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Summary:  

Zero emission is a very popular terminology used, and a lot of research is also focused on 

this. Fossil fuel consumption is one of the big factors that is responsible for carbon 

emissions. In this scenario, a pilot project is carried out in Norway that focuses on reducing 

fuel usage at the construction sites where the power grid is not reachable and instead the 

machines are powered with a battery. A generic scheduling optimization and charging cost 

optimization with proper scheduling is proposed in this thesis for the ongoing project that 

involves the battery charging in the area where the grid power is easily available and then 

these batteries are transported to the remote construction sites to power up the construction 

machines. The solution for cost optimization is also based on eased charging techniques 

including the installation of solar panels and charging through electric vehicle chargers. 

Different methods like Mixed-Integer Linear Programing (MILP) and Large 

Neighborhood Search (LNS) algorithms are studied to address the optimization problem. 

The model as MILP is formed, with the defined objective function, constrains and other 

parameters, then solved using a large neighborhood search algorithm with the Microsoft 

Excel Solver. A study case is formulated to understand the impact of charging scheduling 

optimization in different scenarios. 

Power electronics involved in charging stations are simulated through 

MATLAB/Simulink, using the converter values proposed in another research to 

demonstrate the charging through low voltage sources like PV and EV chargers. 
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1 Introduction 
 

1.1 Background 

With the increasing rate of the population, the construction industry has been expanding rapidly 

in the last few years and the damaging effect of the construction industry on the environment 

is also significantly increased. The European Commission stated that 40% of the energy is 

consumed and 36% of the carbon emissions are produced by the construction sector. When it 

comes to Norway the building sector contributes 1.2% of greenhouse gas emissions which is 

almost 660,000 tCO2 [1]. A major portion of that emission, around 95%, came from 

transportation and construction machines, while the rest of it is produced while heating and 

drying the constructed structures [2].  

Typical construction sites some decades ago were fossil fuel powered, which means that the 

construction machines are powered by fossil fuel, causing the emission of a variety of 

pollutants. The major impacting pollutant is carbon in these sites. To overcome the carbon 

emissions an alternative fuel is introduced in the market which is biofuel. A fossil-free site that 

uses biofuel to power up the machine. Although biofuel makes emissions of carbon-free but 

still produces other material pollutants including nitrogen oxide. Zero-Emission is the site that 

produces no emissions, and this is achieved by powering the equipment with electrical power 

[1].   

In 2019 Oslo municipality took a step to limit fossil fuel usage and power the construction 

machines with electrical energy. They devise the infrastructure of electricity with the 

collaboration of the construction industry. These efforts result in the zero-emission 

construction site where in September 2019 two streets in Oslo center were constructed and all 

the machines are powered by electrical batteries [3]. 

Achieving zero-emission on the construction sites where the power grid is reachable is 

comparatively easy but there are a lot of sites where the power grids are not reachable, and it 

is not feasible to extend grids towards those sites just for the construction activities. A pilot 

project focused on providing the solution to this problem is currently under evaluation in 

Norway. Skagerak Energi is also taking their part and working on a project that contributes 

toward zero-emission construction sites. Figure 1-1 describes the working methodology of the 

project where the machines at remote construction sites are powered by mobile electric 

batteries. A charging station charges the mobile electric batteries at the location where the grid 

capacity is adequate, these batteries are then delivered to the construction sites and the 

discharged batteries are brought back to the station for charging [4] [5]. 

Nowadays the high rate of advancement of technology demands the problems associated with 

them to be resolved in a timely manner. With this idea presented above there are some 

associated problems some of them were addressed in the previous work and solutions to a 

couple of them are proposed in this research including optimal scheduling for the logistics of 

the battery mobile stations and optimization of charging schedule to reduce the charging cost. 

Also, to work on some techniques that help in reducing the charging cost as well as ease the 

process of charging and reduce the logistics cost. 
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Figure 1-1: An overview of the battery container from the construction site to the grid connection [4] 

 

1.2 Previous Work 

With funding from Enova, Skagerak Energi started a research project with the main goal of 

beginning to power the construction sites with electrical energy instead of fossil fuels. The idea 

is to charge batteries at the place where the grid is present and then deliver these batteries to 

the construction sites. In this regard several semester projects and thesis have already been 

done by the USN students in collaboration with Skagerak Energi and this thesis is built on the 

results achieved in the previous work. The outcomes useful for this thesis are as follows [4] 

[5]. 
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1.3 Objectives 

This thesis is the continuation of the research work done previously by the USN students with 

Skagerak. The project is focused on the logistics and scheduling of mobile battery containers 

to and from the charging station and the corresponding construction sites, easing the charging 

process by investing in different means of charging, and planning the charging of batteries to 

reduce the charging cost. The main Objectives are:  

• Scheduling the mobile battery charging 

• Problem description, identifying the objective function, constraints, and other important 

parameters. 

• Optimize the schedule plan with respect to constraints and parameters. 

• Using adequate methodologies and tools to solve the optimization problem. 

• Simulate the power electronics involved in the mobile charging station.  

• Study different schemes that can make the charging economical and feasible. 

The roadmap defined to achieve objectives includes:  

• A brief overview of the theory and the literature review, different methodologies used 

to solve the optimization problems, and different charging techniques and solutions.  

• By using the data provided in the previous thesis, formulating an optimized scheduling 

plan for batteries in order to minimize the logistics cost and time required for the 

operation. 

• Defining the constraints for the charging of batteries and making a plan to optimize the 

charging process by taking into account constraints such as the limitation of the 

charging spots, the time required to charge a single battery, avoiding the peak loading 

penalty, and also excluding the time window required in the previous step of logistics.  

• Work on alternative charging methods, focusing on the simulation of the power 

electronics involved in charging platforms. Role of these techniques in reducing the 

cost of charging also and easing the charging process. 

1.4 Limitations     

• The focus of the analysis in this report is primarily on the fixed cost and cost per 

unit distance for vehicles, while disregarding other cost variables such as 

chargers and stations. 

• Due to the intricate nature of the problem, factors related to fuel consumption 

and CO2 emissions have not been considered. 

• The cases involving the urgent delivery of batteries with less than one day's 

notice have not been included in this study. 

• With additional time dedicated to the thesis, it would have been possible to 

enhance the study by incorporating more features, such as the inclusion of 

battery partial charging/discharging and the consideration of emissions-related 

factors. These additions would have contributed to improved results and a more 

comprehensive analysis of the battery charging scheduling problem. 
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• Furthermore, it should be noted that the algorithm utilized in this research is 

unable to provide alternative solutions when one or more constraints cannot 

be fulfilled. In such cases, the algorithm identifies the infeasibility of the 

problem, indicating the need for further investigation or adjustments to the 

constraints to ensure a feasible solution. 
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2 Literature Review 
 

2.1 Vehicle Scheduling Problem 

The typical aim of the routing and scheduling problems is to minimize the expenses that are 

linked with providing the services, including vehicle, mileage, and cost of manpower. Other 

objectives can also be important in certain conditions, especially in the public sector. 

Graphical networks are commonly used to demonstrate these kinds of routing and scheduling 

problems, such as the one illustrated in Figure 2-1, where a clear visual demonstration of the 

problem is provided to the managers or planners. Routing and scheduling problems can be 

classified on the basis of the unique attributes of the delivery system, which may include 

number of the available vehicles, their location, capacity, and routing objectives. In the 

simplest form, the points that are visited by the vehicle are presented by the set of identical 

nodes regardless of the direction, where the transit costs are symmetric, with no precedence 

relationships, and no delivery time constraints. The capacity of the vehicle is not taken into 

consideration in this specific scenario [6].  

 The ultimate goal of the single-vehicle scenario is to create an optimized route in such a way 

that it covers all the nodes at once and commences and concludes at the depot node. The aim 

is to minimize the overall tour cost. This problem is known as Traveling Salesman Problem 

(TSP), which is considered the most basic case. If the capacity of the vehicle is restricted or 

limited and the demands at each node are different then the problem is termed as vehicle 

routing problem (VRP). If the time restrictions are not considered or the sequence of priority 

among the customers being served is not set, the problem is then a routing problem. But if a 

specific time is mentioned for the service to be performed then the problem becomes a 

scheduling problem [6].  

 

Figure 2-1: Visualization of Vehicle Scheduling Problem [7] 

The challenge to find the optimized plan for the vehicle to complete all the routes in a 

specific time is referred to as vehicle scheduling. The sequence of the trips for each vehicle, 

including empty trips or repositioning is assigned during the scheduling. Vast possible 

solutions to this problem usually exist, particularly with the involvement of multiple depots. 

This problem is a very common non-linear programming problem in the field of operational 
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research and logistics management. VSP can be of two types: static and dynamic. Dynamic 

VSP is the optimization of the distribution and logistics process in such a way that the most 

optimal way based on unique service requests can be found [8].  

2.2 Electric Vehicle Charging Optimization 

Fast-Charging of electric bus systems is getting more popular in recent years, which leads to 

the requirement of extensive research on the optimization of the electricity cost for charging, 

and charging location planning [9]. Fast charging infrastructure planning and the battery 

capacity for the electric buses along the route are optimized by a mixed-integer linear 

programming model developed by Kunith et al. [10]. The same issue is addressed by He et al. 

[11], with an addition that an energy storage system is used to store the electric energy during 

the off-peak hours and then use this energy for the battery charging during on-peak hours to 

reduce the expenses of the charging process. This research indicates that a 9.2% cost 

reduction is observed as compared to the Kunith et al. [10] model. 

Olmos et al. [12] investigated the best locations for opportunity charging infrastructure for 

hybrid and fully electric buses, considering power rates and energy storage system sizes. Liu 

et al. [13] developed a model to address uncertain energy consumption for battery-electric 

buses. Lin et al. [14] studied the combination of charging station location planning and the 

power grid. 

Hu et al. [15] studied the combination of opportunity charging location and charging 

scheduling problems for electric buses, considering time-of-use electricity pricing and 

passenger waiting time during charging as a penalty cost. They aimed to minimize costs for 

purchasing opportunity chargers and electric bus batteries, reduce total charging costs, and 

minimize passengers' extra waiting time. To address uncertainties related to trip time and 

passenger travel demand, they suggested using a robust optimization technique. 

Olsen and Kliewer [16] considered the combination of depot charging planning and electric 

bus scheduling, aiming to minimize total costs, including those of installing depot chargers, 

vehicle costs, and operating costs. They developed a metaheuristic solution approach based 

on variable neighborhood search, showing that optimizing both problems simultaneously 

yields better results than sequential planning. 

Fast-charging infrastructures used for electric buses have a high demand for electricity, and 

charging during peak hours can strain the power grid. This makes scheduling charging times 

for electric buses using fast charging technology a difficult task. Neglecting the charging 

schedule can increase the energy cost of this charging method, making the transition to 

electric bus systems economically unfeasible. He et al. [17] proposed a network modeling 

framework that addresses this issue. They aimed to minimize total charging costs, including 

energy and electricity demand charges. Further details can be found in their study. 

2.3 Electricity Cost Optimization 

Yi et al. [18] developed a scheduling method for demand-side energy consumption that takes 

into account both the users' preferences and a PAR (peak-to-average ratio) constraint to 

minimize cost and inconvenience to users. The method uses a distributed algorithm to solve 

initial and multi-objective optimization problems, but it does not consider the integration of 

renewable energy sources (RESs).  
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Adika and Wang [19] proposed electricity storage and appliance scheduling schemes for 

residential customers to reduce electricity costs. The storage system allows customers to 

purchase electricity during off-peak hours and use it during peak hours. However, the 

uncoordinated charging and discharging of batteries can be uncomfortable for users.  

Shirazi et al. [20] proposed a smart home energy management system that used price 

information and environment data to optimally schedule electrical and thermal appliances to 

reduce costs. However, this approach compromised user comfort to achieve an economical 

solution. Ogwumike et al. [21] used intelligent decision support systems and a flexible cost 

model for load scheduling to reduce electricity costs by reducing peaks in demand. However, 

this approach also compromised user comfort. 

