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1 Introduction

Synchronous generators are an essential part of the electrical power system, mainly be-
cause of the controlled, inertia-based generation of electrical energy. Throughout the
operation, the electrical power grid face changing power demand, and differences in pro-
duction and demand cause the power grid frequency to vary. A low inertia power grid
will be vulnerable to highly changing demand, causing frequency deviations. The inertia
of the generator will cause inertia to the power grid frequency, increasing stability dur-
ing changing demand. In case of severe frequency deviations, the synchronous generator
cannot remain synchronous with the power grid. A loss of synchronism can cause severe
damage and will, in the best-case scenario, force the generator to restart. Solar panels
and wind power are selected as possible solutions to increase electrical energy production
in a world with an increasing need for electricity. While these sources of energy cause
increased production of energy, both solar and wind power are non-controllable, with
no inertia. The low inertia cause worse frequency fluctuations, which makes the state
of the remaining inertia-based synchronous generators more crucial. In addition to the
influence on the grid frequency, will high-demand periods for electrical power demand a
sufficient output of reactive power to ensure no collapse of the system voltage. To ensure
the operation of the power grid and generator, each generator contains several governing
control schemes. The control schemes control both active and reactive power production
through changes to the magnetization and torque applied to the generator rotor. Hydro-
power utilizes hydro turbines connected to the generator shaft. The hydro turbines add
a dynamic to the production of electrical power, as changes in active power cannot be
controlled directly, yet, have to be controlled through the flow of water.

The operational point of the synchronous generator causes changing efficiency due to
power losses being dependent on the operation. The power losses represent heat sources
in the generator, causing the thermal profile of the generator to change with the losses.

Though mechanistic models of the electrical, mechanical, and thermal state of the syn-
chronous generator and driver, can a hydropower plant be emulated as a digital twin. A
digital twin emulation allows a simulation of operational conditions and will allow more
dynamic generator operation with increased confidence. However, the realisticity of the
emulated system highly depends on the mechanistic models and parameters. Mechanistic
models are well established, while parameters depend on each individual generator and
driver. Several laboratory test procedures have been established to estimate the paramet-
ers. Other methods include estimations of the parameters through known relationships.
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1.1 Background

During the fall of 2021, an in-house synchronous generator test rig was installed at the
University of South-Eastern Norway as part of a master project [1]. The synchronous
generator is rated 2 kVA, with a DC motor as the primary runner, with static excita-
tion of the generator. The generator allows physical laboratory tests of a synchronous
generator. The generator has run manual laboratory exercises like open-circuit and short-
circuits tests. During the fall of 2022, multiple sensors were installed on the generator,
all combined into a data acquisition hardware, NI cDAQ -9189. In addition, software
was developed for the acquisition of the sensor values as part of a master Project work.
The software developed during the project was written in C#, handling configuration,
measuring, soft sensor estimations, and SQL database storage. The project work also
featured several laboratory sessions, from which generator parameters and power losses
were estimated. Static digital test cases were also established as part of the software,
allowing digital simulation of the parameter estimation laboratory sessions [2].

1.2 Motivation

The previous work on the synchronous generator test rig includes data acquisition soft-
ware with static simulations and estimation of several parameters and power losses ob-
tained through manually controlled laboratory sessions. In addition, the data acquisition
hardware installed contains analog output modules, allowing control signals. The con-
trol signals can replicate the generator’s governing control mechanisms during laboratory
sessions. Hence eliminates the need for manual control and human error.

A thermal model is vital to increase the synchronous generator knowledge during oper-
ation. The synchronous generator consists of several parts of different sizes and stress,
resulting in a non-uniform distribution of the generated heat. Through dynamic state
and parameter estimation of the generator, the operational knowledge of the generator
is further increased. Furthermore, adding the possibility to simulate the behaviour of
the synchronous generator as a dynamic system through mechanistic models which use
the estimated parameters will allow digital simulations of entire laboratory sessions, sav-
ing time, ensuring operational safety, and increasing knowledge about the synchronous
generator.

1.3 Problem Statement

In an attempt to address the aforementioned challenges, was a project description made,
available in Appendix A. The outlined scope of the thesis is summarized below, divided
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into main and sub-objectives. The main objective of the thesis is given by (MO).

(MO) Further develop the data acquisition application.

To further specify the indistinct main objective, are several sub-objectives ((O1)-(O8),
specified accordingly.

(O1) Survey digital twin of hydropower modeling and control systems.

(O2) The software should be developed to control the speed controller, and an AVR for
voltage regulation should be implemented. In addition, if time allows, tune control-
lers towards IEEE and Norwegian standards and implement simple overexcitation
and stator current limiters. (OXL/SCL)

(O3) A simple electrical model of the generator, e.g., a third-order model and a lumped
parameter thermal model from [3], should be implemented in LabView.

(O4) Implement an already developed loss model of the synchronous machine.

(O5) Controllers should be tested on the generator lab setup, with control through the
Compact DAQ.

(O6) Collect a sufficient amount of data from the generator through test runs to estim-
ate the model parameters of the lab generator for both the thermal and electrical
models. In addition, if time allows, expand data collection to an external study case

(O7) Implement a Kalman filter for real-time state estimation of the synchronous gener-
ator states and variables and do proper verification tests of the filters.

(O8) The work should be compiled into a paper manuscript for further publication.

1.4 Method and structure

The thesis project will utilize literature on hydropower plants and synchronous generators
as well as thermodynamics to conduct the research. The theoretical approaches will be
tested on measurements from the physical test rig at USN and through simulations. The
physical laboratory situated on the campus of USN will be used to carry out laboratory
experiments, using the previously installed sensors together with a Labview application
which will be created during the work, as mentioned in Section 1.3. The LabView ap-
plication will use the previously made SQL database as cloud storage. A summary of the
libraries with usage areas is listed below.

• Python version 3.8, with Libraries; Pandas for data frame utilization, Numpy for
numerical computations, PyMc3 for Bayesian Inference, matplotlib for plotting,
sklearn for statistic measures.
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• LabVIEW with modules; Database connectivity, DAQmx, Control design and sim-
ulation module.

• NI MAX for verification of DAQ measurements and control.

• Overleaf for writing in LaTex.

