
 

 

 

University of South-Eastern Norway 
Faculty of Technology, Natural Sciences and Maritime Sciences 

– 
Master’s Thesis  

Study programme: Master of Science in Micro and Nano Systems Technology  
Spring 2023 

Sander Hasle 

Improved quality factor on lamb wave resonators 

using a phononic crystal structure array 
For High Frequency Lamb Wave Resonators 

 

 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
University of South-Eastern Norway 
Faculty of Technology, Natural Sciences and Maritime Sciences 
Department of Microsystems. 
Raveien 215 
NO-3184 Borre, Norway 
 
http://www.usn.no 
 
© 2023 Sander Hasle 
 

 

  



 

  

___ 

2 
 

 

Course: MN-FIN5000-1 Final Project 2023 

Title: Improved quality factor on lamb wave resonators using a phononic crystal 

structure array 

Keywords: AIN, LiNbO3, LWR, Quality Factor, PCS, S0, SH0 

Pages:  81 

Student: Sander Hasle 

Supervisors: Ulrik Hanke, Hamed Salmani 

Summary: 
 
This thesis explores the possibility of increasing the quality factor of a lamb wave resonator 

device with the use of a phononic crystal structure array on the surface of the bridge suspending 

the device. 

In the growing industry of telecommunication, there is an increasing demand for high 

performance devices. As the amount of data transmission is rapidly increasing year on year, so is 

the need to implement higher frequency bands. Therefore, the demand for smaller devices 

which can operate in the GHz frequency range, has accelerated the research of lamb wave 

resonators.  

This because they have the possibility of a highly adaptable frequency response based mainly on 

the geometrical structure of the device. 

The Ain structure is a widely used material for both surface acoustic wave and lamb wave 

resonator devices. It offers a high phase velocity, mechanical strength, chemical inertness, and 

thermal stability making it very suitable for high frequency devices. However, in recent years 

there has been a push to explore the possibility of using lithium niobate and lithium tantalate for 

its higher mechanical coupling factors. Making the possible use of high-end devices quite 

attractive, regardless of the higher production cost. 

Here we investigated the design prosses of a FEM simulation using COMSOL Multiphysics for the 

purpose of optimising and predicting the response rate of a lamb wave resonator using different 

materials.  Both designing relevant boundary conditions as well as relevant simulations are 

investigated. 
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1 Introduction  

1.1 Lamb Wave Resonator Motivation 

The science of telecommunication is an ever-evolving field of science. One could say it started as 

early as 1816 with the first working telegraph built by Francis Ronald’s [1]. And the bar continues to 

be raised regarding what to expect from a working telephone, from simply having messages 

delivered, to uploading and downloading large data files [2]. This change naturally drives the 

demand for a faster broadband cellular network and is the main reason we have gone from 1G first-

generation cellular network to the modern 5G fifth-generation cellular network in a relatively short 

timeframe. There is no doubt this is still a growing field and the need for better resonators is a 

largely studied field, with now the objective to try and push this technology to its sixth generation 

[3].  

In this project, we will investigate the possibility of improving the parameters of a LAMB wave 

resonator (LWR), with the inclusion of patterned phononic crystal structure (PCS) design on the 

anchor sections of a LAMB wave resonator (LWR). One main driver for looking into this is the large 

energy loss this system experiences over the bridge section of a device. This is one of the big 

limiting factors on a LWR as the largest energy loss can be found over the bridge. Making the device 

response a heavily hampered version of its possible response. As the acoustic waves generated in 

the resonator travel through the bridge and leak through the anchor of the device.  

Where this would also allow us to use substrate made of Lithium Niobate (LiNbO3) instead of the 

more commonly used Aluminium Nitride (AIN), where LiNbO3 commonly offers a much larger 

effective electromechanical coupling coefficient (Keff
2 ) then its counterpart AIN [4], [5]. 

To limit this we are looking into the possibility of using phononic crystals to stop the transmission of 

energy through waves in a medium, mainly over the bridge section of a device [6]. This would make 

it possible to create a barrier on the bridge section with a PCS array, thus making it theoretically 

possible stop the energy leakages completely throughout the bridge. In doing this we would 

improve the parameters on any given LAMB wave resonators without giving large restrictions in the 

used materials or structure parameters. The main challenge in this project therefore lies in 

designing these phononic crystal structure on top of the bridge and to investigate the effect they 

can have on the functionality of the LWR. This will be done by simulation, as it allows us to test the 

theoretical possibility of these implementations on a broader scale compared to an individual scale 

of a physical fabrication test. By doing this we can look past errors coming from physical 



 

  

___ 

11 
 

imperfections under the creation of a device. However, we will still be designing our devices with its 

potential future creation in mind. 

1.2 Model 

There has been an array of different modelling techniques in continuous development in the history 

of mems design. This is due to the importance of testing the design of the new structure in a 

reliable and efficient way, before initiating the long and expensive production of the device.  

 Where it started with relatively simple models, like the impulse response model also called delta 

function model (δ-model) and the electrical equivalent circuit model (ECM). Delta model utilizes the 

concept of superposition, where it can define each electrode of the IDT as a separate periodic delta 

function. However, it is not able to include part for the reflections, making it unsuited for low-loss 

filters as this is a key component of their functionality. ECM is a more robust modelling method. It 

has over time been extensively improved to include concepts like reflection from mechanical and 

electrical load, electrode edges and energy storage. 

The requirements on performance and complexity of acoustic wave device like SAW devices and 

LWR devices have increased drastically over the years. This has accelerated the need to create and 

use more advanced modelling techniques. One method being the coupling-of-modes (COM) theory, 

that is defined as a set of differential equations. Another established method is the P-matrix model 

(PMM) introduced by Tobolka [7]. The main problem with the above-mentioned models is that they 

are physiological simulations that require accurate parameters to deliver good results.  

Another feasible method is to use numerical tools that calculate the device properties directly from 

the material and geometry parameters. This would make it possible to easily calculate the device 

response more accurately for a wide range of different materials and geometrical parameters. The 

most common forms of these techniques are the finite element method (FEM) and the boundary 

element method (BEM). The problem has been that these methods are very time consuming when 

doing simulations on more complex cases such as a LWR device. Even with today’s computing the 

simulation of a complex system can be very time consuming as it often requires millions of separate 

calculations to be done for a simple data point. 

But even after considering the limitations with FEM simulations, it remains the most reliable 

method to produce a result considering the task at hand. Based in this, we will be looking into the 

possibility of using COMSOL Multiphysics to simulate an accurate response rate for a LWR device 
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and explore the possibility of improving the response rate with the use of a phononic crystal 

structure array. 

 

1.3 Material 

One of the most important part of any resonator device design is in the material selection [8]. 

Where a selection must be made considering the device application and potential device respond. 

Here a selection must be made so that the device can be stable in its use environment [9]. 

However, in a resonator device there is also a high importance of choosing a material with a 

suitable coupling coefficient, temperature coefficient, phase velocity, phase velocity dispersion and 

Keff
2 . So, for this reason the use of AIN as it holds a wide range of desirable properties for the use in 

a resonator device. Where it holds a high phase velocity of up to 10000 m/s, a weak phase velocity 

dispersion, a small temperature coefficient and an small to moderate Keff
2  [10]. As the response of a 

SAW resonator device is mainly limited by the material parameters. Materials like AIN have been 

heavily used for these devices, the main problem here is that AIN offers only a small to moderate 

Keff
2 . However, with AIN having a relatively ease of production with a low production cost, it has 

been the most commonly used material for general application [11]. But with the rise in demand 

for ultra-high frequency based resonators, more studies have been looking into the potential of 

more suited materials for these devices [12]. One of these materials being LiNbO3, this comes from 

the fact that it shares a lot of useful qualities with AIN. As it also holds a high phase velocity, low 

phase velocity dispersion and a low temperature coefficient. But where AIN holds a moderate Keff
2  

of 7%, LiNbO3 YX36◦-cut cut hold a much larger Keff
2  of 31.7% [4]. While in Silvan Stettler’s paper, 

they found their LiNbO3 YX36◦-cut cut LWR device to have an Keff
2  as high as 29.7% [5]. However, as 

AIN is far easier and cheaper to fabricate it has remained far more used and researched to this 

date.  

Because of this similarity these two materials have been chosen for further studies in the FEM 

simulation designed. Where aluminium was chosen to use for the metallic layer and platinum for 

the PCS slab. As Platinum has a large density relative to the other materials makes it highly suited 

for the use in creating a large PCS bandgap. While aluminium offers a very similar density compared 

to the piezoelectrical material, hopefully reducing its impact on the PCS bandgap. All the used 

material parameters for the FEM simulations can be found in appendix c below. 
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1.4 Motivation 

As mentioned above, the demand for better and faster data transfer is rapidly increasing. This has 

been the main driving force behind the push for improving components used in telecommunication 

[13]. For large parts of late 19th and early 20th century, the telecommunication industry researched 

heavily into the optimization of SAW devices. As they offered a relatively easy fabrication process 

with a wide array of cheap and varied material selection [14]. However, with the increasing demand 

for a better telecommunication device the demand for high end resonator devices becomes more 

prevalent. This is where the potential of a LWR device started to get some attention. As its high 

dependency of geometrical properties to define the frequency response of the device would allow 

a design more suited for wide bandgap high frequency range (HFR) filters [15]. This would allow for 

the use of materials like LiNbO3, for its very high Keff
2  compared to a more traditional material used 

in SAW devices, like AIN [16].  

Some of the earlier studies into optimizing the quality factor of an LWR device by reducing the 

energy leakage of the device was done in 2015 [10]. In recent years there have been a large 

increase in the number of studies done on the potential of using LWR devices for HFR. Where the 

common idea is to explore the possibility of getting an increase in quality factor on the resonator 

device through stopping the energy leakage happening over the bridge section of a device [17]. 

Different methods have been tried out, from the adding of a butterfly shaped geometry on the side 

of the bridge section, to creating a saw pattern for the bridge section. However, most suffer from 

the fact that they will have a negative impact on the design options of the device. As they require a 

very precise manufacturing processes to potentially see an increase in the quality factor of the 

device. And would require small and hence fragile bridge structures. This would make these 

optimizations only viable for very small devices. This would then defeat the entire purpose of using 

a LWR device over a SAW or bulk acoustic wave (BAW) device. As it would limit the amount of 

Interdigital Transducer one could design a device with, and hence reduce the ECC of the device. To 

negate this the idea of using a phonic crystal structure (PCS) on the bridge structure has been 

explored. The benefit would be to stop the wave propagation over the bridge structure within a 

designed frequency region [18]. This idea offers a significant potential for an increase in the device 

quality factor with no design restriction on the bridge section of the device. As if done properly this 

would efficiently stop any wave propagation over the PCS array, making it possible to use long and 

sturdy bridge sections for the device. Giving the device a better physical integrity while maximising 
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the Keff
2  of the device. So, this is a large inspiration for the purpose of this thesis to investigate the 

possibility of creating an increased quality factor in a LWR device using a PCS array. 

 

 

1.5 Outline of the Thesis 

Section 1 outlined an introduction to LAMB wave resonator history and the beginning of the device 

technology. It discusses how LMR has slowly began appearing in the consumer market. And it goes 

into the chosen material and modelling techniques chosen for this study. And some outlining 

motivation for this study. 

Section 2 introduces the fundamental principles for a LWR device, together with very basic theory 

surrounding elastic wave propagation in solids, piezoelectricity, tensor transformations, Bloch wave 

theory and mesh convergence theory. 

Section 3 goes into the development of the COMSOL simulations used in this study. Where we will 

go into the chosen boundary conditions set in these FEM models and physical parameters set for 

the simulations. We will also go over the geometrical parameters used for the different FEM 

models, and the studies done on each FEM model. 

Section 4 Presents the gathered test data and the different parameters found using these COMSOL 

simulations. Here the main results of this study can be found and talked about. 

Section 5 covers the discussion part of the thesis, where we will go over outliers from the previous 

section that could not be reasonably covered earlier. We will also briefly touch upon some future 

potential for PCS array. 