A system for joint access and load scheduling under demand response (DR) schemes are 

formulated by Chen et al. [22] to reduce costs. They formulated an optimization problem for 

the energy management controller (EMC) to calculate the target power level for the home 

while taking into account the impact of price variations and uncertainties in local wind 

power. However, despite the cost reduction, the system resulted in an increase in the peak-to-

average ratio (PAR). An algorithm for managing the demand side of electricity consumption 

in residential areas is presented in [23] by Samadi et al., using a combined RTP and IBR 

pricing scheme. The aim was to reduce the electricity bill and PAR, but the authors found that 

although the algorithm successfully reduced peaks in demand, it resulted in decreased user 

comfort.  

Adika and Wang proposed a demand-side management method for consumers [24], which 

aimed to encourage consumers to participate in both power generation and efficient load 

scheduling. They developed a smart scheduler that can schedule household appliances using 

both utility and distributed generation to reduce electricity costs. However, this approach 

resulted in an increase in consumption peaks while reducing electricity costs, which has the 

potential to damage the entire power system. 

2.4 Residential Load Optimization  

In recent decades, the energy crisis has become a major concern with a focus on improving 

energy utilization efficiency and reducing consumption. Residential customers are 

responsible for a significant portion of total electricity usage, and their consumption patterns 

also contribute to seasonal and daily peak demand [25]. 

The residential sector is responsible for a significant portion of global energy consumption, 

accounting for approximately 30-40% of total energy use worldwide [26]. This makes it an 

important target for energy efficiency and demand-side management initiatives. 

The energy crisis has been a major concern in recent years, with a focus on improving energy 

efficiency and reducing consumption. One significant contributor to overall energy 

consumption and peak demand is the residential sector, which accounts for around 30-40% of 

total energy use globally. The European Commission has found that the residential and 

services sectors are driving the growth in electricity consumption in the EU, with electricity 

use in the residential sector alone increasing by 31% between 1990 and 2015 [27] [28]. 

With the increase in electricity demand, conventional solutions that focus on increasing 

supply may not be sufficient. Demand Side Management (DSM) offers an alternative solution 

to reduce electricity demand. By managing demand, Demand Response (DR) aligns it with 

the available energy, thereby supporting the idea of DSM [29]. 
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DR aims to achieve a beneficial collaboration between energy providers and consumers to 

regulate the load profiles, resulting in advantages for all parties involved [30]. A key 

objective of implementing a DR program is to decrease electricity usage during periods of 

high demand and encourage customers to use energy during off-peak hours instead. 

Benetti et al. [31] suggest that the current trend in research on Electric Load Management 

(ELM) involves the use of optimization methods that incorporate additional features and 

detailed modeling. This is important to improve the accuracy of results by optimizing more 

comprehensive models. However, it is important to consider the trade-off between 

computational complexity and scalability. While it is necessary to include more features and 

expanded modeling details in optimization methods to enhance the accuracy of results, the 

high computational cost associated with solving optimization models may lead to scalability 

issues. 

2.5 Electricity Cost Optimization with PV Support  

Every day, the global demand for energy increases, while the supply of fossil fuels is limited 

and depleting. To address this issue, the smart grid (SG) has been introduced as an intelligent 

solution that combines information communication technology (ICT), fossil fuel generation, 

renewable energy (RE) generation, and hybrid generation. Thus, it is crucial to increase the 

use of renewable energy sources (RESs) due to environmental concerns and the necessity to 

minimize carbon emissions [32]. 

Solar energy is considered the most abundant and universally available type of renewable 

energy source (RES). In recent years, there has been a significant increase in the use of RESs. 

In 2014, Denmark generated 60% of its electricity from RESs, while Spain and Portugal 

generated 29% and 30%, respectively. Having a system with a high penetration of RESs is 

considered cost-effective [33], [34]. 

In the literature, there are several studies that address the topic of optimal energy 

management for grid-connected PV systems that are combined with energy storage. These 

studies involve the solution of optimization problems, where certain constraints are taken into 

consideration. They assume that the day-ahead forecasts of load profile, PV power production 

profile, and energy prices are available. The selection of the optimization algorithm depends 

on the complexity of the objective function and the constraints, whereas the objective 

function used varies based on the application of the storage [35]. 

Linear programming has been utilized to find the optimal energy dispatch schedule, where 

energy storage is used for peak shaving to minimize demand charges. The objective function 

in this case is the net energy exchanged with the grid over a specified planning horizon. The 

choice of linear programming as the optimization algorithm is based on its ability to find the 

optimal solution with a linear objective function and linear constraints [36]. 
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2.6 Power Electronics in Low Voltage battery charging station. 

2.6.1 Bidirectional Power converters  

2.6.1.1 One-stage bidirectional power converter 

One-stage bidirectional power converters are devices that can convert electrical power bi-

directionally with a single stage of power conversion. They can convert power from a DC 

source to an AC load or vice versa, depending on the application. 

Some examples of one-stage bidirectional power converters are: 

a. DC-DC converters: These converters can convert DC power from a source to a load at 

a different voltage level. They can also operate in reverse to send power from the load 

back to the source. 

b. AC-DC converters: These converters can convert AC power to DC power or vice versa. 

They are commonly used in applications such as renewable energy systems, electric 

vehicles, and uninterruptible power supplies. 

c. DC-AC converters: These converters can convert DC power to AC power or vice versa. 

They are commonly used in applications such as solar power systems, electric vehicles, 

and UPS systems. 

One-stage bidirectional power converters offer several advantages over two-stage converters, 

such as higher efficiency, lower cost, and smaller size. However, they can be more complex 

to design and require careful control to maintain proper operation [37]. 

2.6.1.2 Two-stage Bidirectional power converter  

Two-stage bidirectional power converters are devices that can convert electrical power 

bidirectionally with two stages of power conversion. They typically consist of two separate 

power conversion stages, with one stage converting power from the source to an intermediate 

voltage or current level, and the other stage converting power from the intermediate level to 

the load. Two-stage bidirectional power converters offer the advantage of greater flexibility 

and control over the power conversion process, allowing for more efficient and precise power 

management. However, they can be more complex and expensive to design and implement 

compared to one-stage converters [38]. 

The DC/DC converter stage is utilized to increase the voltage to the required level and 

connect the grid with the battery storage system. In the case of discharge mode where energy 

is flowing from the battery energy storage system (BESS) to the machines on the construction 

site, the DC/DC converter reduces the voltage and the DC/AC converter acts as an inverter to 

convert DC power from the battery into AC power that is sent to the machines. Conversely, 

during charge mode, the DC/AC converter functions as a rectifier to convert AC power from 

the low voltage grid or PV source to DC power to charge the BESS and the DC/DC converter 

scales up the voltage to the desired level [39]. 

 

 

Figure 2-2: Two-stage bidirectional converter[38] 
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The DC/DC converter stage was designed with a full bridge or H-bridge topology, as shown in 

Figure 2-3. The switches used were IGBTs due to their widespread use and the ease of 

controlling power flow in both directions. The bidirectional feature of this topology was also a 

contributing factor in the decision to choose it. 

 

 
 

Figure 2-3: Full bridge DC/DC converter stage [40] 

 

The AC/DC converter is a three-phase full bridge topology, formed by using the IGBTs as the 

switches, illustrated in Figure 2-4. 

 

 

Figure 2-4: Three-phase full bridge converter [38] 

 

2.6.2 Modes of operation: 

Bidirectional power converters operate in two modes: one in which power flows from the 

grid to the battery (battery charging), and the other in which power flows from the battery to 

the grid or the load (battery discharging) [37]. To illustrate the working principle of the 

DC/DC converter stage modes, a battery model was used with arbitrarily selected voltage 

mean values of 50 V and 100 V, as well as other parameters. 

2.6.2.1 Battery Charge mode 

During this mode of operation, electricity flows from the low-voltage grid or PV source to the 

battery storage, and the AC/DC power converter functions as a rectifier. The IGBTs in the 

circuit, which are typically used as switches, are all turned off, and only the antiparallel 
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diodes are active [40]. As a result, when the three-phase voltage waveform is rectified, it 

produces six pulses in one period, as illustrated in Figure 2-5. 

 

Figure 2-5: Input and output of the three-phase rectifier [37] 

The next component is a cascaded full-bridge DC/DC converter that operates in boost mode, 

as illustrated in Figure 2-6. The first period lasts for a duration of dT and is depicted in Figure 

2-8. To activate the boost mode, transistors S1, and S4 are triggered and highlighted in red 

and blue in Figure 2-6. In the second period, which also lasts for dT, the diode of S2 is active 

and highlighted in green, while transistor S4 is highlighted in blue. It is important to note that 

IGBT S3 is always inactive, while transistor S4 is active in both periods [40].  

 

 

Figure 2-6: Full bridge DC/DC converter boost mode [40] 

 

When IGBTs are controlled by PWM, the input voltage is amplified, as depicted in Figure 2-

7. The upper graph shows the input voltage of the DC/DC converter stage, while the lower 

graph shows the output voltage of the DC/DC converter stage.  

 

Figure 2-7: input and output of a DC/DC converter boost mode [40] 
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To enable boost mode, PWM signals are generated to drive the IGBTs with a duty cycle of 

around 0.5, as shown in Figure 2-8. Although this control algorithm was chosen for its 

simplicity, it is not optimal because IGBT S3 is never used and produces switching losses 

[39]. 

 

Figure 2-8: Gate signals for the IGBTs boost mode [39] 

2.6.2.2 Battery discharge mode 

During battery discharge mode, the battery voltage needs to be lowered to interface with the 

DC side of the inverter, allowing power to flow from the battery storage to the machines or 

the grid back. To achieve this, the DC/DC converter stage shown in Figure 2-9, must switch 

to buck mode operation. During the first interval, switches S1 and S4 are activated, as 

indicated by the red and blue markings. In the second interval, switch S2 is activated (marked 

green) and diode S4 is active (marked blue). In this mode, switch S3 always remains off [40]. 

 

 

Figure 2-9: Full bridge DC/DC converter stage buck mode [40] 

The input voltage can be lowered to the desired level with proper control of IGBTs. The top 

diagram in Figure 2-10 represents the input of the DC/DC converter stage while the lower 

diagram represents the output during the buck mode operation. 

 

 

Figure 2-10: DC/DC converter input and output in buck mode 
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To link the output of a buck converter to the power grid, an inverter is required as depicted in 

the diagram presented in Figure 2-2. The objective of the inverter is to transform the DC 

voltage into a sinusoidal form, enabling the distribution of energy from the battery storage to 

the end users.  
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3 Problem Formulation 
 

3.1 Battery Charging Cost Optimization and Logistics  

The problem that is addressed in this thesis is the planning and scheduling of the charging as 

well as logistics of the batteries to the construction sites, in order to make the construction 

site emission-free by replacing all the traditional fuel-based construction machinery with 

electric ones. The planning procedure involves the evaluation of the cost that is required to 

replace traditional machinery and the sensitive analysis of the available recourses. Since 

battery-powered construction equipment has limited operation time because of the available 

battery capacity as compared to fossil-fuel-based machines, therefore a number of charging 

stations needed to be installed at optimal locations for the continuous working of the 

machines. Considering the time, cost, and capacity restrictions the following decisions need 

to be made. 

• The optimal number of charging stations needs to be installed at the most suitable 

locations. 

• To overcome the time restriction, select a suitable number of chargers in each station. 

• Optimize the problem with a solver by entering all the requirements of the 

construction sites, costs, and profits to get the total number of battery containers 

required for continuous operation. 

• With respect to the electricity tariff, the charging schedule of the batteries needs to be 

proposed.  

 A generalized optimization model is created in this section that can be used in different 

scenarios and different networks. The main task is to generate an optimized battery logistics 

plan and by considering the time windows of that plan, propose a charging scheduling plan to 

lower the electricity cost for charging the batteries. 

Some of the assumptions are made to make the problem simple. 

a. Mobile battery containers have similar dimensions, weight, and capacity. 

b. Working hours on the construction site are proportional to the consumption of the 

battery. 

c. Instead of exponential charging, the time taken by the battery to charge is directly 

proportional to the recharged energy. 

d. All the installed chargers have the same ratings. 

 

3.1.1 Mathematical Formulation  

The mathematical formulation used in this chapter is introduced in [41]. 

