et

Bachelor’s thesis

Hivemind

University of
South-Eastern Norway

Faculty of Technology, Natural Sciences and Maritime Sciences

Campus Kongsberg

stedere,

Course: TS3000 Bacheloroppgave
Date: May 22, 2023
Title: Hivemind

This report forms part of the basis for assessment in the subject.

Project group: 1

Group members: Aurora Moholth,
Hilde Marie Moholth,
Harald Moholth,
Nils Herman Lien Hare,
Ruben Sgrensen

Internal Supervisor: Dag Samuelsen
External supervisors: Jan Dyre Bjerknes,
Anete Vagale

Project partners: Kongsberg Defence & Aerospace
Semcon Norge

The University of South-Eastern Norway accepts no responsibility for the
results and conclusions presented in this report.

Acknowledgements

We would like to express our heartfelt appreciation to Jan Dyre Bjerknes and Anete Vagale, our
external project supervisors, for their invaluable guidance and unwavering support throughout
this endeavor. Their expertise, insights, and feedback have played a crucial role in shaping our
project and pushing us towards excellence.

We are also deeply grateful to our internal supervisor from the university, Dag A. H.
Samuelsen, for his dedicated mentorship, timely advice, and assistance in ensuring our project
remained on track. His commitment to our progress and his insightful feedback have been
instrumental in our success.

Hivemind would also like to acknowledge Joakim Bjgrk, who rose to the challenge of eval-
uating our project and has done so in the best possible way.

Furthermore, we extend our sincere thanks to the University of South-Eastern Norway.
Their support and the conducive learning environment they fostered have made this entire

experience joyful and immensely enriching.

Abstract

This project deals with the problem of developing software for planning and controlling a drone
swarm light show. The proposal in the project consists of the proposed software architecture
that can address this problem, and the concrete implementation this software architecture. The
novelty of this project lies in the completely original software architecture for planning light
shows with drone swarms, and the solution proposed wherein all components are modular.
This modularity means that components such as the specific route planning algorithm chosen
can be easily exchanged, while new components can be added without changing the underlying
algorithm. Because the proposed architecture is flexible and scalable, it is easy to adapt the
proposed software for other purposes, such as researching and comparing different route plan-
ning algorithms. Other applications of the software are numerous, including general purpose

route planning for agriculture, cinematography and surveying.

Contents

Acknowledgements 2
Abstract 3
1 Introduction oL L 14
1.1 Overview 14
1.2 Group members 14
2 Domain: unmanned flying vehicles 00000 16
2.1 What is a drone swarm? 16
2.2 Usage of drone swarms Lo 16
2.3 Controlling the swarm L. 17
3 Problem: Route-making in drone swarm management 22
3.1 Project context 22
3.2 User requirements 23
3.3 Minimum viable producto 24
3.4 Project problem 25
4 Related work 27
4.1 Route-planning algorithms 000 27
4.2 Existing solutions for controlling drones and drone swarms 28
5) Project management Lo 30
5.1 Supervisor communicationo 31
5.2 Project risk analysiso oo 32
5.3 Website 34
6 Software development process 36
6.1 Methodology 37
6.2 Technologies used 39
6.3 Verification oo 42
7 Proposing a conceptual software model 44
7.1 Use cases 44
7.2 Generic software architectural model 0oL 45
7.3 Decomposing the software architecture A7
8 Implementation o1
8.1 Technology-specific software components 51
8.2 Coordinate Converter 56

CONTENTS

8.3 Height Management 58

8.4 Map Management Lo 62

8.5 Keyframe Management 64

8.6 Routemaker 64

8.7 Serializer (Load and Archive Scenario) 69

8.8 Compile Scenario 74

8.9 Graphical User Interface 76

9 Testing o L 78
9.1 Testing of software components 78

9.2 Testing of Hivemind oo 84

10 Product Risk Analysis 86
10.1 Definitions and risk matrixo 86

10.2 Client interaction and risk identification 86

10.3 Risk mitigation strategieso 86

10.4 Emncountered riskso 87

11 Evaluation 88
11.1 Have we met the requirements? 88

11.2 Practical evaluation 89

12 Conclusion 90
12.1 Challenges L 90

12.2 Future work 94

12.3 Contribution 95
References 97
Bibliography e 107
Appendices 108
A GML file returned by WCS request 109
B Flowchart 112
C Requirements: User stories 114
D Requirements: Use cases 121
E Requirements table 132
F Final Hivemind product requirements 146
G Original test table 154
H Development of the software architecture 163
1 Initial Architectural Design oL 164

1.1 Initial component diagramo 164

CONTENTS

1.2 First architecture & model-view-controller diagram 166

1.3 Second layered architecture and use cases 167

1.4 Third layered architecture 167

1.5 Final layered architecture before start coding 169

2 Adapting Architecture for Coding Challenges & Requirements 171

I IDEFO 176
J Risk analysis 182
K Technical contributions 188
L Updated testing documentation 199
M Project timeline 209
N Seating arrangements 211
1 Seating arrangement L Lo 212

O Code documentation 214
P Medforfattererklering 516

List of Figures

© 00 I O Ot = W N =

e e e
=~ W N = O

15
16

17
18
19
20
21
22
23
24
25
26
27
28
29

Six-tiered model for autonomy, as seen in [1j and [2]o L 18
Three-tiered model for autonomy, as seen in [3] 18
Swarm network models, as seenin [4]o Lo L 19
Meeting leader rotation 30
Workspace layouto 31
Risk matrixo 33
The "red thread" 36
Git branching and mergingo 41
Use case diagram. 45
Logical architecture.o 47
Design architecture. 48
IDEFO: Example 49
IDEFO: Generate scenario 50

Height data is organized in a two-dimensional grid, where each cell has one height
value. The east/west coordinates are defined by the two dimensions in the grid. 52
cartesian coordinate systemso 58
Packet capture showing the speed of a single Get request toward Kartverket’s

API. The circled timestamps show when the HyperText Transfer Protocol (HTTP)

request was sent (top) and when the transfer had completed (bottom). 59
Flow diagram showing two possible usage scenarios for HeightMap 61
All methods for retrieving height rely on just receiving X and Y coordinates. . . 62
Simple path generated by A* 65
Comparison of paths generated with and without smoothing 66
Bresenham’s line algorithm oL 67

Heightmap and corresponding routemaker grid with a flight height of 175 MAMSL 68

Heightmap parsed by Routemaker with resolution of 5m and resulting grid . . . 69
Architecture and dataflow for serializer 73
Origin and size update pattern. L 75
Compile scenario functionality 75
Graphical user interface tree 76
Graphical User Interface 77
Comparison of the map in Map Manager with the map from GuleSider. 80

7

LIST OF FIGURES

30 Comparison of the map in Map Manager, height manager and routemaker. . . . 83
31 Compile scenario with multiple agents. 83
H.1 The initial component diagram L Lo 165
H.2 The initial component diagram oL 165
H.3 The first layered architecture. 0oL 166
H.4 The derived MVC diagram 166
H.5 The second layered architecture 167
H.6 Use cases for the third layered diagram 168
H.7 The third layered architecture 0oL 168
H.8 The first high level architecture 169
H.9 The first desgin architecture oL 170
H.10 Merge the serializer and deserializer components with the save and load compo-
NENtS. e e e 171
H.11 An attempt to connect the data layer and components together. 172
H.12 Removed the coordinate converter from the architecture. 172
H.13 Removed horizontal lines between the use cases. 173
H.14 Vertex manager splited into map manager and height data. 173
H.15 The placements of some of the components have been rearranged. 174
H.16 Reintegrated the coordinate converter. 174
H.17 Final high-level architecture. 175
N.1 Seating arrangements 213

List of Tables

N O T = W N -

Group members 15
Definition of probabilityo 33
Degree of consequenceo 33
Template for verification L 43
Software component 49
Consequence for product Lo 86
Table of revised requirements for product 88

Acronyms

AT Artificial Intelligence. 28

API Application Programming Interface. 51, 55, 58-60, 72

CD Continuous delivery/deployment. 40

CI Continuous integration. 40
DOM Document Object Model. 72

GDAL Geospatial Data Abstraction Library. 51, 52, 59, 60
GIS Geographical Information Science. 55
GML Graphical Markup Language. 60, 94

GUI Graphical User Interface. 7, 25, 38, 42, 54-56, 62, 63, 74, 76, 77, 79, 80, 82-85, 88, 94,
95

HTML HyperText Markup Language. 40, 55, 72

HTTP HyperText Transfer Protocol. 7, 58, 59, 62, 64

IDEFO0 Integration Definition for Process Modelling. 49, 50

IPC Inter-Process Communication. 54
JSON JavaScript Object Notation. 12, 69-72, 74
KDA Kongsberg Defence & Aerospace. 22, 23, 26, 32, 40

MAMSL Meters above mean sea level. 7, 68

MATLAB MATrix LABoratory. 28

MVP Minimum Viable Product. 24, 25, 36, 37, 49, 61, 86
NASAMS Norwegian Advanced Sufrace-to-Air Missile System. 22

10

Acronyms

PCL Point Cloud Libraries. 56

PHP Hypertext Preprocessor. 34

ROS Robot Operating System. 39, 56, 72, 91

Rviz ROS Visualization. 56

SAE Society of Automotive Engineers. 17

SQL Structured Query Language. 34
TIFF Tag Image File Format. 51

UAV Unmanned Aerial Vehicle. 16, 17, 19, 20, 22, 25, 27-29, 44, 56, 96
UI User Interface. 46

UML Unified Modeling Language. 37, 38

URL Uniform Resource Locator. 55, 64

USN University of South-Eastern Norway. 22, 34, 212

UTM Universal Transverse Mercator. 51-54, 56, 57, 63, 79, 81, 95
VCS Version Control System. 40

WCS Web Coverage Service. 60, 94

WMS Web Map Service. 55, 62, 63

XML Extensible Markup Language. 25, 60, 70, 72

11

Glossary

agent An agent refers to an autonomous unmanned aerial vehicle (UAV), or a drone. Each
drone is identified by a unique ID and can perform tasks independently or in coordination
with other drones in the system . 44, 56, 64, 7577, 81-85, 88, 94-96

cartesian coordinate A Symmetric Coordinate system is a system where the origin is located
at the center, and the axes are symmetrically arranged around the origin. This means
that both positive and negative values of the coordinates are equidistant from the origin,
and the axes have equal scales in both directions. An Asymmetric Coordinate system has
its origin located in the upper left corner, rather than at the center, and is often defined
by the size of the coordinate system. This means that the positive x and y axes extend
to the right and down. 7, 53, 56-58, 64, 68, 78

geographical coordinate Geographic coordinates are a reference system used to locate po-
sitions on the Earth’s surface. They are expressed in terms of angles of latitude and
longitude that are measured from the center of the Earth and are referenced starting at
the Equator and the Prime Meridian, respectively. Latitude is measured from the Equa-
tor and longitude from the Prime Meridian. Latitude is the measurement of a location’s
distance from the Equator and is designated as Of at the Equator and 907 at the poles.
Longitude is the measurement of a location’s distance from the Prime Meridian and is
designated as Ot at the Prime Meridian and 180t on the opposite side of the Earth. The
degrees of latitude and longitude can be further divided into minutes and seconds for
greater precision[5]. 25, 53, 54, 56, 57, 76, 78, 79

git A distributed version control system widely used in software development, for handling

versioning of files and resources. 40

inter-process communication Features provided by an operating system that enable pro-

cesses to handle and control data that is shared among them. 54

JavaScript Object Notation A lightweight file format that is easy to read and understand
for both humans and computers. JSON is a common format to use when you have to
transmit data to for example a drone or a website. JSON consists of name and value
pairs and Ordered lists. Basically every programming language can parse and generate

JSON files which has made it a very popular data format for transmitting data[6]. 69

12

Glossary

keyframe A structure in Hivemind representing an agent’s position at a point in time. 24, 25,
64, 68, 74-77, 81-83, 88, 94

route A route is a path that a drone will follow in a specific scenario. The route is defined by
a series of cartesian coordinates that the drone will pass through in order. The Hivemind
system uses the Routemaker component to generate these routes based on the keyframes

provided by the user . 24-26, 44, 51, 55, 58, 61, 64, 65, 67, 68, 74-76, 82, 83, 88, 94

scenario A scenario refers to a predefined set of keyframes that describe the movements and
actions of drones in a given geographical area. The scenario includes information such as
the geographic origin, size of the area, and the keyframes for each drone. 7, 23-25, 44,
61, 62, 64, 68, 71, 74-77, 82, 83, 85, 94, 95

Universal Transverse Mercator Universal Transverse Mercator (UTM), which stands for
Universal Transverse Mercator, is a system of coordinates based on a family of 120 Trans-
verse Mercator map projections. The Earth is divided into 60 zones, each 6 degrees wide
in longitude, with a central meridian for each zone[7]. The Easting has a value of 500,000
meters at the central meridian of each zone, while the Northing, or Y value, is 0 meters
at the equator for the northern hemisphere and 10,000,000 meters at the equator for the
southern hemisphere. The numbering of zones starts at 180f and goes eastward, with
Zone 1 covering 180W to 174W, Zone 2 covering 174W to 168W, and so on. Each zone
also has a central meridian, with Zone 1 having a central meridian of 177W, Zone 2 hav-
ing a central meridian of 171W, and so on. Positions are expressed as Easting/Northing,
with the UTM zone and hemisphere optionally specified for positions near zone junctions.

51
unmanned aerial vehicle An aircraft without an onboard pilot. 16

UTM 33N Universal Transverse Mercator 33N is the 33th zone in the UTM coordinate sys-
tem. It covers an area that spans from 12 degrees to 18 degrees east, and from the
equator to 84 degrees north in the Northern Hemisphere. UTM 33N is used in Norway
for nationwide data, such as topographic maps, and is the default coordinate system for
data provided by Geonorge because it is the UTM zone that is in the latitude center of
Norway([8]. 54, 79

WGS84 The World Geodetic System 1984 (WGS84) is a global geodetic reference framework
used for global positioning, navigation, and mapping. It is based on a consistent set of
constants and model parameters that describe the Earth’s size, shape, and gravity fields.
WGS84 is the standard reference system for the Global Positioning System (GPS) and is
compatible with the International Terrestrial Reference System (ITRS). Its defining pa-
rameters include the semi-major axis of the WGS 84 ellipsoid, the flattening factor of the
Earth, the nominal mean angular velocity of the Earth, and the geocentric gravitational
constant[9] . 53, 57

13

1. INTRODUCTION

1 Introduction

1.1 Overview HMM | NH

Drones are quickly establishing themselves as tools of choice for cheap and safe operations within
the fields of agriculture, surveying, disaster management and warfare. This paper considers a
swarm of drones in the context of entertainment - to enact a light show in formation, and
develops a software for the planning of drone flight paths, taking into account local height and
buildings, that can easily be expanded to include further functionality. The project has been
dubbed "Hivemind', demonstrating the overarching goal of this project to create a software
that can act as the "hive mind" controller of a swarm of drone "bees".
This document will first explain the domain of the project and the problem put forward for the
group to solve. It will then briefly address related work and demonstrate how this project will
expand the current body of research. The group’s project management framework and methods
will be presented, before detailing the software development process utilized in the project.

The technical section will explain the conceptual software model, including software com-
ponents, their interfaces, derived use cases and the resulting architecture. The process under-
pinning the conceptual development will also be explained. Following this, the sections for
implementation and testing will explain the technical implementation of the entire software,
libraries used and methods used for testing.

Finally, this document will conclude with evaluating the product risk, to which extent the
requirements put forward by the client were met, and conclude with challenges faced, future

work, and how Hivemind can be used in the future.

1.2 Group members RS | HM

Hivemind consists of five computer engineering students, namely Aurora, Harald, Hilde Marie,
Nils Herman and Ruben. Each of them can be seen in tab. 1, which showcases their individual
images, full names, initials, engineering disciplines and designated roles within the Hivemind

project.

1.2.1 Initials RS | HM

To the right of several headings in this report, the initials (tab. 1) of the authors and proof-
readers of the corresponding subsections and subsubsections have been included. Although
this is a group project, it is individually graded and reviewed. Accordingly, it is valuable to
be transparent with regards to which member has contributed to each section of the report.
The authors and proofreaders are separated by a vertical line, with the authors on the left,
and proofreaders on the right. The proofreader is not responsible for the content, but rather
confirms the general form of the section, and helps fix minor spelling and punctuation mistakes.

To further clarify the technical contributions of each group member, an overview of who

has done what is provided in appendix K.

14

1. INTRODUCTION

Name Aurora Moholth

Initials AM

Discipline | Computer engineer - Cyber physical systems

Role Architecture & Competence flow & Team building
Name Harald Moholth

Initials HM

Discipline | Computer engineer - Cyber physical systems

Role Requirements & Testing

Name Hilde Marie Moholth

Initials HMM

Discipline | Computer engineer - Cyber physical systems

Role Documentation & Information flow & Social media
Name Nils Herman Lien Hare

Initials NH

Discipline | Computer engineer - Virtual systems

Role Risk management & Document templates

Name Ruben Sgrensen

Initials RS

Discipline | Computer engineer - Cyber physical systems

Role Version control & Implementation

Table 1: Group members

15

2. DOMAIN: UNMANNED FLYING VEHICLES

2 Domain: unmanned flying vehicles

Unmanned aerial vehicles (UAVs) are the main domain of Hivemind, and refer to aircrafts that
can be flown without an onboard pilot, as the name implies. In this report, UAV will be used
interchangeably with the term "drone".

This section will briefly explain a number of concepts relevant to UAVs, such as defining
what a drone swarm is, and how groups of UAVs are commonly used for agricultural, military
and surveying purposes. A concise overview of how exactly swarms can be controlled through
automation, and different network architectures to achieve control of the swarm, will also be
provided. Finally, some algorithmic methods that can aid in calculating the route for each UAV

will be presented.

2.1 What is a drone swarm? HMM | NH

There are many proposed definitions "swarm", where the most intuitive of these evoke the
image of a large number of things moving together or in an organized fashion [10][11][12].
Others have chosen to define "swarm" in the technical context of robotics [13], emphasising
on aspects of swarming behaviour where individuals group up to "achieve a common goal'[12].
In [14], this technical aspect was further detailed, defining a "swarm architecture" wherein the
swarm is defined as having "distributed task queues, speculative out-of-order task execution,
and ordered task commits". A set of criteria to define a robot swarm that encompass the ideas
of a swarm containing a number of individuals working together to achieve a common goal in
a self-organizing fashion was put forward in [15], which proposes that a swarm:

o contains 3 or more individual members
o is subject to or requires limited human control

« is cooperative (works together to meet a common goal)

2.2 Usage of drone swarms HMM | NH

UAV swarms have seen multiple theoretical and practical areas of use, and continue to be a field
of continuous development. As UAVs can be directed from a distance, they allow operators to
perform search operations in disaster areas remotely, mitigating the risk to operators. They
are also a low-cost way to perform surveying or photography that would normally have needed
helicopters or airplanes to complete. As computers grow smaller and the computational power
on each individual member of the swarm increases, there are also increased opportunities for
more sophisticated UAV swarm operations where the swarm can use the benefits of swarming
behaviour and intelligence to complete tasks cheaper and faster than any individual UAV or
drone operator could do by themselves.

The safety benefits of operating UAV swarms have been taken advantage of in a variety
of scenarios. In [16] and [17], teams of UAVs were used in disaster management settings,

specifically for tracking and extinguishing wildfires. UAV swarms have also been deployed for

16

2. DOMAIN: UNMANNED FLYING VEHICLES

searching and tracking operations, for example in [18] and [19]. UAVs and UAV swarms also
have obvious offensive areas of use in a military context. [20] and [21] propose frameworks for
the use of UAV teams in search and attack missions, and the US army is planning on making

use of the benefits of UAV swarms by deploying its own "Super Swarm" army [22].

Work has also been done in the field of UAV swarms for other tasks, such as cinematography

[23], agriculture [24][25] and for medical [26] and commercial[27] delivery services.

While the literature on UAV swarms is particularly rich in the context of agriculture and

military, there is a dearth of research into applications of UAV swarms for drone light shows.

2.3 Controlling the swarm HMM | NH

It hopeless to expect one human operator to control all members of a UAV swarm individually.
A certain level of autonomy from the drone swarm or the software that plans its routes is
therefore necessary for any successful multi-UAV ground control station. Autonomy can be
defined in relation to the amount of active interaction required from an operator or driver when
the vehicle is operating. Although there is as of yet no consensus about the definition of levels
of autonomy in UAVs, a number of suggestions for general levels of autonomy in unmanned
systems and aviation have emerged based on the driving automation levels defined by the

Society of Automotive Engineers (SAE).

The SAE divides automation into levels ranging from 0 to 5, where 0 is the driver having
full control of the vehicle with assistance from automation functions, with 5 is full automation
[1]. In [2], the authors apply this schema to aviation autonomy. They define levels 0 to 3
as levels wherein the primary pilot is the human, and the automation taking over from level
4 until 5. From least to most automated, the amount of work to fulfill a certain task that
the human pilot is able to delegate to the system automation gradually increases, whereas the
amount of events that the human needs to respond to through some kind of intervention (such
as collision avoidance, decision making, identifying targets and so on) decreases. The idea of
a tiered division of the extent of autonomy for system is taken even further in [3]. This paper
does not build on the SAE levels, but instead divides any mission into subsystems, systems and
the system of systems. These can further be divided into levels of autonomy based on whether
an individual or group of unmanned systems can achieve its mission goal in a static or dynamic
environment, with the most autonomous systems able to complete its missions as a group in
a dynamic environment. In general, though there is no consensus on specific levels, the tacit
agreement appears to be that the more autonomous a system is the more advanced tasks it is

able to complete without the direct intervention of a pilot.

Another important topic to consider in an autonomous multi-UAV (or UAV swarm) system
is how the pilot or ground control station should seamlessly control and interact with multiple
UAVs. To break control down further into the steps required for a system to act autonomously,
[28] defined a decision chain in autonomous vehicle into the perception and planning phases.
The vehicles must receive information from sensors to perceive their environment, then use

some algorithm or other method to decide what changes to make, if any, given the current

17

2. DOMAIN: UNMANNED FLYING VEHICLES

Six-tiered model for autonomy

No autonomy.

Any support features provide only
warnings or very basic steering aid.

A small amount of automation through
support features.

Not autonomous

More automated support features.
Driver must still constantly monitor
operation of system to intervene.

Somewhat autonomous.
Human operator might need to intervene
if automated system requests.

Almost fully autonomous.
Might not be fully functional in all
environments.

Automated

Fully autonomous.
System is fully functional in all

environments without operator
intervention.

Autonomous

Figure 1: Six-tiered model for autonomy, as seen in [1] and [2]

Level of autonomy

System of
systems tier
(Team of
vehicles)

System tier
(single vehicle)

Subsystem tier
(Functional
components of
single vehicles)

Within each tier:

Highest autonomy: Group of unmanned
systems achieves goal in dynamic
environment

High autonomy: Individual unmanned
system achieves goal in dynamic
environment

Medium autonomy: Group of
unmanned systems achieves goal in
static environment

Low autonomy: Individual unmanned
system achieves goal in static
environment

Lowest autonomy: Unmanned system
can perform feedback actions

Figure 2: Three-tiered model for autonomy, as seen in [3]

environment. The question of where the perceiving and planning is done can be answered by

many extant suggestions for swarm communication architectures.

In most cases, at least some, if not all, of the planning takes places on a ground control

station, which tends to have more powerful computational abilities than what is possible to

2. DOMAIN: UNMANNED FLYING VEHICLES

implement on any individual drone or quadcopter. The computational capabilities of the mem-
bers of the swarm further determines the level of interconnectivity and intelligence possible. In
[29] and [4], the authors divide UAV swarm networks into four categories corresponding to the
following descriptions:

o The centralized network, sometimes referred to as infrastructure-based architecture, wherein
each individual UAV is dependent on direct communication with the ground control sta-
tion to send telemetry. The ground control station then determines what action should be
taken and sends updated instructions to each UAV. An example of this is seen in [30] or
any other commercial software where one ground control station controls one or multiple

UAVs with no other communication between members of the swarm.

o The ad hoc network, where only one UAV needs to be in contact with the ground control

station and acts as a router for the information to all other UAVs in the swarm.

o The multi-group network, which describes a network containing of several UAV teams
that has its own router or backbone UAV that communicates with the ground control

station

e The multi-group ad hoc network or multi-layer ad-hoc network, where the ground control
station only needs to be in contact with any one UAV at a time, and this UAV further
relays communication and telemetry between swarm and ground control station from the

multiple extant groups

=
GCs oS
(a) Infrastructure based model (b) Ad hoc network model
A =
=, T = LT X
e NN et Lk
N N
(¢) Multi group model (d) Multi-layer ad-hoc network

Figure 3: Swarm network models, as seen in [4]

19

2. DOMAIN: UNMANNED FLYING VEHICLES

In general, previous works indicate that swarms operating within a multi-group ad hoc
network will be more robust [31] [32] [33], because infrastructure-based networks have a large
weakness in its single point of failure of the ground control station. The more decentralized
the network can become, the more likely the swarm is able to continue operating if one UAV
shuts down. On the other hand, the more sophisticated the communication between UAVs, the
higher the requirements for their onboard computational hardware will be.

While it is possible for the ground control station to individually calculate each member’s
ideal route, there are other algorithmic methods that simplify the act of controlling the swarm
while preventing intra-swarm collisions. One well-known method is the Boid algorithm, sug-
gested in 1987 as a general model to simulate a flock of birds [34]. The Boid algorithm is

relatively straightforward and simple, containing three major rules for flocking:
« 1. Collision avoidance
o 2. Velocity matching
e 3. Flock centering

Further work has been done on the Boid algorithm in more recent times, extending it to
controlling UAV swarms, for example in [35].

Many other rules have been implemented in research to control a swarm of UAVs, many
which include methods for collision avoidance and velocity matching, remniscent of the Boid
algorithm. In [36], the authors implemented formation controllers and collision avoidance con-
trollers on each UAV, which allowed the swarm to maintain a formation while still avoiding
obstacles. This approach is an example of the consensus-based approach to formation control,
wherein members of the swarm uses the states of its neighbors to adjust its own state until the
states of each UAV converges upon a group consensus [37]. Other examples of researchers who
have taken this approach to control UAV swarms include [38] [39] [40]. A more straightforward
and potentially less computationally demanding approach is the leader-follower method, where
a leader UAV is assigned and all other members follow the leader using specified rules, as has
been seen in [41] [42] [43]. A final commonly seen approach defining the drone as a virtual
structure, proposed in [44]. Here, all the members of the swarm are defined in a structure, with
a rigid geometric relationship to all the other swarm members and to a point of reference. This
approach has been used to control multiple drones simultaneously, for example in [45] where
drones were organized into a virtual structure and controlled simultaneously using a joystick.

Apparent from the existing literature, research into UAVs, UAV swarms, their applications
and the most efficient way of controlling these is abundant. UAV swarms, which refers a group of
three or more UAVs, that are at least partially autonomous and are able to work cooperatively.
Such swarms have a large range of real-life applications, including within military offensive
missions, geographical surveying, and agriculture. A number of different methods have been
implemented to communicate throughout and with the swarm, and to control the paths of each
individual UAV. When choosing what method to implement, it is important for researchers to

take into account the onboard hardware of their drones and their computational capability, the

20

2. DOMAIN: UNMANNED FLYING VEHICLES

range over which they should travel, as well as the ease of which the different solutions can
be implemented. Although the research certainly covers a wide range of different application
of drone swarms, limited attention has been placed on tailor-made software specifically for
planning and executing light shows. The next section will present how Hivemind seeks to start
filling this gap, through creating a framework for a flexible and extendable software which can

be used for planning light shows.

21

3. PROBLEM: ROUTE-MAKING IN DRONE SWARM MANAGEMENT

3 Problem: Route-making in drone swarm management

3.1 Project context

3.1.1 Kongsberg Defence & Aerospace HMM | NH

Kongsberg Defence & Aerospace (KDA) was founded in 1814, and is at present Norway’s largest
manufacturer of defence systems [46]. Throughout its long history of over two centuries, the
company has developed notable products such as the Penguin missile, Norwegian Advanced
Sufrace-to-Air Missile System (NASAMS), Joint Strike Missile and Naval Strike Missile. They
supply defence systems to a number of different countries, including the Norwegian Armed
Forces [47] and the United States [48].

As a company, their values include innovation and collaboration, which is perhaps one of
the reasons why their co-operation with universities and students across Europe is particularly
strong. KDA supports the development of students every year through a number of internships,
a competition, the industrial master’s degree program, in addition to providing projects and
guidance in bachelor’s thesis projects at the University of South-Eastern Norway (USN). Their
oldest running continous summer internship is the Local Hawk project, which has been arranged
every summer since 2008. This project focuses on performing Unmanned Aerial Vehicle (UAV)-
related research, such as methods to increase drone flight time, and is a project meant to give

students an opportunity to work in a team to complete a practical project.

3.1.2 Envisioned drone swarm light show HMM | NH

In 2024, Kongsberg will be celebrating the 400th anniversary of its founding. For this occasion,
KDA was planning on arranging a drone light show with drones and software developed by
student projects. The show was envisioned to take place somewhere in central Kongsberg, with
drones flying in formation and illuminating certain buildings. As a drone-related project, this

is an extension of the Local Hawk summer project.

To do this, various engineering bachelor’s project groups were tasked with the different
elements necessary to arrange such a drone light show: the drones themselves, the systems and
hardware necessary to control the spotlights, the flight controller software on the drones, and

of course, the route planning software to allow one operator to plan out the entire spectacle.

Unfortunately, as all the student projects progressed and discovered the limitations of hard-
ware and software in relation to the requirements put forward, it became apparent that the
safety issues involved in arranging a light show involving a team of drones, and the technical
work required to address these issues, was too extensive for the time allotted to each individ-
ual project. For example, one goal was to design drones with a total weight of less than 250
grams to avoid the strict requirements related to registration, training and permits to fly. Such
drones, however, would necessarily carry only the bare minimum of sensors, which severely lim-

its each individual drone’s ability to perform calculations and maneuvers related to dynamic

22

3. PROBLEM: ROUTE-MAKING IN DRONE SWARM MANAGEMENT

anti-collision. The lack thereof poses a significant safety hazard. The spotlights necessary for
the drones to perform their light show function, additionally, turned out to be strong enough
that safety equipment was needed to work with them. This also presents as a potential hazard
to the drone light show audience. After much deliberation, the actual execution of the drone

light show in 2024 has been shelved due to the difficulty of safely arranging it.

This project was assigned the task of developing the route planning software for the light
show. Although the software will most likely no longer be used for a light show in 2024, however
the project was still completed as planned with the aspirations that the software would be useful

to someone planning routes for a drone swarm in the future.

3.2 User requirements AM | RS

Requirements were derived through a preliminary meeting with the client. In this meeting, the
client (KDA) put forward a number of requirements and aspiration for the route planning and
monitoring software. 10-15 drones would perform the show simultaneously in sequence, and the
software would need to be able to control and communicate with the drones. As the operator
of these drones, the client imagined being able to open their computer, set a location, and have
the computer query the drones for their locations. The computer would then display a map of
where the drones are, and the operator could then dictate what should happen. The computer
would then generate a plan for each drone and allow the operator to run the program. The
operator would also need to know the status of all drones at all times, including their locations,
connection status with the computer, battery status, and expected flight time based on battery
level. In the case of the drone battery level falling below a certain threshold, the operator
would be alerted through the software. If the battery level were to drop even lower without
intervention, the drone would then be forced to perform an emergency landing. However, the
client wanted to keep the ability to override the emergency landing, if necessary. Time is of the
essence; therefore, the drones would need to be synchronized in terms of time, and the software
should facilitate this.

The operator should be able to create a scenario (that is, a timed route plan for all drones)
and simulate it before running the program. They should also be able to save and load pre-
viously created scenarios. For safety reasons, the software should also include the option of
designated no-fly zones for the entire scenario which would be taken into account by the route
planning algorithm. Similarly, the software would also need to keep track of buildings, trees and
other obstacles to avoid collisions. The client recommended obtaining the data from "hoyde-
data.no" for this purpose. The client also requested the ability to designate emergency landing

zones where drones could safely land without the risk of harming spectators if necessary.

The client requested that all drones should be able to locate each other, which should be a
simple task as the envisioned drone light show area will be fairly small. It was recommended that
equirectangular mapping was investigated for this purpose. It was also suggested to implement

a follow-the leader mode of formation control.

These requirements can be roughly distilled into the following list, showing that the software

23

3. PROBLEM: ROUTE-MAKING IN DRONE SWARM MANAGEMENT

should:
o feature a graphical user interface through which the light show operator could interact

with the system
« enable the planner to ensure the drones fly safely in relation to spectators
e ensure the drones do not collide with each other
« include functionality to perform a safe emergency landing if necessary

In addition to these functions, the client requested that the software:

have a mode for illuminating buildings or other structures visible on a topographical map
o allow the user to store and upload scenarios/routes that have already been made

» have a mode to direct the drones to fly in formation following a leading drone

« allow for the use of more than one drone to fly in a swarm

o allow for the simulation of the drone swarm to verify that the selected route is realistic

and will not lead to collisions

3.2.1 Making the requirements verifiable HM | HMM

After this client meeting, a list of requirements were derived from the client’s wishes, which were
then developed into 11 user stories that covered the main functionality from a user standpoint
that the client mentioned, see appendix C. The user stories were then developed into 11 use
cases containing step by step lists of how each user story would appear in practice, see appendix
D. Finally, each use case was expanded until a list of 73 verifiable requirements had been defined,

see appendix E.

3.3 Minimum viable product HMM | NH

After exploratory technical work to determine how to implement the requirements agreed to by
the client, it became clear that the scope of the project would far exceed that of a bachelor’s
thesis if planning, simulation and monitoring of a light show drone swarm were to be completed.
In agreement with the client, the project therefore focused on the planning part of the Hivemind
software, with particular attention paid to designing software that is scalable and flexible to

allow further additions in the future.

3.3.1 Features HMM | NH

The goal for the Minimum Viable Product (MVP) was to be able to plan a simple route for
one drone using two keyframes. A keyframe is the position of a drone at a certain point in

time, with the goal being that the Hivemind software is able to calculate the path of a drone

24

3. PROBLEM: ROUTE-MAKING IN DRONE SWARM MANAGEMENT

between two keyframes using a specific algorithm. After defining two geographical points, the
software will calculate the simplest possible route between these.

The software will be able to save and load scenarios. Scenarios are files that gather routes
for several drones, though the MVP will only support one drone to start with. A route is
the flight plan for a single drone, and the MVP will accordingly be able to produce scenarios
containing only a single route. It was initially decided that these scenarios should be saved into
and loaded from XML formats.

It was also decided that the system should be able to convert from geographical coordinates
to cartesian coordinates, as it is far more intuitive for a drone operator to direct the UAVs in

a relative XYZ system than using a geographic coordinate system.

3.3.2 Modules and functionality in the MVP HMM | HM

Graphical User Interface (GUI) with tabs and options

» Save/load scenarios

o Map data query

o Height data query

» Coordinate system converter (geographical to cartesian)
« Basic route algorithm (Routemaker)

» Basic graphical representation of key frames in GUI

o Functionality for a single drone

3.3.3 Requirements and tests for the MVP features HMM | NH

The requirements and tests have been adapted from the full requirements table, which has
also been altered to expand the number of optional requirements. Appendix F shows the
revised requirements table, separating between requirements categorized A, B and C, where
the requirements categorized as A define the minimum viable product.

A preliminary flowchart was developed while simultaneously working on the MVP, which
can be seen in appendix B. This figure, while only being an initial draft, nevertheless provides a
visual representation of the proposed system’s key functionalities and how they are connected.
This early planning stage allowed the team to identify potential bottlenecks and areas for
improvement in the MVP development process. As the project processed, the group returned

to the flow chart and other representations of the MVP to make alterations as necessary.

3.4 Project problem HMM | NH

The specific problem solved by Hivemind is the creation of a flexible and versatile software

25

3. PROBLEM: ROUTE-MAKING IN DRONE SWARM MANAGEMENT

architecture and software implementation of a drone route planning software. This software
was envisioned as part of a KDA led initiative to perform a drone light show in central Kongsberg
in 2024. Though the light show was cancelled due to the difficulty of properly implementing
measures to ensure the safety of spectators, the Hivemind project was nevertheless completed.
The assignment given by the client was to create a route planning system that could create a
route for at least one drone, and should include both a planning, simulation and launch mode.
The client also requested some specific functionality for these modes, such as no-fly zones,
emergency landing, monitoring, and functionality for spotlight control. Tests were defined for
all the client’s requirements.

If the project was unable to complete all these functions, the software should nevertheless be
designed in such a way that it could be completed by someone else. This added requirements
that the software design should be scalable and flexible. A minimum viable product was
developed to meet the most important requirements for the clients, while creating a versatile
starting-point for further development of Hivemind.

As this report continues to detail the project work methods and technical development,
it will also become apparent that the scope of the project gradually shrunk. This is because
both client and group gradually realized how much work it would be to implement planning,
simulation and monitoring of a drone light show. Consequently, the software that is presented
toward the end of this report is markedly different in functionality from what was initially put
forward by the client. That being said, all adjustments to the list of included functions and
the requirements were continuously altered in close cooperation with the client. The actual
functionality built into the final product ordered by the client will be detailed further in the

minimum viable product section.

26

4. RELATED WORK

4 Related work

In this project, the customer requested drone swarm route planning software that includes
functionality for directing a light show, anti collision, simulation and emergency landing. Given
these customer specifications, there are two main questions that need to be answered to guide

the direction of the project.

o First, what algorithms and strategies are there for efficient route planning? Which ones

are the most relevant for this project’s given restriction?

» Second, what sort of software for route planning, simulation and execution already exists

out there? What are their strengths and limitations?

This section will address these two questions.

4.1 Route-planning algorithms HMM | NH

Route or path planning algorithms are algorithmic ways of arriving at the fastest or most
efficient way to for an individual to travel through all its designated way points. Although it is
quite possible for humans to draw up a route intuitively, some research has shown that humans
seldom choose the shortest possible path [49], especially when the total distance between origin
and destination increases [50]. Wholly manual path planning is, however, neither scalable nor
feasible in the context of Unmanned Aerial Vehicle (UAV) swarms, and computer-generated
routes are thus an important part of the aspect of autonomy necessary for the route planning
software.

It is possible to roughly divide path-planning algorithm into different categories, based on
the approaches taken to calculate the optimal path. In their survey on different algorithms
for agricultural use, Basiri et. al. define the four categories into algorithms using grid-based
techniques, sampling-based techniques, artificial intelligence and cooperative techniques [51].

In grid-based techniques, the programmer uses a grid where the various points on the grid
correspond to possible positions of the vehicle, and the vehicle can move freely between adjacent
points. Some times, the links between two neighboring points (called edges) can have different
costs associated with them. Examples of this kind of algorithm is the A* algorithm [52] and
its variations, such as Theta™® [53], or Dijkstra’s Algorithm [54]. Such algorithms have been
applied to unmanned vehicles to generate paths and are often simple to implement, which can
be seen in [55] where the author used a modified A* algorithm to plan routes for an unmanned
surface vehicle.

Sample-based techniques base themselves on the principle that not every path needs to be
tested to find an optimal one. Instead, paths will randomly be sampled, with the global optimal
path being saved. This global optimal path can be saved to guide the next random sampling
until the best path has been found. Examples of this kind of approach include particle swarm
optimization [56] and rapidly exploring random trees [57]. Particle swarm optimization, in

particular, has seen frequent use in flight and surface path planning experiments [58][59][60][61].

27

4. RELATED WORK

Artificial Intelligence (Al) is another method that has been used for route planning, and has
the advantage of being able to infer information based on previous experience, which may reduce
the number of sensors needed to be mounted on drones [62]. Examples of AT methods that have
been used in path-planning problems include neural networks [63], ant colony optimization [64]
and genetic algorithms [65].

Finally, the cooperative techniques encompass a large number of different models that can
be used to generate paths for robots, including machine learning models, mathematical models,
multi-objective optimization models and bio-inspired models [66]. These techniques include
Bezier curves, which can be used to plan out smooth the curves of the path, an example of

which can be seen in [67].

Different algorithms may perform better in different circumstances. In using path planning
algorithms to route end-to-end data transfers between UAVs, one study found the A* algorithm
to perform the best [68]. This is also the algorithm that was more efficient in another survey
related to path planning in 3D for agricultural purposes [51]. In another project, which com-
pared algorithms for the purpose of finding the path with the minimum cost in an environment

with dynamic obstacles, the bug algorithm was the most successful [69].

4.2 Existing solutions for controlling drones and drone

HMM | NH
swarms

A number of commercial software solutions for UAV flight planning and simulation already
exists. These often allow the use of waypoints to define a rough route, such as UgCS [70], and
are often designed for surveying an area (such as the DJI route planner or the Orbit Logic UAV
Planner)[71][72], or performing surveillance in an area, in addition to flyover route planning
for mapping purposes, such as DroneDeploy’s planning solution [73]. Such terrain mapping
solutions also feature terrain avoidance functionality, and often contain a number of intelligent
routes for surveying an area. These solutions, however, do not have built-in support necessary
for light shows, such as controlling the direction of spotlights attached to the drones being
controlled. They are also often expensive (790 to 4390 EUR for the UgCS software [70]), which
poses a challenge for a small bachelor’s research project or hobby pilot. Some extant software
is also not model agnostic, and may only support planning for one kind of drone (such as DJI's
planning software) [71]. There are open source solutions available that could be adapted to
allow for spotlight control, such as QGroundControl [74] and the PaparazziUAV software [75].
Different frameworks, software or systems for UAV mission planning have also been sug-
gested in academic literature. In [76], the complete software with the aim to optimalize energy
expenditure over a route was proposed for multiple UAVs. In [77], software for flight manage-
ment in the context of agricultural image processing was proposed using MATLAB. Researchers
have also proposed full control station software for single [78] and multiple [79] vehicles, in gen-
eral for the purpose of surveillance. Finally, work is also being done in pursuit of developing
better, more realistic simulations for multiple UAVs. An example of this is seen in [13].

Some architectures have already been proposed that fall within a similar problem domain.

28

4. RELATED WORK

In [80], a framework for an swarm intelligence system using machine learning is proposed.
Swarm intelligence is also used in [81] to implement a software architecture specific to UAV
swarms for firefighting purposes.

Evidently, the field of research related to UAVs, route planning and swarms is vibrant and
diverse, and in many cases, the jury is still out on exactly which approaches are optimal in
the different scenarios that such technologies can be used. Hivemind will cover only a tiny
scope of the body of work as a whole. While not necessarily able to do so during the course
this bachelor’s project, the aspiration is that the Hivemind software will be able to bolster the
somewhat underdeveloped area of research that encompasses software and techniques related to
UAV light shows. In time, this software should also be able to perform repeatable experiments
and demonstrations in relation to drone light shows, to further enrich current empirical research
on drone swarms, light shows and optimal path planning.

The next section of this report will start by explaining how the Hivemind project group was

managed, before moving onto the more technical aspects of developing the Hivemind software.

29

5. PROJECT MANAGEMENT

5 Project management

This section deals with how the organizational and administrative tasks, an important re-
quirement to the bachelor’s project, were solved. This includes how administrative roles were
divided, how Hivemind communicated with its external and internal supervisors, how risk was
considered for the project, and finally how the Hivemind website (a university-set requirement)

was implemented.

5.0.1 Flat leadership structure NH | AM

A flat leadership structure was chosen early in the project to make sure the burden of ad-
ministrative tasks was evenly distributed among the group members. In practice, this meant
that no one person was given overall responsibility for the project as project leader, and that
administrative roles such as meeting leader and secretary was rotated weekly.

A wheel was made to keep track of whose turn it was for an administrative role(fig. 4a).
Hilde Marie was the first to take on the role as meeting leader, while Nils Herman acted as
secretary. The next week, whoever acted as secretary would take on the role of meeting leader,

while the person after them in the wheel would act as that week’s secretary(fig. 4b).

_— _— T
7 / .
Harald Hilde Harald H'Id.e
Marie Marie
,'/
//
7 \ f Ve
f
|)
‘ mee ngs
\ Ruben Nils | \ Ruben Nils
\ Herman / \ Herman
\ ’// \\
Aurora Aurora
Mint sof
mex g
a) Meeting leader wheel b) Meeting leader wheel progress
g g prog

Figure 4: Meeting leader rotation

In addition to spreading the administrative work across the individual Hivemind members,
this leader wheel solution provided an opportunity for each member to gain experience per-
forming administrative tasks. It also ensured that each member needed to keep up-to date and
involved with the project as a whole, instead of just focusing on their own tasks.

Throughout the project, this way of managing the project proven very successful. The
flat leadership structure proved to be flexible, and encourage both communication and initia-
tive from all the group members. The ease of communication in a flat structure facilitated

communication and made sure every member felt a sense of ownership of the task at hand.

30

5. PROJECT MANAGEMENT

5.0.2 Team building NH | AM

Every Friday, provided the group was on schedule to reach that week’s sprint goal, one hour was
dedicated to team building activities. A large variety of activities were covered throughout the
project period, determined each week by the designated meeting leader, and included playing
games, singing karaoke, and enjoying ice cream together. The inclusion of these social activities
served as an incentive for the group to work hard throughout the week, ensuring that all sprint
objectives were accomplished. It allowed the group to have a dedicated time for team bonding

and facilitated the development of positive relationships within the group.

5.0.3 Seating arrangement AM | NH

The Hivemind workspace had three desks. All tables were set against the walls to maximize
space. In addition to the desks, the room included a book cabinet for the green binders and two
armchairs for supervisors. This layout made it easy for the group to communicate, the room
felt less crowded, it was possible to relax in the armchairs during breaks, and the supervisors
also had dedicated seating during meetings(fig. 5). If you would like to see the development of

the seating arrangement you can see Appendix N.

N
H@

Aurora

\/ N
Ruben
Hilde Marie

==

J==R
=
N{/

,)

]]
L
|V

=

DY

Harald

L A
Nils Herman
Figure 5: Workspace layout
5.1 Supervisor communication NH | HM

There were two supervisory roles in the Hivemind, the internal and the external supervisor.
The internal supervisor’s main task was to ensure the group provided all the necessary docu-
mentation, give guidance on project methodology and when to do what, and to assist if there

were any conflicts that arose during the project. The external supervisor role entails technical

31

5. PROJECT MANAGEMENT

guidance for the project, especially in the case where a given assignment might involve very
specialized or proprietary software. The client (KDA) for this project also doubled up as one

of Hivemind’s external supervisors.

5.1.1 External supervisor (client) NH | AM

All communication and interaction with the external supervisor occurred through meetings and
email correspondence. Weekly meetings were scheduled every Friday at 13:00 in the Hivemind
workspace. In these meetings, the client was able to monitor the progress of the project, provide
guidance, and also give technical advice as the external supervisor. Risk analysis was also a
part of these meetings, which helped inform the project and product risk analysis.

These meetings were crucial in ensuring that Hivemind continued to progress in the right di-
rection, and for members to receive invaluable help in terms of techniques and new technologies

that could be utilized to solve present and future problems.

5.1.2 Internal supervisor NH | AM

Hivemind also met weekly with the internal supervisor to discuss the progress of the project.
During these meetings, the internal supervisor offered feedback and guidance. The internal
supervisor focused on the academic aspects of the project and how Hivemind could meet the
university’s requirements for a bachelor’s thesis. To aid in this work, Hivemind also submitted
regular status update documents (called follow-up documents) that described the overall status
of the project and updates from individual group members, containing work done and challenges
encountered.

In addition, the group provided its internal supervisor with a comprehensive follow-up
document that included the overall status of the project as well as individual updates from
each group member. These updates contained all accomplishments, highlighted any challenges

encountered that week, and described the strategies employed to overcome those challenges.

5.2 Project risk analysis NH | AM

Risk analysis is an essential aspect of any engineering project. Effective risk analysis can help
the project group identify potential threats and opportunities early, enabling proactive steps
to be taken to mitigate risks and minimize project disruption. The risk analysis can be found

in appendix J.

5.2.1 Definitions and risk matrix NH | AM

In this report, risk has been separated into project and product risk analysis. The project risk
refers to risk that are associated with the management and execution of the project, such as
schedule delays and team conflicts. Product risk refers to the expected risks related to using
Hivemind, and will be covered in a later section.

In order to manage risks effectively, it is crucial to have a clear understanding of the potential

risks that exist, their likelihood of occurrence(tab. 2), and their potential impact on the project

32

5. PROJECT MANAGEMENT

and the product(tab. 3).

Definition of probability

Degree of probability Frequency Interval
1 Very low Happens very rarely
2 Low Happens rarely
3 Medium Happens sometimes
4 High Happens often

Table 2: Definition of probability

Definition of degree of consequence for project

Degree of consequence Outcome
1 Insignificant Project continues as normal.
2 Small Project becomes delayed slightly, but minimal effect on end result.
3 Considerable Project becomes stagnant, measures required.
4 Serious Project stops, critical measures required.
5 Disastrous Project cancelled.

Table 3: Degree of consequence

Risk is evaluated by multiplying the probability of some event occurring and the degree of

consequences should this event occur(fig. 6).

Risk = degree of probability x degree of consequence

4 4 8 12
3 3 6 9
Degree of probability 2 2 4 6 8 10
1 1 2 3 4 5
1 2 3 4 5
Degree of consequence

Figure 6: Risk matrix

Once the risk level has been calculated, it is used to determine an appropriate mitigation
strategy. Events at a high risk level requires mitigation, either by reducing the likelihood of
the event occurring or by reducing the severity of the consequences. Risks with medium risk
level warrant ongoing monitoring and periodic reassessment, while risks with a low risk level
may be acceptable without any further action.

Risks are further divided into internal and external risks. Internal risks are risks that
come from inside the group such as a group member falling ill, while an external risks refer to
external factors such as a pandemic. Both types of risk will impact the project, but internal
risks are easier to mitigate the probability for. In the case of external risks, there is no course
of action other than attempting to anticipate and find measures to mitigate the severity of the

consequences of these events.

33

5. PROJECT MANAGEMENT

5.2.2 Continuous analysis NH | AM

Risk was continuously monitored and updated as Hivemind evolved. This work included up-
dating probabilities, degrees of consequence and mitigation, but also adding new risks.

One example of this is the updated mitigation policy for cases where multiple members fall ill
simultaneously. At one point in the project, two members participated in the first presentation
while ill. This caused the rest of the group to fall ill like dominoes in the following weeks,
causing delays in Hivemind’s progress. Consequently, a new stipulation was added to require
mask-wearing of any member who chooses to still come to the workspace while ill.

Point 18(appendix J) was also added during the project as opposed to in the initial risk
analysis, because some tasks were failed to be finished on time. This caused a week long delay
in the project. To mitigate this, a new mid-week addition of each member evaluating if they
could finish their tasks on time, and if not, ask for assistance, was implemented. This mitigation
has allowed the risk likelihood related to delays in the project to fall, because other members

were able to assist with any task that took longer than anticipated.

5.3 Website NH | AM

Implementing a website for Hivemind was one of the requirements for the bachelor’s thesis set
by the university. This website was to contain:

o detailed information about each group member
e an overview of the project

o summaries of each work week

The website is hosted on both a University of South-Eastern Norway (USN) server as well as
a private server, which operate independently to ensure availability. Both servers are connected
to the same database, ensuring consistent content across both websites.

The website employs PHP for easy access to the SQL database that serves as the repository
for all information on the site. This approach also enables securing the database username
and password from potential web-based access. To enhance the websites design and ensure it
is portable across multiple devices, including phones, tablets and PCs, the "Bootstrap" library
was used. Bootstrap offers a multitude of pre-established classes, which simplified the design
process and ensured scalability.

Hivemind maintained a separate repository for the website on AzureDevops, a tool for
software development and project management, which will be described in further detail in
section 6.2. AzureDevops allowed for dynamically updating the website each time any part of
the project was updated, which significantly simplified website updates.

Information on the website dynamically updated also included the documentation for the
Hivemind source code. Each time a feature was completed and updated in the AzureDevops

repository, the documentation on the website would also update. This arrangement provides

34

5. PROJECT MANAGEMENT

straightforward access to the various segments of code documentation and the coding standards
implemented by our group.

Updates to the website introduced new features, such as modals for each group member.
The modals operate by storing all relevant information queried from the database on the button
for each group member. Using JavaScript, the data from each button is then allocated to its
corresponding location within the modal. This functionality allows us to maintain a single
dynamic modal instead of generating a separate modal for each group member.

The website is designed to be dynamic, pulling all content directly from the database.
This approach offers significant advantages, particularly in terms of scalability and content
management. Adding new content to the website is a seamless process, as it simply involves
adding a new entry to the database. This eliminates the need for manual coding or modifying
the website structure.

The database itself is structured following the principles of normalization. By adhering to
these normalization rules, the database is optimized for storage and retrieval of information,
resulting in a well-structured and efficient system.

The website implementation is an embodiment of how Hivemind implemented smart work
methods and thorough preparatory work in order to spend the time period designated for
development work to focus purely on coding and implementation. The next few sections of
this report will focus on the technical preparatory work that built the flexible foundation for

Hivemind.

35

6. SOFTWARE DEVELOPMENT PROCESS

6 Software development process

A clearly defined software development process will help ensure the project progresses smoothly,
and that all work done is done with the common purpose of completing the intended product.
This section will outline the development process for Hivemind, including the chosen project
model and choice of design languages and methods for representing the abstract design of the
software. The technologies used that assisted in software development will also be introduced,
before outlining how verifying requirements were systematically planned to ensure the final

product delivered conformed with the client’s requests.

6.0.1 Overview of the development process AM | RS

As shown in fig. 7, the first step in developing was meeting the client and determining their
requirements for the software. Using this information as a starting point, user stories were
defined, which served as the basis for making the use case descriptions. The requirements were
made through an analysis of the use cases. When the requirements had been defined, the scope
of the Minimum Viable Product (MVP) was determined and the list of requirements cut down
to only reflect the MVP.

" Minimum viable product(MVP) ™
Client User story\ Use cases { MVP |®N Components B —
requirements \\ Implementation
\ N 7 Design "
‘ 0 L = cose Testng
\\ /Unified Modeling Language \
_
~— Y Usecase High level _—
B diagram g architecture Jj

Figure 7: The "red thread"

After establishing the definition of the MVP and its corresponding requirements, all the
project software components necessary for the MVP based on the requirements were identified.
These software components show the systems essential functionalities.

Various design approaches were considered for the Hivemind software architecture. To
evaluate the effectiveness of each model, architectural criteria were established. The layered
architecture was eventually determined as the most suitable model for Hivemind. A use case
diagram was made with an actor that interacts with the system, and the software components
were integrated into the layered architecture.

After establishing the software architecture, work on the software components was started
using an agile development approach. Each software component was coded, tested, and reviewed
before being integrated into the system. Continuous integration and deployment was used in
this process to ensure that the software components worked seamlessly together.

Throughout the coding process, regular testing was carried out to ensure that the system
met the requirements and performed as expected. The testing involved both manual and
automated tests, including functional and integration tests. Any issues or bugs discovered
during testing were promptly addressed, and the software components were retested to ensure

that they functioned as expected.

36

6. SOFTWARE DEVELOPMENT PROCESS

After the initial coding and testing phase for the MVP, additional advanced features nec-
essary for the product to fully meet the client’s requirements were added. This meant going
back to the requirements and expanding or modifying the software architecture before coding

could continue.

To implement these new features, new requirements were identified and and the necessary
software components distilled from this. Then, the current software architecture was evaluated
to determine any changes needed to accommodate the new features. Once the architecture was

updated, coding and testing resumed until the advanced features were completed.

6.1 Methodology NH | AM

There were three pillar’s to Hivemind’s software development process. The first was to use an
Agile methodology throughout the project to remain flexible, and to prevent the project from
spending too much time on aspects of the software that turned out to be fruitless. The second
was to use Unified Modeling Language (UML) to design and represent the various parts of
the software before starting any coding, ensuring that the resulting architecture was clear and
flexible. Finally, implementation of all software components followed an iterative approach,
with the simplest and most essential functionality being added and tested before creating more

advanced, but non-essential, features.
6.1.1 PrOjeCt model NH,HMM | AM,NH

Hivemind practiced an Agile method based on Scrum. Scrum is an agile framework for man-
aging and organizing projects which provides a flexible and iterative approach to software
development. The major difference between the Hivemind Agile method and Scrum was that
core roles within a Scrum framework, such as product owner and Scrum master were miss-
ing. Hivemind did, however, make use of a product backlog, organize work in sprints, establish
daily stand-up meetings and held both sprint reviews and sprint retrospectives after each ended
sprint.

Hivemind’s practiced week-long sprints. Each day was started with a stand-up meeting,
during which group members shared work done the previous day, outlined their plans for
the current day, expressed how they were feeling, and (after this was added) discussed any
difficulties faced. The segment in the stand-up where members expressed how they were feeling
that day also diverges from traditional Scrum practices, and was a deliberate addition to stand-
ups to help provide insight into each member’s well-being. At the conclusion of each sprint, a
retrospective was conducted to reflect on whether the previous week’s goals were met, identify
areas for improvement, and acknowledge which aspects of the sprint were successful. The task
board was also reviewed to decide whether any incomplete tasks were to be carried over to the

next sprint, or placed in the development backlog.

Each retrospective was followed by a sprint planning meeting to define goals and set task

for the upcoming sprint. Administrative tasks were also added to the sprint board, even though

37

6. SOFTWARE DEVELOPMENT PROCESS

this is not common, as this made it easier to visualize each member’s work load and to remember
to do these administrative tasks in addition to technical work.

The sprint task board employed the following categories:

» Sprint Backlog

o Active
e Resolved
e Dropped
e Closed

The Dropped category is not a normal addition to task boards, but was added for a visual
representation of tasks that were deemed unnecessary to complete for various reasons. The
Sprint Backlog contains new tasks that have not yet been initiated, while the Active column
houses tasks that are currently in progress, but not yet completed. The Resolved column
contained any tasks that a member had finished, but that still required verification by someone

else. Finally, the Closed column was reserved for any tasks that were completely finished.

6.1.2 Design language and software models HMM | NH

UML was used to define the Hivemind software models. This is a general-purpose design
language that can be used to create and visualize aspects of a system’s design. In Hivemind,
this was used in particular to create use case diagrams and the software architecture. The

process through which this was done will be outlined in a later section of this report.

6.1.3 Implementation of software components HMM | NH

Software components were implemented in an iterative fashion once the architecture had been
finished and interfaces determined. In general, one designated Hivemind team member was
given responsibility for each software component, though it was acceptable and encouraged for
members to work together on developing software components. This was first, to ensure that
each member had at least one technical software component they were wholly in charge of,
second, to ensure that asking another member for help did not risk the other member taking
over the technical work for this software component, and finally, in this way encourage helpful
co-operation.

All software components had their own list of necessary functionality that needed to be
implemented for Hivemind to function as required. For many software components, this meant
the functionality required to interface correctly with the rest of the software. Some software
components also had some advanced functionality that could be implemented when the basic
version of Hivemind was functional. This included dynamic height data updating for the
Height Manager and improvements to the Graphical User Interface (GUI) that enhanced user

friendliness. This demonstrates the iterative implementation of software components.

38

6. SOFTWARE DEVELOPMENT PROCESS

6.1.4 Project Timeline NH | AM

In the intitial stages of the project, a project timeline was developed that served as a flexible
framework outlining which sprints would be used for planning, preparation, coding, and work
on this final report and the thesis presentation. The timeline provided a loose guideline for
when certain aspects of Hivemind should be completed. This document was intended as a
flexible plan, which might need tuning as the project developed. This was not needed, however,
as the timeline has remained consistently accurate throughout the project. It ensured sufficient

time was given to each stage of the project. The timeline can be seen in appendix M
6.2 Technologies used

6.2.1 Programming language RS | HM

Hivemind was developed in C++ 17 with an object-oriented approach. Both the university
and the local industry focuses on C++, and as C++ allows for a focus on efficiency and
optimization on a high level, it was logical to utilize it for an algorithm-heavy software. C++
has a lot of features, and can be programmed in many styles. During development, the usage of
the singleton pattern[82] proved useful for components that needed to have a global state. A set
of coding standards were therefore set in place, to make sure the codebase remained consistent.
The coding standards were made part of the code documentation, and can be viewed both

online, and in appendix O.

6.2.2 Development/Target platform RS | HM

Ubuntu Linux was chosen as the Hivemind development platform. This is also the platform
targeted in terms of release. This is because the Hivemind software will be intended for use
with drones through the Robot Operating System (ROS) libraries and tools, and Ubuntu Linux
is the target platform for these.

In order to ensure a uniform development platform for all team members, a virtual machine
was created with all the packages and tools needed to develop Hivemind pre-installed. The
virtual machine was then installed on each team member’s computer, allowing each member
to customize their platforms as they saw fit. Setting things up this way ensured each team
member develop Hivemind using the same versions of dependencies.

For easier maintainability and flexibility, using a technology like Vagrant should be con-
sidered in the future. Vagrant allows us to configure a virtual machine and its dependencies
and setup using one or several configuration files. This would be committed to version control,
and other team members could retrieve updated dependencies easily by updating the virtual

machine through Vagrant.

39

6. SOFTWARE DEVELOPMENT PROCESS

6.2.3 Azure Devops RS | HM

The client, KDA, provided Hivemind with access to Azure Devops, a platform for handling
software development throughout the whole life-cycle. Azure Devops features tasks manage-
ment in sprint boards and a common platform for handling version control with git, automated
Continuous integration and Continuous delivery/deployment tasks with Azure Pipelines, as

well as a Wiki for Hivemind to keep documents, notes and personal diaries centralized.

6.2.4 Google Drive NH | AM

Hivemind utilized Google Drive to store all its project documents. The Drive was organized into
distinct folders for technical work, administrative work, presentations, reports and personal files.

This clear folder structure enabled easy navigation and swift access to the required resources.

6.2.5 Version control RS | HM

For version control of Hivemind’s codebase, git was used. There are several great Version
Control System (VCS) available, but the rationale for using git is that it is widely used and
understood in today’s software industry. It is also the only VCS the entire team had experience
with. Although git is a distributed VCS, Hivemind worked with a central remote repository
hosted in Azure Devops. This makes it much easier to handle merging of several branches in

one place, minimizing the amount of conflicts.

6.2.6 Doxygen RS | HM

Providing well-documented code was considered vital to Hivemind from the start of the project.
As such, the use of Doxygen was deployed to handle code documentation. Doxygen enabled the
direct writing of code documentation into source code through code comments. This simplifies
the process of keeping code documentation synchronized with updates to the codebase. The
Doxygen comments are compiled by Doxygen to HTML, creating an interactive website for the
code documentation with separate pages for each class and file. A requirement was set for the
Hivemind team to document each class thoroughly to make it as easy as possible for future

developers to dive into the codebase.

6.2.7 Continous integration & continuous deployment RS | HM

In modern development there is a large focus on Continuous integration & Continuous deliv-
ery/deployment (CI/CD)[83]. Continuous integration relates to continuously building, testing
and merging features during development to keep the central repository up to date and sta-
ble. Continuous delivery/deployment both relate to the deployment of the integrated project
in production. They differ in that continuous deployment is generally an automated process,

whereas continuous delivery required more manual work[84].

In terms of CI, strict rules were followed in terms of which branches to use for development.

Hivemind operated with two persistent branches: The Main branch, and the Development

40

6. SOFTWARE DEVELOPMENT PROCESS

branch. The main branch is never touched directly, but is rather merged with the development
branch when the current state of the development branch has been thoroughly tested and is
considered stable. The development branch is also not touched directly. Instead, when a team
member is developing a specific feature, they will branch out from the development branch in
to a feature branch. They can work on this feature branch until it is considered at least partially
implemented. A pull request is then made to merge it into the development branch. A reviewer
reviews the pull request, and upon approval the merge is completed and any merge conflicts
handled. A similar process is followed for implementing updates to existing features as well as

bug-fixes. The branching process can be seen in fig. 8.

Merge when Pull rzquest
stable
Merge

A A

Commit

m
Main I Development }—»ﬁ

Figure 8: Git branching and merging

Pull request
&
Merge

Following these strict rules minimizes the amount of merge conflicts on a local level. Opti-
mally, any merge conflicts will be isolated in Azure meaning they will only need to be handled
once by the appropriate reviewer.

In terms of continuous deployment, an Azure Pipeline was created to automatically build
and publish code documentation online. It is set up so that anytime anytime the main branch
of Hivemind is updated, it uses Doxygen to compile the code documentation and publish it at at
https://itfag.usn.no/grupper/D01-23 /docs. The currently most up-to-date code documentation
has also been attached as appendix O. The automatic generation of code documentation, as
well as the automatic publishing, ensures that the publicly available code documentation is

always up to date with the stable release of Hivemind.

41

https://itfag.usn.no/grupper/D01-23/docs

6. SOFTWARE DEVELOPMENT PROCESS

6.3 Verification HM | HMM

To ensure that the system operates as intended, it is important to continuously verify that the
software can meet given requirements during the development process. Requirements could
include the response time of a function to be low, or precision of map data down to a certain

amount of meters. These requirements must be possible to verify.

6.3.1 Methods for testing HM | HMM

When developing a system or deriving requirements for software, any requirements set must
also be verifiable. There are 4 main ways to verify a system[85]:

Inspection is examining the system and verifying that functionality is present. In a software
system inspection can be performed by looking at the code and verifying that the software has
the necessary inputs and functions that are required for the system to work.

Demonstration is verifying the system through manipulation. This is done by verifying that
the expected results are acquired when the system is used as intended. In software, demon-
stration can be done by clicking on a button and checking if the system responds according to
expectations.

Testing is verifying that the system operates as intended through using a predefined set of
data and inputs, as well as knowing the expected output from the system when using those
data and inputs. This type of verification is possible to automate.

Analysis is the final method used to verify a system. This is done by creating models of
the system, using equipment to test parts of the system if possible or calculations, if there is a

complex function or algorithm in the system.

6.3.2 Unit testing HM | HMM

In testing Hivemind, the principle of unit testing was explored, which entails independent
verification of the different components of the software. A major benefit of following unit
testing is that this simplifies automated testing through the use of for example GoogleTest
and Azure Pipelines. Although a unit test is usually easy to automate, this does not mean all
unit tests need to be automated. The project also utilized unit testing for the GUI, through
interaction of individual components to verify that these operated as intended. Making use of
unit testing allowed the project to have an easier time debugging. When testing only a small
part of the software, it is easy to identify where bugs exist than if the entire software was tested

at the same time.[86]

42

6. SOFTWARE DEVELOPMENT PROCESS

6.3.3 Documentation of verification HM | HMM

To document the verification process, a table that contains all the necessary information was
used(tab. 4).

Approved by
Done by Name of the person who performed the test
Methods List of the method that were used to perform the test

Prerequisites What has to be in place to be able to perform the test

List of any example data that were used to perform the test

if you used any example data

Description of the test as well as a step by step guide on how you
performed the test

Success criteria | What are the criteria for the test to be successful

If the test fails you need to provide a description of the error so that
other people can reproduce the same error at a later date

Data

Description

Failed test

Table 4: Template for verification

A solid foundation in terms of software development process enables the development of a
stable and flexible final product. The achievement of this can be done with the help of good
tools. The next section of this report will detail the development of the software model, the

final crucial step to any software development process before any coding can begin.

43

7. PROPOSING A CONCEPTUAL SOFTWARE MODEL

7 Proposing a conceptual software model

This section handles how Hivemind’s stable conceptual software model was derived. It first
describes the use cases that were developed from the requirements of the client. Then, a generic
architecture is presented which encapsulates the common functions of most route planning
software. This generic architecture is then decomposed into software components and their
interfaces, which helps guide the code implementation of Hivemind. Later in this report, the
term "agent" will be used to refer to a specific instance of an Unmanned Aerial Vehicle within

the software.

7.1 Use cases AM | RS

Use case diagrams are a helpful tool in software development, as they allow stakeholders to
visualize and understand how the system will be used in the real world. By depicting the
actors and their interactions with the system, use case diagrams provide a high-level overview
of the system’s functionality and role in supporting the user’s goals. Overall, use case diagrams
are an essential part of the requirements gathering and design process, as they ensure that the
system meets the needs of it’s users.

Using the requirements, the use cases for Hivemind is:

o Design settings; processing the necessary data from the user for a scenario.

» Generate scenario; generating a scenario at a specific moment where decisions are made

on how agent should move.

o Load scenario; loading an existing scenario the user has previously saved.

Using these use cases, a use case diagram was created, depicted in fig. 9. This use case
diagram is very generic by design as it makes it possible to use it for route planning for any
type of agent, not only for UAVs. It illustrates the main functionalities of software for route
planning for UAVs.

The use case diagram does not provide explicit information about the specific data involved
in each use case, allowing for potential data sharing among use cases if needed. The content of
the use cases reveals what is needed to develop software applications and how data is accessed
and updated.

By analyzing the content of the use cases, one can observe the composition between them.
Generate scenario is the most complex use case that performs the most significant computations,
while Load Scenario depends on the reliability of the generated Scenario. Design Settings relies
on gathering data through human interaction, although the model does not explicitly define
the interactions involved. The value of this use case diagram is in the separation of these three
significantly different functionalities, and the software should not mix them together. The
separation between the use cases is based on important principles in software design. Each use

case has different access to data and performs distinct tasks related to data entry and updating.

44

7. PROPOSING A CONCEPTUAL SOFTWARE MODEL

Design
settings

Q Generate

scenario

Drone operator
P Load

scenario

Figure 9: Use case diagram.

This is important to ensure proper authentication, data access, and role distribution within the

software application.

7.2 Generic software architectural model AM | RS

The architecture utilized for Hivemind is a three-layered software architecture. A layered
software architecture is an architecture that organizes a system into hierarchical layers, where
each layer represents a specific responsibility and offers a particular functionality. The three
layers of the architecture of Hivemind are:

« User interface layer (top layer)
« Computational layer (middle layer)
« Data layer (bottom layer)

The user interface layer handles the user interface and receives user input. The user interface
layer in Hivemind is designed to present the functionality of the system to the user in a clear
and intuitive way. It helps to separate the presentation logic from the computational logic,
which can improve the maintainability and flexibility of the system.

The computational layer is the middle layer in the three layer architecture. It is responsible
for processing data received from the user interface layer and the data layer. This layer contains
the core logic and algorithms that enable Hivemind to perform its functionality. It is important
to note that the boxes within the computational layer should not communicate with each other
directly. By avoiding direct communication between boxes, Hivemind can be more easily scaled,
adapted, and maintained over time.

The data layer is responsible for managing the storage and retrieval of data used by the
Hivemind system. This includes the handling of data from various sources such as user input,

external sources, and data generated by the system itself.

45

7. PROPOSING A CONCEPTUAL SOFTWARE MODEL

This type of layered architecture activates the main criteria for an architecture for Hive-
mind. The criteria for an appropriate architectural pattern for this project are, therefore (in

no particular order):

Scalability

Clarity

Adaptability

Stability

Firstly, scalability. By utilizing a layered architecture, specific layers could be scaled indepen-
dently of one another, enabling the architecture to handle increasing amounts of traic or data
without impacting the performance of other layers [87]. By organizing the application into
distinct layers, each with a well-defined responsibility and interaction with other layers, the
architecture could be easily understood and maintained by both current and future developers,
making the architecture clear.

By isolating errors or failures to specific layers, alternative implementations could be swapped
in without impacting the remainder of the application, providing flexibility in responding to
changing requirements and technologies. For example, there is a clear separation between the
User Interface (UI), computational layer, and data layer. In that case, updating or changing
the UI layer without modifying the other layers is possible.

This adaptability makes responding to changing requirements or technologies easier without
redesigning the entire application.

To ensure stability, retrieving data from an existing database when the project expands
without modifying it is possible. This made it possible to adapt to changes in the database
schema and recover from errors or failures without affecting the rest of the architecture.

A layered architecture is one that meets the criteria, scalability, clarity, adaptability, and
stability we have set for the architecture. The architecture enabled the development of a flexible,
scalable, and maintainable architecture that could adapt to changing requirements and support
the project’s long-term goals.

One of the primary benefits of this type of architecture is that it promotes a modular and
scalable system design. Having a layered architecture enables different layers to be developed
and tested independently. This means that changes made to one layer will not affect the others,
reducing the risks associated with software development. For example, if a developer needs to
make changes to the user interface, they can do so without worrying about disrupting the

underlying code that drives the application’s functionality.

46

7. PROPOSING A CONCEPTUAL SOFTWARE MODEL

7.2.1 Software architecture of Hivemind AM | RS

Fig. 10 is a generic model of the software architecture to Hivemind. The components in this

architecture are illustrated as coloured boxes and cylinders into appropriate layers.

User Interface Layer
User Interface

Computational layer

Load

Design Generate
Settings scenario

scenario

N

Online Current
Height Height
Data data

Online
Keyframes| BSEIC]
map

Current
Scenario

Current
map

Entries Archive

~_ _—

Figure 10: Logical architecture.

The software abstractions, presented as software components in fig. 10 are derived from
the use case model in fig. 9 and user requirements defined in section 3.2 of this project. The
functionality defined in the use case model is visible in fig. 10 through the imaginative vertical
lines which separate Design Settings (amber), Generate Scenario (green) and Load scenario
(blue).

The choice of data sources in the data layer and their usage in the computational layer
indicate where data is being updated, read/retrieved, or entered. The arrows between com-
putational and data components illustrate how the data is manipulated and which computer
programs are responsible for it. Two-way arrows indicate that the same computing program

both updates and retrieves the data.

7.3 Decomposing the software architecture AM | RS

The design architecture focuses on the physical implementation of the system and shows the
technical details of how the system is built. It provides guidelines for developers on how to
implement the system in a way that is consistent. This helps to ensure that the system is built
in a way that is scalable, clear, adaptable and stable.

In addition, the design architecture enables developers to work more efficiently by breaking
down the system into smaller software component and defining their interactions and interfaces.

This promotes modularity and reusability, which will save time and effort in the development

47

7. PROPOSING A CONCEPTUAL SOFTWARE MODEL

process.

The design architecture is developed after the generic architecture in fig. 10 has been
created, using the software component and interactions defined in the logical architecture. It
provides a more detailed view of the system’s physical implementation, specifying technical
details. It enables the system to be broken down into smaller software component, which can
be developed and tested independently.

In the design architecture, the software component are placed in a way that there is no
direct communication between software component that belong to different use cases within the
computational layer. This is important because it helps to ensure that the software component
are loosely coupled, and changes to one component do not affect the others in other use cases. By
making the software component independent, it becomes easy to locate the software component
in the architecture within the code.

There are multiple solutions in this area that can address the same problem. Fig. 11
represents the outcome of several iterations exploring different software models. The generic
software architecture model was selected as the most suitable for the project and the design
architecture was developed from this. You can find the various iterations of the software

architecture in Appendix H.

User Interface

Design settings Generate scenario .
Load Scenario

Archive
scenario

Map
management

Compile
scenario

Keyframe
management

Load scenario

Coordinate

Height
converter

management

Routemaker

Current
Height
data

Online

Current
Scenario

Satelite
map

<y
Current
map

Figure 11: Design architecture.

7.3.1 Software component diagram & interfaces NH | AM

Hivemind can be broken down into various software component that work together to provide
the desired functionality. Breaking down these software component and displaying their re-

spective inputs and outputs can simplify the coding process and enhance the comprehensibility

48

7. PROPOSING A CONCEPTUAL SOFTWARE MODEL

of the software. Software components were distilled from the requirements. The information
presented in tab. 5 indicates which software component corresponds to the requirements. This
highlights that every requirement is addressed by at least one component and that each compo-
nent is designed to fulfill one or more requirements. These software components have changed

names during the course of the project, but their functionality has remained largely the same.

User Interface R.1.1,R.1.2,R.6.1,R.6.5, R.6.8, R.6.9, R.6.11, R.6.12,R.11.3,R.11.4,
R.11.5,R.11.7,R.3.3, R.6.16

Keyframe Manager R.6.9,R.11.6,R.11.8, R.6.10

Height manager R.3.5,R.3.3,R.3.4,R.6.8

Routemaker R.11.9,R.11.10,R.11.11, R.6.8, R.6.14

Compile scenario R.6.14, R.6.15, R.11.2

Save scenario R.6.2

Map manager R.2.1, R.6.8

Coordinate converter R.8.1

Load scenario R.6.5, R.6.6

Table 5: Software component

Integration Definition for Process Modelling (IDEF0) was used to represent the software
components and their interfaces, as this type of representation allows for a hierarchical decom-
position of a system. This allows it represent a complex system in an organized and structured
way[88]. These diagrams aided in the comprehensive understanding of the inputs, outputs, and
destinations associated with each component. Moreover, they have allowed for the creation
of an expanded hierarchy, accommodating varying levels of detail. This hierarchical approach
proves particularly advantageous in scenarios where the software expands beyond the MVP
stage and additional software component are introduced.

IDEFO0 works by representing each component as a box and defining its inputs, outputs,
controls and mechanisms (fig. 12). It is possible to zoom in on one software component and
view a software component by its subcomponents, which further enhances the detail by which

software components can be illustrated.

Control (inputs that does not get changed)

AInput——p
Make Output
example box J

y

-Input——p

Mechanicsm (resources)

Figure 12: IDEF0: Example

49

7. PROPOSING A CONCEPTUAL SOFTWARE MODEL

This is an example of the IDEF0 diagram for the generate scenario component (fig. 13).
This diagram shows the various software subcomponents within the "generate scenario" software

component and demonstrates how they interface with each other.

[Scenario. i cenario
Compile |[Keyframes———
Keyframes> scenario size
rigin
/
Coordinate Converted coordinates
converter

A,

Routes
-‘ Routemaker

2 A

Satellite map Map Map

Current map manager
A

Height
Height data manager

Height data

Save File
File path scenario

Al

Figure 13: IDEFO0: Generate scenario

After a stable software architecture had been created and decomposed into well-defined soft-
ware components, the actual creation of the Hivemind software could commence. A good deal
of time was spent on the architecture, to make sure it fulfilled the requirements of scalability,
clarity, adaptability and stability. The next section will illustrate how this software model was

implemented in various software components to create Hivemind.

50

8. IMPLEMENTATION

8 Implementation

After creating the software model and defining components and their interfaces, the physical
implementation of Hivemind could commence. Note while reading that Hivemind’s team con-
tinued to operate following an Agile methodology - although the software model acted as a
launching pad for further development activities, the realities of implementing and integrating
the software often lead to the discovery of new opportunities or previously-unknown limita-
tions. Accordingly, as the actual implementation of Hivemind continued and diverged from the
original software model, the software model itself was also updated to reflect the new changes.
As a reminder, the evolution of the software architecture can be seen in appendix H.

This section will present the concrete implementation of each component of Hivemind. Most
of these are directly translated from the diagram in fig. 11, with the exception of the Serializer.
This component encapsulates both the Archive and Load scenario functionalities from the
architecture. A brief introduction of the libraries used to realize the software architecture is

also presented.
8.1 Technology-specific software components

8.1.1 Geospatial Data Abstraction Library (GDAL) HMM | NH

The GDAL (Geospatial Data Abstraction Library) is free open source software to use with
geospatial data formats, including GeoTTFFs [89]. In this project, we make use of GDAL to
extract height data over an area too large for individual geographic point Application Program-
ming Interface (API) requests. This height data is necessary for the proper and safe functioning
of Hivemind’s route planning function. To understand the component that extracts this height
data, it is therefore important to understand what specifically these GDAL functions do.
However, first, it is necessary to understand the GeoTIFF format. This format is an extension
of the TIFF format [90], which is a type of layered image where each layer contains different
kind of information. In the case of GeoTIFFs, this contains a large number of geographic image
data used for spatial referencing, including image data, height data and much more. Numerical
tags are used to indicate what information each GeoTIFF contains.

The data laid on top of each other in structures called raster bands [91]. For a GeoTIFF
containing digital elevation data, the height data we are interested in is according to the Geo-
TIFF convention found in band 1. The current maintainers of the GeoTIFF format is the Open
Geospatial Consortium [92].

In the case of the height data accessed for Hivemind, each GeoTIFF is organized into cells
of a given pixel size. The GeoTIFF sample used by default in Hivemind is downloaded from
Kartverket [93], where it is possible to choose the resolution (i.e. pixel dimensions) of a dataset
before downloading. For ease of calculation and accuracy, the dataset has 1m x 1m resolution.

The dataset is then composed of rows and columns of these 1m x 1m cells, called a grid. The
dataset also uses Universal Transverse Mercator (UTM) 33N coordinates (EPSG:25833), which

o1

8. IMPLEMENTATION

is a projection that covers the entirety of Norway. These coordinates are already in meters,
which means that each row/column of a dataset will cover each easting and northing coordinate
of a GeoTIFF subset. Finally, each cell (whose geographic UTM coordinate is defined by the
easting and northing given by the intersection of a row and column) will contain one height

value. This is visualised in figure 14.

Northing
19500

—

Height
158.2m

Easting
650000

Figure 14: Height data is organized in a two-dimensional grid, where each cell has one height
value. The east/west coordinates are defined by the two dimensions in the grid.

When opening a GeoTIFF using GDAL, the first function that must be run is GDALAII-
Register(). Each file format GDAL is able to operate on has its own driver which contains
information and specifications about this format [94]. Running this method therefore enables
the rest of the code to properly read and operate on the input file. After opening the dataset
containing height data, the next thing that needs to be done is to retrieve the part of the data
that contains height data. In the default dataset (and in general), this is found on raster band
1. The function to retrieve this is GetRasterBand(1).

After preparing the height data, GetGeoTransform() is run on the dataset to transform
it from the row/column referenced system wherein the height is located to using geographic

coordinates. The 6 coefficients of the resulting geotransform is as follows [95]:
e [0]: x-coordinate of the upper-left corner of the upper-left pixel.
o [1]: w-e pixel resolution / pixel width.
« [2]: row rotation (typically zero).

92

8. IMPLEMENTATION

e [3]: y-coordinate of the upper-left corner of the upper-left pixel.
o [4]: column rotation (typically zero).

» [5]: n-s pixel resolution / pixel height (negative value for a north-up image).

Finally, the RasterIO(flag to use read or write operations, x offset, y offset, x size, y size,
output data buffer, size of data buffer in x direction, size of data buffer in y direction, output
data type, spacing between data, extra arguments) function can be used to iterate through
the data from a chosen offset to extract the individual heights. From the function call, it is

apparent that a lot of customization is possible to change which data is read.

8.1.2 Geographiclib AM | RS
GeographicLib is an open-source C++ library developed and maintained by Charles F. F.

Karney that provides the functionality to calculate the exact geographical coordinate, distances,
and directions between points on the earth’s surface. The library supports several geodetic
models i.e WGS84[96]. It also provides support for coordinate systems such as UTM and
MGRS.

Conversion error: Every time a coordinate is converted from one coordinate system to
another, there will be a certain error, especially if the reference for the coordinate systems is
different. For Hivemind, in order to have as few errors as possible, Geographiclib is used to con-
vert coordinates. Karney has shown that his method of converting between coordinate systems

results in negligible error (approximately 5nm within 3900km of the central meridian)[97].

GeographicLib::LocalCartesian Class Reference: The class LocalCartesian converts ge-
ographical coordinates to a local cartesian coordinate. The constructor to the class takes in
a geographical coordinate that is the reference point to the local cartesian coordinate system
when it converts, meaning the specified geographical coordinate is used as the Cartesian space’s

origin. The Reset method resets the origin to a new geographical coordinate.

void GeographicLib::LocalCartesian::Reset(double latO, double lon0,
double hO = 0)

To convert from a geographical coordinate to a cartesian coordinate, the Forward method
is used. This takes in a geographical coordinate and returns a coordinate in Cartesian space

relative to the origin.

void GeographicLib::LocalCartesian::Forward(double lat, double lon, double h,
double & x, double & y, double & z)

To convert from a cartesian coordinate to a geographical coordinate, the method Reverse
is used. This takes in a cartesian coordinate and returns the corresponding geographical coor-

dinate.

void GeographicLib::LocalCartesian: :Reverse(double x, double y, double z,
double & lat, double & lon, double & h)

33

1

8. IMPLEMENTATION

GeographicLib::UTMUPS Class Reference: The class UTMUPS converts between ge-
ographical coordinates and UTM coordinates. The class’ constructor takes in a geographical
coordinate and defines the zone for the UTM coordinate. However, in some cases, such as when
working in a specific UTM zone, it may be necessary to specify the UTM zone manually. This
is particularly relevant in cases where the default UTM zone does not correspond to the actual
area being worked on, as in the case of working in UTM 33N, while the default is UTM 32N.
The method Reverse converts from UTM coordinates to geographical coordinates by taking
a UTM coordinate and giving the values to lat and lon parameters. When the specified UTM
coordinate is at the north side of the equator, northp is true; when the UTM coordinate is at

the south side of the equator, northp is false.

void GeographicLib: :UTMUPS: :Reverse(int zone, bool northp,
double x, double y, double & lat, double & lon,
double & gamma, double & k)

The method Forward converts from geographical to UTM coordinates by taking a geograph-

ical coordinate and giving the value to zone, northp, and .

static void GeographicLib::UTMUPS: :Forward(double lat, double lon,
int & zone, bool & northp,
double & x, double & y,

int setzone = -1)

8.1.3 Qt RS | HM

Qt is a cross-platform, multi-language set of libraries and tools for creating Graphical User
Interfaces (GUI) and applications. In addition to tools for building graphical user interfaces,
Qt provides networking functionality, simple multi-threading and Inter-process communication
(IPC) interfaces and more. At the time of writing, the latest major version of Qt is Qt6, and
this is the version used in Hivemind. Qt was chosen for its GUI functionality, but some of it’s
networking tools were also found to be useful for some of the components.

There are several ways of building a GUI with Qt, such as interactively designing it us-
ing QDesigner and automatically generating the code. The method employed in Hivemind,
however, is manually creating the GUI programmatically directly in our codebase. Although
this method is a more tedious than using QDesigner, it provides greater control in structuring
the code. QDesigner also tends to create more bloated code than necessary, so manual coding
removes some overhead.

Qt’s GUIs are generally structured as a tree of widgets, with a root widget on top rep-
resenting the window. A widget may be anything from a container, a button or an image.
A widget has a variable amount of child widgets which again may contain even more widgets.
This tree-like datastructure makes for easy creation of new, reusable widgets that can be moved

and positioned as we want.

o4

8. IMPLEMENTATION

Qt provides a lot of pre-made widgets out of the box, such as push buttons, text boxes and
dialog boxes. All widgets are classes inheriting from @ Widget or a sub-class of Q Widget. This
means that creating custom widgets is as simple as inheriting from @ Widget or a sub-class of

it ourselves, and overriding any methods we need, such as rendering and event methods.

Qt provides a simple way of connecting functionality to triggers such as a click on a button,
or an updated combo-box. This works by defining so-called signals, which are emitted from
widgets, to slots, which are methods defined in other widgets. This means that opening a dialog
box when a user clicks on a button is as simple as connecting the button’s clicked signal, with

the dialog box’s open slot.

8.1.4 GoogleTest HM | HMM

GoogleTest is a framework for testing in C++ code. It makes testing easier to perform and
debug by giving the tester as much feedback as possible when a test fails. This is possible
because testing is set to run on different objects, ensuring that each test can be run every time
and not be dependent on other tests being successful. This means that even if a test fails,

GoogleTest will still run all the other tests instead of stopping at the test which failed.[98]

8.1.5 Bootstrap NH | AM

Bootstrap is a free and open-source framework used in web development. It provides ready-to-
use components, CSS and HTML templates, JavaScript plugins, and other tools that simplify
the web development process [99]. A key feature of Bootstrap is its responsive grid system,
which ensures proper layout on various screen sizes. It also offers compatibility with modern

web browsers.

8.1.6 Additional Explored Libraries AM | RS

Additionaly, a number of other libraries were explored that ultimately remained unused in
Hivemind. Some of these libraries were found unsuitable for Hivemind, while others had limited

resources or outdated content.

QGIS is a free and open-source software for Geographical Information Science (GIS) [100]. It
is a software used to visualize geographic information in an intuitive and understandable way:.
It has many different tools and functions that can be used to make customized maps, analyze
data, and create visualizations and presentations.

To display a map in QGIS it is possible to use the Web Map Service (WMS). By using the
URL for the WMS service form Geonorge it is possible to generate a map and it will be shown
in the QGIS GUIL. QGIS API allows integration of the software with other applications and
user interfaces, enabling the creation of custom GUIs and tools tailored to specific needs[101].
This feature was relevant for Hivemind, as Hivemind required a customized interface to display
the map and route planning tools. QGIS was discarded as an option for the dynamic map
visualisation, because it may be too complex to use the software for a limited purpose within

the available time. QGIS is a large and comprehensive software that may take time to learn

95

8. IMPLEMENTATION

and customize for specific needs. For a smaller feature, it may be more appropriate to choose

a more specialized software or develop a smaller customized solution.

Robot Operating System (ROS) is an open-source framework for building robotic appli-
cations [102]. It provides a collection of software libraries and tools that enable developers to
create robotic systems. Robot Operating System is designed to be modular, and it provides a
messaging system for communication between different parts of a robotic system and built-in
tools for visualization. ROS has support for multiple programming languages like Python and
C++. Although Hivemind will most likely make use of this once its functionality is extended
to include real-time communications with UAVs, this was not within the scope for this project.
The library was nevertheless explored so the basic components of Hivemind could be designed

with future use of ROS in mind.

ROS Visualization (Rviz) is a 3D visualization tool that is part of the ROS software[103]
suite. It allows users to display and interact with various data types in a virtual environment,
including point clouds, maps, and sensor data. Rviz provides visualization options, including

3D models, grid maps, and camera images.

Librviz is a library that provides access to the functionality of the Rviz visualization tool
within a user’s own application. By linking to the librviz library, developers can incorporate
the rich 3D visualization capabilities of Rviz into their own GUI. The use of librviz has the
potential to greatly enhance the capabilities of custom robot control and monitoring systems

by leveraging the powerful visualization features of Rviz.

Point Cloud Libraries (PCL) is an open-source library for working with 3D point cloud
data[104]. This is a library that can convert the height data from the height manager to a point
cloud. Issues were encountered linking it with PCL as it depends on Qt5[105]. Hivemind itself
depends on Qt6, so as a result several linking collisions occurred when attempting to link with
PCL.

To address this issue, the compilation of PCL from source was attempted. Upon observing
the source code, it was discovered that PCL has some compile flags that can be set to link with
Qt6, rather than Qt5. However, even when setting these flags, Hivemind failed to properly link
PCL with Qt6.

8.2 Coordinate Converter AM | RS

A coordinate converter is an essential component in any system dealing with different coordinate
systems. Hivemind uses a unified cartesian coordinate system to represent the physical space
in which the agents operate. However, the input data comes in various coordinate systems,
such as geographical coordinates and UTM coordinates. Therefore, a coordinate converter is

necessary to convert these different types of coordinates into a unified system that the rest of

56

8. IMPLEMENTATION

the system can use. This ensures consistency and accuracy in the spatial representation of the
environment and the agents’ movements.

The coordinate converter in Hivemind is implemented as a software component that per-
forms specific computations necessary for the system’s overall functionality. The coordinate
converter is designed as a singleton object, meaning it is only instantiated once and can be
accessed globally in other parts of the code.

The coordinate converter in Hivemind converts various types of coordinates into a unified
Cartesian coordinate system used by the system using GeographicLib. The coordinate converter
is a versatile tool that can perform several types of conversions between different coordinate
systems. It can convert from geographical coordinates (longitude and latitude) to the local
Cartesian coordinate system used by Hivemind, as well as from UTM coordinates to the same
local Cartesian system. Additionally, it can perform conversions from UTM to geographical
coordinates and from geographical coordinates to UTM. It also maintains the context of the
conversions and utilizes the WGS84 geodetic model. One additional feature of the coordinate
converter is its ability to perform conversions between symmetric and asymmetric cartesian

coordinate systems.

8.2.1 Symmetric and Asymmetric converting AM | RS

One feature of the coordinate converter is its ability to perform conversions between symmetric
and asymmetric cartesian coordinate systems. Geographiclib makes a symmetric Cartesian
system. Every time Hivemind starts up, the program starts with a map of a size of 3x3km.
This is the size of the coordinate system. To convert a coordinate from a symmetric system to
an asymmetric system, the converter uses this calculation:

AsymmetricX = symmetricX + % (1)

e &)

This calculation moves the origin from the middle of the Cartesian system to the upper left

AsymmetricY = —symmetricY +

corner for the Cartesian system.
To convert a coordinate from an asymmetric system to a symmetric system, the converter

uses this calculation:

SymmetricX = AsymmetricX% (3)
: . size
SymmetricY = AsymmetricY + - (4)

Example: Fig. 15 is a symmetric coordinate system with a size of 120. It has a point at

(—40,40). To convert this point to an asymmetric coordinate system, the following calculation

is done: _ 19
AsymmetricX = symmetricX + % =15+ - = 75 (5)
i 120
AsymmetricY = —symmetricY + % = —(—40) + - = 100 (6)

o7

8. IMPLEMENTATION

T
60 /\y - - - - - >
20 40 60 80 100 1
40 | 20 |
20 | 40 |
< ‘ ‘ ‘ L
—60 —40 —20 20 40 60 00|
—20 | 30 |
(15, —40) (75,100)
—40f @ 100 | e
Y
—60 7 120YY
(a) Symmetric cartesian coordinate system (b) Asymmetric cartesian coordinate system
Figure 15: cartesian coordinate systems
8.3 Height Management
8.3.1 Preliminary work HMM | NH

When making a route planning software for unmanned aerial vehicles, the route making algo-
rithm will need to take into account the height at each coordinate it considers passing through.
In order to create routes wherein the drones will not collide with buildings, it is therefore crucial
that the route planner can access the height data of all coordinates visited. The HeightMap
class fulfills this purpose through the GetVertex function. An earlier component that fulfilled
this function was the HeightData class, which could be used to send individual Get request
over the network to an online API supplied by Kartverket [106] . For a small algorithm that
only has to query a handful of points, this would have been a simple and elegant solution -
requesting one point might take around 0.35s, based on informal tests of the API, see fig. 16.
It was quickly discovered, however, that this might not be sufficient in implementing more
advanced features such as route planning for multiple drones, 3D visualization and longer
routes. To illustrate this, let us consider 3D visualization. To construct a height map, the
system must gather the heights of all points within a certain area. For the minimum viable
product, this is 500 x 500 meters (250 000 points, with a resolution of 1 meters). Simply
populating this small height map would require approximately 24.5 hours (See eq. 7), based on
the time taken to perform one request seen in fig. 16.

