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Summary:  

Operator interface display images, often referred to as HMI, contains large amounts of 

information that can be valuable to obtain. If access to the source code or design files are 

limited, modern frameworks for object detection and text extraction can be used to 

obtain this information directly from images. However, obtaining data and training such 

modern solutions is time consuming, and require a lot of manual work to get started. In 

this project, traditional computer vision methods have been used to extract objects from 

images, separated the objects into training data and transferred learned a ResNet model 

to do multi-label image classification of individual objects. This model, in combination 

with methods such as sliding window, pyramid scaling and NMS gave the foundation 

for creating a semi-automated annotation tool that generates training data for more 

optimized object detection methods, in this case YOLO object detector. The semi-

automated annotation tool provides a starting point for engineers to do manual touchup 

on the training data, and finally export state of the art training images for YOLO. The 

YOLO model is transfer learned on the annotated data, achieving a satisfying mAP50 

score of 95.5%. A third-party library for OCR is used to obtain text information from 

preprocessed images, postprocessing the text by filtering tag data only, and an algorithm 

is used to link objects and tags together. The final solution is hosted in a software 

developed to focus on optimized user interaction, resulting in a excel formatted analysis 

document available for export to the end user. 
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Nomenclature 
ANN – Artificial Neural Networks 
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HMI – Human Machine Interface 
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IIA – Industrial IT and Automation 

IM – Industry Master 

IoU – Intersection over Unions 

LAN – Local Area Network 

MA – Mosaic Augmentation 

mAP – Mean Average Precision 

ML – Machine Learning 

NMS – Non-Maximum Suppresjon 

OCR – Optical Character Recognition 
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OpenCV – Open-Source Computer Vision 

OOADP – Object-Oriented Analysis, Design and Programming 

PC – Personal Computer 

PCS – Process Control System 

PS – Power Supply 

RAM – Random Access Memory  

R-CNN – Region-based Convolutional Neural Network 

RoI – Region of Interest 

RPi – Raspberry Pi 

SCD – System Control Diagram 

SSD – Single Shot Detector 

SSD – Solid State Drive (Hard Drive) 

SSD – System Sequence Diagram 

SSR – Sum of Squared Residuals 

SVG – Scalable Vector Graphics 

SVM – Support Vector Machine 

UCD – Use Case Diagram 

UI – User Interface 

USN – University of South-Eastern Norway 

VBA – Visual Basic for Application 

WSL – Windows Subsystem for Linux 

YOLO – You Only Look Once 
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1 Introduction 
This chapter will give an introduction to the project, explaining the background, objectives, 

methods for development, assumptions and outline of the report. 

1.1 Project background 

Image classification, object detection and Computer Vision (CV) technology are all hot topics 

in a modernizing society. Complex image recognition models that can detect large quantity of 

different objects in pictures and real-time video are developed and commercially available for 

most day-to-day applications. A lot of industrial applications also uses this technology for i.e., 

analyzing fertilizers [1], material fibers, object structure [2] and even P&ID document analysis 

(discussed in more detail in chapter 2). However, there are still applications that remain 

untouched or unthought of, and a lot of fields where these technologies would have huge 

benefits.  

Analyzing operator interface images using CV and Machine Learning (ML) is one of these 

fields that have been shown little interest by the research community. Creating an application 

for object detection in operator interface images is quite interesting because of the degree of 

complexity these images contain, and the number of applications this analysis may be 

beneficial for. Complexity variations such as color differences, small symbols, limited symbol 

features, information text, tags, status, values, and other information makes object detection 

challenging and make them well suited for research within the field of machine learning 

analysis. If the gap in research and application development within this field is due to lack of 

interest, no uses cases for it or because no one have thought about it yet, is not known. However, 

there is now an interest and use case for operator interface images object detection and 

information extraction software. 

The background for this project is the time consumption and complexity of migration projects 

related to Process Control System (PCS). Migrating from one PCS to another will normally 

require hardware change, logic configuration and operator graphics design. To get a clear 

estimate on these type of project costs, engineers analyze the hardware build, existing and 

additional logic, and complexity of operator graphics. Tools for analyzing hardware, logic and 

graphics exist and is easy to perform if access to the old system documentation and source code 

is available. Doing analysis within these areas is unquestionably harder if the only available 

documentation is paper formatted, image snippets, or pdf´s of the existing configurations and 

graphics. If such a case should occur, an engineer with skills matching the current field would 

sit down and manually do this analysis and estimate cost. This is where machine learning and 

object detection comes into play for improving the efficiency and accuracy of these estimates. 

The rest of this project will revolve around operator graphics analysis, not logic configuration. 

This is because operator graphics contain a larger set of undefined variables, while logic 

configuration still is standardized in some way. 

Emerson´s Distributed Control System (DCS) DeltaV, introduces a new modernized fully 

integrated operator graphics interface framework called DeltaV Live in version 14. Even 

though the old fully integrated version DeltaV Operate is still supported, DeltaV Live [3] is the 

new state-of-the-art modern framework to use and has imposed a high demand marked of 

migrating old systems to the new system. When doing a migration project from an old system 
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or external vendor system, thorough analysis of existing graphics is a crucial first step. This is 

important for identify objects and information within each graphic image, calculating the 

complexity of the graphics and further calculate cost of such a project. The purpose of this 

master thesis is therefore to investigate development of tools, utilizing machine learning and 

CV technology to detect objects and do complexity analysis from images. This project thesis 

could also serve as a foundation for digitally migrating systems directly without the need for 

any source code of old systems and provide information that can be used to analyze and 

recommend improvements to existing design.  

The new and exciting challenge in this project compared to previous work is the foundation of 

creating image object detection models for industrial purposes. Not only looking at 

standardized objects such as P&ID symbols, but objects with color variations and various 

degrees of complexity. How to handle noise such as process lines and different text data, read 

tags and corelate them to objects. Also looking into how good a transfer learned pretrained 

model can perform on totally new data, and how to use these models in object detection on 

large noisy operator interface images.  

1.2 Objectives 

There are 7 main objectives of this project listed as follows: 

1. How to obtain valuable data for training, validation, and testing. 

2. Trying a simple image classifier to test accuracy of pretrained networks transfer 

learned with training data for operator interface graphic components. 

3. Creating a multi-label classification model for detecting multiple objects within an 

image. 

4. Using the multi-label classification model in combination with traditional CV 

methods such as sliding window, pyramid image scaling and Non-maximum 

Suppression (NMS). Resulting in a multi-class object detector. 

5. Developing a tool utilizing the multi-class object detector to annotate training data for 

a more sophisticated object detector. 

6. Creating a one-stage detection method for object detection and compare it to objective 

4. 

7. Creating a hosting application for the one-stage detector, tag extraction with optical 

character recognition (OCR), linking objects and tags, and exporting the analysis in a 

user readable format. 

These objectives are more detailed and specific than the “interim goals” from the task 

description in Appendix A which was the basis for the thesis and is fulfilled in depth during 

this project. The most important step for all these objectives is the collection of valuable data 

for training, validation, and testing. This will be the basis for training models and to annotate 

images for the one-stage detector approach. 

1.3 Methods for Development 

One of the most attractive fields within Artificial Intelligence (AI) and ML these days is 

Deep Learning (DL). The art of utilizing DL Neural Networks (DLNN) to recognize patterns 

and obtain features of objects to learn about real world applications and make predictions. DL 
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will be the main approach and therefore the main machine learning method used in this 

project for developing object detection software. DL is an ideal approach for solving this kind 

of problem, as it has the ability to learn for itself what is the key elements and features that 

defines different objects.  

Each of the above objectives will be handled separately in different development 

environments. For obtaining data, a CV method for snipping objects from existing operator 

interface images will be used in combination with an Emerson developed tool. For image 

classification, some of the obtained training data will be used to test how good classification 

models can get based on the limited data available for retraining. For multi-label 

classification, a large quantity of data obtained in the first objective in combination with 

different data preparation methods will be used to train existing models using transfer 

learning. Then, a separate program for sliding window pyramid scale NMS will use the 

trained multi-label classification model to detect objects in a full-scale operator interface 

image. This will hopefully result in a good multi-class object detector, detecting objects in a 

cluttered image containing a lot of information. This approach can hopefully also be used as 

bases for a one-stage or two-stage detector training data annotator. A new program will be 

developed for adjusting the previously detected object annotations and adding more objects 

(if applicable) to the annotation document. This annotation will be used to train the one-stage 

detection method, that hopefully will perform even better and detect more objects with better 

precision. The final result should be a software where a user can upload operator graphic 

images in picture format and get an analysis back in report format.  

1.4 Assumptions 

It is expected that the reader has general knowledge about the following subjects:  

- AI, CV, ML, and some of its subfields.  

- General structure of Artificial Neural Networks (ANN) including but not limited to 

neurons, weights, biases, activation functions and back-propagation. The foundational 

knowledge before starting this project is according to the IIA1420 curriculum, 

Machine Learning and Sensor Technology course held autumn 2021.  

- General knowledge about computers and computer systems.  

- Familiar with industry related objects such as pumps, motors, different valves, so on 

and so forth.  

- What an operator interface image is, how it differs from human machine interface 

(HMI), and that these two terms “operator interface” and HMI is used interchangeably 

in the industry. In this report the “more correct” term operator interface image or 

operator interface graphics is used as they often are more complex than HMI and the 

term is more generalized than HMI.  

- Some general knowledge about software development and terminology is also 

expected. 

Note: There is no clear professional language or decisions when to use the different terms 

operator interface image, operator graphics, HMI etc. This can make things confusing. The 

important thing to remember is that they are all graphical user interfaces (GUI´s) that the 

operator uses in their daily work for controlling and monitoring a process plant or factory. 

The tools developed in this project will be able to detect objects in images. Whether it is 
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images from HMI or operator interface graphics does not matter if the models are trained to 

detect objects for those images. 

To the best of my knowledge, there has not been done any similar research with regards to 

object detection in operator interface images. This is a new approach where the usage of deep 

learning neural networks will be trained for object detection to further extract viable 

information from pictures. However, as mentioned, there has been extensive research within 

the field of digitizing P&ID and other industrial related documentation, but the application 

researched in this project have a huge difference in complexity challenges. See chapter 2 

Literature review for more information about previous work and research. 

1.5 Outline of report 

The report is structured in a way that is best suited for the reader to get a complete 

understanding of the project, and a good flow while reading. However, it is a large project, 

making it a large report. It is structured based on the IMRaD model (Introduction, Method, 

Result and Discussion), with additional chapters such as Literature Review, System 

Description and a Conclusion. The Literature Review is necessary to get familiar with 

previous work in this field. The System Description provides a description of existing 

systems, developed system during this project and development system used to execute the 

project and derive results. The Conclusion chapter gives a good short overview of all the 

results. Short overview of each chapter and what they contain: 

1. Introduction – Intro to the project, background, and report structure. 

2. Literature Review – Overview of related research within similar fields. 

3. System Description – Existing system and system to be developed. 

4. Methods – Deep dive into theory and analysis of approaches used to derive Results. 

5. Result – Step by step execution and project results. 

6. Discussion – Discussing results, reasoning, and improvements to be made. 

7. Conclusion – Final conclusion of the project. 
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2 Literature review 
Limited to no research was found withing the field of object detection in operator interface 

images. The literature study will therefore revolve around object detection and digitization of 

P&ID’s, documentation, and tiny object detection in satellite or aerial photos, also called 

Earth Vision research. After extensive literature research within the field of object detection 

in large images and documentation within industry, a few interesting papers was selected as 

inspiration to this project.  

Shubham Paliwal, Monika Sharma and Lovekesh Vig wrote a paper in 2021 explaining 

recognition of line-drawn symbols in P&ID´s using only one typical for each symbol for 

training. The method used in their research uses sampled pixels sequentially along different 

contour boundaries in the image. The sampled points are used to construct a graph that 

captures the structure of the contours. This graph is then fed into a Dynamic Graph 

Convolutional Neural Network (DGCNN) that is trained to classify symbol classes. To make 

the classification network more robust, they append embeddings from the ResNet-34 

network. Instead of using the standard cross-entropy loss combined with a softmax layer used 

in most classification tasks, they use an Arcface loss function that has a higher discrimination 

power on the classifier. This is used to prevent similar looking objects to be misclassified. 

This Arcface loss function is interesting and can be applicable in this project thesis. This is 

truly a genius approach as it only needs one sample of each symbol for training. Thus, 

preventing the large quantity of annotation work prior to training, as would be the case for 

fully supervised techniques and other deep learning approaches. The result of this research is 

that it is comparable to previous work done with fully supervised techniques, but each unique 

new symbol introduced will require model retraining [4]. 

Two years prior to the OSSR-PID paper, the same group of people plus an additional person 

called Rohit Rahul wrote a paper on the same topic using fully convolutional networks for 

object detection. This means that instead of using a single sample of each symbol for training, 

they had to annotate multiple training images with segmentate pixels that identified the 

different symbol classes available. This is a tiresome job, but often results in good prediction 

models. Their goal was to create the first (to their knowledge) end-to-end data extraction 

system for P&ID diagrams by wrapping a bunch of computer vision and machine learning 

methods into a single pipeline. By separating the information extraction into two parts: 1. text 

containing pipeline codes, and 2. graphic objects like pipelines and symbols, they manage to 

extract a large amount of information from P&ID’s. After detecting text and inlet/outlet tags, 

they remove them using probabilistic Hough transform to reduce noise in the image. This 

then made it easier to perform step 2. When the pipeline intersection and symbols were 

detected, pipeline text and inlet/outlet tags are related to the symbols and pipelines using 

minimum Euclidean distance from center of text to center of object. This methodology of 

performing information extraction in multiple steps/iterations can be investigated for this 

master thesis project as well. The minimum Euclidean distance calculation is interesting for 

linking together tags and objects and will be adapted in this project thesis. The result of the 

Automatic Information Extraction from P&ID’s was a proposed end-to-end pipeline, using 

CTPN [5] and FCN for pipeline code and symbol detection. A low-level image process 

technique to detect inlet, outlet, and pipelines to capture flow was used. And finally 

displaying the information in a tree like structure to describe the P&ID flow [6]. 
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Another interesting paper from the Korea University, School of Mechanical Engineering is 

the Deep Learning-Base Method to Recognize Line Objects and Flow Arrows from Image-

Format Piping and Instrumentation Diagrams for Digitization by Moon et al. [7]. This 

research proposes a three-step method where the first step is to remove outer border and title 

box in the diagram, second one detects continuous lines, line signs and arrows that indicate 

flow direction. The third step uses the result of the second step to determine line type and 

adjust them accordingly, then merge belonging lines and arrows [7]. The result of this 

research is a novel method for recognizing various types of lines in images. A preprocessing 

step for removing noise. A detection step for detecting continuous lines, line signs and 

arrows. And a postprocessing step for adjusting and combining lines and arrows. In the 

detection step, line thinning, and pixel processing techniques were applied to horizontal and 

vertical lines, and Hough transform was used to detect diagonal lines. A RetinaNet model is 

trained on data consisting of line signs and flow arrows. This papers primary focus is line 

detection and classification, this is valuable research for all types of drawn documentation, 

also for the master thesis project presented in this report.  

As mentioned, objects in operator interface images can be considered as tiny objects 

compared to the size of the actual image. It is therefore natural to look for papers with 

research on similar topics. Object detection in satellite or aerial images is quite interesting 

because everything on earth looks small from the sky or space. These types of Earth Vision 

object detection papers can therefore be considered similar topics. 

Jinwang Wang, Wen Yang, Haowen Guo, Ruixiang Zhang and Gui-Song Xia wrote a paper 

on Tiny Object Detection in Aerial Images in 2021, where they used anchor-free object 

detection methods on a 700,621 annotated object dataset called AI-TOD for training [8]. 

They proposed a new method called M-CenterNet utilizing multiple possible center points 

instead of just one. They further analyzed the metrics and compared this method to more 

popular SSD, R-CNN and YOLOv3 anchor-based detectors. This method turned out to 

outperform all the other state-of-the-art detections methods on this particular AI-TOD 

dataset. It is worth noting that this AI-TOD dataset has a mean annotation object size of just 

12.8 pixels, which is much smaller than traditional datasets in both aerial images and natural 

image detection datasets. These tiny objects also make the prediction very sensitive to 

Intersection over Unions (IoU) that can cause a bounding box to be misclassified by just 

missing the center point by one pixel. That’s why, in this paper, they proposed the M-

CenterNet learning network to improve the localization performance of tiny object detections. 

This paper is interesting because it gives an insight in another approach for optimizing object 

detection in large images and might serve as a bases for testing other approaches for Region 

of Interest (RoI) localization before classification. 

There is also a paper on “Interactive Multi-Class Tiny-Object Detection” by Chunggi Le et 

al. [9] explaining and experimental way of utilizing multi-class interactive annotations to 

improve annotation and increase efficiency. As per my understanding it uses object detection 

methods in combination with user interaction to annotate image. When a user clicks an 

object, it will be bounded and predicted by a multi-class detection model. This paper was 

discovered at the end of the project thesis when there was limited time left to test new 

annotation approaches, but this is something worth looking into as it is quite new research. 
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3 System description 
This chapter gives an overview of operator interface image systems, existing tools for design 

and analysis of such systems, and challenges using those tools. It also includes project scope 

with regards to what technology is being applied during project execution, what the general 

idea and goal for this project is, and some challenges when developing such systems. 

Throughout this project there has been developed two tools, one as an engineering tool and the 

other as a user tool, where both tools use cases are explained in the following subchapters. 

There is also added a subchapter explaining the set-up of development environments, package 

handling, and sharing of environments between development stations to optimize efficiency. 

The final subchapter explains how to efficiently obtain data from existing images to prepare 

for training image classification and object detection models that are going to be used in the 

engineering and user tool.  

3.1 Operator interface image systems 

What operator interface images (also known as HMI), from systems such as DCS, 

Supervisory Control and Data Acquisition (SCADA), or PCS, are, is not trivial knowledge 

for all. A short explanation is therefore provided in this subchapter with additional 

information on advantages and challenges with existing analysis tools. 

3.1.1 Process control, interface, and component’s structure 

A short simplified explanation on DCS, SCADA or PCS structure and how operator interface 

images are introduced as a way for the operator to interact with the physical process [10]:  

- There are multiple physical components (field devices) in the field controlling or 

measuring variables in the production, process flows, or assembly lines. The physical 

device is connected to a PCS using a communication protocol of some sort. This 

connection provides communication between the field devices and the PCS by 

exchanging some information, or control signals. 

- On top of the PCS logic there is a graphical user interface (GUI) which is in this term 

is known as operator interface images, HMI, or SCADA image. In most cases, these 

images look like the snippet shown in Figure 1, where some example objects are 

marked and named in with blue color. These marked objects represent the physical 

components in the field, and the tanks and lines represent physical tanks and pipelines 

where it normally flows some sort of process substance. These physical components 

have tags, and values with regards to their control signal or some status or 

measurement value from the field (temperature, pressure, flow etc.), that are displayed 

in the image.  

- From this GUI, the operator can monitor and control the physical process, and take 

critical actions during certain situations.  

For a conversion project, migrating from old control images to new, it is important to be 

aware of all components in all process images, with all related tags and information. Different 

methods and tools for analysis are used to get this overview of all information that needs to 

be converted. 
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Note: The graphical components/objects for DeltaV Operate is referred to as “Dynamos”. 

 

Figure 1: Snippet of operator interface image for a random process. 

3.1.2 Existing design and analysis tools 

These process control images are often constructed by graphical components such as object 

images, pixelated or scalable vector graphics (SVG) components, with configuration fields 

for values and tags that is retrieved from the control system. The graphical components are 

often path linked directly to the PCS logic, where the PCS logic acts as a “backend”, 

providing information to the GUI, or receiving operations from the GUI to adjust PCS logic, 

thus controlling the field physical component. The component animation logic (color 

animations, movements, etc.) is often standardized to visually represent some state of the 

“backend” logic and physical field device. For Emerson DeltaV as an example, the graphical 

components animation logic is standardized by libraries such as PBL and PCSD. Even if the 

animation logic is standardized, the look and feel of the objects can vary a great deal from 

project to project as the design is customizable based on the customers preference. The 

design changes can be custom color pallets, custom sizes, or symbols for objects, rearranging 

of values and tags connected to the objects etc. The design is customized, and objects linked 

from programs such as DeltaV Operate (old GUI design tool), and DeltaV Live (new GUI 

design tool). 

When converting from old to new, or from one type of system to another, the engineer will 

use tools interacting with the old/existing source-code of the operator interface images (if 

available) to perform analysis for making sure the new design matches the old ones. For 

DeltaV Operate, this operator interface image source-code is Visual Basic for Application 

(VBA), controlling the graphical component animations and structuring the image layouts. 

The tool will typically iterate over all the source-code for each image and print a detailed 

analysis typically providing snippets of object and relevant information.  

3.1.3 Advantages and challenges with existing analysis tools 

Existing analysis tools have a huge benefit of being able to capture custom logic made in the 

image source-code, and therefore flag things that is not possible to capture by just looking at 

the images. However, using these existing tools require skill and system knowledge. It takes 
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time to perform such an analysis, and in lot of cases, using these tools are kind of an overkill. 

In simple terms, “These tools are not for all. And not always required.”.  

The idea of this project is therefore to investigate if a more user-friendly tool can be made, 

that captures the basic structure, components, and information from images of the PCS 

GUI’s. The goal is NOT to make a conversion tool, as this requires huge amount of manual 

source-code mapping. This is discussed further in coming chapters.  

3.2 Project scope 

The project scope in short terms is to research the field of image classification and object 

detection to extract information from complex operator interface images displaying industrial 

applications such as production, process flows or assembly lines. More specific, the project 

will be performed in two iterations, where the first iteration involves training image 

classification models to test different network architectures and create an annotation tool. The 

second iteration will use annotated data from the annotation tool to train models for object 

detection, perform text extraction and linking, finally hosting these solutions in a user-

friendly software. The final product from this thesis will be a tool that the user can access 

through a web solution, upload some operator interface images, and get a document for 

download in return. A flowchart of how the new analysis process will compare to a typical 

analysis with source-code tools or worst-case manual analysis, is provided in Figure 2.  

 

Figure 2: Flowchart of how the new user software (also called Program 2 and ICE) developed in this thesis will 

compare to other traditional ways of analyzing operator interface images. Note that the typical tool using source-

code will differ from vendor to vendor in complexity, and the data retrieved from such a tool will always be 

more accurate than an image analysis tool using deep learning. But for simpler cases, as explained in chapter 

3.1.3, the new tool will be much more efficient. And for cases where source-code from SCADA or PCS is not 

available, the new software will outperform the manual counting method on the right. 
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3.2.1 Technology 

Machine learning is a subfield of AI that involves the design and development of algorithms 

and models that can predict future outcome and make predictions based on data. The models 

or algorithms are designed in a way that makes them learn similar to the way humans learn, 

and by repetitive training, gradually improving its accuracy [11]. There are multiple 

subcategories within machine learning, but for this project, the focus will be on supervised 

learning. Supervised learning is a way of training models based on data, providing it with 

both the input and output data pair. This means to provide a model with an input object, for 

example a picture of a valve and giving it the output label “valve”. The machine learning 

model will then learn, after repetitive training, that this object is a valve. The supervised 

machine learning model itself can be algorithms such as SVM, Decision Tree, Random 

Forest, ANN, etc. As mentioned in the introduction, this project will utilize the powers of 

deep learning. Deep learning is a type of ANN, but with a more complex and deeper structure 

[12]. This way of configuring an ANN makes deep learning neural networks particularly 

suited for complex tasks such as image classification and object detection.  

3.2.2 The general idea 

The idea is to create deep learning models for classifying multiple objects within operator 

interface images. The objects should be marked with a bounding box and labeled. The 

information about the object locations and label should be extracted into a separate document. 

The extracted data can further be used for complexity analysis, rebuilding new displays, and 

other applications as discussed in the introduction. Data obtained for training the machine 

learning models will also give a reference for identifying objects that are common within 

industrial solutions such as pumps, valves, measurements etc.  

Two project approaches are taken into consideration for this project: 

1. Training a multi-label classification model to recognize different objects based on 

their features. This multi-label classification model will be used in combination with a 

sliding window algorithm to detect different objects within the sliding window 

reference frame. This is also referred to as multi-class object detection. The objects 

that are identified will be marked with a bounding box, label, and number. The label, 

number and position of the object will be noted in a separate document for further 

analysis. The training data will be extracted from standard dynamo-sets from the 

DeltaV Operate library and existing customer graphics. The dynamo-sets and graphics 

comes as full images with a lot of components. Each component will be extracted 

using OpenCV canny edge detection and snipping tools. This will simplify the 

training process and reduce manual labor. This first method serves as a good starting 

point for the project as it limits large amounts of manual annotation preparations.   

2. Training a one-stage detection method for object detection within large images. The 

objects detected will be marked with a bounding box, label, and number as for 

previous approach. The downside to this method is that it requires large amounts of 

manually annotated operator interface images to train a You Only Look Once 

(YOLO) or Single Shot Detector (SSD) algorithm. However, this will result in a more 

efficient and better object detection solution than approach 1. 
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If approach 1 yields satisfying results, it could be used as an annotation method for approach 

2. Approach 1 will learn to classify different objects, then using sliding window over full 

scale images to annotate objects. Small corrections, removals or additions will be required 

before giving these annotated images to the one-stage detector model. An engineering tool for 

doing these adjustments will be developed and part of the project. 

3.2.2.1 What is annotation? 

It is important to clarify exactly what annotation is. Annotation is the process of marking an 

object in an image, giving it a bounding box and a label. The coordinates x, y, width, and 

heights of the bounding box is stored in a document with the given object label. The object is 

now annotated. 

3.2.2.2 Challenges of object detection in operator interface images 

Doing object detection in images that are generated in 2-dimensional space such as drawings 

and documentations have huge advantages compared to real world images or video. The more 

traditional challenges such as light conditions, angle of objects, line of sight, dirt and other 

real-life factors are none existing. However, these types of 2-dimensional drawn or designed 

images have other challenges that needs accounting for. Operator interface images contains a 

large number of objects, lines and text that represent various information. This introduces the 

challenge of noisiness and limited features because of object similarities, causing higher 

probability of misclassification. e.g., the pump object that can look a lot like an iso standard 

motor object, and an analog numeric value that look similar to the status object and other text 

information. List of objects and similarities are provided in Table 15. 

The standard dynamo-sets that are initially thought of as input for training the models is 

offline mode objects, and therefore look different from the online operator interface image 

objects. This might cause challenges, and more training data will have to be collected from 

existing graphics manually to achieve a model with good accuracy and generalization. An 

example of a full-scale operator interface display image and how crowded they can get is 

available in Figure 9. 

Note: All images are 2-dimensional, but real-life photographs and video is taken in a 3-

dimensional space.  

3.2.3 The general goal 

Identifying objects within a frame of reference, marking the object and extract information 

about its location, classification type and tag related to object. Creating a foundation for 

operator interface display image complexity analysis.  

3.3 Semi-automated annotation tool (Program 1) 

A custom tool is developed as a part of this project, to optimize the annotation process for 

generating training and validation data for modern object detector models. It uses the models 

trained in the first approach described in chapter 3.2.2. See full use case diagram (UCD) of 

this engineering tool software in Figure 3. The use cases describe the software functionality, 

often started by a verb as a thing that is executed. It is an important part of the unified 
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process, and is used for visualizing the functional requirements [13]. The goal is to focus on 

how the system will fulfill the requirements from and to the actors, focusing on the user. For 

this application, it is required that the hardware has a GPU to do the classification. The GPU 

is therefore listed as a non-functional requirement. The user will upload and image, crop it or 

leave it in original size, upload a multi-label classification model, perform a pre-analysis, 

then do annotation if required, and finally export the training data. Analysis and design of the 

software is provided in chapter 4.5.1. The final resulting software test is shown in chapter 

5.2.2.  

 

Figure 3: Use Case Diagram annotation software. 

3.4 Industrial Component Extraction tool – ICE (Program 2) 

As a final solution for this project, a user-friendly software will be developed where the user 

can upload one or more images and get an analysis report in return. The objects in the images 

should be correctly labeled and listed with correlated information.  

A UCD is created to describe the functional requirements of the system, seen in Figure 4. 

Users will initially interact with the UI to upload images and start analysis. In the backend, all 

inclusions and extensions are processed, to finally return an analysis report for the user to 

download. The user interacts with the UI to view progress on the display and download the 

final analysis document. Remember that “include” is relationships between use cases that is 

necessary to achieve the end goal of a use case. That means that the “Perform Analysis” use 

case relies on the “include” linked use cases, and the “Generate Excel” is just an extension of 

this parent use case. The “Generate Excel” is however necessary for the user to be able to 

download the analysis, and therefore included as an “inclusion” of the “Download Analysis” 
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use case. User is the primary actor; upload folder and display are supporting actors providing 

services to the use cases.  