• Microsoft Visio for diagrams

• Microsoft Excel for Gannt diagram

• Microsoft Azure SQL database

Including the current chapter, the report consists of six main chapters. The current
chapter aims to introduce the thesis with an introduction, a brief background overview and
a presentation of the problem statements. The next chapter will present the theoretical
background needed to address solutions to the problem statements. First, the survey will
look into the main concerns regarding the hydraulic part of the hydropower plant without
focusing on the findings. Next, the central controller schemes relevant to hydropower
will be presented. The survey will then focus on the electrical model of the generator,
focusing on the salient pole synchronous generator and the two-reaction theory. The
operational losses of the generator will then be presented. At last will, the thermal
phenomena created by the power losses will be presented to conclude the survey. Next,
chosen parameter and state estimation techniques will be presented and measures to
validate obtained results. Next, a methodology chapter will present the presented theory’s
setup and implementation. Then, will the obtained results be presented in a result chapter,
separated into three study cases. At last, the results will be discussed before a conclusion
will be made, and future work will be proposed.

Throughout the report, the main chapters will be divided into subchapters, focusing on a
more specific subject of the thesis. A general separation throughout the report is between
the thermal and electrical parameter estimations. However, these are combined in the
making of the digital twin. To increase the readability of the report, some results and
data of interest are stored in Appendix B.
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2 Theory

In order to address the technical challenges presented throughout the Objectives (01)-(O8)
requires some general theory about the hydropower plant with a focus on the synchronous
generator. This chapter will present the general theory, starting with a survey on Digital
Twin for hydropower modelling, and later moving to the electromechanical aspects of
the synchronous generator. From there will, the power losses and the thermodynamics
relevant to the synchronous generator be presented. At last, will parameter and state
estimation theory be presented together with relevant validation measures.

2.1 Digital twin for hydropower modeling

This chapter will present the general basis needed for establishing a digital twin for hydro
power plant modelling, through a survey. At first, will relevant digital twin technology
be presented, and later will, relevant hydropower plant theory be presented.

2.1.1 Digital Twin

Digital twin technology is a virtual representation of a physical system driven by mech-
anical or mathematical models of the system [4]. In addition, the physical system to be
created as a digital twin is often equipped with sensors, gathering data to strengthen the
similarity between the digital twin and the physical system [4]. Table 2.1 presents the
different types of digital twin technology.

Table 2.1: Types of Digital twins [4].
Type Name Scope
T1 Component twin/Parts twin Basic units and small parts
T2 Asset twin Several components
T3 System or Unit twins Several asset twins
T4 Process twins Several system twins

At the lowest level is the component and parts twin; when combined, they form an asset
twin, which can be used to study the interaction between the components. Combining
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assets forms a system/unit twin, which forms a functioning system, forming valuable
insight into the interaction between the assets. At the highest level, the Process twin
reveals how system and unit twins work together in a process [4]. The direct use of digital
twins is typically divided into three sections, as presented in Table 2.2 [5].

Table 2.2: Sections of digital twin technology[4]
Type Section Usage area
S1 Product Simulation of product behavior in different

conditions
S2 Production Production and manufacturing
S3 Performance Digital twin technology used to analyze and

optimize operational states

When including physical components in the twin, will the digital twin be considered
hardware in the loop simulation, and not a fully digital twin, a process typically used
when the behaviour of the physical component is difficult to describe using mechanistic
models [6].

2.1.2 Hydropower plant

The hydropower plant operates by converting kinetic energy water into electrical power.
It is done through an interconnected turbine and synchronous generator. This Section will
give an overview of the hydropower plant, while the specific working of the synchronous
generator will be presented in section 2.2. A simplified version of the hydropower plant
is shown in Figure 2.1.

Figure 2.1: Simplified overview of a hydropower plant [7].

As seen in Figure 2.1, does the water flow represent kinetic energy applying torque to the
turbine, causing shaft rotation. The amount of nominal active power of a hydropower
plant generator is given by Equation 2.1 [8].
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Pn = gρQnHn (2.1)

Where g is the gravitational acceleration, ρ is the density of the water, Qn is the nom-
inal volumetric flow, and Hn is the available height difference from the reservoir to the
turbine, with losses considered. The losses are caused by friction and changing dimen-
sions/pressure. The volumetric flow and available height difference depend on the geo-
metric placement of the hydropower plant, as the waterway varies with nature’s natural
geometrical shape. The two main usage areas which are typically used for the location of
a hydropower plant are listed below;

• River

• Damn/Reservoir

The river type represents uncontrolled water flow which will vary with seasonal changes.
The damn/reservoir type does provide control of water flow, while the seasonal influx
changes will still change the height of the reservoir, altering the nominal active power.
The seasonal changes alter the operational state of the hydropower plant; as a result,
are several turbine types provided to maximize the efficiency of the hydropower plant
throughout its lifetime. There are two main typologies of hydropower turbines, either
reaction or impulse. The reaction type uses the general flow of water for rotating the
turbine, while the impulse type uses the impulse hit of water into the turbine. The most
common turbine types and their topology are given in Table 2.3.

Table 2.3: Turbine types [8]
Name Type
Francis Reaction and impulse
Kaplan Impulse
Pelton Reaction

Given the different types, the efficiency characteristic for each of the turbine types is
presented in Figure 2.2.

The differences in efficiency characteristics make the different turbines attractive in spe-
cific usage areas. The Pelton turbine does have increased control through multiple inject-
ors. Hence the efficiency will be higher at a lower load ratio. The efficiency of the turbine
is not considered in this thesis.
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Figure 2.2: Efficiency characteristics for the different turbines [9].

2.1.3 Hydro Power Control Systems

The synchronous generator depends on control systems in order to maintain compliance
with standards and regulations and to maintain production. The controlled parameters
of the hydropower plant consist of water flow and field excitation, controlling respectively
active and reactive power. The common control systems that handle control of the active
and reactive power are the governor and automatic voltage regulator (AVR), respectively
[10].

Governor control

The main objective of the governor control scheme is to maintain close to nominal grid
frequency. The power grid frequency is a global phenomenon, meaning that all production
and load contribute to changes in the frequency. The changes in frequency are caused by
the differences between the production and demand of active power, hence will control of
the active power control the contribution to the remaining nominal grid frequency. Figure
2.3 shows a graphical overview of the process [10].