Minimize: 
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𝐶 = ∑ ∑(𝑐𝑑𝑑𝑖𝑛 + 𝑐0 + 𝑐𝑒𝑢𝑛)�̅�𝑋𝑖
𝑛

𝑛∈𝑁𝑖∈𝑆

+ ∑ ∑ ∑ 𝑐𝑤𝑤𝑖𝑗𝑛𝑡�̅�𝑌𝑖𝑡
𝑛𝑘

(𝑖,𝑗,𝑡)∈𝐴𝑛𝑛∈𝑁

𝐾𝑛

𝑘=1

+

∑ ∑(𝛼𝑐𝑓1 + �̅�𝑐𝑚1)𝑍𝑛𝑘

𝑛∈𝑁

𝐾𝑛

𝑘=1

+ ∑(𝛼𝑐𝑓2 + �̅�𝑐𝑚2)

𝑛∈𝑁

𝑍′
𝑘

(1) 

Subject to: 

∑ 𝑋𝑖
𝑛 ≤ 1, ∀ 𝑖 ∈ 𝑆

𝑛∈𝑁

(2) 

𝐸𝑖 + ∑(𝜃𝑢𝑛 − 𝑑𝑖𝑛)𝑋𝑖
𝑛 ≤ 𝛽, ∀ 𝑖 ∈ 𝑆

𝑛∈𝑁

(3) 

𝐸𝑗 =  𝐸𝑖 + ∑(𝜃𝑢𝑛 − 𝑑𝑖𝑛)𝑋𝑖
𝑛 − 𝑑𝑗 , ∀ (𝑖, 𝑗) ∈ 𝑃

𝑛∈𝑁

(4) 

𝐸𝑖 ≥ 𝑒𝑚𝑖𝑛, ∀ 𝑖 ∈ 𝑆 (5) 

∑ ∑ 𝑌𝑖𝑡
𝑛𝑘

(𝑖,𝑗,𝑡)∈𝐴𝑛

= 𝑋𝑖
𝑛,

𝐾𝑛

𝑘=1

∀ 𝑖 ∈ 𝑆, 𝑛 ∈ 𝑁 (6) 

∑ ∑ 𝑌𝑖𝑡′
𝑛𝑘

𝑡

𝑡′=𝑡−𝑢𝑛+1𝑖:(𝑖,𝑗,𝑡′)∈𝐴𝑛

≤ 1, ∀ 𝑘 = 1, … , 𝐾𝑛, 𝑛 ∈ 𝑁𝑡 ∈ 𝑇 (7) 

∑ 𝑌𝑖𝑡
𝑛𝑘

(𝑖,𝑗,𝑡)∈𝐴𝑛

≤ �̅�𝑍𝑛𝑘, ∀ 𝑘 = 1, … , 𝐾𝑛, 𝑛 ∈ 𝑁 (8) 

∑ 𝑍𝑛𝑘

𝐾𝑛

𝑘

≤  �̅�𝑍′
𝑛, ∀ 𝑛 ∈ 𝑁 (9) 

𝑍𝑛𝑘 ≤ 𝑍𝑛(𝑘−1), ∀ 𝑛 ∈ 𝑁, 𝑘 = 2, … , 𝐾𝑛 (10) 

𝑋𝑖
𝑛 = {0,1}, ∀ 𝑖 ∈ 𝑆, 𝑛 ∈ 𝑁 (11) 

𝑌𝑖𝑡
𝑛𝑘 = {0,1}, ∀ 𝑖 ∈ 𝑆, 𝑡 ∈ 𝑇, 𝑘 = 1, … , 𝐾𝑛, 𝑛 ∈ 𝑁 (12) 

𝑍𝑛𝑘 = {0,1}, ∀ 𝑘 = 1, … , 𝐾𝑛, 𝑛 ∈ 𝑁 (13) 

𝑍𝑛
′ = {0,1}, ∀ 𝑛 ∈ 𝑁 (14) 

𝐸𝑖 = 𝛽0, ∀ 𝑖 ∈ 𝑂 (15)    

Parameters 

 

𝛽 – mobile battery container maximum energy when fully charged, in kWh 

𝛽0  – mobile battery container’s initial energy level at the depot, in kWh 

𝜃   – charging rate, in kW 

𝑑𝑖  – per day energy consumption 𝑖 ∈ 𝑆, in kWh 

𝑑𝑖𝑛  – consumption of energy between the charging station n ∈ N and the beginning/ 

terminating point of the trip 𝑖 ∈ 𝑆 and, kWh 
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𝑐𝑤  – waiting time price per unit, in NOK/hour 

𝑒𝑚𝑖𝑛  – usable extended energy in a battery container, in kWh 

𝑐𝑑  – energy charge per unit, in NOK/kWh 

𝑐𝑜  – expenditures of charging activity operation, referred to as fixed charging cost in NOK 

𝑐𝑒  – electricity costs referred to as the variable cost for batteries charging, in NOK/hour; 

𝑐𝑓1  – purchase and installation costs of the chargers, in NOK 

𝑐𝑓2  – the cost of land and construction that is required for the charging station, in NOK 

𝑐𝑚1  – chargers maintenance expenditures, in NOK 

𝑐𝑚2  – charging station maintenance charges, in NOK 

𝐾𝑛  – number of the chargers installed in a charging station, 𝑛 ∈ 𝑁 

�̅� – the number of working days in a year 

�̅� – positive evaluation index 

𝛼 – annualized factor 

 

Decision Variables 

 

𝑋𝑖
𝑛 the binary variable that is positive if the mobile battery is charged at the charging 

station 𝑛 ∈  𝑁, after the trip 𝑖 ∈  𝑆, otherwise false. 

𝑌𝑖𝑡
𝑛𝑘 a binary variable that is positive if the mobile battery is charged on 𝑘𝑡ℎ charging 

station 𝑛 ∈  𝑁, after the trip 𝑖 ∈  𝑆, at time 𝑡 ∈  𝑇; otherwise, false. 𝑘 = 1, … , 𝐾𝑛 

 

𝐸𝑖 –when the trip 𝑖 ∈  𝑆 ends, the remaining energy in the battery container is indicated 

by this variable in kWh 

 

𝑍𝑛𝑘 – the binary variable that is positive if 𝑘𝑡ℎ charger is used at charging station n ∈ N ; 

false otherwise, 𝑘 = 1, … , 𝐾𝑛 

 

𝑍′𝑘 – 1 if charging station 𝑛 ∈  𝑁 is used; 0 otherwise 

 

Variables Definitions 

 

𝑆 – represents the energy usage schedule 

 

𝑁 – represents the group of available charging stations 

𝑇 – time stamps in which the batteries energy dropped from full to end 

𝑢𝑛  – the charging duration for each recharging activity at the charging station 𝑛 

𝑡, 𝑡 + 𝑢𝑛– start time and end time for recharging 
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𝑟𝑖𝑛 – deadheading travel time from the last site to the charging station 

   

𝑂 – represents the origin points 

 

𝐷 – represents the destination points 

 

𝑖  – the start of the trip, 𝑖 ∈  𝑆 ∪ 𝑂 

 

𝑗  – ending point of the trip, 𝑗 ∈  𝑆 ∪ 𝐷 

 

𝑎𝑗   – time at which trip 𝑖 starts 

 

𝑏𝑖   – trip 𝑗 termination time 

 

𝑃 – set of trip pairs, such that trip 𝑗 is served immediately after trip 𝑖 by the same battery 

𝑢𝑛  – time in which the charging process took place 

𝐴𝑛 – different charging processes took place at charging station 𝑛, (𝑖, 𝑗, 𝑡)  ∈  𝐴𝑛, if 𝑡 ≥
 𝑏𝑖  +  𝑟𝑖𝑛  &  𝑡 + 𝑢𝑛  + 𝑟𝑖𝑛  ≤  𝑎𝑗 

𝑤𝑖𝑗𝑛𝑡 – waiting time for the mobile battery before it got recharged, 𝑤𝑖𝑗𝑛𝑡 =  𝑡 – 𝑏𝑖 – 𝑟𝑖𝑛  

 

Objective function  

The objective is to reduce the overall operational expenses of the charging system on an 

annual basis. These costs include expenses related to deadheading travel, recharging, waiting 

for recharging, chargers, and charging stations. 

Subjected to constraints.  

Constraint (2) restricts the charging of a specific mobile battery can be done at one charging 

station at the same time span.  

 

Constraint (3) restricts the current energy of the battery that is a sum of recharged and the 

remaining energy cannot be more than the maximum capacity of the mobile battery container.  

 

Constraint (4) defines that the energy can be transferred from the charging station to the battery 

to the machines, but the energy conservation requirements must be fulfilled.  

 

Constraint (5) indicates that the battery must be picked up for charging before it reaches the 

lowest desired limit which is usually 20%  
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Constraint (6) defines the relationship between variables 𝑌 and 𝑋. After reaching the charging 

station 𝑛 (i.e., 𝑋𝑖
𝑛 = 1) from the trip 𝑖, if the mobile battery is recharged then 𝑌𝑖𝑡

𝑛𝑘 = 1; 

otherwise, all 𝑌𝑖𝑡
𝑛𝑘 = 0, where 𝑡 and 𝑘 are variables.  

 

Constraint (7) defines the battery charging station capacity limitation, so one charger can 

charge one battery at the same (Anders Berger)[42]time span. 

 

Constraint (8) define the relationship between variables 𝑌 and 𝑍. If the charger is used it 

indicates the charging activity while in other cases, no charging activity was done. To guarantee 

sufficient recharging activities, it is recommended to use a sufficiently large value, denoted by  

�̅�, as the cardinality for the recharging activity set 𝐴𝑛. This value represents the total number 

of recharging activities and establishes a logical connection. 

 

Constraint (9) represents that if any charger in the charging station is used the station is on 

otherwise off. Defines the relationship between variables 𝑍 and 𝑍′. 
 

Constraint (10) managing the use of the available chargers. 

 

Constraints (11) – (14) restrict the variables to be binary. 

 

Constraint (15) initial state of the battery container. 
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4 Methodologies 
 

4.1 Mixed-integer linear programming 

Mixed-integer Linear programming (MILP) is a mathematical technique to optimize and 

solve decision-making problems that include discrete and continuous variables. It is an 

extension to linear programming where the decision variables are restricted to be the integers 

only. MILP is used to solve objective functions that are linear and are exposed to linear 

constraints equalities or inequalities. The integer-restricted decision variables introduce 

nonlinearity in the problem, making it complex enough to be solved by traditional linear 

programming [43]. 

Over the period of the last fifty years, MILP theory has evolved and become an important 

tool in diverse industries including manufacturing, transportation, energy, and finance. The 

attributes that make mixed-integer linear programming distinct are solving the problem in 

linear programming while using mixed-integer modeling techniques to make the solution 

flexible. It has been incorporated in several open sources, free solvers as well as commercial 

premium solvers [44]. 

MILP has been widely used in the fields of production planning, network optimization, 

scheduling, and logistics. 

4.1.1 Mathematical Formulation 

MILP can be formulated in canonical form as: 

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑜𝑟 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑘𝑇𝑦 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐿𝑦 ≤ 𝑚, 

𝑦 ≥ 0, 

𝑎𝑛𝑑 𝑦 ∈ 𝑍𝑛 

 

The standard form of mixed-integer linear programming is:  

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑜𝑟 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑘𝑇𝑦 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐿𝑦 + 𝑎 ≤ 𝑚, 

𝑎 ≥ 0, 

𝑦 ≥ 0, 

𝑎𝑛𝑑 𝑦 ∈ 𝑍𝑛 

 

Where y is the decision variable that is to be decided and must belong to the integers, L is the 

set of the constrains, and k and m are the vectors [45].  
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4.1.2 Methods for Solving MILP  

There are numerous techniques and approaches to solve MILP problems, these methods can be 

used individually or in combination with other methods to solve the problem effectively. The 

suitability of the method varies depending on the nature of the problem, its complexity, size, 

and the constraints.   

4.1.2.1 Branch and Bound 

Brach and bound is a vastly used technique used to solve MILP problems, contains a large set 

of algorithms, and is part of almost all the modern and best solvers. The basic technique in 

branch and bound is that the problem is been divided repeatedly into small subproblems in 

such a way that these small parts of the main problem are then solved using linear 

programming techniques and the best optimal solutions are found after recursively solving 

the problem. The algorithms are applied on the branches to find the integer values for the 

decision variables that are bounded in some defined region that are then pruned to the search 

tree [46]. 

The branch and bound method is divided into four parts.  

• The lower bounding method is a technique where the objective function is optimized to 

find the solution at the lower limit. 

• Upper bounding method, in upper bounding the upper limit of the possible solution is 

found for the given objective function.  