This final software will be an alternative to existing analysis tools interacting with source-

code as explained earlier. It can be used by none-technical personnel to easily retrieve a basic 

analysis of process control (operator interface) images. The analysis and design of the UCD 

with additional requirements is elaborated in chapter 4.5.2. The software testing and result is 

explained in Results chapter 5.2.5. 

 

Figure 4: Use Case Diagram for the final analysis software called ICE – Industrial 

Component Extraction. 

3.5 Development environment 

Deep learning tasks can be computationally heavy to perform, especially during 

development, while training and testing models. A decent hardware and software 

environment is key for efficiency and performance. The development station and 

environment will be hosted on a local computer in the office, with remote access via 

TeamViewer. The computer will also be connected to a Raspberry Pi4 (RPI) that is 

configured to reboot if/after power loss. This RPI can also be reached with TeamViewer, 

where a wake on LAN magic package can be sent from the RPI to the development station, 

thus turning it on. Communication and device setup is illustrated in Figure 5. The RPI is an 

alternative solution instead of configuring the office router for remote turning on and off the 

development computer. The development station is configured with Wake On LAN in bios 

and on the Ethernet Controller.  
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Figure 5: Illustrating device and communication setup. 

3.5.1 Hardware environment 

When deciding upon hardware components for machine learning development, GPU and 

cooling will be the most crucial components. More about why GPU is a key component for 

machine learning, and how it differs from CPU computations in Appendix D. This 

information is separated into an appendix as it is not key information for the project, but 

important knowledge when working with machine learning in general.  

For this project, an old gaming computer is reinstalled and set up with machine learning 

environments utilizing GPU support. The computer has a GTX1080 overclocked GPU, an 

Intel Core i5-8400 processor, 16gib of DDR4 RAM, 250gib M.2 SSD. Table 1 gives an 

overview of components and part numbers used in the development machine. 

Table 1: List of development environment hardware 

Part name Part number Description 

MSI B360I Gaming Pro AC, 

Socket-1151 

B360I GAMING PRO AC Motherboard 

Intel Core i5-8400 Processor BX80684I58400 CPU 

Asus GeForce GTX 1080 

Rog Strix 

ROG STRIX-GTX1080-A8G-

GAMING 

GPU 

Corsair Vengance LPX 

DDR4 2400MHz 16gb 

CMK16GX4M2A2400C14 RAM 

WD Black SSD 250GB M.2 

PCIe 

WDS250G2X0C SSD 

Cooler Master MasterWATT 

650  

MPX-6501-AMAAB-EU PS 
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3.5.2 Software environment 

The pc is reinstalled with Windows 10, student edition. Windows is often beneficial due to 

good commercial software and drivers support, and well suited for interacting with the GPU 

hardware. However, for development, Ubuntu gives more flexibility in package installation 

and environment customization. Windows Subsystem for Linux (WSL2) is installed and 

configured on the developing machine. WSL is Microsoft’s solution to running a native 

Linux OS on Windows, capable of installing different Linux distros. Native folder structure 

support using explorer.exe is integrated in WSL and Windows. Visual Studio Code is set up 

as code editor, installed with Python support packages to turn this into an Integrated 

Development Environment (IDE). The WSL is installed with git and Docker support, 

connected to GitHub and installed with MiniConda environment for Python development. 

MiniConda is a smaller version of Anaconda which is a full fledge data scientist Python 

environment for development. Jupyter Notebook is also installed for testing and developing 

different models and methods. Conda virtual environments is used for each task in this 

project and is important to separate package support to prevent conflicts. It also eases the 

work of taking backups and installing dependences. Virtual Python environments is 

especially important when doing something that require a different package version or 

contain conflicting packages to previous programs. A more detailed explanation on why 

WSL is chosen, how it compares to other virtual machine or dual boot solutions as well as 

how it is configured is provided in Appendix D. This information is separated into an 

appendix as it is not key information for the project, but interesting if the reader wants to 

replicate this project at a later stage or learn more about recommended solutions to work with 

machine learning in Python.  

3.5.3 Web solutions 

Kaggle and Google Colab is used for minor testing of package dependencies and when 

getting to know the different libraries. FastAI provides all its teaching materials on these two 

platforms, so it is easy to get started by running code directly within their books in Colab. 

3.5.4 Software used 

- Chrome 

- WSL 

- Visual Studio Code 

- Jupyter Notebook 

- Zotero 

- StarUML 

- OneNote 

- Word 

- Excel 

- PowerPoint 

3.5.5 Python frameworks and libraries 

A short description of the packages used is provided in the following subchapters. 
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3.5.5.1 FastAI and Fastbook  

The FastAI and fastbook libraries developed by the engineers at fast.ai are libraries built on 

top of PyTorch as high-level API for quickly training and deploying deep learning models. 

FastAI’s goal is to make deep learning a low effort field to get started with, and at the same 

time provide state-of-the-art results in deep learning domains [14].  

The main benefit of using this high-level API compared to using PyTorch directly is that the 

simplified solution removes the need for writing custom training loops, defining data blocks, 

data loaders and handling GPU acceleration. The FastAI API provides easy support for data 

augmentation, pretrained models and interpretability with a range of tools for visualizing 

results. 

3.5.5.2 Ultralytics 

Ultralytics is a team of skilled people determined to make AI easy [15]. They have an open-

source Python library called Ultralytics which is available under the GNU General Public 

License. The library contain the source code for the YOLOv8 network/model, and all 

functions for training, validating, testing and deploying models [16]. 

3.5.5.3 PyTorch and Torchvision 

PyTorch is a popular open-source machine learning framework in Python. It provides tensor 

computation framework for building and training deep learning models. PyTorch has a more 

complicated APIs than FastAI and is well suited for more skilled personnel wanting more 

flexibility. Torchvision is a library part of the PyTorch framework and is designed to be used 

on machine learning applications regarding vision tasks such as image classification and 

object detection [17]. 

3.5.5.4 Pytesseract OCR 

Pytesseract is an open-source Optical Character Recognition (OCR) Python library, based on 

the OCR platform originally developed by Hewlett-Packard and later taken over by Google 

[18]. Pytesseract serves as a wrapper for the Google Tesseract-OCR engine and can run as a 

stand-alone script directly in Python. It is used in combination with OpenCV to extract text 

from images or documents where copying is not possible [19]. OpenCV often serve as the 

input image preprocessing step before utilizing Pytesseract OCR. Pytesseract OCR is often 

referred to as image-to-text Python OCR. 

3.5.5.5 OpenCV 

Open-Source Computer Vision Library (OpenCV) is a popular computer vision and machine 

learning Python library used for tasks such as object detection, image processing, analysis, 

text recognition etc. It is less deep learning focused than FastAI and PyTorch, but it has a 

large variety of functions that perform various image and video processing tasks. Example of 

processing task would be edge detection methods, object tracking, feature detection, filtering 

and blurring etc. [20]. In this project, the OpenCV library is used for extracting training and 

validation data by using its methods for edge detecting, filtering, then bounding box the area 

around objects and finally snip each object into a separate folder. 
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3.5.5.6 NumPy and Pandas 

Libraries for numerical and tabular computing and data handling in Python. It is one of the 

most used Python libraries in data science, scientific computing, and finance [21]. In this 

project it is used to preprocess and prepare data for machine learning. They are both excellent 

library for viewing, rearranging and preprocessing data to get the right format for a task. The 

FastAI DataBlock used for training deep learning models requires that the input data is 

structured in a certain way. This differs from application to application, but in most cases the 

DataBlock require a data frame containing the training and validation input and label. NumPy 

and Pandas has a range of functions to help with data preparation, converting the data into 

data frames that the FastAI DataBlock can read. 

3.5.6 Datasets 

No datasets are included in the report as they are confidential to the customer of Emerson 

Automation Solutions. During this project, there is obtained large datasets for training, 

validating, and testing machine learning models for image classification. This dataset does 

not reveal any classified information and can be requested by emailing the author.  

The datasets for training, validating, and testing object detection in operator interface 

graphics are not available for anyone outside the Emerson organization.  

3.6 Data collection and preparations  

Collecting and preparing data is the foundation upon which deep learning models result lay. 

This chapter explains how data for training and validation was collected for this project, and 

how to prepare and structure the data for deep learning tasks. 

3.6.1 Obtaining training data 

For a machine to learn how the world works it needs data. Data is the key element in all 

machine learning algorithms or models. This is also true for the application of creating a deep 

learning neural network to detect and identifying objects in operator interface display images. 

For this specific project, the training and validation data is images of the objects that the 

machine learning models are going to learn to detect. This data can be extracted from 

standard dynamo-sets or existing graphics, by obtaining the full-scale images and snipping 

out individual objects. For extracting custom graphics and objects that exist in DeltaV 

Operate, Emerson has developed a tool called URD collection tool. The tool is installed on 

the engineering stations and used to extract all images and objects from the DeltaV Operate 

systems VBA code. Further extraction of individual objects from these full-scale images can 

be done either manually by snipping or by writing a script for object extraction using 

OpenCV or similar libraries in Python. 

3.6.1.1 Emerson URD collection tool 

The URD collection tool interacts directly with the VBA source-code of DeltaV Operate 

graphics, collecting objects from those images. This tool is a preferred way to extract objects 

if the old system is DeltaV Operate and the source-code is available. However, the data 
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extracted from this tool will be offline state objects and might not represent the objects in this 

application a good way.  

3.6.1.2 Object extraction tool using OpenCV 

If the source code is unavailable, or live objects is required, it may be necessary to extract 

training data objects directly from raw image files. To streamline this process, a program is 

developed for object extraction, which eliminates the need for manual snipping tool usage. 

OpenCV has plenty of methods that, in combination with each other can help simplifying the 

training, validation, and test set object extraction from raw operator interface images. A script 

has been created to convert input images to grayscale, apply a threshold and dilation, and 

identify contours using the "find contours" method. These contours are bounding boxed using 

a separate method from the OpenCV library. Each of these bounding box objects is then 

snipped from the full-scale image into a separate folder. Some of the objects are applicable 

for use in training, validation, and test sets, and some are just “half pictures” containing a lot 

of noise. This method is not perfect, but it gives a bases for the next step of manually sorting 

objects into class folders for labeling. 

3.6.1.2.1 Step-by-step guide 

An example of a raw input image for extracting objects that are going to be added to the 

training, validation, and test set is shown in Figure 6. The image has been somewhat 

retouched for anonymization purposes. 

 

Figure 6: Example of operator interface graphics image for a process. 

 

5-10 images are putt into a folder named “Displays” as shown in Figure 7.  
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Figure 7: Raw files in Displays folder. 

The top navigation bar and the bottom status bar causes noise in these images, so a simple 

crop of these images is preferred before object extraction. A script for cropping multiple 

images in the “Display” folder is created as shown in Table 2. The new cropped images are 

put into a separate folder marked “cropped” as shown in Figure 8. 

Table 2: Script for cropping multiple images in a Displays folder. 

 

folder_path = Path("/home/user/git/ext_obj/Displays/") 

cropped_path = Path("/home/user/git/ext_obj/cropped/") 

 

for images in folder_path.ls(): 

     

    # Open the image file 

    image = Image.open(images) 

 

    # Define the crop box (left, upper, right, lower) 

    box = (10, 120, 1920, 1000) 

 

    # Crop the image 

    cropped_image = image.crop(box) 

 

    # Save the cropped image 

    cropped_image.save(str(cropped_path)+str(images). 

    removeprefix(str(folder_path))) 

 
 

 

Figure 8: Cropped files in cropped folder. 

The result is a cropped images only containing the process image as shown in Figure 9. 
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Figure 9: Cropped example of operator interface graphics image for a process. 

 

A script utilizing the functions of the OpenCV library is created to extract components from 

the image, that can further be used for training deep learning models. Start by adding a 

variable to the image folder path marked for extraction, shown in Table 3.  

Table 3: Variable path declaration. 

 

path = Path('/home/user/git/ext_obj/cropped/') 

ROI_path = ('/home/user/git/ext_obj/ROI_ext/') 

 

 

Then, for simplicity, put all the image preprocessing into a function. This function has some 

options for canny edge thresholding or binary inverse threshold. There is also an option to 

select between different types of canny edge threshold types, see Table 4. All these 

parameters are experimental and must be tested. Highly dependent on the background color 

of the image. The best result for these images is the canny edge threshold with triangle 

threshold type. An example of how this image preprocessing looks like is shown in Figure 

10. 
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Table 4: Image preprocessing function. 

 

def param(gray, background="gray", canny=True, threshtype="triangle"): 

     

    if canny == False: 

        if background == "white": 

            blur = cv2.GaussianBlur(gray, (5,5), 0) 

            kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (7,2)) 

        elif background == "gray": 

            blur = cv2.GaussianBlur(gray, (1,1), 9) 

            kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1,1)) 

        thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY_INV +  

  cv2.THRESH_OTSU)[1] 

    else: 

        if background == "white": 

            blur = cv2.GaussianBlur(gray, (5,5), 0) 

        elif background == "gray": 

            blur = cv2.GaussianBlur(gray, (5,5), 0) 

             

        if threshtype == "otsu": 

            otsu_thresh, _ = cv2.threshold(blur, 0, 255, cv2.THRESH_OTSU) 

            otsu_thresh = get_range(otsu_thresh) 

            edge_otsu = cv2.Canny(blur, *otsu_thresh) 

            thresh = edge_otsu 

        elif threshtype == "triangle": 

            triangle_thresh, _ = cv2.threshold(blur, 0, 255,  

  cv2.THRESH_TRIANGLE) 

            triangle_thresh = get_range(triangle_thresh) 

            edge_triangle = cv2.Canny(blur, *triangle_thresh) 

            thresh = edge_triangle 

        elif threshtype == "manual": 

            manual_thresh = np.median(blur) 

            manual_thresh = get_range(manual_thresh) 

            edge_manual = cv2.Canny(blur, *manual_thresh) 

            thresh = edge_manual 

        kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1,1)) 

     

    return [thresh, kernel] 

 
def get_range(threshold, sigma=0.33): 

    return (1-sigma) * threshold, (1+sigma) * threshold 
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Figure 10: Example image with applied blur, edge detection and dilation. 

The for-loop code unpacking, applying filters, contours and snip all rectangle bounded 

objects from all images in the “cropped” folder is shown in Table 5. 

Table 5: Looping through all images, applying filters and contours and snipping objects. 

 

for i in path.iterdir(): 

    image = cv2.imread(str(i)) 

    original = image.copy() 

    name = "lib_" +  

 str(i).removeprefix("/home/user/git/ext_obj/cropped/").removesuffix 

 (".PNG") 

     

    #grayscale, Gaussian blur, Otsus treshold, dilate 

    gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) 

    thresh, kernel = param(gray) 

    dilate = cv2.dilate(thresh, kernel, iterations=1) 

     

    # Find contours, obtain bounding box coordinates, and extract ROI 

    cnts = cv2.findContours(dilate, cv2.RETR_EXTERNAL,  

 cv2.CHAIN_APPROX_SIMPLE) 

    cnts = cnts[0] if len(cnts) == 2 else cnts[1] 

    image_number = 0 

    for c in cnts: 

        x,y,w,h = cv2.boundingRect(c) 

        cv2.rectangle(image, (x, y), (x + w, y + h), (36,255,12), 2) 

        if w>15 and h>15: 

            ROI = original[y:y+h, x:x+w] 

            cv2.imwrite(os.path.join(ROI_path,  

  name+"_ROI_{}.png".format(image_number)), ROI) 

        image_number += 1 
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These objects are stored in the “ROI_ext” folder shown in “ROI_path” variable. As seen in 

Figure 11, this can get messy, but based on experience it is better to get too many objects and 

manually filter out the bad once than getting too few objects. 

 

 

Figure 11: Bounding boxes on objects in example image. 

Full source code can be obtained by combining Table 3, Table 4 and Table 5. Just remember 

to alter the file paths to match directory. 

3.6.2 Data preparations 

After extracting individual objects from the full-scale images using the python script, the 

extracted objects need to be manually moved into separate folders. Each folder represents 

different object classes. This is also one way of labeling the data. Separating the objects into 

different folders makes it easier to keep track of what classes are defined, and each object 

within a class folder is now labeled. This folder structure will be sufficient for the first task of 

single-label classification using the FastAI library shown in chapter 5.1.1. The folder 

structure also simplifies the next step of creating a specification file for multi-label 

classification. This specification file contains image name (object) and class type (label) and 

a decision parameter if the object should be used for training or validation. Table 9 gives an 

example of how such a file will look like. This specification file is important for the multi-

label classification shown in chapter 5.1.2. 

3.6.2.1 Validating extracted data 

While going through the extracted data it is important to check that the objects put into class 

folders represents the data that the model needs to learn. If there is a snippet containing a 

valve, the valve should be “whole” and not containing a lot of noise i.e., Figure 12. A snippet 

containing a single object should be put into a single class folder as shown in Figure 13. If 

multiple objects are visible in the snippet, the snippet should be put into a multi-object folder.  
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Figure 12: Snippet of control valve object, label name “valve_p”, for valve pneumatic. 

3.6.2.2 Object classes and folder structure 

Object classes and labels are per this report the same by definition. An object class is a 

common denominator for multiple objects with the same class as label. Different folders are 

created with different object class names and these folder names will be the contained images 

labels. Meaning, each image will be labeled with the respective parent folder name. For the 

first iteration, folders containing names such as “valve”, “pump”, “motor”, “value”, “status” 

and “static” will be created as shown in Figure 13. Multi-object folder should have all classes 

listed on the folder name separated by a space as shown on the “bargraph tag” and “bargraph 

value” folder in Figure 14. Note that the single-label classification method only requires 

images in individual class folders to start training (no object specification file needed). 

 

Figure 13: Single class object folders. 

 

Figure 14: Multi class object folders. 

3.6.2.3 Annotating data for object detection 

Object detection using more sophisticated algorithms such as YOLO, SSD or R-CNN 

requires training data in a different format than image classification. As mentioned earlier, a 

deep learning neural network requires training data that represents its application in a good 

way, this is common for both object detection and image classification. Object detection deep 

learning algorithms therefore require training images representing the application with 

annotated objects to learn how to detect these objects in cluttered environment. The creation 

of such training data is tiresome, and often a job that is outsourced. For this project, since it is 

a new application of object detection, all the training data needs to be annotated from scratch. 

Starting with some operator interface images, then an annotation software that can export the 

image annotation files in the required format for the selected object detection framework. 

Numerous annotation tools are available, but due to time constraints for this project and the 

aversion to repetitive work, the multi-class object detector mentioned previously as approach 

1 in chapter 3.2.2 will be utilized to develop the semi-automated annotation tool introduced 

previously in chapter 3.3. The annotated image will be in raw format without any visual 
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bounding boxes on it, but each annotated image will have an annotation file that specifies the 

object class and localization (bounding box). Example of an annotated image using the 

annotation tool is provided in Figure 87. The annotation process will be explained in more 

detail in chapter 5.2.3. 

 



 4 Methods 

33 

4 Methods 
This chapter provides information about the technology used to achieve the project goals, and 

a deep dive into important techniques and methods used to do so. It will introduce and 

explain concepts that might not be general knowledge to the reader and is beneficial to know 

before moving on to the Results chapter. The analysis and design of the two software 

programs (Program 1 and Program 2) developed, is also included as a subchapter. As 

mentioned in chapter 3.2, two approaches are considered during this project. The first 

approach require knowledge about image classification, the second approach require 

knowledge about object detection. But first, some general knowledge of what deep learning 

artificial neural networks is, and how convolutions are used to improve them in the 

application of working with images. 

4.1 ANN - Artificial Neural Networks and Convolutions 

In general, ANN are used for extracting information from data without the need for feature 

engineering, as more traditional ML approaches would require. In this chapter the focus will 

be on usage of traditional Feedforward ANN (FANN) for image classification, why this 

approach is sub-optimal, and how the FANN architecture for image feature extraction can be 

improved by the help of Convolutions, using a different ANN architecture called 

Convolutional Neural Networks (CNN). 

4.1.1 Using ANN for image classification 

Deep learning neural networks uses layers of neurons with simple (linear) mathematical 

functions in combination with activation functions (creating un-linearity) to extract features 

from images. Each feature in a previous layer will be feed into the next layer, extracting more 

and more features. This is called abstraction. An example is provided in Figure 15 where a 

series of simple mapping functions extract different features of an image in each layer, 

resulting in a complex pixel mapping prediction in the output layer [22]. Layer 1 is called the 

input layer because it contains the variables visible to the human eye, in this case, each image 

pixel is an input. If an image has a size of 28x28 pixels (black and white) this gives an input 

layer of 784 nodes. Layers between input and output layer is called the hidden layers because 

the values extracted to obtain features is not given in the input data but determined by the 

model. The number of hidden layers (network depth) and number of neurons in each layer are 

trivially chosen while designing the network. The last layer is called the output layer, as it 

gives a final prediction based on the previous layers feature extraction of the input. The size 

of the output layer is dependent of number of classes defined for classification. When the first 

hidden layer has detected edges using i.e., pixel intensity, the feature is fed forward to the 

second hidden layer where it detects corners and contours. Based on the corners and contours, 

the third hidden layer can identify object parts, and then start to understand what prediction 

should be prioritized (weighted highest). This is a simplified theoretical explanation of a feed 

forward deep learning neural network used for image classification, and therefore a 

theoretical assumption of abstraction within this network. In practice, the abstraction in the 

receptive fields would appear a lot more random than detecting edges, corners and contours, 

and objects. This is due to the architecture of the feed forward neural network. Using such a 
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network for image classification would be sub optimal, and often replaced by a combination 

of convolutional layers, max pooling layers and a dense layer, resulting in a fully connected 

convolutional neural network. 

 

 

Figure 15: Illustration of a deep learning model, figure copied from [22]. 

4.1.2 CNN – Convolutional Neural Networks 

Images are stored digitally as matrices of pixel values. These pixel values are separated into 

three channels for – red, green, and blue (RGB). The RGB channels are stored on top of each 

other, forming three two dimensional matrices to form a complete image. Now, if assuming 

the usage of feed forward neural network for classifying such an image of scale 28x28 pixels, 

it would require an input layer of 2352 neurons. If the image was of size 1920x1080 it would 

require more than 6 million neurons just in the first layer. Adding some hidden layers and 

output layers to this network, and suddenly there is 100s of millions of weights in the 

network to compute. As expected, this is way to computational heavy for a computer. Also, a 

traditional ANN is location sensitive, meaning that it might not be able to detect something 

that has been moved with reference to the training data. For example, if the network is trained 

to detect faces in an image, but the training data only contains faces located in the center of 

those images. That might result in a network not able to detect faces located left or right in 

that image. Because of these limitations, there has been developed neural network 

architectures specifically designed for image processing.  

CNN uses the mathematical function of convolutions to iterate over an image and detect 

features. Convolution is a mathematical operation taken on two functions to generate a third 

function. In this case, a window of size SxS moves across an image, calculating values to 
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create a new third matrix. The sliding window is called a filter or kernel. A visual 

representation of a kernel, sliding window and the mathematical operation of a “top edge” 

filter is provided by deeplizard.com [23], an interactive tool for visualizing how convolutions 

work on the MNIST handwritten digit dataset in Figure 16. The step size of the sliding 

window is called stride. The math behind convolutions is not that interesting for this project, 

just note that convolution operation on an image is sort of taking the dot product of the kernel 

matrix on the pixels in the sliding window on the original image. Although this is not entirely 

correct as each stride takes an elementwise multiplication of each element in the two matrices 

and sums them. As an example, the filter provided in Figure 16 would output strong positive 

numbers when the top row of the filter is filled with zeros, and the middle one is filled with 

ones, and last one is not important. This indicates that the filter is a top edge filter. That 

means that a strong negative number indicates a bottom edge. The top edges are illustrated 

using deep red colors, and the bottom edges are illustrated using deep blue colors. If the filter 

is transposed it would become a left edge detector filter. See example shown in equation (1). 

 

Figure 16: Deeplizard.com visual representation of convolutions on the MNIST handwritten digits dataset. 

Performing a convolutional operation using a top edge detection filter/kernel on a handwritten number 5. A 

green box indicating the 3x3 filter is shown on the input. The positive top edge is visualized in deep red color, 

and the corresponding negative bottom edge is shown in deep blue color on the output image/matrix. There is 

only one channel of illumination normalized from 0 (dark) to 1 (bright) pixels in this input image/matrix [23]. 

[
0 0 0

1.0 1.0 1.0
0.2 0.3 0.2

] ∙ [
−1 −1 −1
1 1 1
0 0 0

] 

= 0 ∗ (−1) + 0 ∗ (−1) + 0 ∗ (−1) + 1 ∗ 1 + 1 ∗ 1 + 1 ∗ 1 + 0 ∗ 0.2 + 0 ∗ 0.3 + 0 ∗ 0.2 

= 3 

(1) 



 4 Methods 

36 

As expected, running a convolution operation would result in some down sampling of the 

image, as a 3x3 kernel would calculate the elementwise sum of the matrix in a 9 sized grid, 

thus removing one pixel on the output edges when striding on the edge of the input image, 

see Figure 17. A 28x28 pixel image with a kernel of 3x3 would result in a 26x26 pixel feature 

map. This down sampling could cause loss of information if edge pixels are important, or the 

kernel size is large relative to the image. Padding the image with black pixels would solve 

this problem.  

 

Figure 17: Example of how a 3x3 stride would down sample an image by removing the edge and top pixels in 

top left corner of the image. 

Since all kernels/filters are being applied to all parts of the image, the features are not tied to 

a specific location, thus making CNN a position invariant feature detector. Both the stride and 

the kernel size are hyperparameters that needs to be specified. It is worth mentioning that 

there are many different kernels designed for various detection of features that will not be 

discussed further in this project. The main idea is to get an overview of what is CNN’s and 

how it differs from FANN.  

A fully connected CNN (FCCNN) often consist of many parts and layers. An example of a 

traditionally structured CNN is taken from the original paper by Keiron O’Shea and Ryan 

Nash, published in 2015 [24], shown in Figure 18. The network architecture consists of 

multiple convolution (conv) layers, activation functions and pooling layers before the data is 

fed to a dense fully connected neural network for prediction. The conv and pooling layers are 

known as feature extraction layers. Each conv layer gives a feature map output which is fed 

to the next layer. More on activation functions and pooling layers in chapter 4.1.2.1 and 

4.1.2.2. 

 

Figure 18: Common CNN architecture with conv layers stacked between ReLu activation functions and pooling 

layers before going to multiple layers of fully-connected feed forward structured neural networks with activation 

functions. Taken an input of handwritten digit 0 from the MNIST dataset and providing a prediction on the 

output layer of 0 to 9. 

The first layer of convolution often detects basic features such as edges and corners, and as 

the data progresses through the network, it detects more and more complex features by 
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leveraging previously obtained feature maps to build more complex object features. This is 

known as abstraction and is visually presented in Figure 15. The end goal of the 

convolutional and pooling layers is to obtain low- to high-level features with as low spatial 

resolution as possible to reduce computational stress. The last fully connected layers will do 

the actual classification based on the high resolution down sampled feature maps from the 

conv layers. It is the mathematical operations of convolutions that makes these types of 

networks highly depended on parallel computation power provided by hardware such as 

GPUs, but also makes this network outperform traditional ANN. 

It is important to remember that this is a highly generalized and simplified explanation of 

CNN, not taking details such as hyperparameters, tuning and the fully connected layers into 

account. The usage of filters in CNN makes CNN position invariant, but it is worth noting 

that the CNN does not take care of object scaling and rotation by itself. This can be achieved 

through training data with different scale or rotation, or by data augmentation during training. 

A simple illustration showing the entire convolutional process provided by CodeBasics from 

his Deep Learning Tutorial series on YouTube [25] is shown in Figure 19. This shows an 

illustration of how pixel values of the number 9 are calculated with a “loopy pattern” filter 

kernel, generating a feature map. An activation function called ReLU is applied to the feature 

map, only outputting values that are above 0. Then the max pooling layer of size 2x2 only 

extracts the max values down samples the feature map while keeping the identifying 

information. When the image is shifted as shown in Figure 20, it is still able to identify the 

crucial information of this feature. 

 

Figure 19: Original illustration from CodeBasics, Deep Learning Tutorial. Input image, filter/kernel, activation 

function and pooling layer [25]. 

 

Figure 20: Shifted illustration from CodeBasics, Deep Learning Tutorial. Input image, filter/kernel, activation 

function and pooling layer [25]. 

