|β| −|α||β|2 = −

(
|α|3 +|β|3

)
,

the expression for |dn⟩ becomes

|dn⟩ = i

(√
β3 |rn⟩ −

√
α3 |sn⟩

|α|3 +|β|3

)
= iK2

(√
β3 |rn⟩ −

√
α3 |sn⟩

)
,

where K2 = 1/
(
|α|3 +|β|3

)
. Then, the observables D̂n expressed in terms of the vectors in the B1 basis are

D̂n = |dn⟩⟨dn| = K2
2

(
β3 |rn⟩⟨rn| −

√
α3β3 |rn⟩⟨sn| −

√
α3β3 |sn⟩⟨rn|+ α3 |sn⟩⟨sn|

)
.

Then, the commutator

[Ûn, D̂n]

K2
1K

2
2

=
(√

α7β −
√
α3β5 −

√
αβ7 +

√
α5β3

)
|rn⟩⟨sn|+

(√
α7β −

√
α5β3 −

√
α7β +

√
α3β5

)
|sn⟩⟨rn| .

Therefore, when |α| = |β|, as is the case in maximally entangled states, the commutator [Ûn, D̂n] = 0,
and the observables commute. In such cases, classical behaviour is expected when the observables commute.
Consequently, an assignment of hidden-variables should be possible, which means that Hardy’s argument will
not go through. Although this shows that Hardy’s method of showing a contradiction does not hold in maximally
entangled states, it does not determine whether a an argument may be found by a different method. However,

17



in his thesis ”The Mathematical Structure of Non-locality & Contextuality” [18], Shane Mansfield shows that a
Hardy-type argument cannot be made in maximally entangled states using projective measurements.

4 Goldstein’s formulation of Hardy’s argument

In 1994, a streamlined version of the argument made by Hardy in his 1993 article was presented by Sheldon
Goldstein in the article ”Nonlocality without inequalities for almost all entangled states for two particles” [10].
The argument was streamlined by assuming the state to be of a general form of a desired state of a composite
system, specifically a state with no |u1⟩ |u2⟩ term, rather than defining relations between a set of bases which
describes the same state, as Hardy did in his 1993 article. By considering a general state with no |u1⟩ |u2⟩ term,
Goldstein avoids making the same constraints as Hardy made in his argument, which generalises the argument.
As Goldstein himself puts it: ”While Hardy’s analysis concerns four observables the choice of each of which is
very much constrained by the quantum state, for our argument the choice of one of the observables is almost
arbitrary.”. In addition to streamlining the proof, Goldstein addresses the question of why the argument fails in
maximally entangled states in detail. Goldstein’s argument, while concise, employs notation that may lack clarity
in differentiating between the observables, the valuation of the observables, and the probability of obtaining a
specific value of an observable. Therefore, in the following detailed derivation of Goldstein’s version of Hardy’s
argument, we will utilise the notation used in previous sections to clarify the points mentioned. Additionally,
Goldstein’s method of showing that the argument holds for all entangled states except maximally entangled
states can be challenging to follow. We will substantiate the assertion that the argument remains valid in all
entangled states, except maximally entangled ones, while attempting to make it more accessible.

4.1 State, observables, and probabilities

The state under consideration is

|ψ⟩ = a |v1⟩ |v2⟩+ b |u1⟩ |v2⟩+ c |v1⟩ |u2⟩ , where abc ̸= 0, and |a|2 +|b|2 +|c|2 = 1. (20)

Let two vectors |w1⟩ and |w2⟩ be defined as

|w1⟩ = k1

(
a |v1⟩+ b |u1⟩

)
, and |w2⟩ = k2

(
a |v2⟩+ c |u2⟩

)
,

where

k1 =
1√

|a|2 +|b|2
, and k2 =

1√
|a|2 +|c|2

.