Figure 2.3: Overview of the governor control for a steam turbine [10].

The process presented in Figure 2.3 is the same for a hydropower plant. The governor
controls the gate valve, which controls the amount of applied torque through the water flow
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The power grid consists of many sources of generation. Direct control of the active power
would cause an unstable grid, as all generators would try to restore the frequency, resulting
in an overshooting reaction in the generation. To overcome this issue, the governor controls
are equipped with droop control. The droop control acts as a fixed ratio between frequency
deviation and power production deviation from the setpoint, as presented in Figure 2.4
[10].

Figure 2.4: Governor control [11].

The slope of the governor curve in Figure 2.4 is known as the droop. The droop decides
how the production of active power changes with the frequency changes, given by Equation
2.2 [10].

R =−∆ f/ fn

∆P/Pn
(2.2)

Where R is the droop, ∆ f is the deviation in frequency, fn is the nominal frequency, ∆P
is the active power deviation from the original setpoint, and Pn is the rated power of the
generator. Equation 2.3 gives the resulting change in active power production from a
frequency deviation.

∆P =−∆ f Pn

R fn
(2.3)

As seen from Equation 2.3, will a low droop will result in a great change in active power
production, while a higher droop will restrict the change in active power production. The
change in grid frequency versus active power is known as the network power frequency
characteristic, given by Equation 2.4.

λ =−∆P
∆ f

(2.4)
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Transient droop

The governor droop regulates the amount of active power production by opening of the
gate valve, which ultimately controls the load ratio of the hydropower plant. When subject
to changes in the gate valve, does the water flow respond peculiarly [7] [12]. Hence, a
slowdown of the initial gate valve motion is needed to stabilize the water flow. The
slowdown is accomplished with a transient droop feedback loop as shown in Figure 2.5
[12].

Figure 2.5: Transient and static droop control loops [12]

The transient droop reduces the transient gain of the governor droop, allowing water in
the penstock to respond to the changes in the gate valve position [12].

Automatic voltage regulator

The voltage level is a local phenomenon in the power grid, in opposition to the system
frequency [10]. Changes in voltage level at the generator terminals compared to the infinite
bus will change the amount of reactive power produced/absorbed. A lower voltage level
at the terminals of the generator causes the synchronous generator to absorb reactive
power. During high demand for active power, the voltage relies on an increased supply
of reactive power [13]. The main task of the automatic voltage regulator is to control
the terminal voltage of the synchronous generator, done by adjusting the field voltage.
A more specific reaction of the terminal voltage from changes in the field voltage will be
presented in Section 2.2. The overview of the AVR process is shown in Figure 2.6.

The voltage regulator in Figure 2.6 consists of control schemes, as presented in Figure
2.7. The resulting output from the regulator gets fed into the exciter, which applies the
excitation voltage to the field. Chapter 2.2 will show that the terminal voltage depends
on the field current as well as the angular velocity of the rotor, hence does also the rotor
angle depend on the excitation current. Hence, are a power system stabilizer implemented
to make the AVR dynamically able to contribute to the stability and decaying of low-
frequency oscillations, LFO [14]. A common voltage regulator control scheme is presented
in Figure 2.7.
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Figure 2.6: Simplified overview of the AVR [10].

Figure 2.7: Control scheme ST7C [15].
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2.2 The synchronous machine

The synchronous machine can be divided into two topologies, the synchronous generator
and the synchronous motor, depending on whether the machine supplies or absorbs electric
power. The theory presented in this section applies to both topologies, just contrary, yet,
the thesis will focus on the generator topology.

2.2.1 The electrical model

This chapter will establish a general mathematical model of the electrical parts of the
synchronous generator. The chapter builds on the general mathematical model presented
in Machowski [12] with the adoption of the changed orientation of the directional and
quadrature axes, the same orientation as used in Kundur [7].

Figure 2.8: Simplified salient pole synchronous generator overview [7].

A simplified overview of the synchronous generator is presented in Figure 2.8. During
operation, the rotor field winding drives the field flux φ , controlled by the excitation,
producing an mmf wave through the air gap at steady angular velocity resulting in a
sinusoidal waveform for each pole. The mmf is given by Equation 2.5 [12].

Ff = N f i f (2.5)

The shape of the rotor can be round, called round-rotor machine, or salient, called salient
pole machine, which is the case for the generator presented in Figure 2.8. The salient pole
geometric shape causes lower magnetic reluctance in the d-axis compared to the q-axis,
as seen in Figure 2.9 [12].
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Figure 2.9: Reluctance in d- and q-axis [12].

The reluctance, R, has a direct impact on the excitation flux per pole φ f driven by the
field mmf, given by Equation 2.6 [12].

φ f =
Ff

R
(2.6)

For a round rotor machine, does this cause coincides with the peak of the field flux and
the field mmf. The mmf cause a time-varying flux linkage, ψ , with each of the armature
phases, phase A given by Equation 2.7 [12].

ψ f A = Nφ φ f cosωt = Nφ

Ff

R
cosωt = M f i f cosωt (2.7)

Where M f is the mutual inductance between the field and armature winding. Referenced
to Faradays Law, does the time-varying flux linkages induces an internal voltage in the
stator windings, given by Equation 2.8 [12].

e f A =−
Nφ φ f

dt
cosωt = ωM f i f sinωt (2.8)

In a salient pole machine, the difference in the air gap between the directional and quad-
rature axes results in a non-uniform air gap flux. The shape of the rotor causes the
maximum flux linkage value at the directional axis and the minimum value at the quad-
rature axis. To handle the non-uniform flux, A. Blondel developed a two-reaction theory,
resolving the mmf acting along the directional- and quadrature- axes, causing constant
values of reactances to the mmfs, considered separately [12]. The total mmf will then be
given by the Equation 2.9 [12].