4.1.2.1 Pooling layer 

Pooling layers are used to reduce the spatial dimension of the feature map while still 

obtaining information that uniquely identify features. It is basically a down-sampled matrix 

containing only the key data of a feature map that the computer needs to uniquely identify a 

feature. There are different types of pooling such as average pooling and max pooling. The 
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average pooling calculates the average of the SxS sized filter and outputs this as one value in 

a new down sampled feature map as shown in example Figure 21. Max pooling is often more 

used, and it works the same way as average pooling except that it only takes the max value 

from the SxS filter grid and returns as output as shown in example Figure 22. These examples 

both have a stride of 1. A stride of 2 would result in an output feature map matrix of 2x2. 

 

 

Figure 21: Average pooling 

 

Figure 22: Max pooling on 4x4 resulting in down sampled 3x3. 

4.1.2.2 ReLU Activation Function 

One of the most commonly used activation functions in deep learning [26]. ReLU or 

Rectified Linear Unit was first mentioned as a analog threshold element in a feature extractor 

network in a paper published in 1969 by Fukushima Kunihiko [27] and later by the same 

person in 1975 [28]. Though he did not call the function ReLU, this was the first mentioned 

of such a function. 35 years later, a paper published by Vinod Nair and Geoffrey E. Hinton 

suggested ReLU to improve RBM (Restricted Boltzman Machine) [29]. This is the citation 

that is most often referenced when talking about the beginning of ReLU and the first usage of 

ReLU for optimization. RBM is, in short terms: 

“A ANN with two layers (visible and hidden layer), an algorithm useful for 

reduction, classification, regression, collaborative filtering, feature 

learning and topic modelling” – Chris V. Nicholson [30]. 

ReLU was quickly adapted into the deep learning domain as it is highly computational 

effective, only activating neurons that are above zero while still introducing non-linearity to 



 4 Methods 

39 

the network. A graphical representation of the ReLU function is shown in Figure 23. In 

addition to being computational effective and simple, it encourages sparsity in the network by 

only activating a portion of the neurons at any given time [31]. This can help with reducing 

overfitting and improve generalization. Sparsity means to only have a small fraction of the 

neurons and weights active at a given time.  

 

Figure 23: ReLU function [32]. 

It is worth noting that even though ReLU was commonly known as the most used activation 

function per 2021, better hardware might give the possibility for more complex activation 

functions. And more complex problem domains might need more complex activation 

functions. As an example, the YOLOv7 network swapped the ReLU activation function for a 

SiLU activation function, which might indicate that a more complex activation function gives 

better / other results. Of course, this is highly dependent on the whole network architecture 

and all its components in relations to each other. Anyways, this is just the authors opinion. 

4.2 Image classification 

Image classification is the task of predicting a class of an object within an image to label that 

image with the objects class [33], e.g., a picture of a cat, would be classified as a cat. Image 

classification does not give any information about the object’s location in the image. There 

are effectively two types of image classification subcategories: Single-label classification and 

multi-label classification. These two will be discussed in more details in the following 

subchapters along with some theory around the ResNet architecture and how it was a game 

changer for the deep learning community is a necessity. This theory will build upon the CNN 

theory, as well as mentioned some key building blocks within DCNN that has been adopted 

by many and is used in most networks today. 

4.2.1 ResNet – Residual Network 

ResNet is a deep neural network architecture that was developed by researchers at Microsoft 

Research Asia, He Kaiming et al. [34] in 2015. The main idea for this research was to solve 

problems that occurred with previously developed CNN models when they started to exceed 



 4 Methods 

40 

a certain depth (number of convolution layers). In 2012, Alex Krizhevsky et al. [35] laid the 

foundation for Deep Convolutional Neural Networks (DCNN) with their invention of the 

AlexNet, trained on the LSVRC-2010 ImageNet training set. This was the first time that a 

DCNN performed better on the ImageNet dataset than traditional feature engineered ML 

methods. AlexNet only consisted of 8 neural network layers: 5 convolutional layers and 3 

fully connected layers. The general idea was that more layers would be able to learn more 

features thus perform better on data. Kaiming et al. [34] proved that this was not actually the 

case and at some point the training result and test results would actually get worse, as 

illustrated in Figure 24. Since the training error increases with increased number of layers, it 

is a clear indication that this problem is not due to overfitting and must be caused by another 

issue.  

 

Figure 24: Training error (left), Test error (right) for stacking more layers in a “traditional” CNN [34]. 

Kaiming et al. discusses many possible reasons why this problem occurs but the suggested 

solution ended up being a method that is used in most neural network architectures since 

called Residual block and skip connections. To understand what the Residual building block 

does and how it works, some theory around convolution neural networks architecture is 

needed.  

The philosophy behind DCNN is that the convolutional layers initially maintain a high 

resolution of the image while increasing the channel size. As more filters are added, the 

image resolution is downscaled. The reasoning behind this architecture is that low-level 

features, such as edges, are essential for image classification and their precise location is 

significant. However, as the network learns more abstract features at higher layers, the exact 

localization of these features becomes less important. A visual representation of the 

downscaling and added filters are shown in Figure 25. The high-level features are responsible 

for connecting the visual representations features and the low-level features, thus giving 

localization to objects.  
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Figure 25: Visual presentation of CNN architecture. 

Ok, so if this simple shallow architecture that is presented is trained to classify images with 

some accuracy, it is natural to believe that a deeper architecture consisting of the shallow plus 

added additional layers would at least be able to get the same accuracy. The deeper 

architecture only has to copy the initially trained shallow layers and learn the identity 

functions of the deeper layers. A visual simplified presentation of deeper architecture is 

shown in Figure 26 and Figure 27. Now, Kaiming et al. argues that the reason the deeper 

layers do not learn these identity functions is due to the initialization of weights, which 

normally happens towards or around zero. What they propose is therefore the Residual 

building block which is a residual connection that helps initializing this identity function.  

 

Figure 26: Additional deeper layers in orange, stacked as an additional set of layers. 

 

Figure 27: Additional layers in orange stacked as they would in the architecture. 

Simply put, the Residual block or residual connection initializes the weights so that instead of 

new additional layers having to learn transforming x into x (which is the identity function) 
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from zero, it will transfer x directly from previous layer and learn what needs to be adjusted. 

A visualization of this is presented Figure 28 and the actual Residual block representation 

from the original paper is shown in Figure 29. 

 

Figure 28: Visual representation of how the Residual layer uses skip connections to transfer the identity function 

to the next layer, thus initializing the weights closer to the function that is going to be learned. The additional 

layers just have to add the additional corrections to the �̃�. 

 

Figure 29: The Residual learning building block [34]. 

The mathematical function of the Residual learning block and skip connection is shown in 

equation (2), where for the above example in Figure 29, 𝐹(𝑥, {𝑊𝑖}) would be 𝑊2𝜎(𝑊1𝑥) 

where 𝜎 denotes the ReLU function [34]. 

𝑦 = 𝐹(𝑥, {𝑊𝑖}) + 𝑥 

(2) 

A problem now would be the rescaling and increasing of dimensions between layers. This is 

solved by 1) adding zero padding, or 2) using 1x1 convolutions in the shortcut connection to 

upscale the 64 filters to 128 filters shown in dotted lines in Figure 30. Method 2) is the one 

that is adopted and used today. 



 4 Methods 

43 

 

Figure 30: A snippet of a ResNet 34-layer architecture from the original paper [34].. Solid lines indicate skip 

connections between layers of same dimensions, dotted lines indicate shortcuts with increasing dimension. 

The shortcut connections between layers of different dimensions have to be denoted in a 

different way with a linear projection 𝑊𝑠 of x shown in equation (3) [34]. 

𝑦 = 𝐹(𝑥, {𝑊𝑖}) + 𝑊𝑠𝑥 

(3) 

The result of this Residual block was a network that was able to scale to any depth without 

worsening the accuracy. And in the original paper they show this by training different size 

networks until the network starts to overfit to the training data. This is why the ResNet 

architecture has become highly popular, and there exist a lot of networks utilizing this as 

backbone architecture network. A comparison of a plain architecture DCNN and ResNet 

DCNN was presented in the same paper and is included here in Figure 31, clearly indicating 

that deeper network structures need the Residual block to function as intended.  

 

Figure 31: Comparison of a plain (before ResNet) DCNN architecture and a ResNet DCNN architecture, both of 

size 18 and 34. Thick lines are validation error, thin line is training error. As shown, the Residual block only 

shows real performance increase when the dept of the network increases. The 18-layer architecture shows 

almost the same error rate, but there is a massive difference in the 34-layered architecture.  

It is recommended to read the original paper or watch a YouTube video called “Deep 

Residual Learning for Image Recognition (Paper Explained)” by Yannic Kilcher [36] which 

the illustrations shown in Figure 26 and Figure 28 in this report is highly inspired by. The 

original paper also includes a Bottleneck block to help with computations of large 

dimensional layers, shown in Figure 32. This Bottleneck block downscales a high dimensions 

layer using a 1x1 convolution, then do the computational feature extraction on the 

downscaled layer and then upscale to the original dimension. This method is also adapted in 

most modern network architectures. 
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Figure 32: Left shows two 64 dimensions traditional layers. Right shows a 256 dimensions Bottleneck block 

layer, projected down to 64 dimensions by a less computational heavy 1x1 conv, then feature extracted, and 

projected back to the original 256 dimensions. The 1x1 conv is 9 times less computationally heavy than the 3x3 

layer. So, one of these Bottleneck is a little more computationally heavy than one of the left 3x3 64 dimensions 

layers. 

The reasons for going into details on the ResNet architecture is not only to show why this 

was a gamechanger for the deep learning community, but also because the first part of this 

project will utilize the ResNet50 architecture for image classification. 

4.2.2 What is single-label classification? 

More commonly known as normal image classification where the goal is to give one label 

(also called prediction) to the whole image. This could be an image containing more than one 

object, but the goal is to identify and predict a main object that dominates that image. An 

example could be the picture of a car which normally also contains a road, maybe some signs 

and buildings. These other objects can be denoted as noise in this context. The main object in 

this picture would be a car, and the image would be labeled as such. The more noise an image 

contains the harder the image is to classify. The classification model itself can have multiple 

classes such as car, bus, train, pedestrian. But the goal is to give one image, one prediction. 

4.2.3 What is multi-label classification? 

Is the task of classifying multiple object categories within one image. Take the example of 

the car again, it would be natural in this context to classify both the car, road, signs, and 

buildings. However, it is not an object detection or segmentation task, so the location of each 

object is not predicted and not of interest. This method is also specifically handy because it 

gives the opportunity to not classify any object if the model cannot identify any objects in the 

image. The previously mentioned single-label classification would try to classify the image 

into some category regardless of whether the object is present in the image or not. This could 

be solved by adding a separate category for training “unknown” objects but would require 

even more training data. Multi-label classification is therefore a good alternative, and a 

method that will be implemented as the first part of this project. 

4.2.4 Data preparations 

Collecting and preparing data for image classification is relatively simple in both single-label 

and multi-label classification. The most important thing is to have enough training and 

validation data available, and that the training data represents the real-world data in a good 
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way. How to collect data for this project, and scripts to optimize the process is explained in 

chapter 3.6. 

4.2.4.1 For single-label classification 

When gathering data for traditional image classification, it is generally preferable to have 

data that clearly depicts the main object with minimal noise. The presence of additional 

variations and complexities in the image can make it difficult for the model to learn the 

underlying features of the labeled objects. However, if the real-world application contains a 

lot of background noise, it is important to introduce such examples in the training and 

validation data. This will increase the networks robustness and generalization. More training 

data is therefore always better. 

There are different ways of structuring this training and validation data for different types of 

models. The FastAI library, used in this project needs the data to be separated into folders 

which contain the class name as shown in Figure 13. Full path to the folder containing the 

class subfolders needs to be provided to the FastAI functions for construction of data blocks 

as shown in Table 16.  

4.2.4.2 For multi-label classification 

If the applications are the same, the training data gathered for single-label classification can 

serve as an excellent starting point for multi-label classification. However, in addition to 

classes with one “main” object presented, multi-label classification also requires classes with 

a combination of objects with multiple class labels as shown in Figure 14. The rule for noise 

(complexity and variations) also applies here, so a large dataset is important. Based on 

experience, if a multi class labeled image contains i.e., a “valve” and a “tag”, it is important 

that there also exist single class labeled images that only contain a “valve” and “tag”. This is 

important for the model to better learn what separates these objects. Examples of this is 

shown in Table 20 where all multi-label classes also have a single-label class representing 

each of the individual objects. 

Now, when structuring this data, it is no longer possible to only have the data separated into 

class folders as one image could contain multiple classes. Instead, all files need to be 

combined into a common folder, and a specification file needs to specify image name, class 

labels and if it is training of validation data. Luckily there are ways to optimize this process 

and is demonstrated in chapter 4.2.4.2.1. 

4.2.4.2.1 Creating object specification file for use in multi-label classification. 

When a sufficient amount of training data is collected and put into separate class folders for 

labeling, a Python program is created for renaming all files in all folders with the respective 

parent folder name and an iterative number, see code snippet in Table 6.  
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Table 6: Renaming all image files in class folders to respective class name (labeling images). 

 

source_folder =  

 Path("/home/user/git/classify_multi_obj/Classification_small_ 

 multiobject") 

 
# loop through each file in the source folder 

i = 0 

j = 0 

for folders in source_folder.ls(): 

    i = 0 

    pref = str(folders).removeprefix(str(source_folder)+"/") 

    for filename in os.listdir(folders): 

        extension = os.path.splitext(filename) 

        if extension[1] != ".Identifier": 

            j +=1 

            newname = pref+" " +str(i)+extension[1] 

            source_file = os.path.join(folders, filename) 

            my_dest = os.path.join(folders, newname) 

            os.rename(source_file, my_dest) 

            i += 1 

        elif extension[1] == ".Identifier": 

            source_file = os.path.join(folders, filename) 

            os.remove(source_file) 

print(j) 

 
 

Next, a Python program for generating the specification CSV file required for the multi-label 

classification is created. The CSV file will contain three columns separated by comma. The 

columns will contain the image name called “fname” the respective “label” of that image 

(which is the folder name where the image is located), and a randomized “is_valid” column. 

The “is_valid” column will have a 20% true and 80% false for each object class period. The 

source code for creating the CSV file with given specifications is shown in Table 7. An 

example specification CSV file in table view can be seen in Table 9. 
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Table 7: Script for creating the items.csv file with 20% validation and 80% training data. 

 

folder_path =  

 Path("/home/user/git/classify_multi_obj/Classification_small_ 

 multiobject") 

 

csv_file = 'items.csv' 

 

# create a new csv file 

with open(csv_file, 'w', newline='') as f: 

    writer = csv.writer(f) 

    writer.writerow(['fname', 'labels', 'is_valid']) 

     

    for folders in folder_path.ls(): 

    # loop through each item in the folder 

        for item in os.listdir(folders): 

            # get the item's name and folder name 

            fname = item 

            labels = str(folders).removeprefix(str(folder_path)+"/") 

            if random.random() < 0.2: 

                is_valid = True 

            else: 

                is_valid = False 

            writer.writerow([fname, labels, is_valid]) 

 
 

When the specification CSV file is created, all files need to be grouped together into a 

training folder, i.e., the class folders are not useful anymore (only applicable for the multi-

label classification). This is achieved by creating another Python script shown in Table 8 that 

copies all files within class folders into one training folder. 

Table 8: Script for copying files from multiple folders into one folder. 

 
source_folder =  

 Path("/home/user/git/classify_multi_obj/Classification_small_ 

 multiobject") 

dest_folder = '/home/user/git/classify_multi_obj/train' 

 

# loop through each file in the source folder 

for folders in source_folder.ls(): 

    for filename in os.listdir(folders): 

        source_file = os.path.join(folders, filename) 

        dest_file = os.path.join(dest_folder, filename) 

        shutil.copy(source_file, dest_file) 

 

 
 

The specification file is now the master file, giving instructions on what class each object 

image belongs to and if it should be used in training or in the validation of the models. This 

means that the initial folder structure was only useful for the single-label classification 
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approach, and further works as a simpler way to structure all the snipped data and verify each 

object. When training a multi-label image classification model, all data needs to be specified 

in this object specification file. This is also the case for object detection where each image 

file will have a specification file (annotation file) giving localization and sizes of each object. 

Table 9: Example of specification file for multi-label classification in csv format, each column separated by 

comma. 

fname label is_valid 

object1.png pump false 

object2.png valve false 

object3.png valve true 

 

4.2.4.3 Augmentation 

If the available training data is limited, augmenting the data would serve as a technique to 

distort data, creating more variety in the dataset. The data is not actually duplicated, distorted, 

and stored as part of the training set, but rather each batch of training and validation gets a 

manipulation added to it so that the model sees the same data differently for each batch. This 

helps in improving the model to be more robust. The image manipulations could be flipping, 

rotating, angling/phasing, blurring, zooming, or cropping. There are many ways of 

manipulating an image to look slightly different while still keeping its main structure, and 

people come up with new methods all the time. What type and amount of augmentation can 

be set by the system designer. 

4.2.4.4 Resizing or pre-sizing 

The network input image size is decided by the network architecture. ResNet50 needs all 

input images in the scale of 224x224, but there are options on how to perform this resizing. 

The FastAI library provides all data preparations steps in the data loader pipeline, with extra 

parameters for resizing and data augmentation. There are effectively five different resize 

techniques often used in image classification: 

1. Resizing to a fixed size: All images are resized to a fixed size, such as 224x224. This 

is a common approach used in many pre-trained models like VGG and ResNet. Pros: 

easy to implement. Cons: may result in distortion or loss of information. 

2. Center cropping: Input image is cropped to a square in the center and then resized to 

the desired size. This approach is useful when the object of interest is centered in the 

image. Use with care, as it may result in loss of information. 

3. Random cropping: Multiple random crops of the input image are taken, and each crop 

is resized to the desired size. This approach helps to capture different views of the 

object and reduces overfitting. This technique is used in many pre-trained models like 

ResNet. 
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4. Aspect ratio preserving resizing: The input image is resized while preserving its 

aspect ratio. This approach prevent distortion but may result in padding or loss of 

information. To prevent loss of information, the padding alternative is a good option. 

5. Scale augmentation: In this technique, the input image is randomly scaled up or down 

before resizing. This approach helps to capture different scales of the object and 

increases the model's robustness to scale variation. 

For this project, the input data will be of varying size, and all information in the input data is 

important. Technique number 4 with zero padding will most likely be used to prevent 

unnatural distortions to images. Zero padding is adding black pixels to the edges to keep the 

images aspect ratio. This zero padding adds extra computational load, but this is insignificant 

compared to the loss of information that could occur if not used. 

4.2.5 Training and validating 

Training and validating a model are easy and will generally give good result if the 

prementioned steps are done with care. The functions to perform these code snippets are 

already built and available from libraries such as PyTorch, FastAI, TensorFlow, Ultralytics 

and so on. How to use these will be shown in the chapter 5 Results. Although training and 

validation code can be executed relatively easily, the underlying theory of these processes is 

not straightforward. In this subchapter, the theory behind the ResNet50 network's training, 

validation, and adjustment using loss functions and backpropagation will be explained. 

4.2.5.1 Loss functions 

In general, loss functions, often referred to as cost functions, objective functions or error 

functions calculates how well a model can predict a desired output for a given input. It is 

worth noting that even though these four names are used interchangeably, the loss and error 

function is more common to use when talking difference between predicted and true output. 

Loss function being mentioned in the context of optimization, and error function in terms of 

evaluating performance. Cost and objective function is more correct to mention in context of 

whatever function a model is trying to optimize. The two loss functions worth mentioning for 

this project is Cross-Entropy (CE) loss and Binary Cross-Entropy (BCE) loss.  

4.2.5.1.1 Cross-entropy loss (CE) 

The Cross-Entropy (CE) loss is particularly valuable in applications where the model's 

prediction must be classified into N different classes, but an image can only belong to a 

single class, as is the case in the single-label image classification part of this project [37] [38]. 

Simply put, the CE loss computes the summation of the true probability (𝑃∗(𝑖)) multiplied 

with the log predicted probability (log 𝑃(𝑖)) over all classes in the distribution, equation (4). 

𝐻(𝑃∗|𝑃) = − ∑ 𝑃∗(𝑖) ∗ log 𝑃(𝑖)

𝑁

𝑖

 

(4) 

The predicted probability outputted from the last layer in the neural net is normalized by the 

SoftMax function to become a prediction between 0 and 1. SoftMax require the predicted 

output layer to sum up to a total of 1, so if one class has predicted probability of 0.9, all the 
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other N-1 classes would sum up to the final 0.1. Then take the negative log predicted 

probability of the actual inputted class and multiplied with the true probability (1 on the 

inputted class, 0 on the other). Do this for each N number of classes in the batch and sum it to 

get the total error of the network. Backpropagation is further used to adjust weights (FNN) or 

kernels (CNN) and hopefully improve the network accuracy. The reason for using CE instead 

of other loss functions such as Sum of Square residuals (SSR) is because CE exponentially 

increases the loss as the prediction gets worse, due to the log part of the equation. So, if a 

model predicts a hard wrong, the loss gets exponentially higher, resulting in a large incentive 

in the backpropagation to step towards a better prediction. This also means that a small 

prediction error, results in smaller incentive in the backpropagation of correcting the 

prediction. This has to do with the derivative (slope) of the tangent line of the CE loss used in 

gradient descent calculation of the step size in backpropagations. 

4.2.5.1.2 Binary cross-entropy loss (BCE) 

BCE is typically used in models performing binary classification problem i.e., when there are 

only two different classes. However, it can be used in the multi-label classification by 

utilizing elementwise BCE operation on each of the output nodes to predict whether a class is 

present or not in the input [39]. To use BCE in multi-label classification, the output layer 

needs one node for each of the label classes in the training data, and the SoftMax needs to be 

replaced by a Sigmoid function. During training, the BCE loss function calculates the 

difference between the predicted probabilities and the true labels in a probability range from 

0 to 1 using the Sigmoid function. As the input of true probabilities is now a vector that could 

consist of multiple true labels, the output predicted probabilities is also a vector. The total 

loss is given by the sum of all output nodes calculated BCE loss. The mathematical 

expression is shown in (5), where M is number of rows in the probability vector, and N is 

number of classes [40]. 

𝐻(𝑃∗|𝑃) = −
1

𝑀
∑ ∑ 𝑃∗(𝑖, 𝑗) ∗ log 𝑃(𝑖, 𝑗)

𝑁

𝑖

𝑀

𝑗

 

(5) 

 

4.2.5.2 Backpropagation 

When the loss is calculated and the gradient of the loss obtained, it is time to backpropagate 

through the network updating weights in the fully connected network and kernel values in the 

CNN. This is a mathematical operation of calculating the local gradient of each layer and 

calculating the updated weights of the kernel with gradient loss from previous layer 

multiplied with learning rate. In fully connected networks, the weights are updated using the 

gradient of the loss with respect to the weights. In CNNs, the kernel values are updated using 

the gradient of the loss with respect to the kernel values. Multiplying by learning rate is used 

to control the size of the weight updates. Backpropagation is an iterative process, and it is 

repeated for each mini batch of training data until the network converges to a set of weights 

that minimizes the loss function. This is how a deep learning neural network learns. A visual 

representation of a single layer backpropagation is shown in Figure 33 with additional 
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mathematical expression of how the updated filter/kernel values 𝑥𝑢𝑝𝑑𝑎𝑡𝑒𝑑 is calculated in 

equation (6), 𝛼 denotes the learning rate. 

 

Figure 33: Single layer backpropagation example. The function f must be thought of as a convolution for CNN. 

This image is borrowed from a blog post by Pavithra Solai on medium, please see citation [41]. 

𝑥𝑢𝑝𝑑𝑎𝑡𝑒𝑑 =  𝑥 − 𝛼
𝜕𝐿

𝜕𝑥
 

(6) 

4.3 Object detection 

Object detection differs from image classification because of its ability to perform both 

classification and localization of an object within an image or video [42]. The result from an 

object detection method would be bounded box regions of objects and a classified label of set 

objects. The resulted object classes and locations are also available in some sort of text 

format, thus indicating that the computer reads an image and interprets it. 

The first object detection methods can be dated all the way back to the 1970s when Optical 

Character Recognition (OCR) was introduced. These methods were based on traditional 

computer vision methods such as edge detection and corner detection. However, the first real 

object detection algorithm called Viola-Jones was introduced in 2001, and is formally dated 

as the first real-time object detection algorithm [43]. The Viola-Jones algorithm used a 

technique called Haar-like features which essentially detect rectangular features in an image. 

This technique was used in combination with a sliding window algorithm to find multiple 

features at different positions and at different scales in an image. If a particular set of Haar-

like rectangular features matched the characteristic patterns of a human face, it classified a 

face or multiple faces in an image [44]. In 2005 came the Histogram of Oriented Gradients 
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(HOG) feature descriptor that focused on the shape of an object [43]. It worked by extracting 

the gradient and orientation of edges, and was mostly used to detect humans in an image [45]. 

In 2008 came an extension of the HOG detector called Deformable Part-based Model (DPM). 

In short terms DPM decomposes an object into separate parts for classification, and by 

combining them to form the full object [43] [46]. These three methods are noted as key points 

in object detection history and has been the foundation for and influenced many modern 

object detector solutions. They are all based on traditional computer vision techniques. 

The first Convolutional Neural Network (CNN) were originally introduced in late 1980s as a 

technique for character/handwritten characters recognition. The first paper on the work that 

had been performed during the timespan of many years since the late 1980s was published 

1998 [47]. In 2012 CNN was re-introduced for neural network based image classification and 

quickly adopted into the object detection field in 2014 with a method called Region-based 

CNN (R-CNN). This was the beginning of using deep learning neural networks (DLNN) for 

classification and object detection, both improving speed, flexibility, and accuracy of object 

detection. Later on, the R-CNN method was vastly optimized and improved by small but 

important tweaks, giving the methods of Fast R-CNN and Faster R-CNN [43]. Today, the 

latter is mostly used in detection method that requires high accuracy. 

In 2015, both the You Only Look Once (YOLO) [48] and Single Shot Detection (SSD) [49] 

methods were proposed. Both these methods differ a lot from the previously mentioned 

methods in architecture, as it applies only a single neural network to the whole image, thus 

massively increasing the detection speed compared to R-CNN [43]. These methods are still 

relevant and have been massively improved since 2015, YOLO being the most publicly 

known open source used.  

4.3.1 DLNN Detection 

A deep neural network can learn and extract robust high-level features in images. This 

introduced an opportunity and a foundation for learning specific object features and 

classifying images. Then, by using a pretrained CNN on multiple proposed object regions in 

an image, a deep learning neural network would be able to classify parts of the image and get 

the location of the classified object, resulting in object detection. This idea gave birth to the 

Region-based CNN. However, the initial R-CNN had a major drawback with being slow, as it 

required a lot of computing power to classify a lot of proposed regions in an image. This 

drawback was improved by the Fast and Faster R-CNN methods. The R-CNN and its 

enhanced variations, Fast R-CNN and Faster R-CNN are two-stage detection methods that 

are discussed in greater depth in the following chapter 4.3.1.1. 

In order to further enhance speed and reduce computational load, the YOLO algorithm 

partitions the entire image into multiple grids instead of suggesting a set of region candidates. 

Each cell in the grid is responsible for detecting the object within its boundaries and provide a 

confidence score. All predictions are made simultaneously using a single CNN. To further 

ensure that the predicted bounding boxes matches the real object boxes, an Intersection over 

Union (IoU) calculation is performed. The algorithm keeps the predictions closest to the real 

object annotation (also called ground truth box). Both the YOLO and the SSD method is one-

stage detection methods. YOLO will be further analyzed and used throughout this project due 

to its latest release of the algorithm (version 8), released January 2023. The YOLO 

architecture and YOLOv8 model is further discussed in chapter 4.3.1.2 and 4.3.2. 
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4.3.1.1 Two-stage detection method R-CNN 

R-CNN is a so-called two-stage detection method. It is called that because it uses two 

primary steps to perform the object detection. The first step is to propose regions of interest, 

and second step is to extract features from each proposed region using a pre-trained CNN.  

The initial R-CNN detection method was proposed by Ross Girshick in 2014 [50]. It used a 

method called selective search for finding 2000 object region candidates. These region 

candidates were refined by warping each region to a predefined size and further fed to a 

pretrained CNN for feature extraction. The feature vector for each region proposal was then 

passed into Support Vector Machines (SVM) model for classifying object categories and 

bounding box regressor around the object. The downside of this approach is that it was 

computationally intensive and time-consuming, as it required the classification of 2000 

region candidates. It also used a method called selective search for finding object region 

candidates. This is a “brute force” or “exhaustive search” method using a sliding window 

algorithm for grouping correlating pixels and founding regions as shown in Figure 35. As it is 

a fixed algorithm (not learning) sliding over a window with predefined size and scale, it could 

lead to inaccurate region proposals. A graphical representation of the R-CNN architecture is 

shown in Figure 34. 

 

Figure 34: Initially proposed R-CNN architecture, 2014 [50]. 