And, let the observables Û1, Û2, Ŵ 1, Ŵ 2 be defined as

Û1 = |u1⟩⟨u1| ⊗ I,

Û2 = I⊗ |u2⟩⟨u2| ,

Ŵ 1 = |w1⟩⟨w1| ⊗ I = k21

(
|a|2 |v1⟩⟨v1|+ ab |v1⟩⟨u1|+ ab |u1⟩⟨v1|+|b|2 |u1⟩⟨u1|

)
,

Ŵ 2 = I⊗ |w2⟩⟨w2| = k22

(
|a|2 |v2⟩⟨v2|+ ac |v2⟩⟨u2|+ ac |u2⟩⟨v2|+|c|2 |u2⟩⟨u2|

)
.

Then, the probability of obtaining the outcome vψ (Û1) = 1 and vψ (Û2) = 1 in a measurement of the physical
quantities U1 and U2 in the state |ψ⟩, that is, the probability of obtaining vψ (Û1Û2) = 1, is

PU1U2

ψ (1) = a Û1Û2 |v1⟩ |v2⟩+ b Û1Û2 |u1⟩ |v2⟩+ c Û1Û2 |v1⟩ |u2⟩ = 0.
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Therefore, U1 and U2 cannot simultaneously have the value 1 in the state |ψ⟩. Recall that
vψ (Q̂) = 0 =⇒ vψ

(
Q̂∁
)
= 1. Therefore, the probability of obtaining the outcome vψ (Ŵ 1) = 1 given that

vψ (Û2) = 0, is equivalent to obtaining the outcome vψ (Ŵ 1) = 1 given that vψ
(
Û∁

2

)
= 1. That is, PW1|U2

ψ (1 | 0)

is equivalent to PW1|U∁
2

ψ (1 | 1). Then,

P
W1|U2

ψ (1 | 0) = P
W1|U∁

2

ψ (1 | 1) =

∥∥∥Ŵ 1Û
∁
2 |ψ⟩

∥∥∥2∥∥∥Û∁
2 |ψ⟩

∥∥∥2 ,

where

Û∁
2 |ψ⟩ =

(
I− Û2

)
|ψ⟩ = |ψ⟩ − c |v1⟩ |u2⟩ = a |v1⟩ |v2⟩+ b |u1⟩ |v2⟩ , and

1∥∥∥Û∁
2 |ψ⟩

∥∥∥2 =
1

|a|2 +|b|2
= k21.

Therefore,

P
W1|U2

ψ (1 | 0) = P
W1|U∁

2

ψ (1 | 1) =
∥∥∥k1Ŵ 1Û

∁
2 |ψ⟩

∥∥∥2 =

∥∥∥∥k1(a |v1⟩ |v2⟩+ b |u1⟩ |v2⟩
)∥∥∥∥2 = 1.

Therefore, if vψ (Û2) = 0 then vψ (Ŵ 1) = 1 in the state |ψ⟩, that is, vψ (Û2) = 0 =⇒ vψ (Ŵ 1) = 1. Similarly,
the probability of obtaining the outcome vψ (Ŵ 2) = 1 given that vψ (Û1) = 0, is equivalent to obtaining the
outcome vψ (Ŵ 2) = 1 given that vψ

(
Û∁

1

)
= 1. Therefore,

P
W2|U1

ψ (1 | 0) = P
W2|U∁

1

ψ (1 | 1) =

∥∥∥Û∁
1Ŵ 2 |ψ⟩

∥∥∥2∥∥∥Û∁
1 |ψ⟩

∥∥∥2 ,

where

Û∁
1 |ψ⟩ =

(
I− Û1

)
|ψ⟩ = |ψ⟩ − b |u1⟩ |v2⟩ = a |v1⟩ |v2⟩+ c |v1⟩ |u2⟩ , and

1∥∥∥Û∁
1 |ψ⟩

∥∥∥2 =
1

|a|2 +|c|2
= k22.

Then,

P
W2|U1

ψ (1 | 0) = P
W2|U∁

1

ψ (1 | 1) =
∥∥∥k2Û∁

1Ŵ 2 |ψ⟩
∥∥∥2 =

∥∥∥∥k2(a |v1⟩ |v2⟩+ c |v1⟩ |u2⟩
)∥∥∥∥2 = 1.