0.35s * 250000points ~ 24.5hours (7)

60 * 60
For a slower HTTP request speed of 0.5 seconds or even 1 seconds, which could be more
realistic during in-field operations of the route planning software, this population would take

somewhere between 35 and 70 hours. The API does support querying 50 points at a time, but

28

8. IMPLEMENTATION

Time Source Destination Proto Length Info
10 2023-04-17 [(B:16:32 601589 10.8.9.6 148.122.164.253 DNS 74 Standard query @xa72f A ws.geonorge.no
11 2823-84-17 20:10:32.691675 10.8.8.6 148.122.164.253 DNS 74 Standard query @xf718 AAAA ws.geonorge.no
12 2023-84-17 20:19:32.691748 10.0.0.6 148.122.164.253 DNS 74 standard query @x7aad HTTPS ws.geonorge.no
13 2023-84-17 20:18:32.694368 148.122.164.2.. 18.8.8.6 DNS 136 Standard query response @xf71@ AAAA ws.geonorge.no S0A nsl.statkart.no
14 2023-64-17 20:18:32.695256 148.122.164.2.. 16.8.8.6 DNS 9@ Standard query response @xa72f A ws.geonorge.noc A 159.162.23.38
15 2823-84-17 20:10:32.695383 148.122.164.2.. 19.8.8.6 DNS 136 Standard query respeonse @x7aa8 HTTPS ws.geonorge.noc S0A nsl.statkart.no
16 2823-84-17 28:18:32.695527 18.8.8.6 159.162.23.38 TCP B6 63252 + 443 [SYN] Seq=8 Win=64248 Len=B MS5=1468 WS=256 SACK_PERM
17 2023-84-17 20:18:32.699878 159.162.23.38 18.08.8.6 TCP 66 443 » 63252 [SYN, ACK] Seq=8 Ack=1 Win=29200 Len=@ MS55-1468 SACK PERM WS=128
18 20823-84-17 206:18:32.699896 10.0.0.6 159.162.23.38 TCP 54 63252 » 443 [ACK] Seq=1 Ack=1 Win=262656 Len=@
19 2023-84-17 20:19:32.699996 10.0.0.6 159.162.23.38 TLS.. 571 Client Hello
28 2023-84-17 20:18:32.704201 159.162.23.38 18.8.8.6 TCP 68 443 - B3252 [ACK] Seq=1 Ack=518 Win=38336 Len=8
21 2623-84-17 20:10:32.704486 159.162.23.38 10.8.0.6 s 23@ Server Hello, Change Cipher Spec, Encrypted Handshake Message
22 2023-84-17 20:10:32.764512 10.8.0.6 159.162.23.38 mLss 129 Change Cipher Spec, Encrypted Handshake Message
23 2023-84-17 20:19:32.704603 10.0.0.6 159.162.23.38 TL5.. 971 Application Data
24 2023-84-17 20:18:32.768203 159.162.23.38 18.8.8.6 TCP 60 443 > 63252 [ACK] Seq=177 Ack=1510 Win=32128 Len=0
25 2023-64-17 20:18:32.934758 159.162.23.38 16.08.8.6 TLS.. 683 Application Data
26 2023-84-17 20:19:32.987882 10.0.0.6 159.162.23.38 TCP 54 63252 + 443 [ACK] 5Seq=151@ Ack=726 Win=261838 Len=2
27 2823-84-17 28:18:32.996366 10.8.8.6 159.162.23.38 TLS.. 875 Application Data
28 2023-84-17 20:18:33.808582 159.162.23.38 16.8.8.6 TLS.. 795 Application Data
31 2023-04-17 [(B:18:33.843743) 10.9.0.6 159.162.23.38 TCP 54 63252 » 443 [ACK] Seq=2331 Ack=1467 Win=262656 Len=9

Figure 16: Packet capture showing the speed of a single Get request toward Kartverket’s API.
The circled timestamps show when the HyperText Transfer Protocol (HTTP) request was sent
(top) and when the transfer had completed (bottom).

even if these were received as quickly as a single point is (about 0.3s, based on the test of a
single point request toward the API), populating the entire height map would still take around
30 minutes. As a result, it was determined that using Kartverket’s own API for requesting
height data was simply not a feasible solution.

An alternative and more scalable solution was making use of Kartverket’s GeoTIFF files
to extract height data. This provided for a flexible solution wherein new height maps could
easily be populated by downloading new GeoTTFF files. A great deal of work was unexpectedly
necessary to find a suitable library to successfully extract height data from GeoTIFF files pro-
grammatically. The first library considered was GDAL (Geospatial Data Abstraction Library)
[89], which contains all the tools required for the HeightMap and more. Unfortunately, there
is no binary file to install GDAL and all its dependencies. On the official site, for a Windows

based operating system, you are presented with the following option:
o Source files to build project using cmake
e Download and installation via Conda
e Download and installation via vepkg

All three methods were attempted in multiple Windows environments with various amounts
of success, with nothing quite successful enough to build Hivemind and program with GDAL
in a Windows environment. A good 204 hours was spent attempting this. In between these
attempts, investigations were also made into the TIFF [107] and RasterIO [108] libraries to
attempt to open and extract heights from a GeoTIFF file.

TIFF was easy to install and user friendly, but did not work with the GeoTIFF file used
for testing. An unconfirmed suspicion is that TIFF is not designed for GeoTTFFs, but simply
TIFFs.

RasterlO, similarly, was easy to install but did not result in any successful extraction of
height data, though it is important to note that this method is in fact integrated with GDAL

29

8. IMPLEMENTATION

In the end, the final solution was to install and set up GDAL in the virtual machine used
for the project. The most difficult aspect of this was now not installing GDAL, but to integrate
GDAL and the prerequisite library paths into the cmake file of the Hivemind project. The
documentation on GDAL for C++ in general is not very beginner friendly, and in the end, a
solution was found through digging through the GDAL source code and seeing how the creators
themselves had built their own project using cmake.

After setting up the development environment to run with GDAL, the next and final step
was actually coding the HeightMap class. This also included a good deal of research into the
GeoTIFF format, trial and error and testing to ensure the correct values were returned.

One thing not necessarily part of the minimum viable product but that was attempted to
be added into the class regardless was dynamic download of GeoTIFF files based on the user’s
input. This turned out to be less straightforward than anticipated. Kartverket has its own API
to accommodate WCS (Web Coverage Service) requests [109], which in itself is rather poorly
documented but is a method to download whole or parts of GeoTIFF files from the internet

After composing a GET request through trial and error that actually returned data, the
project was faced with the challenge that the downloaded file was not in fact a GeoTIFF.
Though WCS does include a parameter for specifying type of file downloaded, Kartverket spec-
ifies on their brief user instructions page that it is only possible to download GML (Graphical
Markup Language) format [110].

The following GET Request successfully returned a file:

https://wcs.geonorge.no/skwmsl/wcs.hoyde-dom-nhm-258337service=WCS& versi
on=2.0.1&request=GetCoverage&coverageId=NHM_DOM_25833& format=image/geotiff&s
ubset=x(197332,200335)& subset=y(6624844,6627847)&outputCRS=urn:ogc:def:crs:
EPSG: :25833& scaleSize=x(500),y(500)

The downloaded file contained a number of Extensible Markup Language (XML) headers
indicating that this was a GML file and that a GeoTIFF had been downloaded. There was also
a large amount of encoded data that that numerous trials and errors proved unable to decode.

The reigning theory was and still is that the resulting file is somehow a GML file that
contains the requested GeoTIFF. Performing the request and opening the file using a desktop
program for geographic data (QGis) was successful, indicating that the height data is present.
The Content-Type: header also confirms that the data at the bottom is in the TIFF format.

Attempts were made to strip the GML headers and opening the resulting file as a GeoTIFF,
with and without steps for decoding, but to no avail. A more detailed discussion on how this
could be solved in the future will follow in the future work section of this report.

In the end, the HeightData class as it stands is able to load height data successfully from
a cached GeoTIFF file of Kongsberg, which covers about 3km x 3km of area, and can also be
used with any other GeoTIFF file given the resolution of the data is 1m. An if test in the code
tests whether any given origin point will fit into the selected data set and is the natural place

to implement the dynamic downloading of TIFF files in the future.

60

https://wcs.geonorge.no/skwms1/wcs.hoyde-dom-nhm-25833?service=WCS& version=2.0.1&request=GetCoverage&coverageId=NHM_DOM_25833& format=image/geotiff&subset=x(197332,200335)& subset=y(6624844,6627847)&outputCRS=urn:ogc:def:crs:EPSG::25833& scaleSize=x(500),y(500)
https://wcs.geonorge.no/skwms1/wcs.hoyde-dom-nhm-25833?service=WCS& version=2.0.1&request=GetCoverage&coverageId=NHM_DOM_25833& format=image/geotiff&subset=x(197332,200335)& subset=y(6624844,6627847)&outputCRS=urn:ogc:def:crs:EPSG::25833& scaleSize=x(500),y(500)
https://wcs.geonorge.no/skwms1/wcs.hoyde-dom-nhm-25833?service=WCS& version=2.0.1&request=GetCoverage&coverageId=NHM_DOM_25833& format=image/geotiff&subset=x(197332,200335)& subset=y(6624844,6627847)&outputCRS=urn:ogc:def:crs:EPSG::25833& scaleSize=x(500),y(500)
https://wcs.geonorge.no/skwms1/wcs.hoyde-dom-nhm-25833?service=WCS& version=2.0.1&request=GetCoverage&coverageId=NHM_DOM_25833& format=image/geotiff&subset=x(197332,200335)& subset=y(6624844,6627847)&outputCRS=urn:ogc:def:crs:EPSG::25833& scaleSize=x(500),y(500)

8. IMPLEMENTATION

8.3.2 Class flow chart HMM | NH

Usage of the HeightMap class is designed to be as simple as possible for the end user. In the
simplest scenario where the user will use the integrated file of Kongsberg city for route planning,
starting a new project will construct a HeightMap class. After a new instance of HeightMap
has been instantiated, the user will then be able to enter origin coordinates. This, in turn will
lead to the member variable of that instance of HeightMap to be populated with the heights
for each point within the selected subset. See fig. 17 for an illustration of this. Initially, the
size of the subset was hard-coded to be 500 x 500 meters. After the MVP had been finished,
HeightMap was updated to also allow for dynamic size of the generated height map, through

adding an argument for selection size in the UpdateOrigo() method.

Scenario 1: User Scenario 2: User
wants to create a wants to create a
project using the project using their
cached Kongsberg own GeoTIFF file
map
Open new project Open new project
- n
New class constructed New class constructed | HeightMap(); |
' | constructor |
| oo)
User enters origin User enters origin
coordinates coordinates and
specifies path to
GeoTIFF file
1
|LoadTif(); updates member variable indicating|
|file path, then launches UpdateOrigo(); |
m_CachedTifName updated L T ———— = J
UpdateOrigo(x, y) populates UpdateOrigo(x, y) populates i rupdate()riga(); updates member variable j‘
coordinates around origin coordinates around origin \-w indicating origin point, then launches |
v Y L.F_Dopur’eu‘eVerriceso,' g
End End e -
PopulateVertices(); extracts height data for |

all points within range and attaches them to |
‘approprfate coordinates in Vertex format (x, y, |

2

Figure 17: Flow diagram showing two possible usage scenarios for Height Map

In the event that the user wants to populate height data from a different map, another
method (LoadTif()) can be used to specify the path to another GeoTIFF file. The LoadTiff()
method will then in turn run the UpdateOrigo() method and populate the HeightMap with
height data. In general, it does not matter what coordinate system the new GeoTIFF file
uses, as long as the user is consistent in using this system in other parts of the program. The

resolution of the file, however, should be 1m.

61

8. IMPLEMENTATION

Several methods have also been made to extract heights from the HeightMap. The most
important one is the GetHeight(x, y) method, which takes in the relative X and Y coordinates
(where 0, 0 is the top left corner coordinate) and returns a float containing the height for
that given point. This has been illustrated in a simple flow chart, seen in fig. 18. Other
methods take in geographic coordinates and return height, or height and x, y coordinates, take
in relative coordinates and return x, y coordinates and height. These methods are not used in
the Routemaker component. Instead, the GetHeight() method is used. The other methods to
fetch height are nevertheless extant in the HeightMap class, in case they need to be used for

testing or if HeightMap is to be used by itself.

Scenario:
Routemaker
generates graph

HeightMap

origin
updated

Y

Request height for
each point

GetHeight(x, y), returns
(z) for each coordinate

End

Figure 18: All methods for retrieving height rely on just receiving X and Y coordinates.

8.4 Map Management AM | RS

The map manager receives the origin and size information of the map from the GUI, through
the compile scenario component. After processing this information, the map manager updates
the map data which is used in the GUI for visualization. It acts as a mediator between the GUI
and the map-related functionality in the system, ensuring that the map is always up-to-date

and correctly displayed to the user.

8.4.1 HTTP request AM | RS

The GetMap method sends an HTTP request to retrieve map data from a Web Map Service
(WMS) server provided by Kartverket. The request is constructed using several parameters,
each specifying a different aspect of the requested map image. The request parameter specifies

the type of request being made, which is a "GetMap" request in this case.

62

8. IMPLEMENTATION

The service parameter specifies the requested service type, in this case, a WMS service.

The version parameter specifies the version of the WMS protocol being used, which is 1.3.0
in this case.

The layers parameter specifies the data layers to be included in the map image. Hivemind
needs to have a map that includes height data, land cover data, water data, transportation
data, and building data; therefore, this is specified in the request.

The styles parameter specifies the style to be used for the requested layers, which is set to
the default style in this case.

The format parameter specifies the response format from the server, which is set to a PNG
image in this case.

The crs parameter specifies the coordinate reference system (CRS) to be used for the map
data, which is EPSG:25833 in this case. This is the UTM zone 33N coordinate reference system
used in Norway.

The bbox parameter specifies the bounding box of the map image to be requested. The
bounding box is calculated by the CalculateCornerCoordinates function in the code, which
takes a UTM coordinate and a size parameter and calculates the bounding box based on those
values. The width and height parameters specify the width and height of the requested map
image in pixels.

Once the request is constructed with these parameters, it is sent using an instance of the
QNetworkAccessManager class, which is part of the Qt Network module and handles the com-
munication with the WMS server. When a response is received from the server, it is processed
by a callback function that extracts the image data from the response and stores it in the
m_ Data member variable of the SatelliteMap class. The Gotlmage signal is then emitted,

indicating that the image data is ready to be displayed or further processed.

8.4.2 Signals and slots AM | RS

The Map Manager in Hivemind utilizes the Signal-Slot mechanism provided by Qt to commu-
nicate with the GUI and update the displayed map. When the map is ready to be displayed,
the Map Manager emits a Gotlmage signal which is connected to a slot in the GUI. Upon
receiving the signal, the GUI updates the displayed map with the newly obtained image data.
This approach allows for decoupling the GUI and Map Manager, enabling them to work in-
dependently of each other while still maintaining effective communication. Additionally, the
Signal-Slot mechanism provided by Qt ensures a thread-safe implementation of the communi-

cation between the GUI and Map Manager.

8.4.3 Calculating the bounding box AM | RS

The Map Manager has a method for calculating the corner coordinates of the area to be fetched,
which are used in constructing the WMS request. It takes in a UTMCoordinate and a size
parameter, which specifies the size of the map image to be requested. The function first

calculates the minimum and maximum x and y coordinates of the bounding box by subtracting

63

8. IMPLEMENTATION

and adding half of the size to the easting and northing coordinates of the input UTMCoordinate,
respectively.

The method then creates a QStringList containing the four bounding box coordinates in
the order of minX, minY, maxX, and maxY. These values are converted to strings using the
QString::number() function. Finally, the function joins the four coordinates into a single string
using a comma separator and assigns the resulting string to the m__Area member variable of
the SatelliteMap singleton instance. The m_ Area string is later used to construct the HTTP
request URL in the GetMap method.

8.5 Keyframe Management NH | AM

In the development of our route planner, the need for points to establish a route between two
or more locations was identified. To address this requirement, the concept of keyframes for
a specific agent at a given time was introduced. FEach keyframe comprises an agent 1D, a
timestamp, and a position represented by a cartesian coordinate.

The KeyframeManager class was designed to handle the management of these keyframes. It
employs a singleton pattern to ensure that there is only one instance of the KeyframeManager
in the entire application. The keyframes are stored in a vector, which allows for efficient access,
addition, and deletion of keyframes.

Methods to add keyframes to the KeyframeManager were implemented in multiple ways.
Users can input keyframes by providing individual parameters such as agent 1D, timestamp,
and cartesian coordinates, or they can add a fully constructed keyframe object. This flexibility
ensures the KeyframeManager can accommodate various input scenarios.

To facilitate the deletion of keyframes, function that removes a specific keyframe from
the vector by finding and matching it against the provided reference was implemented. This
function is particularly useful in conjunction with the graphical user interface elements, where
users can select keyframes for deletion from a list. However, searching through the entire vector
for the exact keyframe to delete is not the most efficient solution. As the number of keyframes
grows, this approach could lead to performance issues.

To improve the efficiency of the keyframe deletion process, alternative data structures and
algorithms that would allow for quicker identification and removal of keyframes need to be
considered. One potential solution could involve using a more sophisticated data structure,
such as a balanced search tree, that maintains the sorted order of keyframes and allows for

faster searching and deletion operations.

8.6 Routemaker RS | HM

For a route-planning system to work, there needs to be some way of actually creating routes
based on some input. This is the responsibility of the Routemaker component. It was decided
that the general usage of the Routemaker component was to supply it with two inputs repre-
senting two locations, and it returning a list of points defining an optimal route between them.

The routes generated should take terrain and buildings into account in order to avoid collisions.

64

8. IMPLEMENTATION

Route generation is not a new idea, and there is much research on the topic. In the world
of algorithms and graph theory it is often referred to as path-searching or graph-searching. A
simple A* algorithm was chosen in order to quickly get a working product. A* is an efficient
best-search-first algorithm for finding the cheapest path between two nodes in a graph, where
the cost is defined by a heuristic. In Hivemind, the heuristic is defined by the distance between

nodes, meaning the cheapest path will be the shortest one.

8.6.1 Graph class RS | HM

To get started, a graph abstract data type was developed. It was implemented by making a
simple graph interface that has several methods for working with nodes. The nodes hold some
information needed by the A* algorithm. They also hold some abstract data, made possible
by C++'s template system. The rationale for implementing an abstract interface was to make
it as flexible as possible. The A* algorithm is not aware of the underlying data or use-case, it
just works on a graph. To use it, one would create a sub-class of Graph, and implement a few
methods needed by the A* implementation.

To test the A* implementation, the team created a 2D Grid class inheriting from the Graph
interface. Each cell in the grid can either be occupied or not occupied. After the required
methods were implemented, finding the shortest path between two cells in the grid was as
simple as calling the SolveAStar method. Omne of the methods sub-classes of Graph must
implement is GetNeighbors, which returns a list of all neighbors of the provided node. Since the
GetNeighbors method is implemented by the Grid class, not allowing the path to cross occupied

cells is simple; just avoid including occupied cells as neighbors. Fig. 19 shows a path generated

\i_\ | Flllllll

on the grid.

Figure 19: Simple path generated by A*

65

8. IMPLEMENTATION

8.6.2 Post-smooth process RS | HM

Fig. 19 highlights a weakness of the path-finding algorithm: As A* only considers direct neigh-
bors of any given node when exploring the graph, it ends up generating quite a rough path. In
the context of a grid such as this one, it means it is locked to 45 degree movements. One solu-
tion to this problem would be to consider an any-angle algorithm instead, such as Theta*[53].
This ends up adding quite a bit of complexity though, and since the focus of Hivemind was on
creating a proof of concept, it was decided to continue using A*, but also implement a simple
path-smoothing algorithm which runs after the A* algorithm finishes. After the A* algorithm
finishes, the path is defined by parent-child relationships in the nodes. Each node has a pointer
to it’s parent, so starting at the end node and following the parent recursively, will eventually
lead back to the origin point. The post-smoothing simply starts at the end node and checks if
it has a direct line of sight to its grandparent. If it does, it makes its grandparent its parent
instead. Then it checks again. If it does not have a direct line of sight to the grandparent, it
moves on to the parent, and starts checking for that node. It keeps going until it reaches the
start node. Not only does this smooth out the path, it also potentially results in a shorter path.
The resulting path also consists of fewer nodes, making it more memory-efficient. Figure 20
compares the paths generated from two points on a grid before and after smoothing. Note the

significant reduction in amount of nodes that define the path in fig. 20b as compared to fig. 20a.

mEl
—o—
B -
//
(a) Path before smoothing (b) Path after smoothing

Figure 20: Comparison of paths generated with and without smoothing

8.6.3 Bresenham’s line algorithm RS | HM

As previously mentioned, the Graph interface requires sub-classes to implement a method
that determines whether or not two nodes have a direct line of sight. When considering a
3D environment, we may have to look into ray-casting for doing this efficiently. However,

as we are currently still in 2D we may use something a little simpler, like Bresenham’s line

66

8. IMPLEMENTATION

algorithm[111][112]. Bresenham’s line algorithm is often used in the context of 2D raster
images, when one needs to compute which integer pixel indices a line intersects with. It takes
two end-points, and computes all integer coordinates that make up the line segment between
them. This means we can determine line of sight between two nodes by iterating over all
the nodes in the positions calculated by Bresenham’s line algorithm and check if any of the
nodes are occupied. If any of them are, there is not a line of sight between the nodes. Fig. 21

illustrates bresenham’s line algorithm.

Figure 21: Bresenham’s line algorithm

8.6.4 Routemaker implementation RS | HM

Having implemented and tested the A* implementation and post-smoothing algorithm, the ac-
tual Routemaker class could then be implemented. Optimally, the Routemaker should operate
in a 3D environment, but to simplify the initial implementation, a 2D system was chosen. This
means a fixed height for the drones to fly at was defined, while the graphical representation
maintains a top-down view. A lot of the logic for route generation was already in place since
with a 2D environment, the resultant point of view is essentially a grid similar to the testing
class used earlier.

It is important to note that the abstract graph interface makes for a very adaptable
Routemaker. Even though Hivemind is only considering a 2D environment at this time, mov-
ing into 3D is easy in terms of the Routemaker implementation; by adjusting the GetNeighbors
method to account for neighbors in the vertical axis. Additionally, since the graph base class
is a standard graph datastructure, any other graph-searching algorithms can be implemented
to improve upon the system or simply to compare with the A* implementation.

Up until now, the grid has been randomly generated for testing purposes. However, as the
purpose is to generate routes for drones in the real world, grids that represent the real world
must be generated. To do this, the Routemaker uses the Heightmap component to query the

height data over the terrain. It then generates a grid based on this. A height threshold is

67

8. IMPLEMENTATION

defined, representing the drones’ flight height, and if the height in the height data at this point
is larger than the height threshold, the corresponding node is defined as occupied. Fig. 22
shows a heightmap and the corresponding grid that Routemaker creates. The flight height in
this example is 175 Meters above mean sea level (MAMSL).

e

.

=y
T

e

h-,‘ _"

Yo,

T iy

1Ty ®
T

(a) Heightmap. Brightness and contrast ad-
justed for visibility

(b) Routemaker’s grid based on heightmap

Figure 22: Heightmap and corresponding routemaker grid with a flight height of 175 MAMSL

As for the interface when generating routes, the Routemaker class has a MakeRoute method,
which takes two keyframes as arguments. The positions defined in the keyframes are in a sym-
metrical cartesian space, but the Routemaker’s grid uses an asymmetrical cartesian coordinate
system. Because of this, all keyframe positions are transformed using the Coordinate Converter
class before the path-finding starts. Additionally, after the path has been generated, all co-
ordinates that define the path are transformed back to a symmetrical Cartesian space before
returning the path. This means that from the outside of the Routemaker class, there is no
need to consider an asymmetrical Cartesian coordinate system. Both the inputs and outputs

use symmetrical cartesian coordinates.

8.6.5 Resolution RS | HM

An issue that quickly became evident was computation time. The height data has a resolution
of 1 meter per measurement. By default, the Routemaker grid has the same resolution. This
is fine for smaller areas, such as a 200x200m area. However, when wanting to create a scenario
on a larger scale, like 2x2km, the search complexity of the A* algorithm increases exponen-
tially. To mitigate this issue, functionality for reducing the resolution of the Routemaker was
implemented. To do this, during the building of the Routemaker grid, the largest measurement
from the height data for each block of measurements is taken and used to determine whether
or not a node is occupied. Also, when given keyframes to use for path-finding, the keyframe

positions need to be divided by the resolution to further transform them to the Routemaker’s

68

8. IMPLEMENTATION

space. Before returning the path, the positions now need to be multiplied by the resolution.

Figure 23 illustrates the reduced height data and corresponding generated grid when using a

resolution of 5 meters per measurements.

oy’

-

L -;I.hl'-'lﬁl.

A

< 1

X
)
|
1

A

(a) Heightmap: 5 meter resolution (b) Grid: 5 meter resolution

Figure 23: Heightmap parsed by Routemaker with resolution of 5m and resulting grid

When comparing fig. 23 to fig. 22 it is obvious the data is still valid after reducing the

resolution, but that details have been lost.

8.7 Serializer (Load and Archive Scenario) HM | HMM

To simplify the technical work related to saving and loading, a data driven interface for the
Serializer was developed. This interface is only possible to implement if it is able to keep
references of the actual values to be stored in JavaScript Object Notation (JSON) format. It
also has to be able to keep track of where the different value belong in the data structure, the
ability to do this is called reflection[113]. Reflection as a concept is not supported by C++,
but in many other programming languages like JavaScript, python or C# it is.In practice, this
was solved by creating an abstract class in which a method called GetProperty was defined.
All classes that are serialized in Hivemind will then need to inherit this class and implement
the GetProperty method.

8.7.1 Implementation:ISValue HM | HMM

All other elements of the Serializer is based on an abstract class called IValue. ISvalue imple-
ments some functionalities that have to be in place for the Serializer to work both for serializing
and deserializing. The first thing [SValue does is determines whether the object to be serialized
is a composite object or a primitive object. Specifying the type of object is done through an

argument specified when calling the Serializer to serialize an object.

69

8. IMPLEMENTATION

When called with a primitive type such as an integer, it will store the name of the variable
as well as a reference to its value. If called with a composite type, like an object, it will retrieve
the specified primitive type stored in the object instead. Retrieving one value from within a
composite type variable is done through the GetProperty function, which creates a map of all
the member variables of the composite type.[114]

[SValue is implemented so that it can support other file formats if it is deemed necessary to
implement another one like XML or a database. The only requirement for the chosen format

is that it supports the third level of sophistication.

8.7.2 Implementation: Types HM | HMM

Each type the Serializer needs to be able to handle must be implemented separately. The
Hivemind Serializer is compatible with the following types:|[6]

o Integers

o Floats

e Doubles

o Strings

e Bools

e Objects

o Members

o Integer vectors
» Float vectors

e Double vectors
e Object vectors
e Member vectors
o Object vector vectors

e« Member vector vectors

For all the primitive types the Serializer takes the name of the variable and a reference to
the value of the variable and stores it as a name and value pair which gets pushed straight to
or from the JSON file through the use of the RapidJSON library. To get data to the JSON file,
the ToDom function is called. This stores the value of a member in the RapidJSON document,
which after serialization will be stored in a JSON file.

When retrieving stored data, a RapidJSON document is populated with the specified JSON
file. Calling the FromDom function on this JSON file will retrieve the value of specified the

member in the JSON file, and store it in an object similar to the one that was initially serialized.

70

8. IMPLEMENTATION

To serialize composite types, like members and objects, a JSON object is created and all
the primitive types to be serialized added to the object as member values.

In order to serialize vectors, a JSON array is created, and all the values to be serialized are
added to the JSON array.

8.7.3 Implementation: ISProperty HM | HUM

ISProperty is a struct which forms the basis for the entire Serializer. Its main function is to

enable the Serializer to replicate the name and value pair structure of a JSON file.

8.7.4 Implementation: Macros HM | HMM

The macros created for the Serializer are there to improve workflow for other application pro-

grammers when creating objects with persistence in Hivemind.

8.7.5 Persistence in C++ HM | HMM

Persistence is the ability to store data beyond the lifetime of the program. In C++, this can
be achieved persistence by storing data in a file on the disk or a database.

Having the opportunity to make data persistent is useful since it makes for multiple users
to access the same data, or for the program to reuse the same data at a later date. Enabling
saving and loading is a core requirement for Hivemind because it allows the user to create a
scenario and come back to it later, avoiding having to make the same scenario on multiple
occasions.

In C++, it is possible to achieve persistence through a number of different mechanisms.
Examples of these are making use of serialization frameworks, databases or input/output oper-
ations. Serialization frameworks like Boost.Serialization[115], cereal or RapidJSON[116] make
it easier to develop C++ programs that require persistent data.

Developing functionality for persistent data in C+4 is not without its challenges. The

developer will need to keep in mind the format of the stored data, the structure of the data in
the program as well as how determining how to access the data both when saving it and when
rebuilding the data structure at a later date.[114]
Challenges to achieving persistence in C+4++ The big challenges with persistence in
C++ is that since it is a low level language, the developer needs to pay special attention to
memory management as well as keeping track of objects lifetime, in addition to making sure
steps are taken to guarantee data consistency.

When it comes to memory management in C++ it can be difficult to manage data that has
to persist. When objects have to persist beyond the lifetime of the program, it is important to
be able to ensure the intended data is saved. In C++ objects are usually saved on the heap or
on the stack. As a result, the location of the data intended for storage may contain something
completely different, if the original data was overwritten. This means the developer needs to be
particularly careful in making sure the desired data is the one that actually exists in a certain

location before saving it.

71

8. IMPLEMENTATION

Object serialization is the ability to convert objects to a format that can be written to a
file on the disk or some other non-volatile storage media. When developing functionality for
serialization and deserialization, it is crucial to handle undefined behavior and make sure there
are no data leaks.

One final, but significant, reason that dealing with persistent data in C++ is that it is
difficult to guarantee that the data stays consistent from one execution of the program until
the next execution. This leads to requirements for the data to be stored in a specific format,
having a way for data encoding, needing to be prepared for error handling, data validation

before storage, and concurrency of the data.[117][113]

Benefits of persistence: There are many benefits to having persistent data when making a
software application. Being able to preserve data between different executions of the program
is helpful, for example in the situation where a user is planning a drone show with a large
number of drones. Being able to store the data and start up again means the user will never
have to redo their work, unless they want to.

Persistence also enables the sharing of data. Because a save file can be sent between users

without data degradation, multiple people are able to share and collaborate on the same project.

[117][114]

Why JSON: The JSON format was chosen for data storage in Hivemind because it is com-
patible with the ROS, which it was assumed the drones Hivemind would be controlling would
be using. Emphasis was also placed on the ability to store data in a human readable format, in
order to make it easy to understand what the drones were doing even when not working directly
in the Hivemind user interface. Since JSON is easy to read and understand for humans as well
as being a format the drone can work with, rapidJSON[116] was chosen. Another option for
storage briefly considered was the XML format, but since data eventually would need to be in

JSON regardless, it was decided to only use this format for serialization and data storage.[6]

The Document Object Model: A Document Object Model (DOM) is an interface that is
used to ensure data is stored in a way that makes it possible to restore the same data structure
at a later date[118]. It has a structure that resembles a tree where the data is stored in nodes
and objects. When making a HTML and XML document, DOM is communicated through to
add elements, remove elements as well as change elements that are already there. To store
C++ data in a JSON file, the C++ library called RapidJSON was used, which has a DOM
style API for parsing and generating C++ data in a JSON file.[118§]

Levels of sophistication: When serializing data in C++ objects, it is also important to
consider how complex the objects to be stored are. Only when the complexity of these object
has been determined is it possible to choose the technique(s) used for serialization.|[114]

The lowest level of sophistication is used when the data to be serialized does not contain

pointers to other objects and they are not part of an inheritance hierarchy. When using this

72

8. IMPLEMENTATION

technique every class is responsible for their own serialization and if they contain other classes
they should only call the serialization function contained in that class.

The second level of sophistication can be used serialization is to be performed on a data
structure with objects that are a part of an inheritance hierarchy, but the objects do not have
pointers that point to different objects. This is the technique to be used when there are multiple
classes that are derived from a more abstract class. When serializing some data the first thing
that is needed is the name or identity of the object.

The third level of sophistication is used when a class contains pointers to different objects.
In this level of sophistication the pointers can not form cycles or joins. This leads to the data
structure looking like a tree. No cycles means that following the pointers from object to object

will never lead to an object that has already been visited.
&
@: @ D Application
G}

Reflection and introspectior
Retrieves data from Res?_ure,cts)
application objects application objects

Serializer

Stores data as . Retrieves data from
name and value pairsname value pair
Dom style API

DOM object

RapidJson

JSON string

E JSON format
<

Figure 24: Architecture and dataflow for serializer

This is achieved with a recursive algorithm that will serialize objects that are pointed to
when it gets to them in the serialization process. When using this technique, it is important to
focus on the contents of the objects. If the object has a pointer, a string and another pointer,
then the first step is to dive into the first pointer and serialize all the data and pointers it
contains. After this has been done, the string is serialized, before lastly following the second
pointer and serializing everything that pointer points to. To avoid memory leaks when using
this technique, it is crucial to only use smart pointers.

The fourth level of sophistication is mostly the same as the third level, but serialized objects

can contain pointers that point to the leaves of a different tree. The serialization part is done

73

8. IMPLEMENTATION

the exact same way as at the third level, meaning the difference lies in wanting to generate
the original data structure from serialized data when deserializing. This is solved by creating
a look-up table that contains the variables serialized and the nodes they belong to. When
deserializing, any variable that has already been deserialized is skipped.

The fifth and most sophisticated level of serialization is used when the objects have pointers
to different objects, those pointers form a tree that can contain cycles and joins between trees
are not only in the leaves. This can be achieved if infinite loops are successfully avoided. A way
of achieving this is by creating an object-ID map that is built by serializing the objects in the
same recursive manner as in sophistication levels three and four. The main difference is that a
check of whether the node is already on the object-ID map is performed at each node. When
all nodes have been iterated through, a second pass is done, at which time the contents of the
nodes are written along with the ID of each node. This time, the process does not recursively
dive into the tree, instead following the object-ID map.

In Hivemind, the third level of sophistication has been chosen because the data that will be

serialized can easily be represented in a tree form with no joins and no cycles.

Human readable vs non-human readable: When choosing between storing data in a
human readable format or a non-human readable format there are several questions you need
to answer. Is it important to be able to read and understand the data when it is stored? If
so then you should choose a human readable format. A binary format can be slightly faster
but it is not a very relevant bottleneck unless your application is using 100% of your cpu and
a significant portion of that is used on your Serializer. For the Hivemind application we chose
a human readable format mostly because we wanted to use JSON and never really considered

going with a binary data format.[114]

8.8 Compile Scenario AM | RS

The Compile scenario component is an essential part of Hivemind. This is the component is
responsible for updating the area and generating the scenario. The software component gener-
ates scenarios using the predefined keyframes from the user. The compile scenario instantiates
a Routemaker object which subsequently instantiates a HeightMapg object.

When the user sets the origin and size of the area in the GUI, this information is sent to the
Compile Scenario component. The Compile Scenario component updates the origin and size
throughout the system. Fig. 25 illustrates how the Compile Scenario component creates the
Routemaker, which in turn generates the HeightMap and updates the Map Management and
Coordinate Converter. By doing so, the Compile Scenario component always updates the origin
and size parameters of these components when the data retrieves the GUI. Additionally, the
figure demonstrates that the Compile Scenario component also updates the Map Management.

In the Compile Scenario component, the routes generated by the Routemaker are stored in
a map where the agentID serves as the key, and a vector of Cartesian coordinates represents

the value. The routes obtained from the Routemaker are then appended to the corresponding

74

8. IMPLEMENTATION

Origin and
size

Compile Scenario

Routemaker Coordinate

converter

Map
management

Height

management

Figure 25: Origin and size update pattern.

vector based on the agent ID.

When the compile method is called, it first checks if any keyframes have been defined. If
not, it simply returns the empty map with no routes. Otherwise, it sorts the keyframes by
agent ID and timestamp and then iterates over them. It checks the agent ID for each keyframe
and compares it with the previous one. If the agent ID is the same, the keyframe belongs to
the same drone, and the component generates a route based on the two keyframes. If this is
the first keyframe for the drone, the component creates a new vector for the routes belonging
to that drone and adds the generated route to the vector. Otherwise, the route is added to the
existing vector. This is shown in fig. 26.

'a 1
Keyframes: Keyframes:
AgentlD: 1 AgentlD: 1 —{_ Agent ID
Timestamp: 3 Timestamp: 2
Position:x1,y1 ! Position:x2,y2 Key Value
AgentID: 1 AgentID: 1 Agent ID Position
Timestamp: 2 | SORT Timestamp: 3 vector with
Position:x2,y2 Position:x1,y1 ~ 1 cartesian
AgentID: 2 AgentID: 2 coordinates
Timestap:2 Timestap:2 2 ‘
Position:x1,y,1 Position:x1,y,1
Keyframe Keyframe értesian coordinates
outemaker })

Figure 26: Compile scenario functionality

By keeping track of the agent ID of each keyframe and checking it against the previous
keyframe, the Compile scenario component can associate each generated route with the right
agent. This information is stored in a map, where the keys are the agent IDs, and the values
are vectors of routes belonging to that agent. Finally, the generated routes are returned as a

map of agent IDs and their corresponding routes.

5

8. IMPLEMENTATION

To visualize the scenario in the GUI, the scenario returns the map with all the routes

between the keyframes to each agent after the scenario has been compiled.

8.9 Graphical User Interface

8.9.1 The code structure of Hivemind’s GUI RS | HM

The code structure for the GUI was implemented similarly to how Qt structures widgets in-
ternally - as a tree. The MainWindow class is located at the root of the tree. This class
has two children; the menu bar at the top, and a custom widget called MainContent. The
MainContent also has two children: the Sidebar and the TabWidget. Without diving further
down, the sidebar can be summarized as a container for several tools available to the user. The
tab widget, which as of now is focused on the planner tab, contains the map and timeline for
the current scenario. Fig. 27 visualizes this tree structure of the widgets. The simulator and

launcher widgets are both placeholders for future features, and are currently not in use.

Menu bar ‘ ’ Main Content

Sidebar Tab Widget

Scenario settings ‘ ’ Agent controls H Keyframe controls ‘

,,,,,,,,,,,,,,,,,

Map viewer

Timeline

Figure 27: Graphical user interface tree

Each widget is responsible for defining their own signals and slots, as well as their own
triggers for emitting their signals. The connections between these slots and signals are mostly
handled in the MainWindow class. Originally, all the widgets made their own connections,
but after moving the responsibility to the Main Window class, the amount of cross-references

between widgets has been significantly reduced.

8.9.2 Widgets in the Hivemind GUI AM,RS,NH | RS

Under scenario settings, the user can select a location with a geographical coordinate and size
for visualization of the map to the scenario area. The agent controls widget allows the user to

control the color of the agents, choose the active agent, and add new agents to the scenarios.

76

8. IMPLEMENTATION

Finally, the keyframe controls provide an overview of all the keyframes in the scenario and a
button to delete them.

As per fig. 27, the planner tab has two child widgets: The map viewer, and the timeline. The
map viewer is an interactive visualization of the map contained in the Map manager component.
In addition, all existing keyframes and compiled routes are visualized over the map, with unique
colors for each agent. For improved interactivity, the map viewer is responsive to mouse presses,
so adding new keyframes is as simple as pressing at a location in the map.

The timeline widget serves as a visual representation of time withing the scenario, offering
users an easy way to navigate keyframes. The timeline operates using mouse clicks for addition
or deletion of keyframes. The timeline’s implementation follows a modular approach, ensuring
easy reusability in different parts of the software. The timeline improves user-friendliness
compared to previous methods, offering a streamlined experience for keyframe management.

The Graphical User Interface in it’s current state can be seen in fig. 28, with a compiled

scenario comprising three agents.

Delete keyframef(s)

Figure 28: Graphical User Interface

All the software components for Hivemind were purposedly implemented in accordance with
the developed software architecture. This section has described each of these components in
detail, and shown how they work in tandem. An important part of implementation is continuous
testing. Though not mentioned here, components were individually and continuously tested,
before the entire software was integrated and tested as a whole. The next section will focus on
these testing activities and explain how these were performed to ensure components functioned
as intended, and that all implemented functionality met the requirements derived earlier in the

project.

77

9. TESTING

9 Testing

The project followed a method of continuous impromptu testing, as well as a structured testing
scheme for verifying the software against the requirements (as described in the section for
testing). Because the software contains a variety of different components, there was also a
good deal of variation in how each component was developed and tested. This section will first
explain how each of the software components were tested individually in simultaneously with

development. It will then briefly present the testing regime for the software as a whole.

9.1 Testing of software components

9.1.1 Coordinate Converter AM | RS

To test that the coordinate converter’s functionality, each method that is used to convert
coordinates was tested separately.
Reset origin: To test the function to reset the origin, the user sets a known origin with the

ResetOrigin method and verifies that the origin is updated correctly.

Conversion between geographical coordinates and cartesian coordinates: To verify
this, the same calculation is performed manually as done by the coordinate converter, and then
the results are compared. Taking the example of 60 degrees north and 10 degrees east, where
one minute of longitude is half the length of one minute of latitude (due to the sine of 60 degrees
being 0.5), the conversion is validated.

Starting with the origin at 60N 10E, the coordinates 60’1N 10’1E are converted to cartesian
coordinates. One minute northward corresponds to approximately 1.8507km, but it vary based
on where it is on the earth[119]. At 60N 10E is one minute the same as 1/60 = 0.016667 in
latitude.

Therefore, the calculation of latitude and longitude for the point are:

latitude = 60 + 0.016667 = 60.0166667

(8)
longitude = 10 + 0.0166667 = 10.0166667

Using the GeographicalToCartesian method in the coordinate converter, the output should
be that the x-axis is 0.5 of that of the y-axis. Therefore, the converter’s output should be
y = 1850.7 and z = 925.35

The output from the coordinate converter is (929.532,1856.99). Since the x-axis is approx-
imately half of the y-axis which is around one minute, and the Coordinate Converter is using

a recognized and mature library, we can assume that it is correctly converted.

78

9. TESTING

Conversion between Symmetric and Asymmetric: Tested by validating the conversion
results in all quadrants. To validate the conversion between asymmetric to symmetric, eq. 3
was used for the x-axis and the eq. 4 for the y-axis, and verified that is is the same point. To
validate the conversion between symmetric to asymmetric, eq. 1 was used for the y-axis and
the eq. 2 for the y-axis, and verified that it is the same point. An example of this is in the eq.
5 for the x-axis and in the eq. 6 for the y-axis. The result is shown in fig.15.

Conversion between Geographic and Universal Transverse Mercator (UTM): This
conversion was tested in two steps. To validate the accuracy of the GeographicToUTM method,
a specific geographic coordinate is selected on Google Maps, converted to UTM coordinates us-
ing the Geographic ToUTM method, and compared with the corresponding location on Norgeskart.
By confirming that the locations align precisely, this test confirms the reliability of the conver-
sion.

To validate the accuracy of the UTM7ToGeographic function a specific UTM coordinate
is selected on NorgesKart, converted to geographic coordinates using the UTM7ToGeographic
method, and compared with the corresponding location on Google Maps. By confirming that
the locations align precisely, this test confirms the reliability of the conversion.

To verify the CartesianToGeographical conversion, the same methodology was applied in

reverse.

9.1.2 Testing of Serializer HM | HMM

The Serializer needed to be tested a number of times during development. To perform the
necessary tests, a test file containing multiple types to be serialized was developed. Every
time a new type was added to the Serializer’s capabilities, this test document was updated to
include a new test for this type. After automated testing had been implemented, the test file

was ported to the GoogleTest format so that tests could be run automatically.

9.1.3 Map manager AM | RS

To ensure that the map manager displays the correct map, it can be tested by verifying that
the coordinates for the origin and the size are correctly converted and calculated. This can be
done by manually calculating the corner coordinates of the map and verifying that it represents
the same area as shown in the GUI.

The following geographical coordinate and size were used in testing:

Latitude = 59.66472311214873
Longitude = 9.644727959269787 (9)
Size = 200m

These coordinates correspond to easting 536324.30, northing 6614249.51 in UTM 33N coordi-
nates. As this is the centre of the map, each corner coordinate of the map is calculated by
adding or subtracting half of the width and and half of the height to or from the origin. The

79

9. TESTING

calculated corner coordinates are as follows:
West = 536324.30 — 100 = 536224.30
East = 536324.30 + 100 = 536424.30 (10)
North = 6614249.51 4+ 100 = 6614349.51
South = 6614249.51 — 100 = 6614149.51

This gives us the following corner coordinates:

Top left = (536224.30, 6614349.51))
Bottom right = (536424.30, 6614149.51)

These corner coordinates can be used to find the map in external source. In this test it has
been used GuleSider[120]. It was verified that the corner in the map in GuleSider corresponded
to the corner in the screenshot from the GUI. Fig. 29 compares the map from Hivemind with

the map from GuleSider. The figure demonstrates that the map in Map Manager is correct.

[. Stukenp,
5 rocksgay
1 T 8 =
i £
=1 | £ WGS84 X J
150 59°3953.0°N 9*3841.0°E 1-
158 i
e 59.664723,9.644728
UTM32N (ost, nord)
Hasbe g
2 "M 536324, 6614250
; - UTM33N (ost, nord) Solvverksgat
5 198494, 6626248 b l‘
: 5
" UTM35N (ost, nord) E ' :
o 470322, 6742393 i :
&
i 5
-— :\ 20
SS 3 Nansens gat
7 > < G

", 2 g

i
&
. 1’
! 168 144 S Hadhusgala
: Fo] 168 '
13 1310 1B,

ac 20

108684 15130
17

| & % — I - Bussedalan
/ / - - 19 a0

(b) Screenshot of map from GuleSider.

(a) Screeenshot of map in Graphical User Interface

Figure 29: Comparison of the map in Map Manager with the map from GuleSider.

9.1.4 Height Manager HMM | NH
Developing the Height Manager was done in two distinct steps. First, to determine how to

and successfully read height data from a GeoTIFF file and save this into a sensible data struc-

ture, then second, to develop methods to successfully extract the correct height for any given

coordinate.
For the first step, the data extracted from the GeoTIFF file (once this was possible through

code) was inspected to see if it made sense, and then cross-referenced with heights at corre-

sponding coordinates from https://hoydedata.no/LaserInnsyn2/ (which uses the same data

80

9. TESTING

set as the one used for testing and cached in the Hivemind software).

Once the integrity of the data extracted from the file had been confirmed, the methods to
store and fetch height data for any given coordinate were tested. Methods for testing using
UTM33N coordinates were also made, which was used to again cross-reference heights from
a known coordinate on https://hoydedata.no/LaserInnsyn2/ with the same coordinate in
the HeightMap class. To confirm that methods to get height using relative coordinates, known
heights of the origin of the selection and the calculated corner coordinates were compared with

the Hgydedata website. This was repeated with a number of different coordinates.

9.1.5 Keyframe Manager NH | AM

The KeyframeManager was initially tested by implementing hard-coded keyframes, followed
by verification of their successful addition to the vector through printing them in the terminal.
Manual addition of keyframes through the terminal was next, and once that had succeeded a
QDialogBox was developed. In order to verify that the QDialogBox functioned as expected,
debugging mechanisms were implemented to print each added keyframe to the terminal. Once
this functionality was confirmed, a delete keyframe dialog was introduced, which dynamically
displayed all existing keyframes whenever opened. This feature allowed for easy verification of

keyframe additions and deletions by inspecting the delete keyframe dialog.

9.1.6 Timeline NH | AM

The timeline underwent manual testing throughout its development process, utilizing various
methods of adding keyframes. Initially the add keyframe dialog was opened by clicking on
the timeline, with the timestamp being automatically filled in from the timeline. Users were
then required to input the coordinates and agent ID manually. The success of these keyframe
additions was verified by examining the delete keyframe dialog, but for the final version a user
clicks on the timeline, and then on the map and all the information is filled in for the user. The

keyframe also showes up both on the map and on the timeline.

Once the keyframes could be added successfully via the timeline, the implementation of
visual representation on the timeline itself was introduced. Testing involved adding keyframes

and confirming their appearance on the timeline in the correct position.

Subsequently, a right-click function was implemented on each keyframe, triggering a dialog
box to prompt the user for confirmation before deleting the selected keyframe. To validate this
functionality, keyframes were added, deleted using the timeline, and then cross-verified with

the delete keyframe dialog to ensure the correct keyframe was removed.

9.1.7 Automated Testing HM | HMM

There were two steps involved in properly implementing GoogleTest in the Hivemind devel-
opment pipeline. The first was successfully using GoogleTest locally on a computer, and the
second was to create an Azure Pipeline able to run all tests in the system automatically when-

ever the repository was updated.[98][121]

81

9. TESTING

Succeeding in running GoogleTest locally was straightforward, as the GoogleTest maintain-
ers provide a step by step guide on installing the library and running sample tests. Setting
up the Azure Pipeline to run tests automatically was done through creating a pipeline that
followed the same step by step guide used to run tests locally. Finally, the trigger of the pipeline

was defined as:

Trigger:
Branch:

Include:

— !

This enabled the pipeline to run all tests when any branch is pushed.

9.1.8 Routemaker RS | HM

The Routemaker component’s individual features were thoroughly tested from the start. As the
graph abstract data type and graph-searching algorithms were defined as abstract interfaces, a
debug sub-class of the Graph class was implemented along-side them. Along with this, a debug
Qt widget was also implemented to visualize and verify the functionalities of the component in
the GUIL.

The debug visualizer in the GUI proved very useful. Being able to visually differentiate an
occupied node from an unoccupied node, and highlight the neighbors of certain nodes made

the verification of smaller parts of the component efficient.

9.1.9 Compile scenario AM | RS

There are three important functions to test in the compile scenario component:
o Verify that the origin and size are correctly sent to the system so that all components

that require them receive the correct information.
o Verify that the agents are sorted correctly based on timestamp and agent ID.

o Verify that the routes returned from the routemaker are assigned to the correct agent 1D

and placed in the appropriate position in the vector.

To check if the origin and size are correctly sent to the entire system, the map from the Map
Manager is compared with the map in the Routemaker and the height data. The comparison
can be seen in fig. 30. If the size is the same and it represents the same area, the compile
scenario has successfully distributed the data correctly.

To verify that the keyframes are sorted correctly based on time and agent ID, the debug
mode is used to step through the function that sorts the keyframes. This allows for checking
that the vector is updated correctly and that all completed keyframes are placed in the correct
position.

To check if the routes returned from the Routemaker are properly placed in the correspond-

ing location in the map associated with the correct agent ID, the debug mode is used to verify

82

9. TESTING

s

)

- .

&

{

L 3
.
Wy

» -

1

(a) Map from routemaker (b) Map form height manager ~ (c) Map from map manager

Figure 30: Comparison of the map in Map Manager, height manager and routemaker.

that the returned route is placed in the same position in the map as the agent it belongs to.
It is also possible to verify this from the GUI by adding several keyframes to more than one
agent in different orders and compiling the scenario. Then the routes to each drone will be
painted between the keyframes. Fig. 31 shows two agent with three keyframes each at different

timestamps, generating their respective routes.

Figure 31: Compile scenario with multiple agents.

9.1.10 Automated tasks RS | HM

As mentioned in section 6.2.7, Azure Pipelines were employed for automated tasks. This
includes automatically publishing the website online whenever the repository of the website is
updated, as well as automatically publishing the code documentation generated by Doxygen
whenever the main branch of Hivemind is updated.

Testing these pipelines is simple, but time-consuming. Verifying that the pipelines were

33

9. TESTING

working properly was done by repeatedly running the pipelines, both by manually triggering
them, and by updating different branches and verifying that they only automatically trigger
on updates in the defined branches. Each time a pipeline is run, Microsoft spins up a new
virtual machine on their servers, installs all packages and dependencies of Hivemind, and then
performs the task. This is both computationally expensive and time-consuming. In hindsight,
utilizing Azure’s support of locally hosted pipeline agents would be much more efficient in terms

of computational and time cost.

9.2 Testing of Hivemind HMM | NH

When each component had been verified to function correctly in isolation, they were merged
into the development branch of Hivemind for integration. After integrating these components
with the Graphical User Interface, the formal testing of the software against requirements
could occur. All requirements for the final product were tested and recorded in the document

in appendix L.

9.2.1 Verification of the Graphical User Interface HM | HUM

To test the Graphical user interface as a whole system, a scenario was made. The first step was
to run the executable. When the GUI had finished loading the map, the following steps were
taken to verify that the software operated as expected:

e Set location to the church in Kongsberg with size as 250 meters
o Added 3 agents

« Made 15 key frames(5 for each agent)

o Compiled scenario

» Deleted 5 keyframes(chosen at random)

o Compiled scenario

o Added 5 new keyframes(so that agent ended up with 5 each)
o Compiled scenario

« Saved scenario

o Restarted Hivemind

o Loaded the scenario

e Compiled scenario

o Added a fourth agent

e Deleted 5 Keyframes

84

9. TESTING

¢ Saved scenario
e (Closed Hivemind

From doing this some bugs where made visible. One bug occurred when loading a scenario and
adding a new agent, wherein the new agent would get agentid O - the same id as previously
existing agents. This is confusing to the user when working on an oldscenario.

Testing is an important part of the software development process. In Hivemind, testing was
conducted continuously, with the final product thoroughly tested when all software components
had been integrated with the GUI. The final two sections of this report will illustrate the risk

analysis for the Hivemind software.

85

10. PRODUCT RISK ANALYSIS

10 Product Risk Analysis

Thorough risk analysis was considered a vital part of Hivemind because of the client speci-
fications that the software will control drones in the real world without their own sensors or
ability to avoid obstacles, including human ones. For the sake of safety, it was crucial that risks
and the severity of allowing unsafe and untested code to slip through the cracks into the final

product was constantly kept in mind. You can find the risk analysis in appendix J.

10.1 Definitions and risk matrix NH | AM

The logic behind the product is much the same as the project sik analysis. The definitions for
the degree of consequence for the product are defined in the tab 6. While the likelihood of

occurrence and the risk matrix itself is the same as in section 5.2 (fig. 6) (tab. 2).

Definition of degree of consequence for product

Degree of consequence Outcome
1 Insignificant Product works as normal.
2 Small Product stops working.
3 Considerable Product stops working, and won't start working again, even with restart.
4 Serious Products works, but not as intended.
5 Disastrous Product stops working and drones start crashing.

Table 6: Consequence for product

10.2 Client interaction and risk identification NH | AM

Risk was often discussed in the regular meetings with the external supervisor. As the scope of
the project revealed itself, it was necessary to discuss on whether to include external risks, such
as birds and weather, into risk considerations. As a result, the final risk matrices only include
internal and external risks which Hivemind has some ability to influence. For example, birds
are not included in the risk considerations.

On the other hand, the possibility of signal/GPS jamming will be included in the final risk
analysis as a security consideration to be taken into account while operating Hivemind. Some
external risks have not been added yet, as they concern the real-time part of the project which
is not included in our scope of the project.

What has been added is a "future risks" section which is divided into "operational" and
"software" risks. These are some of the risks that were considered, but ultimately fell outside

the scope of the project. They should nevertheless be mentioned in the risk analysis.

10.3 Risk mitigation strategies NH | AM

To address product risks, Hivemind has implemented several mitigation strategies, such as
rigorous testing and validation of the software, ensuring that safety features are designed and
implemented correctly. Hivemind has also committed to revisiting and expanding the risk
analysis once the MVP was completed to ensure that all relevant risks are considered and

appropriate mitigation strategies are in place, which was done as planned.

86

10. PRODUCT RISK ANALYSIS

10.4 Encountered risks NH | AM

The integration of RVIZ and Qt6 for 3D visualization proved to be more challenging than
anticipated, primarily due to the limited documentation and support for seamless integration
or viable workarounds. Despite employing extensive testing to mitigate this issue, none of the
methods we attempted yielded a result.

Debugging Qt in the compilers we used posed difficulties, as breakpoints did not function
as expected. The reason for this is that Qt generates code automatically, and the debuggers
in Visual Studio Code and CLion do not account for this autogenerated code. This issue was
encountered by multiple team members on separate occasions. However, after finishing the
coding phase of the project, we discovered that debugging in Qt Creator would be an effec-
tive mitigation strategy. Qt Creator considers the autogenerated code, providing an effective
debugging environment.

This chapter has briefly explained how product risk analysis was considered and absorbed
into the software development process. Having completely covered all aspects of the Hive-
mind implementation, the next section will evaluate the success of Hivemind in meeting the

requirements set at the onset of the project.

87

11. EVALUATION

11 Ewvaluation

For Hivemind, there are two main aspects that merit evaluation. First, whether the software
delivered in fact does what the client requested when they outlined the project. Second, how well
the project model and work methods worked, and to what extent these supported a successful

and untroubled software development process. This section will deal with these considerations.

11.1 Have we met the requirements? HMM | NH

Tab. 7 shows a list of all the requirements for the minimum viable product and their completion
statuses. It demonstrates that all the functionality that was agreed upon by the customer for
the minimum viable product has been successfully implemented in Hivemind. In addition,
three extra functions have been implemented: support for route planning of multiple agents, a
timeline widget for the user interface that provides a more intuitive way of adding keyframes,

and the visual representation of the calculated routes in the form of a line on the map.

Requirement Status Notes

GUI with tabs and options | Completed

Save/load scenarios Completed

Map data query Completed

Height data query Functional, but not com- | Height data is interchange-
pleted able, but not dynamically

downloaded from internet
Coordinate system con- | Completed
verter
Basical graphical represen- | Completed
tation of key frames in GUI
Single drone route planning | Completed

Additional functionality
Support for multiple agents | Functional, but mnot com- | Anti collision functionality

pleted has not been added, so these
routes are not considered
safe
Timeline Completed

Visual representation of cal- | Completed
culated route

Table 7: Table of revised requirements for product

Although the wording of some requirements for the minimum viable product have been
adjusted due to changing the practical implementation of some functionality, the essence of
these requirements remained the same. Some requirements and tests were also added for the
final product because advanced, additional functionality was added. All of the requirements for
the final version of Hivemind, including those for the minimum viable product, were met and
tested. These can be studied in detail in appendix F. This document also shows the added and

tested requirements for additional advanced functions that were added to the software after

88

11. EVALUATION

finishing the minimum viable product.

11.2 Practical evaluation HMM | NH

In general, as is evidenced from the previous section, the group’s agile working methods enabled
it to face most of the practical challenges that appeared during the course of the project. The
short sprint lengths meant that there was a continuous evaluation of whether or not the project
was headed in the right direction, and whether the group was focusing on the right things. This
also meant that the project itself was continuously evaluated and adjusted, which is evident
from the development seen in the documentation such as the architecture.

When members were absent or fell ill, it was easy to adjust the tasks to be completed in the
sprint and re-assign work to make sure everything was completed. The steady progress, and
meeting the most important deadlines at first and second presentations, along with semi-regular
team building and cake celebrations helped keep the group motivated and positive.

Finally, great organization and thorough planning made sure the project progressed smoothly
despite many regular absences. In fact, the project has largely been able to follow the time-
line that was proposed for the first presentation, showing that the entire process has been

well-thought out and planned bearing in mind what the group could realistically achieve.

89

12. CONCLUSION

12 Conclusion

12.1 Challenges HMM | NH

Hivemind faced a number of challenges throughout the project. These have been divided into
academic and administrative challenges. The academic challenges were ones related to technical
work and requirements. A number of these have already been mentioned briefly in previous
sections, but this section will re-iterate these. The administrative challenges faced by Hivemind
generally involve those that made co-operation and meeting deadlines more difficult, such as

absences and illness. They will be described in this section.

12.1.1 Academic challenges HMM | NH

Distilling requirements Hivemind was not presented with a neat list of requirements for
the project. Instead, these were distilled over a long time period, starting with the first planning
meeting with the client/external supervisor. A large amount of effort was expended to develop
clear and concise requirements, which included numerous meeting with the client to clarify
their requests and tailoring already-defined requirements to the client’s actual needs. Work on

requirements also relates to the very specific table of requirements, and tests which was devised.

Scope of project Initially, the scope of the project was very large, including not only the
planning functionality, but also simulation and real-time control and monitoring modes. Early
on in the project, this meant that the group was spread a little bit thin trying to research and
plan out all the different components that would need to be implemented.

Around one month into the project, it gradually became clear that the scope of the project
had become too large to realistically (and responsibly) be completed. Through discussions with
the group’s external supervisor (and client), the large-scale planned software was etched down
to the minimum viable product that was ultimately delivered.

Changing the direction of the project after one month of a five month project run poses a
significant challenge, especially when considering that this could mean having to discard already
completed work that is no longer relevant for the new minimum viable product. Luckily, the
group handled this flexibly and was able to re-purpose most of the work already completed. In
fact, perhaps the only piece of documentation that does not hold a function in the minimum
viable product are the requirements that are only relevant for the whole, complete software.
Even this, however, has a use in giving the future developers of Hivemind an idea of how the
advanced functionality can be tested and what it should do. This demonstrates that the group
was able to pivot from one direction of the project to another, and that the work already done

was done in such a way that it was useful regardless of the scope of the project.

Determining a software development methodology and developing a flexible soft-

ware model This project posed a particularly difficult challenge in terms of software mod-

90

12. CONCLUSION

elling, as the software needed to be able to handle constantly changing environment. The core
software should remain resilient and unchanging regardless of what other functionalities were
added, while still allowing for extensions when new technologies or methods are to be combined
with Hivemind. Because of this, it was crucial to determine a software development model that
was uniquely suited to the problem solved in Hivemind.

Similarly, a very large section of the project was used to develop this flexible software model.
This is indicative of the large challenge related to software development and the creation of the
software model, as numerous different iterations were created before the final, stable version of

Hivemind’s architecture was finished.

Difficulty using the shared development environment Because it was envisioned early
on that the Hivemind software would need to run on a Linux system to make use of the Robot
Operating System (ROS), it was agreed that the project would also be developed in Linux.
Unfortunately, many in the group only had Windows computers, which led to the necessity
of setting up identical virtual machines. The hardware limitations of many in the group led
to many virtual machines to run slowly, triggering some members to exchange their operating
systems with Linux, while others wrote code and compiled code in a very relaxed pace.

This also meant that whenever any member downloaded and installed a new library to use
in their components, every other member would need to install this in their machine to properly
run the Hivemind software for testing. Often, installing many of these libraries was a challenge
in itself (which will be detailed in the next subsection), leading to errors and large amounts
of frustration for members. This particular challenge was solved by Ruben, who took upon
himself the role as general I'T support and wrote scripts to install all dependencies and build
the development environment, making it easy for the members to update their libraries.

Finally, CMake is used to build the software. This is a new technology for many of the
group members, and is not very intuitive to use without some guidance. Some members used
tens of hours trying to successfully install new libraries and include them with CMake. Again,

this challenge was generally addressed with scripts and assistance from Ruben.

Poorly documented libraries One significant challenge technically in this project was in-
stalling and successfully being able to use methods of the many libraries necessary in Hivemind,
such as GeographicLib, GDAL and RapidJSON.

In many cases, successfully importing these into the integrated development environment
was a result of trying and failing, intensive online research and caffeine. For many of these
libraries, the documentation of installing and importing is sadly lacking, or very inaccessible to
people not very familiar with working in this way already. In the case of GDAL, for example,
this was only successfully imported into Hivemind after looking up the source code of GDAL’s
own implementation of itself, to see how their CMake file was configured.

Unfortunately, there was no smart way of overcoming these obstacles, but instead was a
good exercise in tenacity. This exercise is a good demonstration of the excellent work ethic of

the Hivemind team, and how hard work can solve difficult technical challenges.

91

12. CONCLUSION

12.1.2 Administrative challenges HMM | NH

Ruben’s absence at start of project At the start of the project, Ruben was still completing
his exchange semester in Belgium. He was physically not present in Kongsberg for about the
first month of the project. This led to some logistical challenges in terms of group meeting
participation and co-operation.

While it is always the most ideal to be able to partake in meetings fully in-person, we
nevertheless addressed this problem by (1) planning the project early, (2) having regular Zoom
meetings to discuss our progress and the way forward and (3) making sure the tasks Ruben
was assigned to do the first month were tasks he could complete entirely by himself without
much input from anyone else.

The group was formed before the summer of 2022, which means we were able to gradually
agree on working methods, project methodology and other organizational details before the
project period formally started in January 2023. As a result, the group already knew how it
wanted to work, which values it wanted to follow, and which roles each member would have
before Ruben even left for Belgium. As a side note, Nils Herman was not part of the group at
this time, but joined when the project started in earnest January 2023.

Zoom meetings were decided early on as crucial for smoothly progressing the project while
Ruben was away. We had daily stand-up meetings on Zoom so Ruben always knew what
the rest of the group was working on, while he was also able to update the group on his
own progress. Semi-regular social activities on Fridays was early on decided to be desireable
for team-building purposes, and while Ruben was in Belgium, these were also digital, with
activities such as quizzes and GeoGuessr tournaments. Ruben also participated online in the
weekly Sprint planning and retrospective meetings.

Finally, Ruben was assigned tasks that were suitable to complete alone. This included
the work of determining coding standards, some research and starting to set up the group

development environment.

Regular absences Two group members in particular had regular or semi-regular absences.
Hilde Marie worked part-time in Oslo throughout the project period (in general, two days a
week), while Nils Herman had irregular days where he was partially or entirely absent due to
work or engagements in various volunteer organizations. The main challenges related to this
are two-fold.

First, the bachelor’s project is highly co-operative, and absences from core hours can impair
co-operation. In many cases, even though Hilde Marie and Nils Herman were able to make up
the time they missed, their tasks could have been more efficiently completed with the help of
other group members in a collaborative setting. At the same time, the rest of the group missed
out on helpful input or assistance from these two members while they were away. Many of the
programming tasks or technical work that needed to be done was co-operative in nature, for

example in the case where two components are highly intertwined.

92

12. CONCLUSION

Second, having to catch up with project work in the evenings after work or during the
weekends instead of resting, in addition to commuting, was an additional source of stress for
the members that had to do this. This was something that needed to be closely monitored in
order to be able to address this stress before it lead to burnout.

The first problem was dealt with through planning and flexibility. In the case of Hilde
Marie, the days she worked was decided together with the group ahead of time so her absences
were predictable. Tuesday and Thursday were chosen, so Hilde Marie was able to attend
the Sprint planning on Monday and the final stand-up meeting on Friday, in addition to the
group’s regular meetings with supervisors on Wednesday and Friday. In addition, while she
co-operated with the group when she was present in school, the tasks she was assigned were in
general tasks she could complete from home during the weekends if necessary. The HeightMap
components interfaces with few other components, and was therefore an excellent choice for
individual work. She also took responsibility for the literature review, which could successfully
be completed anywhere with little input from the rest of the group.

For Nils Herman, his absences were fewer and more irregular. The group maintained flex-
ibility through frequent communication on progress and problems using the Discord channel,
and Nils Herman participated on meetings through Zoom when possible. The group established
a "Help Me" channel on Discord which ensured it was easy for group members to ask for help
and to assist each other remotely. Nils Herman was also given tasks that could be completed
somewhat individually, such as devising the scheme for the project and product risk analysis,

and developing the timeline component.

Sickness There were two significant bouts of illness that affected the Hivemind project. The
first was sickness at the start of the project, where all members fell ill at different times within
a three-week period, leading to bouts of sickness of anything between one day and two weeks.
The second was Ruben falling ill the week of the final technical sprint.

The first bout of illness affected each individual differently, with the member falling ill the
longest being ill for two weeks. In general, this did not affect the progress of the project as a
whole for several reasons. First, because the project had weekly sprint planning meetings and
daily stand-up meetings, it was easy to re-assign work and to see when someone else needed to
take over work for someone feeling ill. Second, as it was early on in the project and most of the
work being done was related to research and planning the product, there was some leeway in
when tasks needed to be done, allowing the group to accommodate for the absences. Finally,
because not everyone was sick at the same time, and because most of the group was indisposed
for less than a week, the group still had resources to complete their tasks.

The second bout of illness could have severely impacted the completion of the project, or
shifted the timeline of the project, leading to less time to write the report. One member fell
ill during the final technical sprint, which was a potential challenge because their tasks needed
to be finish before the project could be considered complete. This hurdle was passed without
much turbulence, however, as other members were able to take over this member’s tasks, and

the rest of the tasks to be done were adjusted to make sure Hivemind could be completed. As

93

12. CONCLUSION

a result, the timeline for the project did not need to be shifted, and the advanced functionality

of the software was able to be integrated into the software as hoped.

Three members from the same family One important concern from the start of the
project was to make sure Ruben and Nils Herman felt comfortable in the group and not like
outsiders, despite the fact that Aurora, Harald and Hilde Marie are cousins. This was something
the entire group was reminded of early on in the project, and implementing semi-regular team
building sessions was one method meant to target this potential issue. As a final evaluation
of this, however, it is important to note that Ruben and Nils Herman never felt like outsiders.

This demonstrates this challenge was very successfully addressed.

12.2 Future work

Although Hivemind is fully functional, there are a number of features that could be added to
the route planning mode to improve the user experience. In addition, there are two more modes

to be added before Hivemind can be considered "completed'. This section will address these.

12.2.1 Planning mode HMM | NH

The planning mode still lacks dynamically updated height data. When envisioned, the Vertex
Manager component would be able to query a WCS when the user selected a new origin coor-
dinate and download the selected sized map around this origin point. As detailed in the section
for the Vertex Manager, the group was unable to devise a way to open the GML file, in part due
to file constraints. Though the software will function perfectly fine using manually downloaded
and selected GeoTIFF files, being able to dynamically update the height data given an origin
point and size would greatly improve the user experience.

As of right now, when calculating routes for multiple agents, the routemaker makes sure
each agent avoids the surrounding terrain and buildings, but not other agents. As a result,
the scenario cannot be considered safe to test with real drones. Any future work on Hivemind
should improve additional work on the algorithm to calculate routes that will not intersect
close enough in time that a collision is likely. One way to accomplish this would be for the
routemaker to mark the cells between keyframes as occupied in the time interval the keyframes
define. This way, when planning routes for other agents, those cells could be avoided.

A number of visual tweaks remains to be done to the GUI. In particular, the GUI would
be easier to use if (1) the colours on the timeline corresponded to the different colour of each
agent involved in the scenario and (2) the different agents were placed at different heights on
the timeline, so it is easy to distinguish between them.

At present, if creating a scenario, all keyframes are saved as relative points to the selected
origin. If the origin is changed after creating keyframes, the routes calculated by compiling
the scenario will be incorrect. This means a user would need to delete all keyframes present
after changing the origin, posing a problem if an operator plans a route and tests it at one safe

geographic location and then brings it somewhere else to perform a light show.

94

12. CONCLUSION

While planning, coordinates occupied by buildings, trees and other terrain are not high-
lighted, which means it is not evident to the planner if keyframes will hit anything before
scenario is compiled. Improvements to the GUI necessarily includes a visual representation of
obstacles based on the HeightMap.

In addition, though the Load scenario and Save as buttons from the file menu in the GUI
function as intended, the Save and New project buttons are still dummies that do nothing when
clicked. When continuing development on the software, adding functionality to the Save and
New project buttons will ensure making multiple projects is a more streamlined experience for
the user.

Finally, at present, the timeline only covers 100 seconds. This is not dynamic and cannot be
changed without editing the source code. To make it easy to create longer shows by using the
graphical user interface, Hivemind should be augmented to allow for selecting longer lengths

and dynamically updating the timeline.

12.2.2 Simulation and Launch modes HMM | NH

The Hivemind Simulation and Launch modes were not implemented during this run of the
project. Both of these functions are integral to creating the software that the client initially en-
visioned. In terms of Simulation, some work has already been done looking at 3D visualisation,
whose lessons can be applied to expanding the Hivemind software.

The Launch mode will require further knowledge of the drones that will ultimately be used
with the software, and will need to implement a large number of components to handle different
sensor data such as battery status, positional data, as well as adding emergency landing and

dynamic re-routing functionality.

12.3 Contribution HMM | NH

The primary goal of this project was to produce a piece of software that could be of use to the
client. Because it was determined that there would be insufficient time to complete all of the
planning, simulation and launch modes during the project period, the focus was therefore to
produce route planning software with a functional planning mode, and that was scalable and
flexible enough that the client could add the rest of the functionality at a later time without
making significant changes to the software backbone. In this regard, the project has succeeded
and contributed towards the goal of the client of having their own proprietary route planning

software for light shows.

The software has a fully functional planning mode, which can program routes for a practi-
cally unlimited amount of agents. The resulting routes take into consideration the local terrain,
buildings and trees, and will therefore be able to avoid collisions with static objects. Although
the software takes Kongsberg as a starting point (as this was part of the client’s original re-
quest), the map used by the software can be easily exchanged by a user, and any new GeoTIFF
file of Norway will function with the software given the coordinates are UTM33N. The GUI is

intuitive and user-friendly, with visualisations of the route planned and an interactive timeline.

95

12. CONCLUSION

Finally, great care has been taken in the design process of the software, which has ensured that
the architecture allows for the addition of further functionality without having to change any
of the existing components.

In terms of academics, Hivemind may not have provided any new insights itself through
experiments and simulations, but it does provide a novel flexible, open-source solution that
can be augmented by future researchers interested in a variety of different topics related to
UAVs. Hivemind is perfectly designed so that new technologies in terms of software and drones
can easily be added to the software. Finally, the architecture of Hivemind is different from
many previously proposed as the algorithm that the route planning software is run on is eas-
ily replaced. In addition to the intended functionality for light shows, some applications for
extensions of Hivemind could include comparison of different algorithms, a planning software
for real routes (given the agents that will fly them have their own anti-collision solutions) or

functionality added for agriculture and cinematography.

96

REFERENCES

References

[1] S. of Automotive Engineers International, “Taxonomy and definitions for terms
related to driving automation systems for on-road motor vehicles.” [Online]. Available:
https://www.sae.org/standards/content /j3016 202104/

[2] E. Anderson, T. Fannin, and B. Nelson, “Levels of aviation autonomy,” in 2018 IEEE/AIAA
37th Digital Avionics Systems Conference (DASC), 2018, pp. 1-8.

[3] H.-M. Huang, E. R. Messina, and J. S. Albus, “Toward a generic model for autonomy
levels for unmanned systems (alfus),” NIST, Aug 2003. [Online]. Available: https://www.

nist.gov/publications/toward-generic-model-autonomy-levels-unmanned-systems-alfus

[4] F. Hu, X.-L. Huang, and D. Ou, Communication Topology Analysis upon a Swarm of UAVs:
A Survey, 1st ed. Boca Raton; London; New York: CRC Press, 2021.

[5] [Online]. Available: https://earth-info.nga.mil/index.php?dir=coordsys&action=coor
dsys

[6] “json,” 1999. [Online]. Available: https://www.json.org/json-en.html

[7] [Online]. Available: https://earth-info.nga.mil/index.php?dir=coordsys&action=coor
dsys

[8] [Online]. Available: https://www.geonorge.no/en/references/references/coordiante-syste

ms/
[9] [Online]. Available: https://earth-info.nga.mil/index.php?dir=wgs84&action=wgs84

[10] J. F. Kennedy, R. C. Eberhart, and Y. Shi, Swarm intelligence, ser. The Morgan Kaufmann

series in evolutionary computation. San Francisco: Morgan Kaufmann Publishers, 2001.

[11] “Swarm definition,” Apr 2023. [Online|. Available: https://www.merriam-webster.com/d

ictionary /swarm

[12] E. Teague and R. H. Kewley, “Swarming unmanned aircraft systems,” Defense Technical
Information Center, 9 2008. [Online]. Available: https://apps.dtic.mil/sti/citations/ADA4
89366

[13] P. Cybulski, “A framework for autonomous uav swarm behavior simulation,” in 2019
Federated Conference on Computer Science and Information Systems (FedCSIS), 2019, pp.
471-478.

[14] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and D. Sanchez, “A scalable architecture
for ordered parallelism,” in 2015 48th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2015, pp. 228-241.

97

https://www.sae.org/standards/content/j3016_202104/
https://www.nist.gov/publications/toward-generic-model-autonomy-levels-unmanned-systems-alfus
https://www.nist.gov/publications/toward-generic-model-autonomy-levels-unmanned-systems-alfus
https://earth-info.nga.mil/index.php?dir=coordsys&action=coordsys
https://earth-info.nga.mil/index.php?dir=coordsys&action=coordsys
https://www.json.org/json-en.html
https://earth-info.nga.mil/index.php?dir=coordsys&action=coordsys
https://earth-info.nga.mil/index.php?dir=coordsys&action=coordsys
https://www.geonorge.no/en/references/references/coordiante-systems/
https://www.geonorge.no/en/references/references/coordiante-systems/
https://earth-info.nga.mil/index.php?dir=wgs84&action=wgs84
https://www.merriam-webster.com/dictionary/swarm
https://www.merriam-webster.com/dictionary/swarm
https://apps.dtic.mil/sti/citations/ADA489366
https://apps.dtic.mil/sti/citations/ADA489366

REFERENCES

[15] R. Arnold, K. Carey, B. Abruzzo, and C. Korpela, “What is a robot swarm: A definition
for swarming robotics,” in 2019 IEEE 10th Annual Ubiquitous Computing, Electronics €
Mobile Communication Conference (UEMCON), 2019, pp. 0074-0081.

[16] 1. Maza, F. Caballero, J. Capitan, J. R. Martinez-de Dios, and A. Ollero, “Experimental
results in multi-uav coordination for disaster management and civil security applications,”
Journal of Intelligent & Robotic Systems, vol. 61, no. 14, p. 563585, Jan 2011. [Online].
Available: http://link.springer.com/10.1007/s10846-010-9497-5

[17] H. X. Pham, H. M. La, D. Feil-Seifer, and M. C. Deans, “A distributed control framework
of multiple unmanned aerial vehicles for dynamic wildfire tracking,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, vol. 50, no. 4, pp. 1537-1548, 2020.

[18] W. Zhou, Z. Liu, J. Li, X. Xu, and L. Shen, “Multi-target tracking for unmanned aerial
vehicle swarms using deep reinforcement learning,” Neurocomputing, vol. 466, pp. 285-297,
2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S092523122
1014223

[19] N. A. Kyriakakis, M. Marinaki, N. Matsatsinis, and Y. Marinakis, “Moving peak drone
search problem: An online multi-swarm intelligence approach for uav search operations,”
Swarm and Evolutionary Computation, vol. 66, p. 100956, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2210650221001188

[20] Z. Zhen, D. Xing, and C. Gao, “Cooperative search-attack mission planning for multi-uav
based on intelligent self-organized algorithm,” Aerospace Science and Technology, vol. 76,
pp. 402-411, 2018. [Online|. Available: https://www.sciencedirect.com/science/article/pii/
S1270963817301736

[21] M.-H. Kim, H. Baik, and S. Lee, “Response threshold model based uav search planning
and task allocation,” Journal of Intelligent & Robotic Systems, vol. 75, no. 3, p. 625640,
Sep 2014. [Online]. Available: https://doi.org/10.1007/s10846-013-9887-6

[22] D. Hambling, “The us navy wants swarms of thousands of small drones.” [Online].
Available: https://www.technologyreview.com/2022/10/24/1062039/us-navy-swarms-of-t

housands-of-small-drones/

23] K. C. W. Goh, R. B. C. Ng, Y.-K. Wong, N. J. H. Ho, and M. C. H. Chua,
“Aerial filming with synchronized drones using reinforcement learning,” Multimedia
Tools and Applications, vol. 80, no. 12, p. 1812518150, May 2021. [Online|. Available:
https://doi.org/10.1007/s11042-020-10388-5

[24] X. Jin, S. Liu, F. Baret, M. Hemerlé, and A. Comar, “Estimates of plant
density of wheat «crops at emergence from very low altitude wuav imagery,”
Remote Sensing of Environment, vol. 198, pp. 105-114, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0034425717302651

98

http://link.springer.com/10.1007/s10846-010-9497-5
https://www.sciencedirect.com/science/article/pii/S0925231221014223
https://www.sciencedirect.com/science/article/pii/S0925231221014223
https://www.sciencedirect.com/science/article/pii/S2210650221001188
https://www.sciencedirect.com/science/article/pii/S1270963817301736
https://www.sciencedirect.com/science/article/pii/S1270963817301736
https://doi.org/10.1007/s10846-013-9887-6
https://www.technologyreview.com/2022/10/24/1062039/us-navy-swarms-of-thousands-of-small-drones/
https://www.technologyreview.com/2022/10/24/1062039/us-navy-swarms-of-thousands-of-small-drones/
https://doi.org/10.1007/s11042-020-10388-5
https://www.sciencedirect.com/science/article/pii/S0034425717302651

REFERENCES

[25] P. Jiang, X. Zhou, T. Liu, X. Guo, D. Ma, C. Zhang, Y. Li, and S. Liu, “Prediction
dynamics in cotton aphid using unmanned aerial vehicle multispectral images and vegetation
indices,” IEEE Access, vol. 11, pp. 5908-5918, 2023.

[26] R. Gupta, P. Bhattacharya, S. Tanwar, N. Kumar, and S. Zeadally, “Garuda: A blockchain-
based delivery scheme using drones for healthcare 5.0 applications,” IEEFE Internet of Things
Magazine, vol. 4, no. 4, pp. 60-66, 2021.

[27] A. Staff, Jun 2022. [Online]. Available: https://www.aboutamazon.com/news/transport

ation/amazon-prime-air-prepares-for-drone-deliveries

[28] S. J. Plathottam and P. Ranganathan, “Next generation distributed and networked au-

)

tonomous vehicles: Review,” in 2018 10th International Conference on Communication

Systems € Networks (COMSNETS), 2018, pp. 577-582.

[29] W. Chen and Z. Jin, 1. Communication Topology Analysis upon a Swarm of UAVs: A
survey. Boca Raton: CRC Press, Dec 2020.

[30] A. Biirkle, F. Segor, and M. Kollmann, “Towards autonomous micro uav swarms,”
Journal of Intelligent € Robotic Systems, vol. 61, no. 1, p. 339353, Jan 2011. [Online].
Available: https://doi.org/10.1007/s10846-010-9492-x

[31] lker Bekmezci, O. K. Sahingoz, and amil Temel, “Flying ad-hoc networks (fanets):
A survey,” Ad Hoc Networks, vol. 11, no. 3, pp. 1254-1270, 2013. [Online|. Available:
https://www.sciencedirect.com /science/article/pii/S1570870512002193

[32] M. Campion, P. Ranganathan, and S. Faruque, “Uav swarm communication and control
architectures: a review,” Journal of Unmanned Vehicle Systems, vol. 7, no. 2, pp. 93-106,
2019. [Online]. Available: https://doi.org/10.1139/juvs-2018-0009

[33] S.-C. Choi, J.-H. Park, and J. Kim, “A networking framework for multiple-heterogeneous
unmanned vehicles in fanets,” in 2019 Eleventh International Conference on Ubiquitous and

Future Networks (ICUFN), 2019, pp. 13-15.

[34] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,”
SIGGRAPH Comput. Graph., vol. 21, no. 4, p. 2534, aug 1987. [Online]. Available:
https://doi.org/10.1145/37402.37406

[35] J. B. Clark and D. R. Jacques, “Flight test results for uavs using boid guidance
algorithms,” Procedia Computer Science, vol. 8, pp. 232-238, 2012, conference on Systems
Engineering Research. [Online]. Available: https://www.sciencedirect.com/science/article/

pii/S187705091200049X

[36] J. Wu, C. Luo, Y. Luo, and K. Li, “Distributed uav swarm formation and collision avoid-
ance strategies over fixed and switching topologies,” IEEE Transactions on Cybernetics,
vol. 52, no. 10, pp. 10969-10 979, 2022.

99

https://www.aboutamazon.com/news/transportation/amazon-prime-air-prepares-for-drone-deliveries
https://www.aboutamazon.com/news/transportation/amazon-prime-air-prepares-for-drone-deliveries
https://doi.org/10.1007/s10846-010-9492-x
https://www.sciencedirect.com/science/article/pii/S1570870512002193
https://doi.org/10.1139/juvs-2018-0009
https://doi.org/10.1145/37402.37406
https://www.sciencedirect.com/science/article/pii/S187705091200049X
https://www.sciencedirect.com/science/article/pii/S187705091200049X

REFERENCES

[37] W. Ren, “Consensus based formation control strategies for multi-vehicle systems,” in 2006

American Control Conference, 2006, pp. 6 pp.—.

[38] X. Dong, B. Yu, Z. Shi, and Y. Zhong, “Time-varying formation control for unmanned
aerial vehicles: Theories and applications,” IEFE Transactions on Control Systems Tech-
nology, vol. 23, no. 1, pp. 340-348, 2015.

[39] X. Ge and Q.-L. Han, “Distributed formation control of networked multi-agent systems
using a dynamic event-triggered communication mechanism,” IEEE Transactions on Indus-
trial Electronics, vol. 64, no. 10, pp. 8118-8127, 2017.

[40] H. Liu, T. Ma, F. L. Lewis, and Y. Wan, “Robust formation control for multiple quadrotors
with nonlinearities and disturbances,” IEEFE Transactions on Cybernetics, vol. 50, no. 4,
pp. 1362-1371, 2020.

[41] W. Jasim and D. Gu, “Robust team formation control for quadrotors,” IEEE Transactions
on Control Systems Technology, vol. 26, no. 4, pp. 1516-1523, 2018.

[42] X. Liang, Y.-H. Liu, H. Wang, W. Chen, K. Xing, and T. Liu, “Leader-following formation
tracking control of mobile robots without direct position measurements,” IEFE Transactions
on Automatic Control, vol. 61, no. 12, pp. 4131-4137, 2016.

[43] X. You, C. Hua, and X. Guan, “Self-triggered leader-following consensus for high-order
nonlinear multiagent systems via dynamic output feedback control,” IEEE Transactions on
Cybernetics, vol. 49, no. 6, pp. 2002-2010, 2019.

[44] K.-H. Tan and M. Lewis, “Virtual structures for high-precision cooperative mobile robotic
control,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and
Systems. IROS 96, vol. 1, 1996, pp. 132-139 vol.1.

[45] D. Zhou, Z. Wang, and M. Schwager, “Agile coordination and assistive collision avoidance
for quadrotor swarms using virtual structures,” IEFE Transactions on Robotics, vol. 34,

no. 4, pp. 916-923, 2018.

[46] [Online]. Available: https://www.kongsberg.com/kda/Who-we-are/200-years-of-excellenc
e/

[47] [Online]. Available: https://www.kongsberg.com/no/newsandmedia/news-archive,/20202

/forsvarsmateriell-velger-kongsberg-for-leveranse-av-nytt-taktisk-radiolinje-system /

[48] J. Finborud, “Kongsberg gruppen sikrer ny milliardavtale med det amerikanske forsvaret,”
May 2021. [Online]. Available: https://www.finansavisen.no/nyheter/industri/2021/05/11
/7671965 /kongsberg-gruppen-sikrer-ny-milliardavtale-med-det-amerikanske-forsvaret

[49] S. Zhu and D. Levinson, “Do people use the shortest path? an empirical test of wardrops
first principle,” PLOS ONE, vol. 10, no. 8, p. e0134322, Aug 2015. [Online]. Available:
https://dx.plos.org/10.1371/journal.pone.0134322

100

https://www.kongsberg.com/kda/Who-we-are/200-years-of-excellence/
https://www.kongsberg.com/kda/Who-we-are/200-years-of-excellence/
https://www.kongsberg.com/no/newsandmedia/news-archive/20202/forsvarsmateriell-velger-kongsberg-for-leveranse-av-nytt-taktisk-radiolinje-system/
https://www.kongsberg.com/no/newsandmedia/news-archive/20202/forsvarsmateriell-velger-kongsberg-for-leveranse-av-nytt-taktisk-radiolinje-system/
https://www.finansavisen.no/nyheter/industri/2021/05/11/7671965/kongsberg-gruppen-sikrer-ny-milliardavtale-med-det-amerikanske-forsvaret
https://www.finansavisen.no/nyheter/industri/2021/05/11/7671965/kongsberg-gruppen-sikrer-ny-milliardavtale-med-det-amerikanske-forsvaret
https://dx.plos.org/10.1371/journal.pone.0134322

REFERENCES

[50] C. Bongiorno, Y. Zhou, M. Kryven, D. Theurel, A. Rizzo, P. Santi, J. Tenenbaum,
and C. Ratti, “Vector-based pedestrian navigation in cities,” Nature Computational
Science, vol. 1, mno. 10, p. 678685, Oct 2021. [Online]. Available: https:
//www.nature.com/articles/s43588-021-00130-y

[51] A. Basiri, V. Mariani, G. Silano, M. Aatif, L. Tannelli, and L. Glielmo, “A survey on the
application of path-planning algorithms for multi-rotor uavs in precision agriculture,” The
Journal of Navigation, vol. 75, no. 2, p. 364383, 2022.

[52] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination
of minimum cost paths,” IEEE Transactions on Systems Science and Cybernetics, vol. 4,
no. 2, pp. 100-107, 1968.

[53] K. Daniel, A. Nash, S. Koenig, and A. Felner, “Theta*: Any-angle path planning
on grids,” Journal of Artificial Intelligence Research, vol. 39, p. 533579, Oct 2010,
arXiv:1401.3843 [cs]. [Online]. Available: http://arxiv.org/abs/1401.3843

7 Numerische

[54] E. W. Dijkstra, “A note on two problems in connexion with graphs,
Mathematik, vol. 1, mno. 1, p. 269271, Dec 1959. [Online|. Available: http:

//link.springer.com/10.1007/BF01386390

[55] Y. Wang, X. Liang, B. Li, and X. Yu, “Research and implementation of global
path planning for unmanned surface vehicle based on electronic chart,” in Advances in

Intelligent Systems and Computing. Springer International Publishing, nov 2017, pp.
534-539. [Online|. Available: https://doi.org/10.1007%2F978-3-319-65978-7_ 80

[56] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95 -
International Conference on Neural Networks, vol. 4, 1995, pp. 1942-1948 vol.4.

[57] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,” The International
Journal of Robotics Research, vol. 20, no. 5, p. 378400, May 2001. [Online|. Available:
http://journals.sagepub.com/doi/10.1177/02783640122067453

[58] X. Li, Y. Zhao, J. Zhang, and Y. Dong, “A hybrid pso algorithm based flight path opti-
mization for multiple agricultural uvavs,” in 2016 IEEE 28th International Conference on
Tools with Artificial Intelligence (ICTAI), 2016, pp. 691-697.

[59] H. S. Dewang, P. K. Mohanty, and S. Kundu, “A robust path planning for mobile robot
using smart particle swarm optimization,” Procedia Computer Science, vol. 133, pp. 290—
297, 2018, international Conference on Robotics and Smart Manufacturing (RoSMa2018).
[Online|. Available: https://www.sciencedirect.com/science/article/pii/S1877050918309815

[60] X. Peng, F. Guan, Z. Wang, and S. Gao, “Simulation and optimization of multi-uav route
planning based on hybrid particle swarm optimization,” in Advances in Simulation and
Process Modelling, Y. Li, Q. Zhu, F. Qiao, Z. Fan, and Y. Chen, Eds. Singapore: Springer
Singapore, 2021, pp. 223-232.

101

https://www.nature.com/articles/s43588-021-00130-y
https://www.nature.com/articles/s43588-021-00130-y
http://arxiv.org/abs/1401.3843
http://link.springer.com/10.1007/BF01386390
http://link.springer.com/10.1007/BF01386390
https://doi.org/10.1007%2F978-3-319-65978-7_80
http://journals.sagepub.com/doi/10.1177/02783640122067453
https://www.sciencedirect.com/science/article/pii/S1877050918309815

REFERENCES

[61] C.-L. Huo, T.-Y. Lai, and T.-Y. Sun, “The preliminary study on multi-swarm sharing par-
ticle swarm optimization: Applied to uav path planning problem,” in 2011 IEEE Congress
of Evolutionary Computation (CEC), 2011, pp. 1770-1776.

[62] A. Puente-Castro, D. Rivero, A. Pazos, and E. Fernandez-Blanco, “A review of
artificial intelligence applied to path planning in uav swarms,” Neural Computing
and Applications, vol. 34, mno. 1, p. 153170, Jan 2022. [Online]. Available:
https://link.springer.com/10.1007/s00521-021-06569-4

[63] L. He, N. Aouf, and B. Song, “Explainable deep reinforcement learning for uav
autonomous path planning,” Aerospace Science and Technology, vol. 118, p. 107052, 2021.
[Online|. Available: https://www.sciencedirect.com/science/article/pii/S1270963821005629

[64] S. Perez-Carabaza, E. Besada-Portas, J. A. Lopez-Orozco, and J. M. de la
Cruz, “Ant colony optimization for multi-uav minimum time search in uncertain
domains,” Applied Soft Computing, vol. 62, pp. 789-806, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1568494617305483

[65] G. Zhang, R. Wang, H. Lei, T. Zhang, W. Li, and Y. Song, “Uav path planning based
on variable neighborhood search genetic algorithm,” in Advances in Swarm Intelligence,
Y. Tan and Y. Shi, Eds. Cham: Springer International Publishing, 2021, pp. 205-217.

[66] S. Aggarwal and N. Kumar, “Path planning techniques for unmanned aerial vehicles: A
review, solutions, and challenges,” Computer Communications, vol. 149, pp. 270-299, 2020.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/S0140366419308539

[67] X. Luo, X. Li, Q. Yang, F. Wu, D. Zhang, W. Yan, and Z. Xi, “Optimal path planning for
uav based inspection system of large-scale photovoltaic farm,” in 2017 Chinese Automation
Congress (CAC), 2017, pp. 4495-4500.

[68] B. M. Sathyaraj, L. C. Jain, A. Finn, and S. Drake, “Multiple uavs path planning
algorithms: a comparative study,” Fuzzy Optimization and Decision Making, vol. 7, no. 3,
p. 257267, Sep 2008. [Online]. Available: https://doi.org/10.1007/s10700-008-9035-0

[69] F. Haro and M. Torres, “A comparison of path planning algorithms for omni-directional
robots in dynamic environments,” in 2006 IEEE 3rd Latin American Robotics Symposium,

2006, pp. 18-25.

[70] UgCS, “UgCS Commander: Manage multiple UAVs” [Online]. Available: https:

//www.ugcs.com/page/ugcs-commander-manage-multiple-uavs

[71] DJI, “Flight planning software for dji drones.” [Online]. Available: https://www.djifligh

tplanner.com/
[72] Orbit Logic. [Online|. Available: https://www.orbitlogic.com/uav-planner.html

102

https://link.springer.com/10.1007/s00521-021-06569-4
https://www.sciencedirect.com/science/article/pii/S1270963821005629
https://www.sciencedirect.com/science/article/pii/S1568494617305483
https://www.sciencedirect.com/science/article/pii/S0140366419308539
https://doi.org/10.1007/s10700-008-9035-0
https://www.ugcs.com/page/ugcs-commander-manage-multiple-uavs
https://www.ugcs.com/page/ugcs-commander-manage-multiple-uavs
https://www.djiflightplanner.com/
https://www.djiflightplanner.com/
https://www.orbitlogic.com/uav-planner.html

REFERENCES

[73] DroneDeploy, “Desktop flight planning.” [Online|. Available: https://help.dronedeploy.c
om/hc/en-us/articles/1500004861101-Desktop-Flight-Planning

[74] QGroundControl, “Qgroundcontrol user guide.” [Online]. Available: https://docs.qground

control.com/master/en/index.html

[75] PaparazziUAV, “Overview - paparazziuav.” [Online|. Available: https://wiki.paparazziua

v.org/wiki/Overview

[76] Y. Bouzid, Y. Bestaoui, and H. Siguerdidjane, “Guidance-control system of a quadrotor
for optimal coverage in cluttered environment with a limited onboard energy: Complete
software,” Journal of Intelligent & Robotic Systems, vol. 95, no. 2, p. 707730, Aug 2019.
[Online|. Available: https://doi.org/10.1007/s10846-018-0914-5

[77] N. Aliane, C. Q. G. Muitioz, and J. Sdnchez-Soriano, “Web and matlab-based platform
for uav flight management and multispectral image processing,” Sensors, vol. 22, no. 11,
2022. [Online]. Available: https://www.mdpi.com/1424-8220/22/11/4243

[78] S. Romaniuk, Z. Gosiewski, and L. Ambroziak, “A ground control station for the uav
flight simulator,” Acta Mechanica et Automatica, vol. 10, no. 1, pp. 28-32, 2016. [Online].
Available: https://doi.org/10.1515/ama-2016-0005

[79] D. Perez, 1. Maza, F. Caballero, D. Scarlatti, E. Casado, and A. Ollero, “A
ground control station for a multi-uav surveillance system,” Journal of Intelligent
& Robotic Systems, vol. 69, no. 1, p. 119130, Jan 2013. [Online]. Available:
https://doi.org/10.1007/s10846-012-9759-5

[80] O. Zedadra, C. Savaglio, N. Jouandeau, A. Guerrieri, H. Seridi, and G. Fortino, “Towards
a Reference Architecture for Swarm Intelligence-based Internet of Things,” in International

Conference on Internet and Distributed Computing Systems, Mana Island, Fiji, Dec. 2017.
[Online]. Available: https://hal.science/hal-02317288

[81] . Madridano, A. Al-Kaff, P. Flores, D. Martin, and A. de la Escalera, “Software
architecture for autonomous and coordinated navigation of uav swarms in forest
and urban firefighting,” Applied Sciences, vol. 11, no. 3, 2021. [Online]. Available:
https://www.mdpi.com/2076-3417/11/3/1258

[82] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software. USA: Addison-Wesley Longman Publishing Co., Inc., 1995, pp.
127-134.