Section 6 is a short conclusion of this thesis, giving a short summarization of the main takeaway 

from this thesis. 
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2 Fundamental Principles and Theory 

2.1 Fundamental Lamb Wave Resonator concept 

The fundamental idea of any Lamb wave device, including a resonator, is to induce Lamb waves 

withing a structure, in the transverse and longitudinal directions. One of the most common ways to 

achieve this is with the use of electrodes places on a piezoelectric material, as this is a simple yet 

effective way to couple electrical and mechanical energies together. These metal electrodes are 

referred to as the interdigital transducer (IDT) and is one of the two major variables resulting in the 

flexibility of design Lamb wave resonators (LWR) have. The other major characteristic one can 

change of a Lamb wave resonator to change its response is its substrate geometry, mainly the IDT 

geometry, this is also one of the major upsides of using a LWR over a more traditional SAW waves 

resonator (SWR). Both resonators will have the benefit of being affected by the substrate material, 

IDT geometry and IDT numbers. But a LWR will have the added benefit of being able to heavily 

change its frequency response with changing only its device geometry, something which gives it a 

far wider flexibility compared to a SWR design.  

In this project we are using a variation between positive and negative electrodes on the surface of a 

piezoelectric device to create the Lamb waves, this can be seen in the figure below. This will create 

longitudinal Lamb waves in the transverse direction of the electrodes, and as the Lamb waves will 

diffract it will also create transverse Lamb waves along the electrode and device. 

 

 

Figure 2.1 Illustration of the IDT layout 

And as Lamb waves travel inside the material it is possible to induce a large change in a device 

frequency response simply by changing its electronic pitch (EP). This is a large advantage Lamb 

wave resonators have above a SAW device, as a SAW device will have a far less flexible frequencies 
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response change based on the geometrical design of the device. However, as Lamb waves travel 

inside the material this induces a large loss on the device over the bridge holding the device. And in 

a resonator device keeping leakage energy as close to zero is ideal to get a clear and precise device 

response. This comes from the fact that a reduces leakage would introduce a larger displacement 

under a desired mode, and just like how a large electric signal over the IDT would incline a large 

device displacement so would a large produce a larger electric response. So, with a reduce leakage 

over the bridge we could get a larger and more accurate response form the device. Hence, the 

premise of this thesis to reduce acoustic wave leakages over the bridge structure with the use of a 

phononic crystal structure design.  

 

2.2 Elastic waves in solid 

Theory around elastic waves in solid is a crucial topic to cover, as it is the groundwork on which 

Lamb wave theory is built upon. So, to start this we would investigate the topic were the criteria 

that the wavelength of the elastic waves is much larger compared to the interatomic distance, this 

would let us consider any homogeneous solid as continuous. And if we assume that the solid is 

elastic, it will mean that any internal forces would cause no permanent deformation with respect to 

the equilibrium state of the solid. And continuing with this and making the statement that any pure 

translation and rotation of the material will not cause rise to any internal forces, we can use the 

general definition of strain (𝑆𝑘𝑙) which excludes these types of displacements as [19]. 

 

𝑆𝑘𝑙 =
1

2
(
𝜕𝑢𝑘

𝜕𝑥1
+

𝜕𝑢𝑙

𝜕𝑥𝑘
)          𝑘, 𝑙 = 1,2,3 ( 2.1 ) 

 

Where strain is a 2nd rank tensor, where 𝑢 represent the displacement functions in the 𝑥1, 𝑥2 and 

𝑥3 directions. And the sum of the partial derivation in equation (2.1), showing the strain tensor 

must be symmetric with. 

 

𝑆𝑘𝑙 = 𝑆𝑙𝑘 ( 2.2 ) 
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The internal forces present on the material can be represented by a general stress tensor (𝑇𝑖𝑗), 

where as the stress is defined by the force per unit area. The stress tensor is also of a 2nd rank and 

can be shown to be symmetric. 

 

𝑇𝑖𝑗 = 𝑇𝑗𝑖 ( 2.3 ) 

 

Then by using the well-known Hook’s law with the previously definition it is possible to relate the 

internal forces and deformations as a generalization of this law [19]. 

 

𝑇𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝑆𝑘𝑙     𝑖, 𝑗, 𝑘, 𝑙 = 1,2,3 ( 2.4 ) 

 

Here 𝑐𝑖𝑗𝑘𝑙 is a rank 4 tensor referred to as the stiffness tensor. As in traditional uniaxial Hook’s law 

the material constant defines the relation between the stress and strain in a similar fashion as 

Youngs’ modulus (E) would. In both equation (2.4) and the following equations Einstein notation of 

summation over repeated indices is applied. Where even if the stiffness tensor generally includes 

81 components, because both the stress and strain tensors are symmetric, so too is the stiffness 

tensor symmetric. 

 

𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑗𝑖𝑘𝑙    𝑎𝑛𝑑    𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑖𝑗𝑙𝑘 ( 2.5 ) 

 

It is possible to drastically reduce the independent elements for different materials by taking 

certain thermodynamic considerations and specific crystal symmetry into account. And example of 

this would be a material with a cubic symmetry, as here it would only have three independent 

constants of the total 81 components. And with the fundamental term in place, we would only 

need to include the time variation next. 

As the wave travels throughout the medium, it would have to have a local displacement that 

changes with time, and as all these motions need to obey Newton’s laws. Therefore, the net forces 

would be equal to the mass multiplied acceleration. And the relation is typically referred to as the 

equation of motion and is given as. 
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𝜌
𝜕2𝑢𝑖

𝜕𝑡2
=

𝜕𝑇𝑖𝑗

𝜕𝑥𝑗
 ( 2.6 ) 

 

Here the 𝜌 is the mass density and the volume terms have cancelled out. Then by substituting 

equation 2.1 and 2.4 into 2.6, and applying the condition in 2.5, the general wave equation for 

elastic waves in a non-piezoelectric solid can be given in the typical form [19]. 

 

𝜌
𝜕2𝑢𝑖

𝜕𝑡2
= 𝑐𝑖𝑗𝑘𝑙

𝜕2𝑢𝑙

𝜕𝑥𝑗𝜕𝑥𝑘
 ( 2.7 ) 

 

2.3 Piezoelectric Materials 

When considering the physics for a piezoelectric material, one need to consider more than just the 

coupling between the mechanical stresses and strains. As the displacement changes becomes more 

complicated as we now need to consider the effect these changes have on the effect on both the 

displacement forces and electrical fields applied. To start this of we would start with the definition 

of electric displacement field for free charges as done in reference to Vegard Tollefsen work  [20]. 

 

𝐷 = 𝜀0𝐸 + 𝑃 ( 2.8 ) 

 

Here 𝜀0, 𝐸 and 𝑃 is the vacuum permittivity, the electric field, and the polarization density 

respectively. Then by considering only a simplified one-dimensional model, with a constant electric 

field and applying Gauss’s law it is possible to show that the changes in polarization density can be 

written as the change in bound charge density. So, by using the simplification of a one-dimensional 

system like done in the figure below, we can write. 
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∆𝑃 =
𝑛𝑞(∆𝑎 − 2∆𝑏)

2
 ( 2.9 ) 

 

In this simplification 𝑛 is the number of opposite charge pairs per unit volume, 𝑞 is charge, ∆𝑎 the 

cell deformation and ∆𝑏 is the change in distance between the opposite charges. We can visually 

see this illustrated in the Figure below with the first case being at rest and the second case an 

electric field is applied. From this is can clearly understood that this material is piezoelectric and 

must have a net dipole different from zero, where 𝑞+ can be assumed to be equal to 𝑞− since 𝑏 ≠

𝑎

2
. So, from the electrostatic force equilibrium for one charge, we can write the expression for ∆𝑏 

as. 

 

 

Figure 2.2 Piezoelectric effect 

∆𝑏 = −
𝑞𝐸

𝑘1 + 𝑘2
+

𝑘1

𝑘1 + 𝑘2
∆𝑎 ( 2.10 ) 

 

We can change the form of the change in polarization density by substituting equation (2.10) into 

equation (2.9), doing so gives us it in this form. 
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∆𝑃 =
𝑛𝑞2

𝑘1 + 𝑘2
𝐸 +

𝑛𝑞𝑎(𝑘2 − 𝑘1)

2(𝑘1 + 𝑘2)

∆𝑎

𝑎
= 𝜒𝑖𝑜𝑛𝐸 + 𝑒𝑆 ( 2.11 ) 

 

Here we can see that one term is proportional to the electric field and the other term proportional 

to the strain in the form 
∆𝑎

𝑎
. Were 𝜒𝑖𝑜𝑛 is the ionic susceptibility and 𝑒 the piezoelectric constant. 𝑘1 

and 𝑘2 represents the different spring constant associated with this asymmetric system. And by 

again substituting equation (2.11) into equation (2.8) and adding the electronic susceptibility 𝜒𝑖𝑜𝑛 

as it is not already considered in that model, we can obtain the following form of the electric 

displacement. 

 

𝐷 = 𝜀𝐸 + 𝑒𝑆 ( 2.12 ) 

 

Were 𝜀 is the permittivity constant and is defined by. 

 

𝜀 = 𝜀0 + 𝜒𝑖𝑜𝑛 + 𝜒𝑒 ( 2.13 ) 

 

By generalizing equation (2.12) to three dimensions and define it in tensor form we get. 

 

𝐷𝑖 = 𝑒𝑖𝑘𝑙𝑆𝑘𝑙 + 𝜀𝑖𝑗
𝑆 𝐸𝑘 ( 2.14 ) 

 

Here 𝑒𝑖𝑘𝑙 is an 3rd rank piezoelectric tensor and 𝜀𝑖𝑗
𝑆  is an 2nd rank permittivity tensor. And by looking 

at the superscripts we can see that it indicates that the coefficients are given for constant strain. 

Here again the strain tensors are symmetric, so we can write the following piezoelectric tensor 

relations. 

 

𝑒𝑖𝑘𝑙 = 𝑒𝑖𝑙𝑘 ( 2.15 ) 
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A similar approach can be used to obtain the relation between the stress and the electric field by 

considering the traction instead of the force equilibrium. We are using thermodynamic arguments 

to justify this relation. So, the change in internal energy of a piezoelectric material is given by. 

 

𝑑𝑈 = 𝜃𝑑𝜎 + 𝑇𝑗𝑘𝑑𝑆𝑗𝑘 + 𝐸𝑖𝑑𝐷𝑖 ( 2.16 ) 

 

Where 𝜃 is the temperature and 𝜎 the entropy. By introducing the thermodynamic potential, we 

can change the function from being defined by 𝐷𝑖, 𝜎 and 𝑆𝑗𝑘 to 𝐸𝑖, 𝜎 and 𝑆𝑗𝑘. And this can be 

defined as. 

 

𝐺 = 𝑈 − 𝐸𝑖𝐷𝑖  ( 2.17 ) 

 

And we can obtain the exact differential from equation (2.17) 

 

𝑑𝐺 = 𝜃𝑑𝜎 + 𝑇𝑗𝑘𝑑𝑆𝑗𝑘 − 𝐷𝑖𝑑𝐸𝑖 ( 2.18 ) 

 

This leads to the relation. 

 

(
𝜕𝑇𝑗𝑘

𝜕𝐸𝑖
)

𝜎,𝑆

= −(
𝜕𝐷𝑖

𝜕𝑆𝑗𝑘
)

𝜎,𝐸

= (
𝜕2𝐺

𝜕𝐸𝑖𝜕𝑆𝑗𝑘
)

𝜎

 ( 2.19 ) 

 

The subscripts here above are used to indicate the relevant parameters that are assumed constant 

under the derivation. Then by combining equation (2.14) with equation (2.19) we can obtain. 

 

(
𝜕𝑇𝑗𝑘

𝜕𝐸𝑖
)

𝜎,𝑆

= −𝑒𝑖𝑗𝑘 ( 2.20 ) 
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When looking at the linear region of equation (2.21) we can see that we can integrate directly here. 

And when combined this result with the possibility that the piezoelectric material can also 

experience the strain, the stress can be given with the following tensor form. 

 

𝑇𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙
𝐸 𝑆𝑘𝑙 − 𝑒𝑘𝑖𝑗𝐸𝑘 ( 2.21 ) 

 

What we have referred to here with equation (2.14) and (2.21) are the constitutive equations for 

linear piezoelectric theory, in a form called by some the e-form. The manipulations were the terms 

that will stay on the left side of the equation are given the form (g, d and h) and can be seen in 

Appendix A. And an overview of these relevant fields and constant with corresponding units are 

given in Table 6.2 in the appendix. 

Now that we have defined the piezoelectric constitutive equations, we can begin to introduce 

Maxwell’s equations. And as the elastic waves associated with the electric field travels in an order 5 

times slower than the electromagnetic waves, we can use a quasi-static approximation. Leading to 

this relation. 

 

𝛻 × 𝐸 = −
𝜕𝐵

𝜕𝑡
≅ 0 ( 2.22 ) 

 

Here 𝐵 is the magnetic field. In this simplification the electric field will have a negative gradient to 

the electric potential (Φ) and can be given as. 