 

Figure 35: Selective search algorithm [51]. 
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Fast R-CNN improved the “classify 2000 region candidates” drawback by instead feeding the 

entire input image and a set of region proposals to the CNN for generating a convolutional 

feature map. Fast R-CNN further uses a combination of RoI pooling layer to warp the RoI’s 

to a fixed size in one single layer. This RoI feature vector is then fed into a fully connected 

layer where a softmax probability layer is used (instead of SVM) as classifier to predict class 

and bounding box regression offset for the proposed region [52]. This improves the object 

detection using Fast R-CNN by ten folds compared to R-CNN. There is still a bottleneck to 

this approach, and that is the usage of selective search in the region proposal generation 

algorithm, same as initially proposed R-CNN [53]. This could result in inaccurate region 

proposals and is a time inefficient method. Fast R-CNN was proposed by the same person as 

initially proposed the R-CNN method in 2015 [54]. A graphical representation of the Fast R-

CNN architecture is shown in Figure 36.  

 

Figure 36: Fast R-CNN architecture [54]. 

Faster R-CNN was introduced in 2015 by Shaoqing Ren, in cooperation with Kaiming He, 

Jian Sun and Ross Girshick who proposed both the R-CNN and Fast R-CNN [55]. Faster R-

CNN removes the bottleneck of selective search, by instead adding a separate network for 

predicting region proposals. The separate network is called Region Proposal Network (RPN). 

RPN is a fully CNN that takes feature map from the first step as input and generates region 

proposals by sliding an anchor window over it. It then predicts the probability of an object 

being present in that anchor window and the parameters (x, y, width, and height) of its 

bounding box. This gives a lot of candidate proposals that are further refined using regression 

and NMS to obtain an optimal set of candidate objects (graphical representation similarity to 

the 4th, 5th and 6th image in Figure 35). This network is trained to detect anchors box 

proposals in an image, thus learning, and drastically increasing network efficiency. It is 

recommended to read more about this in the original paper [55], if it is of interest. The rest of 

Faster R-CNN is similar to the previous Fast R-CNN approach using a RoI pooling layer for 

reshaping the candidate objects and further classify object and find localization. The changes 

from previous methods, where the RPN is used on the feature map to extract RoI’s is 

graphically represented in Figure 37. 
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Figure 37: Faster R-CNN architecture [55]. 

 

 

 

 

4.3.1.2 One-stage detection method YOLO 

A one-stage detection method differs from the previously mentioned two-stage method 

because it directly predicts the bounding boxes and class probability for all objects in an 

image in one single forward pass of CNN. The two-stage method such as Faster R-CNN had 

a separate RPN, YOLO does not. The YOLO algorithm’s ability to simultaneously predict 

the class probability and bounding boxes for each object allows it to be faster than two-stage 

methods whilst still achieving high accuracy. 

YOLO was the first one-stage detector in the deep learning era [43], first time proposed by 

Redmon Joseph in 2015 [56]. As mentioned, the YOLO algorithm splits an image into an SxS 

grid. Each grid cell is responsible for prediction within its own boundaries, so the cell 

predicts B bounding boxes related confidence scores as well as one C class probability per 

cell. Each of the bounding boxes consist of 5 predictions - x, y, width, height, and confidence. 

These 5 predictions are important to remember as they are key in training a custom network 

at a later step in the project. The confidence score indicates the IoU between the predicted 

box and the ground truth box. After applying NMS on the grid of predictions, the result 

should be the bounding boxes with the highest score. An illustration of the four steps taken 

from the original paper [56] is shown in Figure 38. 
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Figure 38: Four steps of grid, B bounding boxes, confidence score and final prediction [56]. 

4.3.2 YOLOv8 

The YOLO object detection system has evolved a lot the last 7-8 years with an exponential 

speed the last couple of years. The first system YOLOv1 introduced in 2016 only consisted of 

a single fully CNN. The first version was fast and accurate but suffered from low recall 

(failing to identify a large portion of positive instances) and localization errors. Since then, 

seven new version have been introduced each with new and improved techniques for 

improving accuracy, speed and reducing localization error [57]. Originally the YOLO system 

was not well suited for detecting tiny objects in images, but that has also drastically changed 

with each version. In 2020, YOLOv4 was released and introduced a new anchor-free 

detection head. This means that instead of using the traditional anchor box approach, the 

method instead directly predicts object location and sizes, which can simplify the model 

architecture and improve performance. YOLOv8 is built from this technique, adding a lot of 

features since then.  

The latest version YOLOv8, developed by Ultralytics, was released January 10th, 2023 [58]. 

This method scores significantly better than the 3 previous versions in both speed and mAP50-

95 when trained and tested on the COCO val2017 dataset, shown in Figure 39. This is still not 

in the top range between 60-65 mAP50-95 where the large scale models perform [59], but 

YOLO aims to be compact simple models designed to be fast, accurate and easy to use with a 

large community and support [60]. 
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Figure 39: YOLO version comparison [16]. 

Ultralytics YOLOv8 library also introduces backwards flexibility with previous versions, 

making it easy to test and switch between different versions. It includes a new backbone 

network, a new anchor-free detection head, and a new loss function. YOLOv8 is chosen for 

this project because it is new, state of the art, flexible, easy to use and multi-platform 

compatible. Performs well on both CPUs and GPUs, which is ideal if the application 

developed should run on multiple devices. YOLOv8 does not have a publish paper by the 

time of writing, so the technical explanation presented in this report is based on some easy 

readings from Roboflow Blog [58] and LearnOpenCV [61] where they have analyzed the 

available information and GitHub repo. In addition to new features, a huge part of the 

networks success is the Mosaic Augmentation (MA) in model training that was implemented 

in the YOLOv5 network. MA is a method of stitching four images together (four ¼ of 

training images) into one image, forcing the model to learn objects in new locations, partially 

hidden or overlapped, and against different surrounding pixels [58]. This was first time 

introduced by Zhiwei Wei in 2020 to improve scale variations, object sparsity and class 

imbalance [62], tested on aerial images. This is one of the methods that has improved 

accuracy and tiny object detection in the YOLO architecture. An example of MA is shown in 

Figure 40. 
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Figure 40: Mosaic augmentation example. Training and validation images of a chessboard with chess piece 

detection is randomly snipped and combined in different combinations to increase variety during training [58]. 

As mentioned, there is still limited available theoretical information about what is new in the 

new backbone network, anchor-free detection head and the new loss function. Luckily, this 

information is not that relevant to get started with YOLOv8. There exist 5 different sizes of 

the network, as shown in Table 10. Note: The benchmarks mAP and Speed values are for the 

COCO val2017 dataset.  

Table 10: List of available YOLOv8 detection models. 

Model 
size 
(pixels) 

mAPval 

50-95 

Speed 
CPU ONNX 

(ms) 

Speed 
A100 TensorRT 

(ms) 

params 
(M) 

FLOPs 
(B) 

YOLOv8n 640 37.3 80.4 0.99 3.2 8.7 

YOLOv8s 640 44.9 128.4 1.20 11.2 28.6 

YOLOv8m 640 50.2 234.7 1.83 25.9 78.9 

YOLOv8l 640 52.9 375.2 2.39 43.7 165.2 

YOLOv8x 640 53.9 479.1 3.53 68.2 257.8 

https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt
https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt
https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt
https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt
https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt
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For the specially interested, GitHub user RangeKing made a visual representation of the 

entire YOLOv8 architecture that can be seen in Figure 41.  

 

Figure 41: YOLOv8 Architecture, analyzed and visualized by GitHub user RangeKing [58]. 
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Loosely spoken, the general network structure shown in Figure 41 can be interpreted as:  

- A backbone network that often is referred to as a feature extraction network, designed 

to be generic for a wide range of feature extractions.  

- Then some C2f (convolution to fully connected) flattening part that converts the 3D 

tensor to a 1D tensor for prediction. This is required as the fully connected prediction 

network needs a flattened tensor. 

- A head network responsible for task specific feature extraction. Often the network 

that is being retrained for the specific task, modifying the network to produce the final 

desired result. 

- Then multiple fully connected neural networks for predictions. 

- And a final bounding box and class prediction loss calculation.  

YOLOv8 has a pyramid multi-scale feature extraction architecture. So, all the conv layers, 

C2f, Concatenation and Up-sampling basically creates feature maps in different scales. 

Resizes and restructure the tensors and concatenated them before being fed to the fully 

connected network for classification. As shown in the last light blue Conv section, the 

activation function used is called SiLU (Sigmoid Linear Units).  

4.3.2.1 SiLU Activation Function 

SiLU was originally proposed by Elfwing Stefan [63] in 2017 as an activation function for 

reinforcement learning neural networks. The original paper called the function Sigmoid-

Weighted Linear Unit but it is also commonly known as Sigmoid Linear Units or swish 

function [64]. A graphical representation of the SiLU activation function compared to the 

ReLU activation function is shown in Figure 42. 

 

Figure 42: Graphical presentation of SiLU compared to ReLU activation function. 

Advantages of SiLU compared to ReLU is that it is a smooth function. Small negative values 

are still accounted for instead of just zeroed out like for ReLU. This could be important as 

small negative values could retain information that is important for capturing patterns in the 

data [32]. Also, it is a non-monotonous function, meaning that it has both decreasing and 

increasing regions. This contributes to capture more complex interactions between the input 

and the weights (because it gets both positive and negative values) and can lead to improved 
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learning and model performance. SiLU is the Sigmoid / Logistic function multiplied by its 

input as indicated in equation (7) and (8). 

𝛼𝑘(𝑥𝑘) = 𝑥𝑘 ∗ 𝜎(𝑥𝑘) 

(7) 

Where Sigmoid / Logistic function is: 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
 

(8) 

4.3.2.2 YOLOv8 Loss functions 

There are two loss calculations performed for the YOLOv8 object detection network. First 

one is the bounding box loss calculation of how good a predicted box matches the ground 

truth bounding box. The second one is the class prediction loss function with BCE. BCE loss 

function is explained in chapter 4.2.5.1. 

The loss calculation for the bounding box prediction is performed using a method called 

DIoU (Distance Intersection over Union). It is somewhat similar to IoU but the difference is 

that IoU only works when the boxes are actually overlapping. IoU is explained in chapter 4.4. 

DIoU on the other hand, does not need the boxes to be overlapping because it calculates both 

the IoU and the distance (D) from the ground truth box. Thus, taking both the actual size and 

localization of both boxes into account. DIoU is responsible to measure the similarity 

between the two boxes. 

“Distance-IoU (DIoU) loss incorporates the normalized distance between 

the predicted box and the target box, which converges much faster in 

training than IoU and GIoU losses.” – Zhaohui Zheng et al. [65]. 

See equation (9) where “d” is the Euclidean distance between center point of prediction and 

ground truth box, and “c” is the diagonal length of the smallest enclosing box that would 

cover the two boxes [66]. This is also visually presented in Figure 43. 

𝐷𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 +
𝑑2

𝑐2
 

(9) 

 

Figure 43: Visual presentation of prediction versus ground truth box and the parameters d and c in the 

calculation of DIoU. Green box is predicted, grey box is ground truth, dashed line box is enclosing box that 

would in theory cover both boxes. 

The bounding box loss calculation DIoU is performed in combination with a method called 

DFL (Distance Focal Loss). DFL is a modified version of the more traditional Focal Loss 
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(FL) method that tries to handle the issue of class imbalance, assigning more weights to 

easily misclassified examples and less weight to easy examples [67]. DFL uses this theory of 

FL to incorporate the distance error between predicted and ground truth bounding box into 

the focal loss calculation, thus giving more weight to samples with larger localization error. 

DIoU + DFL is combined into one loss function, resulting in a faster loss to zero convergence 

and accuracy improvement of the bounding box prediction. 

4.3.3 Data preparations for YOLOv8 object detection 

Custom training data need to be in a certain format for the YOLOv8 model to interpret it. The 

formatting is simple, shown in Table 11. 

Table 11: YOLOv8 annotation file. 

class_id x_center y_center object_width object_height 

3 0.267 0.509 0.033 0.023 

It is important that the values are normalized between 0 and 1 with respect to full image 

width and height. As an example, the actual x center of an object id 3 in Table 11 in an image 

of width 1200px would be calculated as equation (10). 

𝑥𝑐𝑒𝑛𝑡𝑒𝑟 = 0.267 ∗ 1200𝑝𝑥 

𝑥𝑐𝑒𝑛𝑡𝑒𝑟 = 320,4𝑝𝑥 

(10) 

The training and validation data can be bounding box annotated using an annotation tool that 

supports this format. Each class category should have class id, which means that there must 

be a label map export of class name and related class id as shown in Table 12. 

Table 12: Class name – class id annotation mapping. 

class_name class_id 

valve 3 

When the training and validation data is ready, they need to be sorted into a folder structure 

as shown in Figure 44. The images could be any file format, and the labels should be .txt 

formatted. 
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Figure 44: Folder structure, train and validation images and labels. 

The final step is to create a custom config.yaml file that can be uploaded on initialization of 

training, telling the model where to find the data and number of class categories and a list of 

the class category names. This is shown in Figure 45. 

 

Figure 45: Configuration file callable on run, data_custom.yaml file. The list of objects needs to be in order 

from 0 to nc. In this case, “value” has class_id 0. This process is automated by creating a script for reading the 

label_map.txt file that was exported with the last annotation file. 

This process of annotating data and creating the necessary arrangements for this method to 

run can be automated and optimized. This is a partial goal for this project and will require a 

custom annotation tool and some data preparation scripts. 

4.3.4 Training and validating YOLOv8 object detection 

Running a training session with a custom dataset is typically easy for all ML methods if the 

data is prepared correctly. For YOLOv8, it can either be run directly from the command line 

(CLI) or terminal, or using Python with only a few lines of code, as shown in Table 13. There 

are a lot more parameters that can be set for training and predicting, ref documentation. 

Table 13: Example of running training and prediction on CLI or Python script. 

CLI train yolo task=detect mode=train epochs=100 data=data_custom.yaml 

model=yolov8m.pt imgsz=640 batch=8 

CLI pred yolo task=detect mode=predict model=yolov8m_custom.pt show=True 

conf=0.5 source=1.png line_thickness=1 save=True save_txt=True 

Py train 
model = YOLO("yolov8x.pt") 

model.train(data="data_custom.yaml", batch=8, imgsz=640,  

            epochs=500, workers=1, patience=100) 

Py pred 
model = YOLO(best_model) 

model.predict(conf=0.5, source="path/test", line_thickness=2,  

              save=True, save_txt=True) 
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Note: This is of course dependent on environment and package installation. Ultralytics must 

be installed on the system or virtual environment [68]. PyTorch with GPU support is also 

highly recommended. 

4.4 Non-Maximum Suppression 

Non-maximum suppression is in short terms a filter that is applied to filter out all bounding 

box proposals that does not meet a certain criterion [69]. It is an algorithm that takes a list of 

boxes, their corresponding confidence score and location as input and further: 

1. Sort each box based on their confidence score and removes all boxes bellow a preset 

threshold. The confidence threshold is defined by the user. 

2. Picks the bounding box with the highest score and remove all the other boxes that 

overlaps with it within a preset threshold. The overlap threshold is defined by the 

user. The overlap is calculated using the IoU, also called the Jaccard index formula 

shown in equation (11), graphically represented in Figure 46. 

3. Step 2 is repeated until there are no more bounding boxes to process. 

The result after this non-maximum suppression should be a single box classifying each 

individual object in the picture. 

4.4.1 IoU – Intersection over Union 

Intersection over Union (IoU) is a way to measure how much two things overlap. It is 

commonly used to compare the accuracy of object detection or image segmentation models. 

IoU is calculated by dividing the area where the two object detection boxes overlap by the 

total area that they cover. The resulting value is between 0 and 1, where 1 means the two 

things completely overlap and 0 means they don't overlap at all. 

𝐽(𝐴, 𝐵) =
|𝐴⋂𝐵|

|𝐴⋃𝐵|
 

  (11) 
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Figure 46: Graphical representation of the IoU formulation. IoU is calculated by union the divided overlap 

between proposed bounding box and ground truth [70]. The ground truth being the bounding box with the 

highest score. 

4.5 Software analysis and design 

Two pieces of software is being developed for this project. The first one is a semi-automated 

annotation software, and the second one is the final Industrial Component Extraction 

software (ICE). The software functionality is analyzed using concepts from Object-Oriented 

Analysis, Design and Programming (OOADP). The testing of each software is explained in 

the Results chapter 5.2.2 and 5.2.5. 

4.5.1 Semi-automated annotation software (Program 1) 

The semi-automated annotation software will utilize the multi-label classification with sliding 

window pyramid scale NMS method and serve as a custom software designed for engineers 

to annotate images for one-stage or two-stage detectors. 

4.5.1.1 Application requirements  

"A software for annotating images that will serve as training data for a one-stage or two-

stage detection method. The annotation software should have the ability to pre-analyze the 

image using a multi-label classification sliding window algorithm. This will help with 

reducing manual labor when annotating training images." 

Without pre-analysis: 

- User should be able to upload an image. 

- Preprocess the image by cropping it to a desired size. 

- Directly annotate the image without any pre-analysis. 

- Export the image file used for annotation and the annotation file in correct format 

according to detection method (xml, csv, or txt format). 
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With pre-analysis: 

- User should be able to upload an image. 

- Preprocess the image by cropping it to a desired size. 

- Pre-analyze the image by selecting a .pkl file (model) used for sliding window 

classification. 

- Watch the analysis progress. 

- View the pre-analyzed image. 

- Make changes and improve the annotation. 

- Export the image file used for annotation and the annotation in correct format 

according to detection method (xml, csv, or txt format). 

How to annotate:  

- User should be able to drag new boxes on the screen and add a label to the box. 

- The label and number of same label objects should be listed in a separate window. 

- User should be able to resize, move, edit label, and delete box by using the mouse. 

- Suggested mouse interactions: 

o Mouse left-click-drag makes new box. Choose size, release mouse to put sized 

box on image. Label automatic prompted on mouse release, enter by typing. 

o Mouse mid-click within existing box, delete the box. 

o Mouse right-click within existing box opens label edit prompt. 

o Mouse left-click-drag within existing box moves the box. Release mouse 

button on new location. 

o Mouse left-click-drag on corner of existing box resizes the box. Release 

mouse button on new size. 

- The annotation should automatically be updated in the list, csv file and export format 

file. 

- Save on quit. 

4.5.1.2 Domain Model and System Sequence Diagram 

A domain model is helpful to visualize the conceptual classes in object-oriented 

programming. As the focus when developing this software was not object-oriented, this 

domain model shown in Figure 47 serves at an overview of all the required functions that the 

software needs to meet the requirements. 
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Figure 47: Domain Model annotation software. 

 

A System Sequence Diagram (SSD) is also helpful to visualize how the process flow of the 

software will work from input to analysis to annotation to export. See Figure 48. Normally an 

SSD explains the informational flow of one or more use cases, but for this software it is 

simply used to visualizing how the interaction to the software triggers functions and how 

each function triggers sub functionality within the software. 
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Figure 48: System sequence diagram annotation software. 

4.5.1.3 Prototype design mockup 

Creating a simple prototype mockup is an important step to visualize the idea, give a sense of 

interaction flow and functionality. This tool will only be used by technical personnel and 

engineers, so focus on UI design for consumer market is not of any concern. The theme for 

the application is folder structure, grey colors, and button interaction. The cropping of images 

will be performed using trackbars. The annotation of images should be performed as 

explained in suggested mouse interaction section of the requirements list. A mockup can be 

drawn using tools or using pen or paper. A paper drawn mockup is available in Appendix M. 

4.5.2 Industrial Component Extraction tool – ICE (Program 2) 

The ICE software will be the final solution of this project, provided as a user-friendly tool for 

performing operator interface image analysis.  

4.5.2.1 Requirements 

“A software where the user can upload one or more operator interface graphics images, 

click a button to analyze, view progress, and get a downloadable document in return. The 

software should have a nice design and be user-friendly. In the backend, the software will 
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perform object detection, tag extraction, linking of objects and tags, and generating an 

analysis document for export.” 

User interaction requirements: 

- Correct design based on UI design principles. 

- Maximum of 3 clicks to achieve the main goal of the application. 

- Home screen: 

o A button for uploading images. Prompt user with folder structure where the 

user can select documents. 

o A text field that shows how many documents that are selected for the analysis. 

o A button to start the analysis. 

- Loading screen:  

o A progress or waiting indication. 

- Finished screen: 

o A text showing status analysis. 

o A button for downloading the analysis document. 

Backend requirements: 

- Main function containing the object detection and calling of all subclasses: text 

extraction, object tag linking, generate excel document. 

- Separate class for OCR text extraction. 

- Separate class for minimum Euclidean distance calculation and object tag linking. 

- Separate class for excel document generation. 

4.5.2.2 System Sequence and Class diagram 

A simplified system sequence diagram is created to show the flow of execution from the user 

interacting with the UI and methods executing in the background in Figure 49.  

- The user upload images, and the images are loaded into a uploads folder.  

- The N number of uploaded images are displayed to the user.  

- The user then clicks the start analysis button, and the analysis is initialized.  

- In the backend, the software starts by feeding the uploaded images to the OCR for 

extracting tags, then detect objects using the YOLO prediction model. These two 

functions create separate annotation files for objects and tags.  

- The annotation files are fed to a link objects function that links the objects and tags 

that are close to each other as explained in minimum Euclidean distance chapter 

5.2.4.2.  

- Now the final analysis is then fed to a method for generating a excel sheet that will be 

available for download.  

- While the backend is working, the user will see a progress bar, indicating that the 

software is working.  

- When the excel doc is generated, the user will be displayed with a success screen with 

an option to download the analysis excel document or perform a new analysis.  

- User can click to prompt file explorer and download document. 
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Figure 49: Simplified System Sequence Diagram for showing software flow. 

The class diagram shows the overall structure of the code, representing classes and functions 

created to perform the main goal of the software shown in Figure 50. The “ObjectPrediction” 

class contains methods for predicting, labeling, snipping, and calling the “ObjectLinker” class 

on the objects that are predicted by the YOLOv8 model and tags extracted from the OCR. 

Separate classes are created for tag extraction, excel file generation and object linker. The 

“DeleteTempFiles” is just a function within the main program file to clean up the temporary 

folders when analysis is exported. 
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Figure 50: Class diagram for ICE software. 

4.5.2.3 UI prototyping and design mockup 

Figma is used to prototype the design for this application. Two designs is tested for both 

desktop/web and mobile layout. The mobile design can be viewed Figure 51, and the 

desktop/web designs can be viewed in Appendix N. The desktop/web design are similar to 

the mobile design, just rescaled to fit the browser window width and height. The design is 

kept simple, choosing colors of blue and purple which represents trust, safety, peace, and 

calm. These colors are also good for getting good color contrasts on white background [71]. 

All colors used in this design is listed in Table 14, and are within the recommended 

specifications of at least 7:1 on color contrasts for normal text, and 4.5:1 on large text as 

specified by the WCAG AAA (Web Content Accessibility Guidelines 2.0) [72]. All contrasts 

are checked with a contrast checker from WebAIM [73]. 

Table 14: Color table components in design. All contrasts are checked towards a background of #E3F3FE which 

is a nuance of blue and a representative of where the text is located on the gradient blue to white background. 

Component Color Contrast to background 

Text   #3126A5  9.4:1 

Border  
#4B4EDC  5.4:1 



 4 Methods 

72 

Header text #333333 grey  11.1:1 

White background #FAFAFA mild nuance of 

regular white  

 

Blue background gradient #3A50B0   

 

      

Figure 51: Design prototyping mobile layout. The desktop layout looks the same, it just scales depending on 

browser window size. 

The loading and results screen will inherit the same design for colors on the progress bar, 

buttons, and text. No design mockup is provided for these. 

4.5.2.4 Development 

The software is developed using a Python framework called Flask. Flask Python is a 

lightweight web framework only providing the most essential components for building web 

applications, frontend, backend, and APIs [74]. Since all the software developed in this 

project is in Python, it was only natural to develop the final software with a Python 

framework. Flask, like most web frameworks are based on the Hypertext Transfer Protocol 
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(HTTP) protocol, using “GET”, “POST, “PUT” and so on. It is therefore easy to host such 

and application on a server at a later stage. During this project’s development and testing, the 

application is hosted locally. 

Since this is a web application with requirements of three screens, three routes are created in 

the applications main document “app.py” as shown in Figure 52. These three request routes 

call the applicable functions to achieve the use case functionality. Each route has its own user 

interface, coded in Hypertext Markup Language (HTML), and styled using Cascading Style 

Sheets (CSS).  

 

Figure 52: Index route “/”, upload_files() button click “POST” request, start_analysis() button click “POST” 

request and final results “/results” route defined in app.py. Note: the comment “#Perform analysis in separate 

thread”, is not correct as there is no multi-threading in this application. 

 

4.6 Quick recap 

The detailed explanations of ResNet architecture, CNN, activation functions, pooling layers, 

loss calculations, backpropagation, NMS, IoU, and YOLOv8 architecture are included in this 

report because they are crucial concepts that can help the reader understand the upcoming 

project results. The remaining sections of the report will present results on single-label 
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classification and testing of models, as well as multi-label classification models, multi-class 

object detection, and YOLOv8 object detection models, without further elaboration on 

technicalities. The theory and analysis provided in this Methods chapter lays the theoretical 

foundation for further reading. 
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5 Result 
The Results chapter presents a detailed explanation of all the tasks undertaken during the 

project, including the approach and techniques used, scripts developed, and the final 

outcomes. It describes how each task was executed and explains the reasoning behind the 

selected approach. In addition, this chapter will go through additional tricks and code that 

were developed to simplify repetitive tasks and the final product that was delivered. The 

chapter contains a lot of tables and figures to try and simplify explanations. 

5.1 Image classification 

This chapter will go through single-label and multi-label image classification. Why they are 

used, how to train a custom model, and results related to each approach. Starting with data 

assembly listing class labels, and some important steps in creating the code for training, 

validating, and testing. 

5.1.1 Single-label classification 

The single-label classification method serves as a bases in this project, to check how well a 

prebuilt deep learning neural network model performs after training it on the specific project 

data. An untrained ResNet50 model and a pretrained ResNet50 model will be retrained using 

the project data. The two models will be compared to see if it is beneficial to use transfer 

learning on a pretrained model, thus keeping some of the learned features, or if it is best to 

start from an untrained model. The ResNet neural network architecture is chosen because the 

FastAI API provides out of the box modules pretrained on the ImageNet dataset. ResNet50 is 

chosen as it is the arguably best balance between complexity and size. In general, a model 

with deeper architecture will be able to model data more accurately but will also be more 

prone to overfitting [75]. There are many warnings and arguments to this generalization, but a 

deeper architecture with more layers and parameters will capture the data in a better way. As 

the training data in this project has a lot of similar features, it is important to select a model 

that has enough capacity to capture the specific feature that differentiate two “look-alike” 

object classes. Remember, deeper architecture will require more GPU RAM, and could 

compromise hardware performance, thus resulting in out of memory failure. If this issue 

occurs, it can be solved by reducing the training and validation batch size. 

5.1.1.1 Assemble data 

Data for this specific task is collected from the dataset obtained in the beginning of the 

project. Only pictures that contain one and only one object are separated into different class 

folders. 20 class folders are created, containing pictures that fits the class description and 

therefore labeling the pictures. See Table 15 for list of classes and example dataset objects. 
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Table 15: Single-label classifier classes and dataset examples. 

Class name / folder name Example from dataset 

background 

  

bargraph 

   

chart 

    

damper 

    

fan   

line 

    

mixer 

   

motor 

   

nav 
    

pump_isa 
    

pump_iso 

   

status 
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tag 

  

value 
    

valve 

     

valve_h (hand) 

   

valve_m (motor) 

      

valve_m_3w (motor 3way) 
 

valve_p (pneumatic) 

     

valve_pr (pressure release) 
  

A keen observer will quickly see that due to limited features in each class, the model might 

get overconfident and overfit easily. This is important to keep an eye out for when training. 

There are also some classes that are quite similar such as “status”, “tag” and “value”, 

therefore might end up misclassifying a lot. 

5.1.1.2 Setting up DataBlock and preparing learner 

Next step is to write a Jupyter Notebook Python program, separate the data into training and 

validation set and prepare a DataBlock for training. As mentioned in the system description 

chapter 3.5.5, the FastAI toolbox have predefined classes and methods that makes it easier to 

quickly set up DataBlocks, train models and deploy applications. Start by creating a path 

variable to the datasets, shown in Table 16. 

Table 16: Define path variable to training and validation dataset. 