[83] “What is CI/CD?” may 2022. [Online|. Available: https://www.redhat.com/en/topics/d

evops/what-is-ci-cd

103

https://help.dronedeploy.com/hc/en-us/articles/1500004861101-Desktop-Flight-Planning
https://help.dronedeploy.com/hc/en-us/articles/1500004861101-Desktop-Flight-Planning
https://docs.qgroundcontrol.com/master/en/index.html
https://docs.qgroundcontrol.com/master/en/index.html
https://wiki.paparazziuav.org/wiki/Overview
https://wiki.paparazziuav.org/wiki/Overview
https://doi.org/10.1007/s10846-018-0914-5
https://www.mdpi.com/1424-8220/22/11/4243
https://doi.org/10.1515/ama-2016-0005
https://doi.org/10.1007/s10846-012-9759-5
https://hal.science/hal-02317288
https://www.mdpi.com/2076-3417/11/3/1258
https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://www.redhat.com/en/topics/devops/what-is-ci-cd

REFERENCES

[84] M. Shahin, M. Ali Babar, and L. Zhu, “Continuous integration, delivery and deployment:
A systematic review on approaches, tools, challenges and practices,” IEEE Access, vol. PP,
03 2017.

[85] “What are the four fundamental methods of requirement verification?” [Online].
Available: https://www.modernanalyst.com/Careers/InterviewQuestions/tabid/128/ID/

1168/ What-are-the-four-fundamental-methods-of-requirement-verification.aspx
[86] “Unit test,” 2013. [Online]. Available: https://wiki.c2.com/?UnitTest

[87] L. Bass, P. Clements, and R. Kazman, Software architecture in practice, 3rd ed. MTM,
2013.

[88] C. Feldmann, The practical Guide to Business Process Reengineering Using IDEFO.
Dorset House Publishing, 2013.

[89] “GDAL Documentation.” [Online]. Available: https://gdal.org/

[90] Library of Congress, “Sustainability of digital formats: Planning for library of congress
collections,” May 2020. [Online]. Available: https://www.loc.gov /preservation/digital/for
mats/fdd/fdd000279.shtml

[91] “Raster bands.” [Online|. Available: https://help.arcgis.com/en/geodatabase/10.0/sdk/ar

csde/concepts/rasters/entities /rasterbands.htm

[92] Open Geospatial Consortium, “Ogc geotiff standard,” Sep 2019. [Online]. Available:
https://docs.ogc.org/is/19-008r4 /19-008r4.html

[93] Kartverket, “Hgydedata laserinnsyn2.” [Online|. Available: https://hoydedata.no/LaserIn
nsyn2/

[94] “GDALDriver class.” [Online]. Available: https://gdal.org/api/gdaldriver cpp.html

[95] “GDAL Geotransform Tutorial.” [Online|. Available: https://gdal.org/tutorials/geotransf

orms_ tut.html

[96] C. Karney, “Geographiclib.” [Online]. Available: https://geographiclib.sourceforge.io/200
9-03/index.html

[97] C. F. Karney, “Transverse mercator with an accuracy of a few nanometers,” Journal of
Geodesy, vol. 85, no. 8, p. 475485, 2011.

(98] “Googletest,” 2023. [Online]. Available: http://google.github.io/googletest/
[99] “Bootstrap documentation.” [Online|. Available: https://getbootstrap.com

[100] “Qgis documentation.” [Online]. Available: https://docs.qgis.org/3.28/en/docs/index.h
tml

104

https://www.modernanalyst.com/Careers/InterviewQuestions/tabid/128/ID/1168/What-are-the-four-fundamental-methods-of-requirement-verification.aspx
https://www.modernanalyst.com/Careers/InterviewQuestions/tabid/128/ID/1168/What-are-the-four-fundamental-methods-of-requirement-verification.aspx
https://wiki.c2.com/?UnitTest
https://gdal.org/
https://www.loc.gov/preservation/digital/formats/fdd/fdd000279.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000279.shtml
https://help.arcgis.com/en/geodatabase/10.0/sdk/arcsde/concepts/rasters/entities/rasterbands.htm
https://help.arcgis.com/en/geodatabase/10.0/sdk/arcsde/concepts/rasters/entities/rasterbands.htm
https://docs.ogc.org/is/19-008r4/19-008r4.html
https://hoydedata.no/LaserInnsyn2/
https://hoydedata.no/LaserInnsyn2/
https://gdal.org/api/gdaldriver_cpp.html
https://gdal.org/tutorials/geotransforms_tut.html
https://gdal.org/tutorials/geotransforms_tut.html
https://geographiclib.sourceforge.io/2009-03/index.html
https://geographiclib.sourceforge.io/2009-03/index.html
http://google.github.io/googletest/
https://getbootstrap.com
https://docs.qgis.org/3.28/en/docs/index.html
https://docs.qgis.org/3.28/en/docs/index.html

REFERENCES

[101] N. Nolde, “Qgis 3 plugin tutorial - qt designer explained " gisops,” Jan 2021. [Online].
Available: https://gis-ops.com/qgis-3-plugin-tutorial-qt-designer-explained/

[102] “Robot operating system.” [Online|. Available: https://www.ros.org/
[103] “Rviz.” [Online]. Available: http://wiki.ros.org/rviz
[104] “Point clouds.” [Online]. Available: https://pointclouds.org/

[105] PointCloudLibrary, “Find_qt.cmake - pointcloudlibrary/pcl” [Online]. Available:
https://github.com/PointCloudLibrary /pcl/blob/master /cmake/pcl_find _qt.cmake

[106] “Apent API for hgyde- og dybdedata fra Kartverket.” [Online]. Available: https:
//ws.geonorge.no/hoydedata/v1/

[107] “Tiff library and utilities.” [Online|. Available: http://www.libtiff.org/

[108] “Rasterio Documentation.” [Online|. Available: https://rasterio.readthedocs.io/en/stabl

e/

[109] “Nasjonal hgydemodell Digital overflatemodell 25833 WCS.” [Online]. Available:
https:/ /kartkatalog.geonorge.no/metadata/nasjonal-hoeydemodell-digital-overflatemodell
-25833-wes/e36ead27-13al-4d7c-be82-977068dfc3e3

[110] “Brukerveiledning.” [Online]. Available: https://www.geonorge.no/aktuelt/om-geonorg
e/brukerveiledning/

[111] J. E. Bresenham, “Algorithm for computer control of a digital plotter,” IBM Systems
Journal, vol. 4, no. 1, pp. 25-30, 1965.

[112] C. Flanagan, “The bresenham line-drawing algorithm.” [Online]. Available: https:
//www.cs.helsinki.fi/group/goa/mallinnus/lines /bresenh.html

[113] “Programming concepts: Type introspection and reflection,” 2016. [Online]. Available:
https://thecodeboss.dev/2016/02/programming-concepts-type-introspection-and-reflectio

n/

[114] “Serialization and unserialization,” 2023. [Online]. Available: https://isocpp.org/wiki/fa

q/serialization

[115] “Boost serialization,” 2004. [Online]. Available: https://www.boost.org/doc/libs/1_81
0/libs/serialization/doc/index.html

[116] “Rapidjson,” 2015. [Online|. Available: http://rapidjson.org/

[117] “A practical guide to cplusplus serialization,” 2011. [Online|. Available: https:
//www.codeproject.com/articles/225988 / A-practical-guide-to-Cplusplus-serialization

105

https://gis-ops.com/qgis-3-plugin-tutorial-qt-designer-explained/
https://www.ros.org/
http://wiki.ros.org/rviz
https://pointclouds.org/
https://github.com/PointCloudLibrary/pcl/blob/master/cmake/pcl_find_qt.cmake
https://ws.geonorge.no/hoydedata/v1/
https://ws.geonorge.no/hoydedata/v1/
http://www.libtiff.org/
https://rasterio.readthedocs.io/en/stable/
https://rasterio.readthedocs.io/en/stable/
https://kartkatalog.geonorge.no/metadata/nasjonal-hoeydemodell-digital-overflatemodell-25833-wcs/e36ea427-13a1-4d7c-be82-977068dfc3e3
https://kartkatalog.geonorge.no/metadata/nasjonal-hoeydemodell-digital-overflatemodell-25833-wcs/e36ea427-13a1-4d7c-be82-977068dfc3e3
https://www.geonorge.no/aktuelt/om-geonorge/brukerveiledning/
https://www.geonorge.no/aktuelt/om-geonorge/brukerveiledning/
https://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html
https://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html
https://thecodeboss.dev/2016/02/programming-concepts-type-introspection-and-reflection/
https://thecodeboss.dev/2016/02/programming-concepts-type-introspection-and-reflection/
https://isocpp.org/wiki/faq/serialization
https://isocpp.org/wiki/faq/serialization
https://www.boost.org/doc/libs/1_81_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_81_0/libs/serialization/doc/index.html
http://rapidjson.org/
https://www.codeproject.com/articles/225988/A-practical-guide-to-Cplusplus-serialization
https://www.codeproject.com/articles/225988/A-practical-guide-to-Cplusplus-serialization

REFERENCES

[118] “Dom,” 2023. [Online|. Available: https://developer.mozilla.org/en-US/docs/Web/API
/Document_ Object_ Model

[119] [Online]. Available: https://www.usgs.gov/faqs/how-much-distance-does-a-degree-min

ute-and-second-cover-your-maps
[120] [Online]. Available: https://kart.gulesider.no/

[121] “Azure pipeline documentation,” 2023. [Online|. Available: https://learn.microsoft.com/

en-us/azure/devops/pipelines/?view=azure-devops

106

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://www.usgs.gov/faqs/how-much-distance-does-a-degree-minute-and-second-cover-your-maps
https://www.usgs.gov/faqs/how-much-distance-does-a-degree-minute-and-second-cover-your-maps
https://kart.gulesider.no/
https://learn.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops

BIBLIOGRAPHY

Bibliography
[Bibl] H. Hamann, Swarm Robotics: A Formal Approach, 2018.

[Bib2] H. Shakhatreh, A. H. Sawalmeh, A. Al-Fuqaha, Z. Dou, E. Almaita, I. Khalil, N. S.
Othman, A. Khreishah, and M. Guizani, “Unmanned aerial vehicles (uavs): A survey
on civil applications and key research challenges,” IEEE Access, vol. 7, pp. 48 572—
48 634, 2019.

107

Appendices

108

Appendix A

GML file returned by WCS request

109

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

--wcs
Content-Type: text/xml
Content-ID: GML-Part
<gml :boundedBy>
<gml:Envelope srsName="http://www.opengis.net/def/crs/EPSG/0/25833" axisLabels="x y"
— uomLabels=" " srsDimension="2">
<gml:lowerCorner>197332.000000 6624844 .000000</gml:lowerCorner>
<gml :upperCorner>200335.000000 6627847 .000000</gml :upperCorner>
</gml:Envelope>
</gml:boundedBy>
<gml:domainSet>
<gml:RectifiedGrid dimension="2" gml:id="grid_Coveragel">
<gml:limits>
<gml:GridEnvelope>
<gml:low>0 0</gml:low>
<gml:high>499 499</gml:high>
</gml:GridEnvelope>
</gml:limits>
<gml:axisLabels>band_1</gml:axisLabels>
<gml:origin>
<gml:Point gml:id="grid_origin_Coveragel"
— srsName="http://www.opengis.net/def/crs/EPSG/0/25833">
<gml:pos>197332.000000 6624844 .000000</gml:pos>
</gml:Point>
</gml:origin>
<gml:offsetVector srsName="http://www.opengis.net/def/crs/EPSG/0/25833">6.006000 0
— </gml:offsetVector>
<gml:offsetVector srsName="http://www.opengis.net/def/crs/EPSG/0/25833">0 6.006000
— </gml:offsetVector>
</gml:RectifiedGrid>
</gml:domainSet>
<gml:rangeSet>
<gml:File>
<gml:rangeParameters xlink:href="cid:Coveragel.tif"
— xlink:role="http://www.opengis.net/spec/WCS_coverageencoding_geotiff/1.0/"
< xlink:arcrole="fileReference"/>
<gml:fileReference>cid:Coveragel.tif</gml:fileReference>
<gml:fileStructure/>
<gml:mimeType>image/tiff</gml:mimeType>
</gml:File>
</gml:rangeSet>
<gmlcov:rangeType>
<swe:DataRecord>
<swe:field name="band_1">
<swe:Quantity>
<swe:description>band_1</swe:description>
<swe:uom code="unknown"/>

<swe:constraint>

110

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

<swe:AllowedValues>
<swe:interval>3.4E-38 3.4E+38</swe:interval>
</swe:AllowedValues>
</swe:constraint>
</swe:Quantity>
</swe:field>
</swe:DataRecord>
</gmlcov:rangeType>
</gmlcov:RectifiedGridCoverage>
--wcs
Content-Type: image/tiff
Content-Description: coverage data
Content-Transfer-Encoding: binary
Content-ID: dom_25833.tif
Content-Disposition: inline
IIx*

[encoded datal
<GDALMetadata>
<Item name="DataType">Generic</Item>

<Item name="SourceBandIndex" sample="0">0</Item>
</GDALMetadata>

[about 4500 more lines of encoded datal

111

Appendix B

Flowchart

112

Diagram Start
Key

Start input
‘ Yes P
®-

Input senario
center coordinates

Input project
parapeters Input area size

Input amount of
agents

Generate
new senario

Project open

NO-—A No /Save?\ Yes
No \/
See data
/

Yes Yes Start senario Ye Stop Senario

Y

Project
parameters (No.

M

No.

Appendix C

Requirements: User stories

114

Planning

As a drone operator
| want to see a map

So that | know where all the drones are

Given that the drones are connected to GPS
And that the drone are connected to the computer
When the drone operator opens the map on the computer

Then they should see all the drones that are connected to the computer on the
map with GPS coordinates

As a drone operator
I want a map where | can select an area

So that the drones will be restricted to flying within the selected area

Given that the computer is connected to GPS

And that the computer is connected to the drones
When the drone operator wants to restrict where the drone can fly

Then they should be able to specify, either with start and end coordinates or
through click and drag, an area where the drones are allowed to fly

As a drone operator
I want to see the buildings in the area

So that | can plan a route that goes around the buildings

Given that the computer has connection to the GPS network
When the drone operator is planning a scenario

Then the operator should be notified if the route goes too close to a building

As a drone operator
I want to select an area

So that the drones can land in a safe spot if needed

Given that the computer is connected to GPS
And that the computer is connected to the drones
When the drone operator wants to select an area for safe landings

Then they should be able to specify, either with start and end coordinates or
through click and drag, an area where the drones can perform a safe landing

As a drone operator
I want to be able to select a point on a map

So that| can make the drones point their lights at the point

Given the computer is connected to GPS

And the computer is connected to the drones
And the drones are connected to GPS

When the operator is planning a scenario

Then they have to be allowed to select a point on the map so that all the drones
will point towards the selected point.

As a drone operator
I want to be able to create, save and load scenarios | make

So that | can continue working on a scenario at a later date

When the operator is planning a scenario

Then there should be options to create a new scenario, load an old scenario or
save the current scenario.

As a drone operator

I want to simulate the scenario that is selected

So that | can check that the drones will not collide

Given that the operator has selected a scenario

Then the operator should be able to simulate the route for all the drones for the
specified scenario

As a drone operator

I want to be able to use meters and cartesian coordinates to tell the drones to
move

So that the drones will move a specified distance in a specified direction

When planning a scenario the operator should give the drones directions in
cartesian coordinates

Then the drones should move the correct distance in the correct direction

During Flight

As a drone operator

| want to see each drone's status

So that | can see which drones are having problems and where the drones are and
how much time they have left to fly

Given that the drones are operating
And connected to the computer
When | ook at the statuspage

Then | want to be able to see if a drone is having problems and remaining
expected flight time

As a drone operator

I want to be able to abort the flight if a drone has critical errors

So that | can avoid having the drones crash landing

Given that the drone has a fault notification
When the drone notices something is wrong

Then | want to be able to press a button that aborts the flight and makes the drone
perform an emergency landing in a given emergency landing area.

As a drone operator

I want to be able to control multiple drones at the same time

So that the drones follow their assigned paths

Given that all the drones are connected to the GPS network

And all the drones are connected to the computer
When the operator opens the program

Then they have to be able to assign paths to multiple drones in the same scenario.

Appendix D

Requirements: Use cases

121

Name, Drone overview, the drone operator wants to get an overview

description of all the drones and where they are.

nr.1.1

Actors Drone operator

Pre-condition The drone operator must have placed the drones they want to

use on the ground and turned them on.

Post-condition The drone operator can see a map of all the drones.

Main success Path
(primary flow)

The Drone operator starts the hivemind
program on their computer. Then the drone
operator connects to all the drones in the area
and clicks on the map button. The hivemind
program will then show a map of the
surrounding area and where the drones are.

Actor actions

System responses

1. Opens the hivemind
program.

1.1 Start the GUI.

2. Clicks on the find drone
button.

2.1 Checks if the computer is Connected to the
GPS network.

2.2 Tries to connect the drones in the area.

2.3 Checks if the drones are connected to the
GPS network.

3. Opensthe map in the
Hivemind program.

3.1 The Hivemind program gets GPS positions
from all the drones that are connected.

3.2 The Hivemind program will show all the
drones it got GPS positions from and the map.
3.3 The drones that could not send their GPS
position will be listed.

Name, Restricting the flight zone, the drone operator wants to be able

description to select an area on a map and prevent drones from flying in
the selected area.

Actors Drone operator

Pre-condition The drone operator must have the Hivemind program open

and be connected to the GPS network as well as all the drones
that are going to fly in the area.

operator.

Post-condition The drones will stay within the area selected by the drone

Main success Path
(primary flow)

1. Click the button to open
the map.

The drone operator opens the map in the
Hivemind program and selects the area they
want the drones to fly within.

1.1 Checks if the computer has a connection with
GPS.
1.2 Shows a map of the surrounding area.

2. Selects an area on the
map.

2.1 Selected area is graphically indicated on GUI.
2.2 A range of forbidden coordinates is
generated.

2.3 Range of forbidden coordinates added into
flight plan constraints.

Name, Terrain overview, the drone operator wants to get an overview

description of all the buildings in the area.

Actors Drone operator

Pre-condition The computer must be turned on and connected to the GPS
network

Post-condition The drone operator can see a map where he can click on a
building and get relevant information about the selected
building.

Main success Path When the drone operator is looking at the map

(primary flow) in the Hivemind program and clicks on a

building a small window opens that shows
information about the height of the building.

1. Opens the map in the 1.1 Shows the map
Hivemind program.

2. Clicks on a building on 2.1 Checks if there is any available data for the
the map. building.

2.2 Shows the information it gathered.
23 If it can't find any information about the
building it will show an error message instead.

Name, Assigning safe landing zones, The drone operator wants to be

description able to assign a safe landing area

Actors Drone operator

Pre-condition The computer must be turned on and connected to the GPS
network

Post-condition The drone operator can see a map and select an area and
assign it as a safe landing spot

Main success Path When the drone operator is looking at the map
(primary flow) in the Hivemind program and selects an area.
They get the option to assign the area as a safe

andini area.

1. Opensthe map in the 1.1 Shows the map.
Hivemind program.
2. Selects an area on the 2.1 Highlights the selected area
map. 2.2 Ask what the operator wants to do with the
area.

3. Assign it as a safe landing | 3.1 Send the coordinates of the assigned safe
zone. landing zones to the drones.

Name, Spotlight, the drone operator wants the drone to point at the
description same spot.

Actors Drone operator

Pre-condition The computer and the drones must be turned on and
connected to the GPS network

Post-condition The drone operator can see a map and select a spot on the
map and tell all the active drones to point at the same spot

Main success Path The drone operator is planning a scenario and
(primary flow) selects a specific time in the run. They also
select a spot on the map where he wants all the
drones to point their lights. When the drones
follow the route they will at the specified time

ioint their Iiiht in the correct direction.

1. When planning a 1.1 The program gets the GPS coordinates for the
scenario the drone selected point.
operator selects a point
on the map.

2. Assign the point as 2.1 Sends instructions to the drones when and

somewhere they want the | where they should point.
drones to point.

Name, Creating, saving and loading scenarios, the drone operator

description should have the options to create new scenarios, save
scendrios and load previous scenarios.

Actors Drone operator

Pre-condition The Hivemind app has to be open on the computer

Post-condition The Hivemind program has loaded a previously made
scenario or saved the current scenario.

Main success Path
(primary flow)

1. Clicks on the save
scenario button.

When making a scenario for the drones the
drone operator wants to save the scenario so
that they can keep working on it later. They click
the save scenario button and the program
saves the scenario as a XML/JSON file.

1.1 Asks what the scenario should be called.

2. Inputs a name.

2.1 Saves the scenario as a XML/JSON file.

Alternative success Path
(secondary flow)

1. Clicks on the load
scenario or create new
scenario buttons.

When making a scenario for the drones the
drone operator wants to load a scenario they
already made.

1.1 Open the directory where scenarios are
stored.

2. Either selects the file they
want to open or where
they want to store a new
scenario.

2.1 Loads the scenario.

Name, Simulation, the drone operator should have the option to

description simulate the scenario when they have completed making a
scendario or while making a scenario. They should see the
surrounding area.

Actors Drone operator

Pre-condition

The Hivemind app is open on the computer and the drone
operator has selected a scenario to simulate.

Post-condition

The Hivemind program has simulated the scenario so that the
drone operator can see that the scenario works in theory.

Main success Path
(primary flow)

1. Clicks on the “simulate 1.1 Asks the operator to choose which scenario to
scenario” button simulate.

When the drone operator wants to simulate a
scenario they need to first select the scenario
they want to simulate and give a start position
for the scenario.

1.2 Asks for the start coordinates for the scenario.

2. Clicks on the “start 2.1 Shows a visual representation of the scenario.
simulation” button

Name, Cartesian coordinates, while working in Hivemind all
description coordinates should be converted to cartesian coordinates
Actors Drone operator
Pre-condition The Hivemind app is open on the computer and the drone
operator is planning a scendario.
Post-condition The drone operator is done planning a scenario.
Main success Path The drone operator is planning a scenario. They
(primary flow) choose a drone they want to move and tells it to
move in a specified direction and a specified
distance.
|Actoractions [systemresponses |
1. Clicks on adrone to give | 1.1Highlights the chosen drone.
it instruction.
2. Inputs the direction and 1.2 Moves the drone as specified and shows the
distance the drone has to | drone's new location.
move.
Name, Drone status, while the drones are in flight the drone operator
description wants to see the status of their connectivity and the status of
their batteries as well as any issues the drones are
encountering.
Actors Drone operator
Pre-condition The drones are in flight
Post-condition The drone operator can see the drones status in the Hivemind
program
Main success Path The drones send information about their status
(primary flow) and the Hivemind program organizes the data
in an intuitive woi.
1. Opens the “Drone Status” | 1.1Lists all connected drones and information
window. about their status.
1.2 Highlights any drones that are having issues.

Name, Abort Flight, while the drones are in flight they might encounter

description a critical issue. If this happens the drone operator needs to be
notified.

Actors Drone operator, Drone

Pre-condition The drones are in flight and having an issue

Post-condition The drone operator can see the drones issue in the hivemind
software and give it new instruction if it is needed.

Main success Path The drones send notifications to the Hivemind
(primary flow) software whenever they encounter anything
abnormal in flight. And receives new instructions

from the drone oierqtor.

1. Drone sends a notification | 1.1 Shows the issue the drone is having.
to the Hivemind software. | 1.2 Asks if it should continue as planned.

2. Drone operator inputs 2.1 Sends the new instruction to the drone.
new instructions for the
drone.
Alternative success Path The drone is told to continue Following the
(secondary flow) planned route.
1. Drone operator tells the 1.1 System continues as planned.
drone to continue as
planned.
Name, Controlling multiple drones, the drone operator wants to be

description able to control multiple drones at the same time.

Actors Drone operator
Pre-condition The drones are in flight

Post-condition The drone operator has assigned routes to multiple drones so
that they will follow their paths at the same time.

Main success Path The drone operator creates routes for different
(primary flow) drones and when the drone operator runs the
program the drones have to follow their own
path to a synchronized clock.
Actoractions |systemresponses |
1. Creates keyframes for 1.1 Handles the keyframes in a way where
multiple drones Hivemind can keep track of which keyframes
belong to which drone.

Appendix E

Requirements table

132

Priority colours

Status colours

User story, requirements, testing

colours

system.

Optional - nice to have

Ongoing Testing

Completed

Not Viable

Colours will be set to coordinate with colours in our architecture in order to easily track which requirements relate to which component of our

User story
1.

Drone
overview

Use case

1.1

The drone
operator wants
togetan
overview of all
the drones and
where they are.

Actor actions
Initiates the
Hivemind
software.

System response
Launch the

graphical user
interface (GUI)

Selects a the tab
they want

Shows the
corrects tab

Derived requirement

Priority

Test method

Status

T.1.1. Completed
Launch software, verify that

GUl is visible and can be

interacted with.

T.1.2. On going

Verify that the selected
mode corresponds to the
actual mode launched by
software.

Selects a tab Software initiates R.1.3. C T.1.3.
with a map computer GPS Computer will connect to the GPS network. Verify using a GUI map that
network the given GPS location is
connection correct.
Connects to the R.1.4. (o3 T.1.4.
compatible Computer is communicating on the correct Test that computer receives
drones in the area. | frequency/channel. a “sign-of-life” signal from a
dummy drone (testing
module).
R.1.5. (o T.1.5.
Computer successfully connects to all detected Successfully ping all drones
drones. connected on specified
frequency/channel.
Checks if the R.1.6. C T.1.6.
drones are Successfully query the drone for GPS connection Verify that the GPS status of
connected to the | status. a connected dummy drone
GPS network. can be queried by software.
Selects a tab Software receives | R.1.7. (o T.1.7.

with a map

the GPS position of
all connected
drones.

Computer is able to receive GPS data from a
connected drone.

Verify that the computer

can receive GPS data from a

connected drone (dummy

User story

Use case

Actor actions

System response

Derived requirement

Priority

Test method

drone), and that GPS data
received is the same that is
sent from a drone (dummy

Status

drone).
All connected R.1.8. (o T.1.8. Not started
drones with GPS Each connected drone that was connected to GPS is Verify that all connected
data made visible | visible on a map as a dot or number. drones with GPS data
on GUI appear on map, and that no
connected drones without
GPS data appears on map.
List drones that R.1.9. (o T.1.9. Not started
did not send GPS Each drone without GPS position will be made visible Connect a dummy drone
positions. in a designated part of the GUI with drone identifier. without GPS connection,
verify that it appears in the
designated part of the GUI.
2, 2.1 Selects a tab Map appears on R.2.1. B T.2.1. Completed
No fly The drone with a map screen When Opening the planner tab, map appears on Pressing the map button
zones operator wants software GUI correctly launches the map
to restrict the Click the “find Software confirms | R.1.3. (o T.2.2 Not started
drones to flying | computer” computer GPS Computer will connect to the GPS network. Verify that clicking the
within a button connection button will check GPS
selected area. connection
T.1.3. Not started
Verify using a GUI map that
the given GPS location is
correct.
Map relocates to R.2.2. (o3 T.2.3. Not started
computer GPS Visible map on GUI is centred upon the computer’s Given the computer’s
location location current location is known,
verify visually that the map
has been centred on the
correct location
Selects an area | User can select an | R.2.3. Cc T.2.4. Not started
on the map area on the map Software allows for the selection of an area on the Select an area and confirm
map that this area is accurately
Selected area is R.2.4. Cc reflected in the selection on | Not started
graphically The area selected will be graphically indicated the GUI
indicated on GUI
User should be R.2.5. (o T.2.5. Not started

able to fine-tune
selected area

When an area is selected, the user will be able to
fine-tune selection using either drag-and drop

When fine-tuning, user
commands are accurately

Userstory Usecase Actor actions Systemresponse Derived requirement Priority Test method Status

mechanics, incremental arrow commands or to reflected in the updated
enter their own coordinates. restricted area.
Dropdown menu R.2.6. (o3 T.2.6.
with further When an area is selected, a menu of options for Selecting an area correctly
actions appears selections will appear. triggers the selection menu
to appear
R.2.7. (o T.2.7.
A selection for making a restricted flight zone is The restrict flight zone option
available appears on the menu when
an area is selected on the
map.
User System enters R.2.8. B T.2.8.
clicks/selects restriction Selecting the restricted flight zone option successfully Test that selecting restrict
“restrict flight selection mode allows for the definition of a no-fly zone. flight zone option
zone” option successfully changes mode.
Confirms A range of R.2.9. B T.2.9.
selection forbidden A range of forbidden coordinates will be generated Select known “no flight zone”,
coordinates is when area has been selected cross-reference the
generated resulting coordinates with
the known ranges for the “no
flight zone” and ensure they
are the same.
Range of R.2.10. B T.2.10.
forbidden User is not allowed to create scenarios including any When trying to make a
coordinates drone at any of the restricted coordinates scenario including any
added into restricted coordinates, the
scenario system will return an error
constraints and not generate a
scenario.
3. 3.1 Selects a tab Map appears on T.2.1
Terrain The drone with a map screen Pressing the map button
Overview operator wants correctly launches the map
to have an

overview of the
buildings in the

area.
User clicks on a Dropdown menu R.3.1 (o3 T.3.1
point on the of available When user clicks on the map in the GUI, a dropdown Clicking the map will
map actions appears menu of available actions appears successfully show the

dropdown menu

User story

Use case

Actor actions

User clicks a
point on the
map

System response
Software checks if
there is available
data for point

Derived requirement

R.3.2

Height data is queried for data on a given
coordinate. It will return either the height data or a
NULL value.

Test method

T.3.2

Test selecting a coordinate
with known height data to
verify the returned data is
correct.

Status
Testing

T.3.3.

Test selecting a coordinate
with no known height data
to verify that the returned
data is correct.

Testing

Software displays

R.3.3

T.3.2

Not started

available Hivemind will display available height data for the Test selecting a coordinate
information selected point. with known height data to
verify the returned data is
correct.
If no data is R.3.4 T.3.4. Testing
available, an error | Software will display an error message and no more Test selecting coordinate
message is shown | data is returned. with known data NULL, verify
the software returns an error
message and no further
action is taken.
Sets a start Loads R.3.5. T.3.5. Completed
location for the topographical The software needs to be able to collect data and The software try to select a
drones information about | information about buildings and the landscape of point where you want to
the selected point | specified locations start and make sure the
software collects
information about the
correct ared
3.2 User selects 3D 2D map is R.3.6. T.3.6. Ongoing
User wants to mode exchanged with When 3D mode is chosen, the 2D map is successfully Test selecting 3D mode and
be able to view 3D visualisation of | replaced with 3D visualisation confirm that 3D visualisation
terrain in 3D terrain is loaded
(24/04/2023) T.3.7. Ongoing
Confirm that 3D visualisation
corresponds to height data
and selected origin of 2D
map
User clicks and Point of view R.3.7. T.3.8. Ongoing

drags screen (or
clicks on GUI
element) to

rotates in
accordance with
user selection

The user is able to rotate 3D visualisation using GUI
elements or mouse actions.

Test through interaction that
3D visualisation is rotated.

User story

Use case

Actor actions

System response

Derived requirement

Test method

Status

change point of
view

User scrolls Visualisation R.3.8. T.3.9. Ongoing
mousewheel (or | zooms in The user is able to zoom in or out on visualisation Test through interaction that
clicks on GUI using GUI elements or mouse actions. 3D visualisation zooms
element) to infout.
zoom in or out
4. 4.1 User selects Selected area is R.2.4 T.2.4 Not started
Safe The drone area on map graphically The area selected will be graphically indicated Select an area and confirm
Landing operator wants indicated on GUI that this area is accurately
Zones to select a spot reflected in the selection on
within which the the GUI
drones can Dropdown menu R.2.6. T.2.6. Not started
perform safe with further When an area is selected, a menu of options for Selecting an area correctly
landings. actions appears selections will appear. triggers the selection menu
to appear
R.4.1. T.4.1 Not started
The user will be able to select a “designate safe Verify that the option to
landing zones"” option designate a safe landing
zone appears in the menu
when user selects an area
User should be R.2.5. T.2.5. Not started
able to fine-tune The user will be able to fine-tune selection When fine-tuning, user
selected area commands are accurately
reflected in the updated
restricted area.
User selects Range of R.4.2.1. T.4.2. Not started
“designate safe | coordinates for Safe landing zone coordinates are displayed. Test that the selected area
landing zones” safe landing zone corresponds to a populated
option is displayed to the | R.4.2.2. list of coordinates.
user. Safe landing zones are populated based on user
selection.
Confirms A range of safe R.4.3. T.4.3. Not started
selection landing zones is A range of safe landing zone coordinates will be Test that the scenario
generated generated when area has been selected correctly includes the range
of safe landing zones
selected by the user.
5. 5.1 User clicks a Dropdown menu R.3.1 T.3.1 Not started
Spotlight The drone point on map of available When user clicks on the map in the GUI, a dropdown Clicking the map will

operator wants
to select a point
on a map that

actions appears

menu of available actions appears

successfully show the
dropdown menu

User story

Use case

will be targeted
for illumination.

Actor actions
User selects
“lluminate this
point”

System response

System
graphically marks
point as target of
illumination

Derived requirement

R.5.1.

When user clicks on the “llluminate this point” option,
the point is marked on the GUI map.

Priority

Test method
T.5.1.

Test that the point is marked

with an icon when
“llluminate this point” is
selected.

Status

T.5.2.
Verify that the marked point
is the same as the selected
point.

System gets the
coordinate for
selected point

R.5.2.
System can query map database for coordinates of
the selected point.

Software checks if
there is available
height data for
point

Software displays
available
information

T.5.3.

Verify that the returned
coordinates are the same
as a known test coordinate.

T.3.2

Test selecting a coordinate
with known height data to
verify the returned data is
correct.

Testing

T.3.3.

Test selecting a coordinate
with no known height data
to verify that the returned
data is correct.

Testing

T.3.2

Test selecting a coordinate
with known height data to
verify the returned data is
correct.

Testing

Planning space R.5.3. (o T.5.4.
appears with Queried information on coordinates and height will Verify that planning space
available be visible in a separate planning space (pane, successfully appears when
coordinate and window, popup), where the user can enter a user requests to illuminate
height data with information. a point, and that data it is
space to enter populated with is accurate.
desired height for
illumination.

User enters a lllumination target | R.5.4. (o T.5.5.

height selection
for a point.

coordinates
updated with
height.

When height data is entered into the planning pane,
the backend planning data is successfully updated
to reflect this change.

Verify that the entered
height data is the same as
what appears in the route.

- .

Userstory Usecase Actor actions Systemresponse Derived requirement Priority = Test method Status

Users confirms Route to illuminate | R.5.5. T.5.6.
selection point at selected System generates a route based on desired Simulate route and verify
height generated. | coordinates and height of illumination. that drone reaches desired
coordinates and height.
6. 6.1 (Whenin an System prompts T.6.1 Completed
Saving, The drone open scenario) the user to name Verify that clicking the
Loading operator wants | User clicks the the new scenario.. “Save” button will launch the
and to be able to “Save Scenario” save dialogue box.
Creating save button on the
Scenarios routes/scenario | GUI
s created to be | User enters a All scenario data T.6.4. Completed
able to load it name and clicks | is serialised to an Verify that the user can
later. enter. XML file. successfully save afile in
custom location.
T.6.3. Completed
Load file and verify that it is
identical to the plan saved
earlier.
User writes If using directory T.6.4. Completed
desired location | explorer, open Verify that the user can
of saved explorer GUI to successfully save afilein a
file/selects it allow the user to custom location.
using a directory | select desired
explorer. location.
6.2. (When in any Opens a list of T.6.5. Ongoing
The drone part of the recent saved Recent saved scenarios are listed out for the user to When “Load” is clicked, a list
operator wants | Hivemind Ul) scenarios to allow | select from. of recent scenarios will be
to load a Click the “Load” the user to select made available.
previously button. from
created Allows the user to T.6.6. Completed
scenario. explore file When “Load Scenario” is
structure to find pressed, verify that the
the desired explorer window appears.
scenario.
User selects Hivemind opens T.6.7. Completed
desired scenario | scenario planning Verify that the correct
mode. scenario opens when
selected.
Current scenario T.6.8. Completed
populated with Verify that the populated
data from file. options and coordinates

User story

Use case Actor actions Systemresponse Derived requirement Test method Status
match with a given, known
test scenario.
6.3 (When in the System opens T.6.9. Completed
The drone planner view) dialogue box Press the set location, and
operator wants | User selects “Set | allowing for verify that the dialogue box
to create a location” entering of to enter coordinates
simple scenario scenario appears as expected.
containing two coordinates
points User presses A new keyframe is T.6.10. Completed
“add keyframe” | added, and the Verify that the keyframe is
and inputs keyframe is added added to the graphical user
keyframe to the keyframe interface when enter is
information list pressed in the keyframe
dialogue box, and that
timestamp and location is
correct.
T.6.10. Completed
Verify that the keyframe is
added to the graphical user
interface when enter is
pressed in the keyframe
dialogue box, and that
timestamp and location is
correct.
The new keyframe | R.6.11. T.6.12. Completed
is added to the When a coordinate is added, a new keyframe Verify that added keyframe
timeline appears on the timeline corresponding to the relative is correctly assigned on the
timestamp of the keyframe timeline
R.6.12. T.6.13. Completed
The position of keyframes on the timeline should Add a coordinate, and verify
correspond to the length of the scenario and update that the distribution of
dynamically keyframes on timeline
dynamically updates.
User clicks add Dialogue box for T.6.14. Completed
keyframe new keyframe Press add keyframes, and
appears verify that the dialogue box
dppears as expected.
User enters New keyframe is T.6.10. Completed

coordinates and
timestamp and
presses enter

added, and the

keyframe is added

to the list of
keyframes.

Verify that the keyframe is
added to the graphical user
interface when enter is
pressed in the keyframe

Userstory Usecase Actor actions Systemresponse Derived requirement Test method Status
dialogue box, and that
timestamp and location is
correct.
T.6.10. Completed
Verify that the keyframe is
added to the graphical user
interface when enter is
pressed in the keyframe
dialogue box, and that
timestamp and location is
correct.
The new keyframe | R.6.11. T.6.12. Completed
is added to the When a is added, a new keyframe appears on the Verify that added keyframe
timeline timeline corresponding to the relative timestamp of is correctly assigned on the
the keyframe timeline
R.6.12. T.6.13. Completed
The position of keyframes on the timeline should Add a coordinate, and verify
correspond to the length of the scenario and update that the distribution of
dynamically keyframes on timeline
dynamically updates.
User presses All key frames are T.6.15. Completed
compile generated into a Press compile scenario, and
scenario route and all verify that a route is created,
routes are and that information in
compiled into a route is correct.
scenario.
6.4 User interacts As the user R.6.16. T.6.16.
The operator with timeline to interacts with The animation of keyframes on the map corresponds Interact with the timeline
wants to review | see the timeline, to their timestamps. and verify that the
the scenario keyframes keyframes animations correspond to
using a timeline | appear appears on map the keyframes.
in correct order
7. 71 Selects the Shows the R.7.1. T.7.1.
Simulation | The drone simulation mode | simulation GUIlon | The software needs a GUI for a simulation mode When the software is open
operator wants | in the software the screen try to select simulation
to simulate the mode and make sure the
selected software enters the desired

route/scenario.

state

(When in any
part of the
Hivemind UI)

Opens a list of
saved route plans
to allow the user
to select from

R.6.4.
Saved routes are listed out for the user to select from.

T.6.5.

When “Load Route” is clicked,
a list of routes will be made
available.

Userstory Usecase Actor actions Systemresponse Derived requirement Test method Status
Click the “Load” Allows the user to T.6.6. Completed
button. explore file When “Browse” is pressed,

structure to find verify that the explorer
the desired route. window appears.
User selects Hivemind opens T.6.7. Completed
desired route route planning Verify that the correct
mode. scenario opens when
selected.
Current scenario T.6.8. Completed
populated with Verify that the populated
data from file. options and coordinates
match with a given, known
test scenario.
Sets a start Loads T.3.5. Completed
location for the topographical When in the simulation
drones information about mode of the software try to
the selected point select a point where you
want to start and make sure
the software collects
information about the
correct area
Start simulation | Simulates the R.7.3. (o T.7.3.
scenario The software needs the ability to simulate the When in the simulation
planned scenario in a visual representation mode of the software try to
start a simulation and make
sure it uses the correct start
location and behave as
expected

8. 8.1 When the drone | The software T.8.1 Completed

Coordinate | The drone operator enters | converts Enter a coordinate and

Converting | operator wants | a coordinate the | coordinates check that you get expected

to convert software can whenever it is data in return.
between convert that needed.
different coordinate to a
coordinate different
systems. coordinate
system where it
is needed.

9. 9.1 Select the drone | List all the R.9.1 B T.9.1.

Drone The drone overview mode | connected drones | The software has to be able to keep track of which Connect several drone and

Status operator wants | in the software with a unique drone is which have them do different

to be able to

identification

movements to make sure it

User story

Use case

Actor actions

System response

Derived requirement

Priority

Test method

Status

see health is consistent with what
metrics of each shows up in the software
drone and if the software R.9.2. (o T.9.2, Not started
related receives The software has to be able to highlight drones that Have a dummy drone
warnings. information from a | are having problems so that they are easy to identify simulate having trouble by
drone that is for the drone operator sending a signal to the
having problems it software as if the drone was
highlights which having an issue and make
drone is having sure the correct drone is
issues highlighted in the software
Displays R.9.3. (o T.9.2. Not started
information from Has to be able to receive information from the Have a dummy drone
each drone. drones and keep track of which drone sent the simulate having trouble by
information sending a signal to the
software as if the drone was
having an issue and make
sure the correct drone is
highlighted in the software.
10. 10.1 A drone sends a [Highlight the R.10.1. (o3 T.9.2, Not started
Abort Flight | The drone message to the | drone that is Has to be able to receive information from the Have a dummy drone
operator wants | software that it struggling and drones and keep track of which drone sent the simulate having trouble by
to be able to is struggling what it is information sending a signal to the
safely abort the struggling with software as if the drone was
flight of one or having an issue and make
more drones. sure the correct drone is
highlighted in the software.
The drone Shows a R.10.2. (o3 T.10.1. Not started
operator clicks menu/pop-up Has to be able to show a menu/pop-up window Click on a drone when it is
the struggling window where the | when the drone operator clicks on a highlighted highlighted and make sure
drone drone operator drone you get the options to either
can either tell the emergency land it or to let it
drone to land or to keep doing the planned
continue as route
planned
The drone Sends instructions | R.10.3. C T.10.2. Not started
operator selects | to the struggling Has to be able to overwrite the planned route for the Have a dummy drone
the emergency drone to land at drones pretend to fly a route and try
landing option the closest to make it abort it's route
emergency and land in the emergency
landing landing zone
The drone The system keeps | R.10.4. (o3 T.10.3. Not started

operator selects

going as planned

User story

Use case

Actor actions

System response

Derived requirement

Test method

Status

the keep flying
option

The software has to be able to let drones keep flying
even if they have certain faults

Make a dummy drone
simulate having a problem
and ignore it in the software

n
Controlling
multiple
agents

Selects a drone

The software

R.IL1.

T.1.1.

Not started

The drone highlights the Has to be able to highlight a drone when it is When planning a scenario
operator wants selected drone selected you select a drone and
a mode make it the leader.
wherein he can The software R.11.2. T.1.2. Completed
indicate a lead makes routes for The software has to be able to make routes for After adding a different
drone and the rest of the several drones agent ID the software will
formation and drone so that they make paths for the different
have the rest of follow the leader drones based on the agent
the drones in a formation ID of the keyframe.
follow the
leader in a
selected route.
n.2 User adds a new | A new agent is R.1.3. T.1.3. Completed
The drone agent through listed in the user The user can add new agents through the interface. Test that adding new agent
operator wants | user interface interface along R.11.4. through interface causes Completed
to plan the actions with any previous | The new agent is correctly displayed in the user the new drone to correctly
routes agents interface. appear
individuailly for R.1.5 T.N.3. Completed
several agents All added agents should be uniquely identified in the Test that adding new agent
manually interface. through interface causes
the new drone to correctly
appear
User changes System changes R.11.6. T.1.3. Completed
active agent active agent Active agent is changed in system back-end Test that adding new agent
Active agent is R.11.7. through interface causes
displayed in user Active agent is indicated in user interface the new drone to correctly
interface appear
User adds System ascribes R.11.8.
keyframe for keyframe to active | The agent ID in the new keyframe is the same as the
active agent agent active drone.
User compiles System performs R.11.9. T.11.6. Not started

scenario

route planning to
avoid collisions

When generating a route for multiple agents, the
algorithm shall ensure the drones do not collide.

Try compiling a route where
the agents are on a clear
collision course and confirm
that collisions are avoided
through adjusting time
stamps or routes.

User story

Use case

Actor actions

System response

Derived requirement

Priority

Test method

Status

R.11.10. B T.1.7. Not started
If the algorithm is unable to prevent a collision, the Try setting up a route where
route should not be generated and an error returned. there is no way to avoid a
collision and confirm that
Compiles scenario | R.ILIL B T.1.8 Completed

containing all
agent route

The compiled scenario should include all agent
routes.

Compile scenario and
ensure all agent routes are
included.

Appendix F

Final Hivemind product requirements

146

Priority colours Optional - nice to have

Status colours Ongoing Testing Completed Not viable

User story, Colours will be set to coordinate with colours in our architecture in order to easily track which requirements relate to which
requirements, testing | component of our system.

colours

Userstory Usecase Actoractions System Derived requirement Priority Test method
response
Launch the

1. 1.1. Initiates the T.1.1.

Completed

Drone The drone Hivemind graphical user Launch software, verify
overview | operator software. interface (GUI) that GUI is visible and can
wants to get be interacted with.
an overview Selects a the Shows the R.1.2. T.1.2.
of the area tab they want | corrects tab Upon start-up, the user shall be able to select if Verify that the selected
the scenario they want to load or start a new scenario. scenario corresponds to
is being the actual scenario
planned for launched by software.
3. 3.1 Selects a tab Map appears on T.2.1 Completed
Terrain The drone with a map screen Open the planner tab,

Overview | operator
wants to have
an overview of
the buildings
and the
terrain in the
area

and verify that the map
for the given area
appears on screen.

User story Use case Actor actions System Derived requirement Test method Status
response
User clicks a Software R.3.3 T.3.2 Not started
point on the displays Hivemind will display available height data for Test selecting a
map available the selected point. coordinate with known
information height data to verify the
returned data is correct.
If no data is R.3.4 T.3.4. Testing
available, an Software will display an error message and no Test selecting coordinate
error message is | more data is returned. with known data NULL,
shown verify the software returns
an error message and no
further action is taken.
Sets a start Loads R.3.5. T.3.2 Completed
location for the | topographical The software needs to be able to collect data Test selecting a
drones information and information about buildings and the coordinate with known
about the landscape of specified locations height data to verify the
selected point returned data is correct.
3.2 User selects 3D | 2D map is R.3.6. T.3.6. Not viable
User wants to | mode exchanged with | When 3D mode is chosen, the 2D map is Test selecting 3D mode
be able to 3D visualisation successfully replaced with 3D visualisation and confirm that 3D
view terrain in of terrain visualisation is loaded
3D T.3.7. Not viable
(24/04/2023) Confirm that 3D
visualisation corresponds
to height data and
selected origin of 2D map
User clicks and | Point of view R.3.7. T.3.8. Not viable
drags screen rotates in The user is able to rotate 3D visualisation using Test through interaction
(or clicks on accordance GUI elements or mouse actions. that 3D visualisation is
GUI element) with user rotated.

selection

User story

6.

Saving,
Loading
and
Creating
Scenarios

Use case Actoractions System Derived requirement Priority Test method Status
response
to change
point of view
User scrolls Visualisation R.3.8. T.3.9. Not viable
mousewheel zooms in The user is able to zoom in or out on Test through interaction
(or clicks on visualisation using GUI elements or mouse that 3D visualisation
GUI element) actions. zooms in/out.
to zoom in or
out
6.1 (Whenin an System prompts T.6.1 Completed
The drone open scenario) | the user to Verify that clicking the
operator User clicks the | name the new “Save” button will launch
wants to be “Save scenario.. the save dialogue box.
able to save Scenario”
routes/scenari | button on the
os created to | GUI
be able to User enters a All scenario data T.6.4. Completed
load it later. name and is serialised to Verify that the user can
clicks enter. an XML file. successfully save a file in
a custom location.
T.6.3. Completed
Load file and verify that it
is identical to the
previously saved plan
6.2. (When in any Opens a list of R.6.4. T.6.5.
The drone part of the recent saved Recent saved scenarios are listed out for the When “Load” is clicked, a
operator Hivemind UI) scenarios to user to select from. list of recent scenarios will

wants to load
a previously
created
scenario.

Click the “Load”
button.

allow the user to
select from

Allows the user
to explore file

be made available.

T.6.6.

Completed

User story Usecase Actor actions System Derived requirement
response
structure to find
the desired
scenario.

User selects Hivemind opens
desired scenario
scenario planning mode.
6.3 (When in the System opens
The drone planner view) dialogue box
operator User selects allowing for
wants to “Set location” entering of
create a scenario
simple coordinates
scenario User presses A new keyframe
containing “add is added, and
two points keyframe” and | the keyframe is
inputs added to the
keyframe keyframe list
information

Priority

Test method

When “Load Scenario” is
pressed, verify that the
explorer window appears.

Status

T.6.7.

Verify that the correct
scenario opens when
selected.

Completed

T.6.9.

Set location and verify
that correct location and
data is loaded.

Completed

T.6.10.

Verify that the keyframe is
added to the graphical
user interface when enter
is pressed in the
keyframe dialogue box,
and that timestamp and
location is correct.

Completed

T.6.10.

Verify that the keyframe is
added to the graphical
user interface when enter
is pressed in the
keyframe dialogue box,
and that timestamp and
location is correct.

Completed

Userstory Usecase Actoractions System Derived requirement Priority Test method Status
response
The new R.6.11. Cc T.6.12. Completed
keyframe is When a coordinate is added, a new keyframe Verify that added
added to the appears on the timeline corresponding to the keyframe is correctly
timeline relative timestamp of the keyframe assigned on the timeline
R.6.12. Cc T.6.13. Completed
The position of keyframes on the timeline should Add a coordinate, and
correspond to the length of the scenario and verify that the distribution
update dynamically of keyframes on timeline
dynamically updates.
User presses All key frames T.6.15. Completed
compile are generated Press compile scenario,
scenario into a route and and verify that a route is
all routes are created, and that
compiled into a information in route is
scenario. correct.
6.4 User interacts | As the user R.6.16. Cc T.6.16.
The operator with timeline to | interacts with The animation of keyframes on the map Interact with the timeline
wants to see the timeline, corresponds to their timestamps. and verify that the
review the keyframes keyframes animations correspond to
scenario using | appear appears on map the keyframes.
a timeline in correct order
8. 8.1 When the The software T.8.1. Completed
Coordinat | The drone drone operator | converts Enter a coordinate and
e operator entersa coordinates check that you get
Convertin | wants to coordinate the | whenever it is expected data in return.
g convert software can needed.
between convert that
different coordinate to
coordinate a different
systems. coordinate

User story

Use case

Actor actions

System

Derived requirement

Test method

Status

system where

response

it is needed.
n [LA Selects a The software R.IL1L T.IL1. Not started
Controllin | The drone drone highlights the The software shall be able to highlight an agent Select an agent and
g multiple | operator selected drone when it is selected verify that it is highlighted.
agents wants a mode The software R.11.2. T.1.2. Completed
wherein he makes routes for | The software shall be able to make routes for Verify that each
can indicate a the rest of the several agents generated route is
lead drone drone so that separated by an agent ID.
and formation they follow the
and have the leader in a
rest of the formation
drones follow
the leaderin a
selected
route.
n.2 User adds a A new agent is R.11.3. T.1.3. Completed
The drone new agent listed in the user | The user can add new agents through the Test that adding new
operator through user interface along interface. agent through interface
wants to plan | interface with any R.1.4. causes the new drone to [Completed
the routes actions previous agents | The new agent is correctly displayed in the user correctly appear
individually for interface.
several R.11.5 T.1.3. Completed
agents All added agents should be uniquely identified Test that adding new
manually in the interface. agent through interface
causes the new drone to
correctly appear
User changes System changes | R.11.6. T.1.3. Completed

active agent

active agent

Active agent is changed in system back-end

Test that adding new
agent through interface

User story Use case

Actor actions

System

Derived requirement

Priority Test method

Status

response
Active agent is
displayed in user
interface

R.I1.7.
Active agent is indicated in user interface

User adds
keyframe for
active agent

System ascribes
keyframe to
active agent

R.11.8.
The agent ID in the new keyframe is the same as
the active drone.

causes the new drone to
correctly appear

User compiles
scenario

System R.11.9. T.11.6. Not started
performs route When generating a route for multiple agents, Try compiling a route
planning to the algorithm shall ensure the drones do not where the agents are on
avoid collisions collide. a clear collision course
and confirm that
collisions are avoided
through adjusting time
stamps or routes.
R.11.10. T.11.7. Not started
If the algorithm is unable to prevent a collision, Try setting up a route
the route should not be generated and an error where there is no way to
returned. avoid a collision and
confirm that no routes
are generated and an
error is returned.
Compiles R.ILIL T.1.8 Completed
scenario The compiled scenario should include all agent Compile scenario and

containing all
agent route

routes.

ensure all agent routes
are included.

Appendix G

Original test table

154

Priority colours

Necessary - part of minimum viable product

Optional - nice to have

Test Sub-tests Type of test Requirements tested
T.1.1. T.1.1.1. Inspection R1.1
Launch software, verify that GUI is visible and See that GUlI is visible Graphical user interface correctly launches
can be interacted with. T.1.1.2. Demonstration upon software start-up.
Verify GUI is interactive
T.1.1.3. Demonstration

Verify that interacting with GUI elements will trigger the right
process (i.e. “load” successfully triggers the loading operations)

T.1.2.
Verify that the selected mode corresponds to
the actual mode launched by software.

T.1.2.1.
Verify that selecting load will trigger the loading operation.

Demonstration

T.1.2.1.
Verify that selecting new scenario will open the software in
planning mode.

Demonstration

R.1.2.

Upon start-up, the user will be able to select if
they want to load or start a new scenario.
R.11

T.1.3.
Verify using a GUI map that the given GPS
location is correct.

T.1.3.1.
Verify that the computer connects to the GPS network

Demonstration/
Analysis

T.1.3.2.
Verify that the given GPS location is correct

Inspection/
Demonstration

R.1.3.
Computer will connect to the GPS network.

T.14. Demonstration/ R.1.4.

Test that computer receives a “sign-of-life” Analysis Computer is communicating on the correct
signal from a dummy drone (testing module). frequency/channel.

T.1.5. Demonstration R.1.5.

Successfully ping all drones connected on
specified frequency/channel.

Computer successfully connects to all
detected drones.

T.1.6.
Verify that the GPS status of a connected
dummy drone can be queried by software.

Demonstration

R.1.6.
Successfully query the drone for GPS
connection status.

T.1.7.

Verify that the computer can receive GPS data
from a connected drone (dummy drone), and
that GPS data received is the same that is sent
from a drone (dummy drone).

T.1.7.1. Analysis
Verify that computer can receive GPS data from a connected

drone

T.1.7.2. Testing/

Verify that GPS data received is the same that was sent from
drone

Demonstration

R.1.7.
Computer is able to receive GPS data from a
connected drone.

T.1.8.

T.1.8.1
Verify that all connected drones with GPS data appear on map.

Demonstration

Test

Sub-tests

Type of test

Requirements tested

Verify that all connected drones with GPS data
appear on map, and that no connected
drones without GPS data appears on map.

T.1.8.2.
Verify that no drones without data appear on the map.

Demonstration

Each connected drone that was connected to
GPS is visible on a map as a dot or number.

T.1.9.

Connect a dummy drone without GPS
connection, verify that it appears in the
designated part of the GUI.

Demonstration

R.1.9.

Each drone without GPS position will be made
visible in a designated part of the GUI with
drone identifier.

T.2.1.
Open the planner tab, and verify that the map
for the given area appears on screen.

Demonstration

R.2.1.
When opening the planner tab, map appears
on software GUI

T.2.2
Verify that clicking the button will check GPS
connection

Analysis/
Demonstration

R.1.3.
Computer will connect to the GPS network.

T.2.3.

Given the computer’s current location is
known, verify visually that the map has been
centred on the correct location.

Demonstration

R.2.2.
Visible map on GUI is centred upon the
computer’s location

T.2.4.

Select an area and confirm that this area is
accurately reflected in the selection on the
GUL.

T.2.4.1.
Verify that an area on the map can be selected.

Demonstration

R.2.3.
Software allows for the selection of an area on
the map

T.2.4.2. Analysis R.2.4
Verify that the highlighted area is the same as the one that was The area selected will be graphically
actually selected. o
indicated
T.2.5. Analysis/ R.2.5.

When fine-tuning, user commands are
accurately reflected in the updated restricted
areaq.

Demonstration

When an area is selected, the user will be able
to fine-tune selection using either drag-and
drop mechanics, incremental arrow
commands or to enter their own coordinates.

T.2.6.
Selecting an area correctly triggers the
selection menu to appear.

Demonstration

R.2.6.
When an area is selected, a menu of options
for selections will appear.

T.2.7.
The restrict flight zone option appears on the
menu when an area is selected on the map.

Demonstration

R.2.7.
A selection for making a restricted flight zone
is available

T.2.8.
Test that selecting restrict flight zone option
successfully changes mode.

Demonstration

R.2.8.

Selecting the restricted flight zone option
successfully allows for the definition of a
no-fly zone.

T.2.9.

Demonstration

R.2.9.

Test Sub-tests Type of test Requirements tested

Select known “no flight zone”, cross-reference A range of forbidden coordinates will be
the resulting coordinates with the known generated when area has been selected
ranges for the “no flight zone” and ensure they

are the same.

T.2.10. T.2.10.1. Demonstration R.2.10.

When trying to make a route including any
restricted coordinates, the system will return
an error and not generate a route.

Making a route including restricted coordinates returns an error.

T.2.10.2.
Making a route including restricted coordinates does not
generate a route.

Demonstration

User is not allowed to create routes including
any drone at any of the restricted coordinates

T.3.1
Clicking the map will successfully show the
dropdown menu

Demonstration

R.3.1
When user clicks on the map in the GUI, a
dropdown menu of available actions appears

T.3.2
Test selecting a coordinate with known height
data to verify the returned data is correct.

Demonstration

R.3.2

Height database is queried for data on a
given coordinate. It will return either the height
data or a NULL value.

R.3.3

Software will display available height data for
the selected point.

T.3.3. Demonstration R.3.2.
Test selecting a coordinate with no known

height data to verify that the returned data is

correct.

T.3.4. Analysis/ T.3.4.

Test selecting coordinate with known data
NULL, verify the software returns an error
message and no further action is taken.

Demonstration

Software will display an error message and no
more data is returned.

T.3.5.

When in the simulation mode of the software
try to select a point where you want to start
and make sure the software collects
information about the correct area

Testing/ Analysis

R.3.5.

The software needs to be able to collect data
and information about buildings and the
landscape of specified locations

T.4.1.

Verify that the option to designate a safe
landing zone appears in the menu when user
selects an area

Demonstration

R.4.1.
The user will be able to select a “designate
safe landing zones” option

T.4.2.
Verify that the selected area corresponds to a
populated list of coordinates.

Demonstration

R.4.2.1,R.4.2.2
Safe landing zone coordinate are displayed
and populated based on user selection

Test Sub-tests Type of test Requirements tested

T.4.3. Inspection R.4.3.

Verify that the scenario correctly includes the A range of safe landing zone coordinated
range of safe landing zones selected by the coordinates will be generated when area has
user. been selected

T.5.1. Demonstration R.5.1.

Test that the point is marked with an icon When user clicks on the “llluminate this point”
when “llluminate this point” is selected. option, the point is marked on the GUI map.
T.5.2. Inspection R.5.1.

Verify that the marked point is the same as the When user clicks on the “llluminate this point”
selected point. option, the point is marked on the GUI map.
T.5.3. Testing/ Analysis | R.5.2.

Verify that the returned coordinates are the System can query the map database for
same as a known test coordinate. coordinates of the selected point.

T.5.4. T.5.4.1. Demonstration R.5.3.

Verify that information successfully appears
when a user requests to illuminate a point, and
that data it is populated with is accurate.

Verify that information successfully appears when user requests
to illuminate point (in a pane on the side, window or similar)

T.5.4.2.
Verify that information populated is accurate.

Demonstration

Queried information on coordinates and
height will be visible in a separate planning
pane, where the user can enter information

T.5.5.
Verify that the entered height data is the same
as what appears in the route.

Analysis/
Demonstration

R.5.4.

When height data is entered into planning
pane, the backend planning data is
successfully updated to reflect this change.

T.5.6.
Simulate route and verify that drone reaches
desired coordinates and height.

Demonstration

R.5.5.
System generates route based on desired
coordinates and height of illumination.

T.6.1
Verify that clicking the “Save” button will launch
the save dialogue box.

Demonstration

R.6.1.
Clicking the save route button prompts a
dialogue box for saving the route.

T.6.2.
Verify that file is created.

Inspection

R.6.2.
The current scenario will be recorded
accurately in a JSON file.

T.6.3.
Load file and verify that it is identical to the
scenario saved earlier.

Testing/ Inspetion

R.6.2.
The current scenario will be recorded
accurately in a JSON file.

T.6.4.
Verify that the user can successfully save a file
in a custom location.

Demonstration/
Testing

R.6.3.
User is allowed to define where the file should
be saved.

T.6.5.
When “Load"” is clicked, a list of routes will be
made available.

Demonstration

R.6.4.
Saved routes are listed out for the user to
select from.

Test

Sub-tests

Type of test

Requirements tested

T.6.6.
When “Browse” is pressed, verify that explorer
window appears.

Demonstration

R.6.5.
User can browse through files to find correct
route.

T.6.7.
Verify that the correct scenario opens when
selected.

Demonstration

R.6.6.
When a scenario has been selected, Hivemind
will open the scenario.

T.6.8.

Verify that the populated options and
coordinates match with a given, known test
route.

Analysis/
Demonstration

R.6.7.

When a scenario is opened, all saved data
such as chosen options and current list of
coordinates populates relevant fields in the
planning panes.

T.6.9.

Press “new scenario”, and verify that the
dialogue box to enter coordinates appears as
expected.

Demonstration

R.6.8.

When user selects new scenario, some Ul
element allowing them to enter start
coordinates should appear

T.6.10.

Verify that the keyframe is added to the
graphical user interface when enter is pressed
in the keyframe dialogue box, and that
timestamp and location is correct.

Demonstration

R.6.9.

When a keyframe is entered, a new keyframe
is successfully added to graphical user
interface

R.6.10.

When a keyframe is entered, a new keyframe
appears in the keyframe list corresponding to
entered coordinates.

T.6.12.
Verify that added keyframe is correctly
assigned on the timeline

Demonstration/
Analysis

R.6.11.

When a coordinate is added, a new keyframe
appears on the timeline corresponding to the
relative timestamp of the keyframe

T.6.13.

Add a coordinate, and verify that the
distribution of keyframes on timeline
dynamically updates.

Demonstration

R.6.12.

The position of keyframes on the timeline
should correspond to the length of the
scenario and update dynamically

T.6.15.

Press compile scenario, and verify that a route
is created, and that information in route is
correct.

Demonstration

R.6.14.

Key frames for drones are generated into a
route.

R.6.15.

All routes are successfully compiled into a
scenario.

T.6.16.
Interact with the timeline and verify that the
animations correspond to the keyframes.

Demonstration

R.6.16.
The animation of keyframes on the map
corresponds to their timestamps.

Test

Sub-tests

Type of test

Requirements tested

T.7.1.

When the software is open try to select
simulation mode and make sure the software
enters the desired state

Demonstration

R.7.1.
The software needs a GUI for a simulation
mode

T.7.3.

When in the simulation mode of the software
try to start a simulation and make sure it uses
the correct start location and behave as
expected

Demonstration

R.7.3.
The software needs the ability to simulate the
planned route in a visual representation

T.8.1.
Enter a coordinate and check that you get
expected data in return.

Demonstration

R.8.1.

The software has to be able to convert
between coordinates in geographical
coordinate space, Universal Transverse
Mercator coordinate space and cartesian
space.

T.9.1.

Connect several drone and have them do
different movements to make sure it is
consistent with what shows up in the software

Demonstration

R.9.1.
The software has to be able to keep track of
which drone is which

T.9.2.

Have a dummy drone simulate having trouble
by sending a signal to the software as if the
drone was having an issue and make sure the
correct drone is highlighted in the software

Demonstration

R.9.2.

The software has to be able to highlight
drones that are having problems so that they
are easy to identify for the drone operator.
R.9.3.

Has to be able to receive information from the
drones and keep track of which drone sent the
information

T.10.1.

Have a dummy drone send a signal and
pretend like it is a struggling drone and make
sure the software is able to highlight the drone

Demonstration

R.10.1.

Has to be able to receive information from the
drones and keep track of which drone sent the
information

T.10.2.

Click on a drone when it is highlighted and
make sure you get the options to either
emergency land it or to let it keep doing the
planned route

Demonstration

R.10.2.

Has to be able to show a menu/pop-up
window when the drone operator clicks on a
highlighted drone

T.10.3.
Have a dummy drone pretend to fly a route
and try to make it abort it's route and land

Demonstration

R.10.3.
Has to be able to overwrite the planned route
for the drones

T.10.4.

Demonstration

R.10.4.

Test

Sub-tests

Type of test

Requirements tested

Make a dummy drone simulate having a
problem and ignore it in the software

The software has to be able to let drones keep
flying even if they have certain faults

T.ILL
When planning a scenario you select a drone
and make it the leader.

Demonstration

R.ILL
Has to be able to highlight a drone when it is
selected

T.1.2.

After making a drone the leader tell the
software you have more drones and tell it you
want a specific formation and make sure the
scenario is doable by simulating the routes it
made

Demonstration

R.11.2.
The software has to be able to make routes for
several drones

T.N.3.
Test that adding new agent through interface
causes the new drone to correctly appear

Demonstration

R.I1.3.

The user can add new agents through the
interface.

R.11.4.

The new agent is correctly displayed in the
user interface.

R.11.5

All added agents should be uniquely identified
in the interface.

R.11.6.

Active agent is changed in system back-end
R.IL7.

Active agent is indicated in user interface
R.11.8.

The agent ID in the new keyframe is the same
as the active drone.

T.11.6.

Try compiling a route where the agents are on
a clear collision course and confirm that
collisions are avoided through adjusting time
stamps or routes.

Demonstration

R.11.9.

When generating a route for multiple agents,
the algorithm shall ensure the drones do not
collide.

T.N.7.

Try setting up a route where there is no way to
avoid a collision and confirm that no routes are
generated and an error is returned.

Demonstration

R.11.10.

If the algorithm is unable to prevent a collision,
the route should not be generated and an
error returned.

T.1.8
Compile scenario and ensure all agent routes
are included.

Demonstration

R.ILIL
The compiled scenario should include all
agent routes.

Appendix H

Development of the software

architecture

163

Developing a stable architecture has been a continuous process since the end of the first
presentation. The architecture has gone through several iterations, developed using various
methods and envisioned to meet different goals before arriving at its current version. This
section will detail the considerations made before embarking upon the architectural design
process, the different versions of the architecture and how we arrived on them, and the final,

stable version of our architecture for the minimum viable product.

1 Initial Architectural Design HMM | AM

The Hivemind software will in time be able to serve a significant number of agents, and should
be able to monitor their process in real-time as well as give emergency commands with low
latency. As a result, Hivemind will need to be stable and efficient. The architecture should
facilitate the development of software that can meet these requirements.

In addition, there are two considerations that give rise to more requirements for the chosen
architecture. First, due to time constraints, it is unlikely that the project will be able to
complete the full software as imagined by the client. Instead, a minimum viable product will
be completed first, which means that the architecture should facilitate the ability to add new
features to the software and to increase the amount of agents it can handle as development
progresses.

Second, the project will ultimately not be finished by this group, but will be continued on by
another team in the future. This means the architecture should be easy to understand and easy
to maintain, even for someone who has not been a part of the project from its inception. The
architecture should also facilitate the software development process and help logically divide
the entire software into programmable components.

The criteria for an appropriate architectural pattern for this project is therefore (in no
particular order):

o Scalability

o Clarity
o Adaptability
o Stability

At the beginning of the architectural development process, we also spent some time consid-
ering different architectural patterns. The group has the most exposure to layered architecture,
and therefore compared other architectural patterns, such as event-driven architecture, with
layered architectures and considered both against our needs. In the end, it was determined
that a layered architecture was the most appropriate choice to describe the high level functions
that the software will be divided into, though it is apparent in the evolution of the architecture

that will be outlined below that the group was influenced by other ways of presenting software.

1.1 Initial component diagram HMM | AM

164

The first diagram that was created was a simple component diagram, containing five main com-
ponents - Graphical user interface (GUI), Status, Routeplanning, Simulation and Execution.

This was meant as a component diagram for the entire software, see figure H.1.

Hivemind

' g

{ GUI J { Status J {RouteplanningJ { Simulation J { Execution J

Figure H.1: The initial component diagram

This was further broken down into sub-components and functions, and included annotations
indicating which of the requirements each sub-component or function would fulfil (the full-scale
diagram is attached in the appendix), see figure H.2.

Although little of this initial diagram has made it into the final, stable architecture, it was
nevertheless a crucial step in starting to considering what the Hivemind software is meant to
do, and how it could do this. It was decided at this point that the minimum viable product

would not include sending new routes to drones in-flight or emergency landings.

Requirement
21515354
55

Route-
planning

Requirement:
16,91,92

Simluation

Designer Send/save Location | Requirement) . ~ .
zones data 2213 Timeline Collision Timeline RGN Ve Execution
?ezqu\rement acoidance planning simulation
Receive| ?enge'"e"l Execution
-| Requirement:
e
ment
Requirement:
ey §153558Y Receiv]
31333451 22,52
GPS Sending Receive o Change oy
coordinates data from data route for
Hivemind drone]
Visual Requirement: Route- { Drone|
. . 71,1873 5 19,1514,18, Emergency | Requirement: Out of
lanning 512153112 | status| 43
simulation p g 102,111 landing position
Receive Recieve
data data

Designer Save
zones routes data

Figure H.2: The initial component diagram

Recieve }

165

1.2 First architecture & model-view-controller dia-

gram

After mapping out components, the group attempted to create a more functional view of the

software through a layered architecture, figure H.3, and a model-view-controller diagram, figure

H.4.

Mapping these out yielded two results: 1, we realized that the minimum viable product was
still too large for this product and needed to be reduced in scale and 2, while stile not good ways

of illustrating the functionality of our software, it helped further crystallize our understanding

of which functions are necessary, and what they would do.

Ul Layer

Hivemind UI

View status
Simulate
Perform route

Route planning

applet
Calculate
Generate Add route
A Add zone
collision timeline element*
avoidance
Get height
data Save route

T
J

Data Llayer

@ap Dﬁj Epgﬁgﬂ

Ground | |
Control Stored
Positional routes

Data

Figure H.3:

Get location }47‘]

Simulate

Load route

1
v

Simulation
applet

Live route
applet

-~

The first layered architecture

Send route

Y

Req
sta

Status applet

uest
tus

onne

Ci cted
drones

MODEL

Persistent data

Context

Location

Heightmap

Satelite images

No fiight zones

Current Route

Routes for each drone

Emergency landing spots

Transient data
Agent data
Light
Battery

Error messages

Vector:

* Position
* Direction
* Speed

VIEW

Route pl

CONTROLLER

Coordinate system
converter

Route maker:
* Collision avoidance

Execution

Updating route

Launch

Abort

Send data

ing

Physical simulation

Visual simulation

Communication

Radio/5G

SERIALIZER BOY

Figure H.4: The derived MVC diagram

166

HMM | AM

1.3 Second layered architecture and use cases HMM | AM

The next iteration of our architecture came after redefining the minimum viable product and
deciding deciding to use a layered architecture to represent the functionality of the software.
This version of the architecture features functions divided into coloured boxes indicating which
main functionality they belonged to, and horizontal lines indicating interactions between func-
tions, see figure H.5.

At this point, all the functions and their interactions are becoming more clear and defined,
though the architecture itself is still somewhat hard to read. Further work to simplify and

present the abstract functionality of the software was therefore necessary.

(— Hivemind Graphical Interface

| Saveview | | Loadview | ‘/7 Planning view 7\
— — N _/

Route Planning
__Saving/loading __Routemaker™ Map and height
server

v v N

Coordinate converter

Generate
route

Add key Convert
frame ™[| coordinates Get height
’ T
1 Scenario i

Height
Data

Route

L] Key satellite
Frames Map

Figure H.5: The second layered architecture

1.4 Third layered architecture HMM | AM

When making the third layered architecture, we first started defining use cases, see figure H.6,
and then derived the architecture from these use cases, see figure H.7. In these use cases,
we imagine that the actor (or route planner) has only three options when interacting with the
Hivemind software: save scenario, load scenario, or add key frame. All other actions are derived
from these three.

As is apparent, the third architecture is much improved in terms of readability and clarity of
the main abstract functionality of Hivemind. Taking the knowledge gained from this iteration of
the architecture, the group re-did the architecture a final time, landing on the stable architecture
that is currently being used for future development. That being said, the architecture of
Hivemind remains an element of paramount importance, and is still being considered a living
document, and as more is discovered about limitations and opportunities derived from the

functions of the minimum viable product, the architecture itself is also subject to adjustments.

167

—USE CASE 1

O

Load Route

Actor (Route Planner)

—USE CASE 2

O

Save Route

Actor (Route Planner)

—USE CASE 3

Convert
coordinates

. 7
<include>
7

Add Key Frame

<include>

Actor (Route Planner)
Generate route

Figure H.6: Use cases for the third layered diagram

User Interface

Add Convert Generate

keyframe coordinates route Save route Load route

- 3
Stored
routes

Figure H.7: The third layered architecture

168

1.5 Final layered architecture before start coding AM | RS

In our efforts to determine the architecture for our software system, we adopted an approach
consisting of a logical architecture and a design architecture. Our chosen architectures are
based on a three-layered architecture, where the logical architecture is built upon the use
case diagram that we have developed. In contrast, the design architecture is based on the
logical architecture and the components we have created. The logical architecture serves as
the foundation of our software system, shown in fig. H.8. This architecture provides a high-
level view of the system, describing the absolute major components, their interactions, and the
data flow between them. The logical architecture primarily concerns the system’s behaviour,
functionality, and performance.

On top of the logical architecture, we developed a design architecture that focuses on the
physical implementation of the system, shown in fig. H.9. This architecture defines the detailed
structure and organization of the system’s components, their relationships, and their interac-
tions. The design architecture considers the constraints of the underlying technology and aims

to optimize the system’s performance, scalability, and maintainability.

User Interface Layer
User Interface
A

Computational layer

Data Layer

Ty
Settings

Figure H.8: The first high level architecture

169

User Interface

Coordinate
converter

Compile
scenario

Add key frame Save scenario

Load scenario

Get vertex Generate route Serializer deserializer

]

Figure H.9: The first desgin architecture

Current
scenario

Archive

170

2 Adapting Architecture for Coding Chal-

lenges & Requirements AM S

During the coding phase, several challenges arose, leading to changes in the architecture.
The implementation revealed that there were several architectural modifications that could have
been made to make the system more robust. This chapter will show how our architecture has
developed during the implementation phase, and explain each change that has been introduced.

In the initial coding components developed were the serializer and deserializer two separate
components. It became apparent that these components were responsible for much of the saving
and loading functionality. As a result, it was decided to merge them into two single compo-
nents instead of four separate ones, and therefore save and serializer one component(save), and

deserializer and load were one component(load) as in fig. H.10.

User Interface

Generate scenario

Compile
scenario
Save scenario
Routemaker

Current
scenario

Figure H.10: Merge the serializer and deserializer components with the save and load compo-
nents.

Load Sceriario

I Load scenario

Archive

Design settings

Keyframe

manager
Vertex Coordinate

manager converter

Settings

After merging the serializer and deserializer with save and load, it was important to establish
proper connections between the components and the data layer. Fig. H.11 illustrates one of

the attempts made.

171

User Interface

Design settings

Keyframe
manager

Generate scenario

Compile
scenario

Load Scenario

Save scenario Load scenario

Current .
Key h Archive
frames scenario

Figure H.11: An attempt to connect the data layer and components together.

Vertex Coordinate

manager converter Routemaker

Settings

When coding the following components, such as the keyframe manager, vertex manager,
route maker, and compile scenario, many of these components utilized the coordinate converter.
It was determined that treating the coordinate converter as a utility function rather than a
separate component would be more efficient. Therefore, it was removed from the architecture

and it was regarded as a utility function, see fig. H.12.

User Interface

DEST I Generate scenario Load Scenario

Compile
scenario

Keyframe

manager Load scenario

Vertex Save scenario

manager Routemaker

Current

. Archive
scenario

Settings

Figure H.12: Removed the coordinate converter from the architecture.

During the development of Hivemind, one of the challenges encountered was visualizing the
data layer effectively. Several changes were made to the data layer throughout the architec-
ture’s development. The objective was to eliminate any interfaces between the use case boxes.
Although fig. H.13 attempted to address this issue, there were still some remaining interfaces

between these components.

172

User Interface

Design settings Generate scenario Load Scenario

Keyframe Compile
manager scenario Load scenario

Vertex Save scenario

manager Routemaker

BEGING
map

Figure H.13: Removed horizontal lines between the use cases.

During the development of Hivemind, when the architecture was closely aligned with the
system, the team split the vertex manager into two separate components. Initially, to height
and map data, which has different functionality. It was determined that separating them into
distinct components would be better. As a result, the map manager and height manager were

developed, as shown in fig. H.14.

User Interface

Design settings Generate scenario Load Scenario

Keyframe
manager
Satellite map Heigth data

Online
Height
Data

Compile
scenario

Load scenario

Save scenario

Current
Scenario

Figure H.14: Vertex manager splited into map manager and height data.

Routemaker

Satelite
map

Settings Archive

Once the components were in place, it was essential to structure the architecture in line
with the system and make it easier to understand how the system was built. Since the code
was organized such that the map and height data were part of a scenario, these components
were moved into the "generate scenario" use case. This change also eliminated the horizontal
lines between the use cases. Please refer to Fig. H.15 for visualization. The name for the map
manager was changed to map management, height manager was changed to height management

and save scenario was changes to archive scenario. The team did this to ensure that the name

173

of each component aligned better with its actual functionality.

User Interface

Design settings Generate scenario .
Load Scenario

Compile
scenario

Save scenario

Map manager

Keyframe

Load scenario
manager

Height
manager

T

Routemaker

Online
Height
Data

Online
Satelite
map

Current
Scenario

Current

map Archive

Figure H.15: The placements of some of the components have been rearranged.

The team realized that it was not appropriate to have the coordinate converter as a global
function. Therefore, it was reintegrated into the architecture. This also resolved the issue of

horizontal arrows between the components as shown in fig. H.16

User Interface

Generate scenario

Design settings

Load Scenario

Map Compile Archive
management scenario scenario

Keyframe

management Load scenario

Coordinate
converter

Height
management

Routemaker

Current
Height
data

Online
Satelite
map

Current

EQUIES Scenario

[
Current
map

Figure H.16: Reintegrated the coordinate converter.

When the architecture containing the components aligned with Hivemind, the data layer in

the high-level architecture was updated as shown in the fig. H.17.

174

User Interface Layer
User Interface

Computational layer

Load
scenario

Design Generate

scenario
Online
C::;ent Height

P Data

Figure H.17: Final high-level architecture.

Settings

Datatayer

Current

Online
Satelite
map

Current

" Archiv
Scenario chive

Keyframes| Height Entries

data

— _

175

Appendix 1

IDEFO

176

datenie map vertex

Online height data-

Seographical coordinate Keyframe

Timestamp

Satellite map
Vertex
Get Vertex
Online height data V\—J

Geographical coordinate Coordinate
converter

Cartesian coordinate

keyframe

\4

Timestamp

A0

ddtenne map

vertex

Online height data-
Origin

Coordinates Keyframe

Timestamp

Keyframe

y

Satellite map R
Origi Vi
rioin - \ertex manager = -
Online height data
Agentid N
Coordinates - Keyframe Keyframe -
Mmahager
Timestamp N

A

Agentld—————p
Keyframe

Coordinates——p >
Timestamp———p
Agentid
Keyfr Keyframe
Coordinate yf AlE 4 >
manager
Timestam

AO

Vertex

Keyframes
File path

File name

Vertex

Keyframes| Generate
> route

Route

Compile Scenario
scenario

scenario

File path
S »

]

\4

File name erializer >

= I

vertex

Keyframes
File

File path

Scenario data b

Keyframes| Compile

scenario Keyframes

Routemaker
Route

Save File

———> .
File path scenario

4

A

. |

Scenario——p

Keyframes——p Scenario

Satellite map—p> Map

Current map—p

File

Height data—»

File path———

-Scenario—»|

Keyframes

Satellite map

Coordinate Converted coordinates
converter

A

Routes
A‘ Routemaker

[\,

Map Map

Current map

™ manager

Height data

Height
manager

File path

Height data

Save File

scenario

Al

File path

Scenario

File name

A\

File path

Deserializer
Scenario

Load Scenario

~| scenario .

.|

FIlEe name
File
Scenario data
|
(| File name

>
) Load
File - .

scenario Scenario data
=

Y
A

A2

Appendix J

Risk analysis

182

Definition of probability
Degree of probability Frequency Interval
1 Very low Happens very rarely

2 Low Happens rarely
3 Medium Happens sometimes
4 High Happens often

Definition of degree of consequence for project
Degree of consequence Outcome
1 Insignificant Project continues as normal.
2 Small Project becomes delayed slightly, but minimal effect on end result.
3 Considerable Project becomes stagnant, measures required.
4 Serious Project stops, critical measures required.
5 Disastrous Project cancelled.

Definition of degree of consequence for product

Degree of consequence Outcome
1 Insignificant Product works as normal.
2 Small Product stops working.

4 Serious Products works, but not as intended.
5 Disastrous Product stops working and drones start crashing.

3 Considerable Product stops working, and won't start working again, even with restart

Risk = degree of probability x degree of consequence

4 4 8 12
3 3 6 9
Degree of probability 2 2 4 6 8 10
1 1 2 3 4 5
1 2 3 4 5
Degree of consequence

Measures to reduce risk has to be implemented.

Medium risk

Measures to reduce risk has to be considered.

Low risk

Measures to reduce risk not required.

The group member has to catch up with their work or

1[Internal A group member becomes sick 4 |another group member has to take responsibility the Actively use anti-bac and hand washing.
tasks.
2 |Internal A group member becomes sick over a longer period of time 9 The m._,oc_o has to take 1m.mno:m ty for that the tasks of Actively use anti-bac and hand washing.
the sick group member is followed up and taken care of.
Actively use anti-bac and hand washing. The group members
. . The group members has to catch up or another group R . L
3|Internal Multiple group members becomes sick 6 o should also avoid coming to campus while sick. If they do
member has to take responsibility for the tasks. X X
decide to come in then they need to wear a mask.
The remaining group members have to reevaluate the
project timeline and see if we can do everything originally |Actively use anti-bac and hand washing. The group members
4]|Internal Multiple group members becomes sick over a longer period of tir] 6 |planned. Tasks should then be divided between the should also avoid coming to campus while sick. If they do
remaining group members to ensure that everything that |decide to come in then they need to wear a mask.
has to be done is still covered by someone not sick.
The group member or group as a whole has to learn the |Read up on relevant subjects early in the project and try to
5|Internal The level of competence in the group is too low 12 [relevant subject, or that part of the project has to be learn as much as possible before we start producing the
dismissed because the level of competence is too low. product.
6|External KDA goes bankrupt 1 UL TR S O Nothing the group can do to reduce this risk.
to finish the product and the bachelor's degree.
7|Internal Project files is lost/deleted 4 The m_,o.c_o has to _omm._s Bm_A_:m. the files again, but with Create backups of everything.
the expirience of having done it once.
The group has to switch to working digitally, with the
. expirience from Covid-19 this switch should be okay. This . .
8|External Pandemic 4 il i e e ceathlly el e fave an el an Not possible for our group to stop a pandemic.
the final product.
Two or more members are unable to cooperate and
causes group work and meetings to go awry. The group Tell the other members in the group if something annoys us,
9|Internal Disagreement causes group cooperation to falter 8 | members that are not in the disagreement needs to fix and try to deal with disagreements as soon as possible and
the dynamics in the group again with help for our internal |not let anything build up.
supervisor.
We will lose all our physical work and potenially lose
0B @ e e) ooiucﬁma_mu.ﬁouw All di :.m_ files however are backed up |No open flames in the group room and keep materials away
digitally and will still be available. May cause the from heat oven.
continuation of the work to happen via Zoom.
Spending too much time on things that do not affect the
11|Internal Inefficient use of time 12 grade. ﬂ.r_w use of time could have _omma rmma on Keep time spent on unrelated work to a minimum
something else that would be more efficient for a better
end result.
ol lierE) e G (Grand e cd Gie e e el et deeaed) 9 m.um:&:.m too much time going Q.oss a direction that in Ensure Emﬂ all the work we do w_‘m directly _\m_mﬁm.g to a user
the end is not useful for our project. story or is necessary for the project documentation.
Assume that the day starts at 08:30 so you have enough
time to get ready and leave in time so that you're always
May cause irritation in group and also make it difficult to |ready before core time starts at 09.00. After a couple of
13|Internal People are regularly delayed to core time 6 |start the stand up on time which will delay the other weeks and continued late arrival, we added a rule that

people from starting to work.

whoever is late has to buy cookies for the group to mitigate
some of the annoyance of people coming late and also
giving a bigger incensitve to be on time.

Personal economics, exams, part time jobs and so on are
all sources of stress. That included with the bachelor

Talk to the group members if you are feeling stressed and

14 (External External sources causing stress project itself may cause a person to have a lack of energy. . .
k fh ffi h little.
Which in turn makes work hours inefficient and may affect IO ELEIE) RV G Cul s iRy 0 (R 8 [
the quality of the work as well.
Burnout may cause a lack of motivation and feeling of Tell the other members in the group and try to reach some
15| Internal Burnout helplessness and hopelessness. May cause the group sort of agreement on workload and maybe some time to
member to be away for a time to recover. recharge so they can get back earlier than with full burnout.
The workload that was for 5 group members have to be
divded between 4 group members, and we also have to The reason for leaving may be many, but keeping internal
16|Internal Group member leaves group . . "
reevaluate the timeline and maybe reduce the workload | conflicts to a minimum may help.
in some places so it's possible to finish in time.
. . . The group member(s) may need to take some time off to . . .
17|External Death in the family or close friends m1m<mm up) iy Few things we can do to affect this point
E h d to get better at asking for help. We'
Tasks not being finished within deadline will delay the <m_.,.\o:m S R wﬂ -
- also implemented a status meeting at wednesdays where
18 |Internal Tasks are not finished within deadline entire project and give us less time to make advanced
everyone does a calculated satus update on wether or not
modules R R e .
they will finish their tasks within the current sprint.
. . . . Unsure what exactly makes VSC stop building and runnin
VSC in the virtual machine refuses to build and run the v . P e =
rogram. Making testing our new code more work. It also the software. Unsure what makes it slow, but one group
19 (External VM refuses to work correctly, or is too slow to work effectively program. g g ’ member has used a laptop that has Ubuntu natively, and

has a tendency to be very slow on laptops, or flat out
refusing to boot.

another group member has added a dual boot so on their
laptop so they have both Windows and Ubuntu

The drones may crash with physical objects in the real

Insert costum objects in the software that is taken into

101 | Routemaker™ fails to take account for something in real life world that the pathfinding failed to take into account .
. account when pathfinding.
when making the route.
May | fil | h A i hat th jally | k will be k
155 [P emier arsies el FERi e ay lose unsaved files, and also needs to reboot the dd mﬁn.vmms:m so that the potentially lost work will be kept
program. to a minimum.
Drones will be using the wrong GPS coordinates which
103 | Coordinate converter isn't working properly may cause crashing into buildings, trees, the ground and | Extensive testing
even people.
. . File will be unusable and the user will have to make the . .
104 | Files saves incorrectly/becomes corrupt . . Extensive testing
scenario again.
As long as height data is fully downloaded is will pose no [Allow user to continue adding key frames and get height
. . problem. If it is not fully downloaded then first run the data for all points when internet returns to reduce
105 | Loses internet connection . - . . X
algorithm for pathfinding after internet connection is disruptions. Save all height API data to disk along with
reestablished scenario when scenario is first created.
Add a check that checks if the drone will crash into anything
. . . trying to fly the designated route. If yes then add a popup
106 | Operator designates a route that is not possible The drones may crash. e . . -
P 's ! ! poss! Y that notifies the operator that this route is not possible and
makes the operator redo the keyframe.
There may be some compability issues between different
e _— . . softwares for the different components. Which causes . .
107 | Compability issues with different software integrations P) . Extensive testing.
components to not work together with everything else
even though they work individually
Debugging Qt can be a challenge as it automatically
t de which Visual Studio Cod d CLi
108|Qt debugging generates code which Visual Studio Code an ion Debug in Qt creator

debugger does not take into account when inserting
breakpoints.

Index

Measures to reduce risk

201

Software/operational Event

Software

Routemaker algorithm will not be fast enough for live updates

Consequence

If we can't do live updates to the drones concerning
pathfinding, then the product will be unsafe for flying in
populated enviornments

Modular architecture

202

Operational

GPS jammer

10

Someone brings out a GPS jammer to stop the drones
being able to position themselves.

GPS jammers are difficult to deal with as they make a lot
more noise than the satellite does. However they are not
very common. The biggest risk for our project is someone
using a GPS jammer in a car for various reasons, can have a
range of a few meters to a couple of hundred meters, so
reducing the risk on this point would be difficult. The best
option would be to make the GPS signal strong enough to
that a signal jammer would be ineffective

203

Operational

Helicopter flies over town (especially ambulance helicopter)

If a helicopter flies over Kongsberg as our lightshow is
going every drone needs to do an emergency landing.

Talk to Kongsberg kommune about flight permissions. And
maybe try to make them disallow flying over the city center
while the lightshow is ongoing. However the ambulance
helicopter has priority anyways. Establish good
communications with the hospital so that we can abort the
show long before the helicopter arrives.

Appendix K

Technical contributions

188

3D visualization

Responsible member. Aurora Moholth

Task

Person

Research how to use Rviz as a 3D
visualization

Ruben Sgrensen, Aurora Moholth

Research how to implement Rviz with librviz
in GUI

Ruben Sgrensen, Aurora Moholth

Deep-dive librviz

Aurora Moholth

Research how to convert hightdata to
Cloudpoint2

Aurora Moholth

Satellite map

Responsible member. Aurora Moholth

Task

Person

HTTP request

Ruben Sgrensen

Made the HTTP request dynamically retrieve
the map information.