 

𝐸 = −𝛻𝛷 ( 2.23 ) 

 

We will also assume that there are no free charges as the piezoelectric material behaves as a 

perfect insulator. This leads to the simplification of the electrical displacements as the following. 
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𝛻 ∙ 𝐷 = 0 ( 2.24 ) 

 

And by finally combining the equations (2.1), (2.6), (2.21), (2.23) and (2.24) we can create a set of 

governing equations for elastic waves in a piezoelectric material in tensor form [19], [20]. 

 

𝜌
𝜕2𝑢𝑖

𝜕𝑡2
− 𝑐𝑖𝑗𝑘𝑙

𝐸
𝜕2𝑢𝑙

𝜕𝑥𝑗𝜕𝑥𝑘
− 𝑒𝑘𝑖𝑗

𝜕2𝛷

𝜕𝑥𝑗𝜕𝑥𝑘
= 0 ( 2.25 ) 

 

𝑒𝑘𝑖𝑗

𝜕𝑢𝑙

𝜕𝑥𝑘
− 𝜀𝑗𝑘

𝑆 𝜕𝛷

𝜕𝑥𝑘
= 0 ( 2.26 ) 

 

2.4 Tensor Transformations 

Tensor calculation is a complex, but very integral part of any physical calculation and hence 

simulations. However, getting a good intuitive understanding of tensor calculation isn’t easy. One 

way to try and understand this is by viewing tensors as its own set of laws, as ever basic vector and 

components will share the same reference frame. This makes it possible for us to change the 

coordinate system and the corresponding components will change accordingly. This is very useful 

when looking into materials where the crystal cut will impact the propagation directions. And as 

such the only transformation we will be interested in here will be rotation. 

First, we will consider the traditional unit vector of the cartesian coordinate system. Where 𝑖̂, 𝑗̂ and 

�̂�, represents the three directions 𝑥, 𝑦 and 𝑧 respectively. And any of these vectors can be mapped 

to any other three vectors, 𝑖′̂, 𝑗′̂ and 𝑘′̂ by the 3x3 matrix 𝑹 as follows. 

 

[
 𝑖′̂

𝑗′̂

𝑘′̂

] = [

𝑙1 𝑚1 𝑛1

𝑙2 𝑚2 𝑛2

𝑙3 𝑚3 𝑛3

] ∙ [
 𝑖̂
 𝑗̂

�̂�

] = 𝑹 ∙ [
 𝑖̂
 𝑗̂

�̂�

] ( 2.27 ) 
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We can also perform a similar reversed mapping with 𝑹−1 given by. 

 

[
 𝑖̂
 𝑗̂

�̂�

] = [

𝑙1 𝑚1 𝑛1

𝑙2 𝑚2 𝑛2

𝑙3 𝑚3 𝑛3

] ∙ [
 𝑖′̂

𝑗′̂

𝑘′̂

] = 𝐑−𝟏 ∙ [
 𝑖′̂

𝑗′̂

𝑘′̂

] ( 2.28 ) 

 

The arbitrary mapping of one set of units to another set of unit vectors can be done with the Euler’s 

angels of three independent angels (𝑎, 𝑏, 𝑐). However, it is important to consider which axis is being 

rotated and in which order. There are three common Euler conventions that we could be 

considered, this could be (𝑧, 𝑥′, 𝑧′′), (𝑧, 𝑦′, 𝑧′′) and (𝑥, 𝑦′, 𝑥′′) where the rotation is being done 

counterclockwise to a specified axis [21]. And here on we will consider only the second convention 

(𝑧, 𝑦′, 𝑧′′). As such the new set of unit vectors after the rotation from the first axis (𝑧) can be given 

as. 

 

[
 𝑖′̂

𝑗′̂

𝑘′̂

] = [
cos (𝑎) sin (𝑎) 0
−sin (𝑎) cos (𝑎) 0

0 0 1

] ∙ [
 𝑖̂
 𝑗̂

�̂�

] ( 2.29 ) 

 

And rotation around the second axis (𝑦′). 

 

[
 𝑖′′̂

𝑗′′̂

𝑘′′̂

] = [
cos (𝑏) 0 −sin (𝑏)

0 1 0
sin (𝑏) 0 cos (𝑏)

] ∙ [
 𝑖′̂

𝑗′̂

𝑘′̂

] ( 2.30 ) 

 

And finally, the rotation around the third axis (𝑧′′). 

 

[
 𝑖′′′̂
𝑗′′′̂

𝑘′′′̂

] = [
cos (𝑐) sin (𝑐) 0
−sin (𝑐) cos (𝑐) 0

0 0 1

] ∙ [
 𝑖′′̂

𝑗′′̂

𝑘′′̂

] ( 2.31 ) 

 

Now we can obtain the complete rotation matrix 𝑹, this is possible to do by substituting equation 

(2.29) and (2.30) into equation (2.31) and performing the matrix multiplications. This will come out 

in the following form. 
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𝑅 = [

cos(𝑎) cos(𝑏) cos(𝑐) − sin(𝑎) sin (𝑐) cos(𝑏) cos(𝑐) sin(𝑎) + cos (𝑎) sin(𝑐) − cos(𝑐) sin (𝑏)

− cos(𝑎) cos(𝑏) sin(𝑐) − cos(𝑐) sin (𝑎) − cos(𝑏) sin(𝑎) sin(𝑐) + cos (𝑎)cos(𝑐) sin(𝑏) sin (𝑐)

cos (𝑎) sin(𝑏) sin(𝑎) sin (𝑏) cos (𝑏)

] ( 2.32 ) 

 

The rotation matrix 𝑹 in equation (2.32) is a general form and can be utilized to transform any 1st 

and 2nd rank tensors to any new reference frame with its new set of vectors. Now consider the 

relation between electric displacement (𝑫) and electric field (𝑬) with respect to the two different 

coordinate systems. 

 

𝐷 = 𝜀𝐸 and 𝐷′ = 𝜀′𝐸′ ( 2.33 ) 

 

𝜀 is the permittivity tensor (rank 2) and here we will leave out all the corresponding tensors indices 

for simplicity. 𝐷 and 𝐸 are both vectors and can hence be transformed using equation (2.27) (𝐷′ =

𝑅𝐷 and 𝐸′ = 𝑅𝐸). And substituting them into the marked terms in equation (2.33) gives. 

 

𝑅𝐷 = 𝜀′𝑅𝐸 ( 2.34 ) 

 

Now by multiplying equation (2.34) with 𝑹−1  and by comparing the results with the unmarked 

terms in equation (2.33) we can obtain the transformation of 𝜀, This leads to the following 

transformation of 𝜀. 

 

𝜀 = 𝑅−1𝜀′𝑅 and 𝜀′ = 𝑅𝜀𝑅−1 ( 2.35 ) 

 

Here we can see that the relation in equation (3.35) is a general transformation that can be applied 

to any 2nd rank tensor. However, it is useful to look at Voigt notation before advancing to the 3rd 

and 4th rank tensors. And because of the symmetry shown for stress and strain in equation (2.2) 

and (2.3), we can reduce the 9 total components down to only 6 independent ones. So, using Voigt 

notation we will map these 9 components into these 6 independent components. The relations are 

shown in Table 1. 
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Index  Voigt 

11 → 1 

22 → 2 

33 → 3 

23,32 → 4 

13,31 → 5 

12,21 → 6 

Table 2.1 Voigt Notation 

 

 

And since both stress and strain are a 2nd rank tensor, we can use the general 2nd rank tensor 

transformation defined in equation (2.35). If we rearrange the terms with respect to the 6 

independent components in Voigt notations and preforming a matrix multiplication, we can then 

find the relation between the two different reference frames can be given by a 6x6 rotation matrix 

𝛼. From here we can use 𝛼 to transform any 2nd rank tensor into its Voigt notation like seen in 

equation (2.36) [20]. 

 

[
 
 
 
 
 
 
𝑆′

1

𝑆′
2

𝑆′
3

𝑆′
4

𝑆′
5

𝑆′
6]
 
 
 
 
 
 

=

[
 
 
 
 
 
 

𝑙1
2

𝑙2
2

𝑙3
2

𝑙2𝑙3
𝑙3𝑙1
𝑙1𝑙2

𝑚1
2

𝑚2
2

𝑚3
2

𝑚2𝑚3

𝑚3𝑚1

𝑚1𝑚2

𝑛1
2

𝑛2
2

𝑛3
2

𝑛2𝑛3

𝑛3𝑛1

𝑛1𝑛2

2𝑚1𝑛1

2𝑚2𝑛2

2𝑚3𝑛3

𝑚2𝑛3 + 𝑚3𝑛2

𝑚3𝑛1 + 𝑚1𝑛3

𝑚1𝑛2 + 𝑚2𝑛1

2𝑛1𝑙1
2𝑛2𝑙2
2𝑛3𝑙3

𝑛2𝑙3 + 𝑛3𝑙2
𝑛3𝑙1 + 𝑛1𝑙3
𝑛1𝑙2 + 𝑛2𝑙1

2𝑙1𝑚1

2𝑙2𝑚2

2𝑙3𝑚3

𝑚2𝑙3 + 𝑚3𝑙2
𝑚3𝑙1 + 𝑚1𝑙3
𝑚1𝑙2 + 𝑚2𝑙1]

 
 
 
 
 
 

∙

 
 
 
 
 
 
𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝑆6 
 
 
 
 
 

= 𝛼 ∙

 
 
 
 
 
 
𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝑆6 
 
 
 
 
 

 ( 2.36) 

 

Then by following the same procedure we used to obtain the transformation relation, between the 

two different reference frames, for 𝜀 as done in equation (2.33), (2.34) and (2.35). It is now possible 

to obtain a transformation relation for the piezoelectric tensor (𝑒) and the stiffness tensor (𝑐). So, 

for a 3rd rank tensor like 𝑒 we can give the transformation the following form. 

 

𝑒′ = 𝑅𝑒𝛼−1and 𝑒 = 𝑅−1𝑒′𝛼 ( 2.37 ) 

 

And for a 4th rank tensor like 𝑐 the transformation will have the form as following. 
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𝑐′ = 𝛼𝑐𝛼−1 and 𝑐 = 𝛼−1𝑐′𝛼 ( 2.38 ) 

 

The direction cosines 𝑙′𝑠, 𝑚′𝑠 and 𝑛′𝑠 given in equation (2.27) and the subscripts 1-3 defines the 

new axis they relate to. All these components can be obtained by the general rotation matrix 

equation (2.32) given by Euler angels 𝑎, 𝑏 and 𝑐. In a lot of cases the change in a coordinate system 

is done such that the two rotation matrices 𝑅 and 𝛼 will be symmetric and making the invers 

matrices 𝑅−1 and 𝛼−1 can be changed with the corresponding transpose matrices 𝑅𝑇 and 𝛼𝑇. The 

summarized transformation of 𝜀, 𝑒 and 𝑐 can be seen in Table 2, while the general tensor 

transformation with full indices can be seen in Table 3. 

 

Table 2.2 Material Transformations 

Tensor Rank Transformation 

Permittivity 2 𝜀′ = 𝑅𝜀𝑅−1 

Piezoelectric 3 𝑒′ = 𝑅𝑒𝛼−1 

Stiffness 4 𝑐′ = 𝛼𝑐𝛼−1 

 

 

Equation (2.27) gives 𝑅 or with Euler’s angels in (2.32). while 𝛼 is given in equation (2.36). 

 

Table 2.3 Tensor Transformations 

Rank Transformation 

1 𝐴𝑖
′ = 𝑎𝑖𝑗𝐴𝑗 

2 𝐴𝑖𝑗
′ = 𝑎𝑖𝑘𝑎𝑗𝑙𝐴𝑘𝑙 

3 𝐴𝑖𝑗𝑘
′ = 𝑎𝑖𝑙𝑎𝑗𝑚𝑎𝑘𝑛𝐴𝑙𝑚𝑛 

4 𝐴𝑖𝑗𝑘𝑙
′ = 𝑎𝑖𝑚𝑎𝑗𝑛𝑎𝑘𝑝𝑎𝑙𝑞𝐴𝑚𝑛𝑝𝑞 

 

 



 

  

___ 

28 
 

Here Einstein summation convention are used. 

 

2.5 Fundamental Lamb Wave Theory 

Under this segment the main procedure and derivation is done with reference of “Elastic waves in 

Solid” [22]. To start making a usable equation for the Lamb wave frequency we first need to start 

with the displacement of material as a scalar potential 𝜙 and vector potential 𝜓. 

 

𝑢 = 𝛻𝜙 + 𝛻 ∧ 𝜓 ( 2.39 ) 

 

Here the potential must satisfy the wave equations below. Where VL and VT is the phase velocity in 

the longitudinal and transverse direction respectively. 