~Fr = ~Fd +~Fq (2.9)

Where the directional axes are the sum of the excitation mmf and the directional axes mmf
~Fd = Ff +Fad, there is no excitation winding in the quadrature axis; hence, ~Fq = ~Faq. ~Fad
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and ~Faq are the armature directional and quadrature axis mmfs. As seen from Equation
2.7, does the resulting induced internal voltage, emf, lag their respective mmf by 90
degrees, causing Eq to be induced by the d axis mmf, and Ed to be induced by −~Fq,
assuming q leads d axis by 90 degrees as in Figure 2.8 [12] [7]. The generator circuits
can be seen as several electrical circuits connected through mutual coupling. Each of the
circuits has its resistance and inductance. The general generator contains three terminal
windings, rotor winding, and damper windings on the rotor, shown in Figure 2.10 [12].

Figure 2.10: Simplified generator topoligy circuits [12]. (Alignment of the d and q axis are not the same
as used in this thesis.)

Each of these windings has been modelled such as the flux in each winding depends on
the currents in all the other windings, given by Equation 2.10 [12].


ψA
ψB
ψC
ψ f
ψD
ψQ

=


LAA LAB LAC LA f LAD LAQ
LBA LBB LBC LB f LBD LBQ
LCA LCB LCC LC f LCD LCQ
L f A L f B L fC L f f L f D L f Q
LDA LDB LDC LD f LDD LDQ
LQA LQB LQC LQ f LQD LQQ




iA
iB
iC
i f
iD
iQ

 (2.10)

The self-inductance of each of the phases is at maximum when the rotor angle is aligned
with the respective winding, resulting in maximum self-inductance for phase A at the
alignment of the rotor directional axis and armature windings.

LAA = Ls +∆Ls · cos(#pδ ) (2.11)

With #p being the number of poles, and δ being the rotor angle relative to the stator
phase A. The same is valid for phases B and C, shifted with -120 and +120 degrees. The
self-inductance in the rotor is constant and does not vary with the rotor position. The

32



mutual inductances between stator phase windages are shifted by 120, hence negative,
and are at a maximum when the rotor position is midway between the windings. Given
by Equation 2.12 [12].

LAB = LBA =−Ms −∆Ls cos(2(δ +
1
6

π) (2.12)

The mutual inductance between the stator and rotor changes with the rotor position and
is at a maximum when they are aligned, as seen by Equations 2.13- 2.15.

LA f = L f A = M f cos(δ ) (2.13)
LAD = LDA = MD cos(δ ) (2.14)
LAQ = LQA = MQ cos(δ ) (2.15)

The same is valid for phases B and C, shifted by -120 and +120 degrees. The mutual
inductance in the rotor is zero, as the directional and quadrature axis are perpendicular
[12].

2.2.2 Park Transformation

Equations 2.11 to 2.15 present that the majority of Equation 2.10 depends on the rotor
position referenced to phase A. The rotor position are changing with time, so Equations
2.11 to 2.15 will also vary with time. Park transformation is given as a reference frame
change from time to rotor angle referenced to stator phase A winding. The transformation
matrix is given by Equation 2.16 [12].

W =

√
2
3

 cos(δ ) cos(δ − 2
3π) cos(δ + 2

3π)

−sin(δ ) −sin(δ − 2
3π) −sin(δ + 2

3π)
1√
2

1√
2

1√
2

 (2.16)

Given in compact form by Equation 2.17.

idq0 =W · iabc (2.17)

The park transformation allows a transformation from ABC to DQ0 space, given as
Equation 2.18.

[
iabc
i f DQ

]
=

[
W−1 0

0 1

][
idq0
i f DQ

]
(2.18)
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This allows the transformation of Equation 2.10, resulting in, Equation 2.19.


ψd
ψq
ψ0
ψ f
ψD
ψQ

=


Ld kM f kMD

Lq kMq
L0

kM f L f
kMD L f D LD

kMQ LQ




id
iq
i0
i f
iD
iQ

 (2.19)

Where Ld is the directional axis inductance, Lq is the quadrature axis reactance, L f D is
the mutual reactance between rotor d axis and damper winding in d axis, k is a constant√

3
2 and M f , MD, LQ [12]. Equation 2.19 identifies three sets of magnetic couplings, each

perpendicular to the others, presented by Figure 2.11 [12].

Figure 2.11: Fictious perpendicular windings [12]. (Alignment of the d and q axis are not the same as
used in this thesis.)

2.2.3 Rotor angle

The rotor angle used throughout Equation 2.12-2.16 presents the rotor angle with the
mmf in stator phase A as reference. During operation, the angle varies based on the
rotor’s angular velocity compared to the power grid’s synchronous frequency, given by
Equation 2.20 [12].

δ = δ0 +
∫

ωelec −ωsdt (2.20)
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Where δ0 is the initial rotor angle and the integral accounts for the speed differences over
time, assuming both ωs and ωelec are given in the electrical radians per second. The rotor
angle can also be estimated by Equation 2.21 [16] [7].

δi = arctan(
Pi

V 2
i

Xq
+Qi

) (2.21)

Where δi is the rotor angle at time i, and Pi, Vi, and Qi is the terminal quantities at time
i.

2.2.4 Voltage equations

Figure 2.12: General generator circuit [12].

Figure 2.12 presents the general generator circuit, represented as an emf given by the
changing flux behind a resistance. Applying the dq0 reference frame for voltage, cur-
rents, and flux linkages, together with Kirchhoff’s voltage law in Figure 2.12 given the
relationship given by Equation 2.22.

[
vdq0
v f DQ

]
=−

[
RABC

R f DQ

][
idq0
i f DQ

]
−
[

ψ̇dq0
ψ̇ f DQ

]
+

[
Ω

0

][
ψdq0
ψ f DQ

]
(2.22)

With ψ̇dq0 and ψ̇ f DQ being the transformator emfs, and Ωψdq0 being present as the ems
induced in the stator windings by the rotating magnetic field applied by the rotor, with
the rotational emfs present, given as Equation 2.23 [12]

Ωψdq0 =

−ωψq
ωψd

0

 (2.23)

Equation 2.23 confirms that the directional axis emf is being induced by the quadrature
axis flux linkages, and vice versa, with the being a result of the assumed rotational
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direction and orientation of the axes, assumed q axis leading the d axis by 90 degrees.
Assuming balanced operations would allow neglecting the zero-axis, as it cancels out. It
would also allow neglection of the transformer emf as it is relatively small compared to
the rotational emf given in Equation 2.23 [12]. Assuming a steady state would make the
armature flux penetrate through all the circuits, making the directional and quadrature
damping windings constant, hence does the armature current only see the directional- and
quadrature-axis inductance Ld and Lq, this allows neglection of the damping windings [12].
These simplifications result in Equation 2.24.

 vd
vq
−v f

≈−

R 0 0
0 R 0
0 0 R f

id
iq
i f

+

−ωψq
ωψd

0

 (2.24)

Inserting for directional and quadrature flux linkages and combining results in the sim-
plified Equation 2.25 of the steady-state voltage equations.