 

path = 

Path("/home/user/git/classify_singl_obj/Classification_small_singleobject") 

Path.BASE_PATH = path 

path.ls() #lists objects in path 

 

 

Then define the DataBlock and load the dataset into it using dataloaders, see Table 17. A 

batch from the training set can be viewed by calling the “show_batch” method on the data 

object, as shown in Figure 53. From the DataBlock code, it is important to specify what type 
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of deep learning task that is going to be performed, in this case a ImageBlock for image 

classification. The items are collected in the “get_items” parameters using a function 

“get_image_files” that will retrieve all image files in subfolders from path, and label them 

with the folder name (see chapter 3.6.2.2). The data is split 20% into validation set and 80% 

training set, with a seed of 42 ensuring the same split every time this DataBlock is called. The 

“get_y” parameter gets the folder name of each object to label the data. The “item_tmfs” 

transforms each image according to specifications such as resizing, cropping, padding etc. 

Table 17: Define the DataBlock and load the data using dataloaders. 

 

data = DataBlock( 

    blocks=(ImageBlock, CategoryBlock),  

    get_items=get_image_files,  

    splitter=RandomSplitter(valid_pct=0.2, seed=42), 

    get_y=parent_label, 

    item_tfms=Resize(224, ResizeMethod.Pad, pad_mode='zeros') 

) 

dls = data.dataloaders(path) 

 
dls.valid.show_batch(max_n=4, nrows=1) 

 
 

 

Figure 53: Batch from dataloader training set. 

5.1.1.3 Training non-pretrained model 

Next, train the non-pretrained ResNet50 model called xresnet. The xresnet50 is downloaded 

from the FastAI API and loaded into a model parameter, specifying number of outputs from 

the dls (dataloaders). Based on the theory provided in chapter 4.2.1, it was shown the 

importance of specifying number of outputs in the dense layer (number of classes). A learn 

parameter is called with the “model”, dataloaders (dls), and “loss_function” is set to 

CrossEntropyFlat with metrics set to “accuracy”, see Table 18. CrossEntropyFlat also known 

as Flat Cross Entropy is a variation of the CE loss function designed to handle class 

imbalance, which is important in this project as some classes have way more sample than 

others. Since this is a non-pretrained network, there is no need to freeze any epochs when 

training so the “fit_one_cycle” method is called on the learn object. The accuracy will 

gradually improve during training, as seen in Figure 54. 
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Table 18: Defining model, learner, metrics and start learning cycle of single-label non-pretrained xresnet50 

classification model. 

 

model = xresnet50(n_out=dls.c) 

learn = Learner(dls, model, loss_func=CrossEntropyLossFlat(), 

metrics=accuracy) 

learn.fit_one_cycle(12) 

 
 

 

Figure 54: Non-pretrained xresnet50 training result. 

After training for 12 epochs, a decent base result with an accuracy at 84.6% is achieved. The 

training could have been limited to 11 epochs, as the accuracy don’t approve at all after that. 

Looking at the training and validation loss plot in Figure 55, the validation flats out at the end 

indicating that the model will only start overfitting at this point. 

 

Figure 55: Training and validation loss plot non-pretrained xresnet50. 
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It is possible to improve this model by using additional techniques such as normalization, 

progressive resizing, test time augmentation, mixup and label smoothing. These techniques 

are really important when working with models that are being trained from scratch [76]. 

However, there are many pretrained versions of this xresnet model that is available from the 

FastAI library, where many of these techniques mentioned above are automatically applied. 

5.1.1.4 Training a pretrained model 

A pretrained deep learning model has been trained on a large dataset for a specific task such 

as image classification. During the training it learned about general features such as edge 

detection, corners and contours and other features as illustrated in Figure 15 in chapter 4.1.1. 

This pretrained model is later used as a starting point for fine-tuning on a new, smaller 

dataset. Typically, this will require some modifications to the last layers of the deep learning 

model to adapt to the new task. The process of retraining a pretrained model to fit a new task 

is called transfer learning. This method is often preferred because it contains more world 

knowledge from the get-go, and retraining will require significantly less computational 

resources and time. One additional benefit of using pretrained models is that the FastAI 

library will handle all the preprocessing of data according to the already trained resnet50 

model. 

Now, to perform transfer learning with the FastAI library, start by adjusting the learner seen 

in chapter 5.1.1.3, Table 18, to the following code snippet shown in Table 19, and define 

fine-tune method of the object instead for the fit-one-cycle. Remember to swap the xresnet50 

to the resnet50 pretrained model. Also, use the “freeze_epochs” parameter to freeze all layers 

except for the last one for 3 epochs in the beginning of the training.  

Table 19: Adjusted code snippet for transfer-learning a pretrained ResNet50 model. 

 

learn = vision_learner(dls, resnet50, metrics=accuracy).to_fp16() 

learn.fine_tune(9, freeze_epochs=3) 

 

 

Freezing layers is helpful to prevent the previously trained layers to be updated in the initial 

training of the new model, thus keeping their pre-trained knowledge to help the new layer(s) 

learn the task-specific features more efficiently. The new layers will adjust their weights to fit 

the pre-learned features, resulting in a faster convergence and prevent overfitting. The pre-

learned layers will normally contain information that is more general, and helpful in initial 

training. After a few epochs, all layers are unfrozen, and the pre-trained layers will start 

adjusting its weights to fit the specific new task. 

The number of epochs is the same as for the non-pretrained model, freeze for 3 epochs, then 

run 9 unfreeze, total of 12. As seen in Figure 56 the accuracy of the pre-trained model is a lot 

higher than the non-pretrained model. It is arguable that the training should have been limited 

to a total of 9 epochs, as the 5th unfrozen epoch gives the highest accuracy, and the validation 

loss seems to get worse after unfrozen epoch 5. Improved training loss and worsening 

validation loss is a clear indication that the model is overfitting to the training data. Figure 57 

also illustrates that the training loss keeps decreasing, but the validation loss starts getting 

worse at a certain point, indicating overfitting. From looking at this plot in Figure 57, it might 

even be argued that the training should have stopped after unfrozen epoch 3, as this was the 
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point where accuracy was at 96.7% which is high, and the validation loss was at its lowest on 

0.095. 

The number of epochs is not taken into account for this task as it is primarily goal is to test 

whether a non-pretrained or pretrained model should be used for this project. 

 

Figure 56: Pretrained resnet50 training result. 

 

Figure 57: Training and validation loss plot resnet50. 

5.1.1.5 Comparing the non-pretrained and pretrained model 

As expected, transfer learning a pre-trained model is the clear winner in this case. A quick 

comparison of the confusion matrixes of both the non-pretrained (Figure 58) and pretrained 

(Figure 59) model indicates that the non-pretrained model is a lot more confused on the 

classifications. There are a lot more miss-classifications, especially when it comes to different 

type of valves in Figure 58. 
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The pre-trained transfer learning approach will be used further in this project. Full source-

code for this single-label classification non-pretrained and pretrained problem can be found in 

Appendix E. Note that the augmentation part is included in the full source-code even though 

it is not used for this first step of the project. Only used for testing different results. 

 

Figure 58: Non-pretrained xresnet50 confusion matrix. 
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Figure 59: Pretrained resnet50 confusion matrix. 

5.1.1.6 Augmenting dataset 

There was no reason for doing any augmentation on the data for this test, but this will be an 

important technique later in the projects as it is a useful technique when having few objects in 

the training data [77]. 

5.1.2 Multi-label classification 

Multi-label classification is the task of recognizing the categories of objects in images where 

the image may not contain just one type of object, but also multiple or no objects. This “no 

objects” feature is useful in most real-world cases as it will give the model an option of not 

classifying images if it can’t find any objects that it is not trained to find. The multi-label 

classification approach differs from the single-label image classifier in that the latter will 

always attempt to classify an object in an image as one of its trained classes. It will also give 

the model the opportunity to indicate that there is some possibility that there might occur 
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multiple objects in one image. This is helpful in cluttered images where some objects can be 

close to or even overlaying each other. 

5.1.2.1 Assemble data 

The object classes are the same as for chapter 5.1.1.1 Table 15, with additional multi-class 

folders shown in Table 20. Each class is separated with a space on the folder name. 

Table 20: Additional multi-label classifier classes and dataset examples. 

Class name / folder name Example from dataset 

bargraph tag 

  

bargraph value 

   

fan tag 

  

motor tag 

  

nav line 

   

nav tag 
   

pump_isa line 
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pump_isa tag 

  

pump_isa tag line 

  

pump_iso line 

   

pump_iso tag 

 

status tag 

  

value tag 

  

value tag line 

  

valve line 
   

valve_3w line 
  

valve_h line 

  

valve_h tag  

valve_h_3w line  

 

valve_m bargraph 

  

valve_m line 
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valve_m tag 

   

valve_m tag line  

  

valve_m_3w line 

   

valve_m_3w tag 

 

valve_p line   

valve_p tag line 

  

valve_p tag value 

  

valve_p value 

  

valve_p line value 

  

A script for converting this folder information into a specification CSV file is created as 

explained in chapter 4.2.4.2.1. This script will iterate through all folders, renaming the files 

according to the folder name i.e., labeling the files, then putting folder name and file name in 

the CSV format as shown in example Table 9. A snippet of the “items.csv” specification file 

loaded into a Pandas data-frame is shown in Figure 60. 
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Figure 60: Snippet of CSV specification file loaded into Pandas data frame. 

5.1.2.2 Setting up DataBlock 

The main difference between executing the single-label classification and this multi-label 

classification is the csv file and type of learner needed to train the model. The multi-label 

classifier requires a “get_x” and “get_y” function for defining the input (fname) and the 

output (labels), and a splitter function for splitting the test and validation objects (is_valid) as 

shown in Table 21. 

Table 21: Split dataset into train and validation sets, link input (get_x) and output (get_y). 

 

def get_x(r): return path/'train'/r['fname'] 

def get_y(r): return r['labels'].split(' ') 

 
def splitter(df): 

    train = df.index[~df['is_valid']].tolist() 

    valid = df.index[df['is_valid']].tolist() 

    return train,valid 

 
 

Then by creating a DataBlock variable specifying MultiCategoryBlock, the dataloader can be 

called as shown in Table 22. Notice how the batch size (bs) is set to 16 for this to limit 

computation stress. 

Table 22: Defining DataBlock for specific task and calling dataloaders with the pandas data-frame as input, 

specifying batch size of 16. 

 

data = DataBlock(blocks=(ImageBlock, MultiCategoryBlock), 

                   splitter=splitter, 

                   get_x=get_x,  

                   get_y=get_y, 

                   item_tfms = RandomResizedCrop(224, min_scale=0.35)) 

dls = data.dataloaders(df, bs=16) 

 

dls.show_batch(nrows=1, ncols=3) 

 
 

Figure 61 shows part of a batch for the first data loader. To normalize the data, the items are 

transformed by using the random resize and cropped by scaling each object. This is not a 
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good approach for this project as a lot of the key item features are then lost. To change this, a 

new DataBlock is created with variable “item_tfms” changed to scale with zero padding as 

shown in Table 23. 

 

Figure 61: Batch of first data loader resize scaled with cropping. 

5.1.2.3 Augmenting dataset 

When creating the new DataBlock, an augmentation transform can also be applied to the 

dataset using the “batch_tfms” variable shown in the code snippet in Table 23. 

Table 23: New DataBlock with changed item_tfms and a batch_tfms. 

 

data = data.new( 

    item_tfms=Resize(224, ResizeMethod.Pad, pad_mode='zeros'),  

    batch_tfms=aug_transforms(size=224, min_scale=1, mult=2, max_warp=0, 

    do_flip=True, flip_vert=True, max_zoom=1.0, pad_mode="zeros",  

    max_rotate=0) 

) 

dls = data.dataloaders(df, bs=16) 

 

dls.show_batch(nrows=1, ncols=3) 

 
 

A batch of augmented items is shown in Figure 62. The items are now scaled with padding, 

leading to black edged pixels not containing any information. This worked best for this 

project, as the key features of each object is kept at scale. Note that black pixels not 

containing any information will take up computing resources, not considerable in this case. 

The items are also flipped vertically and horizontally to provide more variety in the training. 

No zoom or wrap applied as it is not likely for any objects in the image classification. 
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Figure 62: Batch of second data loader with resize scaled with padding. 

5.1.2.4 Training a base model 

Define a learner with the resnet50 model that was chosen in the previous step of single-label 

classification. The metrics is set to an accuracy multiplier with the default threshold of 0.5, 

see Table 24. The threshold is important because it lets the accuracy function know at what 

threshold (percent certainty) should the activation function classify an object as 1 or 0, also 

known as firing the neuron. Any value above the threshold is classified as 1 and below as 0.  

Table 24: Define learner with dataloaders, model, metrics and threshold for the metrics. 

 

learn = vision_learner(dls, resnet50, metrics=partial(accuracy_multi,   

        thresh=0.5)) 

 

 

Then use the FastAI learning rate finder to find the optimal learning rate, see the method call 

in Table 25. Learning rate and back propagation is discussed in detail in chapter 4.2.5.2.  
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Table 25: Using the find learning rate function from the fastai library. 

 

lr_min,lr_steep = learn.lr_find(suggest_funcs=(minimum, steep)) 

 
 

 

Figure 63: Suggested learning rate by FastAI learner. 

When dealing with single-label classification, the suggested learning rate would be in-

between the minimum and the steepest point of the loss. This is not the case for a multi-label 

classifier, as this point indicates a value that is way too low, resulting in small steps during 

the training, low convergence (step size), slow learning and a bad model. The perfect point 

for the learning rate would be just when the loss keeps climbing, somewhere between 10-4 

and 10-3. A learning rate of 3e-3 is selected for the fine-tuning of the model as shown in 

Table 26. 

Table 26: Calling the learn fine tune function with num epochs, learning rate, and freeze epochs parameters. 

 

learn.fine_tune(7, base_lr=3e-3, freeze_epochs=4) 

 
 

5.1.2.5 Validating base model 

As seen in Figure 64, the accuracy looks really promising with a baffling score of 99.48%. 

However, there is one thing to be aware of and that is the threshold defined for the learner. 

When the threshold is set to low, it will often be prone to select wrong labeled objects, and if 

the threshold is too high, it will only select objects where the model is very confident [39]. In 

this first base iteration, the threshold might be wrong, and should be checked before 

retraining. 
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Figure 64: Multi-label classification base training result. 

5.1.2.6 Retraining 

Before retraining, there are a few methods to find a better threshold for the accuracy metrics. 

FastAI library provides a threshold finder that takes the predictions, targets, and a suggested 

threshold value as input. 

 

xs = torch.linspace(0.05,0.98,29) 

accs = [accuracy_multi(preds, targs, thresh=i, sigmoid=False) for i in xs] 

plt.plot(xs,accs); 

 
 

After iterating through each threshold in the “xs” linspace, a somewhat smooth curve is 

represented. This smooth curve Figure 65 indicates that all values between 0.2 and 0.95 

should give a decent accuracy score, and picking one of these values will not (in theory) 

overfit the validation set. Choosing 0.445 as accuracy threshold might give the best accuracy 

score, but since the goal is to only label the categories that the model is confident about, a 

higher accuracy threshold of 0.8 is chosen. One important part and reason for choosing this 

0.8 as threshold is the smoothness of the curve at this point. Choosing a point that is not 

within the smoothness of the curve can result in choosing a hyperparameter prone to outliers, 

thus resulting in false accuracy and overfitting to the validation set [39]. So, choosing 0.445 

as the threshold might not be a good idea after all.  
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Figure 65: Accuracy threshold plot. 

Define a new learner with the new parameters and retrain. The final code snippet is provided 

in Table 27. 

Table 27: Defining learner and start fine tuning the model. 

 
learn = vision_learner(dls, resnet50, metrics=partial(accuracy_multi,  

        thresh=0.8)) 

learn.fine_tune(7, base_lr=3e-03, freeze_epochs=4) 

 
 

5.1.2.7 Validating the result of the retrained model 

The training result shown in Figure 66 scores almost the same as the base model. An 

accuracy of 99.33% is 0.15% less than the base model with a score at 99.48%. The important 

thing about the retraining result is that the model is more confident in its classification, and 

there is less chance that the model was overfitted during training. The loss plot shown in 

Figure 67 also indicates that there is no reason to believe that the model overfits. Both the 

training and validation loss keeps dropping until it flats out during the last two training epoch. 

There is no confusion matrix developed and available in the FastAI library for this multi-label 

classification, and no reason for creating a custom function for this. A snippet of the 

validation batch can be seen in Figure 68 where all the validation objects are correctly 

classified for that batch. 
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Figure 66: Multi-label classification retraining result. 

 

Figure 67: Loss plot multi-label classification retraining. 
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Figure 68: Multi-label classification validation result batch. 

5.1.2.8 Exporting and importing model 

Exporting a model is quick and easy with the FastAI library. In one line of code the model 

can be exported as a .pkl file as shown in Table 28. 

Table 28: Exporting deep learning model using the FastAI library. 

 
learn.export(fname="v2_multiobj_classifier.pkl") 
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Then the exported model can be loaded back in as shown in Table 29, and tested on test sets 

individually or in batches. 

Table 29: Importing a deep learning model using the torch library. 

 
learn_inf = torch.load(path/'v2_multiobj_classifier.pkl',     

            map_location='cuda:0') 

 
 

5.1.2.9 Testing 

After loading the model back in as a learner, objects from an unseen test set can be predicted 

by calling the predict method on the learner. Predictions can be made individually as shown 

in Table 30 or by loading a dataset on to the learner. Loading large datasets into the learner 

utilizing the full power of parallel computations on the GPU will be further utilized in the 

sliding window pyramid approach. The full source-code for this multi-label classification can 

be found in Appendix F.  
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Table 30: Predicting labels of single object by loading an image into a path, then calling predict method on that 

object path. The tensorbase shows all predictions in a tensor and their score. By calling the dataloaders 

vocabulary it will list all the different class labels. The model predicts “line” and “pump_isa” which is correct 

and fits the tensor number 5 (line) and number 9 (pump_isa) class (counting from 0). 

 
num = 42 

imP_path = Path('/home/user/git/classify_multi_obj/test/'+str(num)+".PNG") 

imP = Image.open(imP_path) 

imP 

 

Out: 

 
 

In: 
learn_inf.predict(imP_path) 

 

Out: 
((#2) ['line','pump_isa'], 

 TensorBase([False, False, False, False, False,  True, False, False, False,  

True, False, False, False, False, False, False, False, False, False, False, 

False, False]), 

 TensorBase([1.9278e-04, 6.2927e-04, 3.0733e-04, 8.4767e-04, 1.7660e-03, 5.

1715e-01, 6.3016e-04, 2.0605e-03, 1.0679e-03, 5.2957e-01, 2.9166e-03, 1.847

8e-03, 3.1291e-01, 1.5407e-01, 8.5539e-05, 

             1.4498e-04, 1.1626e-03, 4.3624e-04, 3.6069e-02, 4.6947e-03, 2.

3830e-04, 1.7925e-04])) 

 

In: 
learn_inf.dls.vocab 

 

Out: 
['background', 'bargraph', 'chart', 'damper', 'fan', 'line', 'mixer', 'moto

r', 'nav', 'pump_isa', 'pump_iso', 'status', 'tag', 'value', 'valve', 'valv

e_3w', 'valve_h', 'valve_h_3w', 'valve_m', 'valve_m_3w', 'valve_p', 'valve_

pr'] 
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5.2 Object detection 

When talking about object detection compared to image classification, the main difference is 

that object detection classifies objects as well as locate them. The objects whereabout is then 

indicated in some way using bounding box rectangles or a segmentation mask. This is an 

important feature as it gives the user, whether the user is a person or an autonomous system, 

the ability to detect, analyze and perform action. For this project, object detection is 

important, as the user will have to get a report from the computer analysis on what objects 

exist, number of objects and location of each object in the picture. 

A challenging aspect with object detection is the way training data is obtained. Instead of 

individually obtained snippets of objects as for image classification, it requires full scaled 

images annotated with bounding boxes or segmentation masks. The task of annotating a large 

quantity of images is tiresome, and large companies often outsource such jobs to data 

labeling services. This is not possible within the timeframes for this project, so a clever 

approach using the previously trained multi-label classifier with more traditional sliding 

window algorithm in combination with other computer vision techniques is tested and used as 

a baseline for a semi-automatic annotation tool.  

5.2.1 Sliding window, image pyramid scaling and NMS 

The general idea is combining these three computer vision techniques for snipping a large 

quantity of images (objects) from a picture, storing the snipped image’s location, then further 

classify each snippet using the multi-label classification model derived in chapter 5.1.2.  

5.2.1.1 Image pyramid scaling 

One major problem using a sliding window algorithm for snipping out objects within a 

picture is the possibility of RoI misplacement or wrong RoI scale. This is basically selecting a 

RoI window that is too small for an object that the user wants classified as shown in Figure 

69, or that the RoI step size happen do pass in a position where only part of the object is 

visible as shown in Figure 70.  

 

Figure 69: RoI bounding box misplacement and overlapping. 

 

Figure 70: RoI bounding box misplacement an incorrect scale. 

This results in RoI snippets that lack information about the objects, and the image classifier 

will not be able to classify any object within that RoI. Thus, not being able to detect that 

object within the picture frame.  

There are two ways of reducing the chance of this RoI misplacement or wrong RoI scale, and 

that is to create a pyramid scale of the main picture and/or reducing the RoI step size. The 

first method is to create scaled version of the original window, where the first scale is the 

original scale, then it will reduce in size for each iteration of the sliding window algorithm, 
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keeping the RoI scale the same. On the smaller scaled images, the RoI will appear larger, thus 

covering more of the picture in each frame, making it more likely to contain larger objects. 

The implemented code for the image pyramid is shown in Table 31 and an illustration of how 

the image pyramid is scaled is shown in Figure 71. 

Table 31: Image pyramid scale function implemented in python. 

 
# Scales the image in given pyramid scales 

def image_pyramid(image, scale=1.5, minSize=(128, 128)): 

    # yield the original image 

    yield image 

    # keep looping over the image pyramid 

    while True: 

        # compute the dimensions of the next image in the pyramid 

        w = int(image.shape[1] / scale) 

        image = imutils.resize(image, width=w) 

        # if the resized image does not meet the supplied minimum 

        # size, then stop constructing the pyramid 

        if image.shape[0] < minSize[1] or image.shape[1] < minSize[0]: 

            break 

        # yield the next image in the pyramid 

        yield image 

 
# Initialize the image pyramid 

pyramid = image_pyramid(image, scale=PYR_SCALE, minSize=window_size_sq) 

 
 

 

Figure 71: Illustration of image pyramid scale, borrowed from [78]. A single square could be thought of as the 

RoI window sliding over each scaled image in the pyramid. 

The second method, decreasing RoI step size usually just decreases the chance of RoI 

misplacement, as there is no difference in RoI scale. The step size is defined in the sliding 

window algorithm in the next chapter 5.2.1.2. By reducing the step size, the sliding window 

algorithm will pick out more image snippets from the original picture, and therefore having to 

classify more images, resulting in a slower algorithm, more computing power, and prolonged 
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execution time. It will also result in objects being classified multiple times, causing more 

bounding boxes and noise. These are the main benefits and downsides to using such 

techniques as pyramid scaling and reduced step size. 

It is important to note that the sliding window snipping algorithm uses the CPU, and the 

image classification uses the GPU computation. The more pyramid scaled samples of the 

original picture and smaller RoI step size will result in more snippets and more hardware 

computations.  

5.2.1.2 Sliding window algorithm 

The sliding window algorithm is basically a preset sized RoI iterating over a picture at a 

preset step size as shown in the defined function in Table 32. Each step will perform a frame 

snippet that snips and stores the RoI. These snippets are stored as pixel values in an array as 

seen in the for-loop execution in Table 33. When the sliding window algorithm has iterated 

over the all the pyramid scaled versions of the picture, the preloaded multi-label classification 

model is used to classify all sippets stored in the array. The loading of the array into the 

model and predict call is shown in Table 34. Finally, the predictions need to be split into 

different arrays for further post processing and drawing bounding boxes on the original 

images as shown in Table 35. 

Table 32: Sliding window function. 

 
# Moves sliding windows 

def sliding_window(image, step_size, window_size): 

    for y in range(0, image.shape[0]-window_size[1], step_size[1]): 

        for x in range(0, image.shape[1]-window_size[0], step_size[0]): 

            yield (x, y, image[y:y + window_size[1], x:x + window_size[0]]) 
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Table 33: Code execution using a for loop for each image in the pyramid to slide and snip RoI. 

 
rois = [] 

locs = [] 

# Classify the image 

for image in pyramid: 

     

    # determine the scale factor between the *original* image 

    # dimensions and the *current* layer of the pyramid 

    scale = W / float(image.shape[1]) 

     

    for (x, y, window) in sliding_window(image, step_size, window_size_sq): 

        if window.shape[0] != window_size_sq[1] or window.shape[1] != 

window_size_sq[0]: 

            continue 

            

        # scale the (x, y)-coordinates of the ROI with respect to the 

        # *original* image dimensions 

        x = int(x * scale) 

        y = int(y * scale) 

        w = int(window_size_sq[0] * scale) 

        h = int(window_size_sq[1] * scale) 

 

        # Resize the window to the size expected by the model 

        window = cv2.resize(window, (224,224)) 

        window = np.array(window) 

        rois.append(window) 

        locs.append((x, y, x + w, y + h)) 

 
 

Table 34: Loading all the data into the multi-label classifier model for prediction. 

 
# Load data and predict using the Multi-label classifier model 

test_dl = learn_inf.dls.test_dl(rois) 

preds = learn_inf.get_preds(dl=test_dl) 
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Table 35: Splitting the predictions into separate arrays for post processing and bounding boxing on the image. 

 

# Creating dict, splitting predictions into labels, scores and region 

arrays  

labels = learn_inf.dls.vocab 

label = [] 

score = [] 

classified_regions = [] 

for i in range(len(preds[0])): 

    x1,y1,x2,y2 = locs[i] 

    label = (labels[preds[0][i].argmax()]) #.argmax orig 

    score = (preds[0][i].max()) 

    classified_regions.append((x1, y1, x2, y2, label, score)) 

 
 

5.2.1.3 Non-maximum suppression 

The theory behind NMS is explained in chapter 4.4. It is an important step for this sliding 

window pyramid scale classifier as the result from the pure classification is messy, containing 

thousands of elements. The messy result before post processing with NMS is shown in Figure 

72. 

 

Figure 72: Result of sliding window pyramid scaling multi-label classification algorithm without any NMS post 

processing. 

Now, the solution to this noisy output is to implement NMS to suppress overlapping 

bounding boxes that have low scores as shown in Figure 73. Traditional NMS can be ruthless 

when it comes to suppressing overlapping boxes, so a method called Soft NMS [79] is tested. 

Soft NMS works similar to regular NMS, but it scores each individual overlapping bounding 

box with a weight depending on how much it overlaps the box with the highest score. So, all 

bounding boxes are kept during suppression and contribute to the final solution, but the boxes 

with a lot of overlap compared to the one with the highest score is penalized with a worse 

score. The final threshold decides what boxes to keep. The advantage of Soft NMS is that it is 
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more forgiving than plain NMS and keeps more bounding boxes in this case. A problem with 

the result shown in Figure 73 when applying Soft NMS, is that since this is a custom solution, 

and there are no ground truth boxes telling the algorithm what should be where, the NMS 

algorithm suppresses all boxes that are below a certain score, without taking the label into 

account. So overlapping boxes of different label might suppress each other. This can also be 

seen from the code snippet provided in Table 36 as it only takes the bounding boxes and the 

scores as input. 

 

Figure 73: NMS post processing of object predictions. 

Table 36: Defining a function for NMS to modify the data to fit the cv2 softNMSBoxes method. 

 
# Used for NMS, merging/removing overlapping boxes with low score 

def merge_bounding_boxes(bboxes, scores, scoreThreshold=0.1, 

nms_threshold=0.1): 

    # create a list to store the indices of the bounding boxes to keep 

    keep = [] 

    # Convert the bounding boxes to a format that can be used by the  

    # cv2.dnn.NMSBoxes function 

    #bboxes = [box.astype("int") for box in bboxes] 

    bboxes = [np.around(box).astype("int") for box in bboxes] 

    # use the cv2.dnn.NMSBoxes function to suppress overlapping bounding  

    # boxes 

    scores = np.array(scores, dtype="float") 

    indices = cv2.dnn.softNMSBoxes(bboxes, scores, scoreThreshold,  

 nms_threshold) 

    # keep the indices of the bounding boxes that were not suppressed 

    for i in indices: 

        keep.append(i) 

    # return the indices of the bounding boxes to keep 

    return keep 
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5.2.1.4 Labeled non-maximum suppression 

This is a method invented for this specific object detection case during this project. The 

labeled non-maximum suppression is based on the same principle as the standard Soft NMS, 

with a small modification in the first iteration of the algorithm. Instead of sorting all 

bounding boxes based on the confidence level, it sorts each labeled bounding box separately. 

In the first iteration it only looks at e.g., “pump” labeled bounding boxes, and in the next one 

e.g., “valve” labeled bounding boxes. This is achieved in a for-loop, iterating over the 

obtained bounding boxes. The altered Jaccard index formula is shown in equation (12).  