• The branching method is the process of diving the problem into the numerous sub-

problems in the best possible way after recursive breakdowns.  

• Search strategy, choosing the searching method for the solution that is bounded by the 

lower and upper bounding methods. 

4.1.2.2  Branch and Cut 

Basically, the Branch and cut method is a combinational optimization technique. It is the 

extension of the branch and bound method where the bounding regions defined to solve the 

subproblems by linear programming are tightened and the best optimal solution is narrow 

downed. [47] 

In the branch and cut method, traditional linear programming techniques are used to solve the 

problem in the first step, and hence the condition of the MILP that the decision variables 

must be integer is not evaluated. Therefore, a solution is found with integers as well as 

fractional values. In the second step, a cutting plane approach is used to find the fraction-less 

solution by incorporating various inequalities into the linear programming and hence the non-

integer values are reduced in the final optimal solution. Simply the non-integer values of the 

solution found in the first step are eliminated by introducing additional constraints with the 

cutting plane technique that are solved by integer values only and are not justified by 

fractional values [48]. 

Branch and cut algorithms incorporated several different branching heuristics, the most 

commonly used branching techniques are listed below [49]:  

• Strong Branching 

• Most feasible Branching 

• Pseudo cost Branching 
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4.1.2.3 Branch and Price  

In the branch and price method, the linear programming relaxations are applied by columns 

attached to different search tree nodes. These columns are then managed to reduce the 

computational time and the memory requirement to solve the problem. These columns are 

removed at the start when problems are solved by linear programming techniques and added 

back when required.  

Basically, when any problem is solved by the MILP most of the decision variables columns 

are zero and the variables associated with them are equal to zero, these decision variables are 

non-basic but took memory and time while rendering the solution. Removing the columns of 

these non-basic variables increases the computational time and helps in effectively solving 

the problem [50].  

 

 

Figure 4-1: Branch and Price Algorithm [51] 

 

4.1.3 Solver Frameworks 

A solver framework basically incorporates all the methods to solve MILP including branch 

and bound, branch and cut, branch and price. Users can use the combinations of these 

methods in Solver to find the best optimal solutions. For example, the user can use the 

custom bounding techniques in combination with the inequality constraints to find integer 

solutions depending on the problem. There are several solvers available in the market to solve 

MLP problems. Table 4-1 shows the algorithmic approaches of eight different solvers. The 

following features are highlighted in table preprocessor, cutting techniques, primal heuristics, 

branching, and search strategy techniques. [46] 
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Table 4-1: Algorithmic Features of Solvers 

 Pre-

proc 

Built-in 

Cut Gen 

Column 

Gen 

Primal 

Heuristic 

Branching 

Rules 

Search 

Strategy 

ABACYS No No Yes No 𝑓, ℎ, 𝑠 𝑏, 𝑟, 𝑑, 2(𝑑, 𝑏) 

BCO No No Yes No 𝑓, ℎ, 𝑠 ℎ(𝑑, 𝑏) 

bonsai No No No No 𝑝 ℎ(𝑑, 𝑏) 

CBC Yes Yes No Yes 𝑒, 𝑓, 𝑔, ℎ, 𝑠, 𝑥 2(𝑑, 𝑏) 

GLPK No No No No 𝑖, 𝑝 𝑏, 𝑑, 𝑝 

Lp-Solve No No No No 𝑒, 𝑓, 𝑖, 𝑥 𝑑, 𝑟, 𝑒, 2(𝑑, 𝑟) 

MINTO Yes Yes Yes Yes 𝑒, 𝑓, 𝑔, 𝑝, 𝑠 𝑏, 𝑑, 𝑒, ℎ(𝑑, 𝑒) 

SYMPHONY No Yes Yes No 𝑒, 𝑓, 𝑔, 𝑝, 𝑠 𝑏, 𝑟, 𝑑, ℎ(𝑑, 𝑏) 

 

Where, 

 

𝑒  –  pseudo cost branching 

 

𝑓  –  branching on the variables with the largest fractional part 

 

𝑔  –  GUB branching 

 

ℎ  –  branching on hyperplanes 

 

𝑖  –  branching on the first or last fractional variable (by index) 

 

𝑝  –  penalty method 

 

𝑠  –  strong branching 

 

𝑥  –  SOS (2) branching and branching on semicontinuous variables 

 

𝑏  –  best-first 

 

𝑑  –  depth-first 
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𝑒  –  best-estimate 

 

𝑝  –  best-projection 

 

𝑟  –  breadth-first 

 

ℎ(𝑏, 𝑑) –  a hybrid method switching from strategy 𝑏 to 𝑑 

 

ℎ(𝑏, 𝑒) –  a hybrid method switching from strategy 𝑏 to 𝑒 

 

2(𝑑, 𝑏) –  a two-phase method switching from strategy 𝑑 to 𝑏 

 

2(𝑑, 𝑟) –  a two-phase method switching from strategy 𝑑 to 𝑟 

 

4.1.4 Applications 

The main difference between solving the problem as a traditional linear problem and integer 

linear programming is the handling of the complexity of problems. When a constraint to have 

only integer-valued decision variables is added to the problem it makes the problem complex 

and nonlinear where MILP is used to obtain the optimal solution. MILP models can capture 

complex decision-making scenarios that involve both continuous and discrete variables, 

making them a valuable tool for solving optimization problems with practical constraints. 

With the advancements in computational resources and algorithms, MILP has become a 

popular approach for solving complex problems in different industries. It has a wide variety 

of applications in different fields i.e. logistics, network optimization, resource allocation, 

production planning, and scheduling [52]. 

• With multiple constraints, the optimal allocation of resources can be done by MILP. 

• By considering the constraints of production levels, the capacity of machines, material 

and manpower availability, and the maximum capital limit, a proper production plan 

can be devised.  

• Resource availability and deadline constraints are subjected to optimize the scheduling. 

• The flow of the items or data through the network is optimized using MILP with 

constraints related to the cost of transportation and limitation of capacity. 

• Optimal solutions to logistic problems can be proposed with MILP when subjected to 

different constraints of delivery time, cost of transportation, and inventory availability. 

4.2 Mixed-integer Nonlinear Programming 

Mixed-integer Nonlinear Programming is the mathematical optimization technique, an 

extension to Mixed-integer Linear Programming, where the nonlinear objective function 
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comprised of continuous or discrete variables is optimized against linear or nonlinear 

contains. The nonlinear objective function is minimized or maximized when subjected to the 

set of linear and/or nonlinear constraints, some of the decision variables are integers while 

others might be in fractions. Most of the time real-life scenarios in industry or in scientific 

research involve solving nonlinear dynamic issues, subjected to some of the inequalities that 

are also nonlinear in nature are efficiently solved by MINLP. The optimization of fractional 

decision variables and handling the complexities of the nonlinearities of the objective 

functions and the constraints make MINLP an extremely powerful and important method 

[53].  

4.2.1 Mathematical Formulation 

Mixed-integer Nonlinear Programming method can be represented in standard form as [54]:  

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑜𝑟 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓(𝑎, 𝑏) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔(𝑎, 𝑏) ≤ 0 

𝑎 ∈ 𝐴 

𝑏 ∈ 𝐵 &&  𝑏 ∈ 𝑍𝑛 

 

𝑓(𝑎, 𝑏) function presents the nonlinear objective function.  

𝑔(𝑎, 𝑏) is a linear and/or nonlinear constraint function. 

𝑎 and 𝑏 are the decision variables with 𝑦 having to be integer-valued.  

𝐴 and 𝐵 are variables with bounding constraints. 

4.2.2 Algorithm 

Certainly! MINLP problems are complex and challenging to solve because they combine the 

difficulties of both mixed integer programming (MIP) and nonlinear programming (NLP). 

MIP involves finding solutions to problems that have both integer and continuous variables, 

while NLP involves finding solutions to problems that are non-convex or even convex. Both 

MIP and NLP are part of a class of theoretically difficult problems known as NP-complete, so 

it's not surprising that solving MINLP can be a difficult and daring task. However, the 

structure of MIP and NLP within MINLP offers a range of natural algorithmic approaches 

that can be used to tackle each subcomponent of the problem [53]. 

4.2.3 Methodologies for MINLP Solution 

Numerous methods and techniques have been developed to solve the MINLPs, including 

creative approaches incorporated and extended from MILP. Some of these approaches are 

Outer Approximation (OA), Branch-and-bound (B&B), Extended Cutting Plane techniques, 

and Generalized Bender’s Decomposition (GBD) technique, which has been discussed in the 

literature since the 1980s. A series of closely related NLP problems are solved using these 

methods.  

For example, the NLP problem is formulated using the B&B approach, considering only 

continuous variables meanwhile the requirement of the discrete variables is eliminated, 
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resulting in what’s called the relaxed MINLP or RMINLP. Furthermore, some related MIP 

problems are solved using the OA and GBD. Both methods divide the MINLP problem into a 

fixed discrete variable NLP subproblem and a linear MIP master problem. The distinction 

between GBD and OA lies in the way they formulate the master problem MIP. Each 

subproblem is optimized to a smaller feasible set by using linearization or tangential planes in 

OA. While the master problem produced by the GBD depends on the dual representation of 

the continuous space [54]. 

 

4.2.4 Applications 

As MINLP decomposes the problem into several subproblems consisting of nonlinear 

problems and mixed-integer linear problems, it incorporates NLP and MIP to solve these 

subproblems that make it one of the most general and commonly used optimization methods. 

MINLPs have found extensive applications in a diverse range of fields, such as finance, 

engineering, management science, operations research, and the process industry. These 

problems cover a wide spectrum of domains such as process flow sheets, optimal design of 

water or gas transmission networks, and portfolio selection. Additionally, they are also used 

in chemical engineering for batch processing involving mixing, reaction, and centrifuge 

separation. Other areas that benefit from the use of MINLPs are aircraft, automobile, and 

VLSI manufacturing sectors [53]. 

4.3 Genetic Algorithm 

 Genetic Algorithm is a well-known heuristic optimization approach, based on the natural 

selection process in biology. It was proposed by Jhon Holland in the 1970s as a technique to 

crack and optimize challenging problems. An extensive study has been carried out on this 

technique and applied in different departments including computer science, engineering, 

finance, and biology. Genetic algorithms (GA) are frequently used for generating optimal and 

best solutions for optimization and search problems. They depend on biological operators like 

crossover, mutation, and selection. Because of their excellent optimization and search 

outcomes, they are the most efficient and vastly used optimization algorithms in the field of 

artificial intelligence optimization methods.  

The fundamental concept of GA involves the creation of an initial population of solutions 

represented as chromosomes. These solutions are evaluated based on a fitness function that 

measures their quality. Chromosomes with a higher fitness score have a higher probability of 

surviving and reproducing to produce offspring chromosomes. On the other hand, the 

chromosomes with lower fitness ratings are removed from the population. The parents with 

high fitness are selected to produce the next generation of offspring, leading to a gradual 

improvement in the quality of the solutions. 

The GA follows a unique reproductive mechanism in which reproduction is done by the 

surviving high-fitness level chromosomes. This process is repeated over multiple generations, 

with chromosomes continually evolving to produce better offspring. As the population size 

decreases, the chromosome with the best fitness is ultimately discovered, which is the ideal 

solution sought by the algorithm. 

The effectiveness of a genetic algorithm is largely determined by the selection of genetic 

operators used, as they play a crucial role in maintaining variety and caliber among the 

offspring. One such operator is a crossover, which involves the exchange of genetic material 
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between two potential solutions to generate new offspring with unique genetic makeup. 

Meanwhile, the mutation is another genetic operator that introduces new genetic material into 

the population by randomly altering a small portion of a candidate solution [55] [56]. 

4.3.1 Processing Flow  

Genetic algorithms are one of the best, most efficient, and high-quality optimization methods. 

The basic methodology is like Darwin’s evolution theory that the better or the more efficient 

survives, and the worse got removed. The overall idea of the GA is very easy to understand 

but the application of GA to solve optimization problems involves very advanced and 

complex methods. Instead of focusing on these methods, the scope of this study is to use 

optimization toolboxes e.g., Excel solver or MATLAB optimization toolbox that incorporate 

Genetic algorithms to solve the problem and give the best optimal solution [57]. 

The following steps describe the processing flow of GA [56] [58]. 

1. Encoding: The solution to the optimization problem is presented by the properly 

encoded chromosomes.  