Aurora Moholth

Corner coordinates calculation (CCC)

Hilde Marie Moholth

Research how to implementing QGIS

Aurora Moholth

Research and testing related to determining
appropriate GIS library

Aurora Moholth

Research ArcGIS

Aurora Moholth

Research how to implementing QGIS in our
own GUI

Aurora Moholth

Research how to get right map with QGIS
and APl from Geonorge

Aurora Moholth

HeightMap

Responsible member. Hilde Marie Moholth

Task

Person

Research and testing related to determining
appropriate GeoTIFF library

Hilde Marie Moholth

Method to extract height data from GeoTIFF
file

Hilde Marie Moholth

Methods to retrieve height data using both
UTM33 east, north coordinates and using
relative coordinates

Hilde Marie Moholth

Various methods necessary for the dynamic
updating of member variables such as the
path of the GeoTIFF file

Hilde Marie Moholth

Work and testing related to dynamic update
of GeoTIFF file (unfinished)

Hilde Marie Moholth

Continuous testing

Hilde Marie Moholth

Necessary adjustments in methods and
variables for integration purposes

Aurora Moholth, Ruben Sgrensen

Compile Scenario

Responsible member. Aurora Moholth

Task

Person

Researching methods for implementing
multi drones

Aurora Moholth, Ruben Sgrensen

Implementing multi drones and enable
sorting by agentID

Aurora Moholth

Dynamically change size and origin

Aurora Moholth

Serialization

Responsible member. Harald Moholth

Task

Person

Implementing serilization

Harald Moholth

Macros Harald Moholth
Testing
Responsible member. Harald Moholth
Task Person

Making rules for how to test

Harald Moholth

Implementing Gtest

Harald Moholth

Making test overview

Harald Moholth & Hilde Marie Moholth

Testing Serializer

Harald Moholth

Make document for documenting tests

Nils Herman Lien Hare

Verify tests against requirements

Aurora Moholth

Requirements

Responsible member. Harald Moholth

Task

Person

User stories

Harald Moholth

Use Cases

Harald Moholth

Derived requirements

Harald Moholth

Verified components against requirements

Aurora Moholth, Ruben Sgrensen

Coordinate converter

Responsible member. Aurora Moholth

Task

Person

Converting between geographic and
cartesian

Aurora Moholth

Converting between geographic and UTM

Aurora Moholth

Converting between asymmetric and
symmetric cartesian

Aurora Moholth

Calculation between asymmetric and
symmetric

Aurora Moholth, Ruben Sgrensen

Continuous testing

Aurora Moholth

Research libraries for coordinate systems

Ruben Sgrensen

Deep-dive Geograpiclib

Aurora Moholth

Architecture

Responsible member. Aurora Moholth

Task

Person

Brainstorming architectures

Everyone

Work on initial drafting of architectures

Aurora Moholth, Hilde Marie Moholth

Verify the design architecture against the
code

Aurora Moholth, Ruben Sgrensen

Continuous updated the architectures in line
with the implementation of the system

Aurora Moholth

Finalizing the architecture

Aurora Moholth

Differentiate between logical and design
architecture

Aurora Moholth

Developed use case diagram

Aurora Moholth

Routemaker

Responsible member. Ruben Sarensen

Task

Person

Implement abstract graph interface

Ruben Sgrensen

Implement A* path-finding algorithm

Ruben Sgrensen

Implement Bresenham'’s line algorithm

Ruben Sgrensen

Implement post-smoothing of paths

Ruben Sgrensen

Make Routemaker resolution adjustable

Ruben Sgrensen

Dynamically change Routemaker size, origin
and resolution

Aurora Moholth

Wiki Page

Responsible member. Hilde Marie Moholth

Task

Person

Defining Wiki structure and contents

Hilde Marie Moholth

Updating Wiki Hilde Marie Moholth, Nils Herman Lien Hare
Literature Review
Responsible member. Hilde Marie Moholth
Task Person

Read and summarize articles in separate
notes scheme

Hilde Marie Moholth

Synthesize academic papers into literature
review

Hilde Marie Moholth

Project Plan

Responsible member. Hilde Marie Moholth

Task Person

Planned and drew up proposal for project Hilde Marie Moholth
timeline

Planned and drew up proposal for project Hilde Marie Moholth

sprint calendar

Proposal for detailed plan of final 8 sprints Aurora Moholth, Hilde Marie Moholth, Ruben
Sgrensen

Proofreading

Responsible member. Hilde Marie Moholth

Task Person

Overall read-through and editing for fluency | Hilde Marie Moholth
and ease of reading

Proofreading each section Every member
Appendices Harald Moholth
Glossary and acronyms Aurora Moholth
Tables and figures Nils Herman Lien Hdre
General appearance of final report and Ruben Sgrensen
resources

Responsible member: Nils Herman Lien Hdre

Task Person

Singleton

Nils Herman Lien Hdre

Keyframe manager header-file

Ruben Sgrensen, Nils Herman Lien Hare

Handle keyframe with same agentID and
Timestamp

Aurora Moholth

Responsible member: Nils Herman Lien Hdre

Task

Person

Design

Nils Herman Lien Hdre

Convert from HTML to PHP, and separate files

Ruben Sgrensen

Database queries

Ruben Sgrensen

Pipeline for automatic updates when
merging into main

Ruben Sgrensen

Database

Nils Herman Lien Hare

Dynamic modals

Nils Herman Lien Hare

Responsible member: Nils Herman Lien Hdre

Task

Person

Create risk matrix

Nils Herman Lien Hdre

Risk evaluation

Everyone

Responsible member: Nils Herman Lien Hére

Task

Person

Create IDEFO-diagrams Nils Herman Lien Hére

Initial interfaces draft Ruben Sgrensen, Nils Herman Lien Hare,
Harald Moholth

Define updated interfaces Ruben Sgrensen, Aurora Moholth

Verify updated interfaces against Ruben Sgrensen, Aurora Moholth
architecture

Verify updated interfaces against code Ruben Sgrensen, Aurora Moholth

Integration

Responsible member. Ruben Sorensen

Task Person
Define coding standard Ruben Sgrensen
Create Azure Pipelines for building and Ruben Sgrensen

publishing code documentation online

Integrate MVP components Ruben Sgrensen

Verify code against components Ruben Sgrensen, Aurora Moholth

Verify code against architecture Ruben Sgrensen, Aurora Moholth

Integrate advanced components Aurora Moholth, Ruben Sgrensen

General types header-file Ruben Sgrensen, Aurora Moholth
MVP definition

Responsible member. Everyone

Task Person

Develop list of required functionality for MVP | Hilde Marie Moholth

Determining requirements list for MVP Everyone

Version control

Responsible member. Ruben Sorensen

Task

Person

Define branch rules

Ruben Sgrensen

Handle merging and conflicts

Ruben Sgrensen

Temporary responsibility for merging and
conflicts when Ruben wasiill

Aurora Moholth

GUI

Responsible members: Ruben Serensen, Aurora Moholth, Nils Herman Lien Hére

Task

Person

Qt6 research

Ruben Sgrensen

GUI Layout

Ruben Sgrensen

Code structure for GUI

Ruben Sgrensen

Timeline widget - Visualization and
interactivity

Nils Herman Lien Hare

Initial keyframe adding and removal dialog
boxes

Nils Herman Lien Hare

Planning view - Map display

Aurora Moholth

Set Location dialog box

Aurora Moholth

Planning view - Routes visualized

Aurora Moholth, Ruben Sgrensen

Planning view - Mouse picking, click map to
add keyframes

Ruben Sgrensen

Documentation

Responsible member. Hilde Marie Moholth

Task

Person

Content structure of documentation

Hilde Marie Moholth

Create LaTeX project structure for
documentation

Ruben Sgrensen

Set up custom LaTeX commands for
displaying the authors and collaborators of
sections, subsections and subsubsections

Ruben Sgrensen

Create various Tikz figures

Ruben Sgrensen

Software user guide

Aurora Moholth

Development environment setup guide

Ruben Sgrensen

Appendix L

Updated testing documentation

199

Approved by

Done by

Harald (approved)

Method

Demonstration

Prerequisites

Have every necessary library installed

Data None
Description Launch software, verify that GUI is visible and can be interacted with.
Steps Run the hivemind executable to see if the hivemind window appears.

Success criteria

The hivemind window appears and can be interacted with.

Approved by

Done by

Nils Herman (Approved)

Method

Demonstration

Prerequisites

Launch Hivemind

Data None

Description Press the planner button, and verify that the map for the given area
appears on screen.

Steps Press the “Planner” tab on the top left.

Success criteria

The map appears under the planner tab.

Approved by

Done by

Nils Herman (approved)

Method

Demonstration

Prerequisites

Set location to “61.636740010738535, 8.312417773829353”

Data Agentld: 1, TimeStamp: 0, X: -11.7224, Y: 40.0418, Z: 0
Agentld: 1, TimeStamp: 6, X:41.6667, Y: -54.4336, Z: 0

Description Test selecting a coordinate with known height data to verify the returned
data is correct.

Steps Add the two keyframes, and check if the routemaker avoids the church. If

successful then it takes church into account when planning routes which
means the height data must be correct.

Success criteria

Planned route avoids the church

Approved by

Done by Hilde Marie (approved)
Method Inspection
Prerequisites None

Data UTM33N coordinate: (6626362, 198592)

Description Test selecting a coordinate with known height data to verify the returned
data is correct.

Steps Query HeightMap for height at specified UTM coordinate.

Verify with an external source that height data is correct.

Success criteria

Queried height data matches external data

Approved by

Done by

Nils Herman (failed)

Method

Demonstration

Prerequisites

Set location to “1, 2”

Data

None

Description Test selecting coordinate with known data NULL, verify the software
returns an error message and no further action is taken.
Steps Set the location data.

Success criteria

If an error shows up when you insert the coordinates, and no further
action is taken.

If failed, why?

An error message comes up in the terminal, and the program crashes.

Approved by

Done by

Nils Herman (approved)

Method

Demonstration

Prerequisites

Launch Hivemind

Data None
Description Verify that clicking the “Save” button will launch the save dialogue box
Steps Press “File” and “Save as”. See if you get the directory for choosing

location and saving file.

Success criteria

The dialogue for the directory appears as expected.

Approved by

Done by Nils Herman (Approved)
Method Demonstration
Prerequisites A saved file

Data Agentld: 0, TimeStamp: 0, X: -83.9833, Y: 126.602, Z: 0
Description Load file and verify that it is identical to the previously saved plan
Steps Open the file in notepad or similar. Check that the data in the file is

correct.

Success criteria

The data in the file is correct.

Approved by

Done by

Nils Herman (Approved)

Method

Demonstration

Prerequisites

Launch Hivemind and add a keyframe for the serializer to save.

Data Agentld: 0, TimeStamp: 0, X: -83.9833, Y: 126.602, Z: 0
Description Verify that the user can successfully save a file in a custom location.
Steps Press “save as”, find a location in the directory, press “save” and verify

that a file is created

Success criteria

A file is created with the name and location specified by the user

Approved by

Done by

Nils Herman (approved)

Method

Demonstration

Prerequisites

Launch Hivemind

Data None

Description When “Load Scenario” is pressed, verify that the explorer window
appears.

Steps Press “File” and “Open...” and check if directory shows up

Success criteria

The directory dialogue for opening a saved file shows up

Approved by

Done by

Nils Herman (Approved)

Method

Demonstration

Prerequisites

Launch Hivemind and have a test file prepared for loading.

Data Test file containing the following keyframes:

Agentld: 0, TimeStamp: 0, X: -853.621, Y: -111.56, Z: 0

Agentld: 0, TimeStamp: 6.65709, X: -226.88, Y: -264.485, Z: 0
Description Verify that the correct scenario opens when selected.
Steps Press “File”, “Open...” and choose the file you wish to open. Then click

“Open” and check if the data is correct.

Success criteria

A file is loaded, and the relevant areas are populated with data.

Approved by

Done by

Nils Herman (approved)

Method

Demonstration

Prerequisites

Launch Hivemind

Data None
Description Set location and verify that correct location and data is loaded.
Steps Launches Hivemind. Press “Set location” and then verify that the box

appears as it's supposed to.

Success criteria

The dialogue box appears as expected.

Approved by

Done by

Nils Herman (approved)

Method

Demonstration

Prerequisites

Opened the “Add Keyframe” dialogue and entered exampledata

Data

agentld: 1, timestamp: 1, x coordinate: 1, y coordinate: 1, z coordinate: 1

Description Verify that the keyframe is added to the graphical user interface when
enter is pressed in the keyframe dialogue box, and that timestamp and
location is correct.

Steps Have the dialogue box for keyframes open, enter the example test and

press enter. Verify that the keyframe is added to the vector that stores
keyframes.

Success criteria

The keyframe is stored in the keyframe vector

Approved by

Done by

Nils Herman (approved)

Method

Demonstration

Prerequisites

Keyframes stored in the vector

Data Agentld: 0, TimeStamp: 0, X: -387.326, Y: -121.588, Z: 0

Agentld: 0, TimeStamp: 6.03448, X: -266.992, Y: -176.741, Z: 0
Description Verify that added keyframe is correctly assigned on the timeline
Steps Add two keyframes and see if they show up on the timeline and if they

show up in the right order with the right coordinate.

Success criteria

The keyframes show up on the timeline in the right order and the right
coordinate.

Approved by

Done by

Nils Herman (approved)

Method

Demonstration

Prerequisites

Keyframes added to the timeline

Data

Agentld: 0, TimeStamp: 0, X: -387.326, Y: -121.588, Z: 0
Agentld: 0, TimeStamp: 6.03448, X: -266.992, Y: -176.741, Z: 0
Agentld: 0, TimeStamp: 3.35249, X: -377.298, Y: -251.95, Z: 0

Description

Add a coordinate, and verify that the distribution of keyframes on timeline
dynamically updates.

Steps

Have the two first keyframes added. Add the third keyframe and see if
the timeline updates with the third keyframe in the middle of the first two

Success criteria

The third keyframe shows up on the timeline between the first and
second keyframe

Approved by

Done by

Aurora (approved)

Method

Demonstration

Prerequisites

Launch Hivemind, and set location to “59.665819782515435,
9.646190995911908”

Data Agentld: 0, TimeStamp: 0, X: -40.9703, Y: 29.364, Z: 0
Agentld: 0, TimeStamp: 9.48276, X: 97.1449, Y: -24.7215,Z: 0
Agentld: 0, TimeStamp: 15.8525, X: 109.912, Y: 52.8087, Z: 0

Description Press compile scenario, and verify that a route is created, and that
information in route is correct.

Steps Add keyframes to the scenario and compile. Verify visually that the

routes are correct.

Success criteria

The routes have to avoid buildings and other objects.

Approved by

Done by

Aurora (approved)

Method

Demonstration

Prerequisites

Launch coordinate converter

Data

Geographical coordinate from google maps:
59.66465552506008, 9.645717559340614

UTM coordinate returned from Hivemind:
NORTH 6626236.65
EAST 198547.51

Description

Enter a coordinate and check that you get expected data in return.

Steps

Use google maps and find a geographical coordinate. Used the
coordinate converter to convert from geographic to UTM coordinate.
Check at norgesdata.no that the UTM coordinate is the same place as in
google maps.

Use the UTM coordinate and convert back to geographical coordinate.

Success criteria

The coordinate that we convert and convert back again is the same and
corresponds to the data form norgeskart and google maps.

Approved by

Done by

Aurora (approved)

Method

Demonstration

Prerequisites

Launch Hivemind and add keyframes with different agent IDs

Data

agentld: 1, timestamp: 1, x coordinate:-40, y coordinate: 0, z coordinate:
1

agentld: 1, timestamp: 3, x coordinate: 0, y coordinate: 20, z coordinate:
3

agentld: 2, timestamp: 1, x coordinate: -45, y coordinate: 40, z
coordinate: 2

agentld: 2, timestamp: 3, x coordinate: 22, y coordinate: 50, z
coordinate: 4

Description

Verify that each generated route is separated by an agent ID.

Steps

Make sure the drones generate different paths between each keyframe
and that they are not connected to each other.

Success criteria

The routemaker creates different paths for each unique agent ID

Approved by

Done by

Nils Herman (approved)

Method

Demonstration

Prerequisites

Launch Hivemind and add two keyframes with different agentld

Data

agentld: 1, timestamp: 1, x coordinate: 1, y coordinate: 1, z coordinate:
agentld: 1, timestamp: 2, x coordinate: 9, y coordinate: 3, z coordinate:
agentld: 2, timestamp: 1, x coordinate: 1, y coordinate: 1, z coordinate:
agentld: 2, timestamp: 3, x coordinate: 3, y coordinate: 3, z coordinate:

—_—) A

Description

Test that adding new agent through interface causes the new agent to
correctly appear

Steps

Check if the keyframes are stored with different agent IDs

Success criteria

The keyframes are stored with different agent IDs

Approved by

Done by

Nils Herman (approved)

Method

Demonstration

Prerequisites

Launch Hivemind and set location to “569.66579762399427,
9.646237795427599”

Data Agentld: 0, TimeStamp: 0, X: 102.02, Y: 19.6147,Z: 0
Agentld: 0, TimeStamp: 5.17241, X: 97.6091, Y: -62.558, Z: 0
Agentld: 1, TimeStamp: 5.17241, X: -38.1848, Y: 43.0594, Z: 0
Agentld: 1, TimeStamp: 14.5594, X: -44.6843, Y: -11.4902, Z: 0
Description Compile scenario and ensure all agent routes are included.
Steps Add the 4 keyframes and press “compile scenario”

Success criteria

Verify that the routes are created and independent of each other.

Appendix M

Project timeline

209

Planning

Preparation

Coding

Present Report

Project Timeline
March 15, 2023

Sprint 2 07.02 - 28.02
_ Design choices locked in
Sprint 3
Finish architecture
Sprint 4
7\
Sprint 5 28.02-29.03 , , ,
Complete risk analysis of project
Sprint 6 Have started programming some modules of minimum viable
Sprint 7 product (testing continuously)
Sprint 8 Second presentation (28/3)
0O
Sprint 9 31.03-24.04
Sprint 10 Minimum viable product assembled and tested
Sprint 11
prin A
Sprint 12 24.04 - 08.05
Add more advanced modules
Sprint 13 Complete risk analysis for product
O
Sprint 14 08.05 - 23.05 Write report
Edit report, ensure proper citaiton and formatting
Prepare EXPO booth
\EXPO (23/05)
Sprint 15 23.05-2505 T

Prepare third presentation
Third presentation (30/05)

O

Appendix N

Seating arrangements

211

1 Seating arrangement NH | AM

Initially the group’s designated work space contained three desks; two were positioned with
their short sides against the wall, while the third was centrally located, abutting the other
two. This layout (fig. N.1a) was maintained during the initial weeks, primarily due to Ruben’s
temporary absence while participating in exchange studies in Belgium. His participation in
meetings was facilitated via Zoom on the TV screen positioned in the bottom left corner of the
room. However, the central table’s instability made the group relocate it to the bottom right
corner, where it remained unused.

Upon Ruben’s return, he utilized the unstable table briefly (fig. N.1b). However, the
decision was made to replace this table with Ruben’s personal desk. With USN’s agreement, the
group removed the unstable table and introduced Ruben’s desk. This also triggered the group
to reconsider the configuration of furniture in the room. The two previously conjoined tables
were separated, repositioning their occupants to face the wall, fostering enhanced openness
and easier communication among group members. We also introduced second-hand furniture,
including a cabinet for the storage of books, various teas, and documentation, along with an
armchair offering seating for our supervisors and a relaxation space for the group and any
visitors.

After making these improvements, the rooms ventilation became an issue. After occupying
the room in its current state (fig. N.1c) for several weeks, the group decided to reposition the
tables to make access to the window for ventilation purposes easier. The group aligned all tables
against one wall, relocating Ruben’s desk to the opposite side. An additional tea table and an
armchair were introduced to accommodate the group’s two supervisors. This layout (fig. N.1d)
proved effective, cultivating an environment that encouraged easy communication, provided
ample movement space, and included a relaxation corner for the group when necessary, and

seating for supervisors during meetings.

212

f O
\/
Hilde Marie / N

aaaaaa

> o
A ﬂl‘

(a) Inital workspace configuration

=] \/
= = N

aaaaaa

— H rwen]
o [EE—]
%&"

W W

(c) Workspace layout after introduction of per-
sonal desk

AAAAAA

(d) Final workspace layout

Figure N.1: Seating arrangements

213

Appendix O

Code documentation

214

hivemind
1.0.0

Generated by Doxygen 1.9.6

1 Hivemind 1
1.1 AbOUL . . . e e e e e 1
1.2Whereto start? e e e e e 1

2 Coding Standards 3
2.1 Introduction L L e e 3
2.2 Semantics and coding styleissues L. 3

2.2.1 Treat compiler warnings @s €rrors i i e e e 3
2.2.2 Object oriented programming L e e e e e 3
223 Assertextensively L e 3
2.3 Source Code Formatting 3
231 Clang Format 3
23.2C0mmenting L e e e 4
2.3.2.1 Class definitions L 4
23.22Commentformatting 4
2.3.23Doxygencomments L e e 4

233 Whitespace e e e e e e 4
234 Columnwidth L 4
2.4 Language specifics L e e e e 5
240 CHt oo e 5
2411 Standard version oL 5
241.2Standard library L 5

2413 Namingconvention L e 5

2414 Classesandstructs L 5
2415Includestyle. 6

2416 HeaderGuards 6
2.41.7Useoftheauto keyword 7
2418RAIL . . 7

3 Get Started 9

3.1 Installdependencies e 9

3.1.1 Maindependencies e e 9
3.1.1.1 Wantto buildthedocs? 10

32Build . . . 10
3.2.1 Building Hivemind 10
3.22Buildingthedocs 10

4 Testing Standard 11
4.1 Introduction L e e 11
4.2 Unittesting 11
4.3 Methods of Verification e 11

4.3.110nspection L e e 11
4.32Demonstration e 11

Generated by Doxygen

433Testing e e 12

4.3.4 Analysis e e e 12

4.4 Documentation of verification L L 12

5 User Guide 13
5.1 Graphical User Interface e 13
511 Menubar 13
5.1.28idebar 14
51.3ThePlannertab e 16

5.2 Functinality of Hivemind 16
521 Crealingascenario i e e 16

5.2.1.1 Setscenario settings 16
521.2Addagents L 17

5.21.3Add keyframes L 19

5214 Delete keyframes e 19

5.21.5Compile Scenario 19

5.2.28aving SCeNarios e e e e 20
5.2.3Loading Scenarios e e e 21

6 Namespace Index 23
6.1 Namespace List e 23

7 Hierarchical Index 25
7.1 Class Hierarchy o e e e e 25

8 Class Index 27
8.1 Class List e 27

9 File Index 29
9.1 File List o e e 29

10 Namespace Documentation 31
10.1 CompileScenario Namespace Reference 31
10.2 CoordinateConverter Namespace Reference o 31
10.3 Core Namespace Reference e 31
10.4 Gui Namespace Reference e 32
10.5 HeightManagement Namespace Reference o 32
10.6 Json Namespace Reference e e 32
10.6.1 Typedef Documentation 34
10.6.1.1ISDV . . . o 34

10.6.1.21ISFV . . . L e 34

10.6.1.31SIV . . . e 34

10.6.1.4 ISProperties e 34
10.6.1.51SValuePtr 34

Generated by Doxygen

10.6.1.61SValues 35

10.6.2 Function Documentation 35
10.6.2.1 deserialize() o 35
10.6.2.2serialize() 35

10.7 KeyframeManagement Namespace Reference 36
10.8 MapManagement Namespace Reference o o o 36
10.9 Routemaker Namespace Reference 36
11 Class Documentation 37
11.1 GuizAction Class Reference 37
11.1.1 Detailed Description e 37
11.1.2 Constructor & Destructor Documentation, 37
11.1.2.1 Action() . . . o o o e 38

11.2 Core::Agent Struct Reference o L 39
11.2.1 Detailed Description e 40
11.2.2 Constructor & Destructor Documentation 40
11.221 Agent() o o o o e e 40

11.2.3 Member Function Documentation 40
11.23.1JSONINT() o o e e 40
11.283.2JSONSTRING() o e e 40

11.2.4 Member Data Documentation 40
11.24.1C0lor o 40

11.24.210d o 41

11.243 Name e 41

11.3 Gui::AgentControls Class Reference 41
11.3.1 Detailed Description e 42
11.3.2 Constructor & Destructor Documentation 42
11.8.2.1 AgentControls() o o e 42

11.3.3 Member Function Documentation 42
11.3.3.1 ActiveAgentChanged 42

11.8.3.2 AddAgent L e 43

11.3.3.3 AgentChanged 43

11.8.3.4 SetActiveAgentindex 43

11.8.3.5 SetAgentColor e 43

11.3.3.6 SyncColor 43
11.3.3.7UpdateAgents 44

11.3.4 Member Data Documentation 44
11.3.4.1 m_ActiveAgentColorBox 44

11.3.4.2 m_ActiveAgentComboBox 44

11.3.4.3 m_ActiveAgentIindex 44

11.8.4.4 m_Agents L e 45
11.3.45m_Layout L 45

Generated by Doxygen

11.3.4.6 m_NewAgentButton 45

11.4 Core::CartesianCoordinate Struct Reference 45
11.4.1 Detailed Description e 46
11.4.2 Constructor & Destructor Documentation 46
11.4.2.1 CartesianCoordinate() o o 46

11.4.3 Member Function Documentation 46
11.4.3.1 JSONDOUBLE() [1/2] =+« v o i e e e e e e e e e e e e e 46
11.4.3.2JSONDOUBLE() [2/2] « « v v v o oeoeoe e e e e e e e e e e 46

11.4.4 Member Data Documentation 47
11440 X . o 47
11.4.42Y . o e e e e 47
1144327 . . . o 47

11.5 Routemaker::Cell2D Struct Reference 47
11.5.1 Detailed Description e 48
11.5.2 Member Data Documentation 48
11.5.2.1 Occupied 48
11.5.2.2 X . . . e e 48
11.5.23Y . o 48

11.6 Gui::ColorBox Class Reference 48
11.6.1 Detailed Description e 49
11.6.2 Constructor & Destructor Documentation 49
11.6.2.1 ColorBoX() . . .« « v o 49

11.6.3 Member Function Documentation 50
11.6.3.1 ColorUpdated e 50
11.6.3.2 mousePressEvent() 50
11.6.3.3 paintEvent() 50
11.6.3.4 SelectColor 50
11.6.3.5UpdateColor 51

11.6.4 Member Data Documentation 51
11.6.4.1 m_Color e 51
11.6.4.2m_ColorDialog 51

11.7 CoordinateConverter::CoordConv Class Reference 51
11.7.1 Detailed Description 52
11.7.2 Constructor & Destructor Documentation, 52
11.7.21 CoordConv() o o 53

11.7.3 Member Function Documentation L 53
11.7.3.1 AsymmetricToSymmetric() o o 53
11.7.3.2 CartesianToGeographical() o i 53
11.7.3.83 GeographicalToCartesian()« o o 54
11.7.3.4 GeographicTOUTM() o e e e e 54
11.7.35Getlnstance() e 55
11.7.3.6 GetOrigin()« o o e e 55

Generated by Doxygen

11.7.3.7 GetSize()« o 55
11.7.3.8 ResetOrigin()« o o 55
11.7.3.9 SymmetricToAsymmetric() 56
11.7.3.10 UTMToGeographic() o o o i e e e e 56

11.7.4 Member Data Documentation 57
11.741 m_Origin o e e 57
11.7.4.2 m_OriginGeographical e 57
11.7.43M_Size e e e e 57

11.8 Core::GeographicalCoordinate Struct Reference 58
11.8.1 Detailed Description 58
11.8.2 Constructor & Destructor Documentation 58
11.8.2.1 GeographicalCoordinate() 58

11.8.3 Member Function Documentation L 58
11.8.3.1JSONDOUBLE() o e e e e e e 59

11.8.4 Member Data Documentation 59
11.8.4.1 Latitude 59
11.8.4.2Longitude L 59

11.9 Routemaker::Graph< T > Class Template Reference 59
11.9.1 Detailed Description 60
11.9.2 Member Typedef Documentation 60
11.9.21 NodePtr 60

11.9.3 Member Function Documentation 60
11.9.3.1 GetCost() o . o e 61
11.9.3.2 GetNeighbors() 61
11.9.3.3 HasLineOfSight() 62
11.9.3.4 PostSmooth() e 62
11.9.3.5ResetNodes() e 62
11.9.3.6 SolveAStar() e 63

11.10 HeightManagement::HeightManager::heightdata Struct Reference 63
11.10.1 Detailed Description e 63
11.10.2 Member Data Documentation 64
111020 X . o o 64
11.10.2.2Yy . o o e e e e 64
11.10.23Z . . o 64

11.11 HeightManagement::HeightManager Class Reference 64
11.11.1 Detailed Description e 65
11.11.2 Constructor & Destructor Documentation 66
11.11.2.1 HeightManager() o o e 66
11.11.3 Member Function Documentation 66
11.11.3.1 GetHeight() o 66
11.11.3.2 GetHeightAbsolute() 66
11.11.33 GetVertex() o e 67

Generated by Doxygen

vi

11.11.3.4 GetVertexAbsolute() o 67
11.11.35L0adTif() . . . o o o o e e e 68
11.11.3.6 OrigoWithinBounds() o o 68
11.11.3.7 PopulateVertices() 69
11.11.3.8 UpdateCornerCoords()« o o v i v i it e 69
11.11.3.9 UpdateOrigin()« o o o e e e 69
11.11.3.10 Validinput() [1/27 - - -« . o o o e 70
11.11.3.11 Validinput() 12721 . . .« « o o e 70
11.11.4 Member Data Documentation 71
11.11.441 m_CachedTifName 71
11.11.4.2 m_CoordinateSystem 71
11.11.43 m_LowerRightX 71
11.11.4.4 m_LowerRightY 72
11.11.45m_Origo L 72
11.11.46 m_Resolution. e 72
11.11.4.7 m_SelectionCorner e 72
111148 mM_Size e e e 72
11.11.4.9 m_UpperLeftX o 73
11.11.410 m_UpperLeftY o 73
1111411 m_Vertices o o e e e 73

11.12 Json::ISBool Class Reference 73
11.12.1 Detailed Description 74
11.12.2 Constructor & Destructor Documentation 74
111221 1SB00I() - o o e 74
11.12.3 Member Function Documentation 74
11.12.3.1 FromDom() o 75
11.123.2ToDom() o 75

11.12.4 Member Data Documentation 75
111240 value L 75

11.13 Json::ISConstructors Class Reference o o 75
11.13.1 Detailed Description L 76
11.13.2 Constructor & Destructor Documentation 76
11.13.2.1 ISCONStruCtors() [1/21 « « v v v v v e e e e e e e e e e 76
11.13.2.2 ISCONSIrUCIOrS() [2/2]1 « v v v v v e e e e e e e e e e e e 76
11.13.3 Member Function Documentationo 76
11.13.3.1 AddConstructor()« . . e 77
11.13.3.2Getlnstance() e 77
11.13.3.3GetObject() 77
11.13.34 0perator=() L e 77

11.13.4 Member Data Documentation 77
11.13.41 m_TheRegistry 77

11.14 Json::ISDouble Class Reference 78

Generated by Doxygen

vii

11.14.1 Detailed Description e 78
11.14.2 Constructor & Destructor Documentation 78
111421 1SDOUDIE() .+« o o o o 79
11.14.3 Member Function Documentation 79
11.14.3.1 FromDom() o e e 79
11.14.3.2ToDom() o o o 79

11.14.4 Member Data Documentation 79
11144 value e e e e e 80

11.15 Jdson::ISDoubleVector Class Reference 80
11.15.1 Detailed Description e 81
11.15.2 Constructor & Destructor Documentation 81
11.15.2.1 ISDoubleVector() e 81
11.15.3 Member Function Documentation 81
11.15.3.1 FromDom() e 81
11.15.3.2ToDom() o o 81

11.15.4 Member Data Documentation 82
111541 value e e e e e 82

11.16 Json::ISFloat Class Reference 82
11.16.1 Detailed Description 83
11.16.2 Constructor & Destructor Documentation, 83
11.16.2.1 ISFloat() e 83
11.16.3 Member Function Documentation 83
11.16.3.1 FromDom() o e 83
11.16.3.2ToDom() 83

11.16.4 Member Data Documentation 84
111641 value 84

11.17 Json::ISFloatVector Class Reference o 84
11.17.1 Detailed Description 85
11.17.2 Constructor & Destructor Documentation 85
11.17.21 ISFloatVector() o o 85
11.17.3 Member Function Documentation o 85
11.17.3.1 FromDom() 85
1117.832TODOM() .+« o o o e e e e e 85

11.17.4 Member Data Documentation 86
114740 value o L 86

11.18 Json::ISInt Class Reference 86
11.18.1 Detailed Description e 87
11.18.2 Constructor & Destructor Documentation 87
T1A8211SINt) . .« o o o o e e 87
11.18.3 Member Function Documentation 87
11.18.3.1 FromDom() e 87
11.18.32TODOM() .+« v v v e e e e 87

Generated by Doxygen

viii

11.18.4 Member Data Documentation L 88
111841 value o 88

11.19 Json::ISIntVector Class Reference e 88
11.19.1 Detailed Description L 89
11.19.2 Constructor & Destructor Documentation 89
11.19.2.1 ISIntVector() e e e e 89

11.19.3 Member Function Documentation 89
11.19.3.1 FromDom() o e 89
11.19.3.2ToDom() o o 89

11.19.4 Member Data Documentation 90
11.19.41value e e 90

11.20 Json::ISMember< T > Class Template Reference 90
11.20.1 Detailed Description e 91
11.20.2 Constructor & Destructor Documentation 91
11.20.2.1 ISMember() 91

11.20.3 Member Function Documentation 91
11.20.3.1 CreateObject() o o e 92

11.20.3.2 FromDom() 92
11.20.3.3GetName() o 92
11.20.3.4ToDom() o 92

11.20.4 Member Data Documentation 93
11.20.4 1 value e e e e 93

11.21 Jdson::ISMemberVector< T > Class Template Reference 93
11.21.1 Detailed Description 94
11.21.2 Constructor & Destructor Documentation 94
11.21.2.1 ISMemberVector() [1/2]1 o o o o 94

11.21.2.2 ISMemberVector() [2/2] . . . v o v v v i i e 94

11.21.3 Member Function Documentation o 94
11.21.3.1 FromDom() e 94
11.21.3.2ToDom() o 95

11.21.4 Member Data Documentation 95
112140 value L 95

11.22 Json::ISMemVecVec< T > Class Template Reference 95
11.22.1 Detailed Description e 96
11.22.2 Constructor & Destructor Documentation 96
11.22.2.1 ISMemVecVec() o o o o 96

11.22.3 Member Function Documentation L o 96
11.22.3.1 FromDom() o e 97
11.22.32TODOM() .« « v v v e e e e 97

11.22.4 Member Data Documentation 97
11.22.40value e 97

11.23 Json::ISObject< T > Class Template Reference 97

Generated by Doxygen

11.23.1 Detailed Description e 98
11.23.2 Constructor & Destructor Documentation 98
11.23.2.1 ISODJECH) .+« « o o o e e 98
11.23.3 Member Function Documentation 99
11.23.3.1 CreateObject() o o 99
11.238.3.2 FromDom() e e e 99
11.23.3.3GetName() 99
11.23.3.4TODOM() « « o v v e e e e 100

11.23.4 Member Data Documentation 100
11.23.41value e 100

11.24 Json::ISObjectVector< T > Class Template Reference 100
11.24.1 Detailed Description 101
11.24.2 Constructor & Destructor Documentation 101
11.24.2.1 ISObjectVector() o e 101
11.24.3 Member Function Documentation 101
11.24.3.1 FromDom() o e 102
11.24.32TODOM() .+« o v o e e e e 102

11.24.4 Member Data Documentation L 102
11.24.4 0 value e 102

11.25 Json::ISObjVecVec< T > Class Template Reference 102
11.25.1 Detailed Description e 103
11.25.2 Constructor & Destructor Documentation 103
11.25.2.1 ISObjVecVec() o o o e e 103
11.25.3 Member Function Documentation o 104
11.25.3.1 FromDom() o e 104
11.25.3.2ToDom() o o 104

11.25.4 Member Data Documentation 104
11.25.41value e e 104

11.26 Json::ISProperty Struct Referenceo 105
11.26.1 Detailed Description e 105
11.26.2 Member Data Documentation L 105
11.26.2.1 name e e 105
11.26.2.2value e 105

11.27 Json::ISString Class Reference o 106
11.27.1 Detailed Description e 106
11.27.2 Constructor & Destructor Documentation 106
11.27.211SString() -+« o o o 107
11.27.3 Member Function Documentation 107
11.27.3.1 FromDom() e 107
11.27.3.2ToDom() o o 107

11.27.4 Member Data Documentation 107
11.27.4 0 value e e e 108

Generated by Doxygen

11.28 Json::ISValue Class Reference e 108

11.28.1 Detailed Description e 109
11.28.2 Member Function Documentation L o 109
11.28.2.1 CreateObject()« o 109
11.28.22 FromDom() e 109
11.28.2.3 GetName() e e 110
11.28.2.4 GetProperty()« o 110
11.2825TODOM() « « v v v e e e e e 110

11.29 Core::Keyframe Struct Reference o 111
11.29.1 Detailed Description e 111
11.29.2 Constructor & Destructor Documentation 111
11.29.2.1 Keyframe() [1/2] . . . o o o o 111
11.29.2.2 Keyframe() [2/21 o o o e e e e e 112
11.29.3 Member Function Documentation L o 112
11.29.3.1 JSONFLOAT() o o e e e e s e e e e e 112
11.29.3.2JSONINT() o o e 112

11.29.4 Member Data Documentation 112
11.29.41 Agentld L 112
11.29.4.2 Position e e 112
11.29.43TimeStamp o e e 113

11.30 Gui::KeyframeControls Class Reference 113
11.30.1 Detailed Description 113
11.30.2 Constructor & Destructor Documentation, 113
11.30.2.1 KeyframeControls() o o 114
11.30.3 Member Function Documentation L 114
11.30.3.1 DeleteSelectedKeyframes Lo o 114
11.30.4 Member Data Documentation 114
11.30.4.1 m_DeleteKeyframesButtono 114
11.30.4.2 m_KeyframeList 114
11.30.4.3 m_Layout e 115

11.31 Gui::KeyframeList Class Reference 115
11.31.1 Detailed Description e 115
11.31.2 Constructor & Destructor Documentation 115
11.831.2.1 KeyframeList() o 116
11.31.3 Member Function Documentation 116
11.31.3.1 DeleteSelected L 116
11.31.3.2Update 116
11.31.4 Member Data Documentation 116
11.31.4 1 m_Layout e e 116

11.32 KeyframeManagement::KeyframeManager Class Reference 117
11.32.1 Detailed Description 118
11.32.2 Constructor & Destructor Documentation 118

Generated by Doxygen

xi

11.32.2.1 KeyframeManager() [1/2]« o o v i i i e e 118
11.32.2.2 ~KeyframeManager() e 118
11.832.2.3 KeyframeManager() [2/21« v v i v i i e e 118
11.32.3 Member Function Documentation 118
11.32.3.1 AddKeyframe() [1/31 o o o o e e 118
11.82.3.2 AddKeyframe() [2/31 . . .« o o o e e e e 119
11.32.3.3 AddKeyframe() [3/31 . . .« o v i 119
11.832.3.4 DebugDump() e 120
11.832.3.5 GetKeyframes() e 120
11.32.3.6 Instance() e 120
11.832.3.7 KeyframeAdded 121
11.32.3.80perator=() 121
11.32.3.9 RemoveKeyframe() 121
11.32.4 Member Data Documentation 121
11.324. 1 m_Keyframes e 121

11.33 Gui:Launcher Class Reference 122
11.33.1 Detailed Description L 122
11.33.2 Constructor & Destructor Documentation 122
11.833.2.1 Launcher() e 122
11.33.2.2 ~Launcher() e e 123
11.33.3 Member Data Documentation 123
11.33.3.1m_Layout e 123

11.34 Gui:MainContent Class Reference 123
11.34.1 Detailed Description e 124
11.34.2 Constructor & Destructor Documentation 124
11.834.2.1 MainContent() e 124
11.34.3 Member Data Documentation 124
11.34.3. 1 m_Layout e e e 125
11.34.3.2m_Sidebar 125
11.34.3.3m_TabWidget 125

11.35 Gui:MainWindow Class Reference 126
11.35.1 Detailed Description e 127
11.35.2 Constructor & Destructor Documentation 127
11.35.2.1 MainWindow() e e e e 127
11.35.2.2 ~MainWindow() 127
11.35.3 Member Function Documentation 127
11.835.3.1 AgentAdded 127
11.35.3.2 CompileScenario 128
11.35.3.3 ConnectSlotsAndSignals() o 128
11.835.3.4 CreateNewAgent e 128
11.35.3.5 LoadScenario 128
11.85.3.6 SaveScenario e 129

Generated by Doxygen

xii

11.35.3.7 ScenarioCompiled 129
11.35.3.8 ScenarioLoaded 129
11.35.3.9 SyncAgentColor 129
11.35.3.10 UpdateScenario 129
11.35.4 Member Data Documentation 130
11.35.4.1m_MainContent e 130
11.35.4.2m_MenuBar e 130
11.835.4.3m_Scenario e e e e e 130
11.85.4.4 m_ScenarioSettingsDialogo oo 130

11.36 Gui::MapDialog Class Reference 131
11.36.1 Detailed Description e 131
11.36.2 Constructor & Destructor Documentation, 131
11.36.2.1 MapDialog() - - . . o 131
11.36.3 Member Function Documentation L 132
11.36.3.1 Finish 132
11.36.3.2 Finished 132
11.36.3.3 MapDataReady 132
11.36.3.4SendData 133
11.36.4 Member Data Documentation 133
11.86.4.1 m_LatitudeCoordInput L 133
11.36.4.2 m_LongitudeCoordInput 133
11.36.4.3 m_Sizelnput 133

11.37 MapManagement::MapManager Class Reference 134
11.37.1 Detailed Description e 135
11.37.2 Constructor & Destructor Documentation 135
11.37.2.1 MapManager() 135
11.37.2.2 ~MapManager() o o o e e 135
11.37.3 Member Function Documentation L 135
11.37.3.1 CalculateCornerCoordinates()« . o i i i i i 135
11.37.32GetData() e 136
11.837.3.3 GetlmageResolution() Lo 136
11.37.3.4 GetMap() o e 136
11.37.35Gotimage 137
11.37.361Instance() L e e 137
11.37.3.7 Requestimage 137
11.37.4 Member Data Documentation 137
113741 M _Area e e e e e e 137
11.3742m_Data e 138
11.37.4.3 m_ImageResolution 138

11.38 Gui::MapViewer Class Reference o 138
11.38.1 Detailed Description e 139
11.38.2 Constructor & Destructor Documentation 139

Generated by Doxygen

11.38.2.1 MapViewer() o o 139
11.38.3 Member Function Documentation 140
11.88.3.1 DataReceived L 140
11.38.3.2 DrawKeyframes() 140
11.838.3.3 DrawlLoader() e 140
11.38.3.4 DrawRoutes() e e e 140
11.38.3.5 mousePressEvent() 141
11.88.3.6 paintEvent() e 141
11.88.3.7resizeEvent() e 141
11.38.3.8 UpdateActiveAgent 141
11.838.3.9 UpdateAgents e 142
11.38.3.10 UpdateRenderingArea() 142
11.38.3.11 UpdateRoutes 142
11.38.3.12 UpdateTimeStamp 142
11.38.3.13WaitForData 143

11.38.4 Member Data Documentation 143
11.38.4.1 m_ActiveAgentld L 143
11.38.42mM_Agents 143
11.838.4.3 m_LoaderAngle 143
11.38.4.4m _LoaderSize e 144
11.38.45m_LoaderSpan 144
11.38.4.6 m_LoaderSpeed 144
11.38.4.7 m_LoaderThickness e 144
11.38.4.8 m_Routes 144
11.38.49m_Size e 145
11.38.4.10 m_StartX 145
11.38.4.11 m_StartY 145
11.38.4.12m_TimeStamp L 145
11.38.4.13 m_WaitingForData 145
11.38.4.14 m_WaitingForDataElapsedTimer 146
11.38.4.15 m_WaitingForDataTimer 146

11.39 Gui:MenuBar Class Reference 146
11.39.1 Detailed Description e 147
11.39.2 Constructor & Destructor Documentation 147
11.39.2.1 MenuBar() 147
11.39.3 Member Function Documentation 147
11.39.3.1 LoadScenario 147
11.39.3.28aveScenario 147

11.40 Routemaker::Node< T > Struct Template Reference 148
11.40.1 Detailed Description e 148
11.40.2 Member Data Documentation 148
11.40.21Data e e e e 148

Generated by Doxygen

Xiv

11.40.2.2 GlobalGoal 149
11.40.23 LocalGoal 149
11.40.2.4 Parent L e e 149
11.40.25 Visited L 149

11.41 Gui::Planner Class Reference 150
11.41.1 Detailed Description e 150
11.41.2 Constructor & Destructor Documentation 150
11.41.20 Planner() o e e 150
11.41.22 ~Planner() o e 151
11.41.3 Member Data Documentation 151
11.41.3.1 m_MapViewer e 151
11.41.3.2m_Timeline e 151

11.42 Routemaker::Routemaker Class Reference 152
11.42.1 Detailed Description L 153
11.42.2 Constructor & Destructor Documentation 153
11.42.2.1 Routemaker() e 153
11.42.3 Member Function Documentation L o 154
11.42.3.1 BresenhamLine() L 154
114232 GetCOSH() - « « « v o o e 154
11.42.3.3 GetNeighbors() L 155
11.423.4GetNode() e 155
11.42.3.5 HasLineOfSight() 156
11.42.3.6 MakeRoute() e 156
11.42.3.7 ResetNodes() o o e 157
11.42.3.8 UpdateOrigin()« o o e e e 157
11.42.3.9 UpdateResolution() 157

11.42.4 Member Data Documentation 157
11.42.41 m_HeightMap 158
11.42.42m_MapWidth 158
11.42.43 m_Nodes e 158
11.42.44 m_RoutemakerRes e 158
11.42.45 m_RoutemakerWidth 158

11.43 CompileScenario::Scenario Class Reference 159
11.43.1 Detailed Description e 160
11.43.2 Member Typedef Documentation L 160
11.43.21 RouteMap e 160
11.43.3 Constructor & Destructor Documentation, 160
11.43.3.1 Scenario() 160
11.43.4 Member Function Documentation L 160
11.43.4.1 AddAgent() e 161
11.43.42Compile() e 161
11.43.4.3 GetAgents() o e 161

Generated by Doxygen

XV

11.43.4.4 GetRoutes() 161
11.43.45JSONINT() . . o o ot et e e e e e e 162
11.43.4.6 JSSONMEMBER() s e 162
11.43.4.7 JSSONMEMBERVECTOR() o o o o e e e e 162
11.43.4.8JSONSTRING() . .« -« v vt e e e e e e e e 162
11.43.4.9100ad() o 162
11.43.4108ave() - -« o o o o 163
11.43.4.11 SetOrigin() o o 163
11.43.5 Member Data Documentation 163
11.43.5.1 m_Agents 163
11.43.5.2 m_KeyframeManager 164
11.43.53m _Name e e 164
11.43.5.4m_0rigin 164
11.43.55m_Routemaker e 164
11.43.56 m_Routes e 164
11.435.7m_Size e 165

11.44 Gui::ScenarioControls Class Reference 165
11.44.1 Detailed Description 165
11.44.2 Constructor & Destructor Documentation 165
11.44.2.1 ScenarioControls() e e e 166
11.44.3 Member Function Documentation 166
11.44.3.1 CompileScenario L 166
11.44.3.2 OpenSettingsDialog e 166

11.44.4 Member Data Documentation 166
11.44.41 m_CompileButton 166
114442 m_Layout L 166
11.44.43 m_SettingsButton L 167

11.45 Gui::Sidebar Class Reference 167
11.45.1 Detailed Description e 168
11.45.2 Constructor & Destructor Documentation 168
114521 Sidebar() o o 168
11.45.3 Member Function Documentation L 168
11.45.3.1 scenarioDataReady 168
11.45.4 Member Data Documentation 169
11.45.4.1 m_AgentControls 169
11.45.42 m_KeyframeControls 169
11.45.43 m_Layout L 169
11.45.4.4 m_ScenarioControls 169

11.46 Gui::Simulator Class Reference 170
11.46.1 Detailed Description e 170
11.46.2 Constructor & Destructor Documentation 170
11.46.2.1 Simulator() o 170

Generated by Doxygen

Xvi

11.46.2.2 ~Simulator() 171

11.46.3 Member Function Documentation 171
11.46.3.1sizeHINt) o 171
11.46.4 Member Data Documentation L 171
11.46.4. 1 m_Layout L e 171

11.47 Gui::TabWidget Class Reference o 172
11.47.1 Detailed Description e 172
11.47.2 Constructor & Destructor Documentation 172
11.47.21 TabWidget() o o e 172
11.47.22 ~TabWidget() o o 173

11.47.3 Member Data Documentation 173
11.47.3.1 m_Launcher e 173
11.47.3.2m_Planner e 173
11.47.3.3 m_Simulator e e e 174

11.48 Gui::Timeline Class Reference 174
11.48.1 Detailed Description 175
11.48.2 Constructor & Destructor Documentation 175
11.48.21 Timeline() o 175
11.48.3 Member Function Documentation L o 175
11.48.3.1 GetActiveAgent() L e 176
11.48.3.2 GetTimeStamp()« o o 176
11.48.3.3 mouseReleaseEvent()o 176
11.48.3.4 paintEvent() e 177
11.48.3.5resizeEvent() 177
11.48.3.6 timeStampSelected 177

11.48.4 Member Data Documentation 177
11.48.4.1 m_activeAgentld 178
11.48.4.2 m_pixelsPerSecond 178
11.48.43 m_timeStamp L 178

11.49 Core::UTMCoordinate Struct Reference 178
11.49.1 Detailed Description L 179
11.49.2 Constructor & Destructor Documentation 179
11.49.21 UTMCoordinate()« o o o i e e 179
11.49.3 Member Function Documentation 179
11.49.3.1 JSONBOOL() . .« . v o v e e e e e s 179
11.49.3.2JSONDOUBLE() [1/2] + « v v v voeoe e e e e e e e e e 180
11.49.3.3JSONDOUBLE() [2/2] . . . o v i i e e e e s e e e 180
11.49.3.4JSONINT() o o 180

11.49.4 Member Data Documentation 180
11.49.41 Easting L e 180
11.49.4.2 IsNorthHemisphere 180
11.49.43 Meridian L 181

Generated by Doxygen

11.49.4.4 Northing 181
11.49.4570ne e e 181

12 File Documentation 183
12.1 docs/coding_standards.md File Reference o L. 183
12.2 docs/get_started.md File Reference 183
12.3 docs/testing_standard.md File Reference L. 183
12.4 docs/user_guide.md File Reference L 183
12.5 include/compile_scenario/scenario.h File Reference 183
12.6scenario.h . . . L L e e e e e 184
12.7 include/coordinate_converter/coordinate_converter.h File Reference 185
12.8 coordinate_converter.h L e 185
12.9 include/core/serializer.h File Reference L 186
12.9.1 Macro Definition Documentation o 188
12911 JSON . . . L e 189
12.9.1.2JSONBOOL e e 189
12.9.1.3JSONDOUBLE 189

12.9.1.4 JSONDOUBLEVECTOR st 189
12.9.1.5JSONEND e 190

12.9.1.6 JSONFLOAT o e 190
12.9.1.7JSONFLOATVECTOR i e e e 190
12.9.1.8JSONINT e e e 190
12.9.1.9JSONINTVECTOR e e e e e 191
129.1.10JSONMEMBER 191

12.9.1.11 JSSONMEMBERVECTOR e e e e 191
12.9.1.12JSONMEMVECVEC e 191
12.9.1.13JSONOBJECT e e e e e 192

12.9.1.14 JSONOBJECTVECTOR e e e e e 192
12.9.1.15JSONOBJVECVEC 192

12.9.1.16 JSSONSTART e e e e e e e e 192
12.9.1.17JSONSTRING 193

12.9.2 Variable Documentation L 193
12.9.2.1debug e 193

12.10 serializer.h L e 193
12.11 include/core/types.h File Reference 200
12.12types.h . . e 201
12.13 include/gui/action.h File Reference 202
1214 action.h L e e e 202
12.15 include/gui/agent_controls.h File Reference 203
12.16 agent_controls.h L 203
12.17 include/gui/color_box.h File Reference 204
12.18 color_box.h e e e 204

Generated by Doxygen

Xviii

12.19 include/gui/keyframe_controls.h File Reference 205
12.20 keyframe_controls.h L e e e 205
12.21 include/gui/keyframe_list.h File Reference L. 205
12.22 keyframe_list.h 206
12.23 include/gui/launcher.h File Reference L Lo 206
12.24 launcherh o L e 207
12.25 include/gui/main_content.h File Reference o oo 207
12.26 main_content.h L L e e 207
12.27 include/gui/main_window.h File Reference 0. 208
12.28 main_window.h L L 208
12.29 include/gui/map_dialog.h File Reference Lo 209
12.30 map_dialog.h e 210
12.31 include/gui/map_viewer.h File Reference o 210
12.32 map_viewerh L 211
12.33 include/gui/menu_bar.h File Reference L 212
1234 menu_barh L 212
12.35 include/gui/planner.h File Reference Lo 213
12.36 plannerh . . . 213
12.37 include/gui/scenario_controls.h File Reference 213
12.38 scenario_controls.h L L e e e e e 214
12.39 include/gui/sidebar.h File Reference 214
12.40 sidebarh e e e e 215
12.41 include/gui/simulator.h File Reference 215
1242 simulator.h e e e e e 216
12.43 include/gui/tab_widget.h File Reference L 216
12.44 tab_widgeth e 217
12.45 include/gui/timeline.h File Reference L 217
1246 timeline.h . . . L L e e 218
12.47 include/height_management/height_manager.h File Reference 219
12.48 height_manager.h e e 219
12.49 include/keyframe_management/keyframe_manager.h File Reference 221
12.50 keyframe_managerh L 221
12.51 include/map_management/map_manager.h File Reference 222
12.52 map_managerh e e e 223
12.53 include/routemaker/graph.h File Reference L oo 224
1254 graph.h . . o e e e e e e 224
12.55 include/routemaker/routemaker.h File Reference 227
12.56 routemaker.h L e e e e e 228
12.57 README.md File Reference e 229
12.58 src/compile_scenario/scenario.cpp File Reference oo oo, 229
12.59 SCENAMIO.CPP -+« v v o e e e e e e e e e e e e e e e e e e 229
12.60 src/coordinate_converter/coordinate_converter.cpp File Reference 231

Generated by Doxygen

Xix

12.61 coordinate_Converter.CpP« o o v v i e e e e e 231
12.62 src/core/serializer.cpp File Reference 232
12.62.1 Macro Definition Documentation Lo 233
12.62.1.1 RAPIDJSON_HAS_STDSTRING 233

12.62.2 Variable Documentation L 233
12.62.2.1debug 233

12.63 serializer.Cpp e e e e e e e e e 233
12.64 src/gui/action.cpp File Reference 236
12.65aCtioN.CPP . - . o o e e e e e e e 236
12.66 src/gui/agent_controls.cpp File Reference Lo o 237
12.67 agent_controlS.Cpp L e e e e e e 237
12.68 src/gui/color_box.cpp File Reference 238
12.69 COlOr_DOX.CPP .+« o o o e e e e e e e e e e 239
12.70 src/gui/keyframe_controls.cpp File Reference oL 240
12.71 keyframe_controls.Cpp o o e e 240
12.72 src/gui/keyframe_list.cpp File Reference Lo 240
12.73 keyframe_list.cpp L 241
12.74 src/gui/launcher.cpp File Reference L 241
12.751aunCher.Cpp o o e e e e e e e e e 242
12.76 src/gui/main_content.cpp File Reference o L 242
1277 main_content.Cpp o e e e e e e e e e e e 242
12.78 src/gui/main_window.cpp File Reference o oo 243
12.78.1 Function Documentation 243
12.78.1.1 getRandomColor() 243

1279 Main_window.CPpp o o o e e e e e e e e e e e 243
12.80 src/gui/map_dialog.cpp File Reference 245
12.81 map_dialog.Ccpp o e e e e e e e e 246
12.82 src/gui/map_viewer.cpp File Reference o o Lo 246
12.83 MaP_VIEWER.CPP -+« « o v v e e e e e e e e e e e 247
12.84 src/gui/menu_bar.cpp File Reference L 250
12.84.1 Function Documentation 250
12.84.1.1 QUItAPP() -« o o 250

12.85 menu_barcpp e e e e e e 251
12.86 src/gui/planner.cpp File Reference oL 251
12.87 plannerCpp e 252
12.88 src/gui/scenario_controls.cpp File Reference oo 252
12.89 scenario_CoNntrolS.CPP« o i e e e e e e e e 252
12.90 src/gui/sidebar.cpp File Reference 253
12.91 sidebar.cpp e e e e e e 253
12.92 src/gui/simulator.cpp File Reference 254
12.93 simulator.Cpp e e e e e e e e 254
12.94 src/gui/tab_widget.cpp File Reference L L oL 254

Generated by Doxygen

XX

12.95tab_widget.cpp e 254
12.96 src/guitimeline.cpp File Reference 255
12.97timeline.cpp o o e 255
12.98 src/height_management/height_manager.cpp File Reference 257
12.99 height_manager.cpp o e e e e e e e e 257
12.100 src/keyframe_management/keyframe_manager.cpp File Reference 260
12.101 keyframe_manager.Cpp o« o o o e e e e e e e e e 260
12.102 src/main.cpp File Reference L 261
12.102.1 Function Documentation L 261
1210211 main() - 261

12,103 MaIN.CPP - -« o v o e e e e e e e e e e e e e e 262
12.104 src/map_management/map_manager.cpp File Reference 262
12,105 Map_mManagerCpP - « -« v v v v e e e e e e e e e e e e e e e e e 262
12.106 src/routemaker/routemaker.cpp File Reference oL 264
12.106.1 Macro Definition Documentation 264
12.106.1.1 DRONE_FLIGHT HEIGHT 264

12,107 routemaker.Cpp o o o e e e e e e e e 264
Index 269

Generated by Doxygen

Chapter 1

Hivemind

1.1 About

Hivemind is a route-planning software for drone swarms. It is currently in the early stages of development.

currently serves as the final project of the developer team's bachelor's degrees.

1.2 Where to start?

» Take a look at Get started to get the development environment up and running.
 For a guide to using the software, take a look at the user guide.
+ For an insight into the testing methods Hivemind utilizes, head over to Testing standard.

» For developers, please familiarize yourself with Hivemind's coding standards.

Generated by Doxygen

Hivemind

Generated by Doxygen

Chapter 2

Coding Standards

2.1 Introduction

This document serves as both a guide to the developers and maintaners of Hivemind, and an explanation of code
design and architecture choices for other actors who needs to or wants to look at the source code of Hivemind.

2.2 Semantics and coding style issues

2.2.1 Treat compiler warnings as errors

Compiler warnings are useful hints to improve code. Generally, if the compiler issues a warning, adjust the code to
suppress this.

2.2.2 Object oriented programming

Generally, developers of Hivemind should adhere to an object oriented programming (OOP) style in Hivemind's
codebase, especially when implementing top-level interfaces of major components. It is important to note, however,
that it is encouraged avoid OOP when moving into deeper implementation details. Being too strict on an object
oriented approach often leads to unnecessary complications.

2.2.3 Assert extensively

The use of assertions in code is encouraged. Assertions are not only very useful for verifying states and data, they
also document expected behaviour for other developers looking at the codebase.

2.3 Source Code Formatting

2.3.1 Clang Format

The root of the project contains a . clang-format configuration file. This should be used to format all source
files to maintain consistent formatting throughout the codebase, and to prevent unnecessary changes to untouched
code cluttering the version control history.

The control comments clang-format off and clang-format on can be used for specific code blocks
where retaining a specific format is preferable, but this should be used sparingly.

Generated by Doxygen

4 Coding Standards

2.3.2 Commenting

Comments are useful for documenting source code and provides improved readability and maintainability. Com-
ments should provide an explanation of the code's purpose rather than an explanation of how it is done; the code
documents the process itself.

2.3.2.1 Class definitions

Proper documentation of class definitions are expected. The purpose of a class and how it works should be ex-
plained with Doxygen comments to keep the docs as up to date as possible. These comments should be located in
the header file of the class.

2.3.2.2 Comment formatting

Generally, prefer C++-style comments rather than C-style. For normal comments, this means using //, and using
/// for doxygen comments.

2.3.2.3 Doxygen comments

Prefer using triple-slash (// /) comments for doxygen documentation. Prefer using backslash (\) over at (@) for
doxygen tags such as param, file and returns.

Prefer:

/17

/// \brief Function used to create Bar

/77

/// \param id Unique ID that represents Bar
/// \returns Bar object

/77

Bar Foo(int id);

Avoid:
/xx
* (@brief Function used to create Bar
*
* (@param id Unique ID that represents Bar
* (@returns Bar object
*/
Bar Foo(int id);

2.3.3 White space

Prefer spaces over tabs. There are valid arguments for both the use of spaces and tabs, but a mixture of both of
them should not be used. Therefore, a standard of using spaces is preferred in this project. Clang Format should
ensure that tabs are converted to spaces.

2.3.4 Column width

If a maximum column width is going to be defined, using a standard width makes sense. Therefore, a maximum
column width of 80 has been set. This should be enforced by Clang Format. There are exceptions to this rule,
and these are generally related to comments or strings that have a specific format that makes more sense than the
one enforced by Clang Format. In these cases, the use of clang-format off and clang-format on are
allowed.

Generated by Doxygen

2.4 Language specifics 5

2.4 Language specifics

For now, all the source code of Hivemind is written in C++. When we start to use ROS as part of the system, there
are plans to experiment with the feasibility of implementing modules in Python.

24.1 C++
2.4.1.1 Standard version

Hivemind uses C++17.

Although C++20 is both feature-complete and mostly supported by the major compilers, our preferred build tool-
chain, CMake, only supports some features through the use of experimental flags. As such, we currently view
C++20 as not fully supported and not a viable option. This may change in the future.

2.4.1.2 Standard library

Generally prefer to use the data structures, algorithms and functions available in the C++ standard library rather than
implementing custom solutions. The standard library is mature, robust, extensively tested and highly optimized.

2.4.1.3 Naming convention

Maintaining a uniform naming convention throughout the codebase helps increase readability. As such, we use a
well-defined naming convention that must be adhered to when writing C++ code.

« Namespaces, classes, structs and enums should all be named using PascalCase.
» Macros and enum values should be named using SCREAMING_SNAKE_CASE.
 Local variables and functions outside classes/structs should be nhamed using camelCase.

* Members and attributes of classes/structs should be named using PascalCase, but private attributes
should be pre-fixed with m__.

2.4.1.4 Classes and structs

In C++, classes and structs are essentially the same thing and they can generally be used interchangeably, given
that you take access specifiers into account.

We define a semantic difference in our codebase: Classes are to be used for more complex data objects with
attributes and members of both private and public access. Structs are to be used for more simple data objects
where all attributes are public.

When defining classes, the attributes and members of different access specifiers should be defined in the following
order:

1. public
2. protected
3. private
The rationale for this is that if someone looks at the header file of a class to see what attributes and members

they can access, they will not care about private members and implementation details. They want to know which
members and attributes they can actually use.

Generated by Doxygen

6 Coding Standards

2.4.1.5 Include style

At the top of the file, below the header guard in the case of header files, should the includes required by the file be
listed. They should be ordered as follows:

1. Main module header
2. Project headers
3. Library headers

4. System headers

The main module header only applies to .cpp files with a header files whose classes and functions it implements.
The project headers refer to other header files part of the Hivemind project that the file depends on. The library
headers refer to dependant header files from external libraries such as QT headers. Finally, system headers gener-
ally refer to headers that are part of the C standard library and C++ standard library.

The main module header and project files should be include with the double-quote style, and library files and
system files should be included with the angled brackets style.

Header files should only include other header files that it strictly needs. If the include can be moved to the corre-
sponding .cpp file instead, it should.

Example:

// foo.cpp

#include "foo.h"

#include "hivemind_core.h"

#include "hivemind_gui.h"

#include <QWidget>

#include <QMath>

#include <vector>
#include <map>

2.4.1.6 Header Guards

Header files should be protected using #pragma once rather than traditional header guards. #pragma once
is technically not standard but it is widely supported and provides several advantages including less code, less risk
of name clashing and potentially improved compilation speed.

Prefer:
// foo.h
#pragma once

class Foo

{1

Avoid:
// foo.h

ifndef FOC

#
s
#define FOO_]

class Foo

{1

#endif // FOO_H

Generated by Doxygen

2.4 Language specifics 7

2.4.1.7 Use of the auto keyword

The use of the aut o keyword should be reserved for cases where the type can be deduced from the context. An
example of this is when casting a variable to another type. The cast operation will specify the type, so it is easily
deduces.

Example:
// It is obvious the resulting type will be Foo
auto foo = static_cast<Foo> (bar);

The auto keyword can sometimes also be used to increase readability of the codebase. Examples of this is when
using the chrono library in the std namespace. It is extremely verbose, and using auto can help with readability.

Example:

// The following assignments are equivelant, but one is arguibly more readable.
std::chrono::time_point<std::chrono::steady_clock> start = std::chrono::steady_clock::now();
auto start = std::chrono::steady_clock::now();

2.4.1.8 RAIl

RATIT, or Resource Acquisition Is Initialization, is a C++ programming technique which ensures that the life-cycle
of a limited resource, such as heap memory or a locked mutex, is bound to the life-cycle of an object, meaning that
the resource is accessible and usable as long as the object lives, and that it is automatically freed when the object
is destroyed.

RAIl is generally implemented by acquiring the needed resource in the constructor of a class, and freed in the
destructor.

Prefer to use RAIl where applicable.

Generated by Doxygen

Coding Standards

Generated by Doxygen

Chapter 3

Get Started

3.1 Install dependencies

Hivemind has several dependencies. The following installation methods have been tested for Ubuntu 22.04. You
may attempt other installation methods as well, but these are veryfied to be working.

3.1.1 Main dependencies

The main dependencies for building Hivemind are listed here.
Click each section to expand.

Make sure system is up-to-date
$ sudo apt-get -g update

Install build tools

$ sudo apt-get install -y cmake ninja-build make g++ rpm build-essential libgll-mesa-dev

Install Qt6

$ sudo apt-get install -y gt6-base-dev

Install proj development package
$ sudo apt-get install -y libproj-dev

Install GeographicLib

$ wget -qO-—
"https://downloads.sourceforge.net/project/geographiclib/distrib-C%2B%2B/GeographicLib-2.2.tar.gz?ts=gAAAAABkPnvtCqJ9K7pUSa
| tar xvz

$ mkdir GeographicLib-2.2/build/ && cd GeographicLib-2.2/build/

$ cmake ..

$ make -j‘nproc’

$ sudo make install

Install GDAL
$ git clone https://github.com/0SGeo/GDAL.git

$ mkdir GDAL/build/ && cd GDAL/build/

$ cmake ..

$ cmake --build .

$ sudo cmake --build . --target install

Install RapidJSON
$ git clone --recursive https://github.com/Tencent/rapidjson/
$ mkdir rapidjson/build/ && cd rapidjson/build/
$ cmake ..
$ make -j‘nproc®
$ sudo make install

Generated by Doxygen

10 Get Started

3.1.1.1 Want to build the docs?

Hivemind's docs requires Doxygen 1.9.6. The following sections shows how to install Doxygen's dependencies and
Doxygen itself.

Click each section to expand

Install dependencies
$ sudo apt-get install -y git graphviz wget

Install Doxygen
$ wget https://github.com/doxygen/doxygen/releases/download/Release_1_9_6/doxygen-1.9.6.1linux.bin.tar.gz
$ tar -xvf doxygen-1.9.6.linux.bin.tar.gz
$ cd doxygen-1.9.6/
$ sudo make install

3.2 Build

3.2.1 Building Hivemind

Once all dependencies are installed, building Hivemind is simple.

From the project's root directory:
$ mkdir -p build/ && cd build/
$ cmake ..

$ make -j‘nproc’

After building, Hivemind can be launched:

$./hivemind

3.2.2 Building the docs

If you want to build the docs, make sure you have installed Doxygen as shown above.

From the project's root directory:

$ mkdir -p build/ && cd build/

$ cmake ..

$ make docs

$ firefox docs/index.html # Replace firefox with your browser of choice

Generated by Doxygen

Chapter 4

Testing Standard

4.1 Introduction
To be able to develop a functioning software we have to have a standard for testing so that everyone agrees on
when a component is done being developed.

This document will go throught the different ways of how you should go about verifying components for Hivemind
and what is expected to be included in the verification document.

4.2 Unit testing

When testing Hivemind, the principle of unit testing should the followed. This means that when creating a test for a
component that test should be independent of other tests or components. A major benefit of following unit testing is
that it simplifies automation of test through use of azure pipelines and GoogleTest. This does not mean every test
that follows unit testing needs to be automated since it is very hard to automate test for a Graphical User Interface
(GUI), but you still want to follow the principles of unit testing when testing a GUI.

4.3 Methods of Verification

There are 4 methods that can be used to verify components for Hivemind. They are:

4.3.1 Inspection

Inspection is examining the system and verifying that functionality is present. In a software system inspection can
be performed by looking at the code and veryfying that the software has the necessary inputs and function that are
required for the system to work.

4.3.2 Demonstration

Demonstration is verifying the system through manipulation. This is done by verifying that the expected result are
acquired when the system is used as intended. In software, demonstration can be done by clicking on a button and
checking if the system responds according to expectation.

Generated by Doxygen

12 Testing Standard

4.3.3 Testing

Testing is verifying that the system operates as intended through using a predefined set of data and inputs, as well
as knowing the expected output from the system when using those data and inputs. This type of verification is
possible to automate.

4.3.4 Analysis

Analysis is the final method used to verify a system. This is done by creating models of the system, using equipment
to test parts of the system if possible or calculations, if there is a complex function or algorithm in the system.

4.4 Documentation of verification

To document the verification process, a table that contains all the necessary information should be used. It should
include:

1. Anindex to identify which test is being done

2. Who approved test

3. Who did the test

4. Which methods were used to perform the test

5. What prerequisites has to be in place to be able to recreate the test
6. What data was used in the test

7. A description of the test

8. The success criteria for the test

9. If the test failed, a description of the error should be provided

Generated by Doxygen

Chapter 5

User Guide

5.1 Graphical User Interface

The software has an intuitive user interface that makes it easy to navigate and perform tasks. Here is a description
of the key elements in the user interface:

so 85 %0

5.1.1 Menu bar

At the top of the window, you will find the menu bar. It includes a dropdown menu that allows you to manage
scenarios by loading and saving them.

Generated by Doxygen

14 User Guide

 New Ctrl+N

Open... Ctrl+0O
cave as... Ctrl+Shift+5s
Ctrl+s |

A

5.1.2 Sidebar

ner sim

The sidebar is located on the left side of the window and provides quick access to different tools in the software. It
contains the following sections.

» Scenario Settings: This section allows you to define specific settings for the scenario, such as setting the
location and size of the map.

Scenario settings

Compile scenario

Scenario settings

Generated by Doxygen

5.1 Graphical User Interface 15

» Agent Controls: In this section, you can manage the agents within the scenario. You have the ability to add
new agents to the scenario, and changing the active agent between existing ones.

Agent Controls

Active agent

New agent

+ Keyframe Controls: This section allows you to manage keyframes, which are specific points in time within
the scenario that specify an agent's state.

Generated by Doxygen

16 User Guide

Keyframe Controls

Keyframes

Agentld: 0, TimeStamp: 0, X: -32.6992, Y:-50.7729, Z: 0
Agentld: 0, TimeStamp: 29.0675, X:-35.7907, ¥: -25.8026, Z
Agentld: 0, TimeStamp: 40.7074, X:-28.6564, ¥:-12.0095, Z
Agentld: 1, TimeStamp: 40.7074, X:-35.3151, ¥: 2.73484, Z:
Agentld: 1, TimeStamp: 32.0257, X: -36.5042, ¥: -43.4007, Z
Z

0
0
0
0
Agentld: 1, TimeStamp: 54.0193, X:-33.8882, ¥:-26.0404, Z: 0

Delete keyframe(s)

5.1.3 The Planner tab
The Planner tab provides a visual representation of both a map and a timeline.
« The map display shows a graphical representation of the area.

» The timeline displays the keyframes of all agents at the specified timestamps.

5.2 Functinality of Hivemind

5.2.1 Creating a scenario
5.2.1.1 Set scenario settings

1. Press scenario Settings button in the sidebar and a dialog box will pop up.
2. Specify the position on the map by entering geographical coordinates (latitude, longitude).
3. Determine the size of the map.

4. Click on the "Set Location" button to confirm the settings.

Generated by Doxygen

5.2 Functinality of Hivemind 17

hivemind

Enter latitude:

59.66581

Enter longitude:

9.64628

Size:

200|

Set location

Landmark Latitude | Longitude
Kongsberg church 59.66581 | 9.64628
Krona (University of South-Eastern Norway) | 59.66471 | 9.64434
Hotel 1624 59.66944 | 9.65399
Nybrua 59.66761 | 9.64932
Gamlebrua 59.66265 | 9.65222
Train station 59.67221 | 9.65091

5.2.1.1.1 Popular Landmarks in Kongsberg

5.2.1.2 Add agents

1. Click on the New Agent button to create a new agent. This will make the newly created agent the active agent.

Generated by Doxygen

18 User Guide

et tings
- Agento

Agent 1
Agent 2
Agent 3 1trols
Agent 4
Agent 5

Agent 6

| New agent |

1. Itis possible to select a color for the agent by choosing from the color options, located to the right in the Agent
Control. This color will be used to visually identify the agent in the scenario.

1. If you want to switch to a previously created agent, simply click on the desired agent in the list or panel. This
will make that agent the active agent, and you can view and modify its details as needed.

Generated by Doxygen

5.2 Functinality of Hivemind 19

£ mmmmmin aatlings
Agent0

Agent 1
Agent 2
Agent 3 E':'I‘s)
Agent 4

Agent 5
Agent 6

J—

New agent

5.2.1.3 Add keyframes

1. To add keyframes, first select the agent for which you want to add keyframes.
2. Click on the timeline to set the desired timestamp for the keyframe.

3. Next, click on the map at the location where you want the keyframe to be associated.

5.2.1.4 Delete keyframes

1. To delete keyframes, check the box(es) corresponding to the keyframe(s) you wish to remove in the keyframe
controls panel.

2. Click on the "Delete Keyframes" button to delete the selected keyframes.
Alternatively, you can right click on any keyframe in the timeline to prompt deletion of that specific keyframe.

5.2.1.5 Compile Scenario

1. To compile the scenario, locate and click on the "Compile Scenario" button after you have Set scenario
settings and added some keyframes to one or more drones.

Generated by Doxygen

20 User Guide

Scenario settings

Compile scenario

Scenario settings

1. The scenario will be displayed on the screen.

5.2.2 Saving Scenarios

1. Navigate to the File menu located in the top menu bar of the software.

New ctri+N
Open... Ctrl+O

cave as... Cirl+Shift+5S

Save Cerl+s
FuT A

1. Click on Save from the dropdown menu. Alternatively, you can use the keyboard shortcut "Ctrl + shift + S".

2. A save dialog box will appear, allowing you to choose the location on your computer where you want to save
the scenario.

Generated by Doxygen

5.2 Functinality of Hivemind 21

3. Enter a file name for the scenario in the designated field. It is important to add the file extension *.hmscx.
This is currently not added automatically, but if the proper extension is not added, you will not be able to load
it again later.

1. Click the Save button to save the scenario with the specified name and format to the chosen location.

5.2.3 Loading Scenarios

1. Navigate to the File menu located in the top menu bar of the software.

File

MNew Cerl+N

save as... Ctrl+Shift+S

Save Cerl+5
FuT A

1. Click on Open from the dropdown menu.
2. Afile selection dialog box will appear. Navigate to the location where the saved scenario is stored.

3. Select the desired scenario file from the list or click on it to highlight it.

1. Click the Open button to load the selected scenario into the software.

2. Press the Compile scenario button and the scenario will be displayed in the map.

Generated by Doxygen

22

User Guide

Generated by Doxygen

Chapter 6

Namespace Index

6.1 Namespace List

Here is a list of all namespaces with brief descriptions:

CompileScenario e e 31
CoordinateConverter L e e e e 31
COre . . . e 31
GUI . o e 32
HeightManagement e e 32
JSON L L 32
KeyframeManagement L e e e e e 36
MapManagement L e e e 36
Routemaker e 36

Generated by Doxygen

24

Namespace Index

Generated by Doxygen

Chapter 7

Hierarchical Index

7.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Routemaker::Cell2D e e e 47
CoordinateConverter::CoordConv e 51
Routemaker::Graph<< T > e e e 59
Routemaker::Graph< Cell2D > e e 59
Routemaker::Routemaker L e e e 152
HeightManagement::HeightManager::heightdata 63
HeightManagement::HeightManager 64
Json:ISConstructors L L L e e 75
JdsoniISProperty L e 105
Json:ISValue e 108
Json:ISBool L e e e 73
Json:ISDouble L e e 78
Json:ISDoubleVector L e e 80
Json:ISFloat L e 82
Json:ISFloatVector L e e e 84
Json:ISInt . . L L e e e 86
Json:ulSIntVector L e e 88
Json:ISMemVecVec< T > e 95
Json:ISMember< T > L e e e 90
Json:ISMemberVector< T > e e e e e 93
JsonzISObjVecVec< T > L o e e 102
Jdson:ISObject<< T > . . . L . L L e 97
Json:ISObjectVector< T > L o 100
JsonISString L L e e 106
JSON
CompileScenario::Scenario o e e e e e 159
Core:Agent L L e e e e e 39
Core::CartesianCoordinate e e e e e 45
Core::GeographicalCoordinate e e e 58
CorexKeyframe e 111
Core:z:UTMCoordinate e e e e e e 178
KeyframeManagement::KeyframeManager L 117
Routemaker:Node<< T > e e e 148
QAction
GuizAction . . . L e e e 37

Generated by Doxygen

26

Hierarchical Index

QDialog

GuizMapDialog e e e e e e e 131
QFrame

GuizAgentControls L L e e 41

GuizKeyframeControls L 113

GuizScenarioControls e e e e 165
QListWidget

GuizKeyframeList 115
QMainWindow

GuizMainWindow L . e e e e e e e 126
QMenuBar

GuizMenuBar L e e e e 146
QObject

KeyframeManagement::KeyframeManager 117

MapManagement:MapManager e e e 134
QPushButton

GuizColorBox e e e e e e 48
QSplitter

GuizPlanner L e e e e 150
QTabWidget

GuizTabWidget o e 172
QWidget

GuizLauncher e 122

GuizMainContent L 123

GuizMapViewer e e e e e 138

GuizSidebar e e 167

GuizSimulator e e e e 170

GuizTimeline L e e e e 174

Generated by Doxygen

Chapter 8

Class Index

8.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Gui::Action
Small wrapper around QAction L
CoreAgent L L e e e

GuizAgentControls L L e
Core::CartesianCoordinate

A structure that represents a cartesian coordinate L L.
Routemaker::Cell2D L e e e e e e
GUuIizColorBoX e e e
CoordinateConverter::CoordConv

This is the class that performs coordinate conversions
Core::GeographicalCoordinate

A structure that represents a geographic coordinate L L.
Routemaker::Graph< T >

Abstract graph interface optimized for path-finding
HeightManagement::HeightManager::heightdata
HeightManagement::HeightManager
Json::ISBool

Implementation forbools
Json::ISConstructors

Implemented for future expansion L
Json::ISDouble

Implementation fordoubles
Json::ISDoubleVector

Implementation for a vector withdoubles L
Json::ISFloat

Implementation forfloats
Json::ISFloatVector

Implementation for a vector withfloats
Json::ISInt

Implementation forintegers
Json::ISIntVector

Implementation for a vector withintegers L oL
Json:ISMember< T >

Implementation for Members
Json::ISMemberVector< T >

Implementation for a vector withmembers oL

Generated by Doxygen

28

Class Index

Json:: ISMemVecVec< T >

Implementation for a vector with vectors withmembers 95
Json::ISObject< T >

Implementation forobjects 97
Json::ISObjectVector< T >

Implementation for a vector withobjects oo 100
Json::ISObjVecVec< T >

Implementation for a vector with vectors withobjects 102

Json::ISProperty
Serializing and deserializing (persistent values) requires recflection which is a way for the pro-
grammer to ensure that the data you serialize will get back to the place you want it to be when

youdeserializeitlater 105
Json::ISString

Implementation for strings Lo 106
Json::ISValue

Rflection is made possible by the help of the ISValue class and the type classes 108
Core::Keyframe

A structure representing an agent's position in cartesian space at a given pointintime 111
Gui:KeyframeControls L e 113
GuizKeyframeList L 115
KeyframeManagement::KeyframeManager

This is the class that manages keyframes 117
Gui::Launcher

The launcher widget used to launch scenarios 122
Gui::MainContent

The main content of the mainwindow 123
Gui::MainWindow

Handles the main window of Hivemind 126
Gui::MapDialog

Dialog window for inputting mapdata Lo 131
MapManagement::MapManager

This is the class responsible for retrieving maps from Kartverket 134
GuizMapViewer e e e e 138
Gui::MenuBar

The main menubar of the userinterface 146
Routemaker::Node< T >

Represents a node in a Graph data structured made for path-finding 148
Gui::Planner

The planner widget used for planning scenarios 150
Routemaker::Routemaker

Main class responsible for handling creation of routes between keyframes 152
CompileScenario::Scenario

Scenario with keyframes androutes 159
GuizScenarioControls L L e 165
Gui::Sidebar

The sidebar of the mainwindow 167
Gui::Simulator

The simulator widget used to simulate scenarios L. 170
Gui::TabWidget

The tab widget of the mainwindow 172
Gui::Timeline

A custom QWidget to represent a timeline with keyframes 174

Core::UTMCoordinate
\ A structure that represents a coordinate in the Universal Transverse Mercator coordinate system 178

Generated by Doxygen

Chapter 9

File Index

9.1 File List

Here is a list of all files with brief descriptions:

include/compile_scenario/scenario.h e e 183
include/coordinate_converter/coordinate_converter.ho L. Lo 185
include/core/serializer.h L 186
include/core/types.h L e e 200
include/gui/action.h L L e e e 202
include/gui/agent_controls.h L 203
include/gui/color_box.h e 204
include/gui/keyframe_controls.h L 205
include/gui/keyframe_list.h e 205
include/gui/launcher.h L 206
include/gui/main_content.h L e 207
include/gui/main_window.h L L e e e e 208
include/gui/map_dialog.h L 209
include/gui/map_viewerh L 210
include/gui/menu_bar.h 212
include/gui/planner.h L L e e e 213
include/gui/scenario_controls.h L 213
include/gui/sidebar.h L 214
include/gui/simulator.h L L e 215
include/gui/tab_widget.h L 216
include/gui/timeline.h 217
include/height_management/height_managerh L. 219
include/keyframe_management/keyframe_managerh oo oo 221
include/map_management/map_manager.h e 222
include/routemaker/graph.h L 224
include/routemaker/routemaker.h L L 227
SIC/MAIN.CPP + v o v o e e e e e e e e e e e e e e 261
src/compile_scenario/SCenario.Cpp i i e e e e e e e e e e e e e 229
src/coordinate_converter/coordinate_convertercpp oL Lo Lo 231
src/core/serializer.Cpp o L e e e e 232
SIC/QUI/ACioN.CPP .« . . o o e e e 236
src/gui/agent_controls.Cpp L L e 237
SIC/QUI/COlOr_DOX.CPP .+« o o o e e e e e e 238
src/gui/keyframe_controls.Cpp L e 240
src/guilkeyframe_list.Cpp L o e 240

Generated by Doxygen

30

File Index

src/gui/launcher.cpp L L e e 241
SIC/QUI/Main_content.Cpp .« .« v o v o e e e e e e e e 242
SIC/QUI/Main_Window.CPP o o o o e e e e e e e 243
sre/gui/map_dialog.Ccpp e 245
SIC/QUI/MAP_VIEWEL.CPP « .+« v v v o v e e e e e e e e e e e e e e 246
SIC/QUIMENU_DarCpp o o o e e e e e 250
sre/gui/planner.cpp . . . L L L e e e 251
src/gui/scenario_ControlS.CPP L e e 252
SIC/QUI/SIdEDAr.CPP . . . o o e e 253
SIC/Qui/Simulator.Cpp e 254
sre/guiftab_widget.cpp L e 254
SIC/QUItiMENiNe.CPP .« . .« o o o e e e e e 255
src/height_management/height_manager.cpp 257
src/keyframe_management/keyframe_manager.cpp« . o o oo e e e 260
src/map_management/map_manager.CpP .« -« - . v e e e e e e e e e e e 262
src/routemaker/routemaker.Cpp L e e 264

Generated by Doxygen

Chapter 10

Namespace Documentation

10.1 CompileScenario Namespace Reference

Classes

« class Scenario

The Scenario class represents a scenario with keyframes and routes.

10.2 CoordinateConverter Namespace Reference

Classes

« class CoordConv

This is the class that performs coordinate conversions.

10.3 Core Namespace Reference

Classes

« struct Agent
« struct CartesianCoordinate

A structure that represents a cartesian coordinate.
« struct GeographicalCoordinate

A structure that represents a geographic coordinate.
« struct Keyframe

A structure representing an agent's position in cartesian space at a given point in time.
« struct UTMCoordinate

| A structure that represents a coordinate in the Universal Transverse Mercator coordinate system

Generated by Doxygen

32 Namespace Documentation

10.4 Gui Namespace Reference

Classes

« class Action

Small wrapper around QAction.
« class AgentControls
+ class ColorBox
* class KeyframeControls
* class KeyframelList
* class Launcher

The launcher widget used to launch scenarios.
+ class MainContent

The main content of the main window.
* class MainWindow

Handles the main window of Hivemind.
+ class MapDialog

The MapDialog class represents a dialog window for inputting map data.
+ class MapViewer
+ class MenuBar

The main menubar of the user interface.
« class Planner

The planner widget used for planning scenarios.
« class ScenarioControls
« class Sidebar

The sidebar of the main window.
« class Simulator

The simulator widget used to simulate scenarios.
* class TabWidget

The tab widget of the main window.
+ class Timeline

A custom QWidget to represent a timeline with keyframes.

10.5 HeightManagement Namespace Reference

Classes

« class HeightManager

10.6 Json Namespace Reference

Classes

« class ISBool

Implementation for bools.
« class ISConstructors

Implemented for future expansion.

Generated by Doxygen

10.6 Json Namespace Reference 33

* class ISDouble

Implementation for doubles.
« class ISDoubleVector

Implementation for a vector with doubles.
+ class ISFloat

Implementation for floats.
* class ISFloatVector

Implementation for a vector with floats.
+ class ISInt

Implementation for integers.
« class ISIntVector

Implementation for a vector with integers.
+ class ISMember

Implementation for Members.
« class ISMemberVector

Implementation for a vector with members.
* class ISMemVecVec

Implementation for a vector with vectors with members.
« class ISObject

Implementation for objects.
+ class ISObjectVector

Implementation for a vector with objects.
* class ISObjVecVec

Implementation for a vector with vectors with objects.
« struct ISProperty

Serializing and deserializing (persistent values) requires recflection which is a way for the programmer to ensure that
the data you serialize will get back to the place you want it to be when you deserialize it later.

* class ISString

Implementation for strings.
+ class ISValue

Rflection is made possible by the help of the ISValue class and the type classes.

Typedefs

* using ISValuePtr = std::shared_ptr< ISValue >

+ using ISValues = std::vector< ISValuePtr >

» using ISProperties = std::vector< ISProperty >
ISProperties is a vector with ISProperty.

« using ISIV = std::vector< int >

* using ISFV = std::vector< float >

* using ISDV = std::vector< double >

Functions

+ void serialize (std::string filename, ISValue xp)

Function to start serializing an onbject.
+ void deserialize (std::string filename, ISValue *p)

Function to start deserializing a file.

Generated by Doxygen

34

Namespace Documentation

10.6.1 Typedef Documentation

10.6.1.1 ISDV

using Json::ISDV = typedef std::vector<double>

Definition at line 449 of file serializer.h.

10.6.1.2 ISFV

using Json::ISFV = typedef std::vector<float>

Definition at line 434 of file serializer.h.

10.6.1.3 ISIV

using Json::ISIV = typedef std::vector<int>

Definition at line 419 of file serializer.h.

10.6.1.4 ISProperties

using Json::ISProperties = typedef std::vector<ISProperty>
ISProperties is a vector with ISProperty.

Definition at line 34 of file serializer.h.

10.6.1.5 ISValuePtr

using Json::ISValuePtr = typedef std::shared_ptr<ISValue>

Definition at line 17 of file serializer.h.

Generated by Doxygen

10.6 Json Namespace Reference

10.6.1.6 ISValues

using Json::ISValues = typedef std::vector<ISValuePtr>

Definition at line 18 of file serializer.h.

10.6.2 Function Documentation

10.6.2.1 deserialize()

void Json::deserialize (
std::string filename,
ISValue * p)

Function to start deserializing a file.

Parameters

std::string | filename Name of the file you want to extract data from.

ISValuex | p A pointer to the top object so it know where to start.

Definition at line 235 of file serializer.cpp.
References Json::ISValue::GetProperty().

Referenced by CompileScenario::Scenario::load().

10.6.2.2 serialize()

void Json::serialize (
std::string filename,
ISValue * p)

Function to start serializing an onbject.

Parameters

std::string | filename Name of the file you want to store the application data in.

ISValuex | p A pointer to the object you want to serialize.

Definition at line 206 of file serializer.cpp.
References Json::ISValue::GetName(), and Json::ISValue::GetProperty().

Referenced by CompileScenario::Scenario::save().

Generated by Doxygen

36

Namespace Documentation

10.7 KeyframeManagement Namespace Reference

Classes

* class KeyframeManager

This is the class that manages keyframes.

10.8 MapManagement Namespace Reference

Classes

* class MapManager

This is the class responsible for retrieving maps from Kartverket.

10.9 Routemaker Namespace Reference

Classes

« struct Cell2D
« class Graph

Abstract graph interface optimized for path-finding.
« struct Node

Represents a node in a Graph data structured made for path-finding.
+ class Routemaker

Main class responsible for handling creation of routes between keyframes.

Generated by Doxygen

Chapter 11

Class Documentation

11.1 Gui::Action Class Reference

Small wrapper around QAction.
#include <action.h>

Inheritance diagram for Gui::Action:

QAction

Gui::Action

Public Member Functions
+ Action (QWidget xparent, const QString &label, void(xonClick)(void), const QKeySequence &shortcut=QKey«-

Sequence::UnknownKey)

Constructs the Action widget.

11.1.1 Detailed Description

Small wrapper around QAction.

A tiny wrapper class around QAction that simply provides constructor arguments to add on-click functionality and
keyboard shortcuts.

Definition at line 12 of file action.h.

11.1.2 Constructor & Destructor Documentation

Generated by Doxygen

38 Class Documentation

11.1.2.1 Action()

Gui::Action::Action (
QWidget * parent,
const QString & label,
void (%) (void) onClick,

const QKeySequence & shortcut = QKeySequence::UnknownKey)

Constructs the Action widget.

Generated by Doxygen

11.2 Core::Agent Struct Reference

39

Parameters

parent The parent of the Action widget.
label The label to be displayed in the action.

onClick | A function to call when the action is clicked.
shortcut | A keyboard shortcut to activate the action.

Typical usage:

Action* openAction = new Action(
parent, QString::fromUtf8("Open..."),
[ro {

QString fileName = QFileDialog::getOpenFileName (
nullptr, QString::fromUtf8("Open Image"),
QDir::currentPath(),

QString::fromUtf8 ("Image Files (x.png *.Jjpg *.bmp)"));
gInfo() « "File: " « fileName;
I
QKeySequence: :Open) ;

Definition at line 9 of file action.cpp.

The documentation for this class was generated from the following files:

« include/gui/action.h
* src/gui/action.cpp

11.2 Core::Agent Struct Reference

#include <types.h>

Inheritance diagram for Core::Agent:

JSON

Core::Agent

Public Member Functions

» Agent (int id=0, std::string name="Untitled Agent", std::string color="#FFFFFF")
* JSONSTART JSONINT (Id)
+ JSONSTART JSONSTRING (Name)

Public Attributes

* intld
+ std::string Name
+ std::string Color

Generated by Doxygen

40 Class Documentation

11.2.1 Detailed Description

Definition at line 85 of file types.h.

11.2.2 Constructor & Destructor Documentation

11.2.2.1 Agent()

Core::Agent::Agent (
int id = 0,
std::string name = "Untitled Agent”,
std::string color = "#FFFFFF") [inline]

Definition at line 87 of file types.h.

11.2.3 Member Function Documentation

11.2.3.1 JSONINT()

JSONSTART Core::Agent::JSONINT (
Id)

11.2.3.2 JSONSTRING()

JSONSTART Core::Agent::JSONSTRING (

Name)

11.2.4 Member Data Documentation

11.2.4.1 Color

std::string Core::Agent::Color
Definition at line 94 of file types.h.

Referenced by Gui::MapViewer::DrawKeyframes(), Gui::MapViewer::DrawRoutes(), Gui::AgentControls::SetActiveAgentindex(),
Gui::AgentControls::SetAgentColor(), and Gui::AgentControls::SyncColor().

Generated by Doxygen

11.3 Gui::AgentControls Class Reference 41

11.24.2 Id

int Core::Agent::Id

Definition at line 92 of file types.h.

11.2.4.3 Name

std::string Core::Agent::Name
Definition at line 93 of file types.h.

The documentation for this struct was generated from the following file:

* include/core/types.h

11.3 Gui::AgentControls Class Reference

#include <agent_controls.h>

Inheritance diagram for Gui::AgentControls:

‘ QFrame ‘

T

‘ Gui::AgentControls ‘

Public Slots
« void UpdateAgents (std::pair< std::vector< Core::Agent > :iterator, std::vector< Core::Agent >::iterator >)

« void SetActiveAgentindex (int index)
+ void SyncColor ()

Signals
+ void AddAgent ()

+ void AgentChanged (std::pair< std::vector< Core::Agent >::iterator, std::vector< Core::Agent >::iterator >)
+ void ActiveAgentChanged (int)

Public Member Functions

+ AgentControls (QWidget *parent=nullptr)

Generated by Doxygen

42 Class Documentation

Private Slots

+ void SetAgentColor (QColor color)

Private Attributes
» QGridLayout * m_Layout
» QComboBox * m_ActiveAgentComboBox
» ColorBox * m_ActiveAgentColorBox
« QPushButton * m_NewAgentButton

* int m_ActiveAgentindex
« std::pair< std::vector< Core::Agent > :iterator, std::vector< Core::Agent >::iterator > m_Agents

11.3.1 Detailed Description

Definition at line 14 of file agent_controls.h.

11.3.2 Constructor & Destructor Documentation

11.3.2.1 AgentControls()

Gui::AgentControls::AgentControls (
QWidget * parent = nullptr) [explicit]

Definition at line 8 of file agent_controls.cpp.

References AddAgent(), m_ActiveAgentColorBox, m_ActiveAgentComboBox, m_Layout, m_NewAgentButton,
SetActiveAgentindex(), and SetAgentColor().

11.3.3 Member Function Documentation

11.3.3.1 ActiveAgentChanged

void Gui::AgentControls::ActiveAgentChanged (
int) [signal]

Referenced by SetActiveAgentindex(), and UpdateAgents().

Generated by Doxygen

11.3 Gui::AgentControls Class Reference 43

11.3.3.2 AddAgent

void Gui::AgentControls::AddAgent () [signal]

Referenced by AgentControls().

11.3.3.3 AgentChanged

void Gui::AgentControls::AgentChanged (
std::pair< std::vector< Core::Agent >::iterator, std::vector< Core::Agent >+«

::iterator >) [signal]

Referenced by SetAgentColor(), and UpdateAgents().

11.3.3.4 SetActiveAgentindex

void Gui::AgentControls::SetActiveAgentIndex (
int index) [slot]

Definition at line 88 of file agent_controls.cpp.

References ActiveAgentChanged(), Core::Agent::Color, m_ActiveAgentColorBox, m_ActiveAgentindex, m_Agents,
and Gui::ColorBox::UpdateColor().

Referenced by AgentControls().

11.3.3.5 SetAgentColor

void Gui::AgentControls::SetAgentColor (

QColor color) [private], [slot]
Definition at line 54 of file agent_controls.cpp.
References AgentChanged(), Core::Agent::Color, and m_Agents.

Referenced by AgentControls().

11.3.3.6 SyncColor

void Gui::AgentControls::SyncColor () [slot]
Definition at line 108 of file agent_controls.cpp.

References Core::Agent::Color, m_ActiveAgentColorBox, m_Agents, and Gui::ColorBox::UpdateColor().

Generated by Doxygen

44 Class Documentation

11.3.3.7 UpdateAgents

void Gui::AgentControls::UpdateAgents (
std::pair< std::vector< Core::Agent >::iterator, std::vector< Core::Agent >«
::iterator > agents) [slot]

Definition at line 67 of file agent_controls.cpp.

References ActiveAgentChanged(), AgentChanged(), m_ActiveAgentColorBox, m_ActiveAgentComboBox,
m_ActiveAgentindex, and m_Agents.

11.3.4 Member Data Documentation

11.3.4.1 m_ActiveAgentColorBox

ColorBox* Gui::AgentControls::m_ActiveAgentColorBox [private]
Definition at line 39 of file agent_controls.h.

Referenced by AgentControls(), SetActiveAgentindex(), SyncColor(), and UpdateAgents().

11.3.4.2 m_ActiveAgentComboBox

QComboBox* Gui::AgentControls::m_ActiveAgentComboBox [private]
Definition at line 38 of file agent_controls.h.

Referenced by AgentControls(), and UpdateAgents().

11.3.4.3 m_ActiveAgentindex

int Gui::AgentControls::m_ActiveAgentIndex [private]
Definition at line 42 of file agent_controls.h.

Referenced by SetActiveAgentindex(), and UpdateAgents().

Generated by Doxygen

11.4 Core::CartesianCoordinate Struct Reference

45

11.3.44 m_Agents

std::pair<std::vector<Core::Agent>::iterator, std::vector<Core::Agent>::iterator> Gui:

AgentControls::m_Agents [private]

Definition at line 46 of file agent_controls.h.

Referenced by SetActiveAgentindex(), SetAgentColor(), SyncColor(), and UpdateAgents().

11.3.4.5 m_Layout

QGridLayout* Gui::AgentControls::m_Layout [private]
Definition at line 36 of file agent_controls.h.

Referenced by AgentControls().

11.3.4.6 m_NewAgentButton

QPushButton* Gui::AgentControls::m_NewAgentButton [private]
Definition at line 40 of file agent_controls.h.
Referenced by AgentControls().