 Vd
Vq
−Vf

=−

 R −Xq 0
Xd R −Xad
0 0 R f

Id
Iq
I f

 (2.25)

Where the directional and quadrature voltages are given as Equations 2.26 and 2.27 [7].

Vd =V sin(δ ) (2.26)
Vq =V cos(δ ) (2.27)

Where V is the amplitude of the terminal voltage of the generator and δ is the rotor
angle, the directional and quadrature currents referenced from the terminal current are
given by Equations 2.28 and 2.29 [7].

Id = I sin(δ +θ) (2.28)
Iq = I cos(δ +θ) (2.29)

Where I is the amplitude of the terminal current and θ is the phase angle between the
terminal voltage and current.

2.2.5 Per unit system

There are two per-unit systems to consider when modelling the synchronous generator.
Base values at both the rotor and stator must be assessed. The stator per unit values is
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well established, given by Equations 2.30 and 2.31 [13]. -

Ibase =
Sbase√
3Vbase

(2.30)

Zbase =
V 2

base
Sbase

(2.31)

Where Sbase and Vbase typically are selected as the three-phase rated apparent power and
line-line voltage [13]. The rotor base values are typically set by the field current, where
the base field current value is the value required, in amperes, to induce a rated voltage
on the armature terminals during an open circuit test, given by Equation 2.25 at open
circuit, hence no current in the stator windings, resulting in Equation 2.32 [7].

Vq = XadI fbase |Vt=Vnominal (2.32)

Where the base field voltage is given by the Equation

Vfbase = I fbaseR f (2.33)

Where R f is the field winding ohmic resistance given. This is known as the non-reciprocal
per-unit system. When considering parameter estimation of parameters in Equation 2.25,
is the process simplified if the rotor and stator see the same value for Lad. This is achieved
by converting to the reciprocal per unit system, also known as the Lad-base system. The
reciprocal per unit system is achieved by dividing through Lad, as seen in Figure 2.13
[7].

The resulting base field current is now given by Equation 2.34.

ibase =
I fbase

Lad
(2.34)

With the resulting base field voltage given by Equation 2.35.

vbase =Vfbase

R f

Lad
(2.35)

Where vbase and ibase are the reciprocal per unit base values for the rotor, with I fbase and
Vfbase being the non-reciprocal per unit base values [7].
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Figure 2.13: Reciprocal per units system [7].

2.2.6 Fourth order model

The general behaviour of the synchronous machine can be summarized as a set of differ-
ential and algebraic equations, with the order of the model depending on the degree of
considered transient reactance, with the direct and quadrature axis voltage being viewed
as an emf behind transient reactances and resistances, given by Equation 2.36 [12].

[
Vd
Vq

]
=

[
E ′

d
E ′

q

]
−
[

R −X ′
q

X ′
d R

]
·
[

Id
Iq

]
(2.36)

The overall model of the synchronous generator can be presented with models of different
orders, depending on the considered depth of transient reactions given by Equations
2.37-2.40 [12].

M∆ω̇ = Pm −Pe −D∆ω (2.37)
δ̇ = ω −ωs (2.38)

T ′
d0Ė ′

q = E f −E ′
q − Id(Xd −X ′

d) (2.39)
T ′

q0Ė ′
d = −E ′

d + Iq(Xq −X ′
q) (2.40)

Where E f represents the induced voltage, given by Equation 2.41 [12].
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E f = ωLad · I f = Xad ·
Vf

R f
(2.41)

The electrical power supplied through the air gap is given by Equation 2.42 [12].

Pe = E ′
qIq +E ′

dId +(X ′
d −X ′

q)IdIq (2.42)

2.3 Power losses

Chapter 2.2 presented that the synchronous generator consists of an electromagnetic phe-
nomenon, many of which depend on the rotor’s angular velocity, implying mechanical
movement. As a result, all parts will contribute to losses, compromising the generator’s
efficiency and lowering the electrical power output from the applied mechanical power.
These losses will be addressed throughout this section.

2.3.1 Electrical power losses

The electrical power losses, called ohmic power losses, result from the voltage drop
throughout the electric circuit. The losses are given by 2.43 [13].

Pelectical = RI2 (2.43)

Where R is the resistance in the conducting material, given by Equation 2.44.

R =
ρT0 · l
Acs

(1+α(Tw −T0)) (2.44)

Where Tw is the actual temperature, T0 is the temperature at the specified resistivity of
the material, often room temperature, ∼ 20 ◦, and α is the temperature coefficient giv-
ing the change in resistance of the material pr. Kelvin increase in temperature. Hence,
assuming a positive α , results in increased resistance proportionally with the increase in
temperature. Hence, the ohmic losses will increase proportionally with the medium’s tem-
perature. The armature conductors are subject to an alternating current. The alternating
currents represent changing magnetic fields, as presented in Section 2.2. These magnetic
fields will induce currents, called eddy currents, in conductive materials, and also in the
main conductor. Lenz’s law gives that the induced currents will be induced such that
their magnetic field will oppose the main magnetic field. This causes the current density
through the conductor to be non-uniform, with the highest density in the periphery. The
phenomenon is called the skin effect, and the density depth is given by Equation 2.45
[7].
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δ =

√
2ρ

ωµ
(2.45)

Where ρ is the resistivity of the medium and µ is the permeability of the medium. ω

is the angular velocity in electrical rad/s. Seen by equation 2.44 will an increased cross-
sectional area of the conductor lower the resistance, hence lowering the ohmic losses given
by Equation 2.43. At higher current levels, will this be important, in a synchronous
generator, will an increased cross-sectional area of the conductors lead to less space for
windings, hence will the induced emf in the phases be lowered. The increased cross-
sectional areas increase the effect on the skin effect. The ohmic losses in the synchronous
generator are present in both the rotor and the armature windings, given by Equations
2.46 and Equation 2.47.