 

𝛻2𝜙 −
1

𝑉𝐿
2

𝜕𝜙

𝜕𝑡2 = 0 and 𝛻2𝜓 −
1

𝑉𝑇
2

𝜕𝜓

𝜕𝑡2 = 0 ( 2.40 ) 

 

Now considering the Lamb wave propagation along the 𝑥 direction, so that 𝜕3 ≡
𝜕

𝜕𝑥3
= 0. And in 

the sinusoidal case 
𝜕

𝜕𝑥1
= 𝜕1 = −𝑖𝑘, now the displacement components can be written in the 

following form. 

 

𝑢1 = 𝜕1𝜙 + 𝜕2𝜓3 = −𝑖𝑘𝜙 + 𝜕2𝜓3  and 𝑢2 = 𝜕2𝜙 + 𝜕1𝜓3 = 𝜕2𝜙 + 𝑖𝑘𝜓3 ( 2.41 ) 

 

Whereas the transverse vertical wave displacement will have the form. 

 

𝑢3 = −(𝑖𝑘𝜓2 + 𝜕2𝜓1) ( 2.42 ) 

 

and equation (2.42) can be written in Laplacian in the following form. 
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𝛻2 =
𝜕2

𝜕𝑥1
2 +

𝜕2

𝜕𝑥2
2 = −𝑘2 +

𝜕2

𝜕𝑥2
2 ( 2.43 ) 

 

Now by defining the wave number for longitudinal and transverse waves as such. 

 

𝑝2 =
𝜔2

𝑉𝐿
2 − 𝑘2 and 𝑞2 =

𝜔2

𝑉𝑇
2 − 𝑘2 ( 2.44 ) 

 

Equation (2.44) must satisfy the equations below. 

 

𝜕2
2𝜙 + 𝑝2𝜙 = 0 and 𝜕2

2𝜓 + 𝑞2𝜓 = 0 ( 2.45 ) 

 

However, an acceptable solution is based on the boundary condition we set. This makes it very hard 

to create an accurate estimation of more advance structures. So, we will assume a very simple 

isotropic 2-dimensional plate. We do this to simplify the equations making them more intuitive for 

understanding the principals of Lamb wave. This will make the equation we find from here be less 

accurate for calculating variables for our Lamb Wave Resonator. And as such our boundary 

conditions will be set at 𝑥2 = ±ℎ in form. 
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Figure 2.3 Lamb wave displacement directions 

 

𝑇32 = 0, 𝑇22 = 𝑇2, 𝑇12 = 𝑇6 ( 2.46 ) 

 

And at the faces will be set to be. 

 

𝑇2 = 𝑇6 = 0 ( 2.47 ) 

 

So, in a isotropic plate we can set 𝑐44 = 𝑐66 and since 𝑆33 = 𝜕3𝑢3 = 0 the dilatation will have the 

form. 

 

𝑆 = 𝑆11 + 𝑆22 = 𝜕1𝑢1 + 𝜕2𝑢2 = 𝛻2𝜙 ( 2.48 ) 

 

And with the normal stress given by. 

 

𝑇2 = 𝑐11𝛻
2𝜙 − 2𝑐66𝜕1𝑢1 = 𝑐11𝛻

2𝜙 + 2𝑐66(𝑘
2𝜙 + 𝑖𝑘𝜕2𝜓) ( 2.49 ) 
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Now putting (2.40) and (2.44) into the form 𝜌𝜔2 = 𝑐66(𝑘
2 + 𝑞2) we can get the normal stress in 

the form. 

 

𝑇2 = 𝑐66[(𝑘
2 + 𝑞2)𝜙 + 2𝑖𝑘𝜕2𝜓] ( 2.50 ) 

 

Given a similar approach we can get the tangential stress in the form. 

 

𝑇6 = 𝑐66[(𝑘
2 + 𝑞2)𝜓 + 2𝑖𝑘𝜕2𝜙] ( 2.51 ) 

 

As the requirements for these functions 𝑇2 = 𝑇6 = 0 at 𝑥2 = ±ℎ make the only place that both are 

simultaneously satisfied being when they are odd or even. So, question (2.45) must have different 

parity, and so can take the form. 

 

𝜙 = 𝐵𝑐𝑜𝑠(𝑝𝑥2 + 𝛼) and 𝜓 = 𝐴𝑠𝑖𝑛(𝑞𝑥2 + 𝛼) ( 2.52 ) 

 

Where 𝛼 = 0 for (𝑇2 even, 𝑇6 odd) and 𝛼 =  𝜋/2 for (𝑇2 odd, 𝑇6 even), note we have omitted the 

propagation factor of exp[𝑖(𝜔𝑡 − 𝑘𝑥1)]. Now my using (2.41) we can get the mechanical 

displacements in the form. 

 

𝑢1 = −𝑖𝑘𝐵𝑐𝑜𝑠(𝑝𝑥2 + 𝛼) + 𝑞𝐴𝑐𝑜𝑠(𝑞𝑥2 + 𝛼) and 𝑢2 = −𝑝𝐵𝑠𝑖𝑛(𝑝𝑥2 − 𝛼) + 𝑖𝑘𝐴𝑠𝑖𝑛(𝑞𝑥2 +

𝛼) 
( 2.53 ) 

 

Now we can see that we have two types of Lamb wave, this being the symmetric (𝛼 = 0) and 

antisymmetric (𝛼 =  𝜋/2) modes. And when setting 𝛼 to one of these modes the boundary 

condition will yield these two equations. 
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(𝑘2 − 𝑞2)𝐵𝑐𝑜𝑠(𝑝ℎ + 𝛼) + 2𝑖𝑘𝑞𝐴𝑐𝑜𝑠(𝑞ℎ + 𝛼) = 0 ( 2.54 ) 

 

2𝑖𝑘𝑝𝐵𝑠𝑖𝑛(𝑝ℎ + 𝛼) + (𝑘2 − 𝑞2)𝐴𝑠𝑖𝑛(𝑞ℎ + 𝛼) = 0 ( 2.55 ) 

 

Now by adding (2.54) and (2.55) to each other we can dispersion relation between 𝜔 and 𝑘 called 

the Rayleigh-Lamb equation in the form were 𝛼 = 0 or 𝜋/2. 

 

𝜔4

𝑉𝑇
4 = 4𝑘2𝑞2[1 −

𝑝

𝑞

𝑡𝑎𝑛 (𝑝ℎ + 𝛼)

𝑡𝑎𝑛 (𝑞ℎ + 𝛼)
] ( 2.56 ) 

 

To create a more analytical and workable solution of equation (2.56) we need to investigate the (𝜔, 

𝑘) plane. As here three distinct planes can be separated form each other, these three depending on 

if the phase velocity 𝑉 = 𝜔/𝑘 exceeds the longitudinal phase velocity 𝑉𝐿 = (𝑐11/𝜌)1/2 or the 

transverse phase velocity 𝑉𝑇 = (𝑐66/𝜌)1/2 . So hence we can rewrite equation (2.44) into the 

forms. 

 

𝑝2 = 𝜔2(
1

𝑉𝐿
2 −

1

𝑉2) and 𝑞2 = 𝜔2(
1

𝑉𝑇
2 −

1

𝑉2) ( 2.57 ) 

 

However, in this project we are only interested in the first case were both the wavenumbers are 

real. So, we can write that. 

 

𝑉 > 𝑉𝐿 > 𝑉𝑇 or 𝑘 < 𝜔/𝑉𝐿 < 𝜔/𝑉𝑇 ( 2.58 ) 

 

Now we can rewrite equation (2.56) for modes without a cut-off frequency as the following form. 
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𝜔4

𝑉𝑇
4 ≅ 4𝑘2(𝑞2 − 𝑝2) = 4𝑘2𝜔2(

1

𝑉𝑇
2 −

1

𝑉𝐿
2) ( 2.59 ) 

 

This shows that the phase velocity tends to a finite limit called the plate velocity. 

 

𝑉𝑝 = 𝑉𝐿√1 −
𝑐12

2

𝑐11
2  ( 2.60 ) 

 

Now taking equation 2.59 we can rewrite it as 

 

𝜔 = 2𝑘√
𝑉𝐿

2𝑉𝑇
2 − 𝑉𝑇

4

𝑉𝐿
2  ( 2.61 ) 

 

Lastly by using equation 2.61 and adding it into 𝑓 =
𝑣

𝜆
 and 𝑣 =

𝜔

𝑘
 we can get an approximation for 

the S0 frequency response in an ideal plate. 

 

𝑓𝑆0 =
2

𝜆
√

𝑉𝐿
2𝑉𝑇

2 − 𝑉𝑇
4

𝑉𝐿
2  ( 2.62 ) 

 

However, for the second device we will not be interested in the 0-order symmetric (S0) mode of 

Lamb wave. But rather the 0-order horizontal symmetrical (SH0) mode. And to find a simple 

approximation for the frequency at which this mode occurs we will again do some of the same 

assumptions we did about the S0 mode. So, we will again assume a simple isotropic material 

instead of the piezoelectrical material used in the main. We will also assume similar boundary 

conditions with a perfect infinite plate. To tart we can write that 𝑇12 and 𝑇22 can be seen as zero, 

while we will only be concerning ourselves with 𝑇32 and can written as 
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𝑇32 = −𝑗𝑘(𝑐45
𝐸 𝑢3 + 𝑒14𝑢14) +

𝜕

𝜕𝑥2
(𝑐44𝑢3 + 𝑒24𝑢4) ( 2.63 ) 

 

And with substituting 𝜒2 = 𝑘𝑥2, 𝑉 =
𝜔

𝑘
 and 𝑉𝑇

2 = √
𝑐44

𝜌
 into 𝑇32 and using the same isotropic 

simplification as done previously we can write. 

 

𝜕2𝑢

𝜕𝑥2
2 + (

𝜔2

𝑉𝑇
2 − 𝑘2)𝑢 = 0 ( 2.64 ) 

 

Now, by assuming a simplified the system as a parallel-sided plate we can write the displacement as 

a sinusoidal in the form. 

 

𝑢(𝑥2) = 𝑢0 𝑐𝑜𝑠 [
𝑛𝜋

ℎ
(𝑥2 + ℎ)] , 𝑛 = 0,1,2… ( 2.65 ) 

 

Simplifying this again by substituting 2.65 into 2.64 and assuming the 0-order, we can find a rough 

estimation for the SH0 mode a plate written as. 

 

𝑓𝑆𝐻0 =
𝑉𝑇

𝜆
 ( 2.66 ) 

 

So, the SH0 mode will mainly be determined by the material and wavelength of the device. In 

contrast the S0 frequency that is mainly determined by the height and wavelength of the device. 

It is important to note that both equation 2.62 and 2.66 are very rough approximation. As they both 

assume an isotropic material condition and an ideal infinite plate. When using them to calculate the 

frequency response of the S0 and SH0 mode we would get 576MHz and 1085MHz respectively.  

 

2.6 Bloch Waves 

Bloch waves in crystal is another core part of this study and can also be somewhat difficult to get a 

natural comprehension on its principles. However, understanding its ramifications isn’t too difficult 
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to understand. As there are two main part you can assume to make understanding this theorem 

better. One is that in this case crystal is just referring to any material with a rigid atomic structure, 

and two that when talking amount waves in crystals any single relative wave will have no idea 

where in the structure it is if considered the structure properly. So, starting with the assumption 

that that the wave equation can be written as the following form. 

 

|𝜓(𝑥)|2 = |𝜓(𝑥 + 𝑎)|2 and 𝜓(𝑥 + 𝑎) = 𝐶 ∗ 𝜓(𝑥) = 𝑒𝑗𝑘𝑥𝜓(𝑥) ( 2.67 ) 

 

Here 𝑎 is referring to the distance between the atoms and k is an arbitrary constant that refers to 

the structure of the crystal called the crystal momentum. And assuming a near infinite line we 

assume a circular structure like in the figure below and can write that. 

 

Figure 2.4 Illustration of Bloch waves in a crystal structure 
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𝐶𝑛 ∗ 𝜓(𝑥) = 𝜓(𝑥) ( 2.68 ) 

 

Going from this by giving 𝑘 a new index we can write the wave equation into the following form 

[23]. 

 

𝜓(𝑥) = 𝑒𝑗2𝜋
𝑆
𝑁

𝑥
𝑎 = 𝑒𝑗𝑘𝑥𝑢𝑘(𝑥) ( 2.69 ) 

 

So, by finding 𝑘 we can calculate every possible movement of a wave in a crystal. And we can find 

the equation for k if we can reduce a structure into its irreducible Brillouin zone and looking for 

symmetries for possible paths the wave can take. 