The documentation for this class was generated from the following files:

« include/gui/agent_controls.h
* src/gui/agent_controls.cpp

11.4 Core::CartesianCoordinate Struct Reference

A structure that represents a cartesian coordinate.
#include <types.h>

Inheritance diagram for Core::CartesianCoordinate:

JSON

Core::CartesianCoordinate

HE

Generated by Doxygen

46

Class Documentation

Public Member Functions
 CartesianCoordinate (double x=0.0, double y=0.0, double z=0.0)

« JSONSTART JSONDOUBLE (X)
- JSONSTART JSONDOUBLE (Y)

Public Attributes

» double X
» double Y
« double Z

11.4.1 Detailed Description

A structure that represents a cartesian coordinate.

Definition at line 11 of file types.h.

11.4.2 Constructor & Destructor Documentation

11.4.2.1 CartesianCoordinate()

Core::CartesianCoordinate: :CartesianCoordinate (
double x = 0.0,
double y = 0.0,
double z = 0.0) [inline]

Definition at line 13 of file types.h.

11.4.3 Member Function Documentation

11.4.3.1 JSONDOUBLE() [1/2]

JSONSTART Core::CartesianCoordinate: :JSONDOUBLE (
X)

11.4.3.2 JSONDOUBLE() [2/2]

JSONSTART Core::CartesianCoordinate: :JSONDOUBLE (
Y)

Generated by Doxygen

11.5 Routemaker::Cell2D Struct Reference 47

11.4.4 Member Data Documentation

11441 X

double Core::CartesianCoordinate::X
Definition at line 17 of file types.h.
Referenced by CoordinateConverter::CoordConv::AsymmetricToSymmetric(), CoordinateConverter::CoordConv::CartesianToGeograj

Gui::MapViewer::DrawRoutes(), Routemaker::Routemaker::MakeRoute(), KeyframeManagement::KeyframeManager::RemoveKeyfra
and CoordinateConverter::CoordConv::SymmetricToAsymmetric().

11442 Y

double Core::CartesianCoordinate::Y
Definition at line 18 of file types.h.

Referenced by CoordinateConverter::CoordConv::AsymmetricToSymmetric(), CoordinateConverter::CoordConv::CartesianToGeograj
Gui::MapViewer::DrawRoutes(), KeyframeManagement::KeyframeManager::RemoveKeyframe(), and CoordinateConverter::CoordCo

11443 2Z

double Core::CartesianCoordinate::Z
Definition at line 19 of file types.h.
Referenced by CoordinateConverter::CoordConv::CartesianToGeographical(), and KeyframeManagement::KeyframeManager::Remo

The documentation for this struct was generated from the following file:

« include/core/types.h

11.5 Routemaker::Cell2D Struct Reference

#include <routemaker.h>

Public Attributes

e uint32_t X
e uint32_tY
* bool Occupied

Generated by Doxygen

48 Class Documentation

11.5.1 Detailed Description

Definition at line 14 of file routemaker.h.

11.5.2 Member Data Documentation

11.5.2.1 Occupied

bool Routemaker::Cell2D::Occupied

Definition at line 17 of file routemaker.h.

11.5.22 X

uint32_t Routemaker::Cell2D::X

Definition at line 16 of file routemaker.h.

11523 Y

uint32_t Routemaker::Cell2D::Y
Definition at line 16 of file routemaker.h.

The documentation for this struct was generated from the following file:

« include/routemaker/routemaker.h

11.6 Gui::ColorBox Class Reference

#include <color_box.h>

Inheritance diagram for Gui::ColorBox:

QPushButton

Gui::ColorBox

Generated by Doxygen

11.6 Gui::ColorBox Class Reference

49

Public Slots

+ void UpdateColor (QColor color)

Signals

+ void ColorUpdated (QColor color)

Public Member Functions

+ ColorBox (QWidget *parent=nullptr)

Protected Member Functions

+ void paintEvent (QPaintEvent xevent) override
+ void mousePressEvent (QMouseEvent xevent) override

Private Slots

« void SelectColor ()

Private Attributes

« QColor m_Color
+ QColorDialog * m_ColorDialog

11.6.1 Detailed Description

Definition at line 9 of file color_box.h.

11.6.2 Constructor & Destructor Documentation

11.6.2.1 ColorBox()

Gui::ColorBox::ColorBox (

QWidget * parent = nullptr) [explicit]
Definition at line 9 of file color_box.cpp.

References m_ColorDialog.

Generated by Doxygen

50

Class Documentation

11.6.3 Member Function Documentation

11.6.3.1 ColorUpdated

void Gui::ColorBox::ColorUpdated (

QColor color) [signal]

Referenced by SelectColor().

11.6.3.2 mousePressEvent()

void Gui::ColorBox::mousePressEvent (

QMouseEvent * event) [override],
Definition at line 39 of file color_box.cpp.

References SelectColor().

11.6.3.3 paintEvent()

void Gui::ColorBox::paintEvent (

QPaintEvent * event) [override],
Definition at line 21 of file color_box.cpp.

References m_Color.

11.6.3.4 SelectColor

void Gui::ColorBox::SelectColor () [private],

Definition at line 52 of file color_box.cpp.

[protected]

[protected]

[slot]

References ColorUpdated(), m_Color, and m_ColorDialog.

Referenced by mousePressEvent().

Generated by Doxygen

11.7 CoordinateConverter::CoordConv Class Reference

51

11.6.3.5 UpdateColor

void Gui::ColorBox::UpdateColor (
QColor color) [slot]

Definition at line 45 of file color_box.cpp.

References m_Color, and m_ColorDialog.

Referenced by Gui::AgentControls::SetActiveAgentindex(), and Gui::AgentControls::SyncColor().

11.6.4 Member Data Documentation

11.6.4.1 m_Color

QColor Gui::ColorBox::m_Color [private]
Definition at line 29 of file color_box.h.

Referenced by paintEvent(), SelectColor(), and UpdateColor().

11.6.4.2 m_ColorDialog

QColorDialog* Gui::ColorBox::m_ColorDialog [private]
Definition at line 30 of file color_box.h.
Referenced by ColorBox(), SelectColor(), and UpdateColor().

The documentation for this class was generated from the following files:

* include/gui/color_box.h
* src/gui/color_box.cpp

11.7 CoordinateConverter::CoordConv Class Reference

This is the class that performs coordinate conversions.

#include <coordinate_converter.h>

Generated by Doxygen

52 Class Documentation

Static Public Member Functions

« static void ResetOrigin (Core::GeographicalCoordinate geoCoord, int size)
Sets the origin coordinate to use with relative coordinates.

« static Core::CartesianCoordinate GeographicalToCartesian (Core::GeographicalCoordinate geoCoord)
Function used to convert a geographical coordinate to a cartesian coordinate.

« static Core::GeographicalCoordinate CartesianToGeographical (Core::CartesianCoordinate cartCoord)
\biref Function used to convert a cartesian coordinate to a geograpical coordinate

« static Core::GeographicalCoordinate GetOrigin ()

« static Core::CartesianCoordinate SymmetricToAsymmetric (Core::CartesianCoordinate symmetric)

Function used to convert a coordinate in a symmetric coordinate system to a coordinate in an asymmetric coordinate

system.
« static Core::CartesianCoordinate AsymmetricToSymmetric (Core::CartesianCoordinate asymmetric)

Function used to convert a coordinate in an asymmetric cooridnate system to a coordinate in a symmetric coordinate

system.
« static Core::UTMCoordinate GeographicToUTM (Core::GeographicalCoordinate GeoCoord)

Function used to convert a geographical coordinate to a UTM coordinate.
« static Core::GeographicalCoordinate UTMToGeographic (Core::UTMCoordinate UTMCoord)

Function used to convert a UTM coordinate to a geographical coordinate.
« static int GetSize ()

Private Member Functions

» CoordConv ()

The constructor is made private to adhere to the singleton pattern.

Static Private Member Functions

« static CoordConv & Getlnstance ()

Get the single instance of CoordConv.

Private Attributes

+ Core::GeographicalCoordinate m_OriginGeographical
» GeographicLib::LocalCartesian m_Origin
e int m_Size

11.7.1 Detailed Description

This is the class that performs coordinate conversions.

Definition at line 13 of file coordinate_converter.h.

11.7.2 Constructor & Destructor Documentation

Generated by Doxygen

11.7 CoordinateConverter::CoordConv Class Reference 53

11.7.2.1 CoordConv()

CoordinateConverter: :CoordConv: :CoordConv () [inline], [private]
The constructor is made private to adhere to the singleton pattern.

Definition at line 91 of file coordinate_converter.h.

11.7.3 Member Function Documentation

11.7.3.1 AsymmetricToSymmetric()

Core::CartesianCoordinate CoordinateConverter::CoordConv: :AsymmetricToSymmetric (

Core::CartesianCoordinate asymmetric) [static]

Function used to convert a coordinate in an asymmetric cooridnate system to a coordinate in a symmetric coordinate
system.

Parameters

asymmetric | Cartesian coordinate in an asymmetric coordinate system

Returns

The symmetric coordinate corresponds to the asymmetric coordinate

Definition at line 66 of file coordinate_converter.cpp.
References Getlnstance(), Core::CartesianCoordinate::X, and Core::CartesianCoordinate::Y.

Referenced by Routemaker::Routemaker::MakeRoute(), and Gui::MapViewer::mousePressEvent().

11.7.3.2 CartesianToGeographical()

Core::GeographicalCoordinate CoordinateConverter::CoordConv::CartesianToGeographical (

Core::CartesianCoordinate cartCoord) [static]

\biref Function used to convert a cartesian coordinate to a geograpical coordinate

Parameters

cartCoord | Cartesian coordinate to convert

Generated by Doxygen

54 Class Documentation

Returns

return a geographical point relative to origin and the cartesian coordinates.

Definition at line 33 of file coordinate_converter.cpp.

References Getlnstance(), Core::CartesianCoordinate::X, Core::CartesianCoordinate::Y, and Core::CartesianCoordinate::Z.

11.7.3.3 GeographicalToCartesian()

Core::CartesianCoordinate CoordinateConverter::CoordConv::GeographicalToCartesian (

Core: :GeographicalCoordinate geoCoord) [static]

Function used to convert a geographical coordinate to a cartesian coordinate.

Parameters

geoCoord | Geograhical coordinate to convert

Returns

return a cartesian point relative to origin

Definition at line 22 of file coordinate_converter.cpp.

References Getlnstance(), Core::GeographicalCoordinate::Latitude, and Core::GeographicalCoordinate::Longitude.

11.7.3.4 GeographicToUTM()

Core::UTMCoordinate CoordinateConverter::CoordConv::GeographicToUTM (

Core: :GeographicalCoordinate GeoCoord) [static]

Function used to convert a geographical coordinate to a UTM coordinate.

Parameters

GeoCoord | Geographical coordinate

Returns

UTM coordinate corresponds to the geographical coordinate

Definition at line 78 of file coordinate_converter.cpp.

References Core::UTMCoordinate::Easting, Core::UTMCoordinate::IsNorthHemisphere, Core::GeographicalCoordinate::Latitude,
Core::GeographicalCoordinate::Longitude, Core::UTMCoordinate::Northing, and Core::UTMCoordinate::Zone.

Generated by Doxygen

11.7 CoordinateConverter::CoordConv Class Reference 55

Referenced by CompileScenario::Scenario::Scenario(), and CompileScenario::Scenario::SetOrigin().

11.7.3.5 Getlnstance()

static CoordConv & CoordinateConverter::CoordConv::GetInstance () [inline], [static], [private]

Get the single instance of CoordConv.

Returns

The single instance of CoordConv.

Definition at line 97 of file coordinate_converter.h.

Referenced by AsymmetricToSymmetric(), CartesianToGeographical(), GeographicalToCartesian(), GetOrigin(),
GetSize(), ResetOrigin(), and SymmetricToAsymmetric().

11.7.3.6 GetOrigin()

Core: :GeographicalCoordinate CoordinateConverter::CoordConv::GetOrigin () [static]

Returns

The geographical coordinates to origin.

Definition at line 44 of file coordinate_converter.cpp.

References Getlnstance().

11.7.3.7 GetSize()

static int CoordinateConverter::CoordConv::GetSize () [inline], [static]
Definition at line 82 of file coordinate_converter.h.
References Getlnstance(), and m_Size.

Referenced by Gui::MapViewer::DrawKeyframes(), Gui::MapViewer::DrawRoutes(), and Gui::MapViewer::mousePressEvent().

11.7.3.8 ResetOrigin()

void CoordinateConverter::CoordConv::ResetOrigin (
Core: :GeographicalCoordinate geoCoord,

int size) [static]

Sets the origin coordinate to use with relative coordinates.

Generated by Doxygen

56 Class Documentation

Parameters

geoCoord | Geographical coordinate to be used as the origin of relative coordinates

Definition at line 10 of file coordinate_converter.cpp.
References Getlnstance(), Core::GeographicalCoordinate::Latitude, and Core::GeographicalCoordinate::Longitude.

Referenced by CompileScenario::Scenario::Scenario(), and CompileScenario::Scenario::SetOrigin().

11.7.3.9 SymmetricToAsymmetric()

Core::CartesianCoordinate CoordinateConverter::CoordConv::SymmetricToAsymmetric (

Core::CartesianCoordinate symmetric) [static]

Function used to convert a coordinate in a symmetric coordinate system to a coordinate in an asymmetric coordinate
system.

Parameters

symmetric | Cartesian coordinate in a symmetric coordinate system

Returns

The asymmetric coordinate corresponds to the symmetric coordinate

Definition at line 54 of file coordinate_converter.cpp.
References Getlnstance(), Core::CartesianCoordinate::X, and Core::CartesianCoordinate::Y.

Referenced by Gui::MapViewer::DrawKeyframes(), Gui::MapViewer::DrawRoutes(), and Routemaker::Routemaker::MakeRoute().

11.7.3.10 UTMToGeographic()

Core::GeographicalCoordinate CoordinateConverter::CoordConv: :UTMToGeographic (
Core: :UTMCoordinate UTMCoord) [static]

Function used to convert a UTM coordinate to a geographical coordinate.

Parameters

UTMCoord | UTM coordinate

Generated by Doxygen

11.7 CoordinateConverter::CoordConv Class Reference 57

Returns

Geographical coordinate corresponds to the UTM coordinate

Definition at line 90 of file coordinate_converter.cpp.

References Core::UTMCoordinate::Easting, Core::UTMCoordinate::IsNorthHemisphere, Core::GeographicalCoordinate::Latitude,
Core::GeographicalCoordinate::Longitude, Core::UTMCoordinate::Northing, and Core::UTMCoordinate::Zone.

11.7.4 Member Data Documentation

11.7.4.1 m_Origin

GeographicLib::LocalCartesian CoordinateConverter::CoordConv::m_Origin [private]

Definition at line 105 of file coordinate_converter.h.

11.7.4.2 m_OriginGeographical

Core: :GeographicalCoordinate CoordinateConverter::CoordConv::m_OriginGeographical [private]

Definition at line 104 of file coordinate_converter.h.

11.7.4.3 m_Size

int CoordinateConverter::CoordConv::m_Size [private]
Definition at line 106 of file coordinate_converter.h.
Referenced by GetSize().

The documentation for this class was generated from the following files:

* include/coordinate_converter/coordinate_converter.h
+ src/coordinate_converter/coordinate_converter.cpp

Generated by Doxygen

58

Class Documentation

11.8 Core::GeographicalCoordinate Struct Reference

A structure that represents a geographic coordinate.
#include <types.h>

Inheritance diagram for Core::GeographicalCoordinate:

JSON

Core::GeographicalCoordinate

Public Member Functions

» GeographicalCoordinate (double lat, double lon)
+ JSONSTART JSONDOUBLE (Latitude)

Public Attributes

 double Latitude
 double Longitude

11.8.1 Detailed Description

A structure that represents a geographic coordinate.

Definition at line 28 of file types.h.

11.8.2 Constructor & Destructor Documentation

11.8.2.1 GeographicalCoordinate()

Core: :GeographicalCoordinate: :GeographicalCoordinate (
double lat,

double lon) [inline]

Definition at line 30 of file types.h.

11.8.3 Member Function Documentation

Generated by Doxygen

11.9 Routemaker::Graph< T > Class Template Reference 59

11.8.3.1 JSONDOUBLE()

JSONSTART Core::GeographicalCoordinate: :JSONDOUBLE (
Latitude)

11.8.4 Member Data Documentation

11.8.4.1 Latitude

double Core::GeographicalCoordinate::Latitude
Definition at line 34 of file types.h.

Referenced by CoordinateConverter::CoordConv::GeographicalToCartesian(), CoordinateConverter::CoordConv::GeographicToUTM
CoordinateConverter::CoordConv::ResetOrigin(), and CoordinateConverter::CoordConv::UTMToGeographic().

11.8.4.2 Longitude

double Core::GeographicalCoordinate: :Longitude
Definition at line 35 of file types.h.

Referenced by CoordinateConverter::CoordConv::GeographicalToCartesian(), CoordinateConverter::CoordConv::GeographicToUTM
CoordinateConverter::CoordConv::ResetOrigin(), and CoordinateConverter::CoordConv::UTMToGeographic().

The documentation for this struct was generated from the following file:

* include/core/types.h

11.9 Routemaker::Graph< T > Class Template Reference

Abstract graph interface optimized for path-finding.

#include <graph.h>

Public Types

+ using NodePtr = std::shared_ptr< Node< T > >

Helper alias to make code more readable.

Generated by Doxygen

60 Class Documentation

Public Member Functions

+ virtual std::vector< NodePtr > GetNeighbors (NodePtr node)=0

Collects all neighbor nodes of node.
« virtual double GetCost (NodePtr a, NodePir b)=0

Returns the cost between a and b.
« virtual bool HasLineOfSight (NodePtr a, NodePtr b)=0

Determines if there is a direct line of sight between node a and node b.
« virtual void ResetNodes (void)=0

Resets all local and global goals and parent relationships of all nodes.
+ void SolveAStar (NodePtr start, NodePtr goal)

Finds cheapest path from start to goal.
« void PostSmooth (NodePtr start, NodePtr goal)

Simplifies the path from start to goal.

11.9.1 Detailed Description

template <typename T>
class Routemaker::Graph<< T >

Abstract graph interface optimized for path-finding.

Template Parameters

‘ T ‘ Type of user data to store in each node

This interface is designed to be flexible and scalable. The sub-classes are required to implement a few methods,
such as Graph::GetNeighbors and Graph::GetCost for the Ax path-finding algorithm to work.

Definition at line 73 of file graph.h.

11.9.2 Member Typedef Documentation

11.9.2.1 NodePtr

template<typename T >
using Routemaker::Graph< T >::NodePtr = std::shared_ptr<Node<T> >

Helper alias to make code more readable.

Definition at line 76 of file graph.h.

11.9.3 Member Function Documentation

Generated by Doxygen

11.9 Routemaker::Graph< T > Class Template Reference 61

11.9.3.1 GetCost()

template<typename T >

virtual double Routemaker::Graph< T >::GetCost (
NodePtr a,
NodePtr b) [pure virtual]

Returns the cost between a and b.

Implemented by sub-classes of Graph. The ax path-finding algorithm uses cost to efficiently find the best path
between two nodes. In order to do this, it requires some method of calculating the cost of moving between any
two nodes. It is up to the sub-class to define how this is calulated. An example of this cost may be the euclidean
distance between two nodes.

Parameters

a | Pointer to the first Node
b | Pointer to the second Node

Returns

Cost between node a and node b.

Implemented in Routemaker::Routemaker.

11.9.3.2 GetNeighbors()

template<typename T >
virtual std::vector< NodePtr > Routemaker::Graph< T >::GetNeighbors (

NodePtr node) [pure virtuall]
Collects all neighbor nodes of node.

Implemented by sub-classes of Graph. The neighbor relationship between nodes define the edges of the graph. It
is up to the subclass to define these relationships. For a 2D grid, the neighbors would simply be the nodes directly
to the north, south, east and west, in addition to the corners between them. For a road network, the relationships
may be more complex.

Parameters

‘ node ‘ A pointer to the node from which to collect all neighbors

Returns

A vector of pointers to all the neighbors of node

Implemented in Routemaker::Routemaker.

Generated by Doxygen

62 Class Documentation

11.9.3.3 HasLineOfSight()

template<typename T >

virtual bool Routemaker::Graph< T >::HasLineOfSight (
NodePtr a,
NodePtr b) [pure virtual]

Determines if there is a direct line of sight between node a and node b.

Implemented by sub-classes of Graph. The Graph::PostSmooth method traverses the already found path through
the Ax path-finding algorithm and simplifies it by using this method. In a graph representing a 2D grid, a Bresenham
implementation or ray-casting can be used to determine line of sight.

Parameters

a | Pointer to the first Node
b | Pointer to the second Node

Returns

bool specifying whether or not there is a direct line of sight

Implemented in Routemaker::Routemaker.

11.9.3.4 PostSmooth()

template<typename T >

void Routemaker::Graph< T >::PostSmooth (
NodePtr start,
NodePtr goal)

Simplifies the path from start to goal.

Parameters

start | Pointer to the start node of the path
goal | Pointer to the end node of the path

Should be run on the same nodes as Graph::SolveAStar, and should only be called after Graph::SolveAStar has
finished.

Definition at line 231 of file graph.h.

11.9.3.5 ResetNodes()

template<typename T >
virtual void Routemaker::Graph< T >::ResetNodes (

void) [pure virtual]

Generated by Doxygen

11.10 HeightManagement::HeightManager::heightdata Struct Reference 63

Resets all local and global goals and parent relationships of all nodes.
Implemented by sub-classes of Graph. In order to be able to re-use the same graph for several Ax searches, the
Graph::SolveAStar method needs to be able to reset all the nodes. As this interface does not contain the actual

collection of nodes, this needs to be implemented in the sub-classes.

Implemented in Routemaker::Routemaker.

11.9.3.6 SolveAStar()

template<typename T >

void Routemaker::Graph< T >::SolveAStar (
NodePtr start,
NodePtr goal)

Finds cheapest path from start to goal.

Parameters

start | Pointer to the node to start the path from

goal | Pointer to the node to find the path to

Using the Ax algorithm, this method explores the graph's nodes and updates their local and global goals, their
visited flags, as well as their parent relationships.

When the algorithm finishes, given that a path exists between the nodes, the cheapest path between them is defined

by the parent relationships. The path can be extracted by starting at the goal and following the Node::Parent
pointers until start is reached, saving each node in a list and reversing it at the end.

Definition at line 165 of file graph.h.

The documentation for this class was generated from the following file:

* include/routemaker/graph.h

11.10 HeightManagement::HeightManager::heightdata Struct Reference

#include <height_manager.h>

Public Attributes

 double x
» double y
 double z

11.10.1 Detailed Description

Definition at line 14 of file height_manager.h.

Generated by Doxygen

64 Class Documentation

11.10.2 Member Data Documentation

11.10.2.1 x

double HeightManagement::HeightManager::heightdata::x
Definition at line 16 of file height_manager.h.

Referenced by HeightManagement::HeightManager::GetHeightAbsolute(), HeightManagement::HeightManager::GetVertexAbsolute()
HeightManagement::HeightManager::PopulateVertices(), and HeightManagement::HeightManager::Validinput().

11.102.2 y

double HeightManagement::HeightManager::heightdata::y
Definition at line 17 of file height_manager.h.

Referenced by HeightManagement::HeightManager::GetHeightAbsolute(), HeightManagement::HeightManager::GetVertexAbsolute()
HeightManagement::HeightManager::PopulateVertices(), and HeightManagement::HeightManager::Validinput().

11.10.23 z

double HeightManagement::HeightManager::heightdata::z

Definition at line 18 of file height_manager.h.

Referenced by HeightManagement::HeightManager::GetHeight(), HeightManagement::HeightManager::GetHeightAbsolute(),
HeightManagement::HeightManager::GetVertex(), HeightManagement::HeightManager::GetVertexAbsolute(),
HeightManagement::HeightManager::PopulateVertices(), and HeightManagement::HeightManager::UpdateOrigin().

The documentation for this struct was generated from the following file:

« include/height_management/height_manager.h

11.11 HeightManagement::HeightManager Class Reference

#include <height_manager.h>

Classes

« struct heightdata

Generated by Doxygen

11.11 HeightManagement::HeightManager Class Reference 65

Public Member Functions

HeightManager ()
Constructor of HeightManager class.
void UpdateOrigin (Core::UTMCoordinate UTMCoord, int size)
Function to update the origin point.
bool GetVertex (int inputRelativeX, int inputRelativeY, heightdata &vertex)
Function to return the whole "height_management" for a given point.
bool GetHeight (int inputRelativeX, int inputRelativeY, float &height)
Function to return height, given relative coordinates (from a system where 0, O is in the upper left corner)
bool GetVertexAbsolute (double inputX, double inputY, heightdata &vertex)

Function to get the height_ management of an absolute (geographic) coordinate, using the same coordinate system
of the dataset.

float GetHeightAbsolute (double inputX, double inputY)

Function to get the height of an absolute (geographic) coordinate, using the same coordinate system of the dataset.
void LoadTif (const char xfilePath, double x, double y)

Function to allow user to change GeoTiff file used in planning.

Private Member Functions

void PopulateVertices ()

Function that will open the GeoTiff file and extract all heights for the given subset of the dataset used.
bool Validinput (int x, int y)

Function to test whether a point exists within the scope of the selected data subset.
bool Validinput (double x, double y)

Function to test whether a point exists within the scope of the elected data subset.
bool OrigoWithinBounds (double x, double y)

Function that tests whether the selected origin point is within the bounds of the currently active data set, given the
buffer size required to extract the subset.

void UpdateCornerCoords ()

Function to update the corner coordinates saved within the member instance of the chosen dataset.

Private Attributes

const char * m_CachedTifName = "../res/Kongsberg.tif"
const char *« m_CoordinateSystem { "UTM33" }
int m_Resolution { 1}

int m_Size

long m_UpperLeftX

long m_UpperLeftY

long m_LowerRightX

long m_LowerRightY

heightdata * m_Vertices

heightdata m_Origo { 0, 0,0}

heightdata m_SelectionCorner

11.11.1 Detailed Description

Definition at line 11 of file height_manager.h.

Generated by Doxygen

66 Class Documentation

11.11.2 Constructor & Destructor Documentation

11.11.2.1 HeightManager()

HeightManagement: :HeightManager: :HeightManager ()

Constructor of HeightManager class.

Returns

No object.

Definition at line 9 of file height_manager.cpp.

11.11.3 Member Function Documentation

11.11.3.1 GetHeight()

bool HeightManagement::HeightManager::GetHeight (
int inputRelativeX,
int inputRelativeYy,
float & height)

Function to return height, given relative coordinates (from a system where 0, 0 is in the upper left corner)

Parameters

inputRelativeX | The relative X value of the point.

inputRelativeY | The relative Y value of the point.

Returns

A float containing the height value of the point in metres.

Definition at line 163 of file height_manager.cpp.

References m_Size, m_Vertices, Validinput(), and HeightManagement::HeightManager::heightdata::z.

11.11.3.2 GetHeightAbsolute()

float HeightManagement::HeightManager: :GetHeightAbsolute (
double inputX,
double inputY)

Function to get the height of an absolute (geographic) coordinate, using the same coordinate system of the dataset.

Generated by Doxygen

11.11 HeightManagement::HeightManager Class Reference 67

Parameters

inputX | The absolute X value of the point.
inputY | The absolute Y value of the point.

Returns

A float containing the height of the point in metres.

Definition at line 148 of file height_manager.cpp.

References m_SelectionCorner, m_Size, m_Vertices, Validinput(), HeightManagement::HeightManager::heightdata::x,
HeightManagement::HeightManager::heightdata::y, and HeightManagement::HeightManager::heightdata::z.

Referenced by UpdateOrigin().

11.11.3.3 GetVertex()

bool HeightManagement::HeightManager: :GetVertex (
int iInputRelativeX,
int inputRelativey,

HeightManager::heightdata & vertex)

Function to return the whole "height_management" for a given point.

Parameters

inputRelativeX | The X coordinate in the relative system (where 0,0 is the top left corner of the system).
inputRelativeY | The Y coordinate in the relative system.

Returns

A height_management, containing the geographic (absolute) x, y and z coordinates.

Definition at line 116 of file height_manager.cpp.

References m_Size, m_Vertices, Validlnput(), and HeightManagement::HeightManager::heightdata::z.

11.11.3.4 GetVertexAbsolute()

bool HeightManagement::HeightManager: :GetVertexAbsolute (
double inputX,
double inputY,
HeightManager: :heightdata & vertex)

Function to get the height_management of an absolute (geographic) coordinate, using the same coordinate system
of the dataset.

Generated by Doxygen

68 Class Documentation

Parameters

inputX | The absolute X value of the point.

inputY | The absolute Y value of the point.

Returns

A float containing the height of the point in metres.

Definition at line 131 of file height_manager.cpp.

References m_SelectionCorner, m_Size, m_Vertices, Validinput(), HeightManagement::HeightManager::heightdata::x,
HeightManagement::HeightManager::heightdata::y, and HeightManagement::HeightManager::heightdata::z.

11.11.3.5 LoadTif()

void HeightManagement::HeightManager::LoadTif (
const char x filePath,
double x,
double y)

Function to allow user to change GeoTiff file used in planning.

If this function is not run, the user can still update the origin and Hivemind will run using the cached GeoTiff file.

Parameters

filePath | Complete file path of the file to be used.

X X coordinate used for GeoTiff subset origin. Height data will be populated in a 500x500 pixel
centered on the origin point. This is hard coded into the class.
y Y coordinate used for GeoTiff subset origin.
Returns

No object, but will update the path for the cached tif.

Definition at line 12 of file height_manager.cpp.

References m_CachedTifName, m_Size, and UpdateOrigin().

11.11.3.6 OrigoWithinBounds()

bool HeightManagement::HeightManager::0rigoWithinBounds (
double x,

double y) [private]

Function that tests whether the selected origin point is within the bounds of the currently active data set, given the
buffer size required to extract the subset.

Generated by Doxygen

11.11 HeightManagement::HeightManager Class Reference 69

Parameters

The X value of the origin point.

The Y value of the origin point.

Returns

A bool indicating whether or not the origin point is within bounds.

Definition at line 195 of file height_manager.cpp.
References m_LowerRightX, m_LowerRightY, m_Size, m_UpperLeftX, and m_UpperLeftY.
Referenced by UpdateOrigin().

11.11.3.7 PopulateVertices()

void HeightManagement::HeightManager: :PopulateVertices () [private]

Function that will open the GeoTiff file and extract all heights for the given subset of the dataset used.

Returns
No object, but after this has run, all heights will have been imported into the instance of the class and the
various GetHeight methods can be run.

Definition at line 46 of file height_manager.cpp.

References m_CachedTifName, m_Origo, m_SelectionCorner, m_Size, m_Vertices, HeightManagement::HeightManager::heightdata
HeightManagement::HeightManager::heightdata::y, and HeightManagement::HeightManager::heightdata::z.

Referenced by UpdateOrigin().

11.11.3.8 UpdateCornerCoords()

void HeightManagement::HeightManager: :UpdateCornerCoords () [private]

Function to update the corner coordinates saved within the member instance of the chosen dataset.

Returns

No object, but the corner coordinates will be updated, given there were no problems opening the GeoTiff file.

Definition at line 206 of file height_manager.cpp.
References m_CachedTifName, m_LowerRightX, m_LowerRightY, m_UpperLeftX, and m_UpperLeftY.
Referenced by UpdateOrigin().

11.11.3.9 UpdateOrigin()

void HeightManagement::HeightManager: :UpdateOrigin (
Core: :UTMCoordinate UTMCoord,

int size)
Function to update the origin point.

Running this will also trigger the population of height data for the chosen subset of the GeoTiff file.

Generated by Doxygen

70 Class Documentation

Parameters

X coordinate used for GeoTiff subset origin.

Y coordinate used for GeoTiff subset origin.

Returns

No object, but will update the origin for this instance of HeightManager and will populate the instance with
height data.

Definition at line 21 of file height_manager.cpp.

References Core::UTMCoordinate::Easting, GetHeightAbsolute(), m_CoordinateSystem, m_LowerRightX,
m_LowerRightY, m_Origo, m_Size, m_UpperLeftX, m_UpperLeftY, m_Vertices, Core::UTMCoordinate::Northing,
OrigoWithinBounds(), PopulateVertices(), UpdateCornerCoords(), and HeightManagement::HeightManager::heightdata::z.

Referenced by LoadTif().

11.11.3.10 Validinput() [1/2]

bool HeightManagement::HeightManager::ValidInput (
double x,
double y) [private]
Function to test whether a point exists within the scope of the elected data subset.

Overloaded version of Validinput() that takes doubles.

Parameters

x | The X value of the coordinate to be tested.
y | The Y value of the coordinate to be tested.

Returns

A bool indicating whether or not the input exists in the subset and is valid.

Definition at line 185 of file height_manager.cpp.

References m_SelectionCorner, m_Size, HeightManagement::HeightManager::heightdata::x, and HeightManagement::HeightManage

11.11.3.11 Validinput() [2/2]

bool HeightManagement::HeightManager::ValidInput (
int x,

int y) [private]

Function to test whether a point exists within the scope of the selected data subset.

Generated by Doxygen

11.11 HeightManagement::HeightManager Class Reference 7

Parameters

x | the X value of the coordinate to be tested.
y | the Y value of the coordinate to be tested.

Returns

A bool indicating whether or not the input exists in the subset and is valid.

Definition at line 178 of file height_manager.cpp.
References m_Size.

Referenced by GetHeight(), GetHeightAbsolute(), GetVertex(), and GetVertexAbsolute().

11.11.4 Member Data Documentation

11.11.4.1 m_CachedTifName

const charx HeightManagement::HeightManager::m_CachedTifName = "../res/Kongsberg.tif" [private]
Definition at line 130 of file height_manager.h.

Referenced by LoadTif(), PopulateVertices(), and UpdateCornerCoords().

11.11.4.2 m_CoordinateSystem

const char*x HeightManagement::HeightManager::m_CoordinateSystem { "UTM33" } [private]
Definition at line 131 of file height_manager.h.

Referenced by UpdateOrigin().

11.11.4.3 m_LowerRightX

long HeightManagement::HeightManager::m_LowerRightX [private]
Definition at line 136 of file height_manager.h.

Referenced by OrigoWithinBounds(), UpdateCornerCoords(), and UpdateOrigin().

Generated by Doxygen

72 Class Documentation

11.11.4.4 m_LowerRightY

long HeightManagement::HeightManager::m_LowerRightY [private]
Definition at line 137 of file height_manager.h.

Referenced by OrigoWithinBounds(), UpdateCornerCoords(), and UpdateOrigin().

11.11.45 m_Origo

heightdata HeightManagement::HeightManager::m_Origo { 0, 0, 0 } [private]
Definition at line 139 of file height_manager.h.

Referenced by PopulateVertices(), and UpdateOrigin().

11.11.4.6 m_Resolution

int HeightManagement::HeightManager::m_Resolution { 1 } [private]

Definition at line 132 of file height_manager.h.

11.11.4.7 m_SelectionCorner

heightdata HeightManagement::HeightManager::m_SelectionCorner [private]
Definition at line 140 of file height_manager.h.

Referenced by GetHeightAbsolute(), GetVertexAbsolute(), PopulateVertices(), and Validinput().

11.11.4.8 m_Size

int HeightManagement::HeightManager::m_Size [private]
Definition at line 133 of file height_manager.h.

Referenced by GetHeight(), GetHeightAbsolute(), GetVertex(), GetVertexAbsolute(), LoadTif(), OrigoWithinBoundsy(),
PopulateVertices(), UpdateOrigin(), and Validinputy().

Generated by Doxygen

11.12 Json::ISBool Class Reference 73

11.11.4.9 m_UpperLeftX

long HeightManagement::HeightManager::m_UpperLeftX [private]
Definition at line 134 of file height_manager.h.

Referenced by OrigoWithinBounds(), UpdateCornerCoords(), and UpdateOrigin().

11.11.4.10 m_UpperLeftY

long HeightManagement::HeightManager::m_UpperLeftY [private]
Definition at line 135 of file height_manager.h.

Referenced by OrigoWithinBounds(), UpdateCornerCoords(), and UpdateOrigin().

11.11.4.11 m_Vertices

heightdata*x HeightManagement::HeightManager::m_Vertices [private]
Definition at line 138 of file height_manager.h.

Referenced by GetHeight(), GetHeightAbsolute(), GetVertex(), GetVertexAbsolute(), PopulateVertices(), and
UpdateOrigin().

The documentation for this class was generated from the following files:

* include/height_management/height_manager.h
« src/height_management/height_manager.cpp

11.12 Json::ISBool Class Reference

Implementation for bools.
#include <serializer.h>

Inheritance diagram for Json::ISBool:

Json::ISValue

Json::ISBool

Generated by Doxygen

74 Class Documentation

Public Member Functions

» ISBool (bool &v)
« virtual rapidjson::Value ToDom (rapidjson::Document &d)

ToDom is the function that enables the serializer to take data from the application to the JSON file.
« virtual void FromDom (rapidjson::Value &v, rapidjson::Document &d)

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.

Public Member Functions inherited from Json::ISValue

« virtual ISProperties GetProperty ()

GetProperty enables the serializer to deal with composite type like objects and members.
« virtual void CreateObiject ()

For future expansion.
« virtual rapidjson::Value GetName (rapidjson::Document &d)

For future expansion.
« virtual rapidjson::Value ToDom (rapidjson::Document &d)

ToDom is the function that enables the serializer to take data from the application to the JSON file.
« virtual void FromDom (rapidjson::Value &v, rapidjson::Document &d)

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.

Private Attributes

* bool & value

11.12.1 Detailed Description

Implementation for bools.

Definition at line 121 of file serializer.h.

11.12.2 Constructor & Destructor Documentation

11.12.2.1 1SBool()

Json: :ISBool::ISBool (

bool & v) [inline]

Definition at line 126 of file serializer.h.

11.12.3 Member Function Documentation

Generated by Doxygen

11.13 Json::ISConstructors Class Reference

11.12.3.1 FromDom()

void Json::ISBool: :FromDom (

rapidijson::Value & v,

rapidijson::Document & d) [virtual]
FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.
Reimplemented from Json::ISValue.

Definition at line 73 of file serializer.cpp.

References value.

11.12.3.2 ToDom()

rapidjson::Value Json::ISBool::ToDom (

rapidjson::Document & d) [virtuall

ToDom is the function that enables the serializer to take data from the application to the JSON file.
Reimplemented from Json::ISValue.

Definition at line 65 of file serializer.cpp.

References value.

11.12.4 Member Data Documentation

11.12.4.1 value

bool& Json::ISBool::value [private]
Definition at line 123 of file serializer.h.
Referenced by FromDom(), and ToDom().

The documentation for this class was generated from the following files:

* include/core/serializer.h
* src/core/serializer.cpp

11.13 Json::ISConstructors Class Reference

Implemented for future expansion.

#include <serializer.h>

Generated by Doxygen

76

Class Documentation

Public Member Functions
+ ISConstructors (const ISConstructors &)=delete
« void operator= (const ISConstructors &)=delete

« int AddConstructor (std::string name, ISValuePtr(xcreator)())
+ ISValuePtr GetObject (std::string name)

Static Public Member Functions

« static ISConstructors & Getlnstance ()

Private Member Functions

« ISConstructors ()

Private Attributes

« std::map< std::string, Json::ISValuePtr(x)()> m_TheRegistry

11.13.1 Detailed Description

Implemented for future expansion.

Definition at line 476 of file serializer.h.

11.13.2 Constructor & Destructor Documentation

11.13.2.1 ISConstructors() [1/2]

Json::ISConstructors::ISConstructors () [inline], [private]

Definition at line 488 of file serializer.h.

11.13.2.2 ISConstructors() [2/2]

Json::ISConstructors::ISConstructors (

const ISConstructors &) [delete]

11.13.3 Member Function Documentation

Generated by Doxygen

11.13 Json::ISConstructors Class Reference

77

11.13.3.1 AddConstructor()

int Json::ISConstructors::AddConstructor (
std::string name,
ISValuePtr (%) () creator)

Definition at line 190 of file serializer.cpp.

References m_TheRegistry.

11.13.3.2 Getlinstance()

static ISConstructors & Json::ISConstructors::GetInstance () [inline], [static]

Definition at line 480 of file serializer.h.

11.13.3.3 GetObject()

ISValuePtr Json::ISConstructors::GetObject (

std::string name)
Definition at line 198 of file serializer.cpp.

References m_TheRegistry.

11.13.3.4 operator=()

void Json::ISConstructors::operator= (

const ISConstructors &) [delete]

11.13.4 Member Data Documentation

11.13.4.1 m_TheRegistry

std::map<std::string, Json::ISValuePtr (%) ()> Json::ISConstructors::m_TheRegistry
Definition at line 490 of file serializer.h.
Referenced by AddConstructor(), and GetObject().

The documentation for this class was generated from the following files:

* include/core/serializer.h
* src/core/serializer.cpp

[private]

Generated by Doxygen

78 Class Documentation

11.14 Json::ISDouble Class Reference

Implementation for doubles.
#include <serializer.h>

Inheritance diagram for Json::ISDouble:

Json::ISValue

Json::ISDouble

Public Member Functions

+ ISDouble (double &v)
« virtual rapidjson::Value ToDom (rapidjson::Document &d)

ToDom is the function that enables the serializer to take data from the application to the JSON file.
« virtual void FromDom (rapidjson::Value &v, rapidjson::Document &d)

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.

Public Member Functions inherited from Json::ISValue

« virtual ISProperties GetProperty ()

GetProperty enables the serializer to deal with composite type like objects and members.
« virtual void CreateObject ()

For future expansion.
« virtual rapidjson::Value GetName (rapidjson::Document &d)

For future expansion.
« virtual rapidjson::Value ToDom (rapidjson::Document &d)

ToDom is the function that enables the serializer to take data from the application to the JSON file.
« virtual void FromDom (rapidjson::Value &v, rapidjson::Document &d)

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.

Private Attributes

« double & value

11.14.1 Detailed Description

Implementation for doubles.

Definition at line 108 of file serializer.h.

11.14.2 Constructor & Destructor Documentation

Generated by Doxygen

11.14 Json::ISDouble Class Reference

79

11.14.2.1 ISDouble()

Json: :ISDouble::ISDouble (

double & v) [inline]

Definition at line 113 of file serializer.h.

11.14.3 Member Function Documentation

11.14.3.1 FromDom()

void Json::ISDouble: :FromDom (

rapidijson::Value & v,

rapidjson: :Document & d) [virtuall]
FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.
Reimplemented from Json::ISValue.

Definition at line 58 of file serializer.cpp.

References value.

11.14.3.2 ToDom()

rapidijson::Value Json::ISDouble::ToDom (

rapidjson::Document & d) [virtuall

ToDom is the function that enables the serializer to take data from the application to the JSON file.
Reimplemented from Json::ISValue.

Definition at line 48 of file serializer.cpp.

References debug, and value.

11.14.4 Member Data Documentation

Generated by Doxygen

80 Class Documentation

11.14.4.1 value

double& Json::ISDouble::value [private]
Definition at line 110 of file serializer.h.
Referenced by FromDom(), and ToDom().

The documentation for this class was generated from the following files:

* include/core/serializer.h
* src/core/serializer.cpp

11.15 Json::ISDoubleVector Class Reference

Implementation for a vector with doubles.
#include <serializer.h>

Inheritance diagram for Json::ISDoubleVector:

| Json::ISValue l

| Json::ISDoubleVector l

Public Member Functions

+ ISDoubleVector (ISDV &v)
« virtual rapidjson::Value ToDom (rapidjson::Document &d)

ToDom is the function that enables the serializer to take data from the application to the JSON file.
« virtual void FromDom (rapidjson::Value &v, rapidjson::Document &d)

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.

Public Member Functions inherited from Json::ISValue

« virtual ISProperties GetProperty ()

GetProperty enables the serializer to deal with composite type like objects and members.
« virtual void CreateObiject ()

For future expansion.
« virtual rapidjson::Value GetName (rapidjson::Document &d)

For future expansion.
« virtual rapidjson::Value ToDom (rapidjson::Document &d)

ToDom is the function that enables the serializer to take data from the application to the JSON file.
« virtual void FromDom (rapidjson::Value &v, rapidjson::Document &d)

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.

Generated by Doxygen

11.15 Json::ISDoubleVector Class Reference

Private Attributes

* std::vector< double > & value

11.15.1 Detailed Description

Implementation for a vector with doubles.

Definition at line 454 of file serializer.h.

11.15.2 Constructor & Destructor Documentation

11.15.2.1 ISDoubleVector()

Json: :ISDoubleVector: :ISDoubleVector (
ISDV & v) [inline]

Definition at line 459 of file serializer.h.

11.15.3 Member Function Documentation

11.15.3.1 FromDom()

void Json::ISDoubleVector: :FromDom (
rapidijson::Value & v,

rapidjson::Document & d) [virtuall

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.
Reimplemented from Json::ISValue.

Definition at line 181 of file serializer.cpp.

References value.

11.15.3.2 ToDom()

rapidijson::Value Json::ISDoubleVector::ToDom (

rapidjson::Document & d) [virtuall

ToDom is the function that enables the serializer to take data from the application to the JSON file.
Reimplemented from Json::ISValue.

Definition at line 168 of file serializer.cpp.

References value.

Generated by Doxygen

82

Class Documentation

11.15.4 Member Data Documentation

11.15.4.1 value

std::vector<double>& Json::ISDoubleVector::value [private]
Definition at line 456 of file serializer.h.
Referenced by FromDom(), and ToDom().

The documentation for this class was generated from the following files:
* include/core/serializer.h

* src/core/serializer.cpp

11.16 Json::ISFloat Class Reference

Implementation for floats.
#include <serializer.h>

Inheritance diagram for Json::ISFloat:

Json::ISValue

Json::ISFloat

Public Member Functions

* ISFloat (float &v)
« virtual rapidjson::Value ToDom (rapidjson::Document &d)

ToDom is the function that enables the serializer to take data from the application to the JSON file.

« virtual void FromDom (rapidjson::Value &v, rapidjson::Document &d)

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.

Public Member Functions inherited from Json::ISValue

« virtual ISProperties GetProperty ()

GetProperty enables the serializer to deal with composite type like objects and members.

« virtual void CreateObject ()
For future expansion.

« virtual rapidjson::Value GetName (rapidjson::Document &d)
For future expansion.

« virtual rapidjson::Value ToDom (rapidjson::Document &d)

ToDom is the function that enables the serializer to take data from the application to the JSON file.

« virtual void FromDom (rapidjson::Value &v, rapidjson::Document &d)

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.

Generated by Doxygen

11.16 Json::ISFloat Class Reference

Private Attributes

« float & value

11.16.1 Detailed Description

Implementation for floats.

Definition at line 95 of file serializer.h.

11.16.2 Constructor & Destructor Documentation

11.16.2.1 ISFloat()

Json::ISFloat::ISFloat (

float & v) [inline]

Definition at line 100 of file serializer.h.

11.16.3 Member Function Documentation

11.16.3.1 FromDom()

void Json::ISFloat::FromDom (
rapidijson::Value & v,

rapidjson::Document & d) [virtuall

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.
Reimplemented from Json::ISValue.

Definition at line 41 of file serializer.cpp.

References value.

11.16.3.2 ToDom()

rapidijson::Value Json::ISFloat::ToDom (

rapidjson::Document & d) [virtuall

ToDom is the function that enables the serializer to take data from the application to the JSON file.
Reimplemented from Json::ISValue.

Definition at line 33 of file serializer.cpp.

References value.

Generated by Doxygen

84

Class Documentation

11.16.4 Member Data Documentation

11.16.4.1 value

float& Json::ISFloat::value [private]
Definition at line 97 of file serializer.h.

Referenced by FromDom(), and ToDom().

The documentation for this class was generated from the following files:

* include/core/serializer.h
* src/core/serializer.cpp

11.17 Json::ISFloatVector Class Reference

Implementation for a vector with floats.
#include <serializer.h>

Inheritance diagram for Json::ISFloatVector:

Json::ISValue

Json::ISFloatVector

Public Member Functions

 ISFloatVector (ISFV &v)
« virtual rapidjson::Value ToDom (rapidjson::Document &d)

ToDom is the function that enables the serializer to take data from the application to the JSON file.

« virtual void FromDom (rapidjson::Value &v, rapidjson::Document &d)

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.

Public Member Functions inherited from Json::ISValue

« virtual ISProperties GetProperty ()

GetProperty enables the serializer to deal with composite type like objects and members.

« virtual void CreateObject ()
For future expansion.

« virtual rapidjson::Value GetName (rapidjson::Document &d)
For future expansion.

« virtual rapidjson::Value ToDom (rapidjson::Document &d)

ToDom is the function that enables the serializer to take data from the application to the JSON file.

« virtual void FromDom (rapidjson::Value &v, rapidjson::Document &d)

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.

Generated by Doxygen

11.17 Json::ISFloatVector Class Reference

Private Attributes

 std::vector< float > & value

11.17.1 Detailed Description

Implementation for a vector with floats.

Definition at line 439 of file serializer.h.

11.17.2 Constructor & Destructor Documentation

11.17.2.1 ISFloatVector()

Json::ISFloatVector::ISFloatVector (
ISFV & v) [inline]

Definition at line 444 of file serializer.h.

11.17.3 Member Function Documentation

11.17.3.1 FromDom()

void Json::ISFloatVector: :FromDom (
rapidijson::Value & v,

rapidjson::Document & d) [virtuall

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.
Reimplemented from Json::ISValue.

Definition at line 159 of file serializer.cpp.

References value.

11.17.3.2 ToDom()

rapidijson::Value Json::ISFloatVector::ToDom (

rapidjson::Document & d) [virtuall

ToDom is the function that enables the serializer to take data from the application to the JSON file.
Reimplemented from Json::ISValue.

Definition at line 146 of file serializer.cpp.

References value.

Generated by Doxygen

86 Class Documentation

11.17.4 Member Data Documentation

11.17.4.1 value

std::vector<float>& Json::ISFloatVector::value [private]
Definition at line 441 of file serializer.h.
Referenced by FromDom(), and ToDom().

The documentation for this class was generated from the following files:
« include/core/serializer.h

* src/core/serializer.cpp

11.18 Json::ISInt Class Reference

Implementation for integers.
#include <serializer.h>

Inheritance diagram for Json::ISint:

Json::ISValue

Json::ISInt

Public Member Functions

* ISInt (int &v)
« virtual rapidjson::Value ToDom (rapidjson::Document &d)

ToDom is the function that enables the serializer to take data from the application to the JSON file.
« virtual void FromDom (rapidjson::Value &v, rapidjson::Document &d)

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.

Public Member Functions inherited from Json::ISValue

« virtual ISProperties GetProperty ()

GetProperty enables the serializer to deal with composite type like objects and members.
« virtual void CreateObject ()

For future expansion.
« virtual rapidjson::Value GetName (rapidjson::Document &d)

For future expansion.
« virtual rapidjson::Value ToDom (rapidjson::Document &d)

ToDom is the function that enables the serializer to take data from the application to the JSON file.
« virtual void FromDom (rapidjson::Value &v, rapidjson::Document &d)

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.

Generated by Doxygen

11.18 Json::ISInt Class Reference

Private Attributes

* int & value

11.18.1 Detailed Description

Implementation for integers.

Definition at line 82 of file serializer.h.

11.18.2 Constructor & Destructor Documentation

11.18.2.1 ISInt()

Json::ISInt::ISInt (

int & v) [inline]

Definition at line 87 of file serializer.h.

11.18.3 Member Function Documentation

11.18.3.1 FromDom()

void Json::ISInt::FromDom (
rapidijson::Value & v,

rapidjson::Document & d) [virtuall

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.
Reimplemented from Json::ISValue.

Definition at line 26 of file serializer.cpp.

References value.

11.18.3.2 ToDom()

rapidijson::Value Json::ISInt::ToDom (

rapidjson::Document & d) [virtuall

ToDom is the function that enables the serializer to take data from the application to the JSON file.
Reimplemented from Json::ISValue.

Definition at line 18 of file serializer.cpp.

References value.

Generated by Doxygen

88

Class Documentation

11.18.4 Member Data Documentation

11.18.4.1 value

int& Json::ISInt::value [private]
Definition at line 84 of file serializer.h.

Referenced by FromDom(), and ToDom().

The documentation for this class was generated from the following files:

* include/core/serializer.h
* src/core/serializer.cpp

11.19 Json::ISIntVector Class Reference

Implementation for a vector with integers.
#include <serializer.h>

Inheritance diagram for Json::ISIntVector:

Json::ISValue

T

| Json::ISIntVector l

Public Member Functions

* ISIntVector (ISIV &v)
« virtual rapidjson::Value ToDom (rapidjson::Document &d)

ToDom is the function that enables the serializer to take data from the application to the JSON file.

« virtual void FromDom (rapidjson::Value &v, rapidjson::Document &d)

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.

Public Member Functions inherited from Json::ISValue

« virtual ISProperties GetProperty ()

GetProperty enables the serializer to deal with composite type like objects and members.

« virtual void CreateObject ()
For future expansion.

« virtual rapidjson::Value GetName (rapidjson::Document &d)
For future expansion.

« virtual rapidjson::Value ToDom (rapidjson::Document &d)

ToDom is the function that enables the serializer to take data from the application to the JSON file.

« virtual void FromDom (rapidjson::Value &v, rapidjson::Document &d)

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.

Generated by Doxygen

11.19 Json::ISIntVector Class Reference

Private Attributes

 std:vector< int > & value

11.19.1 Detailed Description

Implementation for a vector with integers.

Definition at line 424 of file serializer.h.

11.19.2 Constructor & Destructor Documentation

11.19.2.1 ISIntVector()

Json::ISIntVector::ISIntVector (
ISIV & v) [inline]

Definition at line 429 of file serializer.h.

11.19.3 Member Function Documentation

11.19.3.1 FromDom()

void Json::ISIntVector::FromDom (
rapidijson::Value & v,

rapidjson::Document & d) [virtuall

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.
Reimplemented from Json::ISValue.

Definition at line 137 of file serializer.cpp.

References value.

11.19.3.2 ToDom()

rapidijson::Value Json::ISIntVector::ToDom (

rapidjson::Document & d) [virtuall

ToDom is the function that enables the serializer to take data from the application to the JSON file.
Reimplemented from Json::ISValue.

Definition at line 124 of file serializer.cpp.

References value.

Generated by Doxygen

90 Class Documentation

11.19.4 Member Data Documentation

11.19.4.1 value

std::vector<int>& Json::ISIntVector::value [private]
Definition at line 426 of file serializer.h.
Referenced by FromDom(), and ToDom().

The documentation for this class was generated from the following files:

* include/core/serializer.h
* src/core/serializer.cpp

11.20 Json:ISMember< T > Class Template Reference

Implementation for Members.
#include <serializer.h>

Inheritance diagram for Json::ISMember< T >:

Json::ISValue

T

| Json::ISMember< T > ‘

Public Member Functions

* ISMember (T &v)
« virtual rapidjson::Value GetName (rapidjson::Document &d)

For future expansion.
« virtual rapidjson::Value ToDom (rapidjson::Document &d)

ToDom is the function that enables the serializer to take data from the application to the JSON file.
« virtual void FromDom (rapidjson::Value &v, rapidjson::Document &d)

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.
« void CreateObject ()

For future expansion.

Generated by Doxygen

11.20 Json::ISMember< T > Class Template Reference

91

Public Member Functions inherited from Json::ISValue

« virtual ISProperties GetProperty ()

GetProperty enables the serializer to deal with composite type like objects and members.
« virtual void CreateObject ()

For future expansion.
« virtual rapidjson::Value GetName (rapidjson::Document &d)

For future expansion.
« virtual rapidjson::Value ToDom (rapidjson::Document &d)

ToDom is the function that enables the serializer to take data from the application to the JSON file.
« virtual void FromDom (rapidjson::Value &v, rapidjson::Document &d)

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.

Private Attributes

* T & value

11.20.1 Detailed Description

template <typename T>
class Json::ISMember< T >

Implementation for Members.

Definition at line 334 of file serializer.h.

11.20.2 Constructor & Destructor Documentation

11.20.2.1 ISMember ()

template<typename T >
Json: :ISMember< T >::ISMember (

T & v) [inline]

Definition at line 339 of file serializer.h.

11.20.3 Member Function Documentation

Generated by Doxygen

92 Class Documentation

11.20.3.1 CreateObject()

template<typename T >
void Json::ISMember< T >::CreateObject [virtual]

For future expansion.
Reimplemented from Json::ISValue.

Definition at line 371 of file serializer.h.

11.20.3.2 FromDom()

template<typename T >
void Json::ISMember< T >::FromDom (
rapidjson::Value & v,
rapidjson::Document & d) [virtual]
FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.

Reimplemented from Json::ISValue.

Definition at line 355 of file serializer.h.

11.20.3.3 GetName()

template<typename T >
rapidjson::Value Json::ISMember< T >::GetName (
rapidjson::Document & d) [virtual]
For future expansion.
Typeid is mostly implemented for future expansion, but it helps with making the JSON file more readable for humans.

Reimplemented from Json::ISValue.

Definition at line 362 of file serializer.h.

11.20.3.4 ToDom()

template<typename T >
rapidijson::Value Json::ISMember< T >::ToDom (
rapidjson::Document & d) [virtual]
ToDom is the function that enables the serializer to take data from the application to the JSON file.

Reimplemented from Json::ISValue.

Definition at line 348 of file serializer.h.

Generated by Doxygen

11.21 Json::ISMemberVector< T > Class Template Reference

93

11.20.4 Member Data Documentation

11.20.4.1 value

template<typename T >
T& Json::ISMember< T >::value [private]

Definition at line 336 of file serializer.h.

The documentation for this class was generated from the following file:

« include/core/serializer.h

11.21 Json::ISMemberVector< T > Class Template Reference

Implementation for a vector with members.
#include <serializer.h>

Inheritance diagram for Json::ISMemberVector< T >:

’ Json::ISValue ‘

T

’ Json::ISMemberVector< T > ‘

Public Member Functions

» ISMemberVector (const ISMemberVector< T > &)
» ISMemberVector (std::vector< T > &v)
« virtual rapidjson::Value ToDom (rapidjson::Document &d)
ToDom is the function that enables the serializer to take data from the application to the JSON file.
« virtual void FromDom (rapidjson::Value &v, rapidjson::Document &d)

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.

Public Member Functions inherited from Json::ISValue

« virtual ISProperties GetProperty ()
GetProperty enables the serializer to deal with composite type like objects and members.
« virtual void CreateObject ()
For future expansion.
« virtual rapidjson::Value GetName (rapidjson::Document &d)
For future expansion.
« virtual rapidjson::Value ToDom (rapidjson::Document &d)
ToDom is the function that enables the serializer to take data from the application to the JSON file.
« virtual void FromDom (rapidjson::Value &v, rapidjson::Document &d)

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.

Generated by Doxygen

94

Class Documentation

Private Attributes

» std:vector< T > & value

11.21.1 Detailed Description

template <typename T>
class Json::ISMemberVector<< T >

Implementation for a vector with members.

Definition at line 380 of file serializer.h.

11.21.2 Constructor & Destructor Documentation

11.21.2.1 ISMemberVector() [1/2]

template<typename T >
Json: :ISMemberVector< T >::ISMemberVector (
const ISMemberVector< T > &) [inline]

Definition at line 385 of file serializer.h.

11.21.2.2 ISMemberVector() [2/2]

template<typename T >
Json: :ISMemberVector< T >::ISMemberVector (
std::vector< T > & v) [inline]

Definition at line 387 of file serializer.h.

11.21.3 Member Function Documentation

11.21.3.1 FromDom()

template<typename T >
void Json::ISMemberVector< T >::FromDom (
rapidjson::Value & v,

rapidjson::Document & d) [virtual]

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.

Reimplemented from Json::ISValue.

Definition at line 409 of file serializer.h.

Generated by Doxygen

11.22 Json::ISMemVecVec< T > Class Template Reference 95

11.21.3.2 ToDom()

template<typename T >
rapidjson::Value Json::ISMemberVector< T >::ToDom (
rapidjson::Document & d) [virtual]
ToDom is the function that enables the serializer to take data from the application to the JSON file.
Reimplemented from Json::ISValue.

Definition at line 394 of file serializer.h.

References debug.

11.21.4 Member Data Documentation

11.21.4.1 value

template<typename T >
std::vector<T>& Json::ISMemberVector< T >::value [private]

Definition at line 382 of file serializer.h.

The documentation for this class was generated from the following file:

« include/core/serializer.h

11.22 Json:: ISMemVecVec< T > Class Template Reference

Implementation for a vector with vectors with members.
#include <serializer.h>

Inheritance diagram for Json::ISMemVecVec< T >:

| Json::ISValue ‘

T

| Json::ISMemVecVec< T > ‘

Public Member Functions

» ISMemVecVec (std::vector< std::ivector< T > > &v)
« virtual rapidjson::Value ToDom (rapidjson::Document &d)

ToDom is the function that enables the serializer to take data from the application to the JSON file.
+ virtual void FromDom (rapidjson::Value &v, rapidjson::Document &d)

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.

Generated by Doxygen

96

Class Documentation

Public Member Functions inherited from Json::ISValue

« virtual ISProperties GetProperty ()

GetProperty enables the serializer to deal with composite type like objects and members.

« virtual void CreateObject ()
For future expansion.

« virtual rapidjson::Value GetName (rapidjson::Document &d)
For future expansion.

« virtual rapidjson::Value ToDom (rapidjson::Document &d)

ToDom is the function that enables the serializer to take data from the application to the JSON file.

« virtual void FromDom (rapidjson::Value &v, rapidjson::Document &d)

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.

Private Attributes

« std::vector< std::vector< T > > & value

11.22.1 Detailed Description

template <typename T>
class Json::ISMemVecVec<< T >

Implementation for a vector with vectors with members.

Definition at line 287 of file serializer.h.

11.22.2 Constructor & Destructor Documentation

11.22.2.1 ISMemVecVec()

template<typename T >
Json: :ISMemVecVec< T >::ISMemVecVec (
std::vector< std::vector< T > > & Vv) [inline]

Definition at line 292 of file serializer.h.

11.22.3 Member Function Documentation

Generated by Doxygen

11.23 Json::ISObject< T > Class Template Reference 97

11.22.3.1 FromDom()

template<typename T >
void Json::ISMemVecVec< T >::FromDom (
rapidjson::Value & v,

rapidjson::Document & d) [virtual]
FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.
Reimplemented from Json::ISValue.

Definition at line 317 of file serializer.h.

11.22.3.2 ToDom()

template<typename T >
rapidjson::Value Json::ISMemVecVec< T >::ToDom (

rapidijson::Document & d) [virtual]
ToDom is the function that enables the serializer to take data from the application to the JSON file.
Reimplemented from Json::ISValue.

Definition at line 299 of file serializer.h.

11.22.4 Member Data Documentation

11.22.4.1 value

template<typename T >
std::vector<std::vector<T> >& Json::ISMemVecVec< T >::value [private]

Definition at line 289 of file serializer.h.

The documentation for this class was generated from the following file:

* include/core/serializer.h

11.23 Json:ISObject< T > Class Template Reference

Implementation for objects.
#include <serializer.h>

Inheritance diagram for Json::ISObject< T >:

Json::ISValue

Json::ISObject< T >

Generated by Doxygen

98 Class Documentation

Public Member Functions

+ ISObject (std::shared_ptr< T > &v)
« virtual rapidjson::Value GetName (rapidjson::Document &d)

For future expansion.
« virtual rapidjson::Value ToDom (rapidjson::Document &d)

ToDom is the function that enables the serializer to take data from the application to the JSON file.
« virtual void FromDom (rapidjson::Value &v, rapidjson::Document &d)

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.
« void CreateObject ()

For future expansion.

Public Member Functions inherited from Json::ISValue

« virtual ISProperties GetProperty ()

GetProperty enables the serializer to deal with composite type like objects and members.
« virtual void CreateObiject ()

For future expansion.
« virtual rapidjson::Value GetName (rapidjson::Document &d)

For future expansion.
« virtual rapidjson::Value ToDom (rapidjson::Document &d)

ToDom is the function that enables the serializer to take data from the application to the JSON file.
« virtual void FromDom (rapidjson::Value &v, rapidjson::Document &d)

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.

Private Attributes

« std::ishared_ptr< T > & value

11.23.1 Detailed Description

template <typename T>
class Json::ISObject< T >

Implementation for objects.

Definition at line 148 of file serializer.h.

11.23.2 Constructor & Destructor Documentation

11.23.2.1 1SObject()

template<typename T >
Json::ISObject< T >::ISObject (
std::shared_ptr< T > & v) [inline]

Definition at line 153 of file serializer.h.

Generated by Doxygen

11.23 Json::ISObject< T > Class Template Reference 99

11.23.3 Member Function Documentation

11.23.3.1 CreateObject()

template<typename T >
void Json::ISObject< T >::CreateObject [virtuall]

For future expansion.
Reimplemented from Json::ISValue.

Definition at line 191 of file serializer.h.

11.23.3.2 FromDom()

template<typename T >
void Json::ISObject< T >::FromDom (
rapidjson::Value & v,
rapidjson: :Document & d) [virtual]
FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.

Reimplemented from Json::ISValue.

Definition at line 172 of file serializer.h.

11.23.3.3 GetName()

template<typename T >
rapidijson::Value Json::ISObject< T >::GetName (
rapidjson::Document & d) [virtual]
For future expansion.
Typeid is mostly implemented for future expansion, but it helps with making the JSON file more readable for humans.

Reimplemented from Json::ISValue.

Definition at line 182 of file serializer.h.

Generated by Doxygen

100 Class Documentation

11.23.3.4 ToDom()

template<typename T >
rapidjson::Value Json::ISObject< T >::ToDom (
rapidjson::Document & d) [virtual]
ToDom is the function that enables the serializer to take data from the application to the JSON file.

Reimplemented from Json::ISValue.

Definition at line 162 of file serializer.h.

11.23.4 Member Data Documentation

11.23.4.1 value

template<typename T >
std::shared_ptr<T>& Json::ISObject< T >::value [private]

Definition at line 150 of file serializer.h.

The documentation for this class was generated from the following file:

« include/core/serializer.h

11.24 Json::ISObjectVector< T > Class Template Reference

Implementation for a vector with objects.
#include <serializer.h>

Inheritance diagram for Json::ISObjectVector< T >:

Json::ISValue

Json::ISObjectVector< T >

Public Member Functions

+ ISObjectVector (std::vector< std::shared_ptr< T > > &v)
« virtual rapidjson::Value ToDom (rapidjson::Document &d)

ToDom is the function that enables the serializer to take data from the application to the JSON file.
« virtual void FromDom (rapidjson::Value &v, rapidjson::Document &d)

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.

Generated by Doxygen

11.24 Json::ISObjectVector< T > Class Template Reference 101

Public Member Functions inherited from Json::ISValue

« virtual ISProperties GetProperty ()

GetProperty enables the serializer to deal with composite type like objects and members.
« virtual void CreateObject ()

For future expansion.
« virtual rapidjson::Value GetName (rapidjson::Document &d)

For future expansion.
« virtual rapidjson::Value ToDom (rapidjson::Document &d)

ToDom is the function that enables the serializer to take data from the application to the JSON file.
« virtual void FromDom (rapidjson::Value &v, rapidjson::Document &d)

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.

Private Attributes

« std::vector< std::shared_ptr< T > > & value

11.24.1 Detailed Description

template <typename T>
class Json::ISObjectVector< T >

Implementation for a vector with objects.

Definition at line 200 of file serializer.h.

11.24.2 Constructor & Destructor Documentation

11.24.2.1 1SObjectVector()

template<typename T >
Json: :ISObjectVector< T >::ISObjectVector (
std::vector< std::shared_ptr< T > > & v) [inline]

Definition at line 205 of file serializer.h.

11.24.3 Member Function Documentation

Generated by Doxygen

102 Class Documentation

11.24.3.1 FromDom()

template<typename T >
void Json::ISObjectVector< T >::FromDom (
rapidjson::Value & v,

rapidjson::Document & d) [virtual]
FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.
Reimplemented from Json::ISValue.

Definition at line 225 of file serializer.h.

11.24.3.2 ToDom()

template<typename T >
rapidjson::Value Json::ISObjectVector< T >::ToDom (

rapidijson::Document & d) [virtual]
ToDom is the function that enables the serializer to take data from the application to the JSON file.
Reimplemented from Json::ISValue.

Definition at line 212 of file serializer.h.

11.24.4 Member Data Documentation

11.24.4.1 value

template<typename T >
std::vector<std::shared_ptr<T> >& Json::ISObjectVector< T >::value [private]

Definition at line 202 of file serializer.h.

The documentation for this class was generated from the following file:

* include/core/serializer.h

11.25 Json::ISObjVecVec< T > Class Template Reference

Implementation for a vector with vectors with objects.
#finclude <serializer.h>

Inheritance diagram for Json::ISObjVecVec< T >:

Json::ISValue

Json::ISObjVecVec< T >

Generated by Doxygen

11.25 Json::ISObjVecVec< T > Class Template Reference 103

Public Member Functions

» ISObjVecVec (std::vector< std::vector< std::shared_ptr< T > > > &v)
« virtual rapidjson::Value ToDom (rapidjson::Document &d)

ToDom is the function that enables the serializer to take data from the application to the JSON file.
+ virtual void FromDom (rapidjson::Value &v, rapidjson::Document &d)

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.

Public Member Functions inherited from Json::ISValue

« virtual ISProperties GetProperty ()

GetProperty enables the serializer to deal with composite type like objects and members.
« virtual void CreateObject ()

For future expansion.
« virtual rapidjson::Value GetName (rapidjson::Document &d)

For future expansion.
« virtual rapidjson::Value ToDom (rapidjson::Document &d)

ToDom is the function that enables the serializer to take data from the application to the JSON file.
« virtual void FromDom (rapidjson::Value &v, rapidjson::Document &d)

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.

Private Attributes

« std::vector< std::vector< std::shared_ptr< T > > > & value

11.25.1 Detailed Description

template <typename T>
class Json::ISObjVecVec< T >

Implementation for a vector with vectors with objects.

Definition at line 239 of file serializer.h.

11.25.2 Constructor & Destructor Documentation

11.25.2.1 ISObjVecVec()

template<typename T >
Json: :IS0bjVecVec< T >::ISObjVecVec (
std::vector< std::vector< std::shared ptr< T > > > & v) [inline]

Definition at line 244 of file serializer.h.

Generated by Doxygen

104 Class Documentation

11.25.3 Member Function Documentation

11.25.3.1 FromDom()

template<typename T >
void Json::ISObjVecVec< T >::FromDom (
rapidjson::Value & v,
rapidjson::Document & d) [virtual]
FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.

Reimplemented from Json::ISValue.

Definition at line 270 of file serializer.h.

11.25.3.2 ToDom()

template<typename T >
rapidijson::Value Json::ISObjVecVec< T >::ToDom (
rapidjson::Document & d) [virtual]
ToDom is the function that enables the serializer to take data from the application to the JSON file.

Reimplemented from Json::ISValue.

Definition at line 252 of file serializer.h.

11.25.4 Member Data Documentation

11.25.4.1 value

template<typename T >
std::vector<std::vector<std::shared ptr<T> > >& Json::ISObjVecVec< T >::value [private]

Definition at line 241 of file serializer.h.

The documentation for this class was generated from the following file:

« include/core/serializer.h

Generated by Doxygen

11.26 Json::ISProperty Struct Reference 105

11.26 Json::ISProperty Struct Reference

Serializing and deserializing (persistent values) requires recflection which is a way for the programmer to ensure
that the data you serialize will get back to the place you want it to be when you deserialize it later.

#include <serializer.h>

Public Attributes

« std::string name
 ISValuePtr value

11.26.1 Detailed Description

Serializing and deserializing (persistent values) requires recflection which is a way for the programmer to ensure
that the data you serialize will get back to the place you want it to be when you deserialize it later.

As this is not supported by C++ this is implemented by the ISProperty structure with the ISValue helper classes.
The ISValue keeps the references to the actual values in the application. The ISProperty is the collection of all the
application data.

Definition at line 26 of file serializer.h.

11.26.2 Member Data Documentation

11.26.2.1 name

std::string Json::ISProperty::name

Definition at line 28 of file serializer.h.

11.26.2.2 value

ISValuePtr Json::ISProperty::value
Definition at line 29 of file serializer.h.

The documentation for this struct was generated from the following file:

« include/core/serializer.h

Generated by Doxygen

106

Class Documentation

11.27 Json::ISString Class Reference

Implementation for strings.
#include <serializer.h>

Inheritance diagram for Json::ISString:

Json::ISValue

I

Json::ISString

Public Member Functions

* ISString (std::string &v)
« virtual rapidjson::Value ToDom (rapidjson::Document &d)

ToDom is the function that enables the serializer to take data from the application to the JSON file.

« virtual void FromDom (rapidjson::Value &v, rapidjson::Document &d)

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.

Public Member Functions inherited from Json::ISValue

« virtual ISProperties GetProperty ()

GetProperty enables the serializer to deal with composite type like objects and members.

« virtual void CreateObject ()
For future expansion.

« virtual rapidjson::Value GetName (rapidjson::Document &d)
For future expansion.

« virtual rapidjson::Value ToDom (rapidjson::Document &d)

ToDom is the function that enables the serializer to take data from the application to the JSON file.

« virtual void FromDom (rapidjson::Value &v, rapidjson::Document &d)

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.

Private Attributes

« std::string & value

11.27.1 Detailed Description

Implementation for strings.

Definition at line 134 of file serializer.h.

11.27.2 Constructor & Destructor Documentation

Generated by Doxygen

11.27 Json::ISString Class Reference 107

11.27.2.1 ISString()

Json::ISString::ISString (

std::string & v) [inline]

Definition at line 139 of file serializer.h.

11.27.3 Member Function Documentation

11.27.3.1 FromDom()

void Json::ISString::FromDom (

rapidijson::Value & v,

rapidjson: :Document & d) [virtuall]
FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.
Reimplemented from Json::ISValue.

Definition at line 88 of file serializer.cpp.

References value.

11.27.3.2 ToDom()

rapidjson::Value Json::ISString::ToDom (

rapidjson::Document & d) [virtuall

ToDom is the function that enables the serializer to take data from the application to the JSON file.
Reimplemented from Json::ISValue.

Definition at line 80 of file serializer.cpp.

References value.

11.27.4 Member Data Documentation

Generated by Doxygen

108

Class Documentation

11.27.4.1 value

std::string& Json::ISString::value [private]
Definition at line 136 of file serializer.h.
Referenced by FromDom(), and ToDom().

The documentation for this class was generated from the following files:

* include/core/serializer.h
* src/core/serializer.cpp

11.28 Json::ISValue Class Reference

Rflection is made possible by the help of the ISValue class and the type classes.
#include <serializer.h>

Inheritance diagram for Json::ISValue:

| Json::ISValue |

4| Json::ISBool |
4| Json::ISDouble |
4| Json::ISDoubleVector |
4| Json::ISFloat |
4| Json::ISFloatVector |
4| Json::ISInt |
4| Json::ISIntVector |
4| Json::ISMemVecVec< T > |
4| Json::ISMember< T > |
4| Json::ISMemberVector< T > |
4| Json::ISObjVecVec< T > |
4| Json::ISObject< T > |
4' Json::ISObjectVector< T > |
4| Json::ISString |

Generated by Doxygen

11.28 Json::ISValue Class Reference 109

Public Member Functions

« virtual ISProperties GetProperty ()

GetProperty enables the serializer to deal with composite type like objects and members.
« virtual void CreateObiject ()

For future expansion.
« virtual rapidjson::Value GetName (rapidjson::Document &d)

For future expansion.
« virtual rapidjson::Value ToDom (rapidjson::Document &d)

ToDom is the function that enables the serializer to take data from the application to the JSON file.
« virtual void FromDom (rapidjson::Value &v, rapidjson::Document &d)

FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.

11.28.1 Detailed Description

Rflection is made possible by the help of the ISValue class and the type classes.

Each type needs their own implementation for reflection to work. At the moment only JSON is supported by this
library. Making the library work for other format than JSON would require implementing each type again for the new
format by in theory would not impact the application programmers at all

Definition at line 41 of file serializer.h.

11.28.2 Member Function Documentation

11.28.2.1 CreateObject()

virtual void Json::ISValue::CreateObject () [inline], [virtual]
For future expansion.
Reimplemented in Json::ISObject< T >, and Json::ISMember< T >.

Definition at line 55 of file serializer.h.

11.28.2.2 FromDom()

void Json::ISValue: :FromDom (
rapidjson::Value & v,

rapidijson::Document & d) [virtual]
FromDom is the function that enables the serializer to get data out of the JSON file and put it in the application.

Reimplemented in Json::ISInt, Json::ISFloat, Json::ISDouble, Json::ISBool, Json::ISString, Json::ISObject< T >,
Json::ISObjectVector< T >, Json::ISObjVecVec< T >, Json:ISMemVecVec< T >, Json:ISMember< T >,
Json::ISMemberVector< T >, Json::ISIntVector, Json::ISFloatVector, and Json::ISDoubleVector.

Definition at line 113 of file serializer.cpp.

References GetProperty().

Generated by Doxygen

110 Class Documentation

11.28.2.3 GetName()

virtual rapidjson::Value Json::ISValue::GetName (

rapidjson::Document & d) [inline], [virtual]
For future expansion.
Typeid is mostly implemented for future expansion, but it helps with making the JSON file more readable for humans.
Reimplemented in Json::ISObject< T >, and Json::ISMember< T >.
Definition at line 60 of file serializer.h.

Referenced by Json::serialize(), and ToDom().

11.28.2.4 GetProperty()

virtual ISProperties Json::ISValue::GetProperty () [inline], [virtual]
GetProperty enables the serializer to deal with composite type like objects and members.
Definition at line 48 of file serializer.h.

Referenced by Json::deserialize(), FromDom(), Json::serialize(), and ToDom().

11.28.2.5 ToDom()

rapidjson::Value Json::ISValue::ToDom (

rapidijson::Document & d) [virtual]
ToDom is the function that enables the serializer to take data from the application to the JSON file.
Reimplemented in Json::ISInt, Json::ISFloat, Json::ISDouble, Json::ISBool, Json::ISString, Json::ISObject< T >,
Json::ISObjectVector< T >, Json::ISObjVecVec< T >, Json:ISMemVecVec< T >, Json:ISMember< T >,
Json::ISMemberVector< T >, Json::ISIntVector, Json::ISFloatVector, and Json::ISDoubleVector.
Definition at line 95 of file serializer.cpp.

References GetName(), and GetProperty().

The documentation for this class was generated from the following files:

* include/core/serializer.h
* src/core/serializer.cpp

Generated by Doxygen

11.29 Core::Keyframe Struct Reference

111

11.29 Core::Keyframe Struct Reference

A structure representing an agent's position in cartesian space at a given point in time.

#include <types.h>

Inheritance diagram for Core::Keyframe:

JSON

Core::Keyframe

Public Member Functions

» Keyframe ()

» Keyframe (int agentld, float timeStamp, CartesianCoordinate position)
+ JSONSTART JSONINT (Agentld)

+ JSONSTART JSONFLOAT (TimeStamp)

Public Attributes
+ int Agentld

« float TimeStamp
 CartesianCoordinate Position

11.29.1 Detailed Description

A structure representing an agent's position in cartesian space at a given point in time.

Definition at line 68 of file types.h.

11.29.2 Constructor & Destructor Documentation

11.29.2.1 Keyframe() [1/2]

Core::Keyframe: :Keyframe () [inline]

Definition at line 70 of file types.h.

Generated by Doxygen

112 Class Documentation

11.29.2.2 Keyframe() [2/2]

Core::Keyframe: :Keyframe (
int agentId,
float timeStamp,

CartesianCoordinate position) [inline]

Definition at line 72 of file types.h.

11.29.3 Member Function Documentation

11.29.3.1 JSONFLOAT()

JSONSTART Core::Keyframe::JSONFLOAT (
TimeStamp)

11.29.3.2 JSONINT()

JSONSTART Core::Keyframe::JSONINT (
AgentId)

11.29.4 Member Data Documentation

11.29.4.1 Agentld

int Core::Keyframe::AgentId
Definition at line 76 of file types.h.

Referenced by KeyframeManagement::KeyframeManager::AddKeyframe(), Routemaker::Routemaker::MakeRoute(),
and KeyframeManagement::KeyframeManager::RemoveKeyframe().

11.29.4.2 Position

CartesianCoordinate Core::Keyframe::Position
Definition at line 78 of file types.h.

Referenced by KeyframeManagement::KeyframeManager::AddKeyframe(), Routemaker::Routemaker::MakeRoute(),
and KeyframeManagement::KeyframeManager::RemoveKeyframe().

Generated by Doxygen

11.30 Gui::KeyframeControls Class Reference 113

11.29.4.3 TimeStamp

float Core::Keyframe::TimeStamp
Definition at line 77 of file types.h.

Referenced by KeyframeManagement::KeyframeManager::AddKeyframe(), CompileScenario::Scenario::Compile(),
Routemaker::Routemaker::MakeRoute(), Gui::Timeline::mouseReleaseEvent(), and KeyframeManagement::KeyframeManager::Rem

The documentation for this struct was generated from the following file:

* include/core/types.h

11.30 Gui::KeyframeControls Class Reference

#include <keyframe_controls.h>

Inheritance diagram for Gui::KeyframeControls:

‘ QFrame ‘

T

‘ Gui::KeyframeControls ‘

Signals

+ void DeleteSelectedKeyframes ()

Public Member Functions

» KeyframeControls (QWidget *parent=nullptr)

Private Attributes

» KeyframeList * m_KeyframeList
* QPushButton * m_DeleteKeyframesButton
+ QGridLayout * m_Layout

11.30.1 Detailed Description

Definition at line 11 of file keyframe_controls.h.

11.30.2 Constructor & Destructor Documentation

Generated by Doxygen

114 Class Documentation

11.30.2.1 KeyframeControls()

Gui::KeyframeControls::KeyframeControls (

QWidget * parent = nullptr) [explicit]
Definition at line 8 of file keyframe_controls.cpp.

References DeleteSelectedKeyframes(), m_DeleteKeyframesButton, m_KeyframeList, and m_Layout.

11.30.3 Member Function Documentation

11.30.3.1 DeleteSelectedKeyframes

void Gui::KeyframeControls::DeleteSelectedKeyframes () [signal]

Referenced by KeyframeControls().

11.30.4 Member Data Documentation

11.30.4.1 m_DeleteKeyframesButton

QPushButton* Gui::KeyframeControls::m_DeleteKeyframesButton [private]
Definition at line 22 of file keyframe_controls.h.

Referenced by KeyframeControls().

11.30.4.2 m_KeyframelList

KeyframelList* Gui::KeyframeControls::m_KeyframeList [private]
Definition at line 21 of file keyframe_controls.h.

Referenced by KeyframeControls().

Generated by Doxygen

11.31 Gui::KeyframelList Class Reference

11.30.4.3 m_Layout

QOGridLayout* Gui::KeyframeControls::m_Layout [private]
Definition at line 24 of file keyframe_controls.h.
Referenced by KeyframeControls().

The documentation for this class was generated from the following files:

* include/gui/keyframe_controls.h
* src/gui/keyframe_controls.cpp

11.31 Gui::KeyframeList Class Reference

#include <keyframe_list.h>

Inheritance diagram for Gui::KeyframeList:

\ QListWidget \

T

‘ Gui::KeyframeList ‘

Public Slots

« void Update ()
« void DeleteSelected ()

Public Member Functions

+ KeyframeList (QWidget *parent=nuliptr)

Private Attributes

* QVBoxLayout * m_Layout

11.31.1 Detailed Description

Definition at line 9 of file keyframe_list.h.

11.31.2 Constructor & Destructor Documentation

Generated by Doxygen

116 Class Documentation

11.31.2.1 KeyframeList()

Gui::KeyframeList::KeyframeList (

QWidget * parent = nullptr)
Definition at line 11 of file keyframe_list.cpp.

References Update().

11.31.3 Member Function Documentation

11.31.3.1 DeleteSelected

void Gui::KeyframeList::DeleteSelected () [slot]
Definition at line 40 of file keyframe_list.cpp.

References KeyframeManagement::KeyframeManager::Instance(), KeyframeManagement::KeyframeManager::RemoveKeyframe(),
and Update().

11.31.3.2 Update

void Gui::KeyframeList::Update () [slot]
Definition at line 19 of file keyframe_list.cpp.
References KeyframeManagement::KeyframeManager::GetKeyframes(), and KeyframeManagement::KeyframeManager::Instance().

Referenced by DeleteSelected(), and KeyframeList().

11.31.4 Member Data Documentation

11.31.4.1 m_Layout

QVBoxLayout* Gui::KeyframeList::m_Layout [private]
Definition at line 21 of file keyframe_list.h.

The documentation for this class was generated from the following files:

* include/gui’keyframe_list.h
« src/gui/keyframe_list.cpp

Generated by Doxygen

11.32 KeyframeManagement::KeyframeManager Class Reference 117

11.32 KeyframeManagement::KeyframeManager Class Reference

This is the class that manages keyframes.
#include <keyframe_manager.h>

Inheritance diagram for KeyframeManagement::KeyframeManager:

QObject | | JSON
T [y
[

KeyframeManagement::KeyframeManager

Signals

+ void KeyframeAdded ()

Public Member Functions

+ void AddKeyframe (int agentld, float timeStamp, float x, float y, float z)

Adds a keyframe to the keyframe list using x, y, and z coordinates.
+ void AddKeyframe (int agentld, float timeStamp, Core::CartesianCoordinate position)

Adds a keyframe to the keyframe list using a CartesianCoordinate.
« void AddKeyframe (Core::Keyframe &keyframe)

Adds a keyframe object to the keyframe list.
+ void RemoveKeyframe (const Core::Keyframe &keyframe)

Removes a keyframe from the keyframe list.
+ void DebugDump (void) const

Dumps keyframe information to the console for debugging purposes.
+ std::vector< Core::Keyframe > & GetKeyframes ()

Returns a reference to the list of keyframes.

Static Public Member Functions

« static KeyframeManager & Instance ()

Returns the singleton instance of the KeyframeManager.

Private Member Functions

+ KeyframeManager ()
Private constructor for singleton pattern.
+ ~KeyframeManager ()
Private destructor for singleton pattern.
+ KeyframeManager (const KeyframeManager &)=delete
» KeyframeManager & operator= (const KeyframeManager &)=delete

Generated by Doxygen

118 Class Documentation

Private Attributes

« std:ivector< Core::Keyframe > m_Keyframes
11.32.1 Detailed Description
This is the class that manages keyframes.

Definition at line 14 of file keyframe_manager.h.

11.32.2 Constructor & Destructor Documentation

11.32.2.1 KeyframeManager() [1/2]

KeyframeManagement : :KeyframeManager: :KeyframeManager () [inline], [private]
Private constructor for singleton pattern.

Definition at line 84 of file keyframe_manager.h.

11.32.2.2 ~KeyframeManager()

KeyframeManagement : :KeyframeManager: :~KeyframeManager () [inline], [private]
Private destructor for singleton pattern.

Definition at line 86 of file keyframe_manager.h.

11.32.2.3 KeyframeManager() [2/2]

KeyframeManagement : :KeyframeManager: :KeyframeManager (

const KeyframeManager &) [private], [delete]

11.32.3 Member Function Documentation

11.32.3.1 AddKeyframe() [1/3]

void KeyframeManagement::KeyframeManager: :AddKeyframe (

Core::Keyframe & keyframe)

Adds a keyframe object to the keyframe list.

Generated by Doxygen

11.32 KeyframeManagement::KeyframeManager Class Reference 119

Parameters

keyframe | The keyframe object to add

Definition at line 30 of file keyframe_manager.cpp.

References Core::Keyframe::Agentld, KeyframeAdded(), m_Keyframes, Core::Keyframe::Position, and Core::Keyframe::TimeStamp.

11.32.3.2 AddKeyframe() [2/3]

void KeyframeManagement::KeyframeManager: :AddKeyframe (
int agentId,
float timeStamp,

Core::CartesianCoordinate position)

Adds a keyframe to the keyframe list using a CartesianCoordinate.

Parameters

agentld The ID of the agent

timeStamp | The timestamp of the keyframe

position The CartesianCoordinate representing the position

Definition at line 18 of file keyframe_manager.cpp.

References AddKeyframe().

11.32.3.3 AddKeyframe() [3/3]

void KeyframeManagement::KeyframeManager: :AddKeyframe (
int agentId,
float timeStamp,
float x,
float y,
float z)

Adds a keyframe to the keyframe list using x, y, and z coordinates.

Parameters

agentld The ID of the agent

timeStamp | The timestamp of the keyframe

X The x coordinate
y The y coordinate
z The z coordinate

Generated by Doxygen

120 Class Documentation

Definition at line 9 of file keyframe_manager.cpp.
References AddKeyframe().

Referenced by AddKeyframe(), and Gui::MapViewer::mousePressEvent().

11.32.3.4 DebugDump()

void KeyframeManagement::KeyframeManager: :DebugDump (

void) const
Dumps keyframe information to the console for debugging purposes.
Definition at line 65 of file keyframe_manager.cpp.

References m_Keyframes.

11.32.3.5 GetKeyframes()

std::vector< Core::Keyframe > & KeyframeManagement::KeyframeManager::GetKeyframes () [inline]

Returns a reference to the list of keyframes.

Returns

A reference to the list of keyframes

Definition at line 75 of file keyframe_manager.h.
References m_Keyframes.

Referenced by CompileScenario::Scenario::Compile(), Gui::MapViewer::DrawKeyframes(), Gui::Timeline::mouseReleaseEvent(),
Gui::Timeline::paintEvent(), and Gui::KeyframeList::Update().

11.32.3.6 Instance()

static KeyframeManager & KeyframeManagement::KeyframeManager::Instance () [inline], [static]

Returns the singleton instance of the KeyframeManager.

Returns

A reference to the singleton instance of the KeyframeManager

Definition at line 25 of file keyframe_manager.h.

Referenced by Gui::MainWindow::ConnectSlotsAndSignals(), Gui::KeyframeList::DeleteSelected(), Gui::MapViewer::DrawKeyframes(
Gui::MapViewer::mousePressEvent(), Gui:: Timeline::mouseReleaseEvent(), Gui:: Timeline::paintEvent(), Gui::Timeline::Timeline(),
and Gui::KeyframelList::Update().

Generated by Doxygen

11.32 KeyframeManagement::KeyframeManager Class Reference 121

11.32.3.7 KeyframeAdded

void KeyframeManagement::KeyframeManager: :KeyframeAdded () [signall]

Referenced by AddKeyframe().

11.32.3.8 operator=()

KeyframeManager & KeyframeManagement::KeyframeManager::operator= (

const KeyframeManager &) [private], [delete]

11.32.3.9 RemoveKeyframe()

void KeyframeManagement::KeyframeManager: :RemoveKeyframe (

const Core::Keyframe & keyframe)

Removes a keyframe from the keyframe list.

Parameters

keyframe | The keyframe to remove

Definition at line 50 of file keyframe_manager.cpp.

References Core::Keyframe::Agentld, m_Keyframes, Core::Keyframe::Position, Core::Keyframe::TimeStamp,
Core::CartesianCoordinate::X, Core::CartesianCoordinate::Y, and Core::CartesianCoordinate::Z.

Referenced by Gui::KeyframeList::DeleteSelected(), and Gui::Timeline::mouseReleaseEvent().

11.32.4 Member Data Documentation

11.32.4.1 m_Keyframes

std::vector<Core::Keyframe> KeyframeManagement::KeyframeManager: :m_Keyframes [private]
Definition at line 91 of file keyframe_manager.h.
Referenced by AddKeyframe(), DebugDump(), GetKeyframes(), and RemoveKeyframe().

The documentation for this class was generated from the following files:

« include/keyframe_management/keyframe_manager.h
« src/keyframe_management/keyframe_manager.cpp

Generated by Doxygen

122

Class Documentation

11.33 Gui::Launcher Class Reference

The launcher widget used to launch scenarios.
#include <launcher.h>

Inheritance diagram for Gui::Launcher:

QWidget

Gui::Launcher

|

Public Member Functions

+ Launcher (QWidget *parent=nullptr)

Constructs the launcher widget.
» ~Launcher ()

Destructs the launcher widget.

Private Attributes

* QVBoxLayout * m_Layout

The layout of the launcher widget.

11.33.1 Detailed Description

The launcher widget used to launch scenarios.
Contains the graphical functionality to launch scenarios.

Definition at line 11 of file launcher.h.

11.33.2 Constructor & Destructor Documentation

11.33.2.1 Launcher()

Gui::Launcher: :Launcher (

QWidget * parent = nullptr)

Constructs the launcher widget.

Generated by Doxygen

11.34 Gui::MainContent Class Reference 123

Parameters

‘ parent ‘ The parent of the launcher widget.

Definition at line 7 of file launcher.cpp.

References m_Layout.

11.33.2.2 ~Launcher()

Gui: :Launcher: :~Launcher ()
Destructs the launcher widget.

Definition at line 17 of file launcher.cpp.

11.33.3 Member Data Documentation

11.33.3.1 m_Layout

QVBoxLayout* Gui::Launcher::m_Layout [private]
The layout of the launcher widget.

Definition at line 23 of file launcher.h.

Referenced by Launcher().

The documentation for this class was generated from the following files:

* include/gui/launcher.h
* src/gui/launcher.cpp

11.34 Gui::MainContent Class Reference

The main content of the main window.
#include <main_content.h>

Inheritance diagram for Gui::MainContent:

‘ QWidget ‘

T

‘ Gui::MainContent ‘

Generated by Doxygen

124 Class Documentation

Public Member Functions

+ MainContent (QWidget *parent=nullptr)

Constructs the main content widget.

Private Attributes

» QGridLayout * m_Layout

The layout of the main content.
« Sidebar * m_Sidebar

The sidebar of the main content.
» TabWidget * m_TabWidget

The tab widget of the main content.

11.34.1 Detailed Description

The main content of the main window.

The main content of the main window essentially contains everything except the menu bar. It exists as a separate
class to make the main window class more concise.

Definition at line 16 of file main_content.h.

11.34.2 Constructor & Destructor Documentation

11.34.2.1 MainContent()

Gui::MainContent::MainContent (

QWidget * parent = nullptr)
Constructs the main content widget.

Parameters

‘ parent ‘ The parent widget of the main content.

Definition at line 10 of file main_content.cpp.

References m_Layout, m_Sidebar, and m_TabWidget.

11.34.3 Member Data Documentation

Generated by Doxygen

11.34 Gui::MainContent Class Reference 125

11.34.3.1 m_Layout

QGridLayout# Gui::MainContent::m_Layout [private]
The layout of the main content.

The main content uses a grid layout to easily be able to cover the available space in the window.
Definition at line 29 of file main_content.h.

Referenced by MainContent().

11.34.3.2 m_Sidebar

Sidebar* Gui::MainContent::m_Sidebar [private]

The sidebar of the main content.

The sidebar of the main content exists to provide the user access to tools related to the active tab in the tab widget.
Definition at line 35 of file main_content.h.

Referenced by MainContent().

11.34.3.3 m_TabWidget

TabWidget* Gui::MainContent::m_TabWidget [private]
The tab widget of the main content.

This widget is responsible for containing the core functionality of Hivemind; planning, simulating and launching.
They are separated in their own tabs as a user should only need to access one of these at any point in time.

Definition at line 43 of file main_content.h.
Referenced by MainContent().