Pr = RrI2 (2.46)
Pa = RaI2 (2.47)

2.3.2 Mechanical power losses

The high angular velocity causes considerable losses from friction from the bearings as
well as air drag. The nominal friction losses are given by the mechanical power required
to keep synchronous angular velocity without excitation of the field windings. The losses
are called friction, and windage losses, with the nominal losses given in Equation 2.48
[17].

Pf &w = Pm = τ ·ω |ω=ωs (2.48)

Where τ is the applied torque and ω is the angular mechanical velocity, given in rad/s,
with ωs representing the synchronous mechanical velocity. The synchronous angular velo-
city of the generator depends on the system grid frequency and the number of pole pairs
on the generator, given by Equation 2.49.

n =
60 · f

#p
(2.49)

Where n is the synchronous angular velocity given in RPM, f is the system grid frequency
given in Hz, and #p is the number of pole pairs [13].
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2.3.3 Iron power losses

The varying magnetic field created by the mmf in the generator’s core will experience losses
due to work done by altering the directional orientation of the ferromagnetic structure in
the material. Altering the directional orientation will introduce a Power loss due to eddy
currents induced in conductive material close to the conductors and core hysteresis. The
nominal core losses are given by the mechanical power applied at synchronous angular
velocity at a magnetization that gives nominal Voltage levels induced in the armature
windings. Given by Equation 2.50 [17].

Pcore = τω −Pf &w |ω=ωs (2.50)

2.3.4 Stray load losses

The losses presented thus far have been subject to a more or less specified location in the
generator. At the loading of the generator, there will still be some losses that are not
accounted for, known as the stray load losses. The stray load losses represent induced
eddy currents in conductive materials near the generator. The losses are difficult to assign
a specific location, hence difficult to measure directly. The nominal losses are measured
by measuring the applied torque of the generator shaft at rated loading and subtracting
the delivered active power and known losses, given by Equation 2.51 [17].

Pstray = τω −Pe −3 ·Pa −Pcore −Pf &w |ω=ωs (2.51)

2.3.5 Scaling losses

The presented losses all depend on the operational point of the synchronous generator.
The ohmic losses in the rotor and the armature are self-scaling with changes in the currents
in the rotor and phases. However, several of the losses introduced in this Section was
represented as nominal losses, due to the difficulty of measuring them directly. Therefore,
the nominal losses are given at the nominal load of the synchronous generator, scaling with
the point of operation. The scaling of the nominal losses is given in Equations 2.52-2.54
[18].
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Pf &w = P∗
f &w · ( ω

ωs
) (2.52)

Pcore = P∗
core · (

V
V ∗ )

2 (2.53)

Pstray = P∗
stray · (

I
I∗
)2 (2.54)

2.3.6 Total power losses

The Summarized losses of the generator are combined in Equation 2.55 1.

Ploss = Pf &w +3 ·Pa +Pcore +Pstray +Pr (2.55)

With the total efficiency of the generator, given by Equation 2.56.

η =
Pout

Pin
=

Pin −Ploss

Pin
(2.56)

2.4 Thermal model

This section will present the basis for establishing a thermal model of the synchronous
generator. Starting from the heat balance, later presenting heat transfer processes and a
simplified lumped capacitance thermal model.

2.4.1 Heat Balance

The first law of thermodynamics applied to a control volume yield, ”The increase in the
amount of energy stored in a control volume must equal the amount of energy that enters
the control volume, minus the energy that leaves the control volume” - [19]. The law must
be valid at every instant of time. Hence, all energy rates must be balanced, including
the work applied inside the control volume. The resulting rate of change in energy in the
control volume is given by Equation 2.57 [19].

Ṗst = Ṗin − Ṗout + Ṗg (2.57)

Where Ṗst is the rate of stored energy in the control volume, given by Equation 2.58 [19].
1Hydraulic losses are not considered part of the generator losses
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Ṗst = mĉp
dT
dt

(2.58)

With m being the mass and ĉp being the specific heat for the medium of the object.

Pstored = cM
d∆T
dt

(2.59)

Energy can be transferred between elements through interactions of work or heat. Section
2.3 presented the work done in different parts of the synchronous generator during oper-
ation. From the instant the work is done, will it be transferred to surroundings through
heat transfer or stored inside the control volume [19].

2.4.2 Heat Transfer

In case of heat differences between mediums, will there always be heat transfer, as heat
transfer is thermal energy in transit due to a spatial temperature difference [19]. The
heat transfer process is presented in different modes, listed below.

• Conduction

• Convection

• Radiation

Conduction

Conduction refers to heat transfer across a stationary medium. The medium may be a
fluid or solid material. The dissipation of energy through conduction represents energy
dissipated through solid material and is given by Fourier’s law [19].

Pcond =−λAcs∇T (2.60)

When considered in one dimension, the equation reduces to Equation 2.61 [19].

Pcond =
−λ

s
Acs∆T (2.61)
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Convection

Convection refers to heat transfer between media. The process comprises two mechanisms,
diffusion and a bulk motion of the fluid flow. Where diffusion is given as random molecular
motion, in the case of a fluid in motion with a temperature Ta, close to a heated surface
with temperature Ts, will the heat flux be given by Newton’s Law of cooling, given in
Equation 2.62 [19].

q′′ = h(Ts −Ta) (2.62)
Where h is known as the heat transfer coefficient, which depends on the geometrical shape
of the surface as it depends on the conditions in the thermal buoyancy layer of the surface
(Layer from surface to finite fluid flow). The heat flux q′′, is given in W/A2. Hence, the
total energy transfer due to convection is given by Equation 2.63 [19].