Therefore, if vψ (Û1) = 0 then vψ (Ŵ 2) = 1 in the state |ψ⟩, that is, vψ (Û1) = 0 =⇒ vψ (Ŵ 2) = 1. Finally, the
probability of obtaining the outcome vψ (Ŵ 1) = 0 and vψ (Ŵ 2) = 0 in a measurement of the physical quantities
W1 and W2 in the state |ψ⟩ can be found by considering the complements of Ŵ 1 and Ŵ 2. If vψ (Ŵ 1) = 0, then
vψ

(
Ŵ ∁

1

)
= 1, and if vψ (Ŵ 2) = 0, then vψ

(
Ŵ ∁

2

)
= 1. Then,

PW1,W2

ψ (0, 0) = P
W∁

1W
∁
2

ψ (1) =
∥∥∥Ŵ ∁

1Ŵ
∁
2 |ψ⟩

∥∥∥2 =
∥∥(I− Ŵ 1 − Ŵ 2 + Ŵ 1Ŵ 2) |ψ⟩

∥∥2 .
To facilitate clarity, each of these terms will be considered in turn. The first term is

Ŵ 1 |ψ⟩ = a |v1⟩ |v2⟩+ b |u1⟩ |v2⟩+ k21c|a|
2 |v1⟩ |u2⟩+ k21abc |u1⟩ |u2⟩ .

The second term is

Ŵ 2 |ψ⟩ = a |v1⟩ |v2⟩+ k22b|a|
2 |u1⟩ |v2⟩+ c |v1⟩ |u2⟩+ k22abc |u1⟩ |u2⟩ .
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The third term Ŵ 1Ŵ 2 |ψ⟩,

Ŵ 1Ŵ 2 |ψ⟩ = k21k
2
2|a|

2
(
a |v1⟩ |v2⟩+ b |u1⟩ |v2⟩+ c |v1⟩ |u2⟩+

abc

|a|2
|u1⟩ |u2⟩

)
.

Let
∣∣ψ′〉 = (I− Ŵ 1 − Ŵ 2 + Ŵ 1Ŵ 2) |ψ⟩, then

∣∣ψ′〉 = a
(
k21k

2
2|a|

2 − 1
)
|v1⟩ |v2⟩

+ k22|a|
2
b
(
k21 − 1

)
|u1⟩ |v2⟩

+ k21|a|
2
c
(
k22 − 1

)
|v1⟩ |u2⟩

+ abc
(
k21k

2
2 − k21 − k22

)
|u1⟩ |u2⟩ .

The coefficient of the |v1⟩ |v2⟩ term can be expressed in terms of a, b, and c by substituting in for k1 and k2 in
the expression a

(
k21k

2
2|a|

2 − 1
)
,

a
(
k21k

2
2|a|

2 − 1
)
= a

|a|2 −
(
|a|2 +|b|2

)(
|a|2 +|c|2

)
(
|a|2 +|b|2

)(
|a|2 +|c|2

)
 =

−a|b|2|c|2

|a|2 +|b|2|c|2
.

Note that k21k22 = 1/|a|2 +|b|2|c|2. Similarly, the coefficient of the term |u1⟩ |v2⟩ in terms of a, b, and c is found by
substituting in for k1 and k2 in the expression k22|a|

2
b
(
k21 − 1

)
,

k22|a|
2
b
(
k21 − 1

)
=

|a|2 b
|a|2 +|b|2|c|2

− |a|2 b
|a|2 +|c|2

.

By expanding second term with k21/k21 and factorising, the coefficient for the |u1⟩ |v2⟩ term is

k22|a|
2
b
(
k21 − 1

)
=

|a|2 b|c|2

|a|2 +|b|2|c|2
,

By similar methods, the coefficient of the |v1⟩ |u2⟩ term is

k21|a|
2
c
(
k22 − 1

)
=

|a|2|b|2 c
|a|2 +|b|2|c|2

And, the coefficient of the |u1⟩ |u2⟩ term, is

abc
(
k21k

2
2 − k21 − k22

)
= abc

1−
(
|a|2 +|c|2

)
−
(
|a|2 +|b|2

)
|a|2 +|b|2|c|2

 =
−abc|a|2

|a|2 +|b|2|c|2
.