The documentation for this class was generated from the following files:

* include/gui/main_content.h
* src/gui/main_content.cpp

Generated by Doxygen

126 Class Documentation

11.35 Gui::MainWindow Class Reference

Handles the main window of Hivemind.
#include <main_window.h>

Inheritance diagram for Gui::MainWindow:

‘ QMainWindow ‘

T

‘ Gui::MainWindow ‘

Signals

» void ScenarioCompiled (std::pair< CompileScenario::Scenario::RouteMap::iterator, CompileScenario::«
Scenario::RouteMap::iterator >)

+ void ScenariolLoaded ()

« void AgentAdded (std::pair< std::vector< Core::Agent >::iterator, std::vector< Core::Agent > :iterator >)

« void SyncAgentColor ()

Public Member Functions

+ MainWindow (QWidget xparent=nullptr)

Constructs the main window.
» ~MainWindow ()

Descructs the main window.

Private Slots

« void SaveScenario (const std::string &filepath)
« void LoadScenario (const std::string &filepath)
+ void UpdateScenario (float, float, float)

+ void CompileScenario ()

+ void CreateNewAgent ()

Private Member Functions

« void ConnectSlotsAndSignals ()

Private Attributes

* MenuBar * m_MenuBar
The menu bar of the main window.
« MainContent * m_MainContent
The main content of the main window.
+ std::shared_ptr< CompileScenario::Scenario > m_Scenario
» MapDialog * m_ScenarioSettingsDialog

Generated by Doxygen

11.35 Gui::MainWindow Class Reference 127

11.35.1 Detailed Description

Handles the main window of Hivemind.

This class is responsible for handling the main window of Hivemind, which contains the core functionality such as
scenario editing, simulation and launching.

Definition at line 17 of file main_window.h.

11.35.2 Constructor & Destructor Documentation

11.35.2.1 MainWindow()

Gui: :MainWindow: :MainWindow (

QWidget * parent = nullptr)

Constructs the main window.

Parameters

‘ parent ‘ The parent widget of main window

Definition at line 18 of file main_window.cpp.

References ConnectSlotsAndSignals(), CreateNewAgent(), m_MainContent, and m_MenuBar.

11.35.2.2 ~MainWindow()

Gui::MainWindow: :~MainWindow ()
Descructs the main window.

Definition at line 37 of file main_window.cpp.

11.35.3 Member Function Documentation

11.35.3.1 AgentAdded

void Gui::MainWindow: :AgentAdded (
std::pair< std::vector< Core::Agent >::iterator, std::vector< Core::Agent >«

::iterator >) [signall

Referenced by ConnectSlotsAndSignals(), CreateNewAgent(), and LoadScenario().

Generated by Doxygen

128 Class Documentation

11.35.3.2 CompileScenario

void Gui::MainWindow::CompileScenario () [private], [slot]
Definition at line 161 of file main_window.cpp.
References m_Scenario, and ScenarioCompiled().

Referenced by ConnectSlotsAndSignals().

11.35.3.3 ConnectSlotsAndSignals()

void Gui::MainWindow: :ConnectSlotsAndSignals () [private]

Definition at line 40 of file main_window.cpp.

References AgentAdded(), CompileScenario(), CreateNewAgent(), Gui::MapViewer::DataReceived(), MapManagement::MapManage
KeyframeManagement::KeyframeManager::Instance(), MapManagement::MapManager::Instance(), LoadScenario(),

m_MenuBar, m_ScenarioSettingsDialog, MapManagement::MapManager::Requestimage(), SaveScenario(),

ScenarioCompiled(), ScenarioLoaded(), SyncAgentColor(), UpdateScenario(), and Gui::MapViewer::WaitForData().

Referenced by MainWindow().

11.35.3.4 CreateNewAgent

void Gui::MainWindow: :CreateNewAgent () [private], [slot]
Definition at line 169 of file main_window.cpp.
References AgentAdded(), getRandomColor(), m_Scenario, and SyncAgentColor().

Referenced by ConnectSlotsAndSignals(), and MainWindow().

11.35.3.5 LoadScenario

void Gui::MainWindow: :LoadScenario (

const std::string & filepath) [private], [slot]
Definition at line 145 of file main_window.cpp.
References AgentAdded(), m_Scenario, and ScenarioLoaded().

Referenced by ConnectSlotsAndSignals().

Generated by Doxygen

11.35 Gui::MainWindow Class Reference 129

11.35.3.6 SaveScenario

void Gui::MainWindow: :SaveScenario (

const std::string & filepath) [private], [slot]
Definition at line 139 of file main_window.cpp.
References m_Scenario.

Referenced by ConnectSlotsAndSignals().

11.35.3.7 ScenarioCompiled

void Gui::MainWindow::ScenarioCompiled (
std::pair< CompileScenario::Scenario::RouteMap::iterator, CompileScenario::«

Scenario::RouteMap::iterator >) [signal]

Referenced by CompileScenario(), and ConnectSlotsAndSignals().

11.35.3.8 ScenarioLoaded

void Gui::MainWindow: :ScenarioLoaded () [signal]

Referenced by ConnectSlotsAndSignals(), and LoadScenario().

11.35.3.9 SyncAgentColor

void Gui::MainWindow: :SyncAgentColor () [signal]

Referenced by ConnectSlotsAndSignals(), and CreateNewAgent().

11.35.3.10 UpdateScenario

void Gui::MainWindow: :UpdateScenario (
float latitude,
float longitude,
float size) [private], [slot]
Definition at line 154 of file main_window.cpp.

References m_Scenario.

Referenced by ConnectSlotsAndSignals().

Generated by Doxygen

130 Class Documentation

11.35.4 Member Data Documentation

11.35.4.1 m_MainContent

MainContent* Gui::MainWindow::m_MainContent [private]
The main content of the main window.

Basically all content other than the menubar.

Definition at line 55 of file main_window.h.

Referenced by MainWindow().

11.35.4.2 m_MenuBar

MenuBar* Gui::MainWindow::m_MenuBar [private]
The menu bar of the main window.
Definition at line 51 of file main_window.h.

Referenced by ConnectSlotsAndSignals(), and MainWindow().

11.35.4.3 m_Scenario

std::shared_ptr<CompileScenario::Scenario> Gui::MainWindow::m_Scenario [private]
Definition at line 57 of file main_window.h.

Referenced by CompileScenario(), CreateNewAgent(), LoadScenario(), SaveScenario(), and UpdateScenario().

11.35.4.4 m_ScenarioSettingsDialog

MapDialog* Gui::MainWindow::m_ScenarioSettingsDialog [private]
Definition at line 58 of file main_window.h.
Referenced by ConnectSlotsAndSignals().

The documentation for this class was generated from the following files:

* include/gui/main_window.h
* src/gui/main_window.cpp

Generated by Doxygen

11.36 Gui::MapDialog Class Reference

131

11.36 Gui::MapDialog Class Reference

The MapDialog class represents a dialog window for inputting map data.

#include <map_dialog.h>

Inheritance diagram for Gui::MapDialog:

‘ QDialog ‘

T

‘ Gui::MapDialog ‘

Public Slots

« void Finish ()
Slot called when the user finishes input and submits the data.

Signals

+ void SendData (const QString &data)

Signal emitted when data is ready to be sent.
+ void Finished ()

Signal emitted when the dialog has finished.
« void MapDataReady (float latitude, float longitude, float size)

Signal emitted when map data is ready to be processed.

Public Member Functions
» MapDialog (QWidget *parent=nullptr)

Constructs a new MapDialog object.

Private Attributes

+ QLineEdit x m_LatitudeCoordInput
» QLineEdit * m_LongitudeCoordInput
« QLineEdit x m_Sizelnput

11.36.1 Detailed Description

The MapDialog class represents a dialog window for inputting map data.

Definition at line 15 of file map_dialog.h.

11.36.2 Constructor & Destructor Documentation

11.36.2.1 MapDialog()

Gui::MapDialog: :MapDialog (
QWidget * parent = nullptr)

Constructs a new MapDialog object.

Generated by Doxygen

132 Class Documentation

Parameters

‘ parent ‘ The parent widget of the dialog.

Definition at line 10 of file map_dialog.cpp.

References Finish(), m_LatitudeCoordInput, m_LongitudeCoordInput, and m_Sizelnput.

11.36.3 Member Function Documentation

11.36.3.1 Finish

void Gui::MapDialog::Finish () [slot]

Slot called when the user finishes input and submits the data.

Definition at line 41 of file map_dialog.cpp.

References Finished(), m_LatitudeCoordInput, m_LongitudeCoordInput, m_Sizelnput, and MapDataReady().

Referenced by MapDialog().

11.36.3.2 Finished

void Gui::MapDialog::Finished () [signal]
Signal emitted when the dialog has finished.

Referenced by Finish().

11.36.3.3 MapDataReady

void Gui::MapDialog::MapDataReady (
float latitude,
float longitude,

float size) [signal]

Signal emitted when map data is ready to be processed.

Parameters

latitude The latitude coordinate of the map data.

longitude | The longitude coordinate of the map data.

H Tk H £ 41 Aat
oIZT e SIiZc U uicTiap udld.

Generated by Doxygen

11.36 Gui::MapDialog Class Reference 133

Referenced by Finish().

11.36.3.4 SendData

void Gui::MapDialog::SendData (
const QString & data) [signal]

Signal emitted when data is ready to be sent.

Parameters

\ data \ The data to be sent.

11.36.4 Member Data Documentation

11.36.4.1 m_LatitudeCoordinput

QLineEdit#* Gui::MapDialog::m_LatitudeCoordInput [private]
Definition at line 54 of file map_dialog.h.

Referenced by Finish(), and MapDialog().

11.36.4.2 m_LongitudeCoordinput

QLineEdit#* Gui::MapDialog::m_LongitudeCoordInput [private]
Definition at line 55 of file map_dialog.h.

Referenced by Finish(), and MapDialog().

11.36.4.3 m_Sizelnput

QLineEdit#* Gui::MapDialog::m_SizeInput [private]
Definition at line 56 of file map_dialog.h.
Referenced by Finish(), and MapDialog().

The documentation for this class was generated from the following files:

* include/gui/map_dialog.h
* src/gui/map_dialog.cpp

Generated by Doxygen

134 Class Documentation

11.37 MapManagement::MapManager Class Reference

This is the class responsible for retrieving maps from Kartverket.
#include <map_manager.h>

Inheritance diagram for MapManagement::MapManager:

‘ QObject ‘

T

‘ MapManagement::MapManager ‘

Signals

+ void Gotlmage ()

Signal emitted when the map image data has been retrieved.
« void Requestimage ()

Static Public Member Functions

+ static MapManager & Instance ()

Returns the singleton instance of the class.
« static void GetMap (Core::UTMCoordinate coord, int size)

Retrieves the map from Kartverket for the specified UTM coordinate and size.
« static void CalculateCornerCoordinates (Core::UTMCoordinate coord, int size)

Calculates the UTM corner coordinates for the specified UTM coordinate and size.
« static QByteArray & GetData ()

Returns the map data as a byte array.
« static int GetimageResolution ()

Private Member Functions

» MapManager ()
Constructor.
+ ~MapManager ()=default

Destructor.

Private Attributes

+ QByteArray m_Data
+ QString m_Area
+ int m_ImageResolution

Generated by Doxygen

11.37 MapManagement::MapManager Class Reference

135

11.37.1 Detailed Description

This is the class responsible for retrieving maps from Kartverket.

Definition at line 14 of file map_manager.h.

11.37.2 Constructor & Destructor Documentation

11.37.2.1 MapManager()

MapManagement : :MapManager: :MapManager () [inline], [private]
Constructor.

Definition at line 67 of file map_manager.h.

11.37.2.2 ~MapManager()

MapManagement : :MapManager: :~MapManager () [private], [default]

Destructor.

11.37.3 Member Function Documentation

11.37.3.1 CalculateCornerCoordinates()

void MapManagement::MapManager::CalculateCornerCoordinates (
Core::UTMCoordinate coord,

int size) [static]

Calculates the UTM corner coordinates for the specified UTM coordinate and size.

This function calculates the UTM corner coordinates for the specified UTM coordinate and size, and stores them in

the CornerCoordinates variable.

Parameters

coord | The UTM coordinate for the center of the map.

size The size of the map in meters.

Generated by Doxygen

136 Class Documentation

Definition at line 77 of file map_manager.cpp.
References Core::UTMCoordinate::Easting, Instance(), m_Area, and Core::UTMCoordinate::Northing.

Referenced by GetMap().

11.37.3.2 GetData()

static QByteArray & MapManagement::MapManager: :GetData () [inline], [static]
Returns the map data as a byte array.

Definition at line 49 of file map_manager.h.

References Instance(), and m_Data.

Referenced by Gui::MapViewer::paintEvent().

11.37.3.3 GetlmageResolution()

static int MapManagement::MapManager::GetImageResolution () [inline], [static]
Definition at line 55 of file map_manager.h.
References Instance(), and m_ImageResolution.

Referenced by Gui::MapViewer::paintEvent().

11.37.3.4 GetMap()

void MapManagement ::MapManager: :GetMap (
Core: :UTMCoordinate coord,

int size) [static]
Retrieves the map from Kartverket for the specified UTM coordinate and size.

This function retrieves the satellite map data from Kartverket with a HTTP request for the specified UTM coordinate
and size.

Parameters

coord | The UTM coordinate for the center of the map.

size The size of the map in meters.

Definition at line 17 of file map_manager.cpp.

Generated by Doxygen

11.37 MapManagement::MapManager Class Reference 137

References CalculateCornerCoordinates(), Instance(), m_Area, m_ImageResolution, and Requestimage().

Referenced by CompileScenario::Scenario::Scenario(), and CompileScenario::Scenario::SetOrigin().

11.37.3.5 Gotlmage

void MapManagement ::MapManager: :GotImage () [signal]
Signal emitted when the map image data has been retrieved.

Referenced by Gui::MainWindow::ConnectSlotsAndSignals().

11.37.3.6 Instance()

static MapManager & MapManagement::MapManager::Instance () [inline], [static]
Returns the singleton instance of the class.
Definition at line 20 of file map_manager.h.

Referenced by CalculateCornerCoordinates(), Gui::MainWindow::ConnectSlotsAndSignals(), GetData(),
GetlmageResolution(), and GetMap().

11.37.3.7 Requestimage

void MapManagement ::MapManager: :RequestImage () [signal]

Referenced by Gui::MainWindow::ConnectSlotsAndSignals(), and GetMap().

11.37.4 Member Data Documentation

11.37.4.1 m_Area

QOString MapManagement::MapManager::m_Area [private]
Definition at line 73 of file map_manager.h.

Referenced by CalculateCornerCoordinates(), and GetMap().

Generated by Doxygen

138

Class Documentation

11.37.4.2 m_Data

QOByteArray MapManagement::MapManager::m_Data [private]
Definition at line 72 of file map_manager.h.

Referenced by GetData().

11.37.4.3 m_ImageResolution

int MapManagement::MapManager::m_ImageResolution [private]
Definition at line 74 of file map_manager.h.

Referenced by GetlmageResolution(), and GetMap().

The documentation for this class was generated from the following files:

* include/map_management/map_manager.h
* src/map_management/map_manager.cpp

11.38 Gui::MapViewer Class Reference

#include <map_viewer.h>

Inheritance diagram for Gui::MapViewer:

\ QWidget \

T

‘ Gui::MapViewer ‘

Public Slots

« void DataReceived ()
« void WaitForData ()

» void UpdateRoutes (std::pair< CompileScenario::Scenario::RouteMap::iterator,

Scenario::RouteMap::iterator > routes)

CompileScenario::«

« void UpdateAgents (std::pair< std::vector< Core::Agent >::iterator, std::vector< Core::Agent >:iterator >

agents)
« void UpdateActiveAgent (int id)
+ void UpdateTimeStamp (float timeStamp)

Public Member Functions

+ MapViewer (QWidget *parent=nullptr)

Generated by Doxygen

11.38 Gui::MapViewer Class Reference 139

Protected Member Functions

+ void paintEvent (QPaintEvent xevent) override
+ void resizeEvent (QResizeEvent xevent) override
+ void mousePressEvent (QMouseEvent xevent) override

Private Member Functions

+ void UpdateRenderingArea ()

+ void DrawKeyframes (QPainter &painter)

+ void DrawRoutes (QPainter &painter)

+ void DrawLoader (QPainter &painter) const

Private Attributes

* int m_StartX

* int m_StartY

* int m_Size

* bool m_WaitingForData

« QTimer * m_WaitingForDataTimer

* QElapsedTimer m_WaitingForDataElapsedTimer

« float m_LoaderAngle

 int m_LoaderSize

« float m_LoaderSpeed

+ float m_LoaderSpan

* int m_LoaderThickness

« std::pair< std::vector< Core::Agent > :iterator, std::vector< Core::Agent >::iterator > m_Agents

+ std::pair< CompileScenario::Scenario::RouteMap::iterator, CompileScenario::Scenario::RouteMap::iterator
> m_Routes

* int m_ActiveAgentld

« float m_TimeStamp

11.38.1 Detailed Description

Definition at line 16 of file map_viewer.h.

11.38.2 Constructor & Destructor Documentation

11.38.2.1 MapViewer()

Gui::MapViewer: :MapViewer (

QWidget * parent = nullptr) [explicit]
Definition at line 12 of file map_viewer.cpp.

References m_LoaderAngle, m_LoaderSpeed, m_WaitingForDataElapsedTimer, m_WaitingForDataTimer,
UpdateRenderingArea(), and WaitForData().

Generated by Doxygen

140 Class Documentation

11.38.3 Member Function Documentation

11.38.3.1 DataReceived

void Gui::MapViewer::DataReceived () [slot]
Definition at line 132 of file map_viewer.cpp.
References m_WaitingForData, and m_WaitingForDataTimer.

Referenced by Gui::MainWindow::ConnectSlotsAndSignals().

11.38.3.2 DrawKeyframes()

void Gui::MapViewer::DrawKeyframes (
QPainter & painter) [private]

Definition at line 141 of file map_viewer.cpp.

References Core::Agent::Color, KeyframeManagement::KeyframeManager::GetKeyframes(), CoordinateConverter::CoordConv::GetS
KeyframeManagement::KeyframeManager::Instance(), m_Agents, m_Size, m_StartX, m_StartY, and CoordinateConverter::CoordCor

Referenced by paintEvent().

11.38.3.3 DrawLoader()
void Gui::MapViewer::DrawLoader (

QPainter & painter) const [private]
Definition at line 227 of file map_viewer.cpp.

References m_LoaderAngle, m_LoaderSize, m_LoaderSpan, m_LoaderThickness, m_Size, m_StartX, and
m_StartY.

Referenced by paintEventy().

11.38.3.4 DrawRoutes()
void Gui::MapViewer::DrawRoutes (

QPainter & painter) [private]
Definition at line 175 of file map_viewer.cpp.

References Core::Agent::Color, CoordinateConverter::CoordConv::GetSize(), m_Agents, m_Routes, m_Size,
m_StartX, m_StartY, CoordinateConverter::CoordConv::SymmetricToAsymmetric(), Core::CartesianCoordinate::X,
and Core::CartesianCoordinate::Y.

Referenced by paintEvent().

Generated by Doxygen

11.38 Gui::MapViewer Class Reference 141

11.38.3.5 mousePressEvent()

void Gui::MapViewer::mousePressEvent (

QMouseEvent * event) [override], [protected]
Definition at line 69 of file map_viewer.cpp.
References KeyframeManagement::KeyframeManager::AddKeyframe(), CoordinateConverter::CoordConv::AsymmetricToSymmetric

CoordinateConverter::CoordConv::GetSize(), KeyframeManagement::KeyframeManager::Instance(), m_ActiveAgentld,
m_Size, m_StartX, m_StartY, and m_TimeStamp.

11.38.3.6 paintEvent()

void Gui::MapViewer::paintEvent (

QPaintEvent x event) [override], [protected]
Definition at line 38 of file map_viewer.cpp.

References DrawKeyframes(), DrawlLoader(), DrawRoutes(), MapManagement::MapManager::GetData(),
MapManagement::MapManager::GetimageResolution(), m_Size, m_StartX, m_StartY, and m_WaitingForData.

11.38.3.7 resizeEvent()

void Gui::MapViewer::resizeEvent (

QResizeEvent * event) [override], [protected]
Definition at line 63 of file map_viewer.cpp.

References UpdateRenderingAreay).

11.38.3.8 UpdateActiveAgent

void Gui::MapViewer: :UpdateActiveAgent (

int id) [inline], [slot]
Definition at line 36 of file map_viewer.h.

References m_ActiveAgentld.

Generated by Doxygen

142

Class Documentation

11.38.3.9 UpdateAgents

void Gui::MapViewer::UpdateAgents (

std::pair< std::vector< Core::Agent >::iterator,

::iterator > agents) [slot]
Definition at line 258 of file map_viewer.cpp.

References m_Agents.

11.38.3.10 UpdateRenderingArea()

void Gui::MapViewer: :UpdateRenderingArea () [private]
Definition at line 109 of file map_viewer.cpp.
References m_Size, m_StartX, and m_StartY.

Referenced by MapViewer(), and resizeEventy().

11.38.3.11 UpdateRoutes

void Gui::MapViewer::UpdateRoutes (

std:

:vector< Core::Agent >+«

std::pair< CompileScenario::Scenario::RouteMap::iterator, CompileScenario::«

Scenario::RouteMap::iterator > routes) [slot]
Definition at line 248 of file map_viewer.cpp.

References m_Routes.

11.38.3.12 UpdateTimeStamp

void Gui::MapViewer::UpdateTimeStamp (
float timeStamp) [inline], [slot]

Definition at line 42 of file map_viewer.h.

References m_TimeStamp.

Generated by Doxygen

11.38 Gui::MapViewer Class Reference 143

11.38.3.13 WaitForData

void Gui::MapViewer::WaitForData () [slot]
Definition at line 123 of file map_viewer.cpp.
References m_WaitingForData, and m_WaitingForDataTimer.

Referenced by Gui::MainWindow::ConnectSlotsAndSignals(), and MapViewer().

11.38.4 Member Data Documentation

11.38.4.1 m_ActiveAgentld

int Gui::MapViewer::m_ActiveAgentId [private]
Definition at line 79 of file map_viewer.h.

Referenced by mousePressEvent(), and UpdateActiveAgent().

11.38.4.2 m_Agents

std::pair<std::vector<Core::Agent>::iterator, std::vector<Core::Agent>::iterator> Gui::Map+

Viewer::m_Agents [private]
Definition at line 74 of file map_viewer.h.

Referenced by DrawKeyframes(), DrawRoutes(), and UpdateAgents().

11.38.4.3 m_LoaderAngle

float Gui::MapViewer::m_LoaderAngle [private]
Definition at line 66 of file map_viewer.h.

Referenced by DrawlLoader(), and MapViewer().

Generated by Doxygen

144 Class Documentation

11.38.4.4 m_LoaderSize

int Gui::MapViewer::m_LoaderSize [private]
Definition at line 67 of file map_viewer.h.

Referenced by DrawLoader().

11.38.4.5 m_LoaderSpan

float Gui::MapViewer::m_LoaderSpan [private]
Definition at line 69 of file map_viewer.h.

Referenced by DrawLoader().

11.38.4.6 m_LoaderSpeed

float Gui::MapViewer::m_LoaderSpeed [private]
Definition at line 68 of file map_viewer.h.

Referenced by MapViewer().

11.38.4.7 m_LoaderThickness

int Gui::MapViewer::m_LoaderThickness [private]
Definition at line 70 of file map_viewer.h.

Referenced by DrawlLoader().

11.38.4.8 m_Routes

std::pair<CompileScenario::Scenario::RouteMap::iterator, CompileScenario::Scenario::RouteMap+

::titerator> Gui::MapViewer::m_Routes [private]
Definition at line 77 of file map_viewer.h.

Referenced by DrawRoutes(), and UpdateRoutes().

Generated by Doxygen

11.38 Gui::MapViewer Class Reference

145

11.38.4.9 m_Size

int Gui::MapViewer::m_Size [private]
Definition at line 61 of file map_viewer.h.

Referenced by DrawKeyframes(), DrawlLoader(), DrawRoutes(),
UpdateRenderingArea().

11.38.4.10 m_StartX

int Gui::MapViewer::m_StartX [private]
Definition at line 60 of file map_viewer.h.

Referenced by DrawKeyframes(), DrawlLoader(), DrawRoutes(),
UpdateRenderingArea().

11.38.4.11 m_StartY

int Gui::MapViewer::m_StartY [private]
Definition at line 60 of file map_viewer.h.

Referenced by DrawKeyframes(), DrawlLoader(), DrawRoutes(),
UpdateRenderingArea().

11.38.4.12 m_TimeStamp

float Gui::MapViewer::m_TimeStamp [private]
Definition at line 80 of file map_viewer.h.

Referenced by mousePressEvent(), and UpdateTimeStamp().

11.38.4.13 m_WaitingForData

bool Gui::MapViewer::m_WaitingForData [private]
Definition at line 63 of file map_viewer.h.

Referenced by DataReceived(), paintEvent(), and WaitForData().

mousePressEvent(),

mousePressEvent(),

mousePressEvent(),

paintEvent(),

paintEvent(),

paintEvent(),

and

and

and

Generated by Doxygen

146 Class Documentation

11.38.4.14 m_WaitingForDataElapsedTimer

QElapsedTimer Gui::MapViewer::m_WaitingForDataElapsedTimer [private]
Definition at line 65 of file map_viewer.h.

Referenced by MapViewer().

11.38.4.15 m_WaitingForDataTimer

QTimer* Gui::MapViewer::m _WaitingForDataTimer [private]
Definition at line 64 of file map_viewer.h.
Referenced by DataReceived(), MapViewer(), and WaitForData).

The documentation for this class was generated from the following files:

* include/gui/map_viewer.h
* src/gui/map_viewer.cpp

11.39 Gui::MenuBar Class Reference

The main menubar of the user interface.
#include <menu_bar.h>

Inheritance diagram for Gui::MenuBar:

QMenuBar

Gui::MenuBar

|

Signals

+ void SaveScenario (const std::string &filename)
+ void LoadScenario (const std::string &filename)

Public Member Functions

* MenuBar (QWidget *parent=nullptr)

Constructs the menu bar.

Generated by Doxygen

11.39 Gui::MenuBar Class Reference

147

11.39.1 Detailed Description

The main menubar of the user interface.

The main menubar exists to provide the user with easy access to functionality such as creating new scenarios,

opening existing scenarios etc.

Definition at line 13 of file menu_bar.h.

11.39.2 Constructor & Destructor Documentation

11.39.2.1 MenuBar()

Gui: :MenuBar: :MenuBar (

QWidget * parent = nullptr)

Constructs the menu bar.

Parameters

‘ parent ‘ The parent widget of the menu bar

Definition at line 13 of file menu_bar.cpp.

References LoadScenario(), and SaveScenario().

11.39.3 Member Function Documentation

11.39.3.1 LoadScenario

void Gui::MenuBar::LoadScenario (

const std::string & filename) [signal]

Referenced by MenuBar().

11.39.3.2 SaveScenario

void Gui::MenuBar::SaveScenario (

const std::string & filename) [signall

Referenced by MenuBar().

The documentation for this class was generated from the following files:

* include/gui/menu_bar.h
* src/gui/menu_bar.cpp

Generated by Doxygen

148 Class Documentation

11.40 Routemaker::Node< T > Struct Template Reference

Represents a node in a Graph data structured made for path-finding.

#include <graph.h>

Public Attributes

« T Data

Data stored in the the node.
+ std::weak_ptr< Node< T > > Parent

A non-owner pointer to the parent of the node.
* bool Visited

Specifies if a given node has been visited during path-finding.
+ double GlobalGoal

Represents the assumed cost from the start to the goal node through this node.
+ double LocalGoal

Represents the cost from the start node to this node.

11.40.1 Detailed Description

template <typename T>
struct Routemaker::Node<< T >

Represents a node in a Graph data structured made for path-finding.

Template Parameters

‘ T ‘ Type of data to store inside the node

Definition at line 17 of file graph.h.

11.40.2 Member Data Documentation

11.40.2.1 Data

template<typename T >

T Routemaker::Node< T >::Data

Data stored in the the node.

Stores data not needed by the Ax path-finding algorithm. This is what the user actually wants to store in the Graph.
Definition at line 23 of file graph.h.

Referenced by Routemaker::Routemaker::UpdateOrigin().

Generated by Doxygen

11.40 Routemaker::Node< T > Struct Template Reference 149

11.40.2.2 GlobalGoal

template<typename T >
double Routemaker::Node< T >::GlobalGoal

Represents the assumed cost from the start to the goal node through this node.

Should not be set by the user. The Ax path-finding algorithm uses cost to find the shortest path in a reasonable
amount of time. This member contains the sum of the cost to get to this node from the start node, represented in
LocalGoal, plus the assumed cost to get from this node to the goal node. The Ax path-finding algorithm uses this
value during Graph traversal to sort a priority queue in order to explore the assumed shortest paths first.

Definition at line 52 of file graph.h.

11.40.2.3 LocalGoal

template<typename T >

double Routemaker::Node< T >::LocalGoal
Represents the cost from the start node to this node.

Should not be set by the user. The Ax path-finding algorithm uses cost to find the shortest path in a reasonable
amount of time. This member contains the sum of the cost to get to this node from the start node. While traversing
the Graph, the Ax path-finding algorithm updates and uses this member to check for shorter paths.

Definition at line 62 of file graph.h.

11.40.2.4 Parent

template<typename T >

std::weak_ptr<Node<T> > Routemaker::Node< T >::Parent
A non-owner pointer to the parent of the node.

Should not be set by user. The Ax path-finding algorithm sets the value for this member when traversing the Graph.
It used to find the way back to the start after the goal is found.

Definition at line 30 of file graph.h.

11.40.2.5 Visited

template<typename T >

bool Routemaker::Node< T >::Visited

Specifies if a given node has been visited during path-finding.

Should not be set by user. Is generally only used internally by the Ax path-finding algorithm when traversing the
Graph. May be used in debug views to visualize which nodes are visited during path-finding.

Definition at line 39 of file graph.h.

The documentation for this struct was generated from the following file:

* include/routemaker/graph.h

Generated by Doxygen

150 Class Documentation

11.41 Gui::Planner Class Reference

The planner widget used for planning scenarios.
#include <planner.h>

Inheritance diagram for Gui::Planner:

QSplitter

Gui::Planner

Public Member Functions

» Planner (QWidget *parent=nullptr)

Constructs the planner widget.
» ~Planner ()

Destructs the planner widget.

Private Attributes

* MapViewer * m_MapViewer

The layout of the planner widget.
« Timeline * m_Timeline

11.41.1 Detailed Description

The planner widget used for planning scenarios.
Contains the graphical functionality to plan scenarios.

Definition at line 13 of file planner.h.

11.41.2 Constructor & Destructor Documentation

11.41.2.1 Planner()

Gui::Planner::Planner (

QWidget * parent = nullptr)

Constructs the planner widget.

Generated by Doxygen

11.41 Gui::Planner Class Reference 151

Parameters

‘ parent ‘ The parent of the planner widget.

Definition at line 5 of file planner.cpp.

References m_MapViewer, and m_Timeline.

11.41.2.2 ~Planner()

Gui::Planner::~Planner ()
Destructs the planner widget.

Definition at line 19 of file planner.cpp.

11.41.3 Member Data Documentation

11.41.3.1 m_MapViewer

MapViewer* Gui::Planner::m_MapViewer [private]
The layout of the planner widget.
Definition at line 26 of file planner.h.

Referenced by Planner().

11.41.3.2 m_Timeline

Timelinex Gui::Planner::m_Timeline [private]
Definition at line 27 of file planner.h.
Referenced by Planner().

The documentation for this class was generated from the following files:

« include/gui/planner.h
* src/gui/planner.cpp

Generated by Doxygen

152 Class Documentation

11.42 Routemaker::Routemaker Class Reference

Main class responsible for handling creation of routes between keyframes.
#include <routemaker.h>

Inheritance diagram for Routemaker::Routemaker:

‘ Routemaker::Graph< Cell2D > ‘

T

‘ Routemaker::Routemaker ‘

Public Member Functions

+ Routemaker (const Core::UTMCoordinate &origin, int size)

Instatiates a routemaker object, along with it's Heightmap member.
« std::vector< Core::CartesianCoordinate > MakeRoute (const Core::Keyframe &a, const Core::Keyframe &b)

Creates a a vector of coordinates defining a path between two keyframes.
* NodePtr GetNode (uint32_t x, uint32_t y) const

Get a node at a position.
+ void UpdateOrigin (Core::UTMCoordinate UTMOrigin, int size)

Updates the origin coordinate and the size of the map.
+ void UpdateResolution ()

Public Member Functions inherited from Routemaker::Graph< Cell2D >

« virtual std::vector< NodePtr > GetNeighbors (NodePtr node)=0

Collects all neighbor nodes of node.
« virtual double GetCost (NodePtr a, NodePtr b)=0

Returns the cost between a and b.
« virtual bool HasLineOfSight (NodePtr a, NodePtr b)=0

Determines if there is a direct line of sight between node a and node b.
« virtual void ResetNodes (void)=0

Resets all local and global goals and parent relationships of all nodes.
+ void SolveAStar (NodePtr start, NodePtr goal)

Finds cheapest path from start to goal.
+ void PostSmooth (NodePtr start, NodePtr goal)

Simplifies the path from start to goal.

Private Member Functions

+ std::vector< NodePir > GetNeighbors (NodePtr node) override

Collects all neighbor nodes of node.
+ double GetCost (NodePtr a, NodePtr b) override

Returns the cost between a and b.
* bool HasLineOfSight (NodePtr a, NodePtr b) override

Determines if there is a direct line of sight between node a and node b.
» void ResetNodes () override

Resets all local and global goals and parent relationships of all nodes.
« std::list< NodePtr > BresenhamLine (const NodePtr &a, const NodePtr &b) const

Calculates the Bresenham Line between two nodes.

Generated by Doxygen

11.42 Routemaker::Routemaker Class Reference 153

Private Attributes

« std::vector< NodePtr > m_Nodes

All the nodes that make up the graph.
+ std::unique_ptr< HeightManagement::HeightManager > m_HeightMap

HeightManager instance owned by Routemaker.
* int m_MapWidth

Width (and height) of the active scenario.
* int m_RoutemakerRes

Resolution of the routemaker in meters.
* int m_RoutemakerWidth

Width (and height) of the routemaker.

Additional Inherited Members

Public Types inherited from Routemaker::Graph< Cell2D >

« using NodePtr = std::shared_ptr< Node< Cell2D > >

Helper alias to make code more readable.

11.42.1 Detailed Description

Main class responsible for handling creation of routes between keyframes.

Definition at line 22 of file routemaker.h.

11.42.2 Constructor & Destructor Documentation

11.42.2.1 Routemaker()

Routemaker: :Routemaker: :Routemaker (
const Core::UTMCoordinate & origin,

int size) [explicit]
Instatiates a routemaker object, along with it's Heightmap member.

The origin and size of the scenario are simply passed to the HeightMap member. In the case that the Height«
Map class is converted to a singleton or the scenario class gains ownership over the Heightmap, they should not be
necessary.

Parameters

origin | The origin of the scenario in UTM coordinate space.

size The size of the scenario in meters

Generated by Doxygen

154 Class Documentation

Definition at line 15 of file routemaker.cpp.

11.42.3 Member Function Documentation

11.42.3.1 BresenhamLine()

std::1list< Routemaker::NodePtr > Routemaker::Routemaker::BresenhamLine (
const NodePtr & a,

const NodePtr & b) const [private]

Calculatesthe Bresenham Line between two nodes.

Parameters

a | Pointer to first node
b | Pointer to seconds node

Returns

A list of pointers to the nodes that make up the Bresenham Line between a and b.

Definition at line 203 of file routemaker.cpp.

11.42.3.2 GetCost()

double Routemaker::Routemaker::GetCost (
NodePtr a,

NodePtr b) [override], [private], [virtual]
Returns the cost between a and b.

Implemented by sub-classes of Graph. The ax path-finding algorithm uses cost to efficiently find the best path
between two nodes. In order to do this, it requires some method of calculating the cost of moving between any
two nodes. It is up to the sub-class to define how this is calulated. An example of this cost may be the euclidean
distance between two nodes.

Parameters

a | Pointer to the first Node
b | Pointer to the second Node

Returns

Cost between node a and node b.

Generated by Doxygen

11.42 Routemaker::Routemaker Class Reference 155

Implements Routemaker::Graph< Cell2D >.

Definition at line 168 of file routemaker.cpp.

11.42.3.3 GetNeighbors()

std::vector< Routemaker::NodePtr > Routemaker::Routemaker::GetNeighbors (

NodePtr node) [override], I[private], [virtual]
Collects all neighbor nodes of node.

Implemented by sub-classes of Graph. The neighbor relationship between nodes define the edges of the graph. It
is up to the subclass to define these relationships. For a 2D grid, the neighbors would simply be the nodes directly
to the north, south, east and west, in addition to the corners between them. For a road network, the relationships
may be more complex.

Parameters

‘ node ‘ A pointer to the node from which to collect all neighbors

Returns

A vector of pointers to all the neighbors of node

Implements Routemaker::Graph< Cell2D >.

Definition at line 103 of file routemaker.cpp.

11.42.3.4 GetNode()

Routemaker: :NodePtr Routemaker::Routemaker::GetNode (
uint32_t x,
uint32_t y) const

Get a node at a position.

Parameters

X | x-coordinate of position

y-coordinate of position

Returns

A shared pointer to the node at the specified location

Definition at line 250 of file routemaker.cpp.

Generated by Doxygen

156 Class Documentation

11.42.3.5 HasLineOfSight()

bool Routemaker::Routemaker::HasLineOfSight (
NodePtr a,

NodePtr b) [override], [private], [virtual]
Determines if there is a direct line of sight between node a and node b.
Implemented by sub-classes of Graph. The Graph::PostSmooth method traverses the already found path through
the Ax path-finding algorithm and simplifies it by using this method. In a graph representing a 2D grid, a Bresenham

implementation or ray-casting can be used to determine line of sight.

Parameters

a | Pointer to the first Node
b | Pointer to the second Node

Returns

bool specifying whether or not there is a direct line of sight

Implements Routemaker::Graph< Cell2D >.

Definition at line 184 of file routemaker.cpp.

11.42.3.6 MakeRoute()

std::vector< Core::CartesianCoordinate > Routemaker::Routemaker::MakeRoute (
const Core::Keyframe & a,

const Core::Keyframe & b)
Creates a a vector of coordinates defining a path between two keyframes.

Utilizes methods from the Graph interface, namely GetNeighbors, GetCost, HasLineOfSight and BresenhamLine,
to generate a path between a and b.

Parameters

a | First keyframe to create to create path from

b | Second keyframe to create path from

returns A vector of coordinates in symmetrical cartesian coordinate system space, which together forms a path.
Definition at line 257 of file routemaker.cpp.
References Core::Keyframe::Agentld, CoordinateConverter::CoordConv::AsymmetricToSymmetric(), DRONE_FLIGHT_HEIGHT,

Core::Keyframe::Position, CoordinateConverter::CoordConv::SymmetricToAsymmetric(), Core::Keyframe:: TimeStamp,
and Core::CartesianCoordinate::X.

Generated by Doxygen

11.42 Routemaker::Routemaker Class Reference 157

11.42.3.7 ResetNodes()

void Routemaker::Routemaker::ResetNodes (

void) [override], [private], [virtual]
Resets all local and global goals and parent relationships of all nodes.
Implemented by sub-classes of Graph. In order to be able to re-use the same graph for several Ax searches, the
Graph::SolveAStar method needs to be able to reset all the nodes. As this interface does not contain the actual
collection of nodes, this needs to be implemented in the sub-classes.

Implements Routemaker::Graph< Cell2D >.

Definition at line 26 of file routemaker.cpp.

11.42.3.8 UpdateOrigin()

void Routemaker::Routemaker: :UpdateOrigin (
Core::UTMCoordinate UTMOrigin,
int size)

Updates the origin coordinate and the size of the map.

Parameters

UTMOirigin | The new origin coordinate for the map

size The new size of the map in meters

Definition at line 64 of file routemaker.cpp.

References Routemaker::Node< T >::Data, and DRONE_FLIGHT_HEIGHT.

11.42.3.9 UpdateResolution()

void Routemaker::Routemaker::UpdateResolution ()

Definition at line 44 of file routemaker.cpp.

11.42.4 Member Data Documentation

Generated by Doxygen

158 Class Documentation

11.42.4.1 m_HeightMap

std::unique_ptr<HeightManagement::HeightManager> Routemaker::Routemaker::m_HeightMap [private]
HeightManager instance owned by Routemaker.

Definition at line 93 of file routemaker.h.

11.42.4.2 m_MapWidth

int Routemaker::Routemaker::m_MapWidth [private]
Width (and height) of the active scenario.

Definition at line 96 of file routemaker.h.

11.42.4.3 m_Nodes

std::vector<NodePtr> Routemaker::Routemaker::m_Nodes [private]
All the nodes that make up the graph.

Definition at line 90 of file routemaker.h.

11.42.4.4 m_RoutemakerRes

int Routemaker::Routemaker::m_RoutemakerRes [private]
Resolution of the routemaker in meters.

A resolution of 3 meters would mean that any one move in vertical or horizontal direction would correspond to a 3
meter movement. A higher value increases performance of the routemaker, but decreases route fidelity.

Definition at line 104 of file routemaker.h.

11.42.4.5 m_RoutemakerWidth

int Routemaker::Routemaker::m_RoutemakerWidth [private]
Width (and height) of the routemaker.

Will always equal m_MapWidth divided by m_RoutemakerRes
Definition at line 109 of file routemaker.h.

The documentation for this class was generated from the following files:

* include/routemaker/routemaker.h
« src/routemaker/routemaker.cpp

Generated by Doxygen

11.43 CompileScenario::Scenario Class Reference 159

11.43 CompileScenario::Scenario Class Reference

The Scenario class represents a scenario with keyframes and routes.
#include <scenario.h>

Inheritance diagram for CompileScenario::Scenario:

JSON

[

CompileScenario::Scenario

Public Types

+ using RouteMap = std::map< int, std::vector< std::vector< Core::CartesianCoordinate > > >

Public Member Functions

 Scenario (std::string name, Core::GeographicalCoordinate origin, int size)
Constructs a new Scenario object with the given name, origin, and size.
* RouteMap & Compile ()
Compiles the scenario into a map of routes.
+ void save (std::string filename)
Saves the scenario to a file with the given filename.
+ void load (std::string filename)
Loads a scenario from a file with the given filename.
« std::pair< RouteMap::iterator, RouteMap::iterator > GetRoutes ()
« std::pair< std::vector< Core::Agent > ::iterator, std::vector< Core::Agent >:iterator > GetAgents ()
« void AddAgent (Core::Agent newAgent)
« void SetOrigin (Core::GeographicalCoordinate GeoCoord, int size)

Sets the origin of the scenario to the given geographical coordinates and size.

Private Member Functions

JSONSTART JSONSTRING (m_Name)

JSONSTART JSONMEMBER (Core::GeographicalCoordinate, m_Origin)
JSONSTART JSONINT (m_Size)

JSONSTART JSONMEMBERVECTOR (Core::Agent, m_Agents)

Private Attributes

+ KeyframeManagement::KeyframeManager & m_KeyframeManager
« std:ivector< Core::Agent > m_Agents

* RouteMap m_Routes

« std::unique_ptr< Routemaker::Routemaker > m_Routemaker

+ std::string m_Name

» Core::GeographicalCoordinate m_Origin

* int m_Size

Generated by Doxygen

160 Class Documentation

11.43.1 Detailed Description

The Scenario class represents a scenario with keyframes and routes.

The Scenario class provides functionality for creating a scenario with keyframes and routes, as well as saving and
loading the scenario to and from file.

Definition at line 21 of file scenario.h.

11.43.2 Member Typedef Documentation

11.43.2.1 RouteMap

using CompileScenario::Scenario::RouteMap = std::map<int, std::vector<std::vector<Core::CartesianCoordinate>
>>

Definition at line 24 of file scenario.h.

11.43.3 Constructor & Destructor Documentation

11.43.3.1 Scenario()

CompileScenario::Scenario::Scenario (
std::string name,
Core: :GeographicalCoordinate origin,

int size)

Constructs a new Scenario object with the given name, origin, and size.

Parameters

name | The name of the scenario.
origin | The geographical coordinates of the origin.

size The size of the scenario.

Definition at line 11 of file scenario.cpp.

References CoordinateConverter::CoordConv::GeographicToUTM(), MapManagement::MapManager::GetMap(),
m_Routemaker, and CoordinateConverter::CoordConv::ResetOrigin().

11.43.4 Member Function Documentation

Generated by Doxygen

11.43 CompileScenario::Scenario Class Reference 161

11.43.4.1 AddAgent()

void CompileScenario::Scenario::AddAgent (

Core::Agent newAgent)

Definition at line 84 of file scenario.cpp.

11.43.4.2 Compile()

Scenario::RouteMap & CompileScenario::Scenario::Compile ()

Compiles the scenario into a map of routes.

Returns

A map of routes.

Definition at line 39 of file scenario.cpp.

References KeyframeManagement::KeyframeManager::GetKeyframes(), m_KeyframeManager, m_Routes, and
Core::Keyframe::TimeStamp.

11.43.4.3 GetAgents()

std::pair< std::vector< Core::Agent >::iterator, std::vector< Core::Agent >::iterator >

CompileScenario::Scenario::GetAgents () [inline]
Definition at line 57 of file scenario.h.

References m_Agents.

11.43.4.4 GetRoutes()

std::pair< RouteMap::iterator, RouteMap::iterator > CompileScenario::Scenario::GetRoutes ()

[inline]
Definition at line 49 of file scenario.h.

References m_Routes.

Generated by Doxygen

162 Class Documentation

11.43.4.5 JSONINT()

JSONSTART CompileScenario::Scenario::JSONINT (

m_Size) [private]

11.43.4.6 JSONMEMBER()

JSONSTART CompileScenario::Scenario::JSONMEMBER (
Core: :GeographicalCoordinate ,

m_Origin) [private]

11.43.4.7 JSONMEMBERVECTOR()

JSONSTART CompileScenario::Scenario::JSONMEMBERVECTOR (
Core::Agent ,

m_Agents) [private]

11.43.4.8 JSONSTRING()

JSONSTART CompileScenario::Scenario::JSONSTRING (

m_Name) [private]

11.43.4.9 load()

void CompileScenario::Scenario::load (

std::string filename)

Loads a scenario from a file with the given filename.

Parameters

filename | The name of the file to load from.

Definition at line 96 of file scenario.cpp.

References Json::deserialize().

Generated by Doxygen

11.43 CompileScenario::Scenario Class Reference

163

11.43.4.10 save()

void CompileScenario::Scenario::save (

std::string filename)

Saves the scenario to a file with the given filename.

Parameters

filename | The name of the file to save to.

Definition at line 90 of file scenario.cpp.

References Json::serialize().

11.43.4.11 SetOrigin()

void CompileScenario::Scenario::SetOrigin (

Core::GeographicalCoordinate GeoCoord,

int size)

Sets the origin of the scenario to the given geographical coordinates and size.

Parameters

GeoCoord | The geographical coordinates of the origin.

size The size of the scenario.

Definition at line 27 of file scenario.cpp.

References CoordinateConverter::CoordConv::GeographicToUTM(), MapManagement::MapManager::GetMap(),

m_Origin, m_Routemaker, m_Size, and CoordinateConverter::CoordConv::ResetOrigin().

11.43.5 Member Data Documentation

11.43.5.1 m_Agents

std::vector<Core::Agent> CompileScenario::Scenario::m_Agents

Definition at line 74 of file scenario.h.

Referenced by GetAgents().

Generated by Doxygen

164 Class Documentation

11.43.5.2 m_KeyframeManager

KeyframeManagement : :KeyframeManager& CompileScenario::Scenario::m_KeyframeManager [private]
Definition at line 73 of file scenario.h.

Referenced by Compile().

11.43.5.3 m_Name

std::string CompileScenario::Scenario::m_Name [private]

Definition at line 77 of file scenario.h.

11.43.5.4 m_Origin

Core::GeographicalCoordinate CompileScenario::Scenario::m_Origin [private]
Definition at line 78 of file scenario.h.

Referenced by SetOrigin().

11.43.5.5 m_Routemaker

std::unique_ptr<Routemaker::Routemaker> CompileScenario::Scenario::m_Routemaker [private]
Definition at line 76 of file scenario.h.

Referenced by Scenario(), and SetOrigin().

11.43.5.6 m_Routes

RouteMap CompileScenario::Scenario::m_Routes [private]
Definition at line 75 of file scenario.h.

Referenced by Compile(), and GetRoutes().

Generated by Doxygen

11.44 Gui::ScenarioControls Class Reference

165

11.43.5.7 m_Size

int CompileScenario::Scenario::m_Size [private]
Definition at line 79 of file scenario.h.
Referenced by SetOrigin().

The documentation for this class was generated from the following files:

* include/compile_scenario/scenario.h
 src/compile_scenario/scenario.cpp

11.44 Gui::ScenarioControls Class Reference

#include <scenario_controls.h>

Inheritance diagram for Gui::ScenarioControls:

QFrame

T

I Gui::ScenarioControls ‘

Signals

+ void OpenSettingsDialog ()
+ void CompileScenario ()

Public Member Functions

+ ScenarioControls (QWidget *parent=nullptr)

Private Attributes

» QPushButton * m_SettingsButton
« QPushButton * m_CompileButton
» QGridLayout * m_Layout

11.44.1 Detailed Description

Definition at line 10 of file scenario_controls.h.

11.44.2 Constructor & Destructor Documentation

Generated by Doxygen

166 Class Documentation

11.44.2.1 ScenarioControls()

Gui::ScenarioControls::ScenarioControls (

QWidget * parent = nullptr) [explicit]
Definition at line 8 of file scenario_controls.cpp.

References CompileScenario(), m_CompileButton, m_Layout, m_SettingsButton, and OpenSettingsDialog().

11.44.3 Member Function Documentation

11.44.3.1 CompileScenario

void Gui::ScenarioControls::CompileScenario () [signal]

Referenced by ScenarioControls().

11.44.3.2 OpenSettingsDialog

void Gui::ScenarioControls::0OpenSettingsDialog () [signal]

Referenced by ScenarioControls().

11.44.4 Member Data Documentation

11.44.4.1 m_CompileButton

QPushButton* Gui::ScenarioControls::m_CompileButton [private]
Definition at line 22 of file scenario_controls.h.

Referenced by ScenarioControls().

11.44.4.2 m_Layout

QOGridLayout* Gui::ScenarioControls::m_Layout [private]
Definition at line 23 of file scenario_controls.h.

Referenced by ScenarioControls().

Generated by Doxygen

11.45 Gui::Sidebar Class Reference

167

11.44.4.3 m_SettingsButton

QPushButton* Gui::ScenarioControls::m_SettingsButton [private]
Definition at line 21 of file scenario_controls.h.
Referenced by ScenarioControls().

The documentation for this class was generated from the following files:

« include/gui/scenario_controls.h
* src/gui/scenario_controls.cpp

11.45 Gui::Sidebar Class Reference

The sidebar of the main window.
#include <sidebar.h>

Inheritance diagram for Gui::Sidebar:

QWidget

Gui::Sidebar

Signals

+ void scenarioDataReady (Core::UTMCoordinate coord, int size)

Signal emitted when scenario data is ready to be processed.

Public Member Functions

 Sidebar (QWidget *parent=nullptr)

Construct the sidebar.

Private Attributes

* QVBoxLayout * m_Layout
The layout of the sidebar.
» ScenarioControls * m_ScenarioControls
» AgentControls * m_AgentControls
» KeyframeControls * m_KeyframeControls

Generated by Doxygen

168

Class Documentation

11.45.1

Detailed Description

The sidebar of the main window.

The sidebar of the main content exists to provide the user access to tools related to the active tab in the tab widget.

Definition at line 22 of file sidebar.h.

11.45.2 Constructor & Destructor Documentation

11.45.2.1

Sidebar()

Gui::Sidebar::Sidebar (

Construct

Parameters

QWidget * parent = nullptr)

the sidebar.

‘ parent ‘

The parent of the sidebar.

Definition at line 17 of file sidebar.cpp.

References m_AgentControls, m_KeyframeControls, m_Layout, and m_ScenarioControls.

11.45.3

11.45.3.1

Member Function Documentation

scenarioDataReady

void Gui::Sidebar::scenarioDataReady (

Signal emitted when scenario data is ready to be processed.

Parameters

Core: :UTMCoordinate coord,

int size) [signal]

coord

The UTM coordinate of the center of the scenario.

size

The size of the scenario in meters.

Generated by Doxygen

11.45 Gui::Sidebar Class Reference

169

11.45.4 Member Data Documentation

11.45.4.1 m_AgentControls

AgentControls*x Gui::Sidebar::m_AgentControls [private]

Definition at line 66 of file sidebar.h.

Referenced by Sidebar().

11.45.4.2 m_KeyframeControls

KeyframeControls* Gui::Sidebar::m_KeyframeControls
Definition at line 67 of file sidebar.h.

Referenced by Sidebar().

11.45.4.3 m_Layout

QVBoxLayout* Gui::Sidebar::m_Layout [private]
The layout of the sidebar.
Definition at line 63 of file sidebar.h.

Referenced by Sidebar().

11.45.4.4 m_ScenarioControls

ScenarioControls* Gui::Sidebar::m_ScenarioControls
Definition at line 65 of file sidebar.h.

Referenced by Sidebar().

[private]

[private]

The documentation for this class was generated from the following files:

* include/gui/sidebar.h
* src/gui/sidebar.cpp

Generated by Doxygen

170

Class Documentation

11.46 Gui::Simulator Class Reference

The simulator widget used to simulate scenarios.
#include <simulator.h>

Inheritance diagram for Gui::Simulator:

Gui::Simulator

Public Member Functions

« Simulator (QWidget xparent=nullptr)

Constructs the simulator widget.
» ~Simulator ()

Destructs the simulator widget.
» QSize sizeHint () const override

Private Attributes

* QGridLayout * m_Layout

The layout of the simulator widget.

11.46.1 Detailed Description

The simulator widget used to simulate scenarios.
Contains the graphical functionality to simulate scenarios.

Definition at line 13 of file simulator.h.

11.46.2 Constructor & Destructor Documentation

11.46.2.1 Simulator()

Gui::Simulator::Simulator (

QWidget * parent = nullptr)

Constructs the simulator widget.

Generated by Doxygen

11.46 Gui::Simulator Class Reference

171

Parameters

‘ parent ‘ The parent of the simulator widget.

Definition at line 7 of file simulator.cpp.

References m_Layout.

11.46.2.2 ~Simulator()

Gui::Simulator::~Simulator ()
Destructs the simulator widget.

Definition at line 19 of file simulator.cpp.

11.46.3 Member Function Documentation

11.46.3.1 sizeHint()

QSize Gui::Simulator::sizeHint () const [inline], [override]

Definition at line 24 of file simulator.h.

11.46.4 Member Data Documentation

11.46.4.1 m_Layout

QOGridLayout* Gui::Simulator::m_Layout [private]
The layout of the simulator widget.
Definition at line 31 of file simulator.h.

Referenced by Simulator().

The documentation for this class was generated from the following files:

* include/gui/simulator.h
* src/gui/simulator.cpp

Generated by Doxygen

172 Class Documentation

11.47 Gui::TabWidget Class Reference

The tab widget of the main window.
#include <tab_widget.h>

Inheritance diagram for Gui::TabWidget:

\ QTabWidget \

T

‘ Gui::TabWidget ‘

Public Member Functions

« TabWidget (QWidget xparent=nullptr)
Constructs the tab widget.
+ ~TabWidget ()

Destructs the tab widget.

Private Attributes

* Planner x m_Planner

The planner widget.
« Simulator * m_Simulator

The simulator widget.
« Launcher * m_Launcher

The launcher widget.

11.47.1 Detailed Description

The tab widget of the main window.

Hivemind; planning, simulating and launching. They are separated in their own tabs as a user should only need to
access one of these at any point in time.

Definition at line 18 of file tab_widget.h.

11.47.2 Constructor & Destructor Documentation

11.47.2.1 TabWidget()

Gui::TabWidget: :TabWidget (
QWidget * parent = nullptr)

Constructs the tab widget.

Generated by Doxygen

11.47 Gui::TabWidget Class Reference

173

Parameters

‘ parent ‘ The parent of the tab widget.

Definition at line 7 of file tab_widget.cpp.

References m_Launcher, m_Planner, and m_Simulator.

11.47.2.2 ~TabWidget()

Gui::TabWidget::~TabWidget ()
Destructs the tab widget.

Definition at line 20 of file tab_widget.cpp.

11.47.3 Member Data Documentation

11.47.3.1 m_Launcher

Launcher* Gui::TabWidget::m_Launcher [private]

The launcher widget.

Contains the graphical functionality to launch a scenario.

Definition at line 42 of file tab_widget.h.

Referenced by TabWidget().

11.47.3.2 m_Planner

Planners Gui::TabWidget::m_Planner [private]
The planner widget.

Contains the graphical functionality to plan scenarios.
Definition at line 32 of file tab_widget.h.

Referenced by TabWidget().

Generated by Doxygen

174 Class Documentation

11.47.3.3 m_Simulator

Simulator* Gui::TabWidget::m_Simulator [private]
The simulator widget.

Contains the graphical functionality to simulate scenarios.
Definition at line 37 of file tab_widget.h.

Referenced by TabWidget().

The documentation for this class was generated from the following files:

* include/gui/tab_widget.h
* src/gui/tab_widget.cpp

11.48 Gui::Timeline Class Reference

A custom QWidget to represent a timeline with keyframes.
#include <timeline.h>

Inheritance diagram for Gui::Timeline:

Gui::Timeline

Signals

« void timeStampSelected (float timeStamp)

Signal that is emitted when a timestamp is selected.

Public Member Functions

+ Timeline (QWidget *parent=nuliptr)
Constructor for the Timeline class.
« int GetActiveAgent ()

Get the active agent ID.
+ float GetTimeStamp ()

Get the current timestamp.

Generated by Doxygen

11.48 Gui::Timeline Class Reference 175

Protected Member Functions

+ void paintEvent (QPaintEvent xevent) override

Paint event handler.
» void mouseReleaseEvent (QMouseEvent xevent) override

Mouse release event handler.
« void resizeEvent (QResizeEvent xevent) override

Resize event handler.

Private Attributes

+ float m_timeStamp

The current timestamp.
« int m_activeAgentld

ID of the active agent.
« float m_pixelsPerSecond

Pixels per second on the timeline.

11.48.1 Detailed Description

A custom QWidget to represent a timeline with keyframes.

Definition at line 12 of file timeline.h.

11.48.2 Constructor & Destructor Documentation

11.48.2.1 Timeline()

Gui::Timeline::Timeline (

QWidget * parent = nullptr) [explicit]

Constructor for the Timeline class.

Parameters

‘ parent ‘ The parent QWidget

Definition at line 13 of file timeline.cpp.

References KeyframeManagement::KeyframeManager::Instance().

11.48.3 Member Function Documentation

Generated by Doxygen

176 Class Documentation

11.48.3.1 GetActiveAgent()

int Gui::Timeline::GetActiveAgent () [inline]

Get the active agent ID.

Returns

The ID of the active agent

Definition at line 27 of file timeline.h.

References m_activeAgentld.

11.48.3.2 GetTimeStamp()

float Gui::Timeline::GetTimeStamp () [inline]

Get the current timestamp.

Returns

The current timestamp

Definition at line 37 of file timeline.h.

References m_timeStamp.

11.48.3.3 mouseReleaseEvent()

void Gui::Timeline::mouseReleaseEvent (

QMouseEvent * event) [override], [protected]

Mouse release event handler.

Parameters

\ event \ The mouse release event

Definition at line 66 of file timeline.cpp.

References KeyframeManagement::KeyframeManager::GetKeyframes(), KeyframeManagement::KeyframeManager::Instance(),
m_pixelsPerSecond, m_timeStamp, KeyframeManagement::KeyframeManager::RemoveKeyframe(), Core::Keyframe::TimeStamp,
and timeStampSelected().

Generated by Doxygen

11.48 Gui::Timeline Class Reference 177

11.48.3.4 paintEvent()

void Gui::Timeline::paintEvent (

QPaintEvent * event) [override], [protected]

Paint event handler.

Parameters

‘ event ‘ The paint event

Definition at line 25 of file timeline.cpp.

References KeyframeManagement::KeyframeManager::GetKeyframes(), KeyframeManagement::KeyframeManager::Instance(),
m_pixelsPerSecond, and m_timeStamp.

11.48.3.5 resizeEvent()

void Gui::Timeline::resizeEvent (

QResizeEvent x event) [override], [protected]

Resize event handler.

Parameters

\ event \ The resize event

Definition at line 116 of file timeline.cpp.

11.48.3.6 timeStampSelected

void Gui::Timeline::timeStampSelected (

float timeStamp) [signal]

Signal that is emitted when a timestamp is selected.

Parameters

timeStamp | The selected timestamp ‘

Referenced by mouseReleaseEvent().

11.48.4 Member Data Documentation

Generated by Doxygen

178

Class Documentation

11.48.4.1 m_activeAgentid

int Gui::Timeline::m_activeAgentId [private]
ID of the active agent.
Definition at line 69 of file timeline.h.

Referenced by GetActiveAgent().

11.48.4.2 m_pixelsPerSecond

float Gui::Timeline::m_pixelsPerSecond [private]
Pixels per second on the timeline.
Definition at line 70 of file timeline.h.

Referenced by mouseReleaseEvent(), and paintEvent().

11.48.4.3 m_timeStamp

float Gui::Timeline::m_timeStamp [private]
The current timestamp.

Definition at line 68 of file timeline.h.

Referenced by GetTimeStamp(), mouseReleaseEvent(), and paintEvent().

The documentation for this class was generated from the following files:

« include/gui/timeline.h
* src/gui/timeline.cpp

11.49 Core::UTMCoordinate Struct Reference

\ A structure that represents a coordinate in the Universal Transverse Mercator coordinate system

#include <types.h>

Inheritance diagram for Core::UTMCoordinate:

\ JSON

T

‘ Core::UTMCoordinate ‘

Generated by Doxygen

11.49 Core::UTMCoordinate Struct Reference

179

Public Member Functions

ble meridian=1)
+ JSONSTART JSONDOUBLE (
JSONSTART JSONDOUBLE (
JSONSTART JSONINT (Zone)
JSONSTART JSONBOOL (IsNorthHemisphere)

Northing)
Easting)

Public Attributes

+ double Northing

+ double Easting

* int Zone

* bool IsNorthHemisphere
+ double Meridian

11.49.1 Detailed Description

\ A structure that represents a coordinate in the Universal Transverse Mercator coordinate system

Definition at line 45 of file types.h.

11.49.2 Constructor & Destructor Documentation

11.49.2.1 UTMCoordinate()

Core: :UTMCoordinate: :UTMCoordinate (
double northing = 0.0,
double easting = 0.0,
int zone = 33,
bool isNorthHemisphere = true,

double meridian = 1) [inline]

Definition at line 47 of file types.h.

11.49.3 Member Function Documentation

11.49.3.1 JSONBOOL()

JSONSTART Core: :UTMCoordinate: : JSONBOOL (
IsNorthHemisphere)

UTMCoordinate (double northing=0.0, double easting=0.0, int zone=33, bool isNorthHemisphere=true, dou-

Generated by Doxygen

180 Class Documentation

11.49.3.2 JSONDOUBLE() [1/2]

JSONSTART Core: :UTMCoordinate: :JSONDOUBLE (
Easting)

11.49.3.3 JSONDOUBLE() [2/2]

JSONSTART Core::UTMCoordinate: :JSONDOUBLE (
Northing)

11.49.3.4 JSONINT()

JSONSTART Core: :UTMCoordinate: : JSONINT (

Zone)

11.49.4 Member Data Documentation

11.49.4.1 Easting

double Core::UTMCoordinate::Easting
Definition at line 54 of file types.h.

Referenced by MapManagement::MapManager::CalculateCornerCoordinates(), CoordinateConverter::CoordConv::GeographicToUT]
HeightManagement::HeightManager::UpdateOrigin(), and CoordinateConverter::CoordConv::UTMToGeographic().

11.49.4.2 IsNorthHemisphere

bool Core::UTMCoordinate::IsNorthHemisphere
Definition at line 56 of file types.h.

Referenced by CoordinateConverter::CoordConv::GeographicToUTM(), and CoordinateConverter::CoordConv::UTMToGeographic().

Generated by Doxygen

11.49 Core::UTMCoordinate Struct Reference 181

11.49.4.3 Meridian

double Core::UTMCoordinate::Meridian

Definition at line 57 of file types.h.

11.49.4.4 Northing

double Core::UTMCoordinate::Northing
Definition at line 54 of file types.h.

Referenced by MapManagement::MapManager::CalculateCornerCoordinates(), CoordinateConverter::CoordConv::GeographicToUT]
HeightManagement::HeightManager::UpdateOrigin(), and CoordinateConverter::CoordConv::UTMToGeographic().

11.49.4.5 Zone

int Core::UTMCoordinate: :Zone
Definition at line 55 of file types.h.
Referenced by CoordinateConverter::CoordConv::GeographicToUTM(), and CoordinateConverter::CoordConv::UTMToGeographic().

The documentation for this struct was generated from the following file:

* include/core/types.h

Generated by Doxygen

182 Class Documentation

Generated by Doxygen

Chapter 12

File Documentation

12.1 docs/coding_standards.md File Reference

12.2 docs/get_started.md File Reference

12.3 docs/testing_standard.md File Reference

12.4 docs/user_guide.md File Reference

12.5 include/compile_scenario/scenario.h File Reference

#include
#include
#include
#include
#include
#include

Classes

"core/serializer.h"
"keyframe_management/keyframe_manager.h"
"routemaker/routemaker.h"

<algorithm>

<memory>

<string>

+ class CompileScenario::Scenario

The Scenario class represents a scenario with keyframes and routes.

Namespaces

* namespace CompileScenario

Generated by Doxygen

184 File Documentation

12.6 scenario.h

Go to the documentation of this file.

00001 #pragma once

00002

00003 #include "core/serializer.h"

00004 #include "keyframe_management/keyframe_manager.h"
00005 #include "routemaker/routemaker.h"

00006

00007 #include <algorithm>

00008 #include <memory>

00009 #include <string>

00010

00011 namespace CompileScenario

00012 {

00013

00014 /77

00015 /// \brief The Scenario class represents a scenario with keyframes and
00016 /// routes.

00017 /17

00018 /// The Scenario class provides functionality for creating a scenario with
00019 /// keyframes and routes, as well as saving and loading the scenario to and
00020 /// from file.

00021 class Scenario : JSON

00022 {

00023 public:

00024 using RouteMap =

00025 std::map<int, std::vector<std::vector<Core::CartesianCoordinate»>;
00026 /17

00027 /17 \brief Constructs a new Scenario object with the given name, origin,
00028 /// and size. \param name The name of the scenario. \param origin The
00029 /// geographical coordinates of the origin. \param size The size of the
00030 /// scenario.

00031 Scenario(std::string name, Core::GeographicalCoordinate origin, int size);
00032

00033 /77

00034 /// \brief Compiles the scenario into a map of routes.

00035 /// \return A map of routes.

00036 RouteMap& Compile();

00037

00038 /77

00039 /// \brief Saves the scenario to a file with the given filename.

00040 /// \param filename The name of the file to save to.

00041 void save (std::string filename);

00042

00043 /77

00044 /// \brief Loads a scenario from a file with the given filename.

00045 /// \param filename The name of the file to load from.

00046 void load(std::string filename);

00047

00048 inline std::pair<RouteMap::iterator, RouteMap::iterator>

00049 GetRoutes ()

00050 {

00051 return std::make_pair<RouteMap::iterator, RouteMap::iterator>(
00052 m_Routes.begin(), m_Routes.end());

00053 }

00054

00055 inline std::pair<std::vector<Core::Agent>::iterator,

00056 std::vector<Core::Agent>::iterator>

00057 GetAgents ()

00058 {

00059 return std::make_pair<std::vector<Core::Agent>::iterator,

00060 std::vector<Core::Agent>::iterator> (

00061 m_Agents.begin(), m_Agents.end());

00062 }

00063

00064 void AddAgent (Core::Agent newAgent) ;

00065

00066 /77

00067 /// \brief Sets the origin of the scenario to the given geographical
00068 /// coordinates and size. \param GeoCoord The geographical coordinates
00069 /// of the origin. \param size The size of the scenario.

00070 void SetOrigin(Core::GeographicalCoordinate GeoCoord, int size);

00071

00072 private:

00073 KeyframeManagement : :KeyframeManager& m_KeyframeManager;

00074 std::vector<Core::Agent> m_Agents;

00075 RouteMap m_Routes;

00076 std::unique_ptr<Routemaker::Routemaker> m_Routemaker;

00077 std::string m_Name;

00078 Core::GeographicalCoordinate m_Origin;

00079 int m_Size;

00080

00081 JSONSTART

00082 JSONSTRING (m_Name), JSONMEMBER (Core::GeographicalCoordinate, m_Origin),

Generated by Doxygen

12.7 include/coordinate_converter/coordinate_converter.h File Reference

185

00083 JSONINT (m_Size), JSONMEMBERVECTOR (Core::Agent, m_Agents),
00084 JSONMEMBER (KeyframeManagement : :KeyframeManager,

00085 m_KeyframeManager) JSONEND

00086 }i

00087

00088 } // namespace CompileScenario

12.7 include/coordinate converter/coordinate converter.h File

Reference

#include
#include
#include
#include

"core/types.h"
<GeographicLib/Geodesic.hpp>
<GeographicLib/LocalCartesian.hpp>
<GeographicLib/UTMUPS.hpp>

Classes

« class CoordinateConverter::CoordConv

This is the class that performs coordinate conversions.

Namespaces

* namespace CoordinateConverter

12.8 coordinate _converter.h

Go to the documentation of this file.
00001 #pragma once

00002

00003 clude "core/types.h"

00004 clude <GeographicLib/Geodesic.hpp>

00005 #include <GeographicLib/LocalCartesian.hpp>

00006 #include <GeographicLib/UTMUPS.hpp>

00007

00008 namespace CoordinateConverter

00009 {

00010

00011 /17

00012 /// \brief This is the class that performs coordinate conversions
00013 class CoordConv

00014 {

00015 public:

00016 /17

00017 /// \brief Sets the origin coordinate to use with relative coordinates
00018 /77

00019 /// \param geoCoord Geographical coordinate to be used as the
00020 /// origin of relative coordinates

00021 /17

00022 static void ResetOrigin(Core::GeographicalCoordinate geoCoord,
00023 int size);

00024

00025 /17

00026 /77 \brief Function used to convert a geographical coordinate to a
00027 /// cartesian coordinate

00028 /77

00029 /// \param geoCoord Geograhical coordinate to convert

00030 /// \return return a cartesian point relative to origin

00031 static Core::CartesianCoordinate

00032 GeographicalToCartesian (Core: :GeographicalCoordinate geoCoord);
00033

00034 /17

00035 /// \biref Function used to convert a cartesian coordinate to a

Generated by Doxygen

186

File Documentation

00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109

12.9

}

Vi

/// geograpical coordinate

/77

/// \param cartCoord Cartesian coordinate to convert

/// \return return a geographical point relative to origin and the
/// cartesian coordinates.

static Core::GeographicalCoordinate

CartesianToGeographical (Core::CartesianCoordinate cartCoord);

/77
/// \return The geographical coordinates to origin.
static Core::GeographicalCoordinate GetOrigin();

/77

/// \brief Function used to convert a coordinate in a symmetric

/// coordinate system to a coordinate in an asymmetric coordinate system
177/

/// \param symmetric Cartesian coordinate in a symmetric coordinate

/// system \return The asymmetric coordinate corresponds to the

/// symmetric coordinate

static Core::CartesianCoordinate

SymmetricToAsymmetric (Core::CartesianCoordinate symmetric);

/17

/// \brief Function used to convert a coordinate in an asymmetric

/// cooridnate system to a coordinate in a symmetric coordinate system
/// \param asymmetric Cartesian coordinate in an asymmetric coordinate
/// system \return The symmetric coordinate corresponds to the

/// asymmetric coordinate

static Core::CartesianCoordinate

AsymmetricToSymmetric (Core::CartesianCoordinate asymmetric);

/77

/// \brief Function used to convert a geographical coordinate to a UTM
/// coordinate \param GeoCoord Geographical coordinate \return UTM

/// coordinate corresponds to the geographical coordinate

static Core::UTMCoordinate

GeographicToUTIM(Core: :GeographicalCoordinate GeoCoord);

/77

/// \brief Function used to convert a UTM coordinate to a geographical
/// coordinate \param UTMCoord UTM coordinate \return Geographical

/// coordinate corresponds to the UTM coordinate

static Core::GeographicalCoordinate
UTMToGeographic (Core: :UTMCoordinate UTMCoord) ;

static inline int
GetSize ()
{
return GetInstance().m_Size;

}

private:
17/
/// \brief The constructor is made private to adhere to the singleton
/// pattern
CoordConv () : m_OriginGeographical (0, 0) {}

/// \brief Get the single instance of CoordConv.
/77
/// \return The single instance of CoordConv.
static CoordConvé&
GetInstance ()
{

static CoordConv instance;

return instance;

}

private:
Core::GeographicalCoordinate m_OriginGeographical;
GeographicLib::LocalCartesian m_Origin;
int m_Size;

// namespace CoordinateConverter

include/core/serializer.h File Reference

#include "rapidjson/document.h"
#include <iostream>
#include <map>

Generated by Doxygen

12.9 include/core/serializer.h File Reference 187

#include <memory>
#include <string>
#include <type_traits>
#include <vector>

Classes

« struct Json::ISProperty

Serializing and deserializing (persistent values) requires recflection which is a way for the programmer to ensure that
the data you serialize will get back to the place you want it to be when you deserialize it later.

« class Json::ISValue

Rflection is made possible by the help of the ISValue class and the type classes.
« class Json::ISInt

Implementation for integers.
+ class Json::ISFloat

Implementation for floats.
« class Json::ISDouble

Implementation for doubles.
+ class Json::ISBool

Implementation for bools.
+ class Json::ISString

Implementation for strings.
+ class Json::ISObject< T >

Implementation for objects.
* class Json::ISObjectVector< T >

Implementation for a vector with objects.
+ class Json::ISObjVecVec< T >

Implementation for a vector with vectors with objects.
+ class Json::ISMemVecVec< T >

Implementation for a vector with vectors with members.
+ class Json:ISMember< T >

Implementation for Members.
« class Json::ISMemberVector< T >

Implementation for a vector with members.
+ class Json::ISIntVector

Implementation for a vector with integers.
* class Json::ISFloatVector

Implementation for a vector with floats.
* class Json::ISDoubleVector

Implementation for a vector with doubles.
« class Json::ISConstructors

Implemented for future expansion.

Namespaces

* namespace Json

Generated by Doxygen

188 File Documentation

Macros

« #tdefine JSON

Macros To serialize an object you need to have the GetProperty() function in the object.
+ #define JSONSTART
« #define JSONINT(m)
« #define JSONINTVECTOR(m)
 #define JSONFLOAT(m)
* #define JSONFLOATVECTOR(m)
 #define JSONDOUBLE(m)
* #define JSONDOUBLEVECTOR(m)
+ #define JSONBOOL(m)
* #define JSONSTRING(m)
+ #define JSONOBJECT(T, m)
+ #define JSONOBJECTVECTOR(T, m)
+ #define JSONOBJVECVEC(T, m)
+ #define JSONMEMBER(T, m)
* #define JSONMEMBERVECTOR(T, m)
* #define JSONMEMVECVEC(T, m)
+ #define JSONEND

Typedefs

* using Json::ISValuePtr = std::shared_ptr< ISValue >
* using Json::ISValues = std::vector< ISValuePtr >
* using Json::ISProperties = std::vector< ISProperty >

ISProperties is a vector with ISProperty.
* using Json::ISIV = std::vector< int >
* using Json::ISFV = std::vector< float >
* using Json::ISDV = std::vector< double >

Functions

+ void Json::serialize (std::string filename, ISValue xp)

Function to start serializing an onbject.
+ void Json::deserialize (std::string filename, ISValue *p)

Function to start deserializing a file.

Variables

* bool debug

12.9.1 Macro Definition Documentation

Generated by Doxygen

12.9 include/core/serializer.h File Reference 189

12.9.1.1 JSON

#define JSON

Value:
public \
Json::ISValue

Macros To serialize an object you need to have the GetProperty() function in the object.

This is complex for each application programmer to execute so therefore these macros have benn implemented.
Each macro start with JSONSTART then each of the types you want to serialize and to end the macro you write
JSONEND.

Definition at line 525 of file serializer.h.

12.9.1.2 JSONBOOL
#define JSONBOOL (
m)

Value:
{
m, std::make_shared < Json::ISBool> (m) \

}

Definition at line 557 of file serializer.h.

12.9.1.3 JSONDOUBLE

#define JSONDOUBLE (

m)

{ \
m, std::make_shared < Json::ISDouble> (m) \

}

Definition at line 549 of file serializer.h.

12.9.1.4 JSONDOUBLEVECTOR

#define JSONDOUBLEVECTOR (

m)

Value:
{ \
it m, std::make_shared < Json::ISDoubleVector> (m) \

}

Definition at line 553 of file serializer.h.

Generated by Doxygen

190 File Documentation

12.9.1.5 JSONEND

#define JSONEND

Value:
}

n prop;

—

I
}

Definition at line 590 of file serializer.h.

12.9.1.6 JSONFLOAT

#define JSONFLOAT (

m)

{ \
\

m, std::make_shared < Json::ISFloat> (m)

Definition at line 541 of file serializer.h.

12.9.1.7 JSONFLOATVECTOR

#define JSONFLOATVECTOR (

m)

Value:
{ \
\

m, std::make_shared < Json::ISFloatVector> (m)

=+

Definition at line 545 of file serializer.h.

12.9.1.8 JSONINT

#define JSONINT (

m)

Value:

=

m, std::make_shared < Json::ISInt>(m) \

Definition at line 533 of file serializer.h.

Generated by Doxygen

12.9 include/core/serializer.h File Reference 191

12.9.1.9 JSONINTVECTOR

#define JSONINTVECTOR (

m)
Value:
{
m, std::make_shared < Json::ISIntVector> (m) \
}

Definition at line 537 of file serializer.h.

12.9.1.10 JSONMEMBER

#define JSONMEMBER (
TI

m)

Value:
{

m, std::make_shared < Json::ISMember < T» (m) \
}

Definition at line 577 of file serializer.h.

12.9.1.11 JSONMEMBERVECTOR

#define JSONMEMBERVECTOR (

T/
m)
Value:
{ \
m, std::make_shared < Json::ISMemberVector < T» (m) \
}

Definition at line 581 of file serializer.h.

12.9.1.12 JSONMEMVECVEC

#define JSONMEMVECVEC (

TI
m)
Value:
{ \
m, std::make_shared < Json::ISMemVecVec < T» (m) \
}

Definition at line 585 of file serializer.h.

Generated by Doxygen

192 File Documentation

12.9.1.13 JSONOBJECT

#define JSONOBJECT (
T/

m)

m, std::make_shared < Json::ISObject < T» (m) \

Definition at line 565 of file serializer.h.

12.9.1.14 JSONOBJECTVECTOR

#define JSONOBJECTVECTOR (
T,

m)

Value:
{ \

m, std::make_shared < Json::ISObjectVector < T» (m) \

=+

Definition at line 569 of file serializer.h.

12.9.1.15 JSONOBJVECVEC

#define JSONOBJVECVEC (
T,

m)

Value:
{ \

m, std::make_shared < Json::ISObjVecVec < T» (m) \

=+

Definition at line 573 of file serializer.h.

12.9.1.16 JSONSTART

#define JSONSTART

Value:
virtual Json::ISProperties GetProperty () \
{

Json: :ISProperties prop = {

Definition at line 529 of file serializer.h.

Generated by Doxygen

12.10 serializer.h 193

12.9.1.17 JSONSTRING

#define JSONSTRING (

m)

{ \
\

m, std::make_shared < Json::ISString> (m)

Definition at line 561 of file serializer.h.

12.9.2 Variable Documentation

12.9.2.1 debug

bool debug [extern]
Definition at line 12 of file serializer.cpp.

Referenced by Json:ISDouble::-ToDom(), and Json::ISMemberVector< T >::ToDom().

12.10 serializer.h

Go to the documentation of this file.
00001 #pragma once

00002

00003 #include "rapidjson/document.h"
00004 #include <iostream>

00005 #include <map>

00006 #include <memory>

00007 #include <string>

00008 #include <type_traits>

00009 #include <vector>

00010

00011 extern bool debug;

00012

00013 namespace Json

00014 {

00015 // IS... IntroSpection

00016 class ISValue;

00017 using ISValuePtr = std::shared_ptr<ISValue>;
00018 using ISValues = std::vector<ISValuePtr>;
00019

00020 ///

00021 ///\brief Serializing and deserializing (persistent values) requires recflection which is a way for
the programmer to ensure that

00022 ///the data you serialize will get back to the place you want it to be when you deserialize it later.

00023 ///As this is not supported by C++ this is implemented by the ISProperty structure with the ISValue
helper classes. The ISValue keeps the references

00024 ///to the actual values in the application. The ISProperty is the collection of all the application

data.
00025 ///
00026 struct ISProperty
00027 {
00028 std::string name;
00029 ISValuePtr value;
00030 }s;
00031 ///
00032 ///\brief ISProperties is a vector with ISProperty.
00033 ///
00034 using ISProperties = std::vector<ISProperty>;
00035 ///

Generated by Doxygen

194

File Documentation

00036 ///\brief Rflection is made possible by the help of the ISValue class and the type classes. Each type

needs their own implementation for

00037 ///reflection to work. At the moment only JSON is supported by this library.

00038 ///Making the library work for other format than JSON would require implementing each type again for

the new format by in theory would not
00039 ///impact the application programmers at all
00040 ///

00041 class ISValue

00042 {

00043 public:

00044 ///

00045 ///\brief GetProperty enables the serializer to deal with composite type like objects and members.
00046 ///

00047 virtual ISProperties

00048 GetProperty ()

00049 {

00050 return ISProperties{};
00051 }i

00052 ///

00053 ///\brief For future expansion.

00054 ///

00055 virtual void CreateObject () {};
00056 ///

00057 ///\brief For future expansion

00058 ///

00059 virtual rapidjson::Value

00060 GetName (rapidjson: :Documenté& d)
00061 {

00062 ///

00063 ///\brief Typeid is mostly implemented for future expansion, but it helps with making the JSON file

more readable for humans.

00064 ///

00065 rapidjson::Value tid;

00066 tid.SetString (typeid(»this) .name(), d.GetAllocator());

00067 return tid;

00068 bi

00069 ///

00070 ///\brief ToDom is the function that enables the serializer to take data from the application to the
JSON file.

00071 ///

00072 virtual rapidjson::Value ToDom(rapidjson::Documenté& d);

00073 ///

00074 ///\brief FromDom is the function that enables the serializer to get data out of the JSON file and put

it in the application.

00075 ///

00076 virtual void FromDom(rapidjson::Value& v, rapidjson
00077 }i

00078

00079 ///

00080 ///\brief Implementation for integers

00081 ///

00082 class ISInt : public ISValue

00083 {

00084 int& value;

00085

00086 public:

00087 ISInt (int& v) : value(v){};

00088 virtual rapidjson::Value ToDom(rapidjson::Documenté&
00089 virtual void FromDom(rapidjson::Value& v, rapidjson
00090 }i

00091

00092 ///

00093 ///\brief Implementation for floats

00094 ///

00095 class ISFloat : public ISValue

00096 {

00097 float& value;

00098

00099 public:

00100 ISFloat (float& v) : value(v){};

00101 virtual rapidjson::Value ToDom(rapidjson::Documenté&
00102 virtual void FromDom(rapidjson::Value& v, rapidjson
00103 1

00104

00105 ///

00106 ///\brief Implementation for doubles

00107 ///

00108 class ISDouble : public ISValue

00109 {

00110 doubles& value;

00111

00112 public:

00113 ISDouble (double& v) : value(v){};

00114 virtual rapidjson::Value ToDom(rapidjson::Documenté&
00115 virtual void FromDom(rapidjson::Value& v, rapidjson
00116 }s

00117

::Documenté& d);

d);
::Documenté& d);

d);
::Documenté& d);

d) ;
::Documenté& d);

Generated by Doxygen

12.10 serializer.h

195

00118
00119
00120
00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
00169
00170
00171
00172
00173
00174
00175
00176
00177
00178
00179
00180
00181
00182
00183
00184
00185
00186
00187
00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
00201
00202
00203
00204

/17
///\brief Implementation for bools
/17
class ISBool
{

public ISValue
bools& value;

public:
ISBool (bool& v) value (v) {};
virtual rapidjson::Value ToDom(rapidjson::
virtual void FromDom (rapidjson::Values& v,

}i

/17
///\brief Implementation for strings
/17
class ISString
{

public ISValue
std::string& value;

public:
ISString(std::string& v) value (v) {};
virtual rapidjson::Value ToDom(rapidjson::
virtual void FromDom(rapidjson::Value& v,
bi

/17
///\brief Implementation for objects
/17
template<typename T>
class ISObject public ISValue
{
std::shared_ptr<T>& value;

public:

ISObject (std::shared_ptr<T>& v) value (v)

Documenté& d);
rapidjson: :Documenté& d);

Documenté& d);
rapidjson: :Documenté& d);

{}i

virtual rapidjson::Value GetName (rapidjson::Documenté& d);
virtual rapidjson::Value ToDom(rapidjson::Documenté& d);

virtual void FromDom(rapidjson::Values& v,
void CreateObject ();
bi

template<typename T>
rapidjson::Value
ISObject<T>::ToDom(rapidjson: :Documenté& d)
{

(value != nullptr)

return value->ToDom(d) ;

return rapidjson::Value("");
i

template<typename T>
void
ISObject<T>::FromDom(rapidjson::Value& v,
{

£ (v.IsObject()) |
CreateObject () ;
value->FromDom (v, d);
bi

template<typename T>

rapidjson::Value

ISObject<T>::GetName (rapidjson: :Document& d)

{
rapidjson::Value tid;
tid.SetString (typeid(T) .name (),
return tid;

}

template<typename T>

void
ISObject<T>::CreateObject ()
{

value std: :make_shared<T>();

}
22

///\brief Implementation for a vector with objects
/17
template<typename T>
class ISObjectVector
{

public ISValue
std::vector<std::shared_ptr<T»& value;

public:

rapidjson

rapidjson: :Documenté& d);

::Documenté& d)

d.GetAllocator());

Generated by Doxygen

196 File Documentation
00205 ISObjectVector (std::vector<std::shared ptr<I»& v) : value(v){};
00206 virtual rapidjson::Value ToDom(rapidjson::Documenté& d);
00207 virtual void FromDom(rapidjson::Value& v, rapidjson::Documenté& d);
00208 }i

00209

00210 template<typename T>

00211 rapidjson::Value

00212 ISObjectVector<T>::ToDom(rapidjson: :Documenté& d)

00213 {

00214 rapidjson::Value a;

00215 a.SetArray();

00216 for (auto& element : value) {

00217 rapidjson::Value v = element->ToDom(d);

00218 a.PushBack (v, d.GetAllocator());

00219 }

00220 return a;

00221 }

00222

00223 template<typename T>

00224 void

00225 ISObjectVector<T>::FromDom(rapidjson::Value& v, rapidjson::Documenté& d)
00226 {

00227 for (rapidjson::SizeType i = 0; 1 < v.Size();

00228 i++) { // rapidjson uses SizeType instead of size_t.
00229 std::shared_ptr<T> cv = std::make_shared<T>();

00230 cv->FromDom(v[i], d);

00231 value.push_back (cv);

00232 }

00233 }

00234

00235 ///

00236 ///\brief Implementation for a vector with vectors with objects
00237 ///

00238 template<typename T>

00239 class ISObjVecVec : public ISValue

00240 {

00241 std::vector<std::vector<std::shared_ptr<T»>& value;

00242

00243 public:

00244 ISObjVecVec (std::vector<std::vector<std::shared_ptr<I»>& v)
00245 value (v) {};

00246 virtual rapidjson::Value ToDom(rapidjson::Documenté& d);
00247 virtual void FromDom(rapidjson::Value& v, rapidjson::Documenté& d);
00248 }i

00249

00250 template<typename T>

00251 rapidjson::Value

00252 ISObjVecVec<T>::ToDom(rapidjson: :Document& d)

00253 {

00254 rapidjson::Value outer;

00255 outer.SetArray () ;

00256 for (auto& outer_element : value) {

00257 rapidjson::Value inner;

00258 inner.SetArray();

00259 for (auto& inner_element : outer_element) {

00260 rapidjson::Value v = inner_element->ToDom(d) ;
00261 inner.PushBack (v, d.GetAllocator());

00262 }

00263 outer.PushBack (inner, d.GetAllocator());

00264 }

00265 return outer;

00266 }

00267

00268 template<typename T>

00269 void

00270 ISObjVecVec<T>: :FromDom(rapidjson::Value& v, rapidjson::Documenté& d)
00271 {

00272 for (rapidjson::SizeType i = 0; 1 < v.Size(); i++) {
00273 std::vector<std::shared_ptr<T» line;

00274 for (rapidjson::SizeType j = 0; j < v[i].Size(); Jj++) {
00275 std::shared_ptr<T> cv = std::make_shared<T>();
00276 cv->FromDom(v[i] [J], d);

00277 line.push_back (cv);

00278 }

00279 value.push_back (line);

00280 }

00281 }

00282

00283 ///

00284 ///\brief Implementation for a vector with vectors with members
00285 ///

00286 template<typename T>

00287 class ISMemVecVec : public ISValue

00288 {

00289 std::vector<std::vector<T»& value;

00290

00291 public:

Generated by Doxygen

12.10 serializer.h

197

00292
00293
00294
00295
00296
00297
00298
00299
00300
00301
00302
00303
00304
00305
00306
00307
00308
00309
00310
00311
00312
00313
00314
00315
00316
00317
00318
00319
00320
00321
00322
00323
00324
00325
00326
00327
00328
00329
00330
00331
00332
00333
00334
00335
00336
00337
00338
00339
00340
00341
00342
00343
00344
00345
00346
00347
00348
00349
00350
00351
00352
00353
00354
00355
00356
00357
00358
00359
00360
00361
00362
00363
00364
00365
00366
00367
00368
00369
00370
00371
00372
00373
00374
00375
00376

00377 ///\brief Implementation for a vector with members

00378

ISMemVecVec (std: :vector<std::vector<T»& v)

virtual rapidjson::Value ToDom(rapidjson::

virtual void FromDom(rapidjson::Valueé& v,
bi

template<typename T>
rapidjson::Value
ISMemVecVec<T>::ToDom(rapidjson: :Document& d)
{
rapidjson::Value outer;
outer.SetArray();
for (auto& outer_element : value) {
rapidjson::Value inner;
inner.SetArray();

value (v) {};
Documenté& d);
rapidjson::Documenté& d);

for (auto& inner_element : outer_element) {
rapidjson::Value v = inner_element.ToDom(d);

inner.PushBack (v, d.GetAllocator (
}

outer.PushBack (inner, d.GetAllocator ()

1 outer;

template<typename T>
void

)i

)i

ISMemVecVec<T>: :FromDom(rapidjson::Value& v, rapidjson::Documenté& d)

{

for (rapidjson::SizeType i = 0; 1 < v.Size(); i++) {
std::vector<T> line;
for (rapidjson::SizeType j = 0; j < v[i].Size(); Jj++) {
T cv;

cv.FromDom (v ([i] [j], d);
line.push_back (cv);
}

value.push_back (line);

/17
///\brief Implementation for Members
/17
template<typename T>
class ISMember : public ISValue
{

T& value;

public:
ISMember (T& v) : value(v){};

virtual rapidjson::Value GetName (rapidjson::Documenté& d);

virtual rapidjson::Value ToDom(rapidjson::

virtual void FromDom(rapidjson::Valueé& v,
void CreateObject ();
}i

template<typename T>
rapidjson::Value
ISMember<T>::ToDom(rapidjson: :Documenté& d)
{

return value.ToDom(d) ;
bi

template<typename T>
void

Documenté& d) ;
rapidjson::Documenté& d);

ISMember<T>::FromDom(rapidjson::Value& v, rapidjson::Documenté& d)

{
value.FromDom (v, d);
bi

template<typename T>

rapidjson::Value

ISMember<T>::GetName (rapidjson: :Document& d)
{

rapidjson::Value tid;

tid.SetString (typeid(T) .name (), d.GetAllocator());

return tid;

}

template<typename T>
void
ISMember<T>::CreateObject ()
{

assert (false);

}
/17

s

Generated by Doxygen

198 File Documentation
00379 template<typename T>

00380 class ISMemberVector : public ISValue

00381 {

00382 std::vector<T>& value;

00383

00384 public:

00385 ISMemberVector (const ISMemberVector<T>&) { assert(false); };
00386

00387 ISMemberVector (std::vector<T>& v) : value(v){};

00388 virtual rapidjson::Value ToDom(rapidjson::Documenté& d);
00389 virtual void FromDom(rapidjson::Value& v, rapidjson::Documenté& d);
00390 }i

00391

00392 template<typename T>

00393 rapidjson::Value

00394 ISMemberVector<T>::ToDom(rapidjson: :Documenté& d)

00395 {

00396 rapidjson::Value a;

00397 a.SetArray () ;

00398 debug = true;

00399 for (auto& element : value) {

00400 rapidjson::Value v = element.ToDom(d) ;

00401 a.PushBack (v, d.GetAllocator());

00402 }

00403 debug = false;

00404 return a;

00405 }

00406

00407 template<typename T>

00408 void

00409 ISMemberVector<T>::FromDom(rapidjson::Value& v, rapidjson::Documenté& d)
00410 {

00411 for (rapidjson::SizeType i1 = 0; 1 < v.Size();

00412 i++) { // rapidjson uses SizeType instead of size_t.
00413 T cv;

00414 cv.FromDom(v[i], d);

00415 value.push_back (cv);

00416 }

00417 }

00418

00419 using ISIV = std::vector<int>;

00420

00421 ///

00422 ///\brief Implementation for a vector with integers

00423 ///

00424 class ISIntVector : public ISValue

00425 {

00426 std::vector<int>& value;

00427

00428 public:

00429 ISIntVector (ISIV& v) : value(v){};

00430 virtual rapidjson::Value ToDom(rapidjson::Documenté& d);
00431 virtual void FromDom(rapidjson::Value& v, rapidjson::Documenté& d);
00432 }i

00433

00434 using ISFV = std::vector<float>;

00435

00436 ///

00437 ///\brief Implementation for a vector with floats

00438 ///

00439 class ISFloatVector : public ISValue

00440 {

00441 std::vector<float>& value;

00442

00443 public:

00444 ISFloatVector (ISFV& v) : value(v){};

00445 virtual rapidjson::Value ToDom(rapidjson::Documenté& d);
00446 virtual void FromDom(rapidjson::Value& v, rapidjson::Documenté& d);
00447 }i

00448

00449 using ISDV = std::vector<double>;

00450

00451 ///

00452 ///\brief Implementation for a vector with doubles

00453 ///

00454 class ISDoubleVector : public ISValue

00455 {

00456 std::vector<double>& value;

00457

00458 public:

00459 ISDoubleVector (ISDV& v) : value(v) {};

00460 virtual rapidjson::Value ToDom(rapidjson::Documenté& d);
00461 virtual void FromDom(rapidjson::Value& v, rapidjson::Documenté& d);
00462 };

00463

00464 // using ISBV = std::vector<bool>;

00465 // class ISBoolVector: public ISValue {

Generated by Doxygen

12.10 serializer.h 199

00466
00467
00468
00469
00470
00471
00472
00473
00474
00475
00476
00477
00478
00479
00480
00481
00482
00483
00484
00485
00486
00487
00488
00489
00490
00491
00492
00493
00494
00495
00496
00497
00498
00499
00500
00501
00502
00503
00504
00505
00506
00507
00508
00509
00510
00511
00512
00513
00514
00515
00516
00517
00518
00519
00520
00521
00522

00523

00524
00525
00526
00527
00528
00529
00530
00531
00532
00533
00534
00535
00536
00537
00538
00539
00540
00541
00542
00543
00544
00545
00546
00547
00548
00549
00550

// std::vector<bool> &value;

// public:

// ISBoolVector (ISBV &v) : value(v) {};

// virtual rapidjson::Value ToDom(rapidjson::Documents& d);

// virtual void FromDom(rapidjson::Value& v, rapidjson::Documenté& d);

/7Y
/17
///\brief Implemented for future expansion
/17
class ISConstructors
{ // OBS OBS this is an implementation of the Singleton design pattern.
public:
static ISConstructorsé&
GetInstance ()
{
static ISConstructors instance; // Guaranteed to be destroyed.
// Instantiated on first use.
return instance;
}
private:
ISConstructors(){}; // Constructor? (the {} brackets) are needed here.
std::map<std::string, Json::ISValuePtr (%) ()> m_TheRegistry;
public:
ISConstructors (const ISConstructors&) = delete;
void operator=(const ISConstructors&) = delete;
int AddConstructor (std::string name, ISValuePtr (xcreator) ());
ISValuePtr GetObject (std::string name);
bi
/17
///\brief Function to start serializing an onbject.
/17

///\param std::string filename

///Name of the file you want to store the application data in.
/17

///\param ISValuex p

///A pointer to the object you want to serialize.