𝐽𝑙𝑎𝑏𝑒𝑙(𝐴𝑙𝑎𝑏𝑒𝑙 , 𝐵𝑙𝑎𝑏𝑒𝑙) =
|𝐴𝑙𝑎𝑏𝑒𝑙⋂𝐵𝑙𝑎𝑏𝑒𝑙|

|𝐴𝑙𝑎𝑏𝑒𝑙⋃𝐵𝑙𝑎𝑏𝑒𝑙|
 

(12) 

The code provided in Table 37 first sorts the boxes and scores by labels, then iterate through 

each label class performing NMS and finally writes the result to a copy of the original image. 

This code snippet utilizes methods from the OpenCV library for all advanced tasks such as 

soft NMS, bounding box drawing and putting the labels on the image. It is important to be 

aware that there exist a lot of open-source packages and solutions that are available for free, 

that will help improve efficiency and quality of your projects. The final result of the labeled 

soft NMS is shown in Figure 74. Full source-code for this sliding window algorithm is 

available in Appendix G. 

 

Figure 74: Labeled soft NMS post processing result. 
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Table 37: Sorting the boxes and scores by labels. Then performing NMS on each label class individually. Final 

for-loop writes the results to a copy of the original image to provide the final bounding box result. 

 

# Group the boxes by label 

grouped_boxes = defaultdict(list) 

for box, label in zip(boxes, labels): 

    grouped_boxes[label].append(box) 

     

# Group the scores by boxes 

grouped_scores = defaultdict(list) 

for score, label in zip(scores, labels): 

    grouped_scores[label].append(score) 

 

 

# Perform NMS on each group 

copy5_image = orig.copy() 

 

for label, boxes in grouped_boxes.items(): 

    result = [] 

    scores = [] 

     

    #scores = [0.95] * len(boxes)  # score of each box, set to 1.0 for  

    #simplicity 

    scores = grouped_scores[label] 

    scores = np.array(scores, dtype="float") 

    indices = cv2.dnn.softNMSBoxes(boxes, scores, score_threshold=0.1,  

 nms_threshold=0.1) 

     

    #print(scores) 

    result.extend([boxes[i] for i in indices[1]]) 

    for (x1, y1, x2, y2) in result: 

        cv2.rectangle(copy5_image, (x1,y1), (x2,y2), (0,255,0), 1) 

        cv2.putText(copy5_image, label, (x1, y1-10),  

                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2) 

 
 

5.2.1.5 Mean average precision score and time efficiency 

Since this method for object detection is custom made, there are no “out of the box” method 

for validating how good it performs. By utilizing the mean Average Precision (mAP) method 

used for more modern object detection methods such as R-CNN and YOLO, there should be 

a possibility to check accuracy of this sliding window approach. The mAP will be calculated 

using a human annotated image as ground truth, and comparing the predictions made by the 

custom object detector.  

“The mAP is calculated by finding Average Precision(AP) for each class 

and then average over a number of classes.” – Deval Shah  [80] 

It is calculated based on metrics for precision, recall and IoU. The mathematical expression 

for mAP is shown in equation (13), where n is number of classes, k is class, and AP is the 

average precision of k class. The code for performing this calculation is added as Appendix 
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L. The general idea behind creating a custom mAP is to load the manually annotated text file 

and the predicted text file into a script, where a couple of functions is defined to perform 

these calculations.  

𝑚𝐴𝑃 =  
1

𝑛
∑ 𝐴𝑃𝑘

𝑛

𝑘=1

 

(13) 

As expected, this sliding window approach scores terribly. The resulting average mAP score 

of 5 individual images was 11.36%. From the results shown in Figure 74, it is clear that the 

fixed window size rarely fits the actual object, so the IoU score, and confusion matrix 

calculation will be bad for almost all objects. Even if the prediction method can give a 

reference to what and where an object is located, it is not able to bound that object with 

precision. This could have been improved by combining bounded boxes of predictions with a 

certain score while performing NMS, but this will not be tested since there exist more modern 

approaches to object detection that are more interesting to investigate. This method is also 

inefficient when it comes to time, as it takes about 1 minute to analyze and detect objects for 

one image. This is of course dependent on the system hardware. 

5.2.2 Semi-Automated annotation tool (Program 1) 

As previously mentioned, the image classification with sliding window algorithm is 

suboptimal because it is slow, prone to errors and computational heavy to perform. This is 

because the attempted use of image classification in combination with computer vision 

techniques to create an object detector is not optimized for the given task. There are more 

modern solutions designed specifically for object detection in large images such as one-stage 

or two-stage detectors. The problem with these methods is the obtaining of training data for 

such models, as it requires annotation of large quantity of complex images. This then, 

requires software for annotation and is considered boring, time-consuming manual labor. 

However, in the first iteration for this project, a sliding window algorithm in combination 

with a multi-label image classifier was created. Now, wouldn’t this serve as a great tool for 

doing a lot of this manual annotation? Of course, since this is a sub optimal object detection it 

will require a hardware savvy computer, and all the annotation will require some manual 

modifications before used as training data for a one-stage or two-stage detector. This was the 

initial inspiration and fundamental idea for the semi-automated annotation software (Program 

1) that is developed during this project and tested in the following subchapters. 

The software is designed with some basic concepts from the Unified Process methodology. 

Mainly focusing on the elaboration phase with design and documentation as shown in chapter 

4.5.1. The testing during construction is done iterative as the main focus is to get a working 

software with the essential requirements as quickly as possible. This software serves a greater 

purpose as an engineering tool for the next phase of the project, and it is estimated that it will 

take an engineer approximately 10 minutes annotating a complex image using this tool 

compared to 40 minutes with a regular tool. The estimated time of 30 minutes saved can be 

attributed to the fact that many objects are pre-bound before the engineer starts adjusting, but 

more significantly, all label classes are already defined within the image, which can be easily 

replicated for any objects requiring modifications or those that may have been overlooked by 

the algorithm. 
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5.2.2.1 Program 1 - Testing 

The software is developed using the Python language and packages such as, “ipywidgets” and 

“tkinker” for GUI components such as message box prompts and file dialogs. It is 

implemented with around thousand lines of code in three separate files. The source code is 

available in Appendix H. The result is a piece of software that does the following:  

Launching the software brings up a Main Menu window shown below in Figure 75. The user 

will start with uploading an image by clicking the “Upload Image” button, then be prompted 

with a folder window shown in Figure 76. 

 

Figure 75: Main menu display. 
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Figure 76: Upload image file prompt. 

After uploading an image, the user can perform some cropping action by clicking the “Crop 

Image” button. A separate cropping window will pop up where the user can resize the image 

using the sliders at the bottom of the window as shown below in Figure 77. When the 

window is exited, a successful prompt is shown as Figure 78. 

 

Figure 77: Image crop window. 
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Figure 78: Crop successful prompt. 

From the Main Menu, an option to pre-analyze the image using the sliding window algorithm 

in combination with image classification model trained in chapter 5.2.1 can be selected. The 

user has the option to upload a custom “.pkl” model file as shown in Figure 79 and Figure 80, 

that will be used in the classification. 

 

Figure 79: Image analysis display. 
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Figure 80: Select classification model .pkl file prompt. 

Select model file and klick “Start Analysis”. The analysis progress is displayed during the 

object as shown in Figure 81 and Figure 82. 

 

Figure 81: Sliding window progress window. 
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Figure 82: Analysis in progress prompt. 

The pre-analysis is further written to a csv file within the software and shown in the 

annotation window seen in Figure 83, where the user can do modifications, such as delete, 

add new, edit, and move bounding boxes. An example of adding a new bounding box and 

enter a label is shown in Figure 84. 

 

Figure 83: Annotation window. 
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Figure 84: New bounding box or edit label entry prompt. 

After quitting the annotation window, the raw image file and annotation (.xml, csv, or txt) file 

can be exported from the Main Menu window. A folder path request prompt is shown in 

Figure 85 where the user must specify where these files are going to be exported. If the 

export was a success, the success prompt is displayed Figure 86. 

 

Figure 85: Export annotation files prompt. 
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Figure 86: Export successful prompt. 

 

This now serves as an annotation software for creating training data for a one-stage or two-

stage detection method. A complete manually adjusted annotated image using the annotation 

tool is shown in Figure 87. This annotation can be fed directly to a one-stage or two-stage 

detector as training or validation data. An example of annotation xml file in Pascal VOC 

format listing all bounding boxes and their labels is shown in Figure 88. Pascal VOC format 

is the annotation formatting often required for object detection models using ResNet 

architecture. An example of annotation text file in YOLO formatting listing all bounding 

boxes and label indexes is shown in Figure 89. This is the format required for use in one-

stage detection methods such as YOLO. A more elaborated explanation of this YOLO format 

is provided in chapter 4.3.3. Remember that in YOLO format, the labels are converted to 

indexes (numbers), so a specification file that lists all labels and their related index is also 

needed. 
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Figure 87: Fully annotated image using the pre-analysis as starting point with manual adjustments. 

 

Figure 88: Snippet of annotation specification .xml file. 
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Figure 89: Snippet of YOLO formatted annotation file. 

As an additional adjustment to the software, it is added the possibility of uploading pre-

annotated images with annotations files into it. This gives the user the opportunity to take 

previously annotated images and adjust them if needed or even take images where predictions 

have been made and improve their annotation for further improved training. This is an idea 

that was thought of during the next step of the project and will be looked more into in the 

coming chapters. The general idea is that the software checks if there is an annotation file 

available in the same directory as where the image was uploaded from, and if it already exists 

a file with the image name and subfix “_annotation.txt” it will load that file into the working 

csv file of the software and have a preloaded annotation state. 

5.2.3 YOLO one-stage detector 

The chosen detection method for this project is a one-stage detector network called YOLO. 

YOLO is short for “You Only Look Once”. More accurately, the YOLOv8 network is 

selected as it is state of the art, released just a few months prior to this project. More in depth 

theory of this method can be found in chapter 4.3.2.  

5.2.3.1 Preparations 

Ultralytics provide a library for YOLO detector methods that is easy to use and easy to 

implement in software. It can be run directly from the CLI/terminal or as function calls in 

Python code. The most important foundation to get this working is to have the correct folder 

structure, annotated data and specification file as shown in chapter 4.3.3 and in example 

Figure 90. Start by creating a new virtual Python environment and install the Ultralytics 

library. The installation will automatically also include PyTorch with GPU support if the 

environment is set up to implement CUDA with Dynamic Linking Library (dll) support. Then 

create a project and set up the folder structure as shown in Figure 90. Put the annotated 

training images in the “train” folder, and the validation images in the “val” folder. Remember 

to include the label map file to the project folder. To automate the process of generating the 

specification.yaml file, a Python script is created to enter all paths, and list all class labels in 

correct order, the script is provided in Table 38. The output from the script is a yaml file with 

paths to the training and validation folder, how many object classes exist, and the class names 

in chronological order. Within the “train” and “val” folder there are two subfolders that 

contain images and labels as shown in Figure 44. This yaml file is loaded into the method 

when calling the train on the YOLO model. A snippet of the specification file for this project 

(the output of the script in Table 38) is provided in Figure 45. 
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Figure 90: YOLOv8 custom model folder structure for training, validation, and prediction. 

Table 38: Script for automate the specification file generation. 

 

train_path = os.path.abspath("train") 

valid_path = os.path.abspath("val") 

 
# Open the input file for reading 

with open("label_map.txt", "r") as f: 

    lines = f.readlines() 

 

# Extract the names from each line 

names = [line.split()[0] for line in lines] 

 

# Create a dictionary with the names field 

data = {"names": names} 

 

# Write the names to the output file as an array 

with open("data_custom.yaml", "w") as f: 

    f.write("train: " + train_path) 

    f.write("\n") 

    f.write("val: " + valid_path) 

    f.write("\n") 

    f.write("\n") 

    f.write("nc: " + str(num_classes)) 

    f.write("\n") 

    f.write("\n") 

    f.write("names: [") 

    f.write(", ".join(f'"{name}"' for name in names)) 

    f.write("]\n") 
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5.2.3.2 Improve preprocessing of training and validation data 

The idea is, since the input data to the YOLO model is of size 640x640 pixels, the training 

images will be downscaled a lot and padded with zero boundaries. Since the original size of 

each image is around 1920x1080 pixels and is downscaled by 80.25%, (equation (14), 

depending on cropping performed during annotation) there is a risk of losing valuable pixel 

information due to aliasing [81]. This is a general issue that could arise when working with 

images containing tiny objects with thin contour lines, where “each pixel counts”. Even 

though the down sampling methods of the Ultralytics library probably utilizes anti-aliasing 

techniques such as smoothening or blending methods, it still felt like it was necessary do 

address this issue.  

100% − ((
640

1920
) ∗ (

640

1080
) ∗ 100%) ≈ 80.25% 

(14) 

A program for splitting the original annotated image into two separate images and splitting 

the annotation data in two documents was created. The code for this task is quite extensive 

and required a lot of checks to make sure that the split of the annotation is put on the correct 

image and rescaled (normalized) to the new split image sizes. Full source code is provided in 

Appendix I. The split result without labels is shown in Figure 91.  

  

Figure 91: Result of image and annotation split 1 and 2. 

Doing this split, automatically double the training data annotated. The prediction images can 

still be in their original full screen size. 

5.2.3.3 Training a base model 

Calling the functions for training the YOLO model is executed from a Jupyter notebook 

script shown in Table 40. First import the library, then import a model, then call the train 

function with the yaml specification file “data_custom.yaml”. Add additional parameters 

such as limiting the batch size (to prevent GPU out of memory issues), image input size of 

640px, how many epochs to train, and a parameter called patience which basically tells the 
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function to not stop the training before there has been 100 epochs of no improvement in mean 

average precision (mAP). The YOLO network also has options for size of model to be used 

trained. After testing medium, large, and extra-large with the same 21 training and 3 

validation images it was clear that the extra-large outperformed the two others. The testing of 

the three models can be seen in Table 39.  

Table 39: Testing different size models. All runs are performed with parameters: patience=150, batch=8. 

Runs Model Dataset Epochs Early stopping mAP50 score 

1 medium 21 train, 3 val 1000 epochs 270 epochs 80.8% 

2 large 21 train, 3 val 1000 epochs 388 epochs 83.0% 

3 xlarge 21 train, 3 val 1000 epochs 326 epochs 90.5% 

The extra-large model is a total of 130 mebibytes (megabytes), so it is quite large compared 

to the medium of just 51 mebibytes. It is important to remember that a pretrained model is 

used, so the training function transfer learns the model based on the new data provided in this 

project. 

Table 40: Load model and initialize training of YOLOv8 extra-large model. 

 
from ultralytics import YOLO 

 
# Importing the model, medium, large, or extra large 

model = YOLO("yolov8x.pt") #m, l or x 

 
# Calling the train method and initialize training 

model.train(data="data_custom.yaml", batch=8, imgsz=640, epochs=500,  

  workers=1, patience=100) 

 
 

For the first iteration, 12 training images are annotated using the semi-automatic annotation 

tool developed in the previous project iteration in chapter 0. The images are split to a total of 

24 images, where 3 is validation and 21 is training. It is important to select the 3 validation 

images carefully and make sure they contain a large variation of the data available in the 

training data. All the training and validation images are from the same site (factory), so they 

are quite similar when it comes to symbols, layout and colors. The first iteration gave a 

descent validation result (with respect to the small number of data) of approximately 90.5%. 

An overview of the training iterations and score can be viewed in Table 42.  

5.2.3.4 Predicting the first objects from unseen images 

Calling a prediction on a test set is just as simple as calling the training method. The training 

function stores the best and last model from the training session in a subfolder called 

“/runs/detect/train/weights”. These models can be directly loaded into a model parameter as 

shown in Table 41. Then a predict method is called, with some parameter specifications on 
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how to show and where to store the predictions. All these parameters are listed in the official 

Ultralytics documentation. 

Table 41: Load the best model from training, run a test on images using the predict method. 

 

# Specify the path to the best model that was stored during training 

nr = 15 

best_model = "/home/engineirik/git/yolov8_custom/runs/detect/train" +  

  str(nr) + "/weights/best.pt" 

 

# Import the model 

model = YOLO(best_model) 

 
# Call the prediction method, specify confidence level and test img path 

model.predict(conf=0.3, source="/home/engineirik/git/yolov8_custom/test",  

  line_thickness=2, save=True, save_txt=True) 

 
 

A cropped result from the first prediction is shown in Figure 92. The figure clearly indicates 

that the prediction model works, but there are room for improvements. There are some 

missing classifications on valves, values, and navigation buttons. Also, the tag above the 

value showing 50.8 degrees Celsius is false positive showing two predictions of the same 

object. 

 

Figure 92: Cropped version of the first predicted test image using the YOLOv8 model. 

A notable feature of this approach is that it provides both predicted object images and their 

associated annotation data in text files, even when making predictions on previously unseen 

images. This led to the previously mentioned idea for improving the efficiency of annotating 

more data by modifying the previously developed semi-automated annotation software 

(Program 1). 
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5.2.3.5 Adjust and retrain 

As mentioned, since the predict method provides the object predicted images with annotation 

files as shown in example Figure 93, it is easy to take these images, upload them into the 

annotation software with the annotation data, and perform improvements to the predictions 

i.e., creating new annotated training data. Note, the test data will now be training data, so new 

test data needs to be acquired for the next test run. 

 

Figure 93: Predicted images from YOLO model with annotation files. 

Minor adjustments to the annotation software were needed to check if already existing 

annotation file exist for the uploaded file selected in Figure 94. This is achieved with a simple 

“if statement” in the annotation software, and a method that is writing the annotation data 

from the uploaded YOLO formatted file to the working csv file. The implementation of these 

changes can be found in the original annotation software source-code provided in Appendix 

H. Next the user can click the “Annotation” button shown in Figure 75 to make adjustments 

to the annotation. An example of the prediction made in Figure 92 uploaded to the annotation 

software with related annotation data is shown in Figure 95. 

Do the manual adjustments needed as shown in Figure 96. It is worth noting that the “tag” 

label is removed from the prediction class dictionary. This is because it caused confusion in 

the prediction, it was complex to annotated and tag extraction will be handled using optical 

character recognition (OCR) instead. 

 

Figure 94: Image file and annotation file in “load image file” prompt in annotation software. The annotation 

data in this case is .xml as it was converted from .txt to .xml beforehand. This is not necessary in the latest 

update of the annotation tool (Program 1) as it supports .txt annotation files as well. Remember that .xml is 

PASCAL VOC format, and .txt is YOLO format. They provide almost the same info in similar formats, so can 

easily be converted. 
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Figure 95: Loaded the YOLOv8 predicted image into the annotation software with the annotation file provided 

from the prediction method. 

 

Figure 96: Manually adjusted and improved annotation using the annotation software. 

Then the adjusted annotation can be exported, split, and used to retrain the YOLO model to 

perform even better. Basically, what has happened is that instead of using the semi-automated 

annotation tool with the sliding window image pyramid scale multi-label image classifier, the 
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annotation process is improved by using the object detection model (YOLOv8) instead. This 

whole process could be added as a pipeline to simplify the retraining of the model in a 

separate annotation tool. This will be suggested as an improvement.  

The process of training the model, predicting new images, adjusting annotations, splitting 

annotation data and images, and retrain the model was done in multiple iterations. After 

training for a few iterations, the model was tested on a totally new operator interface display 

images from different sites (factory’s) with slight variations in objects, colors, and layout. As 

expected, the pretrained model did not perform well on these images. This is because the 

model has been specialized to predict objects from only one site, and therefore are not 

classified as a generalized model. By annotating and adding some new training data for these 

new site images, the model performance was improved drastically. At the last iteration of 

training, a total of 59 training images and 11 validation images was included, the mean 

average precision (mAP50) scored 95.5%. This is where the training iterations stopped as the 

model result was good enough to continue the project. Arguably, the model could have been 

trained for 1000 epochs in run 4 Table 42 as the early stopping never occurred. But as shown 

in Figure 97, the validation result did not really keep improving, so the 1.7% difference in 

mAP50 for run 3 and 4 is likely due to the newly introduced data to make the model more 

generalized.  

Table 42: Iterations of training and validating the YOLOv8 transfer learned model. All runs are performed with 

parameters: patience=150, batch=8. 

Runs Model Dataset Num of 

factories 

Epochs Early 

stopping 

mAP50 

score 

Note 

1 xlarge 21 train, 3 

val 

1 1000 

epochs 

326 

epochs 

90.5% Tag classes 

included 

2 xlarge 21 train, 3 

val 

1 1000 

epochs 

494 

epochs 

87.1% Removed tag 

classes, fixed 

some errors 

3 xlarge 40 train, 8 

val 

1 1000 

epochs 

554 

epochs 

97.2% Realized non-

generalized 

model 

4 xlarge 59 train, 

11 val 

3 500 

epochs 

nan 95.5% Added more 

data from 

different sites 

5.2.3.6 Final result of training a custom YOLOv8 model 

The final iteration of training yielded a satisfactory result of mAP50 at 95.5%. The training 

and validation loss flattens with no significant indication of getting worse or improve, and the 

mAP50 score keeps fluctuating between 90 – 95% as shown in Figure 97. 
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Figure 97: Loss and precision plots for the final training iterations. 

The confusion matrix shown in Figure 98 indicates that “damper” is totally misclassified, 

probably due to the limited numbers of appearance in the data. Also, the normal “valves” are 

often misclassified as they are quite tiny objects in most occurrences, thus classified as 

“background”. Also, “conveyors” are often classified as “bargraphs,” and that is not strange 

due to their similar features. There is a strong correlation between misclassifications and 

number of instances in the data, Figure 99. Note that “tag” is still in the instance list, just not 

occurring in any of the data. 
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Figure 98: Confusion matrix run 4 of training the custom YOLOv8 model. 

 

Figure 99: Number of instances in the dataset. 
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5.2.4 Tag extraction and object linking 

To extract the tags from the operator interface images, a technique called optical character 

recognition (OCR) is used. The library of Pytesseract OCR have methods for using these text 

recognition methods directly in new applications. A challenge when it comes to the operator 

interface images is that there are many tags of different formats, and the relative size of the 

tags is tiny. Some preprocessing steps manipulating scales, contrasts, and colors to get these 

texts to pop is therefore necessary. 

5.2.4.1 OCR – Optical Character Recognition 

Often referred to as text recognition. In simple terms, the OCR engine preprocess the image, 

localize text, character segmentate and recognize, then perform some post processing [19]. 

The theory behind OCR will not be discussed in detail. The important thing for this project is 

to only utilize the recognition part of Pytesseract OCR library, and not the post processing 

dictionary translation. The tags in operator interface images are not of normal words, as they 

are a combination of different numbers, letters, and symbols. These combinations need to be 

added in a custom dictionary to filter out all other text combinations. The recognized tags and 

their position relative to the image needs to be stored in a text file. The position will be 

normalized between 0 and 1 with respect to the original file size, thus achieving the same 

formatting as the YOLO annotation. 

At first implementation of OCR on the raw image, the OCR engine did not return any 

valuable information as shown in the left column in Table 43. There could be many reasons 

why the out of the box solution do not work on these images, but the main guess is that the 

tags are way to tiny, placement is random, and the colors in the image might not have 

sufficient contrasts, making it hard to detect them. The solution to these problems was to split 

the image in four pieces and perform a scale pyramid on each image. Then add some 

preprocessing steps like gray-scaling, blurring, edge-detection, and dilation. The scale 

pyramid makes sure that the OCR are applied to different scales of the images and therefore 

increases chance of localizing text objects. The preprocessed image shown in Figure 100 was 

then fed to the OCR engine which yielded significantly better result as shown in right column 

of Table 43. 

Table 43: A small part of the returned OCR tag extraction copied from the tag extraction annotation file. Two 

iterations, before and after manual image preprocessing. Note that the two columns are not related (not same 

part of image). The left column only returns noise. The right column is selected to match the snipped part of the 

image that is used as an example in Figure 100. 

No image preprocessing:  

(tag, x_center, y_center, width, height) 

Custom image preprocessing: 

(tag, x_center, y_center, width, height) 

2341 0.090365 0.093981 0.003385 0.002315 

0201 0.533594 0.083912 0.004687 0.002546 

0201 0.611393 0.083796 0.003255 0.001852 

LSH-1300 0.089461 0.689971 0.030979 0.020058 

XS-1323 0.183917 0.687645 0.025043 0.020058 

P-1302 0.258107 0.683430 0.019687 0.023256 
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21502 0.102148 0.054630 0.005599 0.001852 

P9212 0.109570 0.096296 0.006120 0.00740 

XS-1325 0.389259 0.680669 0.027215 0.020058 

XZ-1302 0.090547 0.757267 0.027649 0.021512 

 

Figure 100: Preprocessed image for text extraction. 

The full source-code to this preprocessing and Pytesseract OCR tag detection is available in 

Appendix J.  

5.2.4.2 Minimum Euclidean Distance, linking objects and tags 

The idea of tag extraction in combination with object detection is to be able to relate tag and 

object based on their location. It is fair to believe that tags and objects that are located close 

to each other would belong together. However, there is some arguments about this 

generalization such that; Tags can be located far from an object because of status variables on 

the object that are not visible in the current state of the image. This distance might even be 

further than the tag’s location to an unrelated object. Due to this unknown situation, one tag 

can be related to many objects in this calculation. It is important to remember that no matter 

how accurate the object detection and tag extraction is, there will be need for some manual 

washing after the analysis. Especially on the tag extraction and correlation to objects.  

As shown in the previous step, the OCR engine provide the extracted texts with their position 

converted to a normalized scale 0 to 1 of the original images to match the YOLOv8 object 

detection location scale. To calculate the distance between center of tag location and object 

location, a mathematical method called Minimum Euclidean Distance is used. The 

mathematical expression of this method is shown in equation (15) where 𝛾𝑚𝑖𝑛 denotes the 

minimum Euclidean distance, x1 and y1 is the object coordinates, and x2 and y2 is the tag 

coordinates. 

𝛾𝑚𝑖𝑛 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 

(15) 

Simply put, the pseudo code methods shown in Table 44 takes the object and tag annotation 

files as input, then for each object it calculates the proximity of a tag and links the object and 

tag that is closest to each other. It also checks and excludes objects such as “nav” that is 

known to not have tags. When a tag is linked to an object, it is removed from the annotation’s 

variable. So, the first iteration finds the object and tag that are absolutely closest, removes it 

from the list and append it to “linked_objects” parameter. Then the next iteration finds the 

absolute second closest object and tag, and so on until there are no more unlinked objects and 

tags. The implementation and source-code can be found in Appendix K, of the final object 

detection software in the ObjectLinker class. 
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Table 44: Pseudo code for linking object and tag. 

 
def euclidean_dist(x1,y1,x2,y2): 

 return mathematical equation (x1,x2,y1,y2) 

 

def linked_object(obj_annot, tag_annot): 

 unlinked_obj = copy of obj_annot 

 unlinked_tag = copy of tag_annot 

 linked_objects = [] 

 while remaining objects in unlinked_obj: 

  filtered_obj = filter out objects with name “nav” 

  # Declare variables 

  min_dist = large number 

  min_obj = None 

  min_tag = None 

  for object in filtered_obj: 

   for tag in unlinked_tag: 

    dist = euclidean_dist(x1,y1,x2,y2) 

    if dist < min_dist: 

     min_dist = dist 

     min_obj = object 

     min_tag= tag 

  if min_obj and min_tag is not empty: 

   append min_obj and min_tag to linked_objects 

   remove min_obj from unlinked_obj 

   remove min_tag from unlinked_tag 

 return linked_objects 

 

  

5.2.5 Industrial Component Extraction – ICE (Program 2) 

As a last step in this project, a software for hosting the object detection model, tag extraction 

code and tag-object correlation calculation, is developed. This is the application where the 

user is going to interact with the product therefore should be developed with best user 

interface (UI) design practices in mind. A mockup design is drawn with a tool called Figma 

[82], where all colors, text styles and general design is laid out. The user should be able to 

upload images, click analyze and get a document containing the performed analysis in return. 

The software is called Industrial Component Extraction (ICE) software. The entire analysis 

and design are provided in chapter 4.5.2. This chapter will go through the final testing of the 

software.  

5.2.5.1 Program 2 - Testing 

The final result is a user-friendly software for people to interact with as specified by the 

system sequence diagram. When opening the software, the user is prompt with the initial 

display where they can upload N number of images from the local machine as shown in 

Figure 101. A loading screen is displayed during the analysis as shown on left image in 

Figure 102. When the analysis is done, a display prompting the user to download the analysis 

document or to perform a new analysis is displayed as shown in right image in Figure 102. 
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The analysis document has a first page called “Summary” as shown in Figure 103. The 

summary screen shows an overview of all images that are analyzed, how many components 

and tags that was detected. For each image analyzed there are two subsequential sheets where 

the first is an overview of the original image with the bounding boxes for each object 

detected as shown in Figure 104, and the second data sheet contains a list of each object 

snipped from the image with object name, tag and localization in the x-y plane as shown in 

Figure 105. The complete source code is available in Appendix K.  