 

2.7 Mesh Convergence 

The last theory that will be mentioned under this section is not as complicated as the rest. It is 

however, arguably the most pivotal for a proper result when using a FEM method to test the 

viability of a concept. And this is the Mesh Convergence Study (MCS), as without understanding the 

MCS there is no way to know if the results of the FEM study are a close approximation of real life, 

or if even the results are only possible cause the improper use of a mesh gives wrong output values. 

In doing a MCS it is important to know the two main ways one can increase the mesh refinements. 

This comes in the form of h-refinement and p-refinement as seen in the figure below, the former 

being an increase in order of the element and the latter being a reduction in element size [24]. 
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Figure 2.5 Illustration of two different forms of refinements 

When doing an MCS it is important to check for changes in the results with changes in both an h 

and p refinements. However, in this study it is only possible to change the h-refinement. These 

stems from the fact that in a 3D COMSOL simulation every edge of a mesh needs to be connected 

to another edge of an adjacent mesh. Without this the COMSOL will refuse to run as it will have 

what it perceives as empty void inside the set boundaries. So later in this report we will have 

investigated the changes in h-refinement will have on the FEM output and look for where the 

results begin to converge around. 
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3 Modelling Methods 

As mentioned previously in this thesis we have opted to use COMSOL simulation for our FEM 

simulation too perform our tests. However, there are different simulations needing to be made and 

different steps for each of these simulations needing to be followed. This is so we can be able to 

make sure our FEM simulation can give realistic results, for it to be able to predict realistic 

behaviour in a real LWR device. 

So, to get our desired simulations we need to create three separate simulations. These being a 

small FEM simulation to find the band gap of a PCS cell. The second being a test for the relative 

displacement over bridge design with and without a PCS array found in the PCS simulation. Lastly 

one for the LWR device, this being used for the main test of the quality factor changes by the PCS 

array. 

To create these simulations, we will need to go through different steps. Firstly, we will create a 

barebone simulations with the assumed required boundary conditions. Following this different test 

will be set up in these simulations to get an idea of the functionality of the FEM simulation. Then 

when the simulations are giving results corelating with what we can be expected based on other 

previously done studies into LWR devices, we will go into refining the simulation by finding the 

mesh convergence of the simulation. This step is a crucial and if this changes the result in 

unpredicted manners, we will have to go back and change the boundary conditions again. However, 

if this are set up correctly, we should see the results converge with a finer mesh. After this is done, 

we can proceed to change the properties of simulation to fit the different devices tested for. 

 

3.1 Phononic Crystal Structure Band Gap 

The first FEM simulation created using COMSOL for this project is a band gap simulation of a PCS 

cell. This simulation requires relatively simple boundary setting, as it as both a simple geometrical 

shape and requires very few physical boundary conditions. In the table below is starting 

geometrical parameters used, where the hight and radius of the slab can change depending on the 

desired bandgap and centre frequency needed by a LWR device. 
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Table 3.1 Geometrical Properties Used Before Optimization 

Parameter AIN PCS Cell LiNbO3 PCS Cell 

lattice constant (a) 4 µm 0.8 µm 

Slab Radius (SR) ±1.5 µm ±0.3 µm 

Slab Height (SH) ±1 µm ±0.4 µm 

Piezoelectric Layer Thickness (PLT) 1 µm 0.3 µm 

Metallic Layer Thickness (MLT) 0.1 µm 0.1 µm 

 

For the physic engine the inbuilt solid mechanics in COMSOL was used, where the boundary 

conditions is simply defining the relevant components to be piezoelectric material and setting a 

simple periodic conditions along the side of the substrate in the x and y directions of the simulation. 

As for the study done for the simulation it is an inbuild COMSOL eigenfrequency sweep study of the 

first 20 eigenfrequency starting at 0Hz. And then a parametric sweep where the periodic conditions 

are swept based on the irreducible Brillouin zone of the PCS in the simulation. 
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Figure 3.1 Overview of The PCS Cell Design 

The above image is of an PCS cell in COMSOL, where the bottom part is where the piezoelectric 

boundary conditions are set. While the small plate on top of it is the metallic made of aluminium 

layer and it will be using a linear elastic material condition, this is also true for the metallic slab on 

top made of a different material. And cause of the heavy symmetry of the structure it is possibly 

create the irreducible Brillouin zone from the top view of the cell unit as in in the figure below. 
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Figure 3.2 Bird’s Eye View of A PCS Cell 

 

As given in equation (2.7) we can see the general form for propagation of acoustic waves in a solid. 

And with the use of equation (2.65) for the relation between the wave number 𝑘 and the frequency 

𝜔, given by the Bloch wave theorem. By sweeping the path Γ → Χ → Μ → Γ defined by the 

irreducible Brillouin zone defined as Γ(0,0), Χ (
𝜋

𝑎
, 0) and Μ(

𝜋

𝑎
,
𝜋

𝑎
). So, using this we can define 𝐾𝑥 

and 𝐾𝑦 for the use in the periodic condition in the simulation. Were we will define the lattice 

constant as 𝑎. This will make the 𝑋 component of the wave vector be 𝐾𝑥 = 𝑖𝑓(𝑘 <

1, 𝑘
𝜋

𝑎
, 𝑖𝑓 (𝑘 < 2,

𝜋

𝑎
, (3 − 𝑘)

𝜋

𝑎
)) and the 𝑌 component of the wave vector will be 𝐾𝑦 = 𝑖𝑓(𝑘 <

1,0, 𝑖𝑓 (𝑘 < 2, (𝑘 − 1)
𝜋

𝑎
, (3 − 𝑘)

𝜋

𝑎
)). With how the PCS simulation is set up we can find the band 

gap of the whole PCS cell or one of the layers individually by applying the periodic boundary 

conditions to both or only one of the substrate layers. Whereas the PCS cell bandgap will mainly be 
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defined by the bandgap of the piezoelectric layer, the lack of a band gap over a region in the 

metallic layer will reduce the effect of a non-infinite system. 

 

3.2 Structural Displacement Over a Bridge Section 

The second FEM simulation made is a bridge displacement transmission study. As it is very 

convenient to be able to show the relative reduction of displacement over a set frequency. This is 

both to get concrete data showing the effect of the PCS array and as a test for the functionality of 

the PCS array with a non-infinite array. This simulation will also only require a very simple boundary 

condition. As in similarity to the PCS simulation only the in-built solid mechanics engine of COMSOL 

will be used. Were the bottom layer of the substrate will be set as a piezoelectric material and the 

slabs and metallic layer will be defined as linear elastic material as seen in the figure below. We will 

also define port 1 with a predefined displacement in the 𝑥 direction with an arbitrary but 

reasonable amount. As for one set of parameters used in the AIN LWR, can be seen in the table 

below. Where the PCS slab parameters will be matched with the optimized PCS cell parameters 

designed for the LWR device simulation. 

Table 3.2 Properties Used in the Bridge Simulation 

Parameter AIN Bridge LiNbO3 Bridge 

Piezoelectric Layer Thickness (PLT) 1 µm 0.3 µm 

Metallic Layer Thickness (MLT) 0.1 µm 0.1 µm 

Array Width 4 4 

Array Length 6 3 

Slab Radius (SR) ±1.5 µm ±0.3 µm 

Slab Height (SH) ±1 µm ±0.4 µm 

Cell Side Length (CSL) 4 µm 0.8 µm 

Bridge Width (BW) 16 µm 3.2 µm 

 Bridge Device Length (BDL) 56 µm 7.2 µm 

PML layer length (PLL) 8 µm 1.6 µm 

Predefined Displacement 0.1 µm 0.1 µm 
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Figure 3.3 Overview of a LiNbO3 Bridge Simulation Design 

 

Next it is important to define a boundary condition on the two ends of the bridge sections as here 

we need to have a low reflection or absorption boundary layer, as both ends should ideally be 

connected to an absorbing substrate or be absorbed back into the LWR device. This can be done in 

some different ways. One way can be to define a low reflection boundary layer or absorption 

boundary layer at the ends of the bridge with the COMSOL predefined solid mechanic engine. 

However, we have opted into using a perfectly matched layer (PML) domain instead, as this offers a 

bigger freedom for geometrical shape and size of the absorption region in comparison to the two 

other methods. The study was done with an in-built COMSOL frequency response study with a 

sweep over relevant region. Then we will look at the relative change in displacement at one end of 

the bridge (port 1) in comparison to the predefined displacement set at the other end of the bridge 

structure (port 2) seen in figure above using equation 3.1. 

 



 

  

___ 

44 
 

𝑆21 = 10 ∗ 𝑙𝑜𝑔10 (
𝑃2

𝑃1
) = 10 ∗ 𝑙𝑜𝑔10 (

𝑑𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔
2

𝑑𝑠𝑜𝑢𝑟𝑐𝑒
2

) (𝑑𝐵) ( 3.1 ) 

 

3.3 Lamb Wave Resonator Device 

The last FEM simulation is split into two different designs for the two different LWR device that is 

being investigated. These simulations are a fair bit more complicated in comparison to the two 

previously mentioned simulation. However, it does use all the principles used in them, but with 

some more boundary conditions also needing to be set for the electrical properties needed for the 

simulation. They are also somewhat different in design, as the AIN LWR simulation uses a small 

bridge connected to a absorbing substrate. The LiNbO3 LWR uses a bridge covering the two ends of 

the design, with a simple absorbing boundary on the other side. It will also include a continuous and 

finite design simulation. So, in total there will a continuous LiNbO3 LWR design and finite AIN and 

LiNbO3 design. All designs can be seen in the figures below. 

The AIN LWR device consists of a main bulk of piezoelectric materials with a small metallic layer on 

top like in the bridge simulation. However, this metallic layer is etched in in a combe patter forming 

the IDT layout over the main substrate of the device. This can be seen in the picture below of the 

AIN LWR device, with the parameters used for the two different devices can also be seen in the 

table below. 
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Figure 3.4 Overview of The AIN LWR Device Design 

 

Table 3.3 Geometrical properties of LWR device’s 

Parameter AIN LWR Device LiNbO3 LWR device 

Electrode Pitch (Ep) 9 µm 1.6 µm 

Interdigital Transducer (IDT) Finger 9 2 Continuous, 16 finite 

Metallic Ratio (MR) 0.5 0.3 

Aperture (AP)  180 µm 54.4 µm 

Device Length (DL) 216 µm 60.8 µm 

Device Width (DW) 81 µm 3.2 µm and 25.6 µm 

Anchor Length (AL) 30 µm (7.5* PCS cell size) 1.6 µm 

Anchor Width (AW) 16 µm (4*PCS cell size) 3.2 µm and 25.6 µm 

PCS Array Size (x and y) 4x6 4x3 

Slab Radius (SR) ±1.5 µm ±0.3 µm 
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 Slab Height (SH) ±1 µm ±0.4µm 

Cell Side Length (CSL) 4 µm 0.8 µm 

Piezoelectric layer thickness (PLT) 1 µm 0.3 µm 

Metallic layer thickness (MLT) 0.1 µm 0.1 µm 

Isotropic loss factor (1/Q) 1/40000 1/1000 

 

As for the absorption substrate for the device is connected using a small bridge section. For the 

properties of the absorbing substrate would ideally be an infinitely large non reflective substrate. 

However, as a real device does not work in ideals, we assume some reflections. So, we had to 

design a absorption substrate with this in mind. To achieve this, we designed a two-dimensional 

substrate with a absorption boundary at the outer edge, letting the wave be reflected in outer plate 

before hitting a slow absorption boundary. So, an expanding half circle away from the device was 

designed. Where the radius of the first sections is 2𝜆 and the second radius of 𝜆 on top of the last 

section as seen in the figure below. And to create this slow absorption region a PML layer was used 

for the same reasons we had in the bridge simulation. 
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Figure 3.5 Bird’s eye view of the bridge section of the AIN LWR device 

The outer support region was designated as a PML region, like mentioned in the previous sections, 

this could have been done with a low reflection or absorption boundary conditions. However, using 

a PML layer allows us to have a more control of the absorption region, letting us create a large 

absorbing region. As for the physics engines used in this simulation, we will once again use the in-

built COMSOL solid mechanics engine. Here we will connect this with a multi physics engine in 

COMSOL called piezoelectric effect. This will create a coupling interface between the solid 

mechanics engine and the last COMSOL engine used, electrostatic physic engine. Letting us 

simulate the effect from one on the other. 