/17
void serialize(std::string filename, ISValuex p);
/17
///\brief Function to start deserializing a file
/17

///\param std::string filename

///Name of the file you want to extract data from.

/17

///\param ISValuex p

///A pointer to the top object so it know where to start.

22
void deserialize(std::string filename, ISValuex p);
/17
///\brief Macros
///To serialize an object you need to have the GetProperty() function in the object.
///This is complex for each application programmer to execute so therefore these macros have benn
implemented.

///Each macro start with JSONSTART then each of the types you want to serialize and to end the macro
you write JSONEND.

/17
#define JSON \
public \

Json::ISValue

#define JSONSTART
virtual Json::ISProperties GetProperty () \
{
Json: :ISProperties prop = {
#define JSONINT (m) \
{ \
m, std::make_shared < Json::ISInt> (m) \
}
#define JSONINTVECTOR (m) \
{ \
m, std::make_shared < Json::ISIntVector>(m) \
}
#define JSONFLOAT (m) \
{ \
m, std::make_shared < Json::ISFloat> (m) \
}
#define JSONFLOATVECTOR (m) \
{ \
m, std::make_shared < Json::ISFloatVector>(m) \
}
#define JSONDOUBLE (m) \

{ \

Generated by Doxygen

200

File Documentation

00551
00552
00553
00554
00555
00556
00557
00558
00559
00560
00561
00562
00563
00564
00565
00566
00567
00568
00569
00570
00571
00572
00573
00574
00575
00576
00577
00578
00579
00580
00581
00582
00583
00584
00585
00586
00587
00588
00589
00590
00591
00592
00593
00594
00595
00596
00597

12.11

}

#define

{

}
#define
{
#
}
#define
{
#
}
#define
{

}
#define

{
#

}
#define

{

}

#define

{

}
#define

{
#

}
#define

{
}
#define

}

7

return prop;

}

7

m, std::make_shared <
JSONDOUBLEVECTOR (m)

m, std::make_shared <
JSONBOOL (m)

m, std::make_shared <
JSONSTRING (m)

m, std::make_shared <
JSONOBJECT (T, m)

m, std::make_shared <
JSONOBJECTVECTOR (T, m)
m, std::make_shared <
JSONOBJVECVEC (T, m)

m, std::make_shared <
JSONMEMBER (T, m)

m, std::make_shared <
JSONMEMBERVECTOR (T, m)
m, std::make_shared <
JSONMEMVECVEC (T, m)

m, std::make_shared <

JSONEND

\
\
\
\
\

} // namespace Json

#include

Classes

Json:

Json:

Json:

Json:

"core/serializer.h"

« struct Core::CartesianCoordinate

:ISDouble> (m) \

\
\
::ISDoubleVector>(m) \
\
\
::ISBool>(m) \
\
\
:ISString>(m) \
\
\
:ISObject < T»(m) \
\
\
:ISObjectVector < T» (m) \
\
\
:ISObjVecVec < T» (m) \
\
\
:ISMember < T»(m) \
\
\

::ISMemberVector < T»(m) \

\
\

:ISMemVecVec < T»(m) \

include/core/types.h File Reference

A structure that represents a cartesian coordinate.
struct Core::GeographicalCoordinate

A structure that represents a geographic coordinate.
struct Core::UTMCoordinate
| A structure that represents a coordinate in the Universal Transverse Mercator coordinate system
struct Core::Keyframe

A structure representing an agent's position in cartesian space at a given point in time.
struct Core::Agent

Namespaces

* namespace Core

Generated by Doxygen

12.12 types.h 201

12.12 types.h

Go to the documentation of this file.
00001 #pragma once

00002

00003 #include "core/serializer.h"

00004

00005 namespace Core

00006 {
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082

/17
/// \brief A structure that represents a cartesian coordinate
/17
struct CartesianCoordinate : JSON
{
CartesianCoordinate (double x = 0.0, double y = 0.0, double z = 0.0)
X(x), Y(y), Z2(z)
{1}
double X;
double Y;
double Z;
JSONSTART
JSONDOUBLE (X) , JSONDOUBLE (Y), JSONDOUBLE (Z) JSONEND
i
/17
/// \brief A structure that represents a geographic coordinate
/17

struct GeographicalCoordinate : JSON
{
GeographicalCoordinate (double lat, double lon)
Latitude (lat), Longitude (lon)
{1}

double Latitude;
double Longitude;

JSONSTART
JSONDOUBLE (Latitude), JSONDOUBLE (Longitude) JSONEND
}i

/17
/// \ A structure that represents a coordinate in the Universal Transverse
/// Mercator coordinate system
224
struct UTMCoordinate : JSON
{
UTMCoordinate (double northing = 0.0, double easting = 0.0,
int zone = 33, bool isNorthHemisphere = true,
double meridian = 1)
Northing (northing), Easting(easting), Zone(zone),
IsNorthHemisphere (isNorthHemisphere), Meridian (meridian)

{}

double Northing, Easting;
int Zone;

bool IsNorthHemisphere;
double Meridian;

JSONSTART
JSONDOUBLE (Northing), JSONDOUBLE (Easting), JSONINT (Zone),
JSONBOOL (IsNorthHemisphere), JSONDOUBLE (Meridian) JSONEND
bi

224
/17 \brief A structure representing an agent’s position in cartesian space
/// at a given point in time
/17
struct Keyframe : JSON
{
Keyframe () : AgentId(0), TimeStamp(0), Position(0, 0, 0) {}

Keyframe (int agentId, float timeStamp, CartesianCoordinate position)
AgentId(agentId), TimeStamp (timeStamp), Position(position)
{1}

int AgentId;
float TimeStamp;
CartesianCoordinate Position;

JSONSTART
JSONINT (AgentId), JSONFLOAT (TimeStamp),
JSONMEMBER (CartesianCoordinate, Position) JSONEND

Generated by Doxygen

202

File Documentation

00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100 }

12.13

bi

struct Agent : JSON

{

Agent (int id = 0, std::string name

{1

int

std::string color = "#FFFFFE")
Id(id), Name (name), Color (color)

Id;

std::string Name;
std::string Color;

JSONSTART
JSONINT (Id), JSONSTRING (Name), JSONSTRING (Color) JSONEND

}i

// namespace Core

"Untitled Agent",

include/gui/action.h File Reference

#include <QAction>

Classes

« class Gui::Action

Small wrapper around QAction.

Namespaces

* namespace Gui

12.14 action.h

Go to the documentation of this file.

00001 #pragma once

00002

00003 #include <QAction>

00004

00005 namespace Gui

00006 {
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030

/// \brief Small wrapper around QAction

224

/// A tiny wrapper class around QAction that simply provides constructor
/// arguments to add on-click functionality and keyboard shortcuts.
class Action : public QAction

{

public:

/17
11/
22
224
22
/17
/17
/177
22
/77
/17
/77
/177
22
/17
/17

\brief Constructs the Action widget.

\param parent The parent of the Action
\param label The label to be displayed
\param onClick A function to call when
\param shortcut A keyboard shortcut to

Typical usage:

\code{.cpp}

Actionx openAction = new Action(
parent, QString::fromUtf8 ("Open..
[10 {

QString fileName = QFileDialog:

widget.

in the action.

the action is clicked.
activate the action.

"y,

:getOpenFileName (

nullptr, QString::fromUtf8 ("Open Image"),

QDir::currentPath(),

QOString::fromUtf8 ("Image Files (*.png *.jpg *.bmp)"));

gInfo() « "File: " « fileName;

Generated by Doxygen

12.15 include/gui/agent_controls.h File Reference

203

00031 /17 by

00032 /77 QKeySequence: :Open) ;

00033 /// \endcode

00034 Action (QWidgetx parent, const QString& label, void (%onClick) (void),
00035 const QKeySequence& shortcut = QKeySequence::UnknownKey) ;
00036 }i

00037

00038 } // namespace Gui

12.15 include/gui/agent_controls.h File Reference

#include "core/types.h"
#include "gui/color_box.h"
#include <QComboBox>
#include <QFrame>
#include <QGridLayout>
#include <QPushButton>

Classes

* class Gui::AgentControls

Namespaces

* namespace Gui

12.16 agent_controls.h

Go to the documentation of this file.
00001 #pra
00002
00003 #include "core/types.h"
00004 #include "gui/color_box.h"

gma

once

00005

00006 > <QComboBox>

00007 <QFrame>

00008 > <QGridLayout>

00009 #include <QPushButton>

00010

00011 namespace Gui

00012 {

00013

00014 class AgentControls : public QFrame

00015 {

00016 Q_OBJECT

00017 public:

00018 explicit AgentControls (QWidgetx parent = nullptr);

00019

00020 signals:

00021 void AddAgent ();

00022 void AgentChanged (std::pair<std::vector<Core::Agent>::iterator,
00023 std::vector<Core::Agent>::iterator>);
00024 void ActiveAgentChanged (int);

00025

00026 public slots:

00027 void UpdateAgents (std::pair<std::vector<Core::Agent>::iterator,
00028 std::vector<Core::Agent>::iterator>);
00029 void SetActiveAgentIndex (int index);

00030 void SyncColor();

00031

00032 private slots:

00033 void SetAgentColor (QColor color);

00034

Generated by Doxygen

204

File Documentation

00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049

12.17

}

private:
QGridLayout* m_Layout;

QComboBox* m_ActiveAgentComboBox;
ColorBox* m_ActiveAgentColorBox;

QPushButton* m_NewAgentButton;

int m_ActiveAgentIndex;

std::pair<std::vector<Core::Agent>::iterator,
std::vector<Core::Agent>::iterator>

m_Agents;
bi

// namespace Gui

include/gui/color_box.h File Reference

#include <QColorDialog>
#include <QPushButton>

Classes

« class Gui::ColorBox

Namespaces

* namespace Gui

12.18 color_box.h

Go to the documentation of this file.

00001 #p

00002

a once

00003 #include <QColorDialog>

00004 #

00005

nclude <QPushButton>

00006 namespace Gui

00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033

{

}

class ColorBox : public QPushButton
{
Q_OBJECT
public:

explicit ColorBox (QWidget* parent = nullptr);

signals:
void ColorUpdated(QColor color);

protected:

void paintEvent (QPaintEventx event) override;

void mousePressEvent (QMouseEvent* event)

public slots:
void UpdateColor (QColor color);

private slots:
void SelectColor();

private:
QColor m_Color;
QColorDialog* m_ColorDialog;
bi

// namespace Gui

override;

Generated by Doxygen

12.19 include/gui/keyframe_controls.h File Reference 205

12.19 include/gui/keyframe_controls.h File Reference

#include "gui/keyframe_list.h"
#include <QFrame>
#include <QPushButton>

Classes

+ class Gui::KeyframeControls

Namespaces

* namespace Gui

12.20 keyframe_controls.h

Go to the documentation of this file.
00001 #pragma once

00002

00003 #include "gui/keyframe_list.h"
00004

00005 #include <QFrame>

00006 #include <QPushButton>

00007

00008 namespace Gui

00009 {

00010

00011 class KeyframeControls : public QFrame
00012 {

00013 Q_OBJECT

00014 public:

00015 explicit KeyframeControls (QWidget* parent = nullptr);
00016

00017 signals:

00018 void DeleteSelectedKeyframes();

00019

00020 private:

00021 KeyframeListx m_KeyframeList;

00022 QPushButton* m_DeleteKeyframesButton;
00023

00024 QGridLayout* m_Layout;

00025 }i

00026

00027 } // namespace Gui

12.21 include/gui/keyframe_list.h File Reference

#include <QListWidget>
#include <QVBoxLayout>

Classes

« class Gui::KeyframeList

Generated by Doxygen

206 File Documentation

Namespaces

* namespace Gui

12.22 keyframe_list.h

Go to the documentation of this file.

00001 #pragma once

00002

00003 #include <QListWidget>

00004 #include <QVBoxLayout>

00005

00006 namespace Gui

00007 {

00008

00009 class KeyframeList : public QListWidget
00010 {

00011 Q_OBJECT

00012

00013 public:

00014 KeyframeList (QWidget* parent = nullptr);
00015

00016 public slots:

00017 void Update () ;

00018 void DeleteSelected();
00019

00020 private:

00021 QVBoxLayout* m_Layout;
00022 }i

00023

00024 } // namespace Gui

12.23 include/gui/launcher.h File Reference

#include <QVBoxLayout>
#include <QWidget>

Classes

« class Gui::Launcher

The launcher widget used to launch scenarios.

Namespaces

* namespace Gui

Generated by Doxygen

12.24 launcher.h

207

12.24 launcher.h

Go to the documentation of this file.
00001 #pragma once

00002

00003 #include <QVBoxLayout>

00004 #include <QWidget>

00005

00006 namespace Gui

00007 {

00008 /// \brief The launcher widget used to launch scenarios.
00009 /77

00010 /// Contains the graphical functionality to launch scenarios.
00011 class Launcher : public QWidget

00012 {

00013 public:

00014 /// \brief Constructs the launcher widget.

00015 /// \param parent The parent of the launcher widget.
00016 Launcher (QWidget* parent = nullptr);

00017

00018 /// \brief Destructs the launcher widget.

00019 ~Launcher () ;

00020

00021 private:

00022 /// \brief The layout of the launcher widget.

00023 QVBoxLayout* m_Layout;

00024 }i

00025 } // namespace Gui

12.25 include/gui/main_content.h File Reference

#include "compile_scenario/scenario.h"
#include "gui/sidebar.h"

#include "gui/tab_widget.h"

#include <QGridLayout>

#include <QWidget>

Classes

« class Gui::MainContent

The main content of the main window.

Namespaces

* namespace Gui

12.26 main_content.h

Go to the documentation of this file.
00001 #pragma once

00002

00003 "compile_scenario/scenario.h"

00004 > "gui/sidebar.h"

00005 > "gui/tab_widget.h"

00006 <QGridLayout>

00007 #include <QWidget>

00008

00009 namespace Gui

00010 {

00011 /// \brief The main content of the main window

Generated by Doxygen

208

File Documentation

00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045

/17
/// The main content of the main window essentially contains everything
/// except the menu bar. It exists as a separate class to make the main
/// window class more concise.
class MainContent : public QWidget
{
Q_OBJECT
public:
/// \brief Constructs the main content widget.
/// \param parent The parent widget of the main content.
MainContent (QWidget parent = nullptr);

private:
/// \brief The layout of the main content
17/
/// The main content uses a grid layout to easily be able to cover the
/// available space in the window.
QOGridLayout* m_Layout;

/// \brief The sidebar of the main content.

/77

/// The sidebar of the main content exists to provide the user access to
/// tools related to the active tab in the tab widget.

Sidebarx m_Sidebar;

/// \brief The tab widget of the main content.
/77
/// This widget is responsible for containing the core functionality of
/// Hivemind; planning, simulating and launching. They are separated in
/// their own tabs as a user should only need to access one of these at
/// any point in time.
TabWidget* m_TabWidget;
bi
} // namespace Gui

12.27 include/gui/main_window.h File Reference

#include "gui/main_content.h"
#include "gui/map_dialog.h"
#include "gui/menu_bar.h"
#include <QMainWindow>

Classes

« class Gui::MainWindow

Handles the main window of Hivemind.

Namespaces

namespace Gui

12.28 main_window.h

Go to the documentation of this file.

00001
00002
00003
00004
00005
00006
00007
00008
00009

#pragma once

#include "gui/main_content.h"
#include "gui/map_dialog.h"
#include "gui/menu_bar.h"

#include <QMainWindow>

namespace Gui

Generated by Doxygen

12.29 include/gui/map_dialog.h File Reference 209

00010 {

00011

00012 /// \brief Handles the main window of Hivemind

00013 /17

00014 /// This class is responsible for handling the main window of Hivemind,
00015 /// which contains the core functionality such as scenario editing,
00016 /// simulation and launching.

00017 class MainWindow : public QMainWindow

00018 {

00019 Q_OBJECT

00020

00021 public:

00022 /// \brief Constructs the main window

00023 /17

00024 /// \param parent The parent widget of main window

00025 MainWindow (QWidgetx parent = nullptr);

00026

00027 /// \brief Descructs the main window

00028 ~MainWindow () ;

00029

00030 signals:

00031 void ScenarioCompiled (

00032 std::pair<CompileScenario::Scenario::RouteMap::iterator,
00033 CompileScenario::Scenario::RouteMap: :iterator>);
00034 void ScenarioLoaded();

00035 void AgentAdded(std::pair<std::vector<Core::Agent>::iterator,
00036 std::vector<Core::Agent>::iterator>) ;
00037 void SyncAgentColor();

00038

00039 private:

00040 void ConnectSlotsAndSignals();

00041

00042 private slots:

00043 void SaveScenario (const std::string& filepath);

00044 void LoadScenario(const std::string& filepath);

00045 void UpdateScenario(float, float, float);

00046 void CompileScenario();

00047 void CreateNewAgent () ;

00048

00049 private:

00050 /// \brief The menu bar of the main window.

00051 MenuBar* m_MenuBar;

00052

00053 /// \brief The main content of the main window. Basically all content
00054 /// other than the menubar.

00055 MainContent* m_MainContent;

00056

00057 std: :shared_ptr<CompileScenario::Scenario> m_Scenario;

00058 MapDialogx m_ScenarioSettingsDialog;

00059 }i

00060

00061 } // namespace Gui

12.29 include/gui/map_dialog.h File Reference

#include <QDialog>
#include <QLabel>
#include <QLineEdit>
#include <QPushButton>
#include <QVBoxLayout>

Classes

* class Gui::MapDialog

The MapDialog class represents a dialog window for inputting map data.

Namespaces

* namespace Gui

Generated by Doxygen

210 File Documentation

12.30 map_dialog.h

Go to the documentation of this file.
00001 #pragma once

00002

00003 #include <QDialog>

00004 #include <QLabel>

00005 #include <QLineEdit>

00006 #include <QPushButton>
00007 #include <QVBoxLayout>

00008

00009 namespace Gui

00010 {

00011 224

00012 /// \brief The MapDialog class represents a dialog window for inputting map
00013 /// data.

00014 /77

00015 class MapDialog : public QDialog

00016 {

00017 Q_OBJECT

00018 public:

00019 /77

00020 /// \brief Constructs a new MapDialog object.

00021 /// \param parent The parent widget of the dialog.

00022 /17

00023 MapDialog (QWidget parent = nullptr);

00024

00025 signals:

00026 /17

00027 /// \brief Signal emitted when data is ready to be sent.

00028 /// \param data The data to be sent.

00029 /77

00030 void SendData (const QString& data);

00031

00032 /77

00033 /// \brief Signal emitted when the dialog has finished.

00034 /77

00035 void Finished();

00036

00037 /77

00038 /// \brief Signal emitted when map data is ready to be processed.
00039 /// \param latitude The latitude coordinate of the map data.
00040 /// \param longitude The longitude coordinate of the map data.
00041 /// \param size The size of the map data.

00042 /77

00043 void MapDataReady (float latitude, float longitude, float size);
00044

00045 public slots:

00046

00047 /77

00048 /// \brief Slot called when the user finishes input and submits the
00049 /// data.

00050 /77

00051 void Finish();

00052

00053 private:

00054 QLineEdit+ m_LatitudeCoordInput;

00055 QLineEdit* m_LongitudeCoordInput;

00056 QLineEditx m_SizeInput;

00057

i
00058 } // namespace Gui

12.31 include/gui/map_viewer.h File Reference

#include "core/types.h"

#include "compile_scenario/scenario.h"
#include <QElapsedTimer>

#include <QGridLayout>

#include <QLabel>

#include <QMovie>

#include <QWidget>

Generated by Doxygen

12.32 map_viewer.h 211

Classes

+ class Gui::MapViewer

Namespaces

* namespace Gui

12.32 map_viewer.h

Go to the documentation of this file.
00001 #pragma once

00002

00003 #include "core/types.h"

00004

00005 #include "compile_scenario/scenario.h"
00006

00007 #include <QElapsedTimer>
00008 #include <QGridLayout>
00009 #include <QLabel>

00010 #include <QMovie>

00011 #include <QWidget>

00012

00013 namespace Gui

00014 {

00015

00016 class MapViewer : public QWidget

00017 {

00018 Q_OBJECT

00019

00020 public:

00021 explicit MapViewer (QWidget* parent = nullptr);
00022

00023 public slots:

00024 void DataReceived();

00025 void WaitForData () ;

00026

00027 void

00028 UpdateRoutes (std: :pair<CompileScenario: :Scenario::RouteMap::iterator,
00029 CompileScenario::Scenario::RouteMap::iterator>
00030 routes);

00031 void UpdateAgents (std::pair<std::vector<Core::Agent>::iterator,
00032 std::vector<Core::Agent>::iterator>
00033 agents) ;

00034

00035 inline void

00036 UpdateActiveAgent (int id)

00037 {

00038 m_ActiveAgentId = id;

00039 }

00040

00041 inline void

00042 UpdateTimeStamp (float timeStamp)

00043 {

00044 m_TimeStamp = timeStamp;

00045 }

00046

00047 protected:

00048 void paintEvent (QPaintEventx event) override;
00049 void resizeEvent (QResizeEventx event) override;
00050 void mousePressEvent (QMouseEventx event) override;
00051

00052 private:

00053 void UpdateRenderingArea();

00054

00055 void DrawKeyframes (QPainter& painter);

00056 void DrawRoutes (QPainter& painter);

00057 void DrawLoader (QPainter& painter) const;

00058

00059 private:

00060 int m_StartX, m_Starty;

00061 int m_Size;

00062

00063 bool m_WaitingForData;

00064 QTimer* m_WaitingForDataTimer;

00065 QElapsedTimer m_WaitingForDataElapsedTimer;

Generated by Doxygen

212

File Documentation

00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083

12.33

}i

float m_LoaderAngle;
int m_LoaderSize;
float m_LoaderSpeed;
float m_LoaderSpan;
int m_LoaderThickness;

std::pair<std::vector<Core::Agent>:
std::vector<Core::Agent>:

m_Agents;
std::pair<CompileScenario::Scenario
CompileScenario::Scenario

m_Routes;

int m_ActiveAgentId;
float m_TimeStamp;

} // namespace Gui

#include <QMenuBar>

Classes

« class Gui::MenuBar

The main menubar of the user interface.

Namespaces

* namespace Gui

12.34 menu_bar.h

Go to the documentation of this file.

#pragma once

00001
00002
00003
00004

#include <QMenuBar>

00005 namespace Gui

00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027

{

:iterator,
:iterator>

: :RouteMap

: :RouteMap:

::iterator,
riterator>

include/gui/menu_bar.h File Reference

/// \brief The main menubar of the user interface.

/17

/// The main menubar exists to provide the user with easy access to

/// functionality such as creating new scenarios,

/17

etc.

class MenuBar : public QMenuBar

{

Q_OBJECT

public:

/// \brief Constructs the menu bar

opening existing scenarios

/// \param parent The parent widget of the menu bar

MenuBar (QWidget* parent = nullptr);

signals:
void SaveScenario (const std::string& filename);
void LoadScenario (const std::string& filename);

private:

}i

} // namespace Gui

Generated by Doxygen

12.35 include/gui/planner.h File Reference

213

12.35 include/gui/planner.h File Reference

#include "gui/map_viewer.h"
#include "gui/timeline.h"
#include <QSplitter>

Classes

 class Gui::Planner

The planner widget used for planning scenarios.

Namespaces

* namespace Gui

12.36 planner.h

Go to the documentation of this file.
00001 #pragma once

00002

00003 #include "gui/map_viewer.h"
00004 #include "gui/timeline.h"

00005

00006 #include <QSplitter>

00007

00008 namespace Gui

00009 {

00010 /// \brief The planner widget used for planning scenarios
00011 /77

00012 /// Contains the graphical functionality to plan scenarios.
00013 class Planner : public QSplitter

00014 {

00015 Q_OBJECT

00016 public:

00017 /// \brief Constructs the planner widget.

00018 /// \param parent The parent of the planner widget.
00019 Planner (QWidget* parent = nullptr);

00020

00021 /// \brief Destructs the planner widget.

00022 ~Planner () ;

00023

00024 private:

00025 /// \brief The layout of the planner widget.

00026 MapViewer* m_MapViewer;

00027 Timelinex m_Timeline;

00028 }s;

00029 } // namespace Gui

12.37 include/gui/scenario_controls.h File Reference

#include <QFrame>
#include <QGridLayout>
#include <QPushButton>

Classes

« class Gui::ScenarioControls

Generated by Doxygen

214 File Documentation

Namespaces

* namespace Gui

12.38 scenario_controls.h

Go to the documentation of this file.
00001 #pragma once

00002

00003 #include <QFrame>

00004 # lude <QGridLayout>

00005 #include <QPushButton>

00006

00007 namespace Gui

00008 {

00009

00010 class ScenarioControls : public QFrame
00011 {

00012 Q_OBJECT

00013 public:

00014 explicit ScenarioControls (QWidgetx parent = nullptr);
00015

00016 signals:

00017 void OpenSettingsDialog () ;
00018 void CompileScenario();

00019

00020 private:

00021 QPushButton* m_SettingsButton;
00022 QPushButton* m_CompileButton;
00023 QGridLayout* m_Layout;

00024 };

00025

00026 } // namespace Gui

12.39 include/gui/sidebar.h File Reference

#include "coordinate_ converter/coordinate_ converter.h"
#include "core/types.h"

#include "gui/agent_controls.h"

#include "gui/keyframe_controls.h"

#include "gui/scenario_controls.h"

#include "gui/tab_widget.h"

#include "keyframe_management/keyframe_manager.h"
#include "map_management/map_manager.h"

#include <QVBoxLayout>

#include <QWidget>

Classes

« class Gui::Sidebar

The sidebar of the main window.

Namespaces

* namespace Gui

Generated by Doxygen

12.40 sidebar.h 215

12.40 sidebar.h

Go to the documentation of this file.

00001 #pragma once

00002

00003 #include "coordinate_converter/coordinate_converter.h"
00004 #include "core/types.h"

00005 #include "gui/agent_controls.h"

00006 #include "gui/keyframe_controls.h"

00007 #include "gui/scenario_controls.h"

00008 #include "gui/tab_widget.h"

00009 #include "keyframe_management/keyframe_manager.h"
00010 #include "map_management/map_manager.h"

00011

00012 #include <QVBoxLayout>

00013 #include <QWidget>

00014

00015 namespace Gui

00016 {

00017

00018 /// \brief The sidebar of the main window

00019 /17

00020 /// The sidebar of the main content exists to provide the user access to
00021 /// tools related to the active tab in the tab widget.

00022 class Sidebar : public QWidget

00023 {

00024 Q_OBJECT

00025

00026 public:

00027 /// \brief Construct the sidebar.

00028 /// \param parent The parent of the sidebar.

00029 Sidebar (QWidget* parent = nullptr);

00030

00031 signals:

00032 /// \brief Signal emitted when scenario data is ready to be processed.
00033 /// \param coord The UTM coordinate of the center of the scenario.
00034 /// \param size The size of the scenario in meters.

00035 void scenarioDataReady (Core::UTMCoordinate coord, int size);

00036

00037 private slots:

00038

00039 // /17

00040 // /// \brief Handle the keyframe data received from the
00041 // AddKeyFrameDialog.

00042 // /// \param agentId The ID of the agent associated with the
00043 // keyframe.

00044 // /// \param timeStamp The timestamp of the keyframe.

00045 // /// \param x The x-coordinate of the keyframe.

00046 // /// \param y The y-coordinate of the keyframe.

00047 // /// \param z The z-coordinate of the keyframe.

00048 // void OnAddKeyframeDialogDataReady (int agentId, float

00049 // timeStamp, float x, float y, float z);

00050

00051 // /17

00052 // /// \brief Handle the map data received from the MapDialog.
00053 // /// \param latitude The latitude-coordinate of the center of
00054 // the map.

00055 // /// \param longitude The longitude-coordinate of the center of
00056 // the map.

00057 // /// \param size The size of the map in meters.

00058 // void OnMapDataReady (float latitude, float longitude, float
00059 // size);

00060

00061 private:

00062 /// \brief The layout of the sidebar.

00063 QVBoxLayout* m_Layout;

00064

00065 ScenarioControls* m_ScenarioControls;

00066 AgentControls* m_AgentControls;

00067 KeyframeControlsx m_KeyframeControls;

00068 }i

00069

00070 } // namespace Gui

12.41 include/gui/simulator.h File Reference

finclude "gui/map_viewer.h"
#include <QGridLayout>
#include <QWidget>

Generated by Doxygen

216

File Documentation

Classes

« class Gui::Simulator

The simulator widget used to simulate scenarios.

Namespaces

* namespace Gui

12.42 simulator.h

Go to the documentation of this file.

00001 #pragma once

00002

00003 #include "gui/map_viewer.h"

00004

00005 #include <QGridLayout>

00006 #include <QWidget>

00007

00008 namespace Gui

00009 {

00010 /// \brief The simulator widget used to simulate scenarios.
00011 /17

00012 /// Contains the graphical functionality to simulate scenarios.
00013 class Simulator : public QWidget

00014 {

00015 public:

00016 /// \brief Constructs the simulator widget.

00017 /// \param parent The parent of the simulator widget.
00018 Simulator (QWidget* parent = nullptr);

00019

00020 /// \brief Destructs the simulator widget.

00021 ~Simulator();

00022

00023 QSize

00024 sizeHint () const override

00025 {

00026 ~turn { parentWidget ()->width (), parentWidget ()->height ()
00027 }

00028

00029 private:

00030 /// \brief The layout of the simulator widget.

00031 QGridLayout* m_Layout;

00032 }i

00033 } // namespace Gui

12.43 include/gui/tab_widget.h File Reference

#include "gui/launcher.h"
#include "gui/planner.h"
#include "gui/simulator.h"
#include <QTabWidget>

Classes

* class Gui:: TabWidget

The tab widget of the main window.

Generated by Doxygen

12.44 tab_widget.h

217

Namespaces

* namespace Gui

12.44

tab_widget.h

Go to the documentation of this file.
00001 #pragma once

00002

00003 #include "gui/launcher.h"

00004

nclude "gui/planner.h"

00005 #include "gui/simulator.h"

00006

00007 #include <QTabWidget>

00008

00009 namespace Gui

00010 {
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043

/// \brief The tab widget of the main window.
/77
// This widget is responsible for containing the core functionality of
/// Hivemind; planning, simulating and launching. They are separated in
/// their own tabs as a user should only need to access one of these at
/// any point in time.
class TabWidget : public QTabWidget
{
public:
/// \brief Constructs the tab widget.
/// \param parent The parent of the tab widget.
TabWidget (QWidget* parent = nullptr);

/// \brief Destructs the tab widget.
~TabWidget () ;

private:
/// \brief The planner widget.
/77
/// Contains the graphical functionality to plan scenarios.
Plannerx m_Planner;

/// \brief The simulator widget.

/77

/// Contains the graphical functionality to simulate scenarios.
Simulator* m_Simulator;

/// \brief The launcher widget.

17/

/// Contains the graphical functionality to launch a scenario.
Launcher* m_Launcher;

7

00044 } // namespace Gui

12.45

include/gui/timeline.h File Reference

#include <QComboBox>
#include <QResizeEvent>
#include <QWidget>

Classes

« class Gui::Timeline

A custom QWidget to represent a timeline with keyframes.

Generated by Doxygen

218 File Documentation

Namespaces

* namespace Gui

12.46 timeline.h

Go to the documentation of this file.
00001 #pragma once

00002

00003 #include <QComboBox>

00004 #include <QResizeEvent>
00005 #include <QWidget>

00006

00007 namespace Gui

00008 {

00009

00010 /// \class Timeline

00011 /// \brief A custom QWidget to represent a timeline with keyframes.
00012 class Timeline : public QWidget

00013 {

00014 Q_OBJECT

00015 public:

00016 /17

00017 /// \brief Constructor for the Timeline class.
00018 /// \param parent The parent QWidget

00019 /77

00020 explicit Timeline (QWidget* parent = nullptr);
00021

00022 /77

00023 /// \brief Get the active agent ID

00024 /// \return The ID of the active agent

00025 /17

00026 inline int

00027 GetActiveAgent ()

00028 {

00029 return m_activeAgentId;

00030 }

00031

00032 /77

00033 /// \brief Get the current timestamp

00034 /// \return The current timestamp

00035 /17

00036 inline float

00037 GetTimeStamp ()

00038 {

00039 return m_timeStamp;

00040 }

00041

00042 protected:

00043 /77

00044 /// \brief Paint event handler

00045 /// \param event The paint event

00046 /77

00047 void paintEvent (QPaintEventx event) override;
00048

00049 /17

00050 /// \brief Mouse release event handler

00051 /// \param event The mouse release event

00052 /77

00053 void mouseReleaseEvent (QMouseEvent* event) override;
00054

00055 /17

00056 /// \brief Resize event handler

00057 /// \param event The resize event

00058 /17

00059 void resizeEvent (QResizeEvent* event) override;
00060 signals:

00061 /77

00062 /// \brief Signal that is emitted when a timestamp is selected
00063 /// \param timeStamp The selected timestamp
00064 /17

00065 void timeStampSelected(float timeStamp);

00066

00067 private:

00068 float m_timeStamp; ///< The current timestamp
00069 int m_activeAgentId; ///< ID of the active agent
00070 float m_pixelsPerSecond; ///< Pixels per second on the timeline
00071 };

00072

00073 } // namespace Gui

Generated by Doxygen

12.47 include/height_management/height_manager.h File Reference 219

12.47 include/height_management/height_manager.h File Reference

#include "core/types.h"
#include <array>
#include <iostream>
#include <vector>

Classes

+ class HeightManagement::HeightManager
« struct HeightManagement::HeightManager::heightdata

Namespaces

* namespace HeightManagement

12.48 height_manager.h

Go to the documentation of this file.
00001 #pragma once

00002

00003 #include "core/types.h"
00004 #include <array>

00005 #include <iostream>

00006 #include <vector>

00007

00008 namespace HeightManagement

00009 {

00010

00011 class HeightManager

00012 {

00013 public:

00014 struct heightdata

00015 {

00016 double x;

00017 double y;

00018 double z;

00019 Y

00020

00021 /// \brief Constructor of HeightManager class.

00022 /77

00023 /// \returns No object.

00024 HeightManager () ;

00025

00026 /// \brief Function to update the origin point. Running this will also
00027 /// trigger the population of height data for the chosen subset of the
00028 /// GeoTiff file.

00029 /17

00030 /// \param x X coordinate used for GeoTiff subset origin.

00031 /// \param y Y coordinate used for GeoTiff subset origin.

00032 /// \returns No object, but will update the origin for this instance of
00033 /// HeightManager and will populate the instance with height data.
00034 void UpdateOrigin(Core::UTMCoordinate UTMCoord, int size);

00035

00036 /// \brief Function to return the whole "height_management" for a given
00037 /// point.

00038 /17

00039 /// \param inputRelativeX The X coordinate in the relative system (where
00040 /// 0,0 is the top left corner of the system). \param inputRelativeY The
00041 /// Y coordinate in the relative system. \returns A height_management,
00042 /// containing the geographic (absolute) x, y and z coordinates.

00043 bool GetVertex (int inputRelativeX, int inputRelativey,

00044 heightdata& vertex);

00045

00046 /// \brief Function to return height, given relative coordinates (from a
00047 /// system where 0, 0 is in the upper left corner)

00048 /17

Generated by Doxygen

220

File Documentation

00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120
00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135

/// \param inputRelativeX The relative X value of the point.

/// \param inputRelativeY The relative Y value of the point.

/// \returns A float containing the height value of the point in metres.
bool GetHeight (int inputRelativeX, int inputRelativeY, floaté& height);

/17 \brief Function to get the height_management of an absolute
/// (geographic) coordinate, using the same coordinate system of the
/// dataset.
/17
/// \param inputX The absolute X value of the point.
/// \param inputY The absolute Y value of the point.
/// \returns A float containing the height of the point in metres.
bool GetVertexAbsolute (double inputX, double inputy,
heightdata& vertex);

/77 \brief Function to get the height of an absolute (geographic)
/// coordinate, using the same coordinate system of the dataset.
/77

/// \param inputX The absolute X value of the point.

/// \param inputY The absolute Y value of the point.

/// \returns A float containing the height of the point in metres.
float GetHeightAbsolute (double inputX, double inputY);

/// \brief Function to allow user to change GeoTiff file used in

/// planning. If this function is not run, the user can still update the
/// origin and Hivemind will run using the cached GeoTiff file.

/77

/// \param filePath Complete file path of the file to be used.

/// \param x X coordinate used for GeoTiff subset origin. Height data
/// will be populated in a 500x500 pixel centered on the origin point.
/// This is hard coded into the class. \param y Y coordinate used for
/// GeoTiff subset origin. \returns No object, but will update the path
/// for the cached tif.

void LoadTif (const charx filePath, double x, double y);

private:
/// \brief Function that will open the GeoTiff file and extract all
/// heights for the given subset of the dataset used.
/17
/// \returns No object, but after this has run, all heights will have
/// been imported into the instance of the class and the various
/// GetHeight methods can be run.
void PopulateVertices();

/// \brief Function to test whether a point exists within the scope of
/// the selected data subset.

/17

/// \param x the X value of the coordinate to be tested.

/// \param y the Y value of the coordinate to be tested.

/// \returns A bool indicating whether or not the input exists in the
/// subset and is valid.

bool ValidInput (int x, int y);

/// \brief Function to test whether a point exists within the scope of
/// the elected data subset. Overloaded version of ValidInput () that
/// takes doubles.

/17

/// \param x The X value of the coordinate to be tested.

/// \param y The Y value of the coordinate to be tested.

/// \returns A bool indicating whether or not the input exists in the
/// subset and is valid.

bool ValidInput (double x, double y);

/// \brief Function that tests whether the selected origin point is

/// within the bounds of the currently active data set, given the buffer
/// size required to extract the subset.

/77

/// \param x The X value of the origin point.

/// \param y The Y value of the origin point.

/// \returns A bool indicating whether or not the origin point is within
/// bounds.

bool OrigoWithinBounds (double x, double y);

/// \brief Function to update the corner coordinates saved within the
/// member instance of the chosen dataset.

/17

/// \returns No object, but the corner coordinates will be updated,
/// given there were no problems opening the GeoTiff file.

void UpdateCornerCoords () ;

private:
const charx m_CachedTifName = "../res/Kongsberg.tif";
const charx m_CoordinateSystem{ "UTM33" };

int m_Resolution{ 1 };
int m_Size;

long m_UpperLeftX;
long m_UpperLeftY;

Generated by Doxygen

12.49 include/keyframe_management/keyframe_manager.h File Reference

221

00136 long m_LowerRightX;

00137 long m_LowerRightY;

00138 heightdata* m_Vertices;

00139 heightdata m_Origo{ 0, 0, 0 };
00140 heightdata m_SelectionCorner;
00141 }i

00142

00143 } // namespace HeightManagement

12.49 include/keyframe_management/keyframe_manager.h File

Reference

#include "core/serializer.h"
#include "core/types.h"
#include <QObject>

#include <vector>

Classes

+ class KeyframeManagement::KeyframeManager

This is the class that manages keyframes.

Namespaces

* namespace KeyframeManagement

12.50 keyframe_manager.h

Go to the documentation of this file.

00001 #pragma once

00002

00003 #include "core/serializer.h"
00004 #include "core/types.h"
00005

00006 #include <QObject>
00007 #include <vector>

00008

00009 namespace KeyframeManagement

00010 {

00011

00012 /77

00013 /// \brief This is the class that manages keyframes

00014 class KeyframeManager : public QObject,

00015 JSON

00016 {

00017 Q_OBJECT

00018

00019 public:

00020 /77

00021 /// \brief Returns the singleton instance of the KeyframeManager
00022 /// \return A reference to the singleton instance of the KeyframeManager
00023 /17

00024 static KeyframeManageré&

00025 Instance ()

00026 {

00027 static KeyframeManager instance;

00028 urn instance;

00029 }

00030

00031 /77

00032 /// \brief Adds a keyframe to the keyframe list using x, y, and z
00033 /// coordinates

Generated by Doxygen

222

File Documentation

00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098

12.51

bi

/// \param agentId The ID of the agent

/// \param timeStamp The timestamp of the keyframe
/// \param x The x coordinate

/// \param y The y coordinate

/// \param z The z coordinate

/77

void AddKeyframe (int agentId, float timeStamp, float x, float vy,
float z);

/77

/// \brief Adds a keyframe to the keyframe list using a

/// CartesianCoordinate \param agentId The ID of the agent \param

/// timeStamp The timestamp of the keyframe \param position The

/// CartesianCoordinate representing the position

/17

void AddKeyframe (int agentId, float timeStamp,
Core::CartesianCoordinate position);

/17

/// \brief Adds a keyframe object to the keyframe list
/// \param keyframe The keyframe object to add

/17

void AddKeyframe (Core::Keyframe& keyframe);

/17

/// \brief Removes a keyframe from the keyframe list
/// \param keyframe The keyframe to remove

/17

void RemoveKeyframe (const Core::Keyframe& keyframe);

/77

/// \brief Dumps keyframe information to the console for debugging
/// purposes

/77

void DebugDump (void) const;

/77
/// \brief Returns a reference to the list of keyframes
/// \return A reference to the list of keyframes
/77
inline std::vector<Core::Keyframe>&
GetKeyframes ()
{
return m_Keyframes;

}

signals:
void KeyframeAdded();

private:
KeyframeManager () {} ///< Private constructor for singleton pattern
~KeyframeManager () {} ///< Private destructor for singleton pattern
KeyframeManager (const KeyframeManager&) = delete;
KeyframeManager& operator=(const KeyframeManager&) = delete;

std::vector<Core::Keyframe> m_Keyframes;

JSONSTART
JSONMEMBERVECTOR (Core: :Keyframe, m_Keyframes)
JSONEND

// namespace KeyframeManagement

include/map_management/map_manager.h File Reference

#include "core/types.h"
#include <QObject>

Classes

+ class MapManagement::MapManager

This is the class responsible for retrieving maps from Kartverket.

Generated by Doxygen

12.52 map_manager.h 223

Namespaces
* namespace MapManagement
12.52 map_manager.h

Go to the documentation of this file.
00001 #pragma once

00002

00003 #include "core/types.h"

00004

00005 #include <QObject>

00006

00007 namespace MapManagement

00008 {

00009

00010 /17

00011 /// \brief This is the class responsible for retrieving maps from
00012 /// Kartverket.

00013 /77

00014 class MapManager : public QObject

00015 {

00016 Q_OBJECT

00017 public:

00018 /// \brief Returns the singleton instance of the class.

00019 static MapManageré&

00020 Instance ()

00021 {

00022 static MapManager instance;

00023 return instance;

00024 }

00025

00026 /// \brief Retrieves the map from Kartverket for the specified UTM
00027 /// coordinate and size.

00028 /77

00029 /// This function retrieves the satellite map data from Kartverket with
00030 /// a HTTP request for the specified UTM coordinate and size.
00031 /17

00032 /// \param coord The UTM coordinate for the center of the map.
00033 /// \param size The size of the map in meters.

00034 static void GetMap (Core::UTMCoordinate coord, int size);

00035

00036 /// \brief Calculates the UTM corner coordinates for the specified UTM
00037 /// coordinate and size.

00038 /77

00039 /// This function calculates the UTM corner coordinates for the
00040 /// specified UTM coordinate and size, and stores them in the
00041 /// CornerCoordinates variable.

00042 /77

00043 /// \param coord The UTM coordinate for the center of the map.
00044 /// \param size The size of the map in meters.

00045 static void CalculateCornerCoordinates (Core::UTMCoordinate coord, int size);
00046

00047 /// \brief Returns the map data as a byte array.

00048 static inline QByteArrayé&

00049 GetData ()

00050 {

00051 return Instance() .m_Data;

00052 }

00053

00054 static inline int

00055 GetImageResolution ()

00056 {

00057 return Instance () .m_ImageResolution;

00058 }

00059

00060 signals:

00061 /// \brief Signal emitted when the map image data has been retrieved.
00062 void GotImage () ;

00063 void RequestImage () ;

00064

00065 private:

00066 /// \brief Constructor.

00067 MapManager () : m_ImageResolution{ 1024 } {};

00068

00069 /// \brief Destructor.

00070 ~MapManager () = default;

00071

00072 OByteArray m_Data;

00073 QString m_Area;

Generated by Doxygen

224

File Documentation

00074
00075
00076
00077

int m_ImageResolution;

}i

} // namespace MapManagement

12.53 include/routemaker/graph.h File Reference

#include <functional>
#include <iostream>
#include <memory>
#include <queue>
#include <vector>

Classes

struct Routemaker::Node< T >

Represents a node in a Graph data structured made for path-finding.

« class Routemaker::Graph< T >

Abstract graph interface optimized for path-finding.

Namespaces

namespace Routemaker

12.54 graph.h

Go to the documentation of this file.

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034

#pragma once

#include <functional>
#include <iostream>
#include <memory>
#include <queue>
#include <vector>

namespace Routemaker

{

/// \brief Represents a node in a Graph data structured made for
/// path-finding
/17
/// \tparam T Type of data to store inside the node
template<typename T>
struct Node
{
/// \brief Data stored in the the node.
/17
/// Stores data not needed by the A\x path-finding algorithm. This is
/// what the user actually wants to store in the \ref Graph.
T Data;

/17 \brief A non-owner pointer to the parent of the node.

/77

/// Should not be set by user. The A\x path-finding algorithm sets the
/// value for this member when traversing the \ref Graph. It used to
/// find the way back to the start after the goal is found.

std: :weak_ptr<Node<T» Parent;

/// \brief Specifies if a given node has been visited during
/// path-finding.
/17

Generated by Doxygen

12.54 graph.h 225

00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120
00121

bi

/// Should not be set by user. Is generally only used internally by the
/// A\ path-finding algorithm when traversing the \ref Graph. May be
/// used in debug views to visualize which nodes are visited during

/// path-finding.

bool Visited;

/// \brief Represents the assumed cost from the start to the goal node
/// through this node.

/77

/// Should not be set by the user.

/// The A\ path-finding algorithm uses cost to find the shortest path
/// in a reasonable amount of time. This member contains the sum of the
/// cost to get to this node from the start node, represented in \ref
/// LocalGoal, plus the assumed cost to get from this node to the goal
/// node. The A\x path-finding algorithm uses this value during \ref
/// Graph traversal to sort a priority queue in order to explore the
/// assumed shortest paths first.

double GlobalGoal;

/// \brief Represents the cost from the start node to this node.

/77

/// Should not be set by the user.

/// The A\x path-finding algorithm uses cost to find the shortest path
/// in a reasonable amount of time. This member contains the sum of the
/// cost to get to this node from the start node. While traversing the
/// \ref Graph, the A\x path-finding algorithm updates and uses this
/// member to check for shorter paths.

double LocalGoal;

/// \brief Abstract graph interface optimized for path-finding.

/17

/// \tparam T Type of user data to store in each node

/17

/// This interface is designed to be flexible and scalable. The sub-classes
/// are required to implement a few methods, such as \ref Graph.GetNeighbors
/// and \ref Graph.GetCost for the A\x path-finding algorithm to work.
template<typename T>

class Graph

{

public:
using NodePtr = std::shared_ptr<Node<T»; ///< Helper alias to make code
///< more readable.

public:
/// \brief Collects all neighbor nodes of \p node.
/17
/// Implemented by sub-classes of Graph.
/// The neighbor relationship between nodes define the edges of the
/// graph. It is up to the subclass to define these relationships. For a
/// 2D grid, the neighbors would simply be the nodes directly to the
/// north, south, east and west, in addition to the corners between
/// them. For a road network, the relationships may be more complex.
i
/// \param node A pointer to the node from which to collect all
/// neighbors \return A vector of pointers to all the neighbors of \p
/// node
virtual std::vector<NodePtr> GetNeighbors (NodePtr node) = 0;

/// \brief Returns the cost between \p a and \p b.

/17

/// Implemented by sub-classes of Graph.

/// The a\+ path-finding algorithm uses cost to efficiently find the
/// best path between two nodes. In order to do this, it requires some
/// method of calculating the cost of moving between any two nodes. It
/// is up to the sub-class to define how this is calulated. An example
/// of this cost may be the euclidean distance between two nodes.

17/

/// \param a Pointer to the first \ref Node

/// \param b Pointer to the second \ref Node

/// \return Cost between node \p a and node \p b.

virtual double GetCost (NodePtr a, NodePtr b) = 0;

/// \brief Determines if there is a direct line of sight between node \p
/// a and node \p b.

/17

/// Implemented by sub-classes of Graph.

/// The \ref Graph.PostSmooth method traverses the already found path
/// through the A* path-finding algorithm and simplifies it by using
/// this method. In a graph representing a 2D grid, a Bresenham

/// implementation or ray-casting can be used to determine line of
/// sight.

/17

/// \param a Pointer to the first \ref Node

/// \param b Pointer to the second \ref Node

/// \return bool specifying whether or not there is a direct line of
/// sight

Generated by Doxygen

226

File Documentation

00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
00169
00170
00171
00172
00173
00174
00175
00176
00177
00178
00179
00180
00181
00182
00183
00184
00185
00186
00187
00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
00201
00202
00203
00204
00205
00206
00207
00208

bi

virtual bool HasLineOfSight (NodePtr a, NodePtr b) = 0;

/// \brief Resets all local and global goals and parent relationships of
/// all nodes.

/17

/// Implemented by sub-classes of Graph.

/// In order to be able to re-use the same graph for several A\x

/// searches, the \ref Graph.SolveAStar method needs to be able to reset
/// all the nodes. As this interface does not contain the actual

/// collection of nodes, this needs to be implemented in the

/// sub-classes.

virtual void ResetNodes (void) = 0;

/// \brief Finds cheapest path from \p start to \p goal.

i

/// \param start Pointer to the node to start the path from

/// \param goal Pointer to the node to find the path to

/77

/// Using the A\x algorithm, this method explores the graph’s nodes and
/// updates their local and global goals, their visited flags, as well
/// as their parent relationships.

/77

/// When the algorithm finishes, given that a path exists between the
/// nodes, the cheapest path between them is defined by the parent

/// relationships. The path can be xextracted* by starting at the \p
/// goal and following the \ref Node.Parent pointers until \p start is
/// reached, saving each node in a list and reversing it at the end.
void SolveAStar (NodePtr start, NodePtr goal);

/// \brief Simplifies the path from \p start to \p goal.

/77

/// \param start Pointer to the start node of the path

/// \param goal Pointer to the end node of the path

/77

/// Should be run on the same nodes as \ref Graph.SolveAStar, and should
/// only be called after \ref Graph.SolveAStar has finished.

/77

/77

void PostSmooth (NodePtr start, NodePtr goal);

template<typename T>

void

Graph<T>::SolveAStar (NodePtr start, NodePtr goal)

{

ResetNodes (); // Make sure all relational values are reset

NodePtr current = start;
current->LocalGoal = 0.0;
current->GlobalGoal = GetCost (current, goal);

// Create a priority queue that compares nodes’ global goal value
std::priority_queue<NodePtr, std::vector<NodePtr>,
std::function<bool (NodePtr, NodePtr)»
notTested([] (NodePtr a, NodePtr b) {
return a->GlobalGoal > b->GlobalGoal;
1)

notTested.push (start);

// Let’s go for all long as we have untested discovered nodes
hile (!notTested.empty()) {
// But in case we have already discovered nodes in our list, let’s
// remove them
while (!notTested.empty() && notTested.top()->Visited) {
notTested.pop () ;
}

// If we ended up removing some nodes, and we are now out of
// untested nodes, let’s break from the loop
if (notTested.empty ()) {

break;

current = notTested.top();
current->Visited = true;

for (auto neighbor : GetNeighbors (current)) {
// We only want to explore unoccupied cells.
if (!neighbor->Visited && !neighbor->Data.Occupied) {
notTested.push (neighbor) ;

// Let’s calculate the cost of the travel to this node so far +
// the cost to get from here to the neighbor, and update the

// neighbors relational values if it is a new record for the

// neighbor.

Generated by Doxygen

12.55 include/routemaker/routemaker.h File Reference 227

00209 double candidateGoal =

00210 current->LocalGoal + GetCost (current, neighbor);

00211 if (candidateGoal < neighbor->LocalGoal) {

00212 neighbor->Parent = current;

00213 neighbor->LocalGoal = candidateGoal;

00214 neighbor->GlobalGoal =

00215 neighbor->LocalGoal + GetCost (neighbor, goal);

00216 }

00217 }

00218 }

00219 }

00220

00221 // Quite a simple little algorithm to simplify and smooth out a path found
00222 // through Ax: We just start at the goal, and check if we have a direct line
00223 // of sight to our grandparent. If we do, then we can remove the middle man,
00224 // our parent, from the equation and make our grandparent our parent
00225 // instead. Then check again for our new grandparent. If we do not have a
00226 // direct line of sight to our grandparent, we move on to our parent and
00227 // check its grandparent. We do this recursively until we reach the start
00228 // node.

00229 template<typename T>

00230 void

00231 Graph<T>::PostSmooth (NodePtr start, NodePtr goal)

00232 {

00233 NodePtr current = goal;

00234 NodePtr parent = current->Parent.lock();

00235 while (current && parent && (current != start)) {

00236 NodePtr grandParent = parent->Parent.lock();

00237 (!grandParent) {

00238 break;

00239 }

00240 if (HasLineOfSight (current, grandParent)) {

00241 current->Parent = grandParent;

00242 parent = grandParent;

00243 “on we;

00244 }

00245 current = parent;

00246 parent = current->Parent.lock();

00247 }

00248 }

00249

00250 } // namespace Routemaker

12.55 include/routemaker/routemaker.h File Reference

#include "core/types.h"

#include "height_management/height_manager.h"
#include "routemaker/graph.h"

#include <cstdint>

#include <list>

#include <vector>

Classes

« struct Routemaker::Cell2D
« class Routemaker::Routemaker

Main class responsible for handling creation of routes between keyframes.

Namespaces

* namespace Routemaker

Generated by Doxygen

228 File Documentation

12.56 routemaker.h

Go to the documentation of this file.

00001 #pragma once

00002

00003 #include "core/types.h"

00004 #include "height_management/height_manager.h"
00005 #include "routemaker/graph.h"

00006

00007 #include <cstdint>

00008 #include <list>

00009 #include <vector>

00010

00011 namespace Routemaker

00012 {

00013

00014 struct Cell2D

00015 {

00016 uint32_t X, Y;

00017 bool Occupied;

00018 Y

00019

00020 /// \brief Main class responsible for handling creation of routes between
00021 /// keyframes.

00022 class Routemaker : public Graph<Cell2D>

00023 {

00024 public:

00025 /// \brief Instatiates a routemaker object, along with it’s Heightmap
00026 /// member.

00027 /17

00028 /// The \p origin and \p size of the scenario are simply passed to the
00029 /// HeightMap member. In the case that the HeightMap class is converted
00030 /// to a singleton or the scenario class gains ownership over the
00031 /// Heightmap, they should not be necessary.

00032 /17

00033 /// \param origin The origin of the scenario in UTM coordinate space.
00034 /// \param size The size of the scenario in meters

00035 explicit Routemaker (const Core::UTMCoordinate& origin, int size);
00036

00037 /77 \brief Creates a a vector of coordinates defining a path between two
00038 /// keyframes.

00039 /17

00040 /// Utilizes methods from the Graph interface, namely GetNeighbors,
00041 /// GetCost, HasLineOfSight and BresenhamLine, to generate a path
00042 /// between \p a and \p b.

00043 /77

00044 /// \param a First keyframe to create to create path from

00045 /// \param b Second keyframe to create path from

00046 /17

00047 /// returns A vector of coordinates in symmetrical cartesian coordinate
00048 /// system space, which together forms a path.

00049 std::vector<Core::CartesianCoordinate>

00050 MakeRoute (const Core::Keyframe& a, const Core::Keyframe& b);

00051

00052 /// \brief Get a node at a position

00053 /77

00054 /// \param x x-coordinate of position

00055 /// \param y y-coordinate of position

00056 /// \returns A shared pointer to the node at the specified location
00057 NodePtr GetNode (uint32_t x, uint32_t y) const;

00058

00059 /// \brief Updates the origin coordinate and the size of the map
00060 /17

00061 /// \param UTMOrigin The new origin coordinate for the map

00062 /// \param size The new size of the map in meters

00063 void UpdateOrigin(Core::UTMCoordinate UTMOrigin, int size);

00064

00065 void UpdateResolution();

00066

00067 private:

00068 std::vector<NodePtr> GetNeighbors (NodePtr node) override;

00069

00070 double GetCost (NodePtr a, NodePtr b) override;

00071

00072 bool HasLineOfSight (NodePtr a, NodePtr b) override;

00073

00074 void ResetNodes () override;

00075

00076 /// \brief Calculates the <a

00077 /// href="https://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html">Bresenham
00078 /// Line between two nodes

00079 /17

00080 /// \param a Pointer to first node

00081 /// \param b Pointer to seconds node

00082 /// \returns A list of pointers to the nodes that make up the <a

Generated by Doxygen

12.57 README.md File Reference 229

00083 /// href="https://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html">Bresenham
00084 /// Line between \p a and \p b.

00085 std::1list<NodePtr> BresenhamLine (const NodePtré& a,

00086 const NodePtr& b) const;

00087

00088 private:

00089 /// \brief All the nodes that make up the graph

00090 std: :vector<NodePtr> m_Nodes;

00091

00092 /// \brief HeightManager instance owned by Routemaker

00093 std::unique_ptr<HeightManagement::HeightManager> m_HeightMap;

00094

00095 /// \brief Width (and height) of the active scenario

00096 int m_MapWidth;

00097

00098 /// \brief Resolution of the routemaker in meters.

00099 /77

00100 /// A resolution of 3 meters would mean that any one move in vertical or
00101 /// horizontal direction would correspond to a 3 meter movement. A
00102 /// higher value increases performance of the routemaker, but decreases
00103 /// route fidelity.

00104 int m_RoutemakerRes;

00105

00106 /// \brief Width (and height) of the routemaker

00107 /17

00108 /// Will always equal \a m_MapWidth divided by \a m_RoutemakerRes

00109 int m_RoutemakerWidth;

00110 };

00111

00112 } // namespace Routemaker

12.57 README.md File Reference

12.58 src/compile_scenario/scenario.cpp File Reference

#include "compile_scenario/scenario.h"
#include "coordinate_ converter/coordinate_ converter.h"
#include "map_management/map_manager.h"

Namespaces

* namespace CompileScenario

12.59 scenario.cpp

Go to the documentation of this file.

00001 #include "compile_scenario/scenario.h"

00002 #include "coordinate_converter/coordinate_converter.h"
00003 #include "map_management/map_manager.h"

00004

00005 namespace CompileScenario

00006 {

00007

00008 // The constructor to the scenario class update the size and origin to
00009 // coordinate converter, map manager and routemaker so the whole system uses
00010 // the same values.

00011 Scenario::Scenario(std::string name, Core::GeographicalCoordinate origin,
00012 int size)

00013 : m_Name (name), m_Size(size), m_Origin(origin),

00014 m_KeyframeManager (KeyframeManagement : :KeyframeManager: :Instance())
00015 {

00016 CoordinateConverter: :CoordConv: :ResetOrigin (origin, size);

00017 MapManagement : :MapManager: : GetMap (

00018 CoordinateConverter: :CoordConv: :GeographicToUTM (origin), size);
00019 m_Routemaker = std::make_unique<Routemaker::Routemaker> (

00020 CoordinateConverter: :CoordConv: :GeographicToUTM (origin), size);

Generated by Doxygen

230

File Documentation

00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101

}

// SetOrigin to the scenario class update the size and origin to

// coordinate converter, map manager and routemaker so the whole system uses
// the same values.

void

Scenario::SetOrigin(Core: :GeographicalCoordinate GeoCoord, int size)

{

}

m_Origin = GeoCoord;

m_Size = size;

CoordinateConverter: :CoordConv: :ResetOrigin (GeoCoord, size);

m_Routemaker->UpdateOrigin (
CoordinateConverter: :CoordConv: :GeographicToUTM (GeoCoord), size);

MapManagement : :MapManager: :GetMap (
CoordinateConverter: :CoordConv: :GeographicToUTM (GeoCoord), size);

Scenario::RouteMapé&
Scenario::Compile ()

{

}

if (m_KeyframeManager.GetKeyframes ().empty()) {
return m_Routes;

}

m_Routes.clear();
auto keyframes = m_KeyframeManager.GetKeyframes () ;
// Keyframes need to be sorted by agentID and timestamp before planning
// routes between them.
std::sort (keyframes.begin(), keyframes.end(),
[](Core::Keyframe a, Core::Keyframe b) {
if (a.AgentId != b.AgentId) {
return a.AgentId < b.AgentId;
}
return a.TimeStamp < b.TimeStamp;
b
// The routes generated by the routemaker is stored in a map where the
// key is the agent ID and the value is a vector with the coordinates
// the routemaker returns.
for (int i = 0; 1 < keyframes.size() - 1; i++) {
// Check 1if the current and next keyframe belongs to the same agent
// and search for the agent Id in the map. If this is the first
// agent with this ID the routes will be inserted as a new element
// in the map. If the agent ID is already in the map, the returned
// values from the routemaker will be pushed back into the place for
// the agent ID to the agent.

if (keyframes[i].AgentId == keyframes[i + 1].AgentId) {
auto iter = m_Routes.find(keyframes[i].AgentId);
if (iter == m_Routes.end()) {

std::vector<std::vector<Core::CartesianCoordinate» vec;
vec.push_back (m_Routemaker->MakeRoute (keyframes[i],
keyframes[i + 11));
m_Routes.insert (std::make_pair (keyframes[i].AgentId, vec));
} else {
iter->second.push_back (m_Routemaker->MakeRoute (
keyframes[i], keyframes[i + 1]));

return m_Routes;

void
Scenario: :AddAgent (Core: :Agent newAgent)

{

}

m_Agents.push_back (newAgent) ;

void
Scenario::save (std::string filename)

{

}

Json::serialize (filename, this);

void
Scenario::load(std::string filename)

{

}

Json: :deserialize (filename, this);
SetOrigin(m_Origin, m_Size);

00102 } // namespace CompileScenario

Generated by Doxygen

12.60 src/coordinate_converter/coordinate_converter.cpp File Reference 231

12.60 src/coordinate_converter/coordinate_converter.cpp File Reference

#include "coordinate_converter/coordinate_converter.h"

Namespaces
* namespace CoordinateConverter
12.61 coordinate_converter.cpp

Go to the documentation of this file.

00001 #include "coordinate_converter/coordinate_converter.h"

00002

00003 namespace CoordinateConverter

00004 {

00005

00006 // ResetOrigin will manage that rest of the function always work with the
00007 // same origin. The size parameter represent the size of the coordinate
00008 // system.

00009 void

00010 CoordConv: :ResetOrigin (Core: :GeographicalCoordinate geoCoord, int size)
00011 {

00012 auto& instance = GetInstance();

00013 instance.m_Size = size;

00014 instance.m_OriginGeographical = { geoCoord.Latitude,

00015 geoCoord.Longitude };

00016 instance.m_Origin.Reset (geoCoord.Latitude, geoCoord.Longitude, 0);
00017 }

00018

00019 // This function convert a geographical coordinate to a cartesian

00020 // coordinate.

00021 Core::CartesianCoordinate

00022 CoordConv: :GeographicalToCartesian (Core: :GeographicalCoordinate geoCoord)
00023 {

00024 auto& instance = GetInstance();

00025 double x, v, z;

00026 instance.m_Origin.Forward (geoCoord.Latitude, geoCoord.Longitude, 0, x,
00027 v, z);

00028 e n{ x, v, 2 };

00029 }

00030

00031 // This function convert a cartesian coordinate to a geographical coordinate
00032 Core::GeographicalCoordinate

00033 CoordConv: :CartesianToGeographical (Core::CartesianCoordinate cartCoord)
00034 {

00035 auto& instance = GetInstance();

00036 double lat, lon, alt;

00037 instance.m _Origin.Reverse (cartCoord.X, cartCoord.Y, cartCoord.z, lat,
00038 lon, alt);

00039 return { lat, lon };

00040 }

00041

00042 // This function return the origin to hivemind.

00043 Core: :GeographicalCoordinate

00044 CoordConv: :GetOrigin ()

00045 {

00046 auto& instance = GetInstance();

00047 e n instance.m_OriginGeographical;

00048 }

00049

00050 // This function convert from a symmetric coordinate system to an

00051 // asynmmetric coordinate system. The size parameter represent the size of
00052 // the coordinate system.

00053 Core::CartesianCoordinate

00054 CoordConv: :SymmetricToAsymmetric (Core: :CartesianCoordinate symmetric)
00055 {

00056 auto& instance = GetInstance();

00057 symmetric.X = symmetric.X + (instance.m_Size / 2);

00058 symmetric.Y = -symmetric.Y + (instance.m_Size / 2);

00059 return symmetric;

00060 }

00061

00062 // This function convert from an asymmetric coordinate system to a

Generated by Doxygen

232 File Documentation
00063 // synmmetric coordinate system. The size parameter represent the size of
00064 // the coordinate system.

00065 Core::CartesianCoordinate

00066 CoordConv: :AsymmetricToSymmetric (Core::CartesianCoordinate asymmetric)

00067 {

00068 auto& instance = GetlInstance();

00069 asymmetric.X = asymmetric.X - (instance.m_Size / 2);

00070 asymmetric.Y = -asymmetric.Y + (instance.m_Size / 2);

00071 1 asymmetric;

00072 }

00073

00074 // Hivemind are using UTM33N and therefore are this hardcoded in the call to
00075 // geographiclib. For scalability and easier maintenance this should be able
00076 // to configured.

00077 Core::UTMCoordinate

00078 CoordConv: :GeographicToUTM (Core: :GeographicalCoordinate GeoCoord)

00079 {

00080 Core: :UTMCoordinate utmCoord;

00081 GeographicLib: :UTMUPS: :Forward (GeoCoord.Latitude, GeoCoord.Longitude,
00082 utmCoord.Zone,

00083 utmCoord.IsNorthHemisphere,

00084 utmCoord.Easting, utmCoord.Northing, 33);
00085 1 utmCoord;

00086 }

00087

00088 // This function convert from UTM coordinates to geographical coordinates.
00089 Core::GeographicalCoordinate

00090 CoordConv: :UTMToGeographic (Core: :UTMCoordinate UTMCoord)

00091 {

00092 Core: :GeographicalCoordinate geoCoord(0, 0);

00093 GeographicLib: :UTMUPS: :Reverse (

00094 UTMCoord.Zone, UTMCoord.IsNorthHemisphere, UTMCoord.Easting,

00095 UTMCoord.Northing, geoCoord.Latitude, geoCoord.Longitude) ;

00096 1 geoCoord;

00097 }

00098

00099 // namespace CoordinateConverter

12.62 src/core/serializer.cpp File Reference

#include "core/serializer.h"

#include "rapidjson/document.h"
#include "rapidjson/istreamwrapper.h"
#include "rapidjson/prettywriter.h"
#include <fstream>

#include <iostream>

#include <memory>

#include <string>

Namespaces

* namespace Json

Macros

+ #define RAPIDUSON_HAS_STDSTRING 1

Functions

« void Json::serialize (std::string filename, ISValue *p)

Function to start serializing an onbject.

+ void Json::deserialize (std::string filename, ISValue *p)

Function to start deserializing a file.

Generated by Doxygen

12.63 serializer.cpp 233

Variables

* bool debug = false

12.62.1 Macro Definition Documentation

12.62.1.1 RAPIDJSON_HAS_STDSTRING

#define RAPIDJSON_HAS_STDSTRING 1

Definition at line 1 of file serializer.cpp.

12.62.2 Variable Documentation

12.62.2.1 debug

bool debug = false
Definition at line 12 of file serializer.cpp.

Referenced by Json::ISDouble::ToDom(), and Json::ISMemberVector< T >::ToDomy().

12.63 serializer.cpp

Go to the documentation of this file.

00001 #define RAPIDJSON_HAS_ STDSTRING 1
00002
00003
00004

> "core/serializer.h"
document .h"

00005 rapi /istreamwrapper.h"
00006 "rapic /prettywriter.h" // for stringify JSON
00007 #include <fstream>

00008 #include <iostream>
00009 #include <memory>
00010 #include <string>

00011

00012 bool debug = false;

00013

00014 namespace Json

00015 {

00016

00017 rapidjson::Value

00018 ISInt::ToDom(rapidjson::Documenté&)
00019 {

00020 rapidjson::Value v;

00021 v.SetInt (value);

00022 return v;

00023 }

00024

00025 void

00026 ISInt::FromDom(rapidjson::Value& v, rapidjson::Documenté&)
00027 {

00028 assert (v.IsInt());

00029 value = v.GetInt();

Generated by Doxygen

234

File Documentation

00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115
00116

}

rapidjson::Value
ISFloat::ToDom(rapidjson: :Documenté&)
{

rapidjson::Value v;

v.SetFloat (value);

recturn vy,

}

void
ISFloat::FromDom(rapidjson::Value& v, rapidjson::Documenté)
{
assert (v.IsFloat());
value = v.GetFloat ();
}

rapidjson::Value
ISDouble: :ToDom (rapidjson: :Document&)
{

rapidjson::Value v;

if (debug)

std::cout « value « std::endl;
v.SetDouble (value);
return vy

}

void
ISDouble: :FromDom(rapidjson::Value& v, rapidjson::Documenté&)
{
assert (v.IsDouble());
value = v.GetFloat ();
}

rapidjson::Value
ISBool::ToDom(rapidjson: :Document&)
{

rapidjson::Value v;

v.SetBool (value);

recurn vy

}

void
ISBool::FromDom (rapidjson::Value& v, rapidjson::Documenté&)
{

assert (v.IsBool());

value = v.GetBool();

}

rapidjson::Value

ISString::ToDom(rapidjson: :Documenté& d)

{
rapidjson::Value v;
v.SetString(value.c_str(), d.GetAllocator());
recurn vy,

}

void
ISString::FromDom(rapidjson::Value& v, rapidjson::Documenté)
{

assert (v.IsString());

value = v.GetString();

}

rapidjson::Value
ISValue::ToDom(rapidjson::Document& d)
{

ISProperties p = GetProperty();

rapidjson::Value v;
v.SetObject () ;
v.AddMember ("TypeId", GetName(d), d.GetAllocator());

for (auto& element : p) {
rapidjson::Value n;
n.SetString(element.name, d.GetAllocator());
if (element.value != nullptr)
v.AddMember (n, element.value->ToDom(d), d.GetAllocator());
}
return vy

}

void
ISValue::FromDom(rapidjson::Value& v, rapidjson::Documenté& d)
{

ISProperties p = GetProperty();

if (v.IsObject()) {

Generated by Doxygen

12.63 serializer.cpp

235

00117
00118
00119
00120
00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
00169
00170
00171
00172
00173
00174
00175
00176
00177
00178
00179
00180
00181
00182
00183
00184
00185
00186
00187
00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
00201
00202
00203

for (auto& element : p) {
element.value->FromDom (v [element.name],

}

rapidjson::Value
ISIntVector::ToDom(rapidjson: :Document& d)
{
rapidjson::Value a;
a.SetArray();
for (auto& element : value) {
rapidjson::Value v;
v.SetInt (element);
a.PushBack (v, d.GetAllocator());
}
return ajy

}

void

d);

ISIntVector::FromDom(rapidjson::Value& v, rapidjson::Documenté)

{

for (rapidjson::SizeType i = 0; 1 < v.Size();

i++) { // rapidjson uses SizeType instead of size_t.

value.push_back (v[i].GetInt());
}

rapidjson::Value
ISFloatVector: :ToDom(rapidjson: :Document& d)
{
rapidjson::Value a;
a.SetArray();
for (auto& element : value) {
rapidjson::Value v;
v.SetFloat (element) ;
a.PushBack (v, d.GetAllocator());

return ay

}

void

ISFloatVector: :FromDom (rapidjson::Value& v, rapidjson::Document&)

{
for (rapidjson::SizeType 1 = 0; i < v.Size();

i++) { // rapidjson uses SizeType instead of size_t.

value.push_back (v[i].GetFloat());
}

rapidjson::Value
ISDoubleVector::ToDom(rapidjson: :Document& d)
{
rapidjson::Value a;
a.SetArray () ;
for (auto& element : value) {
rapidjson::Value v;
v.SetDouble (element) ;
a.PushBack (v, d.GetAllocator());
}
return ay

}

void

ISDoubleVector: :FromDom(rapidjson::Value& v, rapidjson::Documenté&)

{

(rapidjson::SizeType i = 0; 1 < v.Size();

i++) { // rapidjson uses SizeType instead of size_t.

value.push_back (v[i].GetDouble());
}

int

ISConstructors::AddConstructor (std::string name, ISValuePtr

{

m_TheRegistry[name] = creator;

return 0;

}

ISValuePtr
ISConstructors::GetObject (std::string name)

{

Json::ISValuePtr (*cnsctr) () = m_TheRegistry[name];

Json::ISValuePtr no = cnsctr();
return no;

(xcreator) ()

Generated by Doxygen

236 File Documentation
00204

00205 void

00206 serialize (std::string filename, ISValuex top)

00207 {

00208 rapidjson: :Document document;

00209 document . SetObject () ;

00210

00211 ISProperties p = top->GetProperty();

00212

00213 document . AddMember ("TypeId", top->GetName (document),

00214 document .GetAllocator());

00215

00216 for (auto& element : p) {

00217 rapidjson::Value n;

00218 n.SetString(element.name, document.GetAllocator());
00219 (element.value != nullptr

00220 document .AddMember (n, element.value->ToDom (document),
00221 document .GetAllocator());

00222 }

00223

00224 rapidjson::StringBuffer sb;

00225

00226 rapidjson::PrettyWriter<rapidjson::StringBuffer> writer (sb);
00227 document .Accept (

00228 writer); // Accept() traverses the DOM and generates Handler events.
00229 std::fstream jsonout (filename, std::ios_base::out);

00230 jsonout « sb.GetString() « std::endl;

00231 jsonout.close () ;

00232 }

00233

00234 void

00235 deserialize(std::string filename, ISValuex top)

00236 {

00237 rapidjson: :Document document;

00238

00239 std::ifstream ifs(filename);

00240 rapidjson::IStreamWrapper isw(ifs);

00241

00242 document .ParseStream (isw) ;

00243 ISProperties p = top->GetProperty();

00244 1f (document.IsObject()) {

00245 for (auto& element p) {

002406 element.value->FromDom (document [element .name], document);
00247 }

00248 }

00249 }

00250

00251 } // namespace Json

12.64 src/gui/action.cpp File Reference

#include "gui/action.h"
#include <QAction>
#include <QWidget>

Namespaces

* namespace Gui

12.65 action.cpp

Go to the documentation of this file.

00001
00002
00003
00004
00005
00006
00007

#include "gui/action.h"

#include <QAction>
#finclude <QWidget>

namespace Gui

Generated by Doxygen

12.66 src/gui/agent_controls.cpp File Reference

237

00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018

}

Action::Action (QWidget* parent, const QString& label, void (xonClick) (void),

}

const QKeySequenceé& shortcut)
QAction (parent)

setText (label);
setShortcut (shortcut) ;
QObject::connect (this, &QAction::triggered, onClick);

// namespace Gui

12.66 src/gui/agent_controls.cpp File Reference

#include "gui/agent_controls.h"
#include <QColorDialog>
#include <QLabel>

Namespaces

* namespace Gui

12.67 agent_controls.cpp

Go to the documentation of this file.
00001 #include "gui/agent_controls.h"

00002
00003

00005

#include <QColorDialog>
00004 #include <QLabel>

00006 namespace Gui

00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044

{

AgentControls::AgentControls (QWidget* parent)

QFrame (parent), m_Layout{ new QGridLayout (this) },
m_ActiveAgentComboBox{ new QComboBox (this) 1},
m_ActiveAgentColorBox{ new ColorBox(this) },

m_NewAgentButton{ new QPushButton (this) }, m_ActiveAgentIndex{}

setObjectName ("AgentControls") ;

setFrameStyle (QFrame: :Panel | QFrame::Raised);

QLabelx heading{ new QLabel (this) };

heading->setText ("Agent Controls");

m_Layout->addWidget (heading, 0, 0, 1, 3, Qt::AlignHCenter);
QFramex hLine{ new QFrame (this) };
hLine->setFrameStyle (QFrame: :HLine | QFrame::Sunken);

m_Layout->addWidget (hLine, 1, 0, 1, 3);

QFramex activeAgentFrame{ new QFrame (this) };

activeAgentFrame->setFrameStyle (QFrame: :Panel | QFrame::Raised);

OGridLayoutx activeAgentFrameLayout{ new QGridLayout (
activeAgentFrame) };
QLabel* activeAgentHeading{ new QLabel (activeAgentFrame) };
activeAgentHeading->setText ("Active agent");
activeAgentFramelayout->addWidget (activeAgentHeading, 0, O,
Qt::AlignLeft);
m_ActiveAgentComboBox->setCursor (Qt::PointingHandCursor) ;
activeAgentFrameLayout->addWidget (m_ActiveAgentComboBox, 1,
activeAgentFrameLayout->addWidget (m_ActiveAgentColorBox, 1,
m_Layout->addWidget (activeAgentFrame, 2, 0, 1, 3);

m_NewAgentButton->setText ("New agent");
m_NewAgentButton->setCursor (Qt::PointingHandCursor) ;
m_Layout->addWidget (m_NewAgentButton, 3, 0, 1, 3);

connect (m_ActiveAgentComboBox, SIGNAL (currentIndexChanged (int)),

SLOT (SetActiveAgentIndex (int)));

this,

Generated by Doxygen

238 File Documentation

00045

00046 connect (m_NewAgentButton, &QPushButton::clicked,

00047 [this] () { emit AddAgent (); 1});

00048

00049 connect (m_ActiveAgentColorBox, SIGNAL (ColorUpdated(QColor)), this,
00050 SLOT (SetAgentColor (QColor)));

00051 }

00052

00053 void

00054 AgentControls::SetAgentColor (QColor color)

00055 {

00056 auto agent =

00057 std::find_if (m_Agents.first, m_Agents.second,

00058 [&] (const Core::Agent& agent) { return agent.Id == m_ActiveAgentIndex; });
00059 f (agent != m_Agents.second) {

00060 agent->Color = color.name () .toStdString();

00061 }

00062

00063 emit AgentChanged (m_Agents) ;

00064 }

00065

00066 void

00067 AgentControls: :UpdateAgents (

00068 std::pair<std::vector<Core::Agent>::iterator, std::vector<Core::Agent>::iterator>
00069 agents)

00070 {

00071 m_Agents = agents;

00072 m_ActiveAgentComboBox->clear () ;

00073 for (auto iter{ agents.first }; iter != agents.second; ++iter) {
00074 QString newAgentText = "Agent " + QString::number (iter->Id);
00075 m_ActiveAgentComboBox->blockSignals (true);

00076 m_ActiveAgentCompboBox->insertItem(iter->Id, newAgentText);
00077 m_ActiveAgentComboBox->setCurrentIndex (iter->Id);

00078 m_ActiveAgentComboBox->blockSignals (false);

00079 }

00080 m_ActiveAgentIndex = m_ActiveAgentComboBox->currentIndex();
00081

00082 m_ActiveAgentColorBox—->update () ;

00083 emit AgentChanged (m_Agents);

00084 emit ActiveAgentChanged (m_ActiveAgentIndex);

00085 }

00086

00087 void

00088 AgentControls::SetActiveAgentIndex (int index)

00089 {

00090 if (index == -1) {

00091 return;

00092 }

00093

00094 m_ActiveAgentIndex = index;

00095 auto agent =

00096 std::find_if (m_Agents.first, m_Agents.second,

00097 [&] (const Core::Agent& agent) { return agent.Id == index; });
00098 if (agent != m_Agents.second) {

00099 m_ActiveAgentColorBox->UpdateColor (

00100 QColor (QString::fromStdString (agent->Color)));

00101 }

00102

00103 m_ActiveAgentColorBox->update () ;

00104 emit ActiveAgentChanged (m_ActiveAgentIndex);

00105 }

00106

00107 void

00108 AgentControls::SyncColor ()

00109 {

00110 auto agent =

00111 std::find_if (m_Agents.first, m_Agents.second,

00112 [&] (const Core::Agent& agent) { return agent.Id == m_ActiveAgentIndex; });
00113 if (agent != m_Agents.second) {

00114 m_ActiveAgentColorBox—->UpdateColor (

00115 QColor (QString::fromStdString (agent->Color)));

00116 }

00117

00118 m_ActiveAgentColorBox—->update () ;

00119 }

00120

00121 } // namespace Gui

12.68 src/gui/color_box.cpp File Reference

#include "gui/color_box.h"
#include <QPainter>

Generated by Doxygen

12.69 color_box.cpp

239

#include <QPainterPath>

Namespaces

* namespace Gui

12.69 color_box.cpp

Go to the documentation of this file.

#include "gui/color_box.h"

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066

#include <QPainter>
#include <QPainterPath>

namespace Gui

{

}

ColorBox::ColorBox (QWidget* parent)

QPushButton (parent), m_Color{ Qt::gray },

m_ColorDialog{ new QColorDialog(this)

setObjectName ("ColorBox") ;
setFixedSize (50, 50);

setCursor (Qt::PointingHandCursor) ;

m_ColorDialog->setModal (true);

}

void

ColorBox::paintEvent (QPaintEvent* event)

{
if (m_Color.isvalid()) {
QPainter painter(this);

}

painter.setRenderHint (QPainter::Antialiasing);

int radius = gRound (width (

QPainterPath path;
path.addRoundedRect (rect (),

* 0.2);

radius,

painter.fillPath (path, m_Color);

painter.setPen({ Qt::black,
painter.drawPath (path);

}

void

2

1)

// Adjust the factor as needed

radius) ;

ColorBox: :mousePressEvent (QMouseEvent* event)

{
SelectColor();
}

void
ColorBox: :UpdateColor (QColor color)
{

m_Color = color;

m_ColorDialog->setCurrentColor (color);

}

void

ColorBox::SelectColor ()

{
m_ColorDialog->open() ;
m_ColorDialog->raise();
m_ColorDialog->exec();

QColor color = m_ColorDialog->selectedColor();

(color.isvalid()) {
m_Color = color;
update () ;

emit ColorUpdated (m_Color);

}

// namespace Gui

Generated by Doxygen

240

File Documentation

12.70 src/gui/keyframe_controls.cpp File Reference

#include
#include

"gui/keyframe_controls.h"
<QLabel>

Namespaces

* namespace Gui

12.71 keyframe_controls.cpp

Go to the documentation of this file.
00001 #include "gui/keyframe_controls.h"

00002

00003 #include <QLabel>

00004

00005 namespace Gui

00006 {

00007

00008 KeyframeControls::KeyframeControls (QWidget* parent)

00009 QFrame (parent), m_Layout{ new QGridLayout (this) },

00010 m_KeyframeList{ new KeyframeList (this) },

00011 m_DeleteKeyframesButton{ new QPushButton (this) }

00012 {

00013 setObjectName ("KeyframeControls");

00014

00015 setFrameStyle (QFrame: :Panel | QFrame::Raised);

00016

00017 QLabelx heading{ new QLabel (this) };

00018 heading->setText ("Keyframe Controls");

00019 m_Layout->addWidget (heading, 0, 0, 1, 3, Qt::AlignHCenter);
00020

00021 QFrame* hLine{new QFrame (this)};

00022 hLine->setFrameStyle (QFrame: :HLine | QFrame::Sunken);

00023 m_Layout->addWidget (hLine, 1, 0, 1, 3);

00024

00025 QFrame* keyframeListFrame{new QFrame (this)};

00026 QVBoxLayout* keyframelListFramelLayout{new QVBoxLayout (keyframeListFrame) };
00027 QLabelx keyframelistFrameHeading{new QLabel (keyframeListFrame) };
00028 keyframeListFrameHeading->setText ("Keyframes") ;

00029 keyframeListFrameHeading—>setAlignment (Qt::AlignLeft) ;
00030 keyframeListFrameLayout->addWidget (keyframeListFrameHeading) ;
00031 keyframelistFrameLayout->addWidget (m_KeyframelList);

00032 m_Layout->addWidget (keyframelListFrame, 2, 0, 5, 3);

00033

00034 m_DeleteKeyframesButton->setText ("Delete keyframe(s)");
00035 m_DeleteKeyframesButton->setCursor (Qt::PointingHandCursor) ;
00036 m_Layout->addWidget (m_DeleteKeyframesButton, 7, 0, 1, 3);
00037

00038 connect (m_DeleteKeyframesButton, &QPushButton::clicked, [this] () {
00039 emit DeleteSelectedKeyframes();

00040 })i

00041 }

00042

00043 } // namespace Gui

12.72 src/gui/keyframe_list.cpp File Reference

#include
#include
#include
#include

"gui/keyframe_list.h"
"keyframe_management/keyframe_manager.h"
<QListWidgetItem>

<QVariant>

Generated by Doxygen

12.73 keyframe_list.cpp

241

Namespaces

* namespace Gui

12.73 keyframe_list.cpp

Go to the documentation of this file.
00001 #include "gui/keyframe_list.h"

00002

00003 #include "keyframe_management/keyframe_manager.h"

00004

00005 #include <QListWidgetItem>
00006 #include <QVariant>

00007
00008 namespace Gui
00009 {

00010

00011 KeyframeList::KeyframeList (QWidget parent)

00012 : QListWidget (parent), m_Layout (new QVBoxLayout (this))

00013 {

00014 setObjectName ("KeyframeList");

00015 Update () ;

00016 }

00017

00018 void

00019 KeyframeList: :Update ()

00020 {

00021 clear();

00022 auto& keyframes =

00023 KeyframeManagement : :KeyframeManager: :Instance () .GetKeyframes () ;
00024 fo (auto& keyframe : keyframes) {

00025 QString itemText =

00026 QString ("AgentId: %1, TimeStamp: %2, X: %3, Y: %4, Z: %5"
00027 .arg (keyframe.AgentId)

00028 .arg (keyframe.TimeStamp)

00029 .arg(keyframe.Position.X)

00030 .arg(keyframe.Position.Y)

00031 .arg(keyframe.Position.Zz);

00032 QListWidgetItemx item = new QListWidgetItem(itemText, this);
00033 item->setFlags (item->flags () | Qt::ItemIsUserCheckable);
00034 item->setCheckState (Qt: :Unchecked) ;

00035 item->setData (Qt::UserRole, QVariant::fromValue (keyframe));
00036 }

00037 }

00038

00039 void

00040 KeyframeList::DeleteSelected()

00041 {

00042 “or (int i = count() - 1; i >= 0; —--1i) {

00043 QListWidgetItem* itemToCheck = item (1) ;

00044 (itemToCheck—>checkState () == Qt::Checked) {

00045 KeyframeManagement : :KeyframeManager: :Instance () .RemoveKeyframe (
00046 itemToCheck->data (Qt::UserRole) .value<Core: :Keyframe>());
00047 delete takeltem(i);

00048 }

00049 }

00050 Update () ;

00051 }

00052

00053 } // namespace Gui

12.74 src/gui/launcher.cpp File Reference

#include "gui/launcher.h"
#include <QLabel>

Namespaces

* namespace Gui

Generated by Doxygen

242 File Documentation

12.75 launcher.cpp

Go to the documentation of this file.

00001 #include "gui/launcher.h"

00002

00003 #include <QLabel>

00004

00005 namespace Gui

00006 {

00007 Launcher: :Launcher (QWidget* parent)

00008 : QWidget (parent), m_Layout (new QVBoxLayout (this)
00009 {

00010 setObjectName ("Launcher") ;

00011 QLabelx title = new QLabel (this);

00012 title->setText ("Launcher");

00013 title->setAlignment (Qt::AlignHCenter | Qt::AlignVCenter);
00014 m_Layout->addWidget (title);

00015 }

00016

00017 Launcher: :~Launcher () {}

00018 } // namespace Gui

12.76 src/gui/main_content.cpp File Reference

finclude "gui/main_content.h"

#include "coordinate_converter/coordinate_converter.h"
#include <QPushButton>

#include <QSplitter>

Namespaces

* namespace Gui

12.77 main_content.cpp

Go to the documentation of this file.
00001 #include "gui/main_content.h"

00002

00003 #include "coordinate_converter/coordinate_converter.h"
00004

00005 nclude <QPushButton>

00006 #include <QSplitter>

00007

00008 namespace Gui

00009 {

00010 MainContent::MainContent (QWidget* parent)

00011 : QWidget (parent), m_Layout (new QGridLayout (this)),

00012 // m_Scenario (std::make_shared<Scenario> (

00013 // "Test scenario", GeographicalCoordinate (59.66584230, 9.65059460)
00014 // 2700)),

00015 m_Sidebar (new Sidebar), m_TabWidget (new TabWidget (this))
00016 {

00017 setObjectName ("MainContent") ;

00018 QSplitterx splitter = new QSplitter (Qt::Horizontal, this);
00019 splitter—>addWidget (m_Sidebar) ;

00020 splitter->addWidget (m_TabWidget) ;

00021 splitter—->setStretchFactor (0, 1);

00022 splitter->setStretchFactor (1, 1000);

00023

00024 splitter->setChildrenCollapsible (false);

00025

00026 m_Layout->addWidget (splitter, 0, 0);

00027 m_Layout->setColumnStretch (0, 1);

00028 m_Layout->setRowStretch (0, 1);

00029 }

00030

00031 } // namespace Gui

Generated by Doxygen

12.78 src/gui/main_window.cpp File Reference 243

12.78 src/gui/main_window.cpp File Reference

#include "gui/main_window.h"
#include <QDebug>
#include <QRandomGenerator>

Namespaces

* namespace Gui

Functions

« static QColor getRandomColor ()

12.78.1 Function Documentation

12.78.1.1 getRandomColor()

static QColor getRandomColor () [static]
Definition at line 7 of file main_window.cpp.

Referenced by Gui::MainWindow::CreateNewAgent().

12.79 main_window.cpp

Go to the documentation of this file.
00001 #include "gui/main_window.h"
00002

00003 #include <QDebug>

00004 #include <QRandomGenerator>
00005

00006 static QColor

00007 getRandomColor ()

00008 {

00009 QRandomGenerator* generator{ QRandomGenerator::global() };
00010 auto r = static_cast<float> (generator->generateDouble());
00011 auto g = static_cast<float> (generator->generateDouble());
00012 auto b = static_cast<float> (generator->generateDouble());
00013 Y QColor::fromRgbF (r, g, b);

00014 1}

00015

00016 namespace Gui

00017 {

00018 MainWindow: :MainWindow (QWidget* parent)

00019 : QMainWindow (parent), m_MenuBar{ new MenuBar (this) },
00020 m_MainContent{ new MainContent (this) 1},

00021 m_Scenario{ std::make_shared<CompileScenario::Scenario> (
00022 "Untitled Scenario",

00023 Core: :GeographicalCoordinate (59.66584230, 9.65059460), 2700) 1},
00024 m_ScenarioSettingsDialog{ new MapDialog(this) }

00025 {

00026 setObjectName ("MainWindow") ;

00027 setWindowTitle ("Hivemind") ;

00028 setWindowIcon (QIcon(":/icons/logo_transparent_512.png"));

Generated by Doxygen

244 File Documentation
00029 setMenuBar (m_MenuBar) ;

00030 setCentralWidget (m_MainContent) ;

00031 resize (1280, 720);

00032

00033 ConnectSlotsAndSignals () ;

00034 CreateNewAgent () ;

00035 }

00036

00037 MainWindow: :~MainWindow () {}

00038

00039 void

00040 MainWindow: :ConnectSlotsAndSignals (

00041 {

00042 // Menu bar signals

00043 connect (m_MenuBar, SIGNAL (SaveScenario (const std::stringé&)), this,
00044 SLOT (SaveScenario (const std::stringé&)));

00045 connect (m_MenuBar, SIGNAL (LoadScenario (const std::string&)), this,
00046 SLOT (LoadScenario (const std::string&)));

00047

00048 // Connect keyframe list and keyframe manager

00049 auto keyframeList{ findChild<KeyframeListx> ("KeyframeList") };
00050 if (keyframeList) {

00051 connect (&KeyframeManagement : :KeyframeManager: :Instance (),
00052 SIGNAL (KeyframeAdded()), keyframelList, SLOT (Update()));
00053 connect (this, SIGNAL(ScenarioLoaded()), keyframelist,

00054 SLOT (Update ()));

00055 }

00056

00057 auto mapViewer{ findChild<MapViewerx> ("MapViewer") };

00058 if (mapViewer) {

00059 // Connect map viewer and keyframe manager

00060 connect (&KeyframeManagement : :KeyframeManager: :Instance (),
00061 SIGNAL (KeyframeAdded()), mapViewer, SLOT (update()));
00062

00063 // Connect satellite image request and map loading

00064 connect (&MapManagement : :MapManager: :Instance (),

00065 &MapManagement : :MapManager: :RequestImage, mapViewer,
00066 &MapViewer::WaitForData);

00067 connect (&§MapManagement : :MapManager: : Instance (),

00068 &MapManagement : :MapManager: :GotImage, mapViewer,

00069 &MapViewer: :DataReceived) ;

00070

00071 connect (

00072 this,

00073 SIGNAL (ScenarioCompiled (

00074 std::pair<CompileScenario::Scenario::RouteMap::iterator,
00075 CompileScenario::Scenario::RouteMap::iterator>)),
00076 mapViewer,

00077 SLOT (UpdateRoutes (

00078 std::pair<CompileScenario::Scenario::RouteMap::iterator,
00079 CompileScenario::Scenario::RouteMap::iterator>)));
00080

00081 auto timeline{ findChild<Timeline*> ("Timeline") };

00082 if (timeline) {

00083 connect (timeline, SIGNAL (timeStampSelected(float)), mapViewer,
00084 SLOT (UpdateTimeStamp (float)));

00085 }

00086 }

00087

00088 // Connect deletion of keyframes in GUI

00089 auto keyframeControls{ findChild<KeyframeControlsx>(

00090 "KeyframeControls") };

00091 if (keyframeControls && keyframeList) {

00092 connect (keyframeControls, SIGNAL (DeleteSelectedKeyframes()),
00093 keyframelist, SLOT (DeleteSelected()));

00094 }

00095

00096 auto scenarioControls{ findChild<ScenarioControlsx> (

00097 "ScenarioControls") };

00098 if (scenarioControls) {

00099 connect (scenarioControls, SIGNAL (OpenSettingsDialog()),

00100 m_ScenarioSettingsDialog, SLOT (exec()));

00101 connect (m_ScenarioSettingsDialog,

00102 SIGNAL (MapDataReady (float, float, float)), this,
00103 SLOT (UpdateScenario (float, float, float)));

00104 connect (scenarioControls, SIGNAL (CompileScenario()), this,
00105 SLOT (CompileScenario()));

00106 }

00107

00108 auto agentControls{ findChild<AgentControls*>("AgentControls") };
00109 (agentControls) {

00110 connect (this, SIGNAL (SyncAgentColor()), agentControls,

00111 SLOT (SyncColor()));

00112 if (mapViewer) {

00113 connect (agentControls,

00114 SIGNAL (AgentChanged (

00115 std::pair<std::vector<Core::Agent>::iterator,

Generated by Doxygen

12.80 src/gui/map_dialog.cpp File Reference

00116 std::vector<Core::Agent>::iterator>)),
00117 mapViewer,

00118 SLOT (UpdateAgents (

00119 std::pair<std::vector<Core::Agent>::iterator,
00120 std::vector<Core::Agent>::iterator>)));
00121 connect (agentControls, SIGNAL (ActiveAgentChanged(int)),
00122 mapViewer, SLOT (UpdateActiveAgent (int)));

00123 }

00124

00125 connect (

00126 this,

00127 SIGNAL (AgentAdded (std: :pair<std::vector<Core::Agent>::iterator,
00128 std::vector<Core::Agent>::iterator>)),
00129 agentControls,

00130 SLOT (UpdateAgents (std: :pair<std::vector<Core::Agent>::iterator,
00131 std::vector<Core::Agent>::iterator>)));
00132

00133 connect (agentControls, SIGNAL(AddAgent()), this,

00134 SLOT (CreateNewAgent ())) ;

00135 }

00136 }

00137

00138 void

00139 MainWindow: :SaveScenario (const std::string& filepath)

00140 {

00141 m_Scenario->save (filepath);

00142 }

00143

00144 void

00145 MainWindow: :LoadScenario (const std::string& filepath)

00146 {

00147 m_Scenario->load(filepath);

00148 emit AgentAdded (m_Scenario->GetAgents());

00149 emit ScenarioLoaded();

00150 update () ;

00151 }

00152

00153 void

00154 MainWindow: :UpdateScenario(float latitude, float longitude, float size)
00155 {

00156 Core::GeographicalCoordinate coord{ latitude, longitude };

00157 m_Scenario->SetOrigin(coord, static_cast<int>(size));

00158 }

00159

00160 void

00161 MainWindow: :CompileScenario ()

00162 {

00163 m_Scenario->Compile () ;

00164 auto routes = m_Scenario->GetRoutes();

00165 emit ScenarioCompiled(m_Scenario->GetRoutes());

00166 }

00167

00168 void

00169 MainWindow: :CreateNewAgent (

00170 {

00171 int maxId{ -1 };

00172 auto agents = m_Scenario->GetAgents () ;

00173 for (auto iter{ agents.first }; iter != agents.second; ++iter) {
00174 maxId = std::max (maxId, iter->Id);

00175 }

00176 int id{ maxId == -1 ? 0 : maxId + 1 };

00177

00178 std::string color = getRandomColor ().name ().toStdString();

00179 m_Scenario->AddAgent ({ id, "Untitled agent", color });

00180 emit AgentAdded (m_Scenario->GetAgents());

00181 emit SyncAgentColor();

00182 }

00183

00184 } // namespace Gui

12.80 src/gui/map_dialog.cpp File Reference

#include "gui/map_dialog.h"

#include "coordinate_converter/coordinate_converter.h"
#include <QLabel>

#include <QtGui>

#include <QtWidgets>

Generated by Doxygen

246

File Documentation

Namespaces

* namespace Gui

12.81

map_dialog.cpp

Go to the documentation of this file.