Pconv = hAsur f (Ts −Ta) (2.63)

Where Asur f is the surface area of the heated object. Convection can be present as free
convection or forced convection, with free convection referring to flow due to buoyancy
forces, such as density differences in the fluid. Forced convection refers to the fluid flow due
to the presence of an external force forcing the fluid motion. The forced convection adds
to the natural convection, and it will also alter the thickness of the thermal buoyancy
layer as it forces a given fluid flow, hence will the forced convection increase the heat
transfer coefficient [19].2

Radiation

The radiation process is referred to as energy emitted through radiation by matter above
nonzero temperature. The radiation energy transport is due to electromagnetic waves.
Released radiation emitted from an object’s surface area originates from the thermal
energy bounded by the surface, given an upper limit prescribed by the Stefan-Boltzmann
law, given by Equation 2.64 [19].

Pb = σT 4
s (2.64)

Where σ is the Stefan-Boltzmann constant and Ts is the absolute temperature. Equation
2.64 presents the radiation of a perfect radiator. Total radiation heat flux from an actual
surface will be reduced by the surface’s emissivity, ε , given by Equation 2.65.

q′′rad = ε fviewσ(T 4 −T 4
0 ) (2.65)

2Assuming that the forced convection is not in the opposite direction of natural convection, or perpen-
dicular the natural convection.
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Again the radiation heat flux is given in W/A2, and the total power heat transfer due to
radiation is given by Equation 2.66 [19].

Prad = ε fviewσAsur f (T 4
s −T 4

0 ) (2.66)

Asur f is the object’s surface area, and fview is the configuration factor, depending on the
temperatures of surrounding materials.

2.4.3 Total lumped capacitance heat method

The three heat transfer processes work together to validate the first law of thermodynam-
ics, Equation 2.57 becomes,

Ṗst = mV ĉp
dT
dt

= Ṗin + Ṗg −Pcond −Prad −Pconv (2.67)

Considering the object with stored energy as a lumped capacitance model assumes that the
object’s temperature is spatially uniform, eliminating the internal temperature gradient
and making it possible to neglect the conduction process from the heat transfer, neglecting
the internal thermal generation of energy in the objects. The resulting heat balance
consists of power losses as the input work to the objects, with simultaneous radiation
and convection transferring heat to respectively surrounding surfaces and ambient fluid.
Simplifying the model further to include both convection and radiation in a total heat
transfer coefficient given the simplified heat transfer, given in Equation 2.68 [19].

Pdiss = hAsur f ∆T (2.68)

It should be noted that the simplified equation does use relative temperature, while radi-
ation was originally given as a result of absolute temperatures. Applying Equation 2.57
gives the rate of change in temperature given in Equation 2.69.

Ṫ =
Pin −Pdiss

cM
=

Pin −hAsur f ∆T
cM

(2.69)

If assumed constant temperature around an object can Equation 2.69 be solved over time
as Equation 2.70.

∆T = ∆Te · (1− e−
t
τ ) (2.70)

Where τ is the time constant of the object, given by Equation 2.71.
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τ =
hAsur f

ĉpM
(2.71)

It should be noted that the solution assumes constant temperatures in the surrounding
fluid.

2.5 Parameter and state estimation

The process of estimating parameters or states involves the determination of parameters
and states based on observations and knowledge of the background of the observation.
The knowledge can be known as noise in the signals or state space models of the observed
system. In the case of parameter estimation will, the methods aim to minimize the residual
error between the observed and estimated value of the state, where the estimated values
use a state space model of the observation with estimated parameters. In the case of
state estimation, will the method also aims to minimize the residuals by using the known
state-space model of the system [20].

Based on the possibility of describing the system through mathematical models, will the
models developed adopt different names. If the model can describe the exact same system,
the model is said to be deterministic. In the case of uncertainty in the mathematical
model, will the model be able to give an estimation of where the system state is, typically
within specified limits of certainty, the model is now said to be stochastic [20].

2.5.1 Kalman Filter

The Kalman Filter was presented in 1960 by Rudolf Kalman [21]. The filter was originally
presented as a discrete filter for recursive estimation. When applied, the algorithm of
the filter separates the stochastical model and stochastical measurement noise. During
measurements from physical s, sensors, imperfections will always be present, creating
uncertainty in the measurements. The order of this uncertainty will vary depending on
the accuracy of the equipment and external noise. The Kalman filter takes the noise
and uncertainty of the measurements of the system into account, creating an estimate of
the states or the parameters. Considering a linear stochastic state space model given in
Equation 2.73.

ẋ = Ax+Bw (2.72)
z = Hx+ v (2.73)
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Where A is the system dynamics and state transition matrix, Bw is the model disturbance.
Z is the measurement vector with H being the state to measurement matrix and v being the
measurement noise. As considered stochastic, the model is assumed Gaussian normally
distributed, as given by Equation 2.74 [22].

f (x; µ,σ2) =
1√

2πσ2
e
−(x−µ)2

2σ2 (2.74)

Where σ is the standard deviation to a state, applying the Kalman filter to the state space
model is divided into two steps. The first is the prediction step, which uses the system
state model and the last known state to update the state estimate and uncertainty, given
by Equations 2.75-2.77 [21].

x̂n+1 = Axn (2.75)
P̂n+1 = APAT +Q (2.76)

(2.77)

x̂ and P̂ indicate predicted values at state n+ 1. A is the state transition matrix from
Equation 2.73 and P is the state error covariance matrix. Q is the noise covariance matrix
of the state transition [21]. The final step of the Kalman filter is the estimation step,
where the residual between the measured and estimated state is calculated, multiplied by
the estimated Kalman gain, and the state covariance error matrix is also updated. The
estimation step is given in Equations 2.78- 2.80 [21].

K = P̂HT (HP̂HT +R)−1 (2.78)
xn+1 = x̂n+1 +K(z−Hx̂) (2.79)
Pn+1 = P̂−KHP̂ (2.80)

K is the Kalman gain, R is the measurement covariance error.

2.5.2 Extended Kalman Filter

As mentioned, the basic Kalman filter assumes a linear stochastic Gaussian distributed
model, limiting it to linear systems. The extended Kalman filter adopts a non-linear
system state estimation by linearizing the system around the current state. Increasing
the need for information about the system being estimated, due to the possibility of
several equilibrium points in the system [7]. The state transition matrix now changes to
the non-linear function, given in Equation 2.81.
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x̂n+1 = f j(xn) (2.81)
Also, the state-to-measurement matrix will become non-linear, given by Equation 2.82.

z = h j(x̂) (2.82)

The Jacobian of the state transition matrix is considered for the prediction of the next
state space covariance error matrix, given in Equations 2.83 and 2.84 [21].