2. Initialization: randomly creating a population of candidate solutions. 

3. Fitness Function: The objective function is used to derive the fitness function which is 

then scaled. The quality or fitness of each function is then determined by this fitness 

function. 

4. Selection: The selection policy is defined on the basic principle of GA i.e., the fittest 

chromosomes or the candidate solutions are selected for reproduction, therefore the best 

qualities are passed down to the next generations. Tournament selection and roulette 

wheel section are the two selection approaches. 

5. Reproduction: The offspring is generated through genetic operators such as crossover 

and mutation, by using the previously selected fitted candidate solution as parents. 

6. Termination: Stopping criteria can be defined by factors such as the maximum number 

of generations or the desired fitness level. 

7. Repeat: Repetition of the process from step 3 until the termination criteria are fulfilled. 
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Figure 4-2: Genetic Algorithm [56] 

 

4.3.2    Advantages and Disadvantages 

This approach is particularly effective in identifying optimal solutions that apply to the entire 

system. In practical situations, it can be employed to tackle extremely intricate optimization 

problems with great efficiency. Nevertheless, despite its popularity, there are certain 

drawbacks associated with this technique. These include the need to carefully select the initial 

population, its inability to perform well in identifying local optimizations, a tendency to 

converge too soon, difficulties in selecting suitable fitness functions, and the need to 

determine appropriate mutation and crossover rates, encoding schemes, and other parameters 

based on experience [59]. 

4.3.3 Applications 

Combinatorial optimization aims to achieve maximum efficiency while working within the 

constraints of limited resources and satisfying a range of additional requirements. This can 

include solving problems like bin-packing, airline crew scheduling, and vehicle routing. The 

applications of combinatorial optimization are diverse and can include forecasting, facility 

layout, scheduling, inventory control, bandwidth and channel allocation, information security, 

image and video processing, medical imaging, precision agriculture, gaming, wireless 

networking, load balancing, localization, and network design. In multi-objective 

optimization, the objective is to find the optimal solution for multiple conflicting goals within 

certain limitations. Examples of multi-objective optimization include the multiple-objective 

transportation problem and the capacitated plant location problem [59]. 
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4.4 Large Neighborhood Search Algorithm 

Neighborhood search is a type of mathematical optimization technique that is utilized to 

identify high-quality or almost-optimal solutions to optimization problems. This approach 

involves iteratively transforming a current solution into a new solution that is within its 

neighborhood. The neighborhood of a solution is defined as a set of feasible solutions that are 

similar to the original solution and can be obtained by making minor modifications to it. The 

goal of neighborhood search is to improve the quality of the solution by gradually moving 

toward the optimal solution through a series of incremental changes. 

Shaw [60] defines Large Neighborhood Search (LNS) as a metaheuristic that involves 

generating an initial solution and then through a process of repeatedly destruction and 

construction of that solution the solution is gradually refined over time. The key concept 

underlying LNS is to explore large solution neighborhoods that may contain a greater number 

of high-quality solutions than smaller ones. The neighborhood of a solution is implicitly 

defined by a destruct method that breaks down the solution into smaller components, and a 

repair method that constructs new solutions from those components. By conducting searches 

in larger neighborhoods, LNS has the potential to identify better solutions than traditional 

neighborhood search methods [61]. 

4.4.1 Algorithm 

LNS heuristic pseudo code is mentioned below [62]: 

1: input: candidate solution 𝑦 

2: 𝑦𝑏 = 𝑦; 
3: repeat 

4:      𝑦𝑡 = 𝑟(𝑑(𝑦)); 

5:      if accept (𝑦𝑡, 𝑦) then 

6:          𝑦 = 𝑦𝑡; 
7:      end if 

8:      if 𝑐(𝑦𝑡) < 𝑐(𝑦𝑏) then 

9:          𝑦𝑏 = 𝑦𝑡; 
10:      end if 

11: until the stop criterion is met 

12: return 𝑦𝑏 

Where, 

𝑦  – current solution 

𝑦𝑏  – fittest chromosome/ candidate solution 

𝑦𝑡  – temporary solution 

𝑑(𝑦)  – 𝑦 solution is destroyed by this destroy function 

𝑟(𝑑(𝑦)) –destroyed function is then subjected to repair function to reconstruct the best 

solution  
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𝑐(𝑦)  –  it defines the 𝑦𝑡 solution’s termination points or objective points.   

𝑐(𝑦𝑏)  – it defines the 𝑦𝑏 solution’s termination points or objective points.   

In this algorithm, the global best solution is initialized in step 2. To generate a new solution, 

the heuristic first applies the destroy method, which breaks down the current solution into 

smaller components. Next, the repair method is used in step 4 to construct a new solution from 

those components. The new solution is then evaluated in step 5, and in step 6 the heuristic 

decides whether to accept it as the new current solution or reject it. The accept function can be 

implemented in a variety of ways, with the simplest approach being to only accept solutions 

that improve upon the current one. In step 8, the algorithm checks whether the new solution is 

better than the previously decided best solution. If so, the best-known solution will be replaced 

with this one. In step 11 valuation of the termination condition is done. The algorithm returns 

the best optimal solutions found in step 12, either after the termination criterion is met or when 

the maximum number of iterations is reached. 

 

4.4.2 Adaptive Large Neighborhood Search 

Adaptive Large Neighborhood Search (ALNS) is an optimization algorithm that builds on the 

Large Neighborhood Search (LNS) approach by incorporating multiple neighborhoods in a 

single search, as proposed by S. Ropke and D. Pisinger [61]. ALNS enhances LNS by 

enabling the use of several destroy and repair methods within the same search. Each of these 

methods is assigned a weight that determines the frequency of its use in the search process. 

The weights are updated dynamically as the search progresses, allowing the algorithm to 

adjust to the current state of the search. By incorporating this adaptive approach, the ALNS 

algorithm can explore a broad range of neighborhoods and potentially find high-quality 

solutions that may not be detected by using a single neighborhood. 

The pseudo-code for ALNS is as follows [61]:  

1: input: candidate solution 𝑦 

2: 𝑦𝑏 = 𝑦; 𝜕− = (1, … ,1); 𝜕+ = (1, … ,1); 
3: repeat 

4:      select destroy and repair methods 𝑑 ∈  Ω− and 𝑟 ∈  Ω+ and 𝜕−  ∈  𝜕+; 
5:      𝑦𝑡 = 𝑟(𝑑(𝑦)); 

6:      if accept (𝑦𝑡, 𝑦) then 

7:          𝑦 = 𝑦𝑡; 
8:      end if 

9:      if 𝑐(𝑦𝑡) < 𝑐(𝑦𝑏) then 

10:          𝑦𝑏 = 𝑦𝑡; 
11:      end if 

12:      update 𝜕− and 𝜕+; 
13: until a stop criterion is met 

14: return 𝑦𝑏 

Where, 

Ω−and Ω+ – consist of a set of different destruction and repair methods 
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𝜕− and 𝜕+ – weightage or the priority of each method of construction and destruction are 

stored in these variables. 

4.5 MATLAB Optimization Toolbox   

The MATLAB Optimization Toolbox is a software package developed by MathWorks that 

provides optimization capabilities to MATLAB. This add-on product was first released in 

1990 and includes a library of solvers that can be accessed from within the MATLAB 

environment [63]. The Toolbox includes functions for identifying optimal parameters that 

either minimize or maximize objectives, subject to constraints or restrictions. With its rich set 

of solvers, the Optimization Toolbox is designed to address a wide range of optimization 

problems, including linear programming, quadratic programming, nonlinear optimization, 

and constrained optimization. This package offers an efficient and easy-to-use optimization 

environment for researchers and practitioners in a variety of fields. 

Optimization Toolbox has algorithms for [63]: 

1. Linear Programming 
2. Mixed-Integer Linear Programming 
3. Quadratic Programming 
4. Nonlinear Programming 
5. Linear Least Squares 
6. Nonlinear Least Squares 
7. Nonlinear Equation Solving 

8. Multi-Objective Optimization 
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Figure 4-3: MATLAB Optimization Toolbox User Interface 

4.5.1 Applications 

The MATLAB Optimization Toolbox provides solvers that can assist in finding optimal 

solutions for various types of problems, including both continuous and discrete problems. 

Users can utilize the toolbox to conduct tradeoff analyses, incorporate optimization 

techniques into algorithms and applications, and perform various design optimization tasks 

such as parameter estimation, component selection, and parameter tuning. The toolbox is also 

useful for finding optimal solutions in diverse applications like portfolio optimization, energy 

management and trading, and production planning. By utilizing this toolbox, users can create 

effective and efficient optimization solutions that can be applied to a broad range of real-

world problems [63]. 

Some applications are listed below: 

• Optimal Solutions for Engineering Problems 

a. Control system optimization  

b. Optimal design solutions  

• Evaluation of Different Parameters 
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a. Estimating the parameters related to materials.  

b. Optimal parameters finding for the ODE.  

• Finance Planning 

a. Scheduling and planning of the cash flow. 

b. Optimization of portfolio 

• Power and Energy 

a. Regulating optimal power flow 

b. Power systems Analysis 

4.6 Excel Solver 

A software tool that allows the user to achieve the required output by modifying the input to 

the model in the best possible way for the optimal optimization of the problem. Microsoft 

Excel Solver is the add-on tool for Microsoft Excel that facilitates optimization by the ‘what-

if’ loop analysis. The objective cell, defined by the formula in a single cell can be optimized 

by the solver to get the minimum or maximum possible value by subjecting this to the 

constraints and restrictions defined by different formulas in different cells. Different 

optimization tasks can be performed on the Excel sheets by this solver including demand 

supply management optimization, cash flow scheduling, and finance management [64].  

The groups of cells referred to as decision variables or variables are used in the optimization 

process. The formulas present in these decision variables are later used to calculate the values 

of the objective function and the constraints. The solver determines the values of these variables 

by taking into consideration that minimization or maximization of the objective function is 

needed while satisfying the constraints. In other words, the highest or the lowest possible value 

for the objective function is determined by the solver by altering the values of the decision 

variables. For instance, the effect on the projected profit can be estimated by the solver with 

the modification in the advertising prices.  
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Figure 4-4: Excel Solver User Interface 

 

For this project, OpenSolver was selected as the optimization tool within Microsoft Excel, 

primarily because the free version of Excel Solver has a limitation on the number of decision 

variables (restricted to 200). OpenSolver, an open-source optimization tool, was chosen as an 

alternative solution as it provides similar functionalities to Excel Solver without imposing any 

restrictions on the number of variables. The default solver used in OpenSolver is the COIN-

OR CBC (Linear Solver), which is an open-source mixed-integer program (MIP) solver. This 

solver is capable of handling optimization problems that involve both continuous and discrete 

variables, making it suitable for the project's requirements. 
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Figure 4-5: OpenSolver User Interface 
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5 Case studies  

5.1 Battery Logistics Scheduling 

In this case study, an optimized plan for the delivery of the batteries is formulated based on 

the data provided in the previous works, this work is based on the research done by the last 

year's student in [5], The data is mentioned in section 1.2.  

The purpose is to schedule a mobile battery container, that is going to be used at construction 

sites and recharged in the charging station, in such a way that the profit is maximized and the 

logistics cost is minimized. Ten construction sites are considered and three charging stations 

are in service. The pin locations and the needs of the construction sites are given in Table 5-1. 

The following assumptions are considered to simplify the mathematical formulation. 

1. All mobile battery containers are homogenous and have the same energy storage. 

2. Battery consumption is proportional to working hours on construction sites. 

3. All the chargers are fast chargers, and the charging duration is fixed (2 hours).  

 

Table 5-1: Address, GPS coordinates, and Energy requirements 

Name Address Latitude Longitude Energy 

Requirement (kWh) 

Charging Station A Floodmyrvegen 59.12 9.69 -- 

Charging Station B Hauen 59.17 9.64 -- 

Charging Station C Tømmerkaia 59.20 9.61 -- 

Construction Site 1 Gulset 59.22 9.56 500 

Construction Site 2 Gulset 59.22 9.56 250 

Construction Site 3 Herøya 59.11 9.65 500 

Construction Site 4 Herøya 59.11 9.65 250 

Construction Site 5 Vallermyrvegen 59.14 9.67 250 

Construction Site 6 Vallermyrvegen 59.14 9.67 250 

Construction Site 7 Skotfoss 59.21 9.53 150 

Construction Site 8 Skotfoss 59.21 9.53 150 

Construction Site 9 Hoppestad 59.25 9.57 500 

Construction Site 10 Hoppestad 59.25 9.57 100 

 

In each charging station, three mobile battery containers are present, to fulfill the need of the 

customers, the cost of the per unit distance (km) is assumed to be 10 NOK, while 1000 NOK 

is the fixed cost per trip. The assumed profit for 1 kWh is 5 NOK, which is five times the 
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delivery amount. The distance between the charging station and the construction site is 

calculated using the Bing maps driving distance (in kilometers), while the duration is 

calculated using the Bing maps driving duration. The vehicles used for delivery are assumed 

to be homogeneous with a capacity of 576 kWh. 