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064

#include
//#inclu
#include
#include
#include
#include
namespac
{

MapD

{

}
void
MapD
{

}

} // nam

"gui/map_dialog.h"

de "keyframe_management/keyframe_management.h"
"coordinate_converter/coordinate_converter.h"
<QLabel>
<QtGui>
<QtWidgets>

e Gui

ialog::MapDialog (QWidget* parent) : QDialog(parent)

QVBoxLayoutx layout = new QVBoxLayout (this);

QLabelx xCoordinate = new QLabel ("Enter latitude:", this);
layout->addWidget (xCoordinate) ;

m_LatitudeCoordInput = new QLineEdit (this);
layout—->addWidget (m_LatitudeCoordInput) ;

QLabelx yCoordinate = new QLabel ("Enter longitude:", this);
layout—->addWidget (yCoordinate) ;

m_LongitudeCoordInput = new QLineEdit (this);
layout—->addWidget (m_LongitudeCoordInput) ;

QLabelx size = new QLabel ("Size:", this);
layout—->addWidget (size);

m_SizeInput = new QLineEdit (this);
layout—->addWidget (m_SizeInput) ;

QPushButtonx finishButton = new QPushButton ("Set location", this);
layout->addWidget (finishButton) ;

QObject::connect (finishButton, SIGNAL(clicked()), this, SLOT(Finish()));
QObject: :connect (finishButton, SIGNAL (clicked()), this, SLOT (accept()));

layout->addStretch (1) ;

ialog::Finish ()
bool conversionOk;

float x = m_LatitudeCoordInput->text ().toFloat (&conversionOXk);
(!conversionOk)

return;

float y = m_LongitudeCoordInput->text ().toFloat (&conversionOk) ;
(!conversionOk)
return;

float size = m_SizeInput->text () .toFloat (&conversionOk) ;

if (!conversionOk)

return;

emit MapDataReady (x, y, size);
emit Finished();

m_LatitudeCoordInput->clear (

;
m_LongitudeCoordInput->clear();
m_SizeInput->clear();

espace Gui

12.82 src/gui/map_viewer.cpp File Reference

#include "gui/map_viewer.h"
#include "gui/main_window.h"

Generated by Doxygen

12.83 map_viewer.cpp

247

#include <QPainter>
#include <QRandomGenerator>
#include <QTimer>

Namespaces

* namespace Gui

12.83 map_viewer.cpp

Go to the documentation of this file.
00001 #include "gui/map_viewer.h"

00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064

#include

#include
#include
#include

"gui/main_window.h"

<QPainter>
<QRandomGenerator>
<QTimer>

namespace Gui

{

MapViewer: :MapViewer (QWidget* parent)

}

QWidget (parent), m_WaitingForData (true),

m_WaitingForDataTimer (new QTimer (this)), m_LoaderAngle (0),
m_LoaderSize (100), m_LoaderSpeed(180.0f), m_LoaderSpan(270.0f),

m_LoaderThickness (8), m_StartX{}, m_StartY{}, m_Size{},
m_ActiveAgentId{}, m_TimeStamp{}

setObjectName ("MapViewer") ;

connect (m_WaitingForDataTimer, &QTimer::timeout, this, [this] ()
gint64 elapsedMilliseconds = m_WaitingForDataElapsedTimer.elapsed();

float deltaTimeSeconds =
static_cast<float> (elapsedMilliseconds) / 1000.0f;

m_LoaderAngle —-= m_LoaderSpeed x deltaTimeSeconds;
m_WaitingForDataElapsedTimer.restart () ;
update () ;

1)

setSizePolicy (QSizePolicy: :Expanding, QSizePolicy::Expanding);

UpdateRenderingArea();

m_WaitingForDataElapsedTimer.start ();
WaitForData();

void
MapViewer: :paintEvent (QPaintEventx event)

{

}

QPainter painter (this);

if (m_WaitingForData) {
DrawLoader (painter) ;
return;

}

QOByteArray mapData = MapManagement::MapManager: :GetData () ;
1f (!mapData.isEmpty()) {
int pixmapResolution{
MapManagement : :MapManager: :Get ImageResolution ()
}i
QPixmap pixmap (pixmapResolution, pixmapResolution);
pixmap.loadFromData (mapData) ;
painter.drawPixmap (m_StartX, m_Starty,
pixmap.scaled(m_Size, m_Size));

}

DrawRoutes (painter) ;
DrawKeyframes (painter) ;

void
MapViewer::resizeEvent (QResizeEvent* event)

{

Generated by Doxygen

248 File Documentation
00065 UpdateRenderingArea();

00066 }

00067

00068 void

00069 MapViewer: :mousePressEvent (QMouseEvent* event)

00070 {

00071 event->ignore () ;

00072

00073 // Only respond to left mouse button clicks

00074 (event->button() != Qt::LeftButton) {

00075 return;

00076 }

00077

00078 // Ignore clicks 1f they are outside the rendering area
00079 int x = static_cast<int> (event->position().x());

00080 int y = static_cast<int>(event->position().y());

00081 bool contained = (x >= m_StartX && x < (m_StartX + m_Size) &&
00082 y >= m_StartY && y < (m_StartY + m_Size));
00083 (!contained) {

00084 return;

00085 }

00086

00087 // Relative coordinates of mouse click within the rendering area
00088 float xRel{ static_cast<float>(x — m_StartX) };

00089 float yRel{ static_cast<float>(y - m_StartY) };

00090

00091 float size{ static_cast<float>(

00092 CoordinateConverter: :CoordConv: :GetSize ()) };

00093

00094 // Find relative coordinate within scenario space

00095 xRel = xRel * size / static_cast<float>(m_Size);

00096 yRel = yRel = size / static_cast<float>(m_Size);

00097 Core::CartesianCoordinate symmetricPosition{

00098 CoordinateConverter: :CoordConv: :AsymmetricToSymmetric (
00099 { xRel, yRel, 0 })

00100 bi

00101

00102 Core::Keyframe newKeyframe (m_ActiveAgentId, m_TimeStamp,
00103 symmetricPosition);

00104 KeyframeManagement: :KeyframeManager: :Instance () .AddKeyframe (
00105 newKeyframe) ;

00106 }

00107

00108 void

00109 MapViewer: :UpdateRenderingArea ()

00110 {

00111 int maxWidth = width();

00112 int maxHeight = height ();

00113

00114 m_Size = std::min(maxWidth, maxHeight);

00115 int marginX = maxWidth - m_Size;

00116 int marginY = maxHeight - m_Size;

00117

00118 m_StartX = marginX / 2;

00119 m_StartY = marginY / 2;

00120 }

00121

00122 void

00123 MapViewer: :WaitForData (

00124 {

00125 m_WaitingForData = true;

00126 m_WaitingForDataTimer->start (16);

00127 setCursor (Qt::WaitCursor) ;

00128 update () ;

00129 }

00130

00131 void

00132 MapViewer: :DataReceived ()

00133 {

00134 m_WaitingForData = false;

00135 m_WaitingForDataTimer->stop () ;

00136 setCursor (Qt::ArrowCursor) ;

00137 update () ;

00138 }

00139

00140 void

00141 MapViewer: :DrawKeyframes (QPainter& painter)

00142 {

00143 int radius = 8;

00144 int scenarioSize{ CoordinateConverter::CoordConv::GetSize () };
00145 auto keyframes =

00146 KeyframeManagement : :KeyframeManager: :Instance () .GetKeyframes () ;
00147 for (const Core::Keyframe& keyframe : keyframes) ({

00148 Core::CartesianCoordinate keyframePositionAsymmetric{
00149 CoordinateConverter: :CoordConv: :SymmetricToAsymmetric (
00150 keyframe.Position)

00151 }i

Generated by Doxygen

12.83 map_viewer.cpp

249

00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
00169
00170
00171
00172
00173
00174
00175
00176
00177
00178
00179
00180
00181
00182
00183
00184
00185
00186
00187
00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
00201
00202
00203
00204
00205
00206
00207
00208
00209
00210
00211
00212
00213
00214
00215
00216
00217
00218
00219
00220
00221
00222
00223
00224
00225
00226
00227
00228
00229
00230
00231
00232
00233
00234
00235
00236
00237
00238

}

void
MapV
{

}

void
MapV
{

int x{ static_cast<int>(
keyframePositionAsymmetric.X / scenarioSize * m_Size +
m_StartX - static_cast<float>(radius) / 2.0f) };

int y{ static_cast<int>(
keyframePositionAsymmetric.Y / scenarioSize * m_Size +
m_StartY - static_cast<float>(radius) / 2.0f) };

auto agent = std::find_if (m_Agents.first, m_Agents.second,
[&] (const Core::Agent& agent) {
return agent.Id == keyframe.AgentId;
3
QColor color (Qt::magenta);
if (agent != m_Agents.second) {
color = QColor (QString::fromStdString(agent->Color));
}

painter.setPen (Qt::black);
painter.setBrush({ color });
painter.drawEllipse(x, y, radius, radius);

iewer::DrawRoutes (QPainter& painter)

QPen pen(Qt::red, 2);
painter.setPen (pen);
painter.setRenderHint (QPainter::Antialiasing);

for (auto iter = m_Routes.first; iter != m_Routes.second; ++iter) {
int agentId = iter->first;
auto route = iter->second;
for (int j = 0; J < route.size(); Jj++) {
for (int k = 0; k < route[jl.size() - 1; k++) {

Core::CartesianCoordinate asymmetricA =
CoordinateConverter: :CoordConv: :SymmetricToAsymmetric (
route[Jj] [k]);
Core::CartesianCoordinate asymmetricB =
CoordinateConverter: :CoordConv: :SymmetricToAsymmetric (
route[Jj] [k + 11);

int x1{ static_cast<int>(
asymmetricA.X /
CoordinateConverter: :CoordConv: :GetSize () * m_Size
m_StartX) };
int yl{ static_cast<int>(
asymmetricA.Y /
CoordinateConverter: :CoordConv: :GetSize () * m_Size
m_StartY) };
int x2{ static_cast<int>(
asymmetricB.X /
CoordinateConverter: :CoordConv: :GetSize () * m_Size
m_StartX) };
int y2{ static_cast<int>(
asymmetricB.Y /
CoordinateConverter: :CoordConv: :GetSize () * m_Size
m_StartY) };

auto agent = std::find_if (m_Agents.first, m_Agents.second,
[&] (const Core::Agenté& agent) {
return agent.Id == agentId;
1)
QColor color (Qt::magenta);
if (agent != m_Agents.second) {
color = QColor (QString::fromStdString(agent->Color));
}

painter.setPen({ color, 2 });
painter.drawLine (x1, yl, x2, y2);

iewer::DrawlLoader (QPainter& painter) const

QColor hivemindOrange (227, 118, 39);

QPen pen (hivemindOrange, m_LoaderThickness, Qt::SolidLine,
Qt : :RoundCap) ;

painter.setPen (pen) ;

painter.setRenderHint (QPainter::Antialiasing);

int x{ m_StartX + (m_Size - m_LoaderSize) / };
int y{ m_StartY + (m_Size - m_LoaderSize) / };

’

2
2

QRectF rectangle(x, y, m_LoaderSize, m_LoaderSize);

Generated by Doxygen

250

File Documentation

00239

00240 // Multiply angles by 16 because Qt’s angles are specified 1/16th of a

00241 // degree

00242 int spanAngle = static_cast<int>(m_LoaderSpan) x 16;
00243 int startAngle = static_cast<int>(m_LoaderAngle) * 16;
00244 painter.drawArc(rectangle, startAngle, spanAngle);

00245 }

00246

00247 void

00248 MapViewer: :UpdateRoutes (

00249 std::pair<CompileScenario::Scenario::RouteMap::iterator,
00250 CompileScenario::Scenario::RouteMap::iterator>
00251 routes)

00252 {

00253 m_Routes = routes;

00254 update () ;

00255 }

00256

00257 void

00258 MapViewer: :UpdateAgents (std::pair<std::vector<Core::Agent>::iterator,
00259 std::vector<Core::Agent>::iterator>

00260 agents)
00261 {

00262 m_Agents = agents;

00263 update () ;

00264 }

00265

00266 } // namespace Gui

12.84 src/gui/menu_bar.cpp File Reference

#include "gui/menu_bar.h"
#include "gui/action.h"
#include "gui/main_content.h"
#include <QFileDialog>

Namespaces

* namespace Gui

Functions

* void quitApp (void)

12.84.1 Function Documentation

12.84.1.1 quitApp()

void quitApp (

void)

Generated by Doxygen

12.85 menu_bar.cpp

251

12.85 menu_bar.cpp

Go to the documentation of this file.
00001 #include "gui/menu_bar.h"
00002

00003 #include "gui/action.h"

00004 #include "gui/main_content.h"

00005

00006 #include <QFileDialog>

00007

00008 extern void quitApp (void);

00009

00010 namespace Gui

00011 {

00012

00013 MenuBar: :MenuBar (QWidget parent) : QMenuBar (parent)

00014 {

00015 QMenux menu = new QMenu (this);

00016 menu->setTitle ("File");

00017

00018 Action* newFile = new Action/(

00019 this, QString::fromUtf8 ("New"), [] {}, QKeySequence: :New);
00020 menu->addAction (newFile);

00021

00022 auto open = new QAction(this);

00023 open->setText ("Open...");

00024 open->setShortcut (QKeySequence: :Open) ;

00025 connect (open, &QAction::triggered, [this] () {

00026 QString filename = QFileDialog::getOpenFileName (
00027 this->window (), "Open scenario", QDir::currentPath(),
00028 "Hivemind Scenario Files (*.hmsc)");

00029 if (filename != "") {

00030 emit this->LoadScenario(filename.toStdString());
00031 }

00032 })i

00033 menu->addAction (open);

00034

00035 auto saveAs = new QAction(this);

00036 saveAs—->setText ("Save as...");

00037 saveAs->setShortcut (QKeySequence: : SaveAs) ;

00038 QObject::connect (saveAs, &QAction::triggered, [this] ()
00039 QString fileName = QFileDialog::getSaveFileName (
00040 this->window (), QString::fromUtf8("Save scenario"),
00041 QDir::currentPath(),

00042 QString::fromUtf8 ("Hivemind Scenario Files

00043 if (fileName != "") {

00044 emit this->SaveScenario (fileName.toStdString());
00045 }

00046)i

00047 menu->addAction (saveAs) ;

00048

00049 Actionx save = new Action (

00050 this, QString::fromUtf8 ("Save"), [] {}, QKeySequence::Save);
00051 menu->addAction (save);

00052

00053 addAction (menu->menulAction());

00054 }

00055

00056 } // namespace Gui

12.86 src/gui/planner.cpp File Reference

#include "gui/planner.h"

Namespaces

* namespace Gui

Generated by Doxygen

252

File Documentation

12.87 planner.cpp

Go to the documentation of this file.
00001 #include "gui/planner.h"

00002

00003 namespace Gui

00004 {

00005 Planner::Planner (QWidgetx parent)
00006 QSplitter (Qt::Vertical, parent),
00007 m_MapViewer (new MapViewer (this)),
00008 m_Timeline (new Timeline (this))
00009 {

00010 addWidget (m_MapViewer) ;

00011 addWidget (m_Timeline);

00012

00013 setStretchFactor (0, 1000);

00014 setStretchFactor (1, 1);

00015

00016 setChildrenCollapsible (false);
00017 }

00018

00019 Planner::~Planner () {}

00020 } // namespace Gui

12.88 src/gui/scenario_controls.cpp File Reference

#include "gui/scenario_controls.h"
#include <QLabel>

Namespaces

* namespace Gui

12.89 scenario_controls.cpp

Go to the documentation of this file.

00001 #include "gui/scenario_controls.h"

00002

00003 #include <QLabel>

00004

00005 namespace Gui

00006 {

00007

00008 ScenarioControls::ScenarioControls (QWidget* parent)
00009 : QFrame (parent), m_Layout{ new QGridLayout (this) 1},
00010 m_SettingsButton{ new QPushButton (this) },

00011 m_CompileButton{ new QPushButton (this) }

00012 {

00013 setObjectName ("ScenarioControls");

00014

00015 setFrameStyle (QFrame: :Panel | QFrame::Raised);

00016

00017 QLabel* heading{ new QLabel (this) };

00018 heading->setText ("Scenario settings");

00019 m_Layout->addWidget (heading, 0, 0, 1, 3, Qt::AlignHCenter);
00020

00021 QFrame* hLine{ new QFrame (this) };

00022 hLine->setFrameStyle (QFrame: :HLine | QFrame::Sunken);
00023 m_Layout->addWidget (hLine, 1, 0, 1, 3);

00024

00025 m_CompileButton->setText ("Compile scenario");

00026 m_CompileButton->setCursor (Qt::PointingHandCursor);
00027 m_Layout->addWidget (m_CompileButton, 2, 0, 1, 3);
00028

00029 m_SettingsButton->setText ("Scenario settings");
00030 m_SettingsButton->setCursor (Qt::PointingHandCursor) ;
00031 m_Layout->addWidget (m_SettingsButton, 3, 0, 1, 3);

Generated by Doxygen

12.90 src/gui/sidebar.cpp File Reference

253

00032

00033 connect (m_SettingsButton, &QPushButton::clicked,
00034 [this] () { emit OpenSettingsDialog(); 1});
00035

00036 connect (m_CompileButton, &QPushButton::clicked,
00037 [this] () { emit CompileScenario(); 1});
00038 }

00039

00040 } // namespace Gui

12.90 src/gui/sidebar.cpp File Reference

#include "gui/sidebar.h"

#include "compile_scenario/scenario.h"

#include "gui/keyframe_list.h"

#include "gui/map_dialog.h"

#include "gui/tab_widget.h"

#include "keyframe_management/keyframe_manager.h"
#include <QDialog>

#include <QLabel>

#include <QPushButton>

#include <iostream>

Namespaces

* namespace Gui

12.91 sidebar.cpp

Go to the documentation of this file.

00001 #include "gui/sidebar.h"

00002

00003 #include "compile_scenario/scenario.h"

00004 #include "gui/keyframe_list.h"

00005 #include "gui/map_dialog.h"

00006 #include "gui/tab_widget.h"

00007 #include "keyframe_management/keyframe_manager.h"
00008
00009 #include <QDialog>

00010 clude <QLabel>

00011 #include <QPushButton>

00012

00013 #include <iostream>

00014

00015 namespace Gui

00016 {

00017 Sidebar::Sidebar (QWidget* parent)

00018 : QWidget (parent), m_Layout (new QVBoxLayout (this)),
00019 m_ScenarioControls{ new ScenarioControls(this) 1},
00020 m_AgentControls{ new AgentControls(this) },

00021 m_KeyframeControls{ new KeyframeControls(this) }
00022 {

00023 setObjectName ("Sidebar") ;

00024

00025 m_Layout->addStretch(2);

00026

00027 QLabel* logoLabel = new QLabel (this);

00028 QPixmap logoPixmap (":/icons/logo_transparent_512.png");
00029 logoLabel->setPixmap (logoPixmap.scaled (QSize (100, 100)));
00030 logoLabel->setAlignment (Qt::AlignTop | Qt::AlignHCenter);
00031 m_Layout->addWidget (logoLabel) ;

00032

00033 m_Layout->addStretch(1l);

00034 m_Layout->addWidget (m_ScenarioControls);

00035 m_Layout->addStretch (1) ;

00036 m_Layout->addWidget (m_AgentControls) ;

00037 m_Layout->addStretch(1l);

00038 m_Layout->addWidget (m_KeyframeControls) ;

00039 m_Layout->addStretch(2);

00040 }

00041 } // namespace Gui

Generated by Doxygen

254 File Documentation

12.92 src/gui/simulator.cpp File Reference

#include "gui/simulator.h"
#include <QLabel>

Namespaces

* namespace Gui

12.93 simulator.cpp

Go to the documentation of this file.
00001 #include "gui/simulator.h"

00002

00003 #include <QLabel>

00004

00005 namespace Gui

00006 {

00007 Simulator::Simulator (QWidget* parent)

00008 : QWidget (parent),

00009 m_Layout (new QGridLayout (this))

00010 {

00011 setObjectName ("Simulator") ;

00012 QLabelx title = new QLabel (this);
00013 title->setText ("Simulator");
00014 title->setAlignment (Qt::AlignHCenter | Qt::AlignVCenter);
00015 m_Layout—->addWidget (title);

00016

00017 }

00018

00019 Simulator::~Simulator () {}

00020 } // namespace Gui

12.94 src/gui/tab_widget.cpp File Reference

#include "gui/tab_widget.h"
#include "gui/map_viewer.h"

Namespaces
* namespace Gui
12.95 tab_widget.cpp

Go to the documentation of this file.
00001 #include "gui/tab_widget.h"

00002

00003 #include "gui/map_viewer.h"

00004

00005 namespace Gui

00006 {

00007 TabWidget::TabWidget (QWidget* parent)

00008 : QTabWidget (parent),

00009 m_Simulator (new Simulator (this)), m_Launcher (new Launcher (this)),
00010 m_Planner (new Planner (this)

Generated by Doxygen

12.96 src/gui/timeline.cpp File Reference

255

00011 {

00012 setObjectName ("TabWidget");

00013

00014 addTab (m_Planner, "Planner");
00015 addTab (m_Simulator, "Simulator");
00016 addTab (m_Launcher, "Launcher");
00017

00018 }

00019

00020 TabWidget::~TabWidget () {}

00021 } // namespace Gui

12.96 src/gui/timeline.cpp File Reference

#include "gui/timeline.h"

#include "keyframe_management/keyframe_manager.h"

#include <QComboBox>
#include <QHBoxLayout>
#include <QMessageBox>
#include <QMouseEvent>
#include <QPaintEvent>
#include <QPainter>

Namespaces

* namespace Gui

12.97 timeline.cpp

Go to the documentation of this file.

00001 #include "gui/timeline.h"

00002 #include "keyframe_management/keyframe_manager.h"
00003 4 > <QComboBox>

00004 <QHBoxLayout>

00005 clude <QMessageBox>

00006 #include <QMouseEvent>

00007 #include <QPaintEvent>

00008 #include <QPainter>

00009

00010 namespace Gui

00011 {

00012

00013 Timeline::Timeline (QWidget* parent)

00014 : QWidget (parent), m_timeStamp(0.0f), m_activeAgentId(l),
00015 m_pixelsPerSecond(11.75)

00016 {

00017 setObjectName ("Timeline") ;

00018 setMinimumHeight (100) ;

00019

00020 QObject: :connect (&§KeyframeManagement: :KeyframeManager: :Instance(),
00021 SIGNAL (KeyframeAdded()), this, SLOT (update()));
00022 }

00023

00024 void

00025 Timeline::paintEvent (QPaintEventx event)

00026 {

00027 QPainter painter (this);

00028 painter.setBrush (Qt::black);

00029 painter.setPen (Qt::black);

00030 painter.drawRect (0, 0, width(), height());

00031 int numDivisions = 20;

00032 float increment = width() / (float)numDivisions;

00033 for (int i = 0; 1 <= numDivisions; ++i) {

00034 float xPos = 1 * increment;

00035 painter.setPen(Qt::lightGray);

00036 painter.drawLine (xPos, 0, xPos, height());

Generated by Doxygen

256

File Documentation

00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120
00121

QString timestampText = QString::number (i = 5);
painter.setPen(Qt::lightGray);
painter.drawText (QPointF (xPos + 2, height () - 5), timestampText);
}
float xPos = (m_timeStamp / 100.0f) * width();
m_pixelsPerSecond = width() / 100.0f;
painter.setBrush(Qt::red);
painter.setPen(Qt::red);
painter.drawLine (xPos, 0, xPos, height());

int squareSize = 10;

const std::vector<Core::Keyframe>& keyframes =

KeyframeManagement : :KeyframeManager: :Instance () .GetKeyframes () ;
float secondsPerPixel = 1.0f / m_pixelsPerSecond;
for (const Core::Keyframe& kf : keyframes) {

float timeStamp = kf.TimeStamp;

int x = static_cast<int>((timeStamp / secondsPerPixel) -
(squareSize / 2));
int y = height() / 2 - squareSize / 2;

painter.setPen (Qt::NoPen) ;
painter.setBrush (Qt::red);
painter.drawRect (x, y, squareSize, squareSize);

}

void
Timeline: :mouseReleaseEvent (QMouseEvent* event)
{
float xPosition = event->position().x();
float timeStamp = (xPosition / width()) * 100.0f;

bool keyframeClicked = false;

if (event->button() == Qt::RightButton) {
int squareSize = 10;
float secondsPerPixel = 1.0f / m_pixelsPerSecond;

const std::vector<Core::Keyframe>& keyframes =
KeyframeManagement : :KeyframeManager: :Instance () .GetKeyframes () ;

for (size_t 1 = 0; 1 < keyframes.size(); ++1i) {
const Core::Keyframe& kf = keyframes[i];
float kfTimeStamp = kf.TimeStamp;

int x = static_cast<int>((kfTimeStamp / secondsPerPixel) -
(squareSize / 2));
int y = height() / 2 - squareSize / 2;

QRect keyframeRect (x, y, squareSize, squareSize);

if (keyframeRect.contains (event->pos())) {
QOMessageBox: :StandardButton reply = QMessageBox::question (
this, "Delete keyframe",
"Do you want to delete this keyframe?",
QMessageBox::Yes | QMessageBox::No);

if (reply == QMessageBox::Yes) {
KeyframeManagement : :KeyframeManager: :Instance ()
.RemoveKeyframe (kf);
update () ;
}

keyframeClicked = true;
break;

('keyframeClicked) {

m_timeStamp = timeStamp;

update () ;

emit timeStampSelected(m_timeStamp) ;

}

void
Timeline: :resizeEvent (QResizeEventx event)
{
update () ;
QWidget::resizeEvent (event);
}

00122 } // namespace Gui

Generated by Doxygen

12.98 src/height_management/height_manager.cpp File Reference 257

12.98 src/height_management/height_manager.cpp File Reference

#include "height_management/height_manager.h"
#include <gdal.h>
#include <gdal_priv.h>

Namespaces

* namespace HeightManagement

12.99 height_manager.cpp

Go to the documentation of this file.

00001 #include "height_management/height_manager.h"
00002

00003 #include <gdal.h>

00004 #include <gdal_priv.h>

00005

00006 namespace HeightManagement

00007 {

00008

00009 HeightManager: :HeightManager () {}

00010

00011 void

00012 HeightManager::LoadTif (const charx filePath, double x, double y)
00013 {

00014 m_CachedTifName = filePath;

00015 Core::UTMCoordinate UTMCoord{ x, y };

00016 UpdateOrigin (UTMCoord, m_Size);

00017 return;

00018 }

00019

00020 void

00021 HeightManager: :UpdateOrigin (Core: :UTMCoordinate UTMCoord, int size)
00022 {

00023 m_Origo = { UIMCoord.Easting, UTMCoord.Northing, 0 };

00024 m_Size = size;

00025 m_Vertices = new heightdata[m_Size % m_Size]l;

00026

00027 UpdateCornerCoords () ;

00028

00029 © (!OrigoWithinBounds (UTMCoord.Easting, UTMCoord.Northing)) {
00030 // If I get the WCS request to work, that will be initialized here!
00031 std::cerr

00032 « "Selected origin not within bounds! Please ensure x is "
00033 "within the range "

00034 « m_UpperLeftX « " - " « m_LowerRightX

00035 « " and Y is within the range " « long(m_LowerRightY) « " - "
00036 « long(m_UpperLeftY) « " (" « m_CoordinateSystem « ")"
00037 « "." « std::endl;

00038 return;

00039 }

00040

00041 PopulateVertices () ;

00042 m_Origo.z = GetHeightAbsolute (UTMCoord.Easting, UTMCoord.Northing);
00043 }

00044

00045 void

00046 HeightManager: :PopulateVertices (

00047 {

00048 // Opening the dataset

00049 GDALAllRegister();

00050

00051 GDALDataset* dataset =

00052 (GDALDataset) GDALOpen (m_CachedTifName, GA_ReadOnly) ;

00053 © (dataset == NULL) {

00054 std::cerr « "Failed to open file" « std::endl;

00055 }

00056

00057 // Extracting raster band data. Elevation data is located on band 1 as a
00058 // rule for GeoTiff files.

00059 GDALRasterBandx band = dataset->GetRasterBand(l);

Generated by Doxygen

258 File Documentation

00060 £ (band == NULL) {

00061 std::cerr « "Failed to get raster band" « std::endl;

00062 }

00063

00064 // Converting and extracting data from pixels/lines to coordinates
00065 double geoTransform[6];

00066 dataset->GetGeoTransform(geoTransform) ;

00067

00068 // The corners for the entire dataset can be found on [0] and [3] of the
00069 // geotransformed array.

00070 double upperLeftX = geoTransform[0];

00071 double upperLeftY = geoTransform[3];

00072

00073 // Defining the upper right corner of our selection. Because the origin
00074 // point is in the center of the dataset, the distance from the origin
00075 // %, y to each corner is half of the total size of the subset.

00076 double selectionCornerX = (m_Origo.x - m_Size / 2);

00077 double selectionCornerY = (m_Origo.y + m_Size / 2);

00078

00079 // Updating the member variable for the selected subset’s top left
00080 // corner coordinate for use in other methods.

00081 m_SelectionCorner = { selectionCornerX, selectionCornerY, 0 };

00082

00083 // Extracting height values from the band containing height data
00084 // (elevationData). This is placed in a one-dimensional array

00085 // elevationData.

00086 int xOffset = (selectionCornerX - upperLeftX);

00087 int yOffset = (upperlLeftY - selectionCornerY);

00088

00089 floatx elevationData = new float[m_Size x m_Size];

00090

00091 CPLErr result =

00092 band->RasterIO(GF_Read, xOffset, yOffset, m_Size, m_Size,

00093 elevationData, m_Size, m_Size, GDT_Float32, 0, 0);
00094

00095 // Placing height data into member variable for use in other methods.
00096 // The method to find any given point in a coordinate system with 0, 0
00097 // in the top left corner is (y coordinate » size of one dimension of
00098 // the imagined two-dimensional array) + x coordinate. If the array is
00099 // 500%500 in size and you want the height for the (5, 10) coordinate,
00100 // the calculation will be (10 * 500) + 5.

00101 for (int yDex = 0; yDex < m_Size; yDex++) {

00102 for (int xDex = 0; xDex < m_Size; xDex++) {

00103 m_Vertices[yDex % m_Size + xDex].x = selectionCornerX + xDex;
00104 m_Vertices[yDex x m_Size + xDex].y = selectionCornerY - yDex;
00105 m_Vertices[yDex % m_Size + xDex].z =

00106 elevationData[yDex % m_Size + xDex];

00107 }

00108 }

00109

00110 // Cleaning up and closing dataset.

00111 delete[] elevationData;

00112 GDALClose (dataset) ;

00113 }

00114

00115 bool

00116 HeightManager::GetVertex (int inputRelativeX, int inputRelativeY,

00117 HeightManager::heightdata& vertex)

00118 {

00119 if (ValidInput (inputRelativeX, inputRelativeY)) {

00120 vertex.z = m_Vertices[inputRelativeY % m_Size + inputRelativeX].z;
00121 return true;

00122 }

00123

00124 else {

00125 std::cerr « "Request out of bounds" « std::endl;

00126 return false;

00127 }

00128 }

00129

00130 bool

00131 HeightManager: :GetVertexAbsolute (double inputX, double inputY,

00132 HeightManager::heightdata& vertex)

00133 {

00134 if (ValidInput (inputX, inputY)) {

00135 double inputOffsetX = inputX - m_SelectionCorner.x;

00136 double inputOffsetY = m_SelectionCorner.y - inputY;

00137 vertex.z = m_Vertices[int (inputOffsetY % m_Size + inputOffsetX)].z;
00138 return true;

00139 }

00140

00141 else {

00142 std::cerr « "Request out of bounds" « std::endl;

00143 return false;

00144 }

00145 }

00146

Generated by Doxygen

12.99 height_manager.cpp 259

00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
00169
00170
00171
00172
00173
00174
00175
00176
00177
00178
00179
00180
00181
00182
00183
00184
00185
00186
00187
00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
00201
00202
00203
00204
00205
00206
00207
00208
00209
00210
00211
00212
00213
00214
00215
00216
00217
00218
00219
00220
00221
00222
00223
00224
00225
00226
00227
00228
00229
00230
00231
00232
00233

float
HeightManager: :GetHeightAbsolute (double inputX, double inputY)
{
(ValidInput (inputX, inputY)) {
double inputOffsetX = inputX - m_SelectionCorner.x;
double inputOffsetY = m_SelectionCorner.y - inputY;
return m_Vertices[int (inputOffsetY % m_Size + inputOffsetX)].z;

se {
std::cerr « "Request out of bounds" « std::endl;
return 0;

}

bool
HeightManager::GetHeight (int inputRelativeX, int inputRelativeY,
float& height)
{
(ValidInput (inputRelativeX, inputRelativeY)) {
height = m_Vertices[inputRelativeY » m_Size + inputRelativeX].z;
return true;

std::cerr « "Request out of bounds" « std::endl;
return false;

}

bool

HeightManager::ValidInput (int x, int y)

{
bool validInput = (0 <= vy) && (y < m_Size) && (0 <= x) && (x < m_Size);
return validInput;

}

bool
HeightManager::ValidInput (double x, double y)
{
bool validInput = (m_SelectionCorner.x <= x) &&
(x <= (m_SelectionCorner.x + m_Size)) &&
(m_SelectionCorner.y >= y) &&
(y >= m_SelectionCorner.y — m_Size);
return validInput;
}

bool
HeightManager::0rigoWithinBounds (double x, double y)
{
double min_x = m_UpperLeftX + m_Size / 2;
double max_x = m_LowerRightX - m_Size / 2;
double min_y m_LowerRightY + m_Size / 2;
double max_y = m_UpperLeftY - m_Size / 2;

return ((x <= max_x) && (x >= min_x) && (y <= max_y) && (y >= min_y));

}

void
HeightManager: :UpdateCornerCoords ()
{

GDALAllRegister();

GDALDataset* dataset =
(GDALDataset) GDALOpen (m_CachedTifName, GA_ReadOnly) ;
(dataset == NULL) {
std::cerr « "Failed to open file" « std::endl;

}

GDALRasterBand* band = dataset->GetRasterBand(l);
£ (band == NULL) {
std::cerr « "Failed to get raster band" « std::endl;

}

double geoTransform([6];
dataset->GetGeoTransform(geoTransform) ;

m_UpperLeftX = geoTransform[0];
m_UpperLeftY = geoTransform[3];
m_LowerRightX =
m_UpperLeftX + geoTransform[l] x dataset->GetRasterXSize();
m_LowerRightY =
m_UpperLeftY + geoTransform[5] * dataset->GetRasterXSize();

GDALClose (dataset) ;

Generated by Doxygen

260 File Documentation

00234 } // namespace HeightManagement

12.100 src/keyframe_management/keyframe_manager.cpp File
Reference

#include "keyframe_management/keyframe_manager.h"
#include <iostream>

Namespaces
* namespace KeyframeManagement
12.101 keyframe_manager.cpp

Go to the documentation of this file.

00001 #include "keyframe_management/keyframe_manager.h"

00002

00003 #include <iostream>

00004

00005 namespace KeyframeManagement

00006 {

00007

00008 void

00009 KeyframeManager: :AddKeyframe (int agentId, float timeStamp, float x, float y,
00010 float z)

00011 {

00012 Core::CartesianCoordinate position = { x, vy, z };

00013 Core::Keyframe newKeyframe = { agentId, timeStamp, position };
00014 AddKeyframe (newKeyframe) ;

00015 }

00016

00017 void

00018 KeyframeManager: :AddKeyframe (int agentId, float timeStamp,

00019 Core::CartesianCoordinate position)
00020 {

00021 Core::Keyframe newKeyframe = { agentId, timeStamp, position };
00022 AddKeyframe (newKeyframe) ;

00023 }

00024

00025 // This function iterate over each keyframe in the m_Keyframes vector and
00026 // check if the timestamp and agent ID of the keyframe match the provided
00027 // keyframe. If a match is found, update the position of the existing
00028 // keyframe

00029 void

00030 KeyframeManager: :AddKeyframe (Core: :Keyframe& keyframe)

00031 {

00032 bool exists = false;

00033 fo (Core::Keyframe& kf : m_Keyframes) {

00034 (keyframe.TimeStamp == kf.TimeStamp &&

00035 keyframe.AgentId == kf.AgentId) ({

00036 kf.Position = keyframe.Position;

00037 exists = true;

00038 }

00039 }

00040 // If no existing keyframe with the same timestamp and agent ID is
00041 // found, add the new keyframe

00042 © (l!exists) {

00043 m_Keyframes.push_back (keyframe) ;

00044 }

00045

00046 emit KeyframeAdded() ;

00047 }

00048

00049 void

00050 KeyframeManager: :RemoveKeyframe (const Core::Keyframe& keyframe)

00051 {

00052 fo (auto it = m_Keyframes.begin(); it != m_Keyframes.end(); ++it) {
00053 (it->AgentId == keyframe.AgentId &&

Generated by Doxygen

12.102 src/main.cpp File Reference 261

00054 it->TimeStamp == keyframe.TimeStamp &&
00055 it->Position.X == keyframe.Position.X &&
00056 it->Position.Y == keyframe.Position.Y &&
00057 it->Position.Z == keyframe.Position.Zz) {
00058 m_Keyframes.erase (it);

00059 break;

00060 }

00061 }

00062 }

00063

00064 void

00065 KeyframeManager: :DebugDump (void) const

00066 {

00067 std::cout « "DebugDump called. Number of keyframes: "
00068 « m_Keyframes.size() « std::endl;

00069 std::cout « "Keyframes:" « std::endl;

00070 for (const Core::Keyframe& kf : m_Keyframes) {
00071 std::cout « "AgentId: " « kf.AgentId

00072 « " TimeStamp: " « kf.TimeStamp
00073 « " X: " « kf.Position.X « " Y: " « kf.Position.Y
00074 « " Z: " « kf.Position.Z « std::endl;
00075 }

00076 }

00077

00078 } // namespace KeyframeManagement

12.102 src/main.cpp File Reference

#include "compile_scenario/scenario.h"
#include "gui/main_window.h"

#include <QApplication>

#include <QFile>

#include <QFont>

#include <QFontDatabase>

#include <iostream>

Functions

+ int main (int argc, char xargv[])

12.102.1 Function Documentation

12.102.1.1 main()

int main (
int argc,

char *x argv/[])

Definition at line 12 of file main.cpp.

Generated by Doxygen

262 File Documentation

12.103 main.cpp

Go to the documentation of this file.

00001 #include "compile_scenario/scenario.h"
00002 #include "gui/main_window.h"

00003

00004 #include <QApplication>

00005 4 clude <QFile>

00006 #include <QFont>

00007 #include <QFontDatabase>

00008

00009 #include <iostream>

00010

00011 int

00012 main(int argc, charx argvl[])

00013 {

00014 OApplicationx app = new QApplication(argc, argv);
00015

00016 // QFile file(":style/darkstyle.gss");

00017 // file.open (QFile: :ReadOnly);

00018 // QString styleSheet = QLatinlString(file.readAll());
00019 // app->setStyleSheet (styleSheet) ;

00020

00021 // int id = QFontDatabase::addApplicationFont (":/fonts/Poppins-Medium.ttf");
00022 // QString family = QFontDatabase::applicationFontFamilies (id).at (0);
00023 // QFont poppins (family);

00024 // poppins.setStyleHint (QFont: :Monospace) ;

00025 // poppins.setPointSize (12);

00026 // app->setFont (poppins) ;

00027

00028 Gui::MainWindow* mainWindow = new Gui::MainWindow;
00029 mainWindow->showMaximized () ;

00030

00031 int ret = app->exec();

00032 delete mainWindow;

00033 delete app;

00034

00035 eturn 0;

00036 }

12.104 src/map_management/map_manager.cpp File Reference

#include "map_management/map_manager.h"
#include <QNetworkAccessManager>
#include <QNetworkReply>

#include <QNetworkRequest>

#include <QtNetwork>

#include <vector>

Namespaces

* namespace MapManagement

12.105 map_manager.cpp

Go to the documentation of this file.

00001 #include "map_management/map_manager.h"
00002

00003 #include <QNetworkAccessManager>

00004 <QNetworkReply>
00005 <QNetworkRequest>
00006 <QtNetwork>

00007 #include <vector>
00008
00009 namespace MapManagement

Generated by Doxygen

12.105 map_manager.cpp

263

00010 {
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093 }

//"GetMap" retrieves map data from geonorges WMS service. It sets up a

// network

// request to fetch the map image and processes the response to store the
// data.

void

MapManager: :GetMap (Core: :UTMCoordinate coord,

{

}i

int size)

// Create a QNetworkAccessManager object for making network requests
QONetworkAccessManagerx manager = new QNetworkAccessManager (nullptr);

// Set the URL endpoint for the map service

QString endpoint =
"https://openwms.statkart.no/skwmsl/wms.norges_grunnkart";

QUrl url (endpoint);

QUrlQuery query;

// Calculate the corner coordinates of the map based on the UTM
// coordinate and size
MapManager: :CalculateCornerCoordinates (coord, size);

// Add query parameters

query.addQueryItem("service", "WMS");
query.addQueryItem("version", "1.3.0");
query.addQueryItem("request", "GetMap");
query.addQueryItem("layers",
"hoyde,Arealtyper, fjellskygge, helning, Vann_og_"
"vassdrag, Samferdsel,Bygninger") ;
query.addQueryItem("styles", "default");

query.addQueryItem("format", "image/png");
query.addQueryItem("crs", "EPSG:25833");
// Set the bounding box query parameter using the map area that was
// calulated with the CalculateCornerCoordinates function
query.addQueryItem("bbox", Instance().m_Area);
// Set the width and height query parameters based on the image
// resolution
query.addQueryItem("width",

QString: :number (Instance () .m_ImageResolution)) ;
query.addQueryItem("height",

QString: :number (Instance () .m_ImageResolution)) ;
url.setQuery (query);
QONetworkRequest request (url);

// Emit a signal to indicate that an image request is being made
emit Instance () .RequestImage();
QONetworkReply* reply = manager—->get (request);

// Connect a lambda function to the finished signal of the network reply
// and check if the reply has no error. If it has no error it read the
// response data from the reply.
QObject::connect (reply, &QNetworkReply::finished, [=]() {
if (reply->error () == QNetworkReply::NoError) {

OByteArray data = reply->readAll();

Instance() .m_Data = data;

// Emit a signal to indicate that the image has been received

emit Instance () .GotImage () ;

1)

// CalculateCornerCoordinates calculates the corner coordinate of the map,
// ensuring that the origin is centered in the middle and the sides of the
// map are equal in length to the specified size. This is added to a QString
// variable, which will be used in the HTTP request within the "getMap"

// function.

void

MapManager::CalculateCornerCoordinates (Core: :UTMCoordinate coord,

{

bi

int size)

double minX = coord.Easting - (size / 2);
double minY = coord.Northing - (size / 2);
double maxX = coord.Easting + (size / 2);
double maxY = coord.Northing + (size / 2);

const QStringList wmsRequestCoordsList{
QString: :number (minX),
QString: :number (long (minY)),
QString: :number (maxX),
QString: :number (long (maxY)),
Vi
Instance () .m_

Area = wmsRequestCoordsList.join(",");

// namespace MapManagement

Generated by Doxygen

264

File Documentation

12.106

#include
#include
#include
#include
#include
#include

src/routemaker/routemaker.cpp File Reference

"routemaker/routemaker.h"
"coordinate_converter/coordinate_converter.h"

<algorithm>
<array>
<cassert>
<cmath>

Namespaces

* namespace Routemaker

Macros

+ #define DRONE_FLIGHT_HEIGHT 175

12.106.1

12.106.1.1

Macro Definition Documentation

DRONE_FLIGHT_HEIGHT

#define DRONE_FLIGHT_HEIGHT 175

Definition at line 11 of file routemaker.cpp.

12.107

Go to the documentation of this file.

00001 #include "routemaker/routemaker.h"

00002

00003 #include

00004

routemaker.cpp

00005 #include <algorithm>

00006 #include
clude

00007 #i

larray>
sert>

00008 #include <cmath>

00009

00010 // Temporary: When 3D,

00022 // Relational data that forms paths need to be reset before running Ax
This method serves as a simple way to make sure all of these

00011 #define DRONE_FLIGHT_HEIGHT 175
00012

00013 namespace Routemaker

00014 {

00015 Routemaker: :Routemaker (const Core::UTMCoordinate& origin,
00016 : m_MapWidth (size),

00017

00018 {

00019 UpdateOrigin (origin, size);
00020 }

00021

00023 // again.

00024 // values are reset.

00025 void

00026 Routemaker: :ResetNodes ()

Q

m_HeightMap (std: :make_unique<HeightManagement::HeightManager> ())

"coordinate_converter/coordinate_converter.h"

drone height should vary

Generated by Doxygen

12.107 routemaker.cpp 265

00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113

for (uint32_t y{}; y < m_RoutemakerWidth; ++y) {
for (uint32_t x{}; x < m_RoutemakerWidth; ++x) {
NodePtr node{ GetNode(x, y) 1};
node->Parent = std::weak_ptr<Node<Cell2D» () ;
node->GlobalGoal = std::numeric_limits<double>::infinity();
node->LocalGoal = std::numeric_limits<double>::infinity();
node->Visited = false;

}

// In order to improve efficiency, the resolution of routemaker is adjusted
// based on the size of the scenario. If you are working on a 2km scale, you
// probably don’t need 1 meter fidelity. This should maybe be adjustable as
// part of the scenario settings in the future.
void
Routemaker: :UpdateResolution ()
{

(m_MapWidth < 250) {

m_RoutemakerRes = 1;

} el if (m_MapWidth < 500) {
m_RoutemakerRes = 2;

} (m_MapWidth < 1000) {
m_RoutemakerRes = 3;

} else if (m_MapWidth < 2000) {
m_RoutemakerRes = 4;

} else {
m_RoutemakerRes = 5;

m_RoutemakerWidth = m_MapWidth / m_RoutemakerRes;
}

// Whenever the scenario’s origin or size is updated, we need to create a
// new graph with the proper height data
void
Routemaker: :UpdateOrigin (Core: :UTMCoordinate utmOrigin, int size)
{
m_HeightMap->UpdateOrigin (utmOrigin, size);
m_MapWidth = size;
UpdateResolution () ;
m_Nodes = std::vector<NodePtr> (m_RoutemakerWidth * m_RoutemakerWidth);

for (uint32_t y{ 0 }; y < m_RoutemakerWidth; ++y) {
for (uint32_t x{ 0 }; x < m_RoutemakerWidth; ++x) {
uint32_t xRel{ x * m_RoutemakerRes };
uint32_t yRel{ y * m_RoutemakerRes };
float height{ 0.0f };
bool occupied{ false };
for (int 3{ 0 }; Jj < m_RoutemakerRes; ++3j) {
‘or (int i{ 0 }; i1 < m_RoutemakerRes; ++1i) {
float heightCandidate;
if (m_HeightMap->GetHeight (static_cast<int>(xRel) + i,
static_cast<int>(yRel) + J,
heightCandidate)) {
height = std::max (height, heightCandidate);
}
// Set occupied to true if any of the heights are larger
// tha DRONE_FLIGHT_HEIGHT
occupied = (occupied || (height > DRONE_FLIGHT_HEIGHT)) ;
}
}
Node<Cell2D> node{};
node.Data = { x, y, occupied };
m_Nodes[x + y * m_RoutemakerWidth] =
std: :make_shared<Node<Cell2D» (node) ;

}

// Not a pretty method, but does the job. Currently, the routemaker is

// considering a 2D space, keeping the drones at the same altitude. In the
// future, we need to consider 3D, meaning the GetNeighbors method needs to
// consider neighbors above and below the current node as well.
std::vector<Routemaker::NodePtr>

Routemaker: :GetNeighbors (NodePtr node)

{

std::vector<NodePtr> neighbors;

uint32_t x{ node->Data.X };
uint32_t y{ node->Data.Y };

if (x > 0) {
NodePtr neighbor{ GetNode(x - 1, y) };
1f (!'neighbor->Data.Occupied) {
neighbors.push_back (neighbor) ;

Generated by Doxygen

266

File Documentation

00114
00115
00116
00117
00118
00119
00120
00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
00169
00170
00171
00172
00173
00174
00175
00176
00177
00178
00179
00180
00181
00182
00183
00184
00185
00186
00187
00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200

}

if (x < m_RoutemakerWidth - 1) {
NodePtr neighbor{ GetNode(x + 1, y) };
1 £ (!'neighbor->Data.Occupied) {
neighbors.push_back (neighbor) ;
}

(y > 0) {

NodePtr neighbor{ GetNode(x, y - 1) };

if (!neighbor->Data.Occupied) {
neighbors.push_back (neighbor) ;

if (y < m_RoutemakerWidth - 1) {
NodePtr neighbor{ GetNode(x, y + 1) };
if (!neighbor->Data.Occupied) {
neighbors.push_back (neighbor) ;

15 (x> 0) && (y > 0)) |
NodePtr neighbor{ GetNode(x - 1, y - 1) };
if (!neighbor->Data.Occupied) {
neighbors.push_back (neighbor) ;

if ((x < (m_RoutemakerWidth - 1)) && (v > 0)) {
NodePtr neighbor{ GetNode(x + 1, y - 1) };
if (!neighbor->Data.Occupied) {
neighbors.push_back (neighbor) ;

if ((x < (m_RoutemakerWidth - 1)) && (y < (m_RoutemakerWidth - 1))) {
NodePtr neighbor{ GetNode(x + 1, y + 1) };
if (!'neighbor->Data.Occupied) {
neighbors.push_back (neighbor) ;

if ((x > 0) && (y < (m_RoutemakerWidth - 1))) {
NodePtr neighbor{ GetNode(x - 1, y + 1) };
if (!neighbor->Data.Occupied) {
neighbors.push_back (neighbor) ;

return neighbors;

}

double

Routemaker::GetCost (NodePtr a, NodePtr b)

{
double x1{ static_cast<double> (a->Data.X
double yl{ static_cast<double>(a->Data.Y
double x2{ static_cast<double> (b->Data.X
double y2{ static_cast<double> (b->Data.Y

m_RoutemakerRes };
m_RoutemakerRes };
m_RoutemakerRes };
m_RoutemakerRes };

* ok ok o

// We are using a standard cartesian grid, with each cell being one
// node. As such, Euclidean distance is a nice measure of cost.
return std::sqgrt(std::pow(x2 - x1, 2) + std::pow(y2 - yl, 2));

}

// Bresenham’s algorithm is a fine starting point for detecting line of
// sight. However, for better accuracy and more scalability for 3D,
// Ray-casting should probably be considered in the future.
bool
Routemaker: :HasLineOfSight (NodePtr a, NodePtr b)
{
// Assume we have a line of sight
bool hasLineOfSight{ true };

std::1list<NodePtr> nodes{ BresenhamLine(a, b) };
std::for_each(nodes.begin(), nodes.end()
[&¢hasLineOfSight] (const NodePtr& n) {
if (n->Data.Occupied) {
// If any nodes are occupied, there is no line
// sight.
hasLineOfSight = false;

1)

return hasLineOfSight;

of

Generated by Doxygen

12.107 routemaker.cpp

267

00201

00202 std::list<Routemaker::NodePtr>

00203 Routemaker: :BresenhamLine (const NodePtr& a, const NodePtr& b) const
00204 {

00205 std::1list<NodePtr> list;

00206

00207 auto x1{ static_cast<int32_t>(a->Data.X) };

00208 auto yl{ static_cast<int32_t>(a->Data.Y) };

00209 auto x2{ static_cast<int32_t>(b->Data.X) };

00210 auto y2{ static_cast<int32_t>(b->Data.Y) };

00211

00212 bool isSteep{ std::abs(y2 - yl) > std::abs(x2 - x1) };

00213 if (isSteep) {

00214 std::swap(x1l, yl);

00215 std::swap (x2, y2);

00216 }

00217 if (x1 > x2) |

00218 std::swap (x1l, x2);

00219 std::swap(yl, y2);

00220 }

00221

00222 int32_t deltaX{ x2 - x1 };

00223 int32_t deltaY{ std::abs(y2 - yl) };

00224 int32_t error{}, yStep, v{ vl };

00225

00226 it (yl < y2) {

00227 =1;

00228 }

00229 yStep = -1;

00230 }

00231

00232 for (int32_t x{ x1 }; x <= x2; ++x) {

00233 1f (isSteep) {

00234 list.push_back (GetNode (y, x));

00235 } else {

00236 list.push_back (GetNode (%, y));

00237 }

00238

00239 error += deltayY;

00240 if (2 % error >= deltaX) {

00241 y += yStep;

00242 error -= deltaX;

00243 }

00244 }

00245

00246 return list;

00247 }

00248

00249 Routemaker: :NodePtr

00250 Routemaker::GetNode (uint32_t x, uint32_t y) const

00251 {

00252 uint32_t index{ x + y * m_RoutemakerWidth };

00253 return m_Nodes [index];

00254 }

00255

00256 std::vector<Core::CartesianCoordinate>

00257 Routemaker: :MakeRoute (const Core::Keyframe& a, const Core::Keyframe& b)
00258 {

00259 // Scenario class should have sorted the keyframes already, but Jjust to
00260 // make sure:

00261 assert (b.TimeStamp > a.TimeStamp && a.AgentId == b.AgentId);

00262

00263 // Keyframes store positions in a symmetric space. Let’s make them
00264 // symmetric to fit our grid.

00265 Core::CartesianCoordinate asymmetricAPosition{

00266 CoordinateConverter: :CoordConv: :SymmetricToAsymmetric (a.Position)
00267 }i

00268 Core::CartesianCoordinate asymmetricBPosition{

00269 CoordinateConverter: :CoordConv: :SymmetricToAsymmetric (b.Position)
00270 }i

00271

00272 // Let’s also divide by our resolution to find the cells each position
00273 // fits in.

00274 asymmetricAPosition.X /= m_RoutemakerRes;

00275 asymmetricAPosition.Y /= m_RoutemakerRes;

00276 asymmetricAPosition.Z /= m_RoutemakerRes;

00277

00278 asymmetricBPosition.X /= m_RoutemakerRes;

00279 asymmetricBPosition.Y /= m_RoutemakerRes;

00280 asymmetricBPosition.Z /= m_RoutemakerRes;

00281

00282 NodePtr start{ GetNode (static_cast<uint32_t> (asymmetricAPosition.X),
00283 static_cast<uint32_t> (asymmetricAPosition.Y)) };
00284 NodePtr goal{ GetNode (static_cast<uint32_t> (asymmetricBPosition.X),
00285 static_cast<uint32_t> (asymmetricBPosition.Y)) };
00286

00287 SolveAStar (start, goal); // We find the path

Generated by Doxygen

268

File Documentation

00288
00289
00290
00291
00292
00293
00294
00295
00296
00297
00298
00299
00300
00301
00302
00303
00304
00305
00306
00307
00308
00309
00310
00311
00312
00313
00314
00315
00316
00317
00318
00319
00320
00321
00322
00323
00324

PostSmooth (start, goal); // We make it smooth (er

// After the path has been generated, we start at the goal, and
// recursively travel to the start, collecting all positions that make
// up the route
std::vector<Core::CartesianCoordinate> route;
NodePtr current{ goal };
NodePtr parent{ goal->Parent.lock() };
while (current != start && parent != nullptr) {
// We scale up by resolution again
Core::CartesianCoordinate positionf{
(float) current->Data.X % m_RoutemakerRes,
(float)current->Data.Y * m_RoutemakerRes, DRONE_FLIGHT_HEIGHT
Vi

// Scenario likes symmetric positions, so let’s transform back
Core::CartesianCoordinate positionSymmetric{
CoordinateConverter: :CoordConv: :AsymmetricToSymmetric (position)
bi
route.push_back (positionSymmetric) ;
current = parent;
parent = current->Parent.lock();
}
Core::CartesianCoordinate positionSymmetric{
CoordinateConverter: :CoordConv: :AsymmetricToSymmetric (
{ (float)start->Data.X x m_RoutemakerRes,
(float)start->Data.Y % m_RoutemakerRes, DRONE_FLIGHT_HEIGHT })
Vi
route.push_back (positionSymmetric);

// Finally, let’s reverse the path, so it goes from start to goal,
// rather than from goal to start.

std::reverse (route.begin(), route.end());

return route;

00325 } // namespace Routemaker

Generated by Doxygen

Index

~KeyframeManager
KeyframeManagement::KeyframeManager, 118
~Launcher
Gui::Launcher, 123
~MainWindow
Gui::MainWindow, 127
~MapManager
MapManagement::MapManager, 135
~Planner
Gui::Planner, 151

~Simulator
Gui::Simulator, 171
~TabWidget
Gui::TabWidget, 173
Action
Gui::Action, 37
ActiveAgentChanged
Gui::AgentControls, 42
AddAgent

CompileScenario::Scenario, 160

Gui::AgentControls, 42
AddConstructor

Json::ISConstructors, 76
AddKeyframe

KeyframeManagement::KeyframeManager, 118,

119

Agent

Core::Agent, 40
AgentAdded

Gui::MainWindow, 127
AgentChanged

Gui::AgentControls, 43
AgentControls

Gui::AgentControls, 42
Agentld

Core::Keyframe, 112
AsymmetricToSymmetric

CoordinateConverter::CoordConv, 53

BresenhamLine
Routemaker::Routemaker, 154

CalculateCornerCoordinates
MapManagement::MapManager, 135
CartesianCoordinate
Core::CartesianCoordinate, 46
CartesianToGeographical
CoordinateConverter::CoordConv, 53
Color

Core::Agent, 40
ColorBox
Gui::ColorBox, 49
ColorUpdated
Gui::ColorBox, 50
Compile
CompileScenario::Scenario, 161
CompileScenario, 31
Gui::MainWindow, 127
Gui::ScenarioControls, 166
CompileScenario::Scenario, 159
AddAgent, 160
Compile, 161
GetAgents, 161
GetRoutes, 161
JSONINT, 161
JSONMEMBER, 162
JSONMEMBERVECTOR, 162
JSONSTRING, 162
load, 162
m_Agents, 163
m_KeyframeManager, 163
m_Name, 164
m_Origin, 164
m_Routemaker, 164
m_Routes, 164
m_Size, 164
RouteMap, 160
save, 162
Scenario, 160
SetOrigin, 163
ConnectSlotsAndSignals
Gui::MainWindow, 128
CoordConv
CoordinateConverter::CoordConv, 52
CoordinateConverter, 31
CoordinateConverter::CoordConv, 51
AsymmetricToSymmetric, 53
CartesianToGeographical, 53
CoordConv, 52
GeographicalToCartesian, 54
GeographicToUTM, 54
Getlnstance, 55
GetOrigin, 55
GetSize, 55
m_0Origin, 57
m_OriginGeographical, 57
m_Size, 57
ResetOrigin, 55

Generated by Doxygen

270

INDEX

SymmetricToAsymmetric, 56

UTMToGeographic, 56
Core, 31
Core::Agent, 39

Agent, 40

Color, 40

Id, 40

JSONINT, 40

JSONSTRING, 40

Name, 41
Core::CartesianCoordinate, 45

CartesianCoordinate, 46

JSONDOUBLE, 46

X, 47

Y, 47

Z, 47
Core::GeographicalCoordinate, 58

GeographicalCoordinate, 58

JSONDOUBLE, 58

Latitude, 59

Longitude, 59
Core::Keyframe, 111

Agentld, 112

JSONFLOAT, 112

JSONINT, 112

Keyframe, 111

Position, 112

TimeStamp, 112
Core::UTMCoordinate, 178

Easting, 180

IsNorthHemisphere, 180

JSONBOOL, 179

JSONDOUBLE, 179, 180

JSONINT, 180

Meridian, 180

Northing, 181

UTMCoordinate, 179

Zone, 181
CreateNewAgent

Gui::MainWindow, 128
CreateObject

Json::ISMember< T >, 91

Json::ISObject< T >, 99

Json::ISValue, 109

Data
Routemaker::Node< T >, 148
DataReceived
Gui::MapViewer, 140
debug
serializer.cpp, 233
serializer.h, 193
DebugDump
KeyframeManagement::KeyframeManager, 120
DeleteSelected
Gui::KeyframelList, 116
DeleteSelectedKeyframes
Gui::KeyframeControls, 114
deserialize

Json, 35
docs/coding_standards.md, 183
docs/get_started.md, 183
docs/testing_standard.md, 183
docs/user_guide.md, 183
DrawKeyframes

Gui::MapViewer, 140
DrawLoader

Gui::MapViewer, 140
DrawRoutes

Gui::MapViewer, 140
DRONE_FLIGHT_HEIGHT

routemaker.cpp, 264

Easting
Core::UTMCoordinate, 180

Finish
Gui::MapDialog, 132

Finished
Gui::MapDialog, 132

FromDom
Json::ISBool, 74
Json::ISDouble, 79
Json::ISDoubleVector, 81
Json::ISFloat, 83
Json::ISFloatVector, 85
Json::ISint, 87
Json::ISIntVector, 89
Json:ISMember< T >, 92
Json::ISMemberVector< T >, 94
Json::ISMemVecVec< T >, 96
Json::ISObject< T >, 99
Json::ISObjectVector< T >, 101
Json::ISObjVecVec< T >, 104
Json::ISString, 107
Json::ISValue, 109

GeographicalCoordinate
Core::GeographicalCoordinate, 58
GeographicalToCartesian
CoordinateConverter::CoordConv, 54
GeographicToUTM
CoordinateConverter::CoordConv, 54
GetActiveAgent
Gui::Timeline, 175
GetAgents
CompileScenario::Scenario, 161
GetCost
Routemaker::Graph< T >, 60
Routemaker::Routemaker, 154
GetData
MapManagement::MapManager, 136
GetHeight
HeightManagement::HeightManager, 66
GetHeightAbsolute
HeightManagement::HeightManager, 66
GetlmageResolution
MapManagement::MapManager, 136

Generated by Doxygen

INDEX

271

Getlnstance
CoordinateConverter::CoordConv, 55
Json::ISConstructors, 77

GetKeyframes

KeyframeManagement::KeyframeManager, 120

GetMap
MapManagement::MapManager, 136
GetName
Json:: ISMember< T >, 92
Json::ISObject< T >, 99
Json::ISValue, 109
GetNeighbors
Routemaker::Graph< T >, 61
Routemaker::Routemaker, 155
GetNode
Routemaker::Routemaker, 155
GetObject
Json::ISConstructors, 77
GetOrigin
CoordinateConverter::CoordConv, 55
GetProperty
Json::ISValue, 110
getRandomColor
main_window.cpp, 243
GetRoutes
CompileScenario::Scenario, 161
GetSize
CoordinateConverter::CoordConv, 55
GetTimeStamp
Gui::Timeline, 176
GetVertex

HeightManagement::HeightManager, 67

GetVertexAbsolute

HeightManagement::HeightManager, 67

GlobalGoal
Routemaker::Node< T >, 148
Gotlmage
MapManagement::MapManager, 137
Gui, 32
Gui::Action, 37
Action, 37
Gui::AgentControls, 41
ActiveAgentChanged, 42
AddAgent, 42
AgentChanged, 43
AgentControls, 42
m_ActiveAgentColorBox, 44
m_ActiveAgentComboBox, 44
m_ActiveAgentindex, 44
m_Agents, 44
m_Layout, 45
m_NewAgentButton, 45
SetActiveAgentindex, 43
SetAgentColor, 43
SyncColor, 43
UpdateAgents, 43
Gui::ColorBox, 48
ColorBox, 49

ColorUpdated, 50
m_Color, 51
m_ColorDialog, 51
mousePressEvent, 50
paintEvent, 50
SelectColor, 50
UpdateColor, 50
Gui::KeyframeControls, 113
DeleteSelectedKeyframes, 114
KeyframeControls, 113
m_DeleteKeyframesButton, 114
m_Keyframelist, 114
m_Layout, 114
Gui::KeyframelList, 115
DeleteSelected, 116
KeyframelList, 115
m_Layout, 116
Update, 116
Gui::Launcher, 122
~Launcher, 123
Launcher, 122
m_Layout, 123
Gui::MainContent, 123
m_Layout, 124
m_Sidebar, 125
m_TabWidget, 125
MainContent, 124
Gui::MainWindow, 126
~MainWindow, 127
AgentAdded, 127
CompileScenario, 127
ConnectSlotsAndSignals, 128
CreateNewAgent, 128
LoadScenario, 128
m_MainContent, 130
m_MenuBar, 130
m_Scenario, 130
m_ScenarioSettingsDialog, 130
MainWindow, 127
SaveScenario, 128
ScenarioCompiled, 129
ScenarioLoaded, 129
SyncAgentColor, 129
UpdateScenario, 129
Gui::MapDialog, 131
Finish, 132
Finished, 132
m_LatitudeCoordInput, 133
m_LongitudeCoordInput, 133
m_Sizelnput, 133
MapDataReady, 132
MapDialog, 131
SendData, 133
Gui::MapViewer, 138
DataReceived, 140
DrawKeyframes, 140
DrawlLoader, 140
DrawRoutes, 140

Generated by Doxygen

272

INDEX

Gui::

Gui::

Gui::

Gui::

Gui::

Gui:

m_ActiveAgentld, 143
m_Agents, 143
m_LoaderAngle, 143
m_LoaderSize, 143
m_LoaderSpan, 144
m_LoaderSpeed, 144
m_LoaderThickness, 144
m_Routes, 144

m_Size, 144

m_StartX, 145
m_StartY, 145
m_TimeStamp, 145
m_WaitingForData, 145
m_WaitingForDataElapsedTimer, 145
m_WaitingForDataTimer, 146
MapViewer, 139
mousePressEvent, 140
paintEvent, 141
resizeEvent, 141
UpdateActiveAgent, 141
UpdateAgents, 141
UpdateRenderingArea, 142
UpdateRoutes, 142
UpdateTimeStamp, 142
WaitForData, 142
MenuBar, 146
LoadScenario, 147
MenuBar, 147
SaveScenario, 147
Planner, 150

~Planner, 151
m_MapViewer, 151
m_Timeline, 151

Planner, 150
ScenarioControls, 165
CompileScenario, 166
m_CompileButton, 166
m_Layout, 166
m_SettingsButton, 166
OpenSettingsDialog, 166
ScenarioControls, 165
Sidebar, 167
m_AgentControls, 169
m_KeyframeControls, 169
m_Layout, 169
m_ScenarioControls, 169
scenarioDataReady, 168
Sidebar, 168

Simulator, 170
~Simulator, 171
m_Layout, 171

Simulator, 170

sizeHint, 171

:TabWidget, 172

~TabWidget, 173
m_Launcher, 173
m_Planner, 173

m_Simulator, 173

TabWidget, 172
Gui::Timeline, 174
GetActiveAgent, 175
GetTimeStamp, 176
m_activeAgentld, 177
m_pixelsPerSecond, 178
m_timeStamp, 178
mouseReleaseEvent, 176
paintEvent, 176
resizeEvent, 177
Timeline, 175
timeStampSelected, 177

HasLineOfSight
Routemaker::Graph< T >, 61
Routemaker::Routemaker, 155

HeightManagement, 32

HeightManagement::HeightManager, 64

GetHeight, 66
GetHeightAbsolute, 66
GetVertex, 67
GetVertexAbsolute, 67
HeightManager, 66
LoadTif, 68
m_CachedTifName, 71
m_CoordinateSystem, 71
m_LowerRightX, 71
m_LowerRightY, 71
m_Origo, 72
m_Resolution, 72
m_SelectionCorner, 72
m_Size, 72
m_UpperLeftX, 72
m_UpperLeftY, 73
m_Vertices, 73
OrigoWithinBounds, 68
PopulateVertices, 69
UpdateCornerCoords, 69
UpdateOrigin, 69
Validinput, 70

HeightManagement::HeightManager::heightdata, 63

X, 64

y, 64

z, 64
HeightManager

HeightManagement::HeightManager, 66

Id
Core::Agent, 40

include/compile_scenario/scenario.h, 183, 184
include/coordinate_converter/coordinate_converter.h,

185
include/core/serializer.h, 186, 193
include/core/types.h, 200, 201
include/gui/action.h, 202
include/gui/agent_controls.h, 203
include/gui/color_box.h, 204
include/gui/keyframe_controls.h, 205
include/gui/keyframe_list.h, 205, 206

Generated by Doxygen

INDEX

273

include/gui/launcher.h, 206, 207
include/gui/main_content.h, 207
include/gui/main_window.h, 208
include/gui/map_dialog.h, 209, 210
include/gui/map_viewer.h, 210, 211
include/gui/menu_bar.h, 212
include/gui/planner.h, 213
include/gui/scenario_controls.h, 213, 214
include/gui/sidebar.h, 214, 215
include/gui/simulator.h, 215, 216
include/gui/tab_widget.h, 216, 217
include/gui/timeline.h, 217, 218
include/height_management/height_manager.h, 219
include/keyframe_management/keyframe_manager.h,
221

include/map_management/map_manager.h, 222, 223
include/routemaker/graph.h, 224
include/routemaker/routemaker.h, 227, 228
Instance

KeyframeManagement::KeyframeManager, 120

MapManagement::MapManager, 137
ISBool

Json::ISBool, 74
ISConstructors

Json::ISConstructors, 76
ISDouble

Json::ISDouble, 78
ISDoubleVector

Json::ISDoubleVector, 81
ISDV

Json, 34
ISFloat

Json::ISFloat, 83
ISFloatVector

Json::ISFloatVector, 85
ISFV

Json, 34
ISInt

Json::ISint, 87
ISIntVector

Json::ISIntVector, 89
ISIV

Json, 34
ISMember

Json:: ISMember< T >, 91
ISMemberVector

Json::ISMemberVector< T >, 94
ISMemVecVec

Json::ISMemVecVec< T >, 96
IsNorthHemisphere

Core::UTMCoordinate, 180
ISObject

Json::ISObject< T >, 98
ISObjectVector

Json::ISObjectVector< T >, 101
ISObjVecVec

Json::ISObjVecVec< T >, 103
ISProperties

Json, 34
ISString

Json::ISString, 106
ISValuePtr

Json, 34
ISValues

Json, 34

JSON
serializer.h, 188
Json, 32
deserialize, 35
ISDV, 34
ISFV, 34
ISIV, 34
ISProperties, 34
ISValuePtr, 34
ISValues, 34
serialize, 35
Json::ISBool, 73
FromDom, 74
ISBool, 74
ToDom, 75
value, 75
Json::ISConstructors, 75
AddConstructor, 76
Getlnstance, 77
GetObject, 77
ISConstructors, 76
m_TheRegistry, 77
operator=, 77
Json:ISDouble, 78
FromDom, 79
ISDouble, 78
ToDom, 79
value, 79
Json::ISDoubleVector, 80
FromDom, 81
ISDoubleVector, 81
ToDom, 81
value, 82
Json::ISFloat, 82
FromDom, 83
ISFloat, 83
ToDom, 83
value, 84
Json::ISFloatVector, 84
FromDom, 85
ISFloatVector, 85
ToDom, 85
value, 86
Json::ISint, 86
FromDom, 87
ISInt, 87
ToDom, 87
value, 88
Json::ISIntVector, 88
FromDom, 89
ISIntVector, 89

Generated by Doxygen

274

INDEX

ToDom, 89
value, 90
Json::ISMember< T >, 90
CreateObiject, 91
FromDom, 92
GetName, 92
ISMember, 91
ToDom, 92
value, 93
Json::ISMemberVector< T >, 93
FromDom, 94
ISMemberVector, 94
ToDom, 94
value, 95
Json:: ISMemVecVec< T >, 95
FromDom, 96
ISMemVecVec, 96
ToDom, 97
value, 97
Json::ISObject< T >, 97
CreateObiject, 99
FromDom, 99
GetName, 99
ISObject, 98
ToDom, 99
value, 100
Json::ISObjectVector< T >, 100
FromDom, 101
ISObjectVector, 101
ToDom, 102
value, 102
Json::ISObjVecVec< T >, 102
FromDom, 104
ISObjVecVec, 103
ToDom, 104
value, 104
Json::ISProperty, 105
name, 105
value, 105
Json::ISString, 106
FromDom, 107
ISString, 106
ToDom, 107
value, 107
Json::ISValue, 108
CreateObiject, 109
FromDom, 109
GetName, 109
GetProperty, 110
ToDom, 110
JSONBOOL
Core::UTMCoordinate, 179
serializer.h, 189
JSONDOUBLE
Core::CartesianCoordinate, 46
Core::GeographicalCoordinate, 58
Core::UTMCoordinate, 179, 180
serializer.h, 189

JSONDOUBLEVECTOR
serializer.h, 189
JSONEND
serializer.h, 189
JSONFLOAT
Core::Keyframe, 112
serializer.h, 190
JSONFLOATVECTOR
serializer.h, 190
JSONINT
CompileScenario::Scenario, 161
Core::Agent, 40
Core::Keyframe, 112
Core::UTMCoordinate, 180
serializer.h, 190
JSONINTVECTOR
serializer.h, 190
JSONMEMBER
CompileScenario::Scenario, 162
serializer.h, 191
JSONMEMBERVECTOR
CompileScenario::Scenario, 162
serializer.h, 191
JSONMEMVECVEC
serializer.h, 191
JSONOBJECT
serializer.h, 191
JSONOBJECTVECTOR
serializer.h, 192
JSONOBJVECVEC
serializer.h, 192
JSONSTART
serializer.h, 192
JSONSTRING
CompileScenario::Scenario, 162
Core::Agent, 40
serializer.h, 192

Keyframe
Core::Keyframe, 111
KeyframeAdded

KeyframeManagement::KeyframeManager, 120

KeyframeControls
Gui::KeyframeControls, 113
KeyframelList
Gui::Keyframelist, 115
KeyframeManagement, 36

KeyframeManagement::KeyframeManager, 117

~KeyframeManager, 118
AddKeyframe, 118, 119
DebugDump, 120
GetKeyframes, 120
Instance, 120
KeyframeAdded, 120
KeyframeManager, 118
m_Keyframes, 121
operator=, 121
RemoveKeyframe, 121
KeyframeManager

Generated by Doxygen

INDEX 275

KeyframeManagement::KeyframeManager, 118 CompileScenario::Scenario, 163
m_Keyframes

Latitude KeyframeManagement::KeyframeManager, 121
Core::GeographicalCoordinate, 59 m_LatitudeCoordInput

Launcher Gui::MapDialog, 133
Gui::Launcher, 122 m_Launcher

load Gui::TabWidget, 173
CompileScenario::Scenario, 162 m_Layout

LoadScenario Gui::AgentControls, 45
Gui::MainWindow, 128 Gui::KeyframeControls, 114
Gui::MenuBar, 147 Gui::KeyframelList, 116

LoadTif Gui::Launcher, 123
HeightManagement::HeightManager, 68 Gui::MainContent, 124

LocalGoal Gui::ScenarioControls, 166
Routemaker::Node< T >, 149 Gui::Sidebar, 169

Longitude Gui::Simulator, 171
Core::GeographicalCoordinate, 59 m_LoaderAngle

Gui::MapViewer, 143

m_ActiveAgentColorBox m LoaderSize

Gui::AgentControls, 44 Gui::MapViewer, 143
m_ActiveAgentComboBox m_LoaderSpan
Gui::AgentControls, 44 " GuizMapViewer, 144
m_ActiveAgentld m_LoaderSpeed
Gui::MapViewer, 143 GuizMapViewer, 144
m_actinggenth m_LoaderThickness
Qu|::T|meI|ne, 177 Gui::MapViewer, 144
m_ActiveAgentindex m_LongitudeCoordInput
Gui::AgentControls, 44 Gui::MapDialog, 133

m_AgentControls
Gui::Sidebar, 169

m_Agents
CompileScenario::Scenario, 163
Gui::AgentControls, 44

m_LowerRightX
HeightManagement::HeightManager, 71
m_LowerRightY
HeightManagement::HeightManager, 71
m_MainContent

Gui::MapViewer, 143 Gui::MainWindow, 130
m_Area m_MapViewer

MapManagement::MapManager, 137 Gui::Planner. 151
m_CachedTifName m_MapWidth ’

HeightManagement::HeightManager, 71 - Routemaker::Routemaker. 158
m_CoIor'“ m_MenuBar

Gw..QoIorBox, 51 Gui::MainWindow, 130
m_ColorDialog m Name

Gui::ColorBox, 51 CompileScenario::Scenario, 164

m_CompiIeButtorj m_NewAgentButton
Gui::ScenarioControls, 166 Gui::AgentControls, 45

m_CoordinateSystem

' _ m_Nodes
HeightManagement::HeightManager, 71 Routemaker::Routemaker. 158
m_Data m_Origin

MapManagement::MapManager, 137
m_DeleteKeyframesButton

Gui::KeyframeControls, 114
m_HeightMap

Routemaker::Routemaker, 157
m_IlmageResolution

MapManagement::MapManager, 138

CompileScenario::Scenario, 164

CoordinateConverter::CoordConv, 57
m_OriginGeographical

CoordinateConverter::CoordConv, 57
m_0Origo

HeightManagement::HeightManager, 72
m_pixelsPerSecond

m_KeyframeControls Gui::Timeline, 178
Gui::Sidgbar, 169 m_Planner
m_KeyframeList Gui::TabWidget, 173

Gui::KeyframeControls, 114

m_Resolution
m_KeyframeManager

Generated by Doxygen

276

INDEX

HeightManagement::HeightManager, 72
m_Routemaker
CompileScenario::Scenario, 164
m_RoutemakerRes
Routemaker::Routemaker, 158
m_RoutemakerWidth
Routemaker::Routemaker, 158
m_Routes
CompileScenario::Scenario, 164
Gui::MapViewer, 144
m_Scenario
Gui::MainWindow, 130
m_ScenarioControls
Gui::Sidebar, 169
m_ScenarioSettingsDialog
Gui::MainWindow, 130
m_SelectionCorner
HeightManagement::HeightManager, 72
m_SettingsButton
Gui::ScenarioControls, 166
m_Sidebar
Gui::MainContent, 125
m_Simulator
Gui::TabWidget, 173
m_Size
CompileScenario::Scenario, 164
CoordinateConverter::CoordConv, 57
Gui::MapViewer, 144
HeightManagement::HeightManager, 72
m_Sizelnput
Gui::MapDialog, 133
m_StartX
Gui::MapViewer, 145
m_StartY
Gui::MapViewer, 145
m_TabWidget
Gui::MainContent, 125
m_TheRegistry
Json::ISConstructors, 77
m_Timeline
Gui::Planner, 151
m_TimeStamp
Gui::MapViewer, 145
m_timeStamp
Gui::Timeline, 178
m_UpperLeftX
HeightManagement::HeightManager, 72
m_UpperLeftY
HeightManagement::HeightManager, 73
m_\Vertices
HeightManagement::HeightManager, 73
m_WaitingForData
Gui::MapViewer, 145
m_WaitingForDataElapsedTimer
Gui::MapViewer, 145
m_WaitingForDataTimer
Gui::MapViewer, 146
main

main.cpp, 261
main.cpp

main, 261
main_window.cpp

getRandomColor, 243
MainContent

Gui::MainContent, 124
MainWindow

Gui::MainWindow, 127
MakeRoute

Routemaker::Routemaker, 156
MapDataReady

Gui::MapDialog, 132
MapDialog

Gui::MapDialog, 131
MapManagement, 36
MapManagement::MapManager, 134

~MapManager, 135

CalculateCornerCoordinates, 135

GetData, 136

GetlmageResolution, 136

GetMap, 136

Gotlmage, 137

Instance, 137

m_Area, 137

m_Data, 137

m_IlmageResolution, 138

MapManager, 135

Requestimage, 137
MapManager

MapManagement::MapManager,

MapViewer
Gui::MapViewer, 139
menu_bar.cpp
quitApp, 250
MenuBar
Gui::MenuBar, 147
Meridian
Core::UTMCoordinate, 180
mousePressEvent
Gui::ColorBox, 50
Gui::MapViewer, 140
mouseReleaseEvent
Gui::Timeline, 176

Name

Core::Agent, 41
name

Json::ISProperty, 105
NodePtr

Routemaker::Graph< T >, 60
Northing

Core::UTMCoordinate, 181

Occupied
Routemaker::Cell2D, 48
OpenSettingsDialog
Gui::ScenarioControls, 166
operator=

135

Generated by Doxygen

INDEX

277

Json::ISConstructors, 77

KeyframeManagement::KeyframeManager, 121
OrigoWithinBounds

HeightManagement::HeightManager, 68

paintEvent
Gui::ColorBox, 50
Gui::MapViewer, 141
Gui::Timeline, 176
Parent
Routemaker::Node< T >, 149
Planner
Gui::Planner, 150
PopulateVertices
HeightManagement::HeightManager, 69
Position
Core::Keyframe, 112
PostSmooth
Routemaker::Graph< T >, 62

quitApp
menu_bar.cpp, 250

RAPIDJSON_HAS_STDSTRING
serializer.cpp, 233
README.md, 229
RemoveKeyframe
KeyframeManagement::KeyframeManager, 121
Requestimage
MapManagement::MapManager, 137
ResetNodes
Routemaker::Graph< T >, 62
Routemaker::Routemaker, 156
ResetOrigin
CoordinateConverter::CoordConv, 55
resizeEvent
Gui::MapViewer, 141
Gui::Timeline, 177
Routemaker, 36
Routemaker::Routemaker, 153
routemaker.cpp
DRONE_FLIGHT_HEIGHT, 264
Routemaker::Cell2D, 47
Occupied, 48
X, 48
Y, 48
Routemaker::Graph< T >, 59
GetCost, 60
GetNeighbors, 61
HasLineOfSight, 61
NodePtr, 60
PostSmooth, 62
ResetNodes, 62
SolveAStar, 63
Routemaker::Node< T >, 148
Data, 148
GlobalGoal, 148
LocalGoal, 149
Parent, 149

Visited, 149
Routemaker::Routemaker, 152
BresenhamLine, 154

GetCost, 154
GetNeighbors, 155
GetNode, 155
HasLineOfSight, 155
m_HeightMap, 157
m_MapWidth, 158
m_Nodes, 158
m_RoutemakerRes, 158
m_RoutemakerWidth, 158
MakeRoute, 156
ResetNodes, 156
Routemaker, 153
UpdateOrigin, 157
UpdateResolution, 157
RouteMap
CompileScenario::Scenario, 160

save
CompileScenario::Scenario, 162
SaveScenario
Gui::MainWindow, 128
Gui::MenuBar, 147
Scenario
CompileScenario::Scenario, 160
ScenarioCompiled
Gui::MainWindow, 129
ScenarioControls
Gui::ScenarioControls, 165
scenarioDataReady
Gui::Sidebar, 168
ScenariolLoaded
Gui::MainWindow, 129
SelectColor
Gui::ColorBox, 50
SendData
Gui::MapDialog, 133
serialize
Json, 35
serializer.cpp
debug, 233
RAPIDJSON_HAS_ STDSTRING, 233
serializer.h
debug, 193
JSON, 188
JSONBOOL, 189
JSONDOUBLE, 189
JSONDOUBLEVECTOR, 189
JSONEND, 189
JSONFLOAT, 190
JSONFLOATVECTOR, 190
JSONINT, 190
JSONINTVECTOR, 190
JSONMEMBER, 191
JSONMEMBERVECTOR, 191
JSONMEMVECVEC, 191
JSONOBJECT, 191

Generated by Doxygen

278

INDEX

JSONOBJECTVECTOR, 192
JSONOBJVECVEC, 192
JSONSTART, 192
JSONSTRING, 192
SetActiveAgentindex
Gui::AgentControls, 43
SetAgentColor
Gui::AgentControls, 43
SetOrigin
CompileScenario::Scenario, 163
Sidebar
Gui::Sidebar, 168
Simulator
Gui::Simulator, 170
sizeHint
Gui::Simulator, 171
SolveAStar
Routemaker::Graph< T >, 63
src/compile_scenario/scenario.cpp, 229

src/coordinate_converter/coordinate_converter.cpp, 231

src/core/serializer.cpp, 232, 233
src/gui/action.cpp, 236
src/gui/agent_controls.cpp, 237
src/gui/color_box.cpp, 238, 239
src/gui/keyframe_controls.cpp, 240
src/gui’keyframe_list.cpp, 240, 241
src/gui/launcher.cpp, 241, 242
src/gui/main_content.cpp, 242
src/gui/main_window.cpp, 243
src/gui/map_dialog.cpp, 245, 246
src/gui/map_viewer.cpp, 246, 247
src/gui/menu_bar.cpp, 250, 251
src/gui/planner.cpp, 251, 252
src/gui/scenario_controls.cpp, 252
src/gui/sidebar.cpp, 253
src/gui/simulator.cpp, 254
src/gui/tab_widget.cpp, 254
src/gui/timeline.cpp, 255
src/height_management/height_manager.cpp, 257
src/keyframe_management/keyframe_manager.cpp,
260

src/main.cpp, 261, 262
src/map_management/map_manager.cpp, 262
src/routemaker/routemaker.cpp, 264
SymmetricToAsymmetric

CoordinateConverter::CoordConv, 56
SyncAgentColor

Gui::MainWindow, 129
SyncColor

Gui::AgentControls, 43

TabWidget
Gui::TabWidget, 172
Timeline
Gui::Timeline, 175
TimeStamp
Core::Keyframe, 112
timeStampSelected
Gui::Timeline, 177

ToDom

Json::ISBool, 75
Json::ISDouble, 79
Json::ISDoubleVector, 81
Json::ISFloat, 83
Json::ISFloatVector, 85
Json::ISint, 87
Json::ISIntVector, 89
Json::ISMember< T >, 92
Json::ISMemberVector< T >, 94
Json::ISMemVecVec< T >, 97
Json::ISObject< T >, 99
Json::ISObjectVector< T >, 102
Json::ISObjVecVec< T >, 104
Json::ISString, 107
Json::ISValue, 110

Update

Gui::KeyframelList, 116

UpdateActiveAgent

Gui::MapViewer, 141

UpdateAgents

Gui::AgentControls, 43
Gui::MapViewer, 141

UpdateColor

Gui::ColorBox, 50

UpdateCornerCoords

HeightManagement::HeightManager, 69

UpdateOrigin

HeightManagement::HeightManager, 69
Routemaker::Routemaker, 157

UpdateRenderingArea

Gui::MapViewer, 142

UpdateResolution

Routemaker::Routemaker, 157

UpdateRoutes

Gui::MapViewer, 142

UpdateScenario

Gui::MainWindow, 129

UpdateTimeStamp

Gui::MapViewer, 142

UTMCoordinate

Core::UTMCoordinate, 179

UTMToGeographic

CoordinateConverter::CoordConv, 56

ValidInput

HeightManagement::HeightManager, 70

value

Json::ISBool, 75

Json::ISDouble, 79
Json::ISDoubleVector, 82
Json::ISFloat, 84
Json::ISFloatVector, 86
Json::ISint, 88

Json::ISIntVector, 90
Json::ISMember< T >, 93
Json::ISMemberVector< T >, 95
Json::ISMemVecVec< T >, 97

Generated by Doxygen

INDEX 279

Json::ISObject< T >, 100
Json::ISObjectVector< T >, 102
Json::ISObjVecVec< T >, 104
Json::ISProperty, 105
Json::ISString, 107

Visited
Routemaker::Node< T >, 149

WaitForData
Gui::MapViewer, 142

X
Core::CartesianCoordinate, 47
Routemaker::Cell2D, 48
X
HeightManagement::HeightManager::heightdata,
64
Y
Core::CartesianCoordinate, 47
Routemaker::Cell2D, 48
y
HeightManagement::HeightManager::heightdata,
64
Z
Core::CartesianCoordinate, 47
z
HeightManagement::HeightManager::heightdata,
64
Zone

Core::UTMCoordinate, 181

Generated by Doxygen

Appendix P

Medforfattererkleering

016

Universitetet
i Serast-Norge

Medforfattererklzering - bacheloroppgave
Dette skjemaet skal fylles ut og signeres av alle studentene i prosjektgruppen. Ferdig utfylt og signert skjema
skal ligge som et vedlegg i rapporten.

Tittel pa oppgaven Hivemind

Veileder fra USN Dag Andreas Hals Samuelsen

Beskriv hva hver student i prosjektgruppen har bidratt med i bacheloroppgaven.

Eksempelvis i forhold til problemformulering, litteratursek, planlegging av forsgk/valg av metoder,
datainnsamling/bygging av prototype, analyse/tolking av data/uttesting, skriving osv.

Husk at alle studentene er ansvarlige for helheten av den innleverte oppgaven.

Aurora Moholth har bidratt med:

Fellesansvar: Problemformulering, valg av metoder, utvikle produkt, skrive rapport, mateleder-rolle,
mgtereferater

Ansvarsomrdder: Arkitektur, Kompetanseflyt, Team building

Harald Moholth har bidratt med:

Fellesansvar: Problemformulering, valg av metoder, utvikle produkt, skrive rapport, mateleder-rolle,
mgtereferater

Ansvarsomrdder: Krav, testing

Hilde Marie Moholth har bidratt med:

Fellesansvar: Problemformulering, valg av metoder, utvikle produkt, skrive rapport, mgteleder-rolle,
motereferater

Ansvarsomrdder: Dokumentasjon, informasjonsflyt, sosiale medier

Nils Herman Lien Hare har bidratt med:

Fellesansvar: Problemformulering, valg av metoder, utvikle produkt, skrive rapport, mgteleder-rolle,
mgtereferater

Ansvarsomrdader: Dokumentmaler, Risikoanalyse

Ruben Sgrensen har bidratt med:

Fellesansvar: Problemformulering, valg av metoder, utvikle produkt, skrive rapport, mgteleder-rolle,
mgtereferater

Ansvarsomrdder: Versjonskontroll, programmeringsansvarlig

Dato Signatur

20/05-9 'ff%-z//)/ ZWO’%////Z%

U5 Lo Soras——

21/05/25 ;Z'ft e M. Mottty

AUle | AR Meas dioe i

Ulos-1| Aurorn Mohalth,

	Acknowledgements
	Abstract
	Introduction
	Overview
	Group members

	Domain: unmanned flying vehicles
	What is a drone swarm?
	Usage of drone swarms
	Controlling the swarm

	Problem: Route-making in drone swarm management
	Project context
	User requirements
	Minimum viable product
	Project problem

	Related work
	Route-planning algorithms
	Existing solutions for controlling drones and drone swarms

	Project management
	Supervisor communication
	Project risk analysis
	Website

	Software development process
	Methodology
	Technologies used
	Verification

	Proposing a conceptual software model
	Use cases
	Generic software architectural model
	Decomposing the software architecture

	Implementation
	Technology-specific software components
	Coordinate Converter
	Height Management
	Map Management
	Keyframe Management
	Routemaker
	Serializer (Load and Archive Scenario)
	Compile Scenario
	Graphical User Interface

	Testing
	Testing of software components
	Testing of Hivemind

	Product Risk Analysis
	Definitions and risk matrix
	Client interaction and risk identification
	Risk mitigation strategies
	Encountered risks

	Evaluation
	Have we met the requirements?
	Practical evaluation

	Conclusion
	Challenges
	Future work
	Contribution

	References
	Bibliography
	Appendices
	GML file returned by WCS request
	Flowchart
	Requirements: User stories
	Requirements: Use cases
	Requirements table
	Final Hivemind product requirements
	Original test table
	Development of the software architecture
	Initial Architectural Design
	Initial component diagram
	First architecture & model-view-controller diagram
	Second layered architecture and use cases
	Third layered architecture
	Final layered architecture before start coding

	Adapting Architecture for Coding Challenges & Requirements

	IDEF0
	Risk analysis
	Technical contributions
	Updated testing documentation
	Project timeline
	Seating arrangements
	Seating arrangement

	Code documentation
	Medforfattererklæring