Finally,

PW1,W2

ψ (0, 0) = P
W∁

1W
∁
2

ψ (1) =
∥∥∥∣∣ψ′〉∥∥∥2 =

|a|2|b|2|c|2

|a|2 +|b|2|c|2
.
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In summary,

PU1U2

ψ (1) = 0, (21)

P
W1|U2

ψ (1 | 0) = 1, (22)

P
W2|U1

ψ (1 | 0) = 1, (23)

PW1,W2

ψ (0, 0) =
|a|2|b|2|c|2

|a|2 +|b|2|c|2
. (24)

4.2 Goldstein’s argument

The probabilities (22) and (23) show that vψ (Û2) = 0 =⇒ vψ (Ŵ 1) = 1 and vψ (Û1) = 0 =⇒ vψ (Ŵ 2) = 1.
If vψ (Û2) = 1, then the valuation vψ (Ŵ 1) is in the spectrum of Ŵ 1, where spec (Ŵ 1) = {0, 1}. Similarly for
vψ (Û1) = 1, we have that vψ (Ŵ 2) ∈ {0, 1}. Then, the possible configurations of hidden variables that follow
from the implications are presented in the following table.

vψ (Û1) vψ (Û2) vψ (Ŵ 1) vψ (Ŵ 2)

0 0 1 1
0 1 0 or 1 1
1 0 0 0 or 1
1 1 0 or 1 0 or 1

From (24) we know that we obtain the result vψ (Ŵ 1) = vψ (Ŵ 2) = 0 with a non-zero probability. However,
the only possible configuration which allows vψ (Ŵ 1) = vψ (Ŵ 2) = 0 is when vψ (Û1) = vψ (Û2) = 1 which
is in contradiction to (21). Therefore, there are no possible configuration of hidden variables which is able
to reproduce the predictions of quantum mechanics. Notably, the argument holds for all states of the form
|ψ⟩ = a |v1⟩ |v2⟩+ b |u1⟩ |v2⟩+ c |v1⟩ |u2⟩, where abc ̸= 0, and |a|2+|b|2+|c|2 = 1, which, as we will show, is almost
all entangled states.

4.3 The maximum probability of obtaining the contradiction

The values of |a|, |b|, and |c| are positive real numbers, due to the constraint abc ̸= 0. Therefore, the probability
of obtaining vψ (Ŵ 1) = 0 and vψ (Ŵ 2) = 0, can be written as a function of the magnitudes of a, b, and c,

PW1,W2

ψ (0, 0) = f (x, y, z) =
x2y2z2

x2 + y2z2
,

where x = |a|, y = |b|, and z = |c| are positive real numbers, subject to the constraint

x2 + y2 + z2 = 1.

By using the constraint z2 = 1− x2 − y2, one can create a 2-D contour plot of PW1,W2

ψ (0, 0), see Figure 2. Note
that the x and y axes represent the magnitude of the complex number a and b respectively.
The maximum probability of obtaining vψ (Ŵ 1) = 0 and vψ (Ŵ 2) = 0, can be expressed by the square of the
magnitudes of a, b, and c, that is l = |a|2, m = |b|2, and q = |z|2,

PW1,W2

ψ (0, 0) =
lmn

l +mn
.

By using the constraint q = 1− l −m, a function g (l,m) can be defined as

g (l,m) =
lm (1− l −m)

l +m (1− l −m)
.

21



Figure 2: PW1,W2

ψ (0, 0)

The maximum of g (l,m) is found by solving the system of equations

∂

∂l
g (l,m) =

m
(
l2m− l2 + 2lm2 − 2lm+m3 − 2m2 +m

)(
l +m (1− l −m)

)2 = 0,

∂

∂m
g (l,m) =

l
(
−2lm− l2 + l

)(
l +m (1− l −m)

)2 = 0.