 

 

Figure 5-1: Mobile Battery Scheduling 

5.1.1 Mathematical formulation 

Erdogan in [65] introduced the mathematical formulations, that are used in this case study. 

Maximize 

 

∑ ∑ 𝑝𝑖𝑦𝑖
𝑘

𝑘∈𝐾

− ∑ ∑ 𝑐𝑖𝑗
𝑘 𝑥𝑖𝑗

𝑘

𝑘∈𝐾

− ∑ ∑ 𝑓𝑘𝑥
𝑜𝑘,𝑗
𝑘

𝑘∈𝐾

− 𝜋 ∑ 𝑣𝑖

𝑖∈𝑉𝑗∈𝑉𝐶(𝑖,𝑗)∈𝐴𝑖∈𝑉𝐶

(16) 

 

 

 

 

Subject to 
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∑ 𝑦𝑖
𝑘

𝑘∈𝐾

= 1    ∀𝑖 ∈ 𝑉𝑀, (17) 

 

∑ 𝑦𝑖
𝑘

𝑘∈𝐾

≤ 1    ∀𝑖 ∈ 𝑉𝐶\𝑉𝑀, (18) 

 

∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝑉\{𝑖}

≤ ∑ 𝑥𝑗𝑖
𝑘

𝑗∈𝑉\{𝑖}

    ∀𝑖 ∈ 𝑉𝐶 , 𝑘 ∈ 𝐾, (19) 

 

∑ 𝑥𝑝𝑞
𝑘 ≥ 𝑦𝑖

𝑘    ∀𝑖 ∈ 𝑉𝐶 , 𝑘 ∈ 𝐾, 𝑆 ⊂  𝑉: 𝑜𝑘 ∈ 𝑆, 𝑖 ∈ 𝑉\𝑆,

𝑝∈𝑆,𝑞∈𝑉\𝑆

(20) 

 

∑ 𝑥𝑝𝑞
𝑘 ≥ Ω𝑦𝑖

𝑘    ∀𝑖 ∈ 𝑉𝐶 , 𝑘 ∈ 𝐾, 𝑆 ⊂  𝑉: 𝑖 ∈ 𝑆, 𝑟𝑘 ∈ 𝑉\𝑆,

𝑝∈𝑆,𝑞∈𝑉\𝑆

(21) 

 

∑ 𝑥
𝑜𝑘,𝑗
𝑘 ≤ 1    ∀𝑘 ∈ 𝐾,

𝑗∈𝑉𝐶

(22) 

 

∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝐾

≤ 1 − 𝛽    ∀(𝑖, 𝑗) ∈ 𝐴: 𝑞𝑖 > 0 𝑎𝑛𝑑 �̂�𝑗 > 0, (23) 

 

∑ 𝑤𝑖𝑗
𝑘

𝑗∈𝑉\{𝑖}

− ∑ 𝑤𝑗𝑖
𝑘

𝑗∈𝑉\{𝑖}

= 𝑞𝑖𝑦𝑖
𝑘    ∀𝑖 ∈ 𝑉𝐶 , 𝑘 ∈ 𝐾, (24) 

 

∑ 𝑤
𝑖,𝑟𝑘
𝑘 = ∑ 𝑞𝑗𝑦𝑗

𝑘

𝑗∈𝑉𝑐

    ∀𝑘 ∈ 𝐾,

𝑖∈𝑉𝐶

(25) 

 

∑ 𝑧𝑖𝑗
𝑘

𝑗∈𝑉\{𝑖}

− ∑ 𝑧𝑗𝑖
𝑘

𝑗∈𝑉\{𝑖}

= �̂�𝑖𝑦𝑖
𝑘    ∀𝑖 ∈ 𝑉𝐶 , 𝑘 ∈ 𝐾, (26) 

 

∑ 𝑧
𝑜𝑘,𝑖
𝑘 = ∑ �̂�𝑖 𝑦𝑖

𝑘

𝑖∈𝑉𝑐

    ∀𝑘 ∈ 𝐾,

𝑖∈𝑉𝐶

(27) 

 

𝑡𝑖
𝑘 + (�̂�𝑖𝑗 + 𝑠𝑖)𝑥𝑖𝑗

𝑘 − 𝑊𝑘(1 − 𝑥𝑖𝑗
𝑘 ) ≤ 𝑡𝑗

𝑘     ∀(𝑖, 𝑗) ∈ 𝐴: 𝑗 ∈ 𝑉𝐶 , 𝑘 ∈ 𝐾, (28) 
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𝑎𝑖 ≤ 𝑡𝑖
𝑘 ≤ 𝑏𝑖 − 𝑠𝑖 + 𝑣𝑖     ∀𝑖 ∈ 𝑉𝐶 , 𝑘 ∈ 𝐾, (29) 

 

𝑣𝑖 ≤ 𝑀. Θ    ∀𝑖 ∈ 𝑉𝐶 , (30) 

 

𝑡
𝑜𝑘
𝑘 = 𝜏𝑘    ∀𝑘 ∈ 𝐾, (31) 

 

𝑡𝑖
𝑘 + (𝑠𝑖 + �̂�𝑖𝑗)𝑥

𝑖,𝑟𝑘
𝑘 ≤ 𝑏𝑟𝑘 + 𝑣𝑟𝑘 + 𝑀(1 − Ω)    ∀(𝑖, 𝑗) ∈ 𝐴: 𝑖 ∈ 𝑉𝐶 , 𝑘 ∈ 𝐾, (32) 

 

𝑤𝑖𝑗
𝑘 + 𝑧𝑖𝑗

𝑘 ≤ 𝑄𝑘𝑥𝑖𝑗
𝑘     ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, (33) 

 

∑ 𝑑𝑖𝑗𝑥𝑖𝑗
𝑘 ≤ 𝐷𝑘

(𝑖,𝑗)∈𝐴

    ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, (34) 

 

∑ �̂�𝑖𝑗𝑥𝑖𝑗
𝑘 ≤ �̂�𝑘

(𝑖,𝑗)∈𝐴

    ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, (35) 

 

∑ 𝑠𝑖𝑦𝑖
𝑘

𝑖∈𝑉𝐶

+ ∑ �̂�𝑖𝑗𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴

≤ 𝑊𝑘    ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, (36) 

 

𝑥𝑖𝑗
𝑘 ∈ {0,1}    ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, (37) 

 

𝑦𝑖
𝑘 ∈ {0,1}    ∀𝑖 ∈ 𝑉𝐶 , 𝑘 ∈ 𝐾, (38) 

 

𝑣𝑖 ≥ 0    ∀𝑖 ∈ 𝑉𝐶 , (39) 

 

𝑤𝑖𝑗
𝑘 ≥ 0    ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, (40) 

 

𝑧𝑖𝑗
𝑘 ≥ 0    ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, (41)  

 

Parameters 

 

𝑉𝐷   – the vertex to contain the charging stations 

𝑉𝐶   – the vertex to contain the construction sites 

𝑉𝑀 ⊆ 𝑉𝐶  – the set of construction sites that must be delivered 
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𝑝𝑖   – the pickup numbers from each construction site 

�̂�𝑖   – the quantity to deliver per construction site 

𝑠𝑖   – service time on each construction site 

[𝑎𝑖, 𝑏𝑖]  – service time interval of each construction site 

𝑘   – a mobile battery; 𝑘 ∈ 𝐾; 𝐾 – set of mobile batteries 

𝑜𝑘   – starting charging station; 𝑜𝑘 ∈ 𝑉𝐷 

𝜏𝑘   – the time when a mobile battery leaves the starting charging station 

𝑓𝑘   – the fixed cost of using a mobile battery container 

𝑄𝑘   – capacity of a battery 

𝐷𝑘   – distance limit  

�̂�𝑘   – driving time limit 

𝑊𝑘   – working time limit of a battery 

𝑟𝑘   – return to the charging station 

𝑑𝑖𝑗   – the distance between the construction site and charging station 𝑖 and 𝑗 

�̂�𝑖𝑗   – driving time between the construction site and charging station 𝑖 and 𝑗 

𝑐𝑖𝑗
𝑘    – the cost of the trip from the construction site and charging station 𝑖 to 𝑗 

Ω   – binary variable; 1 if the mobile battery has to be returned to the charging 

station, 0 otherwise 

Θ    – binary, variable; 1 if the time window is hard, 0 otherwise 

𝛽  – binary variable; 1 if there is a backhaul constraint, 0 otherwise 

 

 

Decision Variables 

 

𝑥𝑖𝑗
𝑘    – binary variable; 1 if mobile battery container k traverses from the 

construction site and charging station 𝑖 to 𝑗, 0 otherwise  

𝑦𝑖
𝑘   – binary variable; 1 if mobile battery k serves construction site 𝑖, 0 otherwise 

𝑤𝑖𝑗
𝑘    – pickup number of batteries k from customer 𝑖 to 𝑗 

𝑧𝑖𝑗
𝑘    – the delivery capacity of battery k from customer 𝑖 to 𝑗 

𝑡𝑖
𝑘   – time of a battery container to arrive at customer 𝑖 

𝑣𝑖   – late time of arrival at construction site 𝑖 

  

Constraints Explanation 
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Equation (16) represents the maximization of profit minus the cost of travel, the fixed cost of 

mobile battery containers, and the penalty of being late. 

Equation (17) and (18) represents the constraints that force the transportation of mobile battery 

to each construction site once and exclude construction sites that don’t need to be served. 

Equation (19) represents a weak form of the well-known flow conservation constraints. 

Equation (20) represents the connection between the construction site and the charging station 

from where the mobile battery is being transported to that site. 

Equation (21) investigates whether the mobile battery container reached back to the charging 

station or not. 

Equation (22) a battery station can be used only once per day. 

Equation (23) represents the backhaul constraints. 

Equations (24) and (25) make sure that the power requirements of construction sites are 

fulfilled by the battery containers sent to them. 

Equations (26) and (27) represent the same as equations (24) and (25) but for the charging 

scenario.  

Equation (28) ensures that the time of arrival at the customer I, plus the driving duration, plus 

the service time, minus the working time limit, is less than the arrival time at customer j. This 

ensures that the vehicle arrives at customer j within their time window. 

Equation (29) ensures that the arrival time at customer j is between the beginning of the time 

interval and the end of the time interval minus the service time plus the allowed delay time if 

it is a soft time window. This ensures that the vehicle does not arrive too early or too late and 

takes into account any flexibility in the time window. 

Equation (30) determines if the time window is soft or hard. If the difference between the end 

of the time interval and the beginning of the time interval is greater than the sum of the service 

time and the allowed delay time, the time window is considered hard. Otherwise, it is 

considered soft. 

Equations (31) and (32) define the starting time of the mobile battery and schedule its return to 

the charging station if required. 

Equation (33) checks the capacity of the battery so that it can serve according to its capacity. 

Equation (34) set the distance limit for a mobile battery 𝑘. 

Equation (35) set the driving time limit for a mobile battery 𝑘. 

Equation (36) set the working time limit for a mobile battery 𝑘. 

Equation (37) to (41) just shows the values that the variables can take. 
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5.1.1.1 Results and Interpretations 

The problem is optimized by using the open Excel solver and the results are obtained with 

LNS iterations. A net profit of 6515.27 NOK is generated after fulfilling the demands of the 

customers. The arrival and departure times of each mobile battery container are given in the 

tables. 