So, now the proper boundary condition settings for the device will need to be defined. Starting with 

the solid mechanics engine the metallic layer and the slabs will be defined as a linear elastic 

material, while the piezoelectrical material will be defined as such using the appropriate boundary 

conditions. We have also given it an isotropic loss factor of 1/Q in both the linear and piezoelectric 

material. Where Q will be set to 40000 in the AIN LWR device in reference to Yinjie Tong and Tao 

Han. [18] In contrast we will set Q to only 1000 in the LiNbO3 simulation, as the value of Q was 
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measured to be around 1000 in our collaborators LiNbO3 device [5]. As for the boundary conditions 

set in the electrostatic physic engine. The main function of this physic engine is simply to simulate 

an input terminal and ground for the system. So, here the metallic layer on upper side will be 

defined as a terminal with an 1V output and the other sides metallic layer as the ground. 

These are all the boundary condition used for the AIN LWR device simulation. However, as 

mentioned the LiNbO3 device will be set up slightly different. This is to reduce the simulation time, 

as this device we are using a long bridge follow the device width. So, a finite simulation will have a 

large number of mesh elements in a set distance. Making the simulation time many times longer 

than any of the previously done simulations. 

It is also important to note that the SH0 wave propagates parallel to the plate in contrast to the S0 

mode. So, the outer section would see no noticeable refractions of the wave in contrast to the S0 

mode waves. Hence, the simplified absorption boundary to reduce simulation elements. 

The LiNbO3 device simulations will be made up of two different simulations. One simulation of a set 

of 2 IDT where the sides of the simulation will be set as a continues periodic boundary condition. 

This would give us the possibility to quickly simulate an ideal infinite device. The second simulation 

will be a finite device size as in the AIN LWR device. However, here the device will be 8 sets of 2 IDT 

in contrast to the AIN devices 9 IDT non symmetrical setup. The two different setups for the LiNbO3 

devices can be seen in the figure below. 

 

Figure 3.6 LiNbO3 periodic device simulation, blue region representing the metallic layer 
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In the end a similar study will be done on all the different LWR device simulation setups. Where a 

frequency study will be done on the system. Letting us see the admittance of the system over a 

studied frequency range. 

 

3.4 Mesh Convergence Study 

Before any of the FML models can be of use however, a mesh convergence study will have to be 

done on each of the three simulation models. However, optimizing the mesh of a FEM model is a 

tedious and slow process. This comes from the fact that we have three separate dimensions we can 

get an increase in the h-refinement on the FEM model. This is true for each separate region of the 

FEM model, making it a very time-consuming process if one wants to optimize the mesh for both a 

functional result and a reasonable simulation time. 

For the simpler simulations we can simply reuse the mesh found for the LWR device model or use a 

very fine mesh as these simulations are not vey time consuming in the first place. However, for the 

LWR device FEM model having an optimized mesh can make the difference between having a 60-

hour simulation time or having a 500-hour simulation time. 

In the LWR model we have three different sweeps for the h-refinement on the main device and a 

simpler two directional increase on the bridge and substrate part of the simulation. On the main 

device segment of the model, we can increase the h-refinement in the length, width, and thickness 

direction of the model. However, because of how the boundaries are designed in this simulation 

the minimum h-refinement will be 1 element over the electronic pitch in the length of the device 

increasing by x element in this boundary where x is a positive integer. And along the width of the 

device the minimum element size of the mesh is 4 element per electronic pitch, increasing with 4x 

elements where x is a positive integer again. And along the thickness the minimum element size is 

just the thickness of each segment of the model. As for the outer section of the device consisting of 

the bridge and anchor segment its mesh size is defined as a prerendered triangle field generated by 

COMSOL, here the maximum element size will be defined as the electron pitch divide by x 

elements. This effectively lets us set how many elements we want in the x and y direction of the 

model in this region. This can be seen in the figure below, where the left shows a low longitudinal 

refinement and the right showing a high refinement in the longitudinal direction. 
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Figure 3.7 Overview of some potential mesh refinement on an AIN LWR device 

 

 

Figure 3.8 Overview of a small mesh element size on the bridge section and the mesh element size 

over the thickness of the device 
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With all of this set up we can perform the mesh convergence study on the LWR FEM model. The 

Mesh convergence of the one AIN LWR simulation can be seen in the different pictures below. This 

was done with some previously used AIN LWR device parameters, so its frequency response is 

different than the result of later devices. This does not change the validity of the found mesh, and 

the same mesh will be used for the LiNbO3 LWR device. As both device’s functions with similar 

principles, a similar mesh configuration should suffice, reducing the need for a second mesh 

convergence study and saving hours of simulation time. Note that in these graphs MCS refers to the 

refinement over the thickness of the device, not the mesh convergence study. 

 

 

Figure 3.9 Anti resonance peaks of an old AIN LWR simulation longitudinal refinement change, 

low refinement in other directions 
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Figure 3.10 Anti resonance peaks of an old AIN LWR simulation longitudinal refinement change, 

low refinement in other directions, high bridge mesh refinement 
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Figure 3.11 Anti resonance peaks of an old AIN LWR simulation longitudinal refinement change, 

high refinement in other directions 

 

Here the three above graphs include the anti-resonance peak of an old AIN LWR simulations where 

the mesh conversion study of this thesis was done on. In the first graph the mesh size in all other 

dimensions had the largest possible mesh element size. While at the middle graph the bridge has 

the smallest mesh element size used in this study over the bridge sections. And by comparing these 

two we can see that the peaks do not change based on the bridge mesh. However, having a large 

mesh element size over the bridge section makes the device prone to generate spurious modes in 

the result. Considering that having a small mesh element size is necessary for an accurate band gap 

simulation, so using any larger element sizes then 8 cells per half wavelength is not desirable. This 

can also be seen in the graph below, where we can see the device resonance break down when 

using small mesh element sizes in the longitudinal direction. This trend was only seen when not 

applying the PCS array on the bridge. 
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Figure 3.12 Showing an S0 mode resonance of an old AIN LWR device simulation, with changing 

mesh size in the longitudinal direction 

The last graph above has the smallest used mesh element size used in all other direction, changing 

only the mesh element size in the longitudinal direction. Here we can see the anti-resonances 

converges to a point. Using 4 units per half wavelength gives us a result far off the rest of the 

results we can see in this graph. Making this mesh element size unsuitable. However, going up to 8 

then 16 units per half wavelength we can see that it begins to settle down. And going from 16 to 20 

units per half wavelength the relative change to the peak is severely reduces again. We can see 

going from 8, 16 and 20 that going from 8 to 16 units that the relative change in anti-resonance 

peak begins to converge with a finer mesh refinement. Considering this and the fact that using a 

larger unit size per wavelength to reduce the simulation time, we went with using as close to 12 

units per half wavelength in the longitudinal directions for all our LWR device simulations. 

Going by what we did above for the longitudinal mesh convergence, we know that we can only 

begin to see a relevant mesh convergence using a small unit size for the mesh in all other 
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directions. Where in the two figure below we can see the mesh convergence for the transverse and 

sweep directions respectively. 

 

Figure 3.13 Transverse mesh convergence graph 
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Figure 3.14 Sweep mesh convergence graph 

 

Going by the same principle as the mesh convergence in the longitudinal direction, we can come 

with the conclusion that using a minimum of 5 units per half wavelength in the transverse direction 

and 2 units in the sweep of the device. In the figure above we can see a lot of the peaks are having 

spurious modes interfering with the peak. However, we can still visible see the converges of where 

the peak should have been and assume a minimum mesh element size. For the sweep it refers to 

the mesh elements per material layer in the thickness direction of the device, so a minimum of 2 

units in the sweep is necessary. In the metallic layer only one sweep will be used as this layer is 

much thinner and is not the main medium for propagation of the waves. 

3.5 Material parameters 

In this project it was decided that we were going to investigate two different materials for the 

piezoelectric material of the LWR device. As mentioned previously these being AIN and LiNbO3. As 

for the material properties of the materials, this were extrapolated from different sources. The 
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material properties of AIN are simply from the COMSOL material database and can be seen in the 

appendix. This stems from the fact that we are looking into the 000-plane cut of AIN. So, there is no 

need to change the COMSOL’s database for AIN material properties, as COMSOL assumes 000 plane 

unless specified. However, the material properties of LiNbO3 we are using are form the YX36◦-cut of 

LiNbO3. So, to get a correct material properties we need to rotate the coordinate of the 000 plane 

LiNbO3 [25]. And as to get the correct rotations we need to investigate the Euler’s angel for LiNbO3. 

For the YX36◦-cut of LiNbO3 can be found by looking the table below. 

Table 3.4 The corresponding Euler’s angles to different crystallographic cuts of LiNbO3 from [26]  

Euler’s angles (°) X-cut Y-cut Z-cut XY α° XZ α° YX α° YZ α° ZX α° ZY α° 

φ 0 0 0 0 0 0 0 0 0 

θ 90 90 0 90+ α 90 α-90 90 - α α 

ψ 90 0 0 90 90- α 0 - α 0 90 

 

So, for our cut we need to introduce a rotation a -54° rotation for the θ direction of the material. 

This can be done with applying this coordinate rotation to the appropriate boundary conditions in 

COMSOL. However, here we chose to just apply this rotation directly to the material properties and 

can be seen in appendix C. As for the material for the metallic layer and the slabs of the PCS 

structure are all simple material where the parameters were again taken from the COMSOL 

material database. These materials being an aluminum layer for the metallic layer. And for the slab 

structure we ended up using platinum for both LWR devices. As this had been proven to be the 

most suitable material to create a large bandgap over the desired region for a AIN LWR in other 

studies [18]. And this trend proved to stay consistent on the LiNbO3 LWR device as well. So, no 

deeper look into the possibility of using a different material, for the optimization of the band gap, 

was deemed necessary.  
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4 Results 

Under this segment we will talk about the results obtained using the designed FEM models. Firstly, 

we will check for the frequency response of the desired mode for each LWR device. Then we can 

investigate optimizing a PCS array for the found frequency response of the different devices. After 

that we will show the effective transmission rate of acoustic waves with and without the PCS array 

on a bridge structure. Lastly, we will go into the results of the LWR device simulations and the 

effective change in the admittance and quality factor of the device because of the PCS array over 

the bridge section of the devices. 

 

4.1 Mode Response Range 

Designing a proper band gap for the PCS is critical to be able to see any change in the device 

admittance response. However, even if this was the first thing to optimise for the system it must be 

done after finding the desired modes frequency respond. So, the first thing that was done is a 

simple frequency simulate sweep for each of the three different LWR devices made. We also did a 

cut of the devices as seen in the picture below and plotted the displacement vectors along the cut. 

Here we can see that in the AIN device we have an even distribution of displacement along the 

thickness of the devices. Something that indicates that this is most likely the S0 mode we are 

looking at, as this simple displacement field is only common in the S0 mode. This mode resonance 

was found at 608.57 MHz and anti-resonance at 608.79 MHz. However, it is very important to note 

that this would indicate a very low Keff
2  coefficient in this device. Making this device mainly suited 

for a sensor device and not for a telecommunication device. 

 

 

Figure 4.1 Displacement field vector of the cross section on AIN device 

 

As for the LiNbO3 device simulation we were looking for the SH0 mode not the S0 mode. So, the 

same principal was done on the periodic LiNbO3 simulation to check the displacement field of the 
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found device response. However, as this is the SH0 mode we looked at the displacement along the 

y direction, as the tensor field would not be well suited to find the SH0 mode. In the figure below 

we can see the displacement along the y direction in the cross section of the LiNbO3 device. This 

was done with the periodic device model, and here we can see a clear SH0 patter for the 

displacement field.  

 

Figure 4.2 Displacement field of the cross section on LiNbO3 

Here the mod resonance was found at 1061 MHz, while the anti-resonance differs between the 

periodic and finite LiNbO3 simulations. Where the anti-resonance for the periodic simulation is 1420 

MHz and 1296 MHz for the finite model. It is also worth noting that the found device responses 

using the rough estimations found in equation 2.62 and 2.66 are only off by around 1% for the 

simulated device responses found here. So, even if the estimations assume an isotropic ideal plate, 

they are still a very accurate way to estimate the device response. And is another strong indication 

that these are the S0 and SH0 modes responses, for their respective devices. 

4.2 PCS Band Gap 

With the band gap simulation we have assumed that the honeycomb structure of the PCS array 

would give us the most suitable band gap in reference to the paper on “Anchor Loss Reduction of 

Lamb Wave Resonator by Pillar-Based Phononic Crystal” done by Yinjie Tong and Tao Han. [18] 

Doing so we can find an optimized band gap for the AIN PCS cell quite easily, as we could use their 

paper as a reference for what material to optimize our band gap with. However, as stated 

previously the effect of using different materials for the PCS slabs on the LiNbO3 PCS cell followed a 

similar pattern as the AIN PCS. So, it was decided that using platinum PCS slabs would suffice for 

this PCS array design for LiNbO3 as well.  