The solution, for positive real numbers l and m is lmax =
√
5 − 2, and mmax = 5

√
5−11

2(
√
5−2)

. Then, the maximum

probability of obtaining vψ (Ŵ 1) = 0 and vψ (Ŵ 2) = 0 is

g (lmax,mmax) =
1

2

(
5
√
5− 11

)
≈ 0.09,

which is the same as the probability calculated in Hardy’s argument. The values for |amax|, |bmax|, |cmax|, and
|ψmax⟩ are therefore

|amax| =
√√

5− 2, |bmax| =

√
5
√
5− 11

2(
√
5− 2)

, |cmax| =

√
3−

√
5

2
,

|ψmax⟩ = amax |v1⟩ |v2⟩+ bmax |u1⟩ |v2⟩+ cmax |v1⟩ |u2⟩ .

To find the Schmidt-decomposition of |ψmax⟩, define two new orthonormal bases Bs1 =
{∣∣e11〉 , ∣∣e21〉} and

Bs2 =
{∣∣f12 〉 , ∣∣f22 〉} for particle 1 and particle 2 respectively, such that

∣∣e11〉 = |u1⟩ =
(
1
0

)
,
∣∣e21〉 = |v1⟩ =

(
0
1

)
,∣∣f12 〉 = |u2⟩ =

(
1
0

)
, and

∣∣f22 〉 = |v2⟩ =
(
0
1

)
. Then, the state that gives the maximum probability of obtaining

vψ (Ŵ 1) = 0 and vψ (Ŵ 2) = 0 can be written as

|ψmax⟩ =
2∑

i,j=1

Cij

∣∣∣ei1〉 ∣∣∣f j2〉 , where C =

[
0 bmax

cmax amax

]
=

 0
√

5
√
5−11

2(
√
5−2)√

3−
√
5

2

√√
5− 2

 .

The singular values of C are λ1 =

√
1−

√
−13+6

√
5

2 ≈ 0.4211, and λ2 =

√
1+

√
−13+6

√
5

2 ≈ 0.9070. Therefore, for
a suitable choice of bases B1 =

{
|r1⟩ , |s1⟩

}
and B2 =

{
|r2⟩ , |s2⟩

}
,

|ψmax⟩ = 0.9070 |r1⟩ |r2⟩ − 0.4211 |s1⟩ |s2⟩ ,

which is the same state as in Hardy’s argument.
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4.4 Considerations of the limitations of the argument

From the argument presented earlier in this thesis, it is shown that Goldstein’s argument holds for any entangled
state which can be written in the form

|ψ⟩ = a |v1⟩ |v2⟩+ b |u1⟩ |v2⟩+ c |v1⟩ |u2⟩ where |a|2 +|b|2 +|c|2 = 1 and abc ̸= 0. (25)

Therefore, we will show that any entangled state that is not maximally entangled can be written in the form
(25), thereby showing that Goldstein’s argument holds for any entangled state that is not maximally entangled.

Let B1 =
{∣∣e11〉 = |u1⟩ =

(
1
0

)
,
∣∣e21〉 = |v1⟩ =

(
0
1

)}
and B2 =

{∣∣f12 〉 = |u2⟩ =
(
1
0

)
,
∣∣f22 〉 = |v2⟩ =

(
0
1

)}
be

orthonormal bases for particle 1 and particle 2 respectively. Then, a state of the form (25) can be expressed as

|ψ⟩ =
2∑

i,j=1

Cij

∣∣∣ei1〉 ∣∣∣f j2〉 , where C =

[
0 b

c a

]
.

By singular value decomposition C = UDV , and, for any entangled state the matrix of its singular values is

De =

[
λ1 0

0 λ2

]
, where λ1, λ2 ∈ R>0 and λ21 + λ22 = 1.