Table 5-2:  Work Description of Mobile Battery Station B1 

     B1 Stops: 2 Net profit: 1353,87  

Stop 
count 

Location Name Distance 
traveled 

Driving 
time 

Arrival 
time 

Departure 
time 

Profit 
collected 

0 Charging Station A 0.00 0:00   07:00  

1 Construction Site 3 7.22 0:11 07:11 14:11 2500 

2 Charging Station A 14.61 0:22 14:22    

 

Table 5-3: Work Description of Mobile Battery Station B2 

Mobile 
Battery 
Station: 

B2 Stops: 3 Net profit: 1453.19  

Stop 
count 

Location Name Distance 
traveled 

Driving 
time 

Arrival 
time 

Departure 
time 

Profit 
collected 

0 Charging Station A 0.00 0:00   07:00  

1 Construction Site 5 2.33 0:06 07:06 11:06 1250 

2 Construction Site 6 4.66 0:12 11:12 14:36 1250 

3 Charging Station A 7.31 0:17 15:05    

 

Table 5-4: Work Description of Mobile Battery Station B3 

Mobile 
Battery 
Station: 

B3 Stops: 2 Net profit: 103.87  

Stop 
count 

Location Name Distance 
traveled 

Driving time Arrival 
time 

Departure 
time 

Profit 
collected 

0 Charging Station A 0.00 0:00   07:00  

1 Construction Site 4 7.22 0:11 07:11 10:41 1250 

2 Charging Station A 14.61 0:22 10:52    
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Table 5-5: Work Description of Mobile Battery Station B4 

Mobile 
Battery 
Station: 

B4 Stops: 3 Net profit: 478.67  

Stop 
count 

Location Name Distance 
traveled 

Driving 
time 

Arrival 
time 

Departure 
time 

Profit 
collected 

0 Charging Station B 0.00 0:00   07:00  

1 Construction Site 10 10.81 0:19 7:19 10:49 500 

2 Construction Site 2 17.87 0:32 11:02 14:32 1250 

3 Charging Station B 27.13 0:49 14:49    

 

Table 5-6: Work Description of Mobile Battery Station B7 

Mobile 
Battery 
Station: 

B7 Stops: 2 Net profit: 1394.00  

Stop 
count 

Location Name Distance 
traveled 

Driving 
time 

Arrival 
time 

Departure 
time 

Profit 
collected 

0 Charging Station C 0.00 0:00   07:00  

1 Construction Site 1 5.28 0:10 07:10 14:10 2500 

2 Charging Station C 10.60 0:21 14:21    

 

Table 5-7: Work Description of Mobile Battery Station B8 

Mobile 
Battery 
Station: 

B8 Stops: 3 Net profit: 369.00  

Stop 
count 

Location Name Distance 
traveled 

Driving 
time 

Arrival 
time 

Departure 
time 

Profit 
collected 

0 Charging Station C 0.00 0:00   07:00  

1 Construction Site 7 6.53 0:11 07:11 09:11 750 

2 Construction Site 8 10.53 0:18 09:18 14:00 750 

3 Charging Station C 16.10 0:29 14:11    
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Table 5-8: Work Description of Mobile Battery Station B9 

Mobile 
Battery 
Station: 

B9 Stops: 2 Net profit: 1362.67  

Stop 
count 

Location Name Distance 
traveled 

Driving 
time 

Arrival 
time 

Departure 
time 

Profit 
collected 

0 Charging Station C 0.00 0:00   07:00  

1 Construction Site 9 6.89 0:13 07:13 14:13 2500 

2 Charging Station C 13.73 0:26 14:26     

 

For this case study, the working hours between 7:00 AM to 3:00 PM have been considered 

typical working hours. Each site has its specific time window for service and requirements. 

The start time for service is called "Time Window Start," and the end time is called "Time 

Window End." The transportation of mobile battery containers starts from their respective 

charging stations at 7:00 AM, serves the customers within their respective time windows, and 

returns to their charging stations after completing the service. The tables mentioned, i.e., 

Table 5-2 to Table 5-10, provide the driving time for different routes, which have been 

calculated using Bing's driving time and distance computation method. The average speed of 

the vehicle considered for the calculation is assumed to be 70 kilometers per hour. 

To summarize the information provided in Table 5-7, Mobile Battery B8 departs from 

Charging Station C at 07:00 and arrives at construction site 7 at 07:11 after driving for 11 

minutes and covering 6.53 km. It provides a service at construction site 7 for 2 hours and 

departs at 09:11. Then, it arrives at construction site 8 at 09:18. It serves construction site 8 

for 5 hours and departs at 14:00. The mobile battery returns to Charging Station C after 

driving for 11 minutes and covering 6.57 km. The total distance traveled by Mobile Battery 

B8 is 16.10 km, and the total driving time is 29 minutes. The profit earned from construction 

site 7 is NOK 750, and the profit earned from construction site 8 is also NOK 750. Therefore, 

the total profit collected is NOK 1500. To calculate the net profit, the fixed cost of NOK 

1000 and the cost per unit distance of NOK 10 multiplied by the total distance traveled (16.10 

km) are subtracted from the profit collected. Hence, the net profit earned by Mobile Battery 

B8 is NOK 339. 

5.2 Battery Charging Scheduling Optimization 

The Departure and arrival time of the mobile battery containers from the charging stations, 

determined in the previous case study are used to schedule the charging of batteries in such a 

way that the charging expenses are minimized according to the different electricity rates at 

different times, i.e., try to minimize the charging during peak hours and also try to avoid the 

maximum loading penalty. Tables 5-9 to 5-11 present the departure and arrival times of 

mobile batteries at the respective charging stations 
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Table 5-9: Departure and Arrival Time of Batteries on Charging Station A 

 Departure Time Arrival Time 

Mobile Battery B1 7:00 14:22 

Mobile Battery B2 7:00 15:05 

Mobile Battery B3 7:00 10:52 

 

Table 5-10: Departure and Arrival Time of Batteries on Charging Station B 

 Departure Time Arrival Time 

Mobile Battery B4 7:00 14:49 

Mobile Battery B5 -- -- 

Mobile Battery B6 -- -- 

 

Table 5-11: Departure and Arrival Time of Batteries on Charging Station C 

 Departure Time Arrival Time 

Mobile Battery B7 7:00 14:21 

Mobile Battery B8 7:00 14:11 

Mobile Battery B9 7:00 14:26 

 

Approximated Day-ahead electricity prices can be obtained from the Nordpool website. The 

charging cost is calculated by the electricity cost in the hour of charging some assumptions 

are considered while formulating this optimizing model.  

1. The chargers are fast chargers, and the complete charging of batteries can be done in 2 

hours. 

2. The charging of batteries is directly proportional to the time consumed rather than 

exponential.  

3. Losses in the charging process are neglected. 

5.2.1  Mathematical formulation  

 

Minimize   

 𝑃𝑇 =  ∑ 𝑃𝐵𝑘

𝑛

𝑘=1

      (42) 

Whereas the  



 5 Case studies 

53 

𝑃𝐵𝑘 = 𝑅 ∑(𝑋𝑇𝑖𝑘𝐶𝑇𝑖)

𝑛

𝑖=1

(43) 

Subject to  

𝑋𝑇𝑖𝑘 ∈ {0,1}    ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, (44) 

∑ 𝑋𝑇𝑖𝑘 = 2

𝑛

𝑇𝑖=1

(45) 

∑ 𝑋𝑇𝑖𝑘 = 2

𝑛

𝑘=1

(46) 

𝑋𝑇𝑖𝑘 = 0  ∀ 𝑇𝑖 ∈  𝑇𝑤 (47) 

 

Parameters  

𝑘   – a mobile battery; 𝑘 ∈ 𝐾; 𝐾 – set of mobile batteries 

𝑇𝑖 – represent different time intervals, the range is T1 to T24, representing the     

hours 00:00 – 01:00 to 23:00 – 00:00 respectively. 

𝑅   – maximum capacity of the mobile battery container 

𝑃𝐵𝑘   – cost for charging the mobile battery k 

𝑃𝑇   – the cost of charging all the batteries at a single charging station. 

𝑇𝑤  – represents the time window in which the batteries serve the construction site, 

during this it’s not possible to charge them. 

 

Decision Variable  

𝑋𝑇𝑖𝑘   – The time interval in which the mobile battery k charges, is a binary variable. 

 

Constraints Explanation 

Equation (42) represents the objective function, which is to minimize the charging cost of all 

the batteries at the charging station.   

Equation (43) calculates the charging cost of a single mobile battery k, according to the time 

interval in which it is charged. 

Equation (44) makes sure that the decision variable is binary, it also represents the time 

interval in which the battery is charged, if it's 1 the battery is charged in that interval 

otherwise not. 

Equation (45) defines that the time taken for charging a mobile battery k must be 2 hours 

Equation (46) restricts the number of batteries to be charged at the same time, to meet the 

capacity of the charging station as well as to avoid the peak loading penalty.  

Equation (47) defines that the time interval in which the mobile battery is not on the station 

must be included for the charging time intervals. 
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5.2.2 Results and interpretation  

The case study is focused on optimizing the charging scheduling on charging station A and 

charging Station C. Tables 5-12 and 5-13 present the comparison of the optimized schedule 

and non-optimized schedule. All the prices are in NOK and the time intervals are presented in 

such a way that T1 is the time 00:00 - 01:00, T2 is the time 01:00 – 02:00, and so on.   

 

Table 5-12: Charging Station A Scheduling 

 Optimized Schedule Non-Optimized Schedule 

 Time Interval of 

charging 

Cost of Charging Time Interval of 

charging 

Cost of Charging 

Battery B1 T2-T3 1259.79264 T21-T22 1559.541424 

Battery B2 T16-T17 1008.69696 T20-T21 1587.18528 

Battery B3 T14-T15 826.77888 T20, T22 1544.10624 

Total Cost  3095.26848  4690.80576 

  

 

Table 5-13: Charging Station C Scheduling 

 Optimized Schedule Non-Optimized Schedule 

 Time Interval of 

charging 

Cost of Charging Time Interval of 

charging 

Cost of Charging 

Battery B1 T16-T17 1008.69696 T21-T22 1559.541424 

Battery B2 T15-T16 862.1856 T16-T17 1008.69696 

Battery B3 T15 ,T17 948.83328 T1, T2 1319.37984 

Total Cost  2819.71584  3887.59104 

 

It is evident from both tables that significant charging expenses can be cut by optimal charging 

scheduling, where the charging is carried out during the time intervals where the electricity 

cost is comparatively low i.e., off-peak durations, meanwhile taking into account all the 

necessary constraints. For better visualization, the data is presented in the graphs below. 
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Figure 5-2: Comparison of Optimized and Non-optimized Charging Schedule at A 

 

 

Figure 5-3: Comparison of Optimized and Non-optimized Charging Schedule at C 

 

In the graphs above the tariff of the electricity is represented by black dotted lines and the 

values are in MWh for better visualization, and it is observed in both graphs that the charging 

of batteries in optimal schedule is carried out during off-peak hours, meanwhile taking into 

account the time window of service. The non-optimized charge plan that is depicted in the 

graphs is the worst-case scenario that can be possible. But with less workload the probability 

of having the worst scenario in the case of charging stations A and C is minimal. And the 

charging plan can be formulated without the use of the algorithm. But if we consider that in the 

future where more focus is on zero emissions and carbon emissions the demand for such 
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projects increases and hence the number of electrified zero emission construction sites would 

increase also with the demand for more battery containers. There in that situation, the chances 

of charging batteries during the off-peak hours would be less and the planning through model 

would only be the best solution. To demonstrate that a special test case is formulated with ten 

batteries to be charged and the charging scheduling is done with the above-mentioned model, 

and the results are displayed in the table below. 