Starting off we did a quick sweep where we checked the PCS bandgap changes with a change in the 

PCS slab height and radius. When changing the height of the PCS slab the bandgap tends to follow a 

linear curve. Where it will push the bandgap to a higher frequency with a lower slab up to where it 
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begins to plateau when the slab height is about 70% of the substrates thickness. This trend can be 

seen in both the PCS cell bandgap and the metallic layer bandgap, as seen in the figure below. 

 

Figure 4.3 LiNbO3 bandgap change with a PCS slab height change. SR = 0.3µm, SH = 0.35µm and 

0.5µm 

However, the change in PCS radius had a somewhat more unpredictable behaviour. This problem 

got more complicated when we noticed the importance of the metallic layer bandgap. As this 

bandgap got pushed vastly higher, with an increase in the PCS radius from 0.3 µm to 0.35 µm.  So, 

designing a PCS array for LiNbO3 where the design is realistic to produce and have a large enough 

coverage for the device resonance can prove difficult. In the figures below we can see the effect of 

increasing the PCS radius for the LiNbO3 PCS bandgap designed for 1100MHz. 
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Figure 4.4 The optimized LiNbO3 PCS bandgap for 1100MHz with slab radius 0.35µm, blue dotted 

represent the metallic layer and black lines the cell bandgap 
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Figure 4.5 An optimized LiNbO3 PCS bandgap for 1100MHz with slab radius 0.3µm, blue dotted 

represent the metallic layer and black lines the cell bandgap 

So, for LiNbO3 PCS array we ended up using a slab radius of 0.35 µm. However, we were unable to 

make a bandgap that could effectively entail the resonance and anti-resonance of the LiNbO3 LWR 

device. This made it so we made the PCS array design for the following resonances peaks: 

1100MHz, 1300MHz and 1400Mhz where the PCS slab height for these designs are: 0.55 µm, 0.45 

µm and 0.425 µm. As stated, we could we reference a previously done paper for the AIN PCS 

design, where we ended up using a slab radius of 1.4 µm and a slab height of 0.8 µm. However, this 

bandgap did prove to be somewhat faulty later, as we noticed the effect of adding a metallic layer 

on the bridge section and the importance of the metallic layer bandgap. A figure of the AIN PCS 

bandgap can be seen below. 
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Figure 4.6 The optimized AIN PCS bandgap for 600 MHz, blue dotted represent the metallic layer 

and black lines the cell bandgap 

 

4.3 Bridge transmission 

Next with the knowledge of the parameters for our desired PCS geometry, we went into testing the 

functional suppression of acoustic wave over a bridge section. Here we looked at the relative 

transmission rate of a predefined displacement at one end of the structure to the other end as seen 

in equation (3.1). Doing so we could see a clear reduction in relative displacement from port 1 to 

port 2. Early on in this study the direct impact of this step was underestimated. This was because of 

underestimating the effect of the metallic layer over the bridge section had on the PCS array. In the 
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figure below we can see the relative displacement for the old AIN LWR design compared to the 

used PCS bandgap. 

 

 

Figure 4.7 Relative displacement of an old AIN LWR design and the used PCS bandgap. u, v, and w 

represent x, y, and z directions respectively 

 

Here we can see a clear relation between the ideal PCS array bandgap and the relative 

displacement over the bridge. So, when the new AIN LWR design was made with a similar PCS array 

bandgap, we assumed that the bridge simulation must have been faulty. This also comes form the 

fact that the new design did see an increase in the Q factor, even if the increase was smaller. In the 

figure below we can see the relative displacement of the new AIN LWR design compared to the 

used PCS bandgap. 
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Figure 4.8 Relative displacement of the AIN LWR design and the used PCS bandgap. u, v, and w 

represent x, y, and z directions respectively 

 

We can also see how this is caused by a non-infinite PCS array when looking at the displacement 

where the leakage happens under the bandgap. This can be seen in the figure below, where we can 

see a clear leakage over the sides of the bridge section. While the centre region that is relatively 

closer to the ideal infinite PCS array there is little to no displacement.  
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Figure 4.9 Model displacement in PCS bandgap 

So, from this point forward we had to take extra precautions with designing the PCS bandgap with 

the metallic layer bandgap in mind. Doing so we designed the LiNbO3 PCS bandgap like discussed in 

the above section. Below we can see the relative displacement over a LiNbO3 bridge section using 

the PCS array designed for 1100MHz. Here we can again clearly see the strongest effect for the PCS 

array where the two bandgaps overlap. The same effect was seen on the PCS array designed for 

1300MHz and 1400MHz. 
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Figure 4.10 The relative transmission rate over a bridge structure with LiNbO3 piezoelectric layer. 

u represent the x direction 

 

4.4 Lamb Wave resonator quality factor 

With the functionality of the PCS array tested for, and an optimized PCS array found for the 

different LWR device resonance. Now we proceeded to test the implementation of these PCS array 

onto the bridge section of the different LWR devices, to see the effect they would have on the 

Quality factor of the device. To start we had investigated the impact of the PCS array on the AIN 

LWR device. This where we first noticed the importance of the metallic layer in the PCS array. As 

stated earlier in the beginning of the study we used a different AIN LWR design, were we abstained 

from using a metallic layer on the bridge and outer section on the device to limit the variables that 

could affect the PCS array. Here we saw a drastic increase of 84% in the resonance Quality factor 

and an increase of 39% in the anti-resonance of the device. Below we can see the admittance graph 
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of this device, were the graph and Quality factor were made and found using the MATLAB code 

given in appendix b. 

 

Figure 4.11 Admittance curve of old AIN LWR design 

Here we can see the Quality factor increase from 707.57 to 1304.24 on the resonance of this 

device. While having a slightly weaker increase going from 679.67 to 943.5 on the anti-resonance. 

Now when we compare this to the newest AIN LWR design where the outer section was covered 

with a metallic layer, and we used aluminium for the metallic layer in contrast to platinum we used 

on this design. Here in the figure below we can see an over that the new device has an overall 

higher Quality factor on the device. However, we get a lesser increase in the device Quality factor 

by adding the PCS array on the bridge. 
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Figure 4.12 Admittance curve of current design AIN LWR design 

Here we see the Quality factor of the resonance increase from 1553.18 to 1710.07 and in the anti-

resonance we see an increase from 1512.08 to 1719.25. We are still seeing some increase in the 

Quality factor. This comes from the fact that even if we are seeing a reduction in the PCS array 

ability to reduce the acoustic wave leakage because of the addition of the metallic layer. The PCS 

array still holds some ability to reduce the displacement propagation at this frequency, as this PCS 

design does not break down completely before 620MHz. 

Now going over to the LiNbO3 LWR devices we understood the importance of designing the PCS 

array with the metallic layer in mind. So, first we designed a PCS array for the periodic LiNbO3 

simulation. However, because the interference of the metallic layer we could not design a PCS array 

that could cover both peaks of the SH0 resonance. To mitigate this, we designed 2 different PCS 

array, one for the 1100Mhz region and one for 1400MHz region. But as the 1100MHz PCS array was 

designed to cover both peaks in an ideal infinite array, we can see the effect on both peaks in this 

array. This stems from the fact that as this is an infinite periodic simulation, we are not seeing the 

interference of the metallic layer as we see in a non-infinite array. In the figure below we can see 

three different simulations, here we can see a periodic simulation with and without the PCS array. 

But there is also a third simulation data where we had an etched edge to simulate what an ideal 

device response would be with no leakage of energy over the bridge. 



 

  

___ 

70 
 

 

Figure 4.13 Periodic LiNbO3 LWR design admittance response 

In this result we noticed something interesting, this being that for the SH0 mode using our 

simulation boundaries we do not see any energy leakage over the bridge section on the resonance 

peak. We can see that this must be the case as we see a near identical resonance peak for all three 

simulation designs. However, at the anti-resonance we can see a drastic change in the peak with 

the use of a PCS array. As the anti-resonance peak of the simulation using the PCS array have a 

result very close to the etched simulation results, indicating that the PCS array have managed to 

stop most of the leakage over the bridge section in this simulation. So, when doing the finite LiNbO3 

LWR simulation we used the PCS array designed for the anti-resonance around 1300MHz as we 

most likely won’t be seeing any leakage of energy over the resonance. In the figure below we can 

see the simulation result of the SH0 mode using the finite LiNbO3 LWR simulation. Here we can see 

that the resonance peak has no change with or without the PCS array as assumed. However, we can 

see a large increase in the Quality factor of the anti-resonance peak of 195% going from a Quality 

factor of 158.58 to 468.18 with the use of the PCS array over the bridge section. 
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Figure 4.14 Admittance curve for finite LiNbO3 LWR simulations 

In this mode we can see some spurious modes within the device response we are looking at. In the 

paper of Silvan Stettler and Luis Guillermo Villanueva, they suggest that these are spurious SH 

modes, and the possibility of reduce the impact with a change to the substrates geometry [5]. 

However, most of the changes that have any significant impact on the reduction of these spurious 

modes, comes with the price of a reduced anti-resonance Quality factor. So, there might a 

possibility of using a PCS array to mitigate these changes. As the PCS array have a very minimal 

impact on the overall appearance of these spurious modes but introduces a large increase in the 

Quality factor of the device.  
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5 Discussion 

5.1 Possible design flaw and limitations 

Over this study we have gone over the design procedure for designing a functional PCS array for a 

given LWR design. However, it is worth noting that this all assume a theoretical perfect material 

parameter. So, even if there has been some design consideration for the fabrication of said design, 

there is still a very accurate and difficult fabrication needed to be able to see a similar result on a 

real device. Some of the problem comes from different design parameters, one of which is the 

sensitivity of the PCS slab on the PCS array bandgap. When looking at the PCS array designed with a 

bandgap around 1100MHz for a LiNbO3 device, we can see a large shift in the metallic layer 

bandgap going from 0.3 µm to 0.35 µm. So, any error in the fabrication result compared with the 

ideal design can be the difference between a functional and non-functional fabricated device. 

Where there is also worth noting that creating a slab design with a radius of 0.35 µm allows only a 

room of 0.1 µm in-between the slabs.  

We can also see a clear limitation in the possible PCS bandgap one could design. Where we would 

ideally design a PCS bandgap with a centre frequency as close to the resonance peaks as possible. 

When designing a PCS design for the S0 AIN LWR device this would be a concern as the peaks are 

essentially at the same frequency. In contrast then the SH0 LiNbO3 LWR we have a large gap 

between the two peaks, so in this scenario it becomes very difficult to design an ideal PCS bandgap 

for this device. This also becomes impossible with our simple PCS design when considering the 

interference form the metallic layer in the non-infinite PCS array. One potential fix could be to scale 

the PCS array, as we can see this effect even when only using an array of 3 PCS. So, there is a 

potential to add different PCS design after the last on one the bridge structure, so one could 

potentially use 2 or 3 PCS slabs of one PCS design before changing the slab parameters to a 

different design made for a different frequency. 

It is also important to note that every simulation in this study assumes perfect material structure 

and minimal outside interference on every simulation done. Where all the device loss comes from 

the isotropic loss factor added to the material, or the PML absorption on the outer region of the 

bridge and LWR simulations. 

Lastly noting that we got a very small Keff
2  on the AIN LWR device, this can be because of using AIN 

for the substrate. It can however be because of having a very high loss factor with a relatively small 

capacitance between the IDT fingers and few IDT in total for the device. Where the LINBO3 device a 
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continuous model or a finite model with 8 set of IDT compared, to the Ain device running only 4.5 

set IDT. Where the LINBO3 device also boast a 4 times higher capacitance between the IDT fingers 

compared to the AIN device. 