Then, an entangled state can be written in the form (25) if and only if there exists unitary matrices U and V

such that C = UDeV . Note that, CC∗ = UD2
eU

∗ and C∗C = V D2
eV

∗, which means that CC∗ and C∗C are
both unitarily diagonalisable by the unitary matrices U and V respectively. Therefore, U and V are orthonormal
eigenvector bases of CC∗ and C∗C respectively, with eigenvalues equal to the square of the singular values. The
eigenvectors of CC∗ are found by solving

(
CC∗ − λ2i I

)
w = 0,

[
|b|2 − λ2i ab

ab |a|2|c|2 − λ2i

]
w = 0 =⇒ wi =

− ab/
(
|b|2 − λ2

i

)
1

 .

There are two distinct cases where Goldstein’s argument fail, first, if |b|2 − λ2i = 0, and second, if λ1 = λ2, these
deficiencies will be discussed soon. However, if λ1 ̸= λ2, then there is a component of w1 that is orthogonal to w2,
and therefore, for a choice of a and b such that ⟨w1|w2⟩ = 0 and ∥w1∥ =∥w2∥ = 1, there exists an orthonormal
eigenvector basis for CC∗. By a similar argument, if λ1 ̸= λ2 then, for choice of b and c such that ⟨ω1|ω2⟩ = 0

and ∥ω1∥ =∥ω2∥ = 1, there exists an eigenvector basis for C∗C,

[
|c|2 − λ2i bc

bc |a|2|b|2 − λ2i

]
ω = 0 =⇒ ωi =

− bc/
(
|c|2 − λ2

i

)
1

 .

To ensure that both CC∗ and C∗C have orthogonal eigenvectors bases there must exist a, b, and c such that
⟨w1|w2⟩ = ⟨ω1|ω2⟩ = 0, then, the following system of equations must be satisfied,(

|b|2 − λ21

)(
|b|2 − λ22

)
= −|a|2|b|2 ,

(
|c|2 − λ21

)(
|c|2 − λ22

)
= −|b|2|c|2 , |a|2 +|b|2 +|c|2 = 1, λ21 + λ22 = 1.

As an example, one set of solutions to the underdetermined system is

λ1 =
1

2

(
1−

√
2|c|4 − 2|c|2 + 1

)
, λ2 =

1

2

(
1 +

√
2|c|4 − 2|c|2 + 1

)
, |a|2 =

1−|c|2

2
, |b|2 =

1−|c|2

2
, |c| ∈ (0, 1).

Now, c can be chosen such that |c|2 − λ2i ̸= 0, in order to avoid the first deficiency which was mentioned, and
similarly it is possible to ensure |b|2−λ2i ̸= 0, since the system of equations is underdetermined. Then it is shown
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that there exists orthogonal eigenvector bases for both CC∗ and C∗C. To ensure that the bases are orthonormal,
the eigenvectors can be scaled such that ∥ω1∥ = ∥ω2∥ = 1. The second deficiency mentioned earlier occurs in
maximally entangled states, where the singular values are equal, that is, when λ1 = λ2. Then, the eigenvectors
w1 and w2 are parallel, and therefore, they do not form an eigenvector basis for CC∗. Similarly, ω1 and ω2

are parallel, which means they do not form an eigenvector basis for C∗C. Consequently, maximally entangled
states cannot be written in the form (25). Therefore, it is shown that any entangled state, except for maximally
entangled states, can be written in the form (25), and thus admits a Hardy-type argument.

5 Conclusion and outlook

In this thesis, we have presented a detailed derivation of the arguments put forward by Lucien Hardy [8][9] and
Sheldon Goldstein [10]. We clarified these arguments by distinguishing clearly between the quantum mechanical
framework and the hidden-variables model, which previous authors have left implicit. The contradiction emerging
from these arguments was demonstrated using the valuation function. The valuation function, if required to
satisfy the mild conditions (SPEC) and (FUNC), shows that there is no consistent assignment of pre-existing
values to the physical quantities which satisfy the criterion of reality, in the given quantum state. Additionally, we
assumed faithful measurements and that the principle of locality holds. The resulting contradiction demonstrates
that any hidden-variables models making the same assumptions will inevitably encounter a contradiction, thereby
ruling it out as a description of physical reality. We have also discussed the limitations of these arguments,
including pointing out that the observables commute in Hardy’s extension to the original argument, which the
previous authors have not mentioned. We have substantiated the assertion that the argument retains validity
for all pure entangled states, with the exception of maximally entangled ones, where our presentation aims to be
easier to follow compared to the presentations offered by previous authors.