When it comes to performance, putting all the previously mentioned software together (object 

detection, OCR, minimum Euclidean distance), the most time-consuming part is the image 

preprocessing before starting tag extraction with OCR. Analyzing 12 images takes around 1 

minute and 20 seconds where the object detection only uses around 25ms (on average) for 

each image. The OCR engine also only capture around 50% of the tags correctly due to the 

usage of third-party package instead of training and creating a custom model for this task. As 

explained earlier, this has been attempted compensated with correct preprocessing of the 

images, where more preprocessing and scales result in improved text detection, but the 

analysis gets slower. This is a tradeoff between time and precision. Discussion chapter 6 

elaborates more around how this could be improved. 

  

Figure 101: Initial user interface display when opening the software on the left. The user then uploaded 7 images 

from the local machine as shown on the right. 
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Figure 102: After pressing the “Analyze Images” button, the backend starts to work, prompting the loading 

display as shown on the left. When the analysis is done, a display letting the user choose to download the result 

or to perform a new analysis is shown. 

 

Figure 103: Summary page of final analysis excel document returned from the ICE software. Listing number of 

objects and tags for each image and how many of each object type was detected. 
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Figure 104: One worksheet for each analyzed original image with bounding boxes for each detected object. The 

detected objects are bounded by a rectangle and given a label. This figure displays a part of one of the images 

analyzed. Comparing with the datasheet row 34 shown in Figure 105, the “value_10” object is located in the 

bottom left corner and bounded with a light blue box. The tag 311FC38 is extracted and linked to the object. 

 

Figure 105: The data sheet of the analyzed image, listing all objects, names and tags with the location x, y, 

x_max and y_max coordinates on the original image. 
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6 Discussion 
This chapter provide a short discussion revolving the results, comparing the methods in first 

and second project iteration, and suggesting improvements and further work. A subchapter 

discussing some “out of the box thinking” is also provided to give some inspiration for 

further development. 

6.1 Comparing sliding window classification and YOLO 
algorithm for object detection 

These two methods of object detection are not easy to compare as one serves as a base line 

for annotating data, and the other is used for object detection with high accuracy. The initial 

idea was that the result from each method would provide information that made these equal 

in some way, and therefore possible to conclude strengths and weaknesses between the two. 

It is worth noting that the initial idea was thought of in the beginning of the project when 

knowledge about this technology was limited. As the project progressed, new methods were 

discovered, providing valuable insights into the advancements made in the field of deep 

learning image analysis. 

It is arguable that starting with the old school image classification in combination with sliding 

window, pyramid scaling and NMS was a mistake, as the YOLO object detector performed 

so much better and was easier to implement in the end. Also, if time had been spent on 

annotating more data for the YOLO algorithm, it would have performed even better and other 

features could have been added to the final software. However, the first approach provided 

knowledge about the field, knowledge about object classes that needed to be detected in the 

custom data, and how to perform full image annotation for the different one-stage and two-

stage detectors. It also triggered the idea of creating a semi-automated annotation tool for 

modern object detection solutions. All in all, it was an important step in the project as it laid 

the foundation for the result.  

6.2 Improvements and future work 

Starting with the obvious, the OCR tag extraction method can be improved extensively. 

Either by creating or using a different method for extracting tags or adding tags as a separate 

label-class in the object detector. If tags are added as separate class (as tested in the beginning 

of the project) it will require a lot more training data as tags are the most varying object 

between sites. The benefit of adding tags as a separate object class would be that each 

individual tag-object detected could be fed to the OCR engine individually thus hopefully 

being able to extract more data. The guess why today’s solution performs poorly is because 

the text is so tiny compared to the other objects and appears quite randomly in the image. The 

object detection model handles the arbitrary placements quite well, but the OCR does not. 

The compensating solution to this problem in this project was to create multiple scales and 

perform OCR on each scaled image, which improved the detection drastically but the more 

scales and image preprocessing, the more computing power and time will be consumed. 
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To enhance the final ICE software (Program 2), it would be beneficial to incorporate similar 

features from the annotation tool, where the user could do some pre-analysis using the 

YOLOv8 model, then do manual adjustments and retrain the model. This would help improve 

and generalize the model thereby continuously improving the user tool. The improved 

software solution could be looked at as a complete pipeline for the user to test, retrain (if 

necessary) and analyze without interacting with any source-code. The pipeline flow would be 

as follows:  

- User can start by trying to analyze new operator interface images. 

- If the analysis is not satisfactory, the user can select a few of the images and do 

manual improvements on them.  

- Then use those manually improved images to retrain the model (transfer learn), to 

make it fit and adopt to the specific site images. This will also help the model to 

generalize and learn new objects. 

- The user can then retry the analysis on the whole dataset. 

This suggested improvement could be added to the engineering tool (Program 1) as well, by 

substituting the software’s sliding window pyramid scale multi-label classifier developed in 

chapter 5.2.2 with the YOLOv8 algorithm trained in chapter 5.2.3 and adding a model 

training feature, thus improving the engineering tool. But it would be a lot more interesting to 

have these features available for all users using the ICE software (Program 2) that will be 

using this tool to analyze images on a daily basis. 

Last but not least, more data. Annotating more images from different sites (factories) would 

improve the model mAP50 score and help generalizing the YOLOv8 model to perform better 

on a larger variety of images. Also including more object classes and improving class 

standardization to detect even more objects. This will require more time spent on boring 

repetitive annotation tasks, but also massively improve the end result. Another option (instead 

of more training data) could be altering the YOLOv8 network architecture, substituting the 

classification network with the multi-label image classification model derived in the first 

iteration of the project. This would require custom network architecture engineering but 

could end up replacing the need for having to annotated more full-scale images and instead 

using the already learned features for the single objects.  

6.3 Thinking outside the box 

It is essential to always leave room for creative and innovative thinking when it comes to 

technology as it may lead to groundbreaking opportunities and possibilities that might have 

otherwise gone unnoticed. The technology underpinning this entire project is deep learning, 

which is an exciting and rapidly evolving field. The developed product in this project creates 

a foundation for object detection and tag extraction from operator interface images. Now, 

imagine if this product was used in combination with pixel processing for pipeline detections 

as discussed by Moon et al. [7] giving a structure and process flow of the image. Then by 

training a foundation model, preferably a large language model (LLM) on the source-code for 

the DeltaV Live library, each individual object that was detected in the analysis could map to 

the object in Live, thus creating a prompt to the LLM. The LLM would then write the entire 

code for the new Live images. Now, in best case scenario this would create lines and objects 

placed correctly on images with correct tags entered in the correct configuration fields, 
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making the need for manual engineering. But now, imagine doing the same for configuration, 

system control diagrams (SCD´s) and P&ID´s. Training LLM on configuration, object 

detection models and text extraction on SCD´s and P&ID´s (as suggested by Rahul et al. [6] 

and Paliwal et al. [4]) combining all these methods. Theoretically, it would then be possible 

to generate all redesigned operator interface images automatically. 

A good object detector foundation model created for process graphics can also be used to 

monitor real-time system images and extract information directly from it without the need of 

interacting directly with the system logic. This idea can be extremely useful in cases where 

interfacing with existing communication protocols is not an option. An example of such an 

application could be old HMI panels controlling machines in process areas where integration 

or modernization is not an option, so a web camera is placed in front of the HMI panel, 

monitoring and extracting data to a cloud solution directly.  
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7 Conclusion 
This project has laid the foundation for object detection in operator interface images, providing 

important steps to optimize processes of obtaining training and validation data, annotating 

images, training, and testing models, and embedding those models into software. The first 

approach of using multi-label classification model in combination with traditional computer 

vision techniques such as sliding window, pyramid scaling and NMS was used to build a semi-

automated annotation tool for more modern object detectors. The annotation tool can 

preprocess images by performing a pre-analysis using the above-mentioned techniques, and 

the user can make manual changes to the analysis using the annotation feature of the tool. It is 

estimated an improved efficiency in the annotation task by 75% compared to traditional tools 

or fully manual work. Finally, exporting the annotation data for either PASCAL VOC xml 

format, or YOLO text format. Thus, serving as an annotation tool for both two-stage and one-

stage detectors. The tool is also implemented with a feature for loading images with already 

existing annotation files for performing changes or further annotation of pre-annotated data. 

This is a good feature as modern sub-optimal object detectors can be used to predict unseen 

images, then the predictions can be uploaded to the tool, “fixed/improved” and exported as 

more training data for the modern detector models to be transfer learned on.  

In the second iteration of the project, it was researched how to utilize a state of the art one-

stage detector architecture called YOLO. Training the latest YOLOv8 model with new custom 

training data generated using the semi-automated annotation tool and used it to predict/detect 

objects in unseen images. The first prediction iterations on unseen images resulted in 60-70% 

of all objects annotated with bounding boxes and annotation files. These predictions were 

uploaded to the previously developed semi-automated annotation tool and fixed, thus providing 

more training data, quicker. After multiple iterations, with different preprocessing, the 

YOLOv8 xl model was trained with a mAP50 score of 95.5%. The final model is wrapped in a 

software, developed as a responsive web application, using the Python FLASK framework. 

The software is developed as a tool for every-day use, thus focusing on UI design best practices, 

where a user can upload N number of images, perform an analysis, and get a downloadable 

excel document containing the final analysis. This tool will be especially helpful in a project 

planning phase for analyzing object types and counts per image or in total, removing boring 

repetitive tasks, increasing efficiency, and ensuring accurate overview of details with regards 

to operator interface images. The tool will also help simplifying migration cost estimation for 

sales personnel and project managers. Remember, more training data equals better tool, so it is 

recommended to spend some time testing and collecting data to ensure an accurate and 

generalized model, before relying on it 100%. 
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Faculty of Technology, Natural Sciences and Maritime Sciences, Campus Porsgrunn 
 

FMH606 Master's Thesis 
 
Title: Object detection, information extraction and analysis of operator interface images 
using computer vision and machine learning 
 
USN supervisor: Associate Professor Ole M. Brastein and Professor Nils-Olav Skeie 
 
External partner: Emerson Automation Solutions, Geir Falkevik 
 
Task background:   
Migrating from old outdated human machine interfaces (HMI), process displays or operator 
graphics to new modern high-performance HMI´s (HPHMI) is often time consuming and 
costly. When creating a proposal for such migration projects, the sales and project team are 
often given an overview of today´s old displays in configuration files or in plain images. If the 
input is configuration files, the engineers have tools for extracting data directly from these 
files, resulting in a good estimate of display complexity and therefore a fair time and cost 
estimate. However, if the input is plain images, the complexity analysis of these displays is 
done manually by counting custom and non-custom objects in the display, static and 
dynamic objects, clustering etc. This manual analysis is very time consuming and has a much 
higher degree of uncertainty that could result in poor time and cost estimates.  
 
Emerson delivers a world known distributed control system (DCS) known as DeltaV. DeltaV 
comes with a fully integrated operator graphics tool known as DeltaV Operate. This tool has 
served its purpose for many years for all of Emerson´s customer and will continue to do so in 
many years to come. However, this operator graphics tool is based on older technology and 
a new and better fully integrated operator graphics tool known as DeltaV Live has come to 
replace it. DeltaV Live is a state-of-the-art modern stable framework for high performance 
operator graphics, so migrating from DeltaV Operate to DeltaV Live is in high demand. These 
migration projects are the foundation for this master´s thesis, where Emerson wants to 
investigate the possibility for creating a tool to do a complexity analysis of old DeltaV 
Operate operator graphics, to get a good and fair estimate of migration time and cost for its 
customers. 
 
Task description:   
Interim goals: 

• Summary of literature review regarding object detection methods in images 
(containing a large quantity of objects). 

• Choose one or more suitable approaches for object detection and object 
classification to extract components and information from images. 

• Describe how to obtain valuable datasets for training, validating, and testing models 
for this specific task. Look into the possibility of customer adjusted standard dynamo 
sets for object detection. 

• Suggest analytical methods for pre-processing and clean-up/preparations of datasets. 
• Develop machine learning models and check the accuracy and repeatability of the 

models. 
• Develop an application focusing on user interface (UI) design for interacting with the 

model/software.  
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Student category: IIA (EET, EPE, IIA or PT students) 
 
Is the task suitable for online students (not present at the campus)?  
No 
 
Practical arrangements: 
This project is reserved for the industry master student at Emerson, Eirik Illing. 
 
Supervision: 
As a general rule, the student is entitled to 15-20 hours of supervision. This includes 
necessary time for the supervisor to prepare for supervision meetings (reading material to 
be discussed, etc). 
 
Signatures:  
 
Supervisor (date and signature):  
 
Student (write clearly in all capitalized letters): 
 
Student (date and signature):  
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Appendix B 
GANTT Project Planning 



Company name Emerson & USN Legend:

Project lead Eirik Illing Risk: Slack:

Project Start Date: 01/01/2023 Low Risk 10 days January February
Scrolling Increment: 0

Medium Risk 5 days
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

High Risk 0 days

Milestone description Category Assigned to Progress Start Days S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S

1 PROJECT STARTUP 01/01/2023 31

1.1 Sign final project description Goal Ole, Nils-Olav, Eirik, Geir 100% 31/01/2023 1

1.2 Startup meeting Milestone Ole, Nils-Olav, Eirik, Geir 100% 06/01/2023 1

1.3 Project structure setup On Track Eirik 100% 01/01/2023 5

1.4 Get familiar with subject (Canvas) Low Risk Eirik 100% 05/01/2023 1

1.5 Complete fast.ai course On Track Eirik 100% 01/01/2023 13

1.6 Collect datasets Med Risk Eirik 100% 09/01/2023 7

1.7
Adjust project description (if 
applicable)

Milestone Ole, Nils-Olav, Eirik, Geir 100% 27/01/2023 1

2 LITERATURE STUDY 09/01/2023 33

2.1 Note keywords Low Risk Eirik 100% 10/01/2023 15

2.2 Setup citing software (Zotero) On Track Eirik 100% 03/01/2023 1

2.3 Literature review Milestone Eirik 100% 28/01/2023 1

2.3.1
Search for  previous work or 
knowledge on the subject

Low Risk Eirik 100% 10/01/2023 5

2.3.2
Look into detection of objects in 
large images

Low Risk Eirik 100% 15/01/2023 5

2.3.3
Look into picture analysis done by 
using  machine learning methods

Low Risk Eirik 100% 17/01/2023 3

2.3.4 Search, read, note Low Risk Eirik 100% 10/01/2023 18

2.4 Object detection Milestone Eirik 100% 10/02/2023 1

2.4.1
How to train model for detection / 
bounding of objects

Low Risk Eirik 100% 28/01/2023 7

2.4.2
How to obtain metadata of the 
bounded objects

Low Risk Eirik 100% 02/02/2023 7

2.4.3
How to display detected objects and 
data related to them

Low Risk Eirik 100% 03/02/2023 7

2.5
Mandatory meeting. Deside upon 
method / how to proceed.

Milestone Eirik 100% 27/02/2023 1

3 PROJECT EXECUTION 01/02/2023 98

3.1 Final execution Milestone Eirik 10/05/2023 1

3.2 Obtain datasets Milestone Eirik 100% 20/02/2023 1

3.2.1 Collect available data from Emerson Med Risk Eirik 100% 10/02/2023 2

3.2.2
Look into generating new data using  
GAN, Stable Diff?

Med Risk Eirik 100% 12/02/2023 3

3.2.3
Verify quality of training, validation 
and test data

Med Risk Eirik 100% 15/02/2023 2

3.2.4
Look into transfer learning used to 
adjust models based on new dataset?

Low Risk Eirik 100% 10/02/2023 7

3.3 Pre-process datasets Milestone Eirik 100% 20/02/2023 1

3.3.1 Lable data for image classification High Risk Eirik 100% 10/02/2023 10

3.3.2
Look into optimal sizing, shape, 
orientation, flips, colors etc.

Med Risk Eirik 100% 15/02/2023 5

3.3.3 Annotate images for object detection Med Risk Eirik 100% 05/03/2023 3

3.3.4
Look into auto  annotation using 
image classifier and sliding window

Med Risk Eirik 100% 05/03/2023 3

3.4 Develop and test models and tools Milestone Eirik 100% 30/03/2023 1

3.4.1
Set up test environment and 
notebook for iterative testing

Med Risk Eirik 100% 17/02/2023 3

3.4.2
Test different deep learning models 
for classification

Low Risk Eirik 100% 20/02/2023 30

3.4.3
Compare models and methods based 
on accuracy and repeatability

Low Risk Eirik 100% 20/02/2023 38

3.4.4
Develop sliding window object 
detection using the image classifier

On Track Eirik 100% 25/02/2023 4

3.4.5
Develop tool for annotating images 
for object detection

On Track Eirik 100% 28/02/2023 10

3.4.6
Test different object detection 
methods and compair them

Low Risk Eirik 100% 10/03/2023 5

3.4.7
Extract, understand and store text in 
image

On Track Eirik 100% 15/03/2023 5

3.4.8
Develop export format tool where 
object and tag is correlated

Low Risk Eirik 100% 30/03/2023 3

3.5 Develop host application Milestone Eirik 100% 25/04/2023 1

3.5.1
UML Diagrams - UCD, Sequence 
diagram, Class diagram

Low Risk Eirik 100% 29/03/2023 5

3.5.2
Design multi-platform application 
using HCD principles

Low Risk Eirik 100% 01/04/2023 5

3.5.3
Implement solution, develop 
application, wrap / host model

High Risk Eirik 100% 04/04/2023 20

3.5.4 Test and build application High Risk Eirik 100% 19/04/2023 7

4 REPORT WRITING 01/03/2023 75

4.1 Deadline for delivering Thesis Goal Eirik 14/05/2023 2

4.2 Create outline of report Low Risk Eirik 100% 01/03/2023 2

4.3
Write introduction, literature review 
and system description

Low Risk Eirik 100% 03/03/2023 72

4.4 Write method Med Risk Eirik 100% 25/03/2023 50

4.5 Write result High Risk Eirik 100% 25/03/2023 50

4.6 Write discussion and conclusion High Risk Eirik 100% 25/04/2023 7

4.7 Write summary and abstract High Risk Eirik 100% 30/04/2023 14

4.8
Spell check, grammar, layout, pdf 
print and check, cleanup

High Risk Eirik 100% 02/05/2023 1

4.9 Nils-Olav review of repport On Track Nils-Olav 100% 03/05/2023 5

4.10
Review feedback from Nils-Olav, 
make changes and deliver

On Track Eirik 100% 08/05/2023 5

5 EXPO 15/05/2023 9

5.1 Create poster or video for Expo High Risk Eirik 50% 25/04/2023 29

5.2
Expo, thesis are to be presented for 
the public

Milestone Eirik 24/05/2023 1

6 ORAL PRESENTATION

6.1 Prepare oral presentation Med Risk Eirik 0% 16/05/2023 38

6.2
Deadline for oral presentation and 
examination

Milestone Ole, Nils-Olav, Eirik, Geir 23/06/2023 1

7 OTHER 01/01/2023 173

7.1
Deadline for supervisor to find 
external assessor

Milestone Ole, Nils-Olav 100% 04/04/2023 1

7.2
Deadline for deciding date for oral 
precentation and examination

Milestone Ole, Nils-Olav, Eirik, Geir 100% 25/04/2023 1

7.3 Deadline for grading the thesis Goal Ole, Nils-Olav, External 23/06/2023 1

7.4 Presentation at Emerson Milestone
Examination? Open for all 

June 6.
23/06/2023 1

7.5
Deadline for submitting 250 word 
abstraction for the paper

Milestone Nils-Olav, Eirik 100% 15/02/2023 1

7.6
Deadline for submitting the paper to 
SIMS

Milestone Nils-Olav, Ole, Eirik 15/05/2023 1

To add more data, Insert new rows 
ABOVE this one

High risk Unassigned

Master's Thesis MT-70-23

On track Low risk Med risk
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Company name Emerson & USN Legend:

Project lead Eirik Illing Risk: Slack:

Project Start Date: 01/01/2023 Low Risk 10 days February March April
Scrolling Increment: 56

Medium Risk 5 days
26 27 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

High Risk 0 days

Milestone description Category Assigned to Progress Start Days S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S

1 PROJECT STARTUP 01/01/2023 31

1.1 Sign final project description Goal Ole, Nils-Olav, Eirik, Geir 100% 31/01/2023 1

1.2 Startup meeting Milestone Ole, Nils-Olav, Eirik, Geir 100% 06/01/2023 1

1.3 Project structure setup On Track Eirik 100% 01/01/2023 5

1.4 Get familiar with subject (Canvas) Low Risk Eirik 100% 05/01/2023 1

1.5 Complete fast.ai course On Track Eirik 100% 01/01/2023 13

1.6 Collect datasets Med Risk Eirik 100% 09/01/2023 7

1.7
Adjust project description (if 
applicable)

Milestone Ole, Nils-Olav, Eirik, Geir 100% 27/01/2023 1

2 LITERATURE STUDY 09/01/2023 33

2.1 Note keywords Low Risk Eirik 100% 10/01/2023 15

2.2 Setup citing software (Zotero) On Track Eirik 100% 03/01/2023 1

2.3 Literature review Milestone Eirik 100% 28/01/2023 1

2.3.1
Search for  previous work or 
knowledge on the subject

Low Risk Eirik 100% 10/01/2023 5

2.3.2
Look into detection of objects in 
large images

Low Risk Eirik 100% 15/01/2023 5

2.3.3
Look into picture analysis done by 
using  machine learning methods

Low Risk Eirik 100% 17/01/2023 3

2.3.4 Search, read, note Low Risk Eirik 100% 10/01/2023 18

2.4 Object detection Milestone Eirik 100% 10/02/2023 1

2.4.1
How to train model for detection / 
bounding of objects

Low Risk Eirik 100% 28/01/2023 7

2.4.2
How to obtain metadata of the 
bounded objects

Low Risk Eirik 100% 02/02/2023 7

2.4.3
How to display detected objects and 
data related to them

Low Risk Eirik 100% 03/02/2023 7

2.5
Mandatory meeting. Deside upon 
method / how to proceed.

Milestone Eirik 100% 27/02/2023 1

3 PROJECT EXECUTION 01/02/2023 98

3.1 Final execution Milestone Eirik 10/05/2023 1

3.2 Obtain datasets Milestone Eirik 100% 20/02/2023 1

3.2.1 Collect available data from Emerson Med Risk Eirik 100% 10/02/2023 2

3.2.2
Look into generating new data using  
GAN, Stable Diff?

Med Risk Eirik 100% 12/02/2023 3

3.2.3
Verify quality of training, validation 
and test data

Med Risk Eirik 100% 15/02/2023 2

3.2.4
Look into transfer learning used to 
adjust models based on new dataset?

Low Risk Eirik 100% 10/02/2023 7

3.3 Pre-process datasets Milestone Eirik 100% 20/02/2023 1

3.3.1 Lable data for image classification High Risk Eirik 100% 10/02/2023 10

3.3.2
Look into optimal sizing, shape, 
orientation, flips, colors etc.

Med Risk Eirik 100% 15/02/2023 5

3.3.3 Annotate images for object detection Med Risk Eirik 100% 05/03/2023 3

3.3.4
Look into auto  annotation using 
image classifier and sliding window

Med Risk Eirik 100% 05/03/2023 3

3.4 Develop and test models and tools Milestone Eirik 100% 30/03/2023 1

3.4.1
Set up test environment and 
notebook for iterative testing

Med Risk Eirik 100% 17/02/2023 3

3.4.2
Test different deep learning models 
for classification

Low Risk Eirik 100% 20/02/2023 30

3.4.3
Compare models and methods based 
on accuracy and repeatability

Low Risk Eirik 100% 20/02/2023 38

3.4.4
Develop sliding window object 
detection using the image classifier

On Track Eirik 100% 25/02/2023 4

3.4.5
Develop tool for annotating images 
for object detection

On Track Eirik 100% 28/02/2023 10

3.4.6
Test different object detection 
methods and compair them

Low Risk Eirik 100% 10/03/2023 5

3.4.7
Extract, understand and store text in 
image

On Track Eirik 100% 15/03/2023 5

3.4.8
Develop export format tool where 
object and tag is correlated

Low Risk Eirik 100% 30/03/2023 3

3.5 Develop host application Milestone Eirik 100% 25/04/2023 1

3.5.1
UML Diagrams - UCD, Sequence 
diagram, Class diagram

Low Risk Eirik 100% 29/03/2023 5

3.5.2
Design multi-platform application 
using HCD principles

Low Risk Eirik 100% 01/04/2023 5

3.5.3
Implement solution, develop 
application, wrap / host model

High Risk Eirik 100% 04/04/2023 20

3.5.4 Test and build application High Risk Eirik 100% 19/04/2023 7

4 REPORT WRITING 01/03/2023 75

4.1 Deadline for delivering Thesis Goal Eirik 14/05/2023 2

4.2 Create outline of report Low Risk Eirik 100% 01/03/2023 2

4.3
Write introduction, literature review 
and system description

Low Risk Eirik 100% 03/03/2023 72

4.4 Write method Med Risk Eirik 100% 25/03/2023 50

4.5 Write result High Risk Eirik 100% 25/03/2023 50

4.6 Write discussion and conclusion High Risk Eirik 100% 25/04/2023 7

4.7 Write summary and abstract High Risk Eirik 100% 30/04/2023 14

4.8
Spell check, grammar, layout, pdf 
print and check, cleanup

High Risk Eirik 100% 02/05/2023 1

4.9 Nils-Olav review of repport On Track Nils-Olav 100% 03/05/2023 5

4.10
Review feedback from Nils-Olav, 
make changes and deliver

On Track Eirik 100% 08/05/2023 5

5 EXPO 15/05/2023 9

5.1 Create poster or video for Expo High Risk Eirik 50% 25/04/2023 29

5.2
Expo, thesis are to be presented for 
the public

Milestone Eirik 24/05/2023 1

6 ORAL PRESENTATION

6.1 Prepare oral presentation Med Risk Eirik 0% 16/05/2023 38

6.2
Deadline for oral presentation and 
examination

Milestone Ole, Nils-Olav, Eirik, Geir 23/06/2023 1

7 OTHER 01/01/2023 173

7.1
Deadline for supervisor to find 
external assessor

Milestone Ole, Nils-Olav 100% 04/04/2023 1

7.2
Deadline for deciding date for oral 
precentation and examination

Milestone Ole, Nils-Olav, Eirik, Geir 100% 25/04/2023 1

7.3 Deadline for grading the thesis Goal Ole, Nils-Olav, External 23/06/2023 1

7.4 Presentation at Emerson Milestone
Examination? Open for all 

June 6.
23/06/2023 1

7.5
Deadline for submitting 250 word 
abstraction for the paper

Milestone Nils-Olav, Eirik 100% 15/02/2023 1

7.6
Deadline for submitting the paper to 
SIMS

Milestone Nils-Olav, Ole, Eirik 15/05/2023 1

To add more data, Insert new rows 
ABOVE this one

High risk Unassigned

Master's Thesis MT-70-23

On track Low risk Med risk
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Company name Emerson & USN Legend:

Project lead Eirik Illing Risk: Slack:

Project Start Date: 01/01/2023 Low Risk 10 days April May June
Scrolling Increment: 112

Medium Risk 5 days
23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

High Risk 0 days

Milestone description Category Assigned to Progress Start Days S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S