Table 5-14: Test Case Charging Station Scheduling 

 Optimized 

Schedule 

Non-Optimized 

Schedule 

 Cost of Charging Cost of Charging 

Battery B1 1172.32704 1416.63744 

Battery B2 1034.72064 1442.45952 

Battery B3 1259.79264 1408.82688 

Battery B4 956.22912 1499.17248 

Battery B5 1034.72064 1401.02208 

Battery B6 1196.23104 1346.2272 

Battery B7 1050.27264 1641.024 

Battery B8 1188.90432 1456.57152 

Battery B9 886.64256 1481.43168 

Battery B10 1042.8768 1658.55744 

Total Cost 10822.71744 14751.93024 

 



 5 Case studies 

57 

 

Figure 5-4: Optimized and non-optimized charging cost comparison 

 

It is observed from the results that the charging cost is reduced for every charging cycle by 

3929.213 NOK by implementing the optimal charging schedule. The optimized model 

presents the best possible way to charge the batteries with less expense. While the non-

optimized model presents the worst scenario. 
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6 Simulations 
Now as described in the previous section with the increase in workload it's getting harder to 

charge batteries only in off-peak time, the other ways to ease the charging are using solar 

energy or the low voltage residential connections or the normal electric vehicles chargers to 

charge the mobile battery containers. In that case, the biggest challenge that arrives is charging 

through the low voltages whether they are from solar energy or the low voltage grid. The 

solution to such a problem based on the theory presented in Section 2.6 is formulated and 

simulated in MATLAB Simulink. The simulation model shown in Figure 6-1 comprises a 

battery model linked to the DC side and a three-phase source emulating a power grid connected 

to the AC side, As research is focused on the power electronics in the battery charging low 

voltage grid is used for the simulation. The simulations are done in such a way that the power 

is drawn from the grid to charge batteries and then when it is required the power can be injected 

back into the grid. Whereas the grid here can be replaced by PV as source and construction 

machines as load. A cascaded full-bridge buck-boost converter and a three-phase full-bridge 

DC/AC converter utilizing IGBTs as switches are employed to interface these systems. Table 

6-1 lists the simulation parameters, which were selected to mimic those of the physical three-

phase bidirectional converter suggested in the research article [66].  

  

Table 6-1: Simulation Parameters 

Battery Voltage  800 

R1 [Ω] 6 

C1[µF] 80 

L[mH] 1.7 

R2[Ω] 0.1 

C2[µF] 100 

PWM (switching frequency)[kHz] 10 

SPWM (switching frequency)[kHz] 4 

Grid source resistance [Ω] 0.893 

Grid source inductance[mH] 16.58 

Grid frequency [Hz] 50 

Phase-to-phase voltage [V] 400 

 

The grid parameters are derived from an actual power grid, and the phase-to-phase voltage and 

grid frequency are defined in the three-phase source block, while the nominal battery voltage 

is specified in the battery model. Additionally, passive component values are assigned for each 

of the components. 
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Figure 6-1: System Configuration 

 

Battery Charging simulation 

During a battery charging simulation, energy flows from the power grid to the battery via a 

DC/AC converter, which serves as a rectifier. The resulting output voltage waveform, depicted 

in the top diagram of Figure 6-2. 

 

Figure 6-2: Three-phase rectifier input and output voltages 

 

One period contains six pulses over a 20ms period, corresponding to the theoretical output 

voltage waveform shown in Figure 6-2  [66]. 

Figure 6-3 illustrates the diode voltages across the IGBTs' diodes that are not parallel in S2, 

S4, and S6 during battery charging or boost mode, revealing a phase shift of 120° between the 

diode voltages.  

 

Figure 6-3: S6, S4 and S2 diode switches voltages 

The peaks of the sinusoidal sine waves were truncated due to the realistic distribution grid 

parameters listed in Table 6-1. 
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Figure 6-4 shows the input and output voltages of a DC/DC converter stage in boost mode, as 

determined by the simulation model.  

 

Figure 6-4: DC/DC converter input and output voltages (boost mode) 

 

The top diagram depicts the input voltage of the DC/DC converter stage (which is the output 

of the AC/DC converter operating as a rectifier), while the lower diagram depicts the output 

voltage that charges the battery.  

During the boost mode, the battery is charging, and the state-of-charge percentage increases 

over time, as shown in Figure 6-5.  

 

 

Figure 6-5: Battery State of Charge in Boost Mode 

 

Battery Discharging Simulation. 

In the battery discharge mode, energy flows from the battery to the machines or back to the 

grid. The first converter used in this mode is the DC/DC converter stage in buck operation 

mode with a full bridge topology, similar to the boost mode.  

Input and output voltages are illustrated in Figure 6-6, where the top diagram represents the 

output voltage of the DC/DC converter stage, fed to the inverter, and the lower diagram shows 

the input of the DC/DC converter stage supplied from the battery  [66].  

 

Figure 6-6: DC/DC converter input and output voltage (Buck mode) 
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As the battery discharges in the buck mode, the state of charge decreases over time, as shown 

in Figure 6-7.  

 

Figure 6-7: battery State of charge while discharging 

The next stage is the DC to AC-conversion, which is achieved using a DC/AC power converter 

as an inverter. The phase-to-phase voltage and line current waveform are presented in Figure 

6-8, obtained by the simulation model.  

 

Figure 6-8: Line current and phase-to-phase voltage waveforms of inverter 

The voltage waveform in this chapter exhibits similar characteristics to the previous chapter, 

including ripples that are influenced by the elements of the simulation model. The current, 

however, is not zero as the inverter is not in idle operation. To evaluate the Total Harmonic 

Distortion (THD) of the current waveform, a THDI factor of 1.4% is considered acceptable. 

This value is obtained by utilizing the THD block from the Simulink library, which analyzes 

the harmonics in the current waveform of a single line with a sample time of 2 µs  [66]. 
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7 Results and Discussion  
 

In this thesis the real-world problem is simplified and divided into two parts, first is focused 

on logistics and finding out the time window in which the batteries are delivered to the 

construction sites from charging stations and the second one is to schedule the charging of 

batteries. The longitude and latitude of charging stations and construction sites, the distance 

between them, time of operation, driving time, delivery quantities, and the profit earned all are 

calculated. Three charging stations are considered with three identical batteries on each. Fixed 

cost and the expenses per unit distance of transportation of batteries are considered. 

After conducting several iterations of the large-neighborhood search algorithm, the total net 

profit was calculated by fulfilling all construction site demands. The algorithm also determined 

the net profit for each vehicle from each charging station, taking into account individual profit 

collections, distance traveled, driving time, arrival time, and departure time. The algorithm 

optimized the transportation of batteries based on construction site demands. This optimal 

allocation of vehicles maximized efficiency. The algorithm used in this case study can also be 

applied to pickup and delivery scenarios, although it was not specifically explored due to time 

limitations. If required, the algorithm can handle the pickup and delivery of detachable mobile 

battery containers, ensuring efficient utilization of resources. The case study considered typical 

working hours, with all work starting at a predetermined time in the morning and ending at a 

fixed time in the afternoon. Each construction site had a specified time window for their work, 

indicated by "Time Window Start" and "Time Window End." The mobile battery containers 

departed from their respective charging stations at the designated time, served customers within 

their time windows, and returned to the station at the end of their service. Visiting all 

construction sites was a hard constraint that had to be met. A total of nine mobile batteries were 

available, with three in each charging station. However, the algorithm scheduled only seven 

vehicles, as the remaining vehicles were not needed to meet all the requests from customers 

efficiently.  

Once the time windows are determined, the charging of batteries is planned in the best optimal 

way to reduce the expenses, day-ahead prices of the electricity are considered and the battery 

charging is planned on charging station A and charging station C, charging costs are calculated 

and compared with the worst case non optimized scenarios. The time windows and the charger's 

capacity as well as the maximum number of batteries that can be charged at the same time can 

be inserted in the algorithm to find the optimized plan by fulfilling all the constraints. But as 

there are only three batteries on each station so the probability of ending up in the worst non-

optimized scenario is less to demonstrate the capacity of the algorithm a test charging station 

is considered with ten batteries to be planned for the charging and compared the charging costs. 

Comparable differences can be seen in the results, indicating the capability of the algorithm to 

derive the optimal way to cut charging expenses. 

Alternative ways of charging can be implemented, and some changes in charging stations are 

needed, which are discussed in the literature review section, and later in the simulation chapter 

proposed changes are simulated to show the possibility of charging batteries through solar 

power or through the low voltage grid. In the future with the increase of construction sites using 

the electrified solution for zero-emission, it will become more difficult to limit the charging 

planning only in off-peak times, along with avoiding the peak loadings. To overcome this 

alternative charging ways came into the light. By implementation of this, the mobile batteries 
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can be charged at low voltage sites, through PV, or even through normal EV chargers. Even 

the power can be transmitted back to the grid to avoid the frequency drop in the situation of 

load and generation imbalances. 
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8 Conclusions  

The fossil-free construction site aims to reduce carbon emissions by utilizing bio-fuel 

construction equipment. However, this types of equipment still produce other pollutants such 

as particulate matter and nitrogen oxide. It is important to note that being fossil-free does not 

necessarily mean being completely emissions-free. In Norway, there is an ongoing trial project 

to evaluate the feasibility of providing electric energy to building activities so that construction 

sites can be emission-free. In areas where access to the power grid is limited or unavailable, 

this solution is challenging. This project aims to address this challenge by using mobile battery 

containers. These batteries are charged at a location with sufficient grid capacity and then 

transported to construction sites that utilize battery-powered construction machines. This 

contributes to reducing reliance on fossil fuels and promoting a more sustainable and 

environmentally friendly construction industry. 

The previous studies on optimal energy management and scheduling problems have explored 

different optimization techniques such as mixed-integer linear programming (MILP), mixed-

integer non-linear programming (MINLP), genetic algorithms, and large neighborhood search 

algorithms. These techniques have been implemented using the MATLAB optimization 

toolbox and the Microsoft Excel solver.  It has been observed that commercial MILP software 

products generally offer better speed and reliability compared to noncommercial counterparts. 

However, noncommercial MILP software can be a viable option for customers with budget 

constraints, providing a cost-effective solution. Open-source software tools offer advantages 

in terms of expandability and adaptability for specific applications, as they are not limited by 

proprietary user interfaces. 

This thesis proposes a general mobile battery charging scheduling problem, which involves 

optimizing the schedule for charging batteries in mobile containers and delivering them to the 

appropriate construction sites. The problem is formulated as a mixed-integer linear 

programming (MILP) model, considering various objective functions, constraints, and 

important parameters. The Microsoft Excel solver is utilized to solve the optimization model 

and find the optimal solution. By employing this mobile battery charging scheduling approach, 

the project aims to enhance the efficiency and effectiveness of utilizing battery-powered 

construction machines in areas with limited grid access.  

Finally, the last objective is achieved by proposing and simulating the power electronics 

involved in the charging platforms. This topology can be used to charge batteries through any 

voltage level of the grid, through PV sources, or even by EV chargers. The second advantage 

of this bidirectional topology is the possibility of transmitting power back to the grid.  

Although the outcomes of the conducted cases were satisfactory, time limitations prevented the 

inclusion of additional features and constraints that could have further improved the results. 

Future work in this field could explore more complex study scenarios without limitations on 

variables, allowing for a more comprehensive analysis. Potential areas for further investigation 

include incorporating partial charging and discharging of batteries, considering fuel usage and 

CO2 emissions from bio-fuel construction equipment, and developing algorithms that can 

provide alternative options when certain limitations cannot be met. Moreover, combining the 

algorithm with the outcome of the alternative charging ways can enhance the possibility of 

getting more optimized plans for charging. By expanding the scope of the research, addressing 
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these aspects, and overcoming time constraints, future studies can provide a more refined and 

comprehensive understanding of mobile battery charging scheduling problems and offer 

valuable insights for sustainable construction site operations. 
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Task background:   
A pilot project in Norway is currently being examined to give electric energy to 
construction sites in places where connection to the power grid is not available. The project 
focuses on zero-emission construction sites of Skagerak Energi. The main idea is charging 
batteries in a location where the grid has adequate capacity and then moving the batteries 
from the charging station to relevant construction sites that use battery-powered 
construction machines. A long battery lifetime is critical to achieving the economic viability 
in this grid infrastructure. However, battery degradation is a complex electrochemical 
process, which includes many electrochemical side reactions. 

Task description:   

Accurate predictions of the remaining battery lifetime at different operating conditions are 
essential for the efficient operation at the building sites. What is the optimal scheduling 
time for delivery and collect the batteries at the building site in cost-effective analysis. 

Progress: 

• Literature Survey 

• Build a simulation model in Python/Simulink 
 

Research question 

• Do finding the sweet spot in charging the batteries extend their useful life? 

• What is the optimal number of batteries to charge according to the need? 

• Are there other economical advantages in not charging the batteries at 100%  

• Estimate the economical benefit of reduced charging time 
 

Analytical: 

• Analyse the findings 

Build an economic model based on the battery simulation 

• If data is available, use the analysed findings to build a data-driven model 

Student category: EPE 

Is the task suitable for online students (not present at the campus)? Yes 

Supervision: 

As a general rule, the student is entitled to 15-20 hours of supervision. This includes 
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