 

5.2 Future aspects  

As seen under this study we have seen a clear increase in the quality factor the LWR devices when 

an optimized PCS array could be design for a specific frequency range of an LWR devices. This gives 

a clear image of the possibility of an improved LWR device though the reduction in energy leakage 

over a bridge section on a device, without the need to reduce the structural integrity of the device 

with a smaller or less stable bridge design. So, the possibility of a more functional LWR device is 

becoming more and more feasible by the year, as more realistic LWR device design and 

optimizations are being work on and made possible. It is also worth noting that the PCS array not 

only have a great potential to stop the transmission of acoustic waves under the designed band 

gap, but that the edges of PCS array also show a potential to create an accumulation of 

displacement in a designated area. Were this might be used to emphasis certain modes of the 

device to make the device have a stronger response for this mode. This however is just a 

speculation and for functionality of using this accumulation of displacement energy for anything is 

still just a vague idea. However as shown in this study, the PCS array does show a strong ability to 

create an increase in the quality factor of a LWR device with the use of an optimized PCS array. The 

problem is that this does implies the possibility of being able to create an optimized PCS array. The 

problem here is that there is a strong limitation in how much the centre frequency and band gap 

can be changed with merely simple geometrical or material changes in a simple PCS design. So, 

there is a lot of potential in looking into further optimization of the PCS array with the use of more 

complex slab structures. As there might be other PCS design that could mitigate the interference of 

the metallic layer. Allowing us to see a PCS array with a functionality closer to the ideal PCS 

bandgap. 
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6 Conclusion 

With everything shown so far, the possibility of using an optimized PCS array to stop the device 

leakage over the bridge section is undeniable. Where a large quality factor increase was shown 

possible for both the resonance and anti-resonance for an AIN LWR device. While a Large increase 

in the quality factor of the anti-resonance on a LiNbO3 LWR device was also shown. Whereas the 

main reason no increase in the quality factor of the resonance was shown lied in the lack of energy 

loss over the bridge for the SH0 mode resonance of the LiNbO3 device. So, the application of 

applying a PCS array to stop device energy leakage seems very promising. Where the main hurdle 

would be to fabricate an appropriate PCS array on a physical device. AS the bandgap of the PCS 

array is very sensitive to changes in the PCS cell parameters. 
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Appendix A 
 
Piezoelectric constitutive equations, symbols, and units 

Table 6.1 Piezoelectric constitutive equations 

𝑻𝒊𝒋 = 𝒄𝒊𝒋𝒌𝒍
𝑬 𝑺𝒌𝒍 − 𝒆𝒌𝒊𝒋𝑬𝒌 ( A.1 ) 

𝑫𝒊 = 𝒆𝒊𝒌𝒍𝑺𝒌𝒍 + 𝜺𝒊𝒋
𝑺 𝑬𝒌 ( A.2 ) 

𝑺𝒊𝒋 = 𝒔𝒊𝒋𝒌𝒍
𝑬 𝑻𝒌𝒍 + 𝒅𝒌𝒊𝒋𝑬𝒌 ( A.3 ) 

𝑫𝒊 = 𝒅𝒊𝒌𝒍𝑻𝒌𝒍 + 𝜺𝒊𝒌
𝑻 𝑬𝒌 ( A.4 ) 

𝑺𝒊𝒋 = 𝒔𝒊𝒋𝒌𝒍
𝑫 𝑻𝒌𝒍 + 𝒈𝒌𝒊𝒋𝑫𝒌 ( A.5 ) 

𝑬𝒊 = −𝒈𝒊𝒌𝒍𝑻𝒌𝒍 + 𝜷𝒊𝒌
𝑻 𝑫𝒌 ( A.6 ) 

𝑻𝒊𝒋 = 𝒄𝒊𝒋𝒌𝒍
𝑫 𝑺𝒌𝒍 − 𝒉𝒌𝒊𝒋𝑫𝒌 ( A.7 ) 

𝑬𝒊 = −𝒉𝒊𝒌𝒍𝑺𝒌𝒍 + 𝜷𝒊𝒌
𝑺 𝑫𝒌 ( A.8 ) 

 

Table 6.2 Symbol and units of material constants 

𝑐𝑖𝑗𝑘𝑙 Elastic stiffness 
[
𝑁

𝑚2
] 

𝑠𝑖𝑗𝑘𝑙 Elastic compliance 
[
𝑚2

𝑁
] 

𝑒𝑖𝑘𝑙 Piezoelectric 
[
𝑉𝑚

𝑁
]  𝑜𝑟 [

𝐶

𝑚2
] 

𝑔
𝑖𝑘𝑙

 Piezoelectric 
[

𝑁

𝑉𝑚
]  𝑜𝑟 [

𝑚2

𝐶
] 

𝑑𝑖𝑘𝑙 Piezoelectric 
[
𝑚

𝑉
]  𝑜𝑟 [

𝐶

𝑁
] 

ℎ𝑖𝑘𝑙 Piezoelectric 
[
𝑉

𝑚
]  𝑜𝑟 [

𝑁

𝐶
] 

𝜀𝑖𝑗 (dielectric) Permittivity 
[
𝐹

𝑚
] 

𝛽
𝑖𝑘

 Impermittivity [
𝑚

𝐹
] 

𝑆𝑘𝑙 Strain  

𝑇𝑖𝑗 Stress 
[
𝑁

𝑚2
] 



 

  

___ 

78 
 

𝐷𝑖 Electric displacement 
[
𝐶

𝑚2
] 

𝐸𝑘 Electric field 
[
𝑉

𝑚
] 

𝜌 Density 
[
𝑘𝑔

𝑚3
] 

 

Appendix B 

MATLAB code used to find the quality factor of the frequency response of the different devices. 

clc 
clear all 
%NOTE: W(1:350,2) is to limit the range to avoid the next resonance, 
%also change mm1(+-1) if the value is at edge of data sample 
%Load Simulation data Slabs 
w=load('3D-Full-1300MHz.txt'); 
%calc anti resonance Qfac 
[minn,mm]=min(w(1:350,2)) 
wcut=minn*sqrt(2) 
w0=w(mm,1) 
[mm1 nn1]=find(w(1:350,2)<wcut); 
slp=(w(min(mm1),2)-w(min(mm1-1),2))/(w(min(mm1-1),1)-w(min(mm1),1)); 
w1=(wcut-w(min(mm1-1),2))/slp+w(min(mm1-1),1) 
slp=(w(max(mm1+1),2)-w(max(mm1),2))/(w(max(mm1+1),1)-w(max(mm1),1)); 
w2=(wcut-w(max(mm1+1),2))/slp+w(max(mm1+1),1) 
%Hold for plot 
QFacSA = w0/(w2-w1) 
QFacTextSA = string(QFacSA) 
PeakSAFreq = w(mm,1)/1000000 
FreqStringSA = string(PeakSAFreq) 
PeakSAValue = 10*log10(minn) 
addmitanceS =10*log10(w(:,2)) 
freqS = w(:,1)/1000000 
%Calc Resonance Qfac 
[maxx,mm]=max(w(1:350,2)) 
wcut=maxx/sqrt(2) 
w0=w(mm,1) 
[mm1 nn1]=find(w(:,2)>wcut); 
slp=(w(min(mm1),2)-w(min(mm1-1),2))/(w(min(mm1),1)-w(min(mm1-1),1)); 
w1=(wcut-w(min(mm1-1),2))/slp+w(min(mm1-1),1) 
slp=(w(max(mm1+1),2)-w(max(mm1),2))/(w(max(mm1+1),1)-w(max(mm1),1)); 
w2=(wcut-w(max(mm1+1),2))/slp+w(max(mm1+1),1) 
%Hold for plot 
QFacSR = w0/(w2-w1) 
QFacTextSR = string(QFacSR) 
PeakSRFreq = w(mm,1)/1000000 
FreqStringSR = string(PeakSRFreq) 
PeakSRValue = 10*log10(maxx) 
%Load Simulation data no Slabs 
w=load('3D-Full-WO Slab.txt'); 
%calc anti resonance Qfac 
[minn,mm]=min(w(1:350,2)) 
wcut=minn*sqrt(2) 
w0=w(mm,1) 
[mm1 nn1]=find(w(1:350,2)<wcut); 
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slp=(w(min(mm1),2)-w(min(mm1-1),2))/(w(min(mm1-1),1)-w(min(mm1),1)); 
w1=(wcut-w(min(mm1-1),2))/slp+w(min(mm1-1),1) 
slp=(w(max(mm1+1),2)-w(max(mm1),2))/(w(max(mm1+1),1)-w(max(mm1),1)); 
w2=(wcut-w(max(mm1+1),2))/slp+w(max(mm1+1),1) 
%Hold for plot 
QFacNA = w0/(w2-w1) 
QFacTextNA = string(QFacNA) 
PeakNAFreq = w(mm,1)/1000000 
FreqStringNA = string(PeakNAFreq) 
PeakNAValue = 10*log10(minn) 
addmitanceN =10*log10(w(:,2)) 
freqN = w(:,1)/1000000 
%Calc Resonance Qfac 
[maxx,mm]=max(w(1:350,2)) 
wcut=maxx/sqrt(2) 
w0=w(mm,1) 
[mm1 nn1]=find(w(:,2)>wcut); 
slp=(w(min(mm1),2)-w(min(mm1-1),2))/(w(min(mm1),1)-w(min(mm1-1),1)); 
w1=(wcut-w(min(mm1-1),2))/slp+w(min(mm1-1),1) 
slp=(w(max(mm1+1),2)-w(max(mm1),2))/(w(max(mm1+1),1)-w(max(mm1),1)); 
w2=(wcut-w(max(mm1+1),2))/slp+w(max(mm1+1),1) 
%Hold for plot 
QFacNR = w0/(w2-w1) 
QFacTextNR = string(QFacNR) 
PeakNRFreq = w(mm,1)/1000000 
FreqStringNR = string(PeakNRFreq) 
PeakNRValue = 10*log10(maxx) 
%Plot Data 
hold on 
grid on 
grid minor 
title('Quality factor change') 
ylabel('Admittance (dB)') 
xlabel('Frequency (MHz)') 
%Plot Slab 
plot(freqS,addmitanceS,'b') 
plot(PeakSAFreq, PeakSAValue  ,'*k') 
text(PeakSAFreq*1.01,PeakSAValue-1,'Slabs: QFac '+QFacTextSA+', Fc '+FreqStringSA+' 
MHz') 
plot(PeakSRFreq, PeakSRValue  ,'*k') 
text(PeakSRFreq*1.01,PeakSRValue-1,'Slabs: QFac '+QFacTextSR+', Fc '+FreqStringSR+' 
MHz') 
%Plot No Slab 
plot(freqN,addmitanceN,'r') 
plot(PeakNAFreq, PeakNAValue  ,'*k') 
text(PeakNAFreq*1.01,PeakNAValue+1,'No Slabs: QFac '+QFacTextNA+', Fc '+FreqStringNA+' 
MHz') 
plot(PeakNRFreq, PeakNRValue  ,'*k') 
text(PeakNRFreq*1.01,PeakNRValue+1,'No Slabs: QFac '+QFacTextNR+', Fc '+FreqStringNR+' 
MHz') 
hold off 

 

Appendix C 

Material properties used for Aluminum Nitride and Lithium Niobate YX36◦-cut, 
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Table 6.3 Material parameters used. 

Parameter AIN (000-plane) LiNbO3 (YX36◦-cut) 

Density 

[
𝑘𝑔

𝑚3] 

3300 4700 

Relative 

Permittivit

y 

[
9.208 0 0

0 9.208 0
0 0 10.119

] [
43.6 0 0
0 34.149 0
0 0 38.611

] 

Elasticity 

Matrix, 

Voigt 

Notation 

[𝑃𝑎] 

[
 
 
 
 
 
4.1
1.49
0.99
0
0
0

1.49
4.1
0.99
0
0
0

0.99
0.99
3,89
0
0
0

0
0
0

1.25
0
0

0
0
0
0

1.25
0

0
0
0
0
0

1.305]
 
 
 
 
 

∗ 𝑒11 

[
 
 
 
 
 

2.0289
0.5875
0.6907

−0.1323
0
0

0.5875
2.2232
0.9033

−0.0867
0
0

0.6907
0.9033
1.9279

−0.0764
0
0

−0.1323
−0.0867
−0.0764
0.7533

0
0

0
0
0
0

0.7824
0.0434

0
0
0
0

0.0434
0.5653]

 
 
 
 
 

∗ 𝑒11 

Coupling 

Matrix, 

Voigt 

Notation 

[
𝐶

𝑚2] 

[
0
0

−1.916

0
0

−1.916

0
0

4.959

0
−3.84

0

−3.84
0
0

0
0
0
]

∗ 𝑒 − 12 

[
0

−1.648
−1.939

0
−2.297
−1.591

0
2.573
4.527

0
0.4670

−0.2592

0.1224
0
0

−4.479
0
0

] 

 

Parameter Aluminium (000-plane) Platinum (000-plane) 

Density [
𝑘𝑔

𝑚3] 
2700 21450 

Relative 

Permittivity 

1 1.000265 

Young’s 

Modulus [𝑃𝑎] 

70𝑒9 168𝑒9 

Poisson’s Ratio 0.35 0.38 

 