1 PROJECT STARTUP 01/01/2023 31

1.1 Sign final project description Goal Ole, Nils-Olav, Eirik, Geir 100% 31/01/2023 1

1.2 Startup meeting Milestone Ole, Nils-Olav, Eirik, Geir 100% 06/01/2023 1

1.3 Project structure setup On Track Eirik 100% 01/01/2023 5

1.4 Get familiar with subject (Canvas) Low Risk Eirik 100% 05/01/2023 1

1.5 Complete fast.ai course On Track Eirik 100% 01/01/2023 13

1.6 Collect datasets Med Risk Eirik 100% 09/01/2023 7

1.7
Adjust project description (if 
applicable)

Milestone Ole, Nils-Olav, Eirik, Geir 100% 27/01/2023 1

2 LITERATURE STUDY 09/01/2023 33

2.1 Note keywords Low Risk Eirik 100% 10/01/2023 15

2.2 Setup citing software (Zotero) On Track Eirik 100% 03/01/2023 1

2.3 Literature review Milestone Eirik 100% 28/01/2023 1

2.3.1
Search for  previous work or 
knowledge on the subject

Low Risk Eirik 100% 10/01/2023 5

2.3.2
Look into detection of objects in 
large images

Low Risk Eirik 100% 15/01/2023 5

2.3.3
Look into picture analysis done by 
using  machine learning methods

Low Risk Eirik 100% 17/01/2023 3

2.3.4 Search, read, note Low Risk Eirik 100% 10/01/2023 18

2.4 Object detection Milestone Eirik 100% 10/02/2023 1

2.4.1
How to train model for detection / 
bounding of objects

Low Risk Eirik 100% 28/01/2023 7

2.4.2
How to obtain metadata of the 
bounded objects

Low Risk Eirik 100% 02/02/2023 7

2.4.3
How to display detected objects and 
data related to them

Low Risk Eirik 100% 03/02/2023 7

2.5
Mandatory meeting. Deside upon 
method / how to proceed.

Milestone Eirik 100% 27/02/2023 1

3 PROJECT EXECUTION 01/02/2023 98

3.1 Final execution Milestone Eirik 10/05/2023 1

3.2 Obtain datasets Milestone Eirik 100% 20/02/2023 1

3.2.1 Collect available data from Emerson Med Risk Eirik 100% 10/02/2023 2

3.2.2
Look into generating new data using  
GAN, Stable Diff?

Med Risk Eirik 100% 12/02/2023 3

3.2.3
Verify quality of training, validation 
and test data

Med Risk Eirik 100% 15/02/2023 2

3.2.4
Look into transfer learning used to 
adjust models based on new dataset?

Low Risk Eirik 100% 10/02/2023 7

3.3 Pre-process datasets Milestone Eirik 100% 20/02/2023 1

3.3.1 Lable data for image classification High Risk Eirik 100% 10/02/2023 10

3.3.2
Look into optimal sizing, shape, 
orientation, flips, colors etc.

Med Risk Eirik 100% 15/02/2023 5

3.3.3 Annotate images for object detection Med Risk Eirik 100% 05/03/2023 3

3.3.4
Look into auto  annotation using 
image classifier and sliding window

Med Risk Eirik 100% 05/03/2023 3

3.4 Develop and test models and tools Milestone Eirik 100% 30/03/2023 1

3.4.1
Set up test environment and 
notebook for iterative testing

Med Risk Eirik 100% 17/02/2023 3

3.4.2
Test different deep learning models 
for classification

Low Risk Eirik 100% 20/02/2023 30

3.4.3
Compare models and methods based 
on accuracy and repeatability

Low Risk Eirik 100% 20/02/2023 38

3.4.4
Develop sliding window object 
detection using the image classifier

On Track Eirik 100% 25/02/2023 4

3.4.5
Develop tool for annotating images 
for object detection

On Track Eirik 100% 28/02/2023 10

3.4.6
Test different object detection 
methods and compair them

Low Risk Eirik 100% 10/03/2023 5

3.4.7
Extract, understand and store text in 
image

On Track Eirik 100% 15/03/2023 5

3.4.8
Develop export format tool where 
object and tag is correlated

Low Risk Eirik 100% 30/03/2023 3

3.5 Develop host application Milestone Eirik 100% 25/04/2023 1

3.5.1
UML Diagrams - UCD, Sequence 
diagram, Class diagram

Low Risk Eirik 100% 29/03/2023 5

3.5.2
Design multi-platform application 
using HCD principles

Low Risk Eirik 100% 01/04/2023 5

3.5.3
Implement solution, develop 
application, wrap / host model

High Risk Eirik 100% 04/04/2023 20

3.5.4 Test and build application High Risk Eirik 100% 19/04/2023 7

4 REPORT WRITING 01/03/2023 75

4.1 Deadline for delivering Thesis Goal Eirik 14/05/2023 2

4.2 Create outline of report Low Risk Eirik 100% 01/03/2023 2

4.3
Write introduction, literature review 
and system description

Low Risk Eirik 100% 03/03/2023 72

4.4 Write method Med Risk Eirik 100% 25/03/2023 50

4.5 Write result High Risk Eirik 100% 25/03/2023 50

4.6 Write discussion and conclusion High Risk Eirik 100% 25/04/2023 7

4.7 Write summary and abstract High Risk Eirik 100% 30/04/2023 14

4.8
Spell check, grammar, layout, pdf 
print and check, cleanup

High Risk Eirik 100% 02/05/2023 1

4.9 Nils-Olav review of repport On Track Nils-Olav 100% 03/05/2023 5

4.10
Review feedback from Nils-Olav, 
make changes and deliver

On Track Eirik 100% 08/05/2023 5

5 EXPO 15/05/2023 9

5.1 Create poster or video for Expo High Risk Eirik 50% 25/04/2023 29

5.2
Expo, thesis are to be presented for 
the public

Milestone Eirik 24/05/2023 1

6 ORAL PRESENTATION

6.1 Prepare oral presentation Med Risk Eirik 0% 16/05/2023 38

6.2
Deadline for oral presentation and 
examination

Milestone Ole, Nils-Olav, Eirik, Geir 23/06/2023 1

7 OTHER 01/01/2023 173

7.1
Deadline for supervisor to find 
external assessor

Milestone Ole, Nils-Olav 100% 04/04/2023 1

7.2
Deadline for deciding date for oral 
precentation and examination

Milestone Ole, Nils-Olav, Eirik, Geir 100% 25/04/2023 1

7.3 Deadline for grading the thesis Goal Ole, Nils-Olav, External 23/06/2023 1

7.4 Presentation at Emerson Milestone
Examination? Open for all 

June 6.
23/06/2023 1

7.5
Deadline for submitting 250 word 
abstraction for the paper

Milestone Nils-Olav, Eirik 100% 15/02/2023 1

7.6
Deadline for submitting the paper to 
SIMS

Milestone Nils-Olav, Ole, Eirik 15/05/2023 1

To add more data, Insert new rows 
ABOVE this one

High risk Unassigned

Master's Thesis MT-70-23

On track Low risk Med risk
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Appendix C 
WBS Project Planning 



Project 
Execution

Literature 
review

Object 
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1 Development environment  
Machine learning tasks can be computationally heavy to perform. Specially during 
development of certain applications while training and testing. A decent hardware and 
software environment is key for efficiency and performance. This development station and 
environment will be hosted on a local computer in the office, with remote access via 
TeamViewer. The computer will also be connected to a Raspberry PI4 that is configured to 
reboot if/after power loss. This Raspberry PI4 can also be reached with TeamViewer, where a 
wake on LAN magic package can be sent from the Raspberry PI4 to the development station, 
thus turning it on. The development station is configured with Wake On LAN in bios and on 
the Ethernet Controller.  

1.1 Hardware environment 
The most demanding task while developing machine learning models is the training of 
models and predicting large quantity of information. For this process, GPUs are key 
components, as they are built to perform complex parallel computation. GPUs are more 
suited for these kinds of tasks compared to CPU because they are specifically designed for 
calculations related to graphics and rendering. GPUs are equipped with more cores and 
higher bandwidth than CPUs, thus able to perform a lot more tasks at once. CPUs are on the 
other hand equipped with more powerful cores, better suited for sequential processing. One 
significant difference between these two is that GPUs does not dynamically allocate and 
dump memory the same way that CPUs does, so memory management is a key factor when 
working with GPU computation. There are varies methods for handling these “out of 
memory” error cases when working with machine learning, such as reducing batch size in 
training, use smaller/less complex model, mixed precision training and killing processes. So, 
when deciding upon hardware components for machine learning development, GPU and 
cooling will be the most crucial components.  

For this project, an old gaming computer seemed to be a good fit. The computer has a 
GTX1080 overclocked GPU, an Intel Core i5-8400 processor, 16gib of DDR4 RAM, 250gib 
M.2 SSD. Table 1 gives an overview of components and part numbers used in the 
development machine. 

Table 1: List of development environment hardware 

Part name Part number Description 

MSI B360I Gaming Pro AC, 
Socket-1151 

B360I GAMING PRO AC Motherboard 

Intel Core i5-8400 Processor BX80684I58400 CPU 

Asus GeForce GTX 1080 Rog 
Strix 

ROG STRIX-GTX1080-A8G-GAMING GPU 

Corsair Vengance LPX DDR4 
2400MHz 16gb 

CMK16GX4M2A2400C14 RAM 

WD Black SSD 250GB M.2 PCIe WDS250G2X0C SSD 
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Cooler Master MasterWATT 650  MPX-6501-AMAAB-EU PS 

 

1.2 Software environment 
The pc was reinstalled with Windows 10, student edition. Windows 10 is a perfectly fine 
multipurpose OS designed for everything from everyday use to development. However, more 
advanced development requiring a large quantity of open-source packages and flexibility can 
get tedious when working with Windows. This is mainly because Windows focus on a 
graphical user interface experience, while developing software often limits itself to working 
with command line tools. Using some sort of Linux distro therefore seems like a more 
appealing approach.  

One thing to note about Windows is that it has better commercial software and hardware 
drives support. Some sort of mix, running Windows as main OS and virtualizing an Ubuntu 
environment is a good idea. However, running Ubuntu as a virtual machine will result in 
hardware limitations as it is predefined with a specific amount of computing power when set 
up. A virtual machine also requires some recourses just to run, and this could affect the 
overall machine performance. It is also tedious to set up, allocate memory and configure file 
sharing between Windows and virtual machine.  

Second option is to dual boot the system with a native Ubuntu distro. This will give the distro 
full access to computing power, but the disk space needs to be partitioned giving 50/50 to 
Windows and Ubuntu. File sharing between these two OS’s is also a hassle, and it requires 
the user to turn the machine on and off to switch environment. The hardware drives can also 
become an issue on the Linux system. 

The final and most diffidently best approach is to set up a Windows Subsystem for Linux 
directly from Windows 10 terminal (CMD). WSL is Microsoft’s answer to more flexible 
open-source Linux environments directly on Windows. Preventing developers from switching 
to Linux distros as they advance in their carrier and making it more appealing for Linux users 
to switch too Windows. WSL is a lightweight and integrated solution running Linux on a 
Windows operating system. It can directly access files and share resources with the Windows 
host. And since WSL also shares the same kernel as the Windows host, it also inherits the 
security protections. This is not the case for a virtual machine running on Windows services 
such as Hyper-V, VirtualBox or WMware Workstation.  

Setting up WSL and installing a distro is easy. Find a good tutorial online, such as the one 
referred to in this section [1]. Follow it and do adjustments required for different hardware 
specifications. It is recommended to have some basic understanding of Linux file system and 
package installation. Otherwise, use the internet to search for help and solve error messages. 
Start by installing Docker Desktop on Windows, this is handy for containerizing projects 
running on the Linux kernel using the WSL as backend. It is not required to have Docker 
installed, but recommended. Next install WSL by running the wsl --install -d Ubuntu. Where 
Ubuntu specifies the Linux distro for installation. Ubuntu will then be installed on the 
machine, and can be opened by searching for “Ubuntu” in the Windows menu. A new 
terminal with the Ubuntu terminal will open, representing the Ubuntu machine. Next it is 
recommended to set up git and connect to a online git source-code storage and management 
service such as GitKraken or GitHub. Then install Visual Studio Code as a code editor on 
Windows, and connect it to WSL by adding the Remote Development extension pack. This 
gives the possibility to open any folder from the Ubuntu terminal in VSC by running the 
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“code .” command. After the IDE or Code editor is integrated, it is time to install 
development environment and packages in Ubuntu. Install MiniConda or Mamba, which is 
lightweight Python Conda package manager. This will give the bare minimum to create 
Conda environments and start Python development. Create a new Conda environment by 
running the “conda create -n newEnv” command. It is recommended to work in separate 
environments when developing to easier manage packages, prevent conflicts and backup. 
Finally there is one last thing that needs to be taken care of to access the processing power of 
the GPU hardware both in Windows and on the Ubuntu distro.  

Installing packages for NVIDIA CUDA toolkit and cuDNN drivers. Go to the NVIDIA for 
developers website, download and install the latest CUDA driver on the Windows OS. Then 
download and install the cuDNN drivers for the Windows OS. Extract the cuDNN drivers 
from the installation folder and move them into and overwrite exiting driver folders in the 
\Program Files\NVIDIA GPU Computing Toolkit\CUDA\driver folder on the Windows 
machine. Both the bin and libnvvp folder need to be added to the Environment Variable path. 
A complete guide written by Bex T. can be found at towardsdatascience.com referenced here 
[2]. When installation on Windows machine is done, it is recommended to test it locally 
before installing the same driver support on the WSL Ubuntu system. This was found to be 
unnecessary in this project. 

Next, install the same support on WSL in the Ubuntu terminal using a few simple commands 
shown in step 16 by Bex T. in towardsdatascience.com referenced here [1]. Then install the 
preferred Machine Learning libraries such as PyTorch, Tensorflow, Keras in the Conda 
environment created earlier or separate environments. It is recommended to keep some these 
separated as they may cause conflict with each other. This, however, needs to be tested and 
researched before use. If a mistake is made and conflicts occur, simply create new Conda 
environment and reinstall. Remember to install the packages that are supported for WSL and 
with GPU support. This can be found on the packages official cites. A list of packages used 
in this project can be seen in …. In this project, a WSL Ubuntu distro was created, set up with 
Git and MiniConda and multiple new template Conda environments were created with all 
packages and GPU functionality. This template is then copied into new development 
environments for testing and developing. This way, a fresh working environment is always 
available if something should go wrong in the developing environment. This environment can 
also be exported to a .yaml file and imported on other machines running a Conda setup on 
Ubuntu distro. 
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[1] B. T, “How to Create Perfect Machine Learning Development Environment With WSL2 
on Windows 10/11,” Medium, Dec. 09, 2022. https://towardsdatascience.com/how-to-
create-perfect-machine-learning-development-environment-with-wsl2-on-windows-10-
11-2c80f8ea1f31 (accessed Feb. 14, 2023). 

[2] B. T, “How to Finally Install TensorFlow 2 GPU on Windows 10 in 2022,” Medium, 
Dec. 09, 2022. https://towardsdatascience.com/how-to-finally-install-tensorflow-gpu-on-
windows-10-63527910f255 (accessed Feb. 14, 2023). 
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import re 
import cv2 
import numpy as np 
import pytesseract 
from PIL import Image 
 
img_path = 'img/111.jpg' 
 
# Define a list of regular expression patterns to match the desired formats 
"""patterns = [r'\d{3}[a-zA-Z]+\d{2}', 
            r'[a-zA-Z]+-\d{4}', 
            r'[a-zA-Z]?\d{4}', 
            r'[a-zA-Z]{2}-\d{4}', 
            r'\d{3},\d{2},\d{2}' 
            ]""" 
 
patterns = [ 
    r'\d{3}[a-zA-Z]+\d{2}', 
    r'[a-zA-Z]+-\d{4}', 
    r'[a-zA-Z]?\d{4}', 
    r'[a-zA-Z]{2}-\d{4}', 
    r'\d{3}[, ]\d{1}[a-zA-Z]+[, ]\d{2}', 
    r'\d{3}[, ]\d{1}[a-zA-Z]+[, ]\d{2}[a-zA-Z]+', 
    r'\d{3}[, ]\d{1}[a-zA-Z]+[, ]\d{1}[a-zA-Z]+[, ]\d{1}[a-zA-Z]+[, ]\d{1}[a-zA-
Z]+[, ]\d{2}[a-zA-Z]+', 
    r'\d{3}[, ]\d{1}[a-zA-Z]+[, ]\d{1}[a-zA-Z]+[, ]\d{1}[a-zA-Z]+[, ]\d{1}[a-zA-
Z]+[, ]\d{1}[a-zA-Z]+[, ]\d{1}[a-zA-Z]+[, ]\d{1}[a-zA-Z]+[, ]\d{1}[a-zA-Z]+', 
    r'\d{3}[, ]\d{1}[a-zA-Z]+[, ]\d{1}[a-zA-Z]+[, ]\d{1}[a-zA-Z]+[, ]\d{1}[a-zA-
Z]+[, ]\d{1}[a-zA-Z]+[, ]\d{1}[a-zA-Z]+[, ]\d{1}[a-zA-Z]+[, ]\d{1}[a-zA-Z]+[, 
]\d{2}[a-zA-Z]+', 
    r'\d{3}[, ]\d{1}[a-zA-Z]+[, ]\d{1}[a-zA-Z]+[, ]\d{1}[a-zA-Z]+[, ]\d{1}[a-zA-
Z]+[, ]\d{1}[a-zA-Z]+[, ]\d{1}[a-zA-Z]+[, ]\d{1}[a-zA-Z]+[, ]\d{1}[a-zA-Z]+[, 
]\d{1}[a-zA-Z]+[, ]\d{1}[a-zA-Z]+[, ]\d{1}[a-zA-Z]+[, ]\d{1}[a-zA-Z]+[, ]\d{1}[a-
zA-Z]+[, ]\d{1}[a-zA-Z]+[, ]\d{1}[a-zA-Z]+[, ]\d{1}[a-zA-Z]+[, ]\d{2}[a-zA-Z]+', 
    r'\d{3},\d{2},\d{2}', 
    r"\d{3}[A-Za-z]{3}\d{2}", 
] 
 

# Set the path to the tesseract executable 
pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract' 
 
# Read the image using cv2.imread 
image = cv2.imread(img_path) 
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# Convert the image to grayscale 
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 
 
# Get the height and width of the image 
height, width = gray.shape[:2] 
 
# Divide the height and width by 2 to get the dimensions of each quadrant 
h = height // 2 
w = width // 2 
 
# Create an array to store the 4 quadrants of the image 
quadrants = [gray[:h, :w], gray[:h, w:], gray[h:, :w], gray[h:, w:]] 
 
# Create a list to store the annotations 
annotations = [] 
 
# Set the minimum confidence level to 50% 
conf_level = 10 
 
# Set the Pytesseract configuration parameters 
config = f"--psm 6 --oem 3 -c min_confidence_level={conf_level}" 
 
# Define the scaling factors 
scales = [1.5, 2, 4] 
 
def get_range(threshold, sigma=0.33): 
    return (1-sigma) * threshold, (1+sigma) * threshold 
 
for scale in scales: 
    # Loop over the quadrants 
    for j, quadrant in enumerate(quadrants): 
        # Randomly scale and rotate the image 
        upscaled = cv2.resize(quadrant, None, fx=scale, fy=scale, 
interpolation=cv2.INTER_LINEAR) 
         
        #upscaled = cv2.resize(scaled, None, fx=4, fy=4, 
interpolation=cv2.INTER_LINEAR) 
        q_height, q_width = upscaled.shape[:2] 
        # Apply a Laplacian filter to sharpen the image 
        laplacian = cv2.Laplacian(upscaled, cv2.CV_8U) #test 
        sharpened = cv2.addWeighted(upscaled, 1.5, laplacian, -0.5, 0) #test 
 
        # Apply thresholding to create a binary image 
        thresh = cv2.threshold(sharpened, 170, 255, cv2.THRESH_BINARY_INV)[1] 
         



Appendix J OCR Eirik Illing 

 

        # Apply kernel to dilate the image 
        kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1,1)) 
        # Invert the Canny edges image 
        edges_inverted = cv2.bitwise_not(thresh) 
        # Apply dilation to make text more visible 
        dilated = cv2.dilate(edges_inverted, kernel, iterations=1) 
         
        cv2.imwrite(f'img/quadrant_{j}.jpg', dilated) 
         
        # Use pytesseract to extract text and bounding boxes from the image 
        data = pytesseract.image_to_data(dilated, 
output_type=pytesseract.Output.DICT, config=config, lang=None) #config=config) 
        #print(data['text']) 
         
        # Loop over the words and concatenate bounding boxes that are close 
together 
        for i in range(len(data['text'])): 
            # Extract the text and bounding box coordinates 
            text = data['text'][i] 
            x, y, w, h = data['left'][i], data['top'][i], data['width'][i], 
data['height'][i] 
 
            # Apply the scaling factor used in the loop 
            x = x / (scale) 
            y = y / (scale) 
            w = w / (scale) 
            h = h / (scale) 
             
            # Rescale the coordinates and dimensions of the bounding boxes 
            if j == 0:  # Top-left quadrant 
                x_offset = 0 
                y_offset = 0 
            elif j == 1:  # Top-right quadrant 
                x_offset = width/2 
                y_offset = 0 
            elif j == 2:  # Bottom-left quadrant 
                x_offset = 0 
                y_offset = height/2 
            else:  # Bottom-right quadrant 
                x_offset = width/2 
                y_offset = height/2 
 
            x_center = (x + x_offset) / width 
            y_center = (y + y_offset) / height 
            box_width = w / width 
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            box_height = h / height  
 
            if not text: 
                continue 
            if len(text) < 3: 
                continue 
            #if text.replace(" ", "") == "": 
                #continue 
             
            # Check if the text matches any of the desired patterns 
            matches_pattern = False 
             
            for pattern in patterns: 
                if re.match(pattern, text): 
                    matches_pattern = True 
                    break 
                     
            if not matches_pattern: 
                if re.match(r'\d{3}', text): 
                    if i+1 < len(data['text']): 
                        text2 = data['text'][i+1] 
                        if re.match(r',\d{2}', text2): 
                            if i+2 < len(data['text']): 
                                text3 = data['text'][i+2] 
                                if re.match(r'\d{2}-\d{2}', text3): 
                                    text = text + text2 + "_" + text3 
                                    matches_pattern = True 
                        elif re.match(r',\d{2},\d{2}', text2): 
                            if i+2 < len(data['text']): 
                                text3 = data['text'][i+2] 
                                if re.match(r'\d{2}-\d{2}', text3): 
                                    text = text + text2 + "_" + text3 
                                    matches_pattern = True 
                        elif re.match(r'\d{2}', text2): 
                            if i+2 < len(data['text']): 
                                text3 = data['text'][i+2] 
                                if re.match(r'\d{4}-\d{2}', text3): 
                                    text = text + "," + text2 + "_" + text3 
                                    matches_pattern = True  
                        elif re.match(r',\d{2},\d{2}', text2): 
                            text = text + text2 
                            matches_pattern = True       
                elif re.match(r'\d{3},\d{2},\d{2}', text): 
                    if i+1 < len(data['text']): 
                        text2 = data['text'][i+1] 
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                        if re.match(r'\d{2}-\d{2}', text2): 
                            text = text + "_" + text2 
                            matches_pattern = True 
                elif re.match(r'\d{3},\d{2}', text): 
                    if i+1 < len(data['text']): 
                        text2 = data['text'][i+1] 
                        if re.match(r',\d{2}', text2): 
                            if i+2 < len(data['text']): 
                                text3 = data['text'][i+2] 
                                if re.match(r'\d{2}-\d{2}', text3): 
                                    text = text + text2 + "_" + text3 
                                    matches_pattern = True 
                        elif re.match(r'\d{2}', text2): 
                            if i+2 < len(data['text']): 
                                text3 = data['text'][i+2] 
                                if re.match(r'\d{2}-\d{2}', text3): 
                                    text = text + "," + text2 + "_" + text3 
                                    matches_pattern = True 
 
             
            if not matches_pattern: 
                continue 
             
            if any(text in annotation for annotation in annotations): 
                continue 
            else: 
                print(text + " " + str(j)) 
                # Add the annotation to the list 
                annotations.append(f"{text} {x_center:.6f} {y_center:.6f} 
{box_width:.6f} {box_height:.6f}") 
 
# Save the image with the bounding boxes 
img.save('image_with_boxes.jpg') 
 
# Save the annotations to a text file 
with open('annotations.txt', 'w') as f: 
    f.write('\n'.join(annotations)) 
 
# Copy image 
copy_img = image.copy() 
 
# Load the bounding box data from the text file CHECK 
with open("/home/engineirik/git/ocr/annotations.txt") as f: 
    lines = f.readlines()[1:] # Skip the header line 
    for line in lines: 
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        cols = line.strip().split() 
        x, y, w, h = map(float, cols[1:5]) 
 
        # Scale the coordinates to the image size 
        x = x * width 
        y = y * height 
        w = w * width 
        h = h * height 
 
        # Draw a rectangle around the object 
        cv2.rectangle(copy_img, (int(x), int(y)), (int(x+w), int(y+h)), (0, 255, 
0), 2) 
 

# Display the image 
cv2.imshow("Image with bounding boxes", copy_img) 
cv2.waitKey(0) 
cv2.destroyAllWindows() 
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import numpy as np 

import os 

 

def compute_iou(box1, box2): 

    # Calculate the intersection rectangle 

    x1 = max(box1[0], box2[0]) 

    y1 = max(box1[1], box2[1]) 

    x2 = min(box1[0]+box1[2], box2[0]+box2[2]) 

    y2 = min(box1[1]+box1[3], box2[1]+box2[3]) 

    inter_area = max(0, x2-x1) * max(0, y2-y1) 

 

    # Calculate the union area 

    box1_area = box1[2] * box1[3] 

    box2_area = box2[2] * box2[3] 

    union_area = box1_area + box2_area - inter_area 

 

    # Calculate the IoU 

    iou = inter_area / union_area 

 

    return iou 

 

def compute_precision_recall(yolo_data, annotated_data, class_id, iou_threshold): 

    tp = 0 

    fp = 0 

    fn = 0 

 

    num_annotated_objects = np.sum(annotated_data[:, 0] == class_id) 

 

    for i in range(len(yolo_data)): 

        if yolo_data[i][0] != class_id: 

            continue 

 

        yolo_box = [yolo_data[i][1], yolo_data[i][2], yolo_data[i][3], yolo_data[i][4]] 

        max_iou = 0 

        for j in range(len(annotated_data)): 

            if annotated_data[j][0] != class_id: 

                continue 
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            annotated_box = [annotated_data[j][1], annotated_data[j][2], annotated_data[j][3], annotated_data[j][4]] 

            iou = compute_iou(yolo_box, annotated_box) 

            if iou > max_iou: 

                max_iou = iou 

 

        if max_iou >= iou_threshold: 

            tp += 1 

        else: 

            fp += 1 

 

    fn = num_annotated_objects - tp 

 

    if tp + fp > 0: 

        precision = tp / (tp + fp) 

    else: 

        precision = 0 

 

    recall = tp / (tp + fn) 

 

    return precision, recall 

 

def compute_mAP(yolo_file, annotated_file, iou_threshold=0.50): 

    yolo_data = np.loadtxt(yolo_file, delimiter=' ') 

    annotated_data = np.loadtxt(annotated_file, delimiter=' ') 

    class_ids = np.unique(annotated_data[:, 0]) 

    num_classes = len(class_ids) 

 

    aps = [] 

    for i, class_id in enumerate(class_ids): 

        precision, recall = compute_precision_recall(yolo_data, annotated_data, class_id, iou_threshold) 

 

        ap = 0 

        for j in range(11): 

            threshold = j / 10 

            if recall >= threshold: 
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                max_precision = 0 

                for k in range(len(yolo_data)): 

                    if yolo_data[k][0] != class_id: 

                        continue 

 

                    yolo_box = [yolo_data[k][1], yolo_data[k][2], yolo_data[k][3], yolo_data[k][4]] 

                    max_iou = 0 

                    for l in range(len(annotated_data)): 

                        if annotated_data[l][0] != class_id: 

                            continue 

                        annotated_box = [annotated_data[l][1], annotated_data[l][2], annotated_data[l][3], annotated_data[l][4]] 

                        iou = compute_iou(yolo_box, annotated_box) 

                        if iou > max_iou: 

                            max_iou = iou 

                    if max_iou >= iou_threshold: 

                        tp = 1 

                        fp = 0 

                        precision = tp / (tp + fp) 

                        if precision > max_precision: 

                            max_precision = precision 

 

                ap += max_precision / 11 

 

        aps.append(ap) 

 

    mAP = np.mean(aps) 

 

    return mAP 

 

annotated_folder = 'annotated' 

preanalyzed_folder = 'preanalyzed' 

iou_threshold = 0.5 

 

avgMAP = 0 

numFiles = 0 
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for annotated_file in os.listdir(annotated_folder): 

    if not annotated_file.endswith('.txt'): 

        continue 

    preanalyzed_file = os.path.join(preanalyzed_folder, annotated_file) 

 

    if not os.path.exists(preanalyzed_file): 

        print(f'Error: preanalyzed file {preanalyzed_file} not found') 

        continue 

 

    mAP = compute_mAP(preanalyzed_file, os.path.join(annotated_folder, annotated_file), iou_threshold) 

    avgMAP += mAP 

    numFiles += 1 

    print(f'mAP for file {annotated_file}: {mAP}') 

 

if numFiles > 0: 

    avgMAP /= numFiles 

    print(f'Average mAP: {avgMAP}') 

else: 

    print('No files processed')    
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Table 1: Step by step design mockup of annotation software. 

Start menu 
window 

 

 

Upload image 
prompt 

 

Crop image 
window 
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Pre-Analysis 
window 

 

Progress indicator 
prompt 

 

Annotation 
window 

 

Folder save 
export prompt 
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Table 1: Different UI designs for the ICE software 

Blue mobile 

 

 

Light mobile 
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Blue desktop 

 

Light desktop 
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