As noted, a previous author has shown that it is not possible to construct a Hardy-type argument using
projective measurements. However, investigating whether positive operator-valued measures might admit a
similar argument could be an intriguing pursuit. Moreover, examining different interpretations of realism and
locality and observing their impacts on the argument and constraints on hidden-variables models could prove
enlightening. Another interesting aspect of the argument is its logical structure; Hardy’s argument involves
implications, that is, values of physical observables depending on values of other physical observables with
probability equal to unity. It might be interesting to investigate this logical structure and identify areas of
discordance with classical logic. Ultimately, Hardy’s argument sheds light on the non-classical aspects of quantum
mechanics, which still brims with foundational questions awaiting exploration.
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Appendix

A - Plot of P
(
vψ (Ŵ 1 = 0) , vψ (Ŵ 2 = 0)

)
.

import matplotlib.pyplot as plt
from numpy import linspace, sqrt, zeros

def f(a, b):
c = sqrt(abs(1 - a**2 - b**2))
if a**2 + b**2 + c**2 > 1:

return 0

if a * b * c == 0:
return 0

return (a**2 * b**2 * c**2) / (a**2 + b**2 * c**2)

A = linspace(0, 1, 1000)
B = linspace(0, 1, 1000)
values = zeros((len(A), len(B)))
highest_value = 0
for x, a in enumerate(A):

for y, b in enumerate(B):
values[y, x] = f(a, b)
if values[y, x] > highest_value:

highest_value = values[y, x]

plt.figure(1)
plt.xlabel("x")
plt.ylabel("y")
plt.title("")
plt.contourf(A, B, values, 1000)
plt.colorbar(ticks=[round(i, 3) for i in linspace(0, highest_value, 10)])
plt.show()

B - Goldstein’s argument fails in maximally entangled states.

Let B1 =
{∣∣e11〉 = |u1⟩ =

(
1
0

)
,
∣∣e21〉 = |v1⟩ =

(
0
1

)}
and B2 =

{∣∣f12 〉 = |u2⟩ =
(
1
0

)
,
∣∣f22 〉 = |v2⟩ =

(
0
1

)}
be

orthonormal bases for particle 1 and particle 2 respectively. Then, a state of the form

|ψ⟩ = a |v1⟩ |v2⟩+ b |u1⟩ |v2⟩+ c |v1⟩ |u2⟩ where |a|2 +|b|2 +|c|2 = 1 and abc ̸= 0, (26)

can be expressed as

|ψ⟩ =
2∑

i,j=1

Cij

∣∣∣ei1〉 ∣∣∣f j2〉 , where C =

[
0 b

c a

]
.

For maximally entangled states, the singular values are equal, and therefore the matrix of singular values is

Dm =

[
λ 0

0 λ

]
= λI.

Therefore, a maximally entangled state can be written in the form (26) if and only if there exists unitary matrices
U and V such that C = UDmV . If we assume that there exists unitary matrices U and V that satisfies the
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condition, then

CC∗ = UDmD
∗
mU

∗ = |λ|2 I, which contradicts CC∗ =

[
|b|2 ab

ab |a|2|c|2

]
,

where a, b, c ∈ C such that |a|2 +|b|2 +|c|2 = 1 and abc ̸= 0.

Therefore, there are no unitary matrices U and V which satisfies C = UDmV , and consequently maximally
entangled states cannot be written in the form (26) and the procedure used in Goldstein’s argument is therefore
not applicable.
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