Fj =


d f1
dxi

d f1
dxi+1

.. d f1
dxn

d f2
dxi

d f2
dxi+1

.. d f2
dxn

.. .. .. ..
d f2
dxi

d f2
dxi+1

.. d f2
dxn

 (2.83)

P̂n+1 = FjPFT
j +Q (2.84)

The estimation step of the Kalman filter will use the Jacobian of the state-to-measurement
matrix when calculating the Kalman gain and the nonlinear state-to-measurement matrix
h j. Otherwise, is the algorithm the same as the basic Kalman filter. The prediction step
is given by Equations 2.88 [21].

H j =


dh1
dxi

dh1
dxi+1

.. dh1
dxn

dh2
dxi

dh2
dxi+1

.. dh2
dxn

.. .. .. ..
dh2
dxi

dh2
dxi+1

.. dh2
dxn

 (2.85)

K = P̂HT
j (H jP̂HT

j +R)−1 (2.86)
xn+1 = x̂n+1 +K(z−h jx̂) (2.87)
Pn+1 = P̂−KH jP̂ (2.88)

2.5.3 Bayesian Inference

Bayesian inference is a statistical approach to the estimation of parameters or states,
with the benefit of including statistical certainty as well as a definite estimate as the
mean probability. The Bayesian probability theory builds on propositions, either true or
false statements—explained by the Bayes Theorem, Equation 2.89 [23].

P(A|B) = Likelyhood ·prior
Marginal Likelyhood

=
P(B|A) ·P(A)

P(B)
(2.89)

Where P(A|B) is considered a measure of how strongly proposition B implies proposition
A. P(B|A) is the likelihood measure of how strongly proposition A implies proposition B,
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and P(A) is the prior probability distribution of A. Now considering A as a parameter
and B as an observation, will Bayes theorem measure how strongly the propositional
measurement, B, implies that the parameter A, value is true [23]. Considering known
background information, α , Bayes Theorem gives Equation 2.90.

P(A|B,α) =
P(B|A,α)

P(B|α)
P(A|α) (2.90)

Given that B consists of multiple independently distributed observations, Bi. Bayes the-
orem can be applied as Equation 2.91 [23].

P(A|B,α) =
P(B|A,α)

∑i P(B|Ai,α)P(Ai|α)
P(A|α) (2.91)

Where the marginal likelihood results from the marginalization rule, the likelihood pro-
position that B implies proposition A is given as independent random variables, given by
Equation 2.92 [23].

P(B|A,α) = ∏
i

P(Bi|A,α) (2.92)

The prior distribution, P(A|α), measures how strongly proposition A, implies the back-
ground information α prior to observation B. To apply the method to a state space model,
functional estimation of A is considered, given the observations b as a function of x. The
resulting distribution is obtained by Equation 2.93.

P(A|b,x,α) =
P(b|x,A,α)

P(b|x,α)
P(A|x,α) (2.93)

The likelihood, P(b|x,A,α), is now derived from the full likelihood given by Equation 2.94
[23].

P(b|x,A,σ , f ,α) (2.94)

Where σ is the unknown variance of the data [23].

2.5.4 Goodness of fit

There are several statistical measures to determine the goodness of fit for regression
models and other estimations and observations. The goodness of fit measures included
for validating the estimations done in this thesis is listed with a description in table 2.4.
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Table 2.4: Goodness of fit measures [24].
Measure Description

R2 A measure from 0-1 how much the deviations
of the observation can be explained by the
deviations in the estimated data.

MSE Measures the variance of the residuals, the
mean difference between the squared obser-
vations, and estimations.

RMSE Measures the standard deviation of the re-
siduals result in the same unit as the data
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3 Methodology

The process from theory to results must undergo a methodical process in order to address
the technical objectives given to the thesis, these will be presented in this chapter, divided
into their respective section. Starting with presenting practical information about the
setup, proceeding with presenting an overview of the data acquisition application and the
processes of the digital twin. At last, will the relevant electrical and thermal theory be
used to build models to enable parameter estimation in both areas.

3.1 Setup

As mentioned in Section 1.1, the setup in the laboratory at USN Porsgrunn consists of a
DC motor connected as a prime mover to the shaft of a 2 KVA synchronous generator.
The excitation system is a static exciter. The setup is presented in Figure 3.1.

Figure 3.1: Synchronous generator and DC motor at the laboratory of USN

The national instrument modules installed on the setup are presented in Table 3.1.

The available sensors installed on the test rig are presented in Figure 3.2. With three-
phase voltages and currents from the terminal, together with temperature measurements
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Table 3.1: Sensors with specifications and placement, *=Aggeregate between channels [2].
Sensor Module Analog in/out Limit Unit Sampling

range
[kS/s]

Number of
Channels

NI-9225 Analog in ±300 V 1.613-50 k 3
NI-9246 Analog in ± 20 A 1.613-50 k 3
NI-9216 Analog in 0-400 Ω 1-400* 8
NI-9207 Analog in ±10 [V]

and ±20
[mA]

V/mA 1-500* 16

NI-9263 Analog out ± 10 V 100 k 4

from the room, core and phase windings. The remaining measurements are a torque
sensor situated at the bearings of the DC motor, as well as field voltage and current. The
control signals consist of field voltage and currents, as well as control signals to speed and
torque signals to the DC motor.

SG

National
Instrument

cDAQ

Software

SQL

DC
motor

Figure 3.2: Sensors installed at test-rig.

The known parameters for the synchronous generator are presented in Table 3.2. The
nominal losses of the test rig were previously estimated [2], yet, they were estimated
during the thesis work, presented in Appendix C, as part of the recalibration of the force
sensor used to estimate applied mechanical torque to the shaft of the setup. the nominal
losses of the setup are given in Table 3.3.
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Table 3.2: Known parameters of the Synchronous Generator
Parameter Value Unit Description
R 0.804 Ω Armature resistance in each

phase
Xd 26.2 Ω d-axis reactance
R f * 39.2 Ω Rotor resistance
VnLL 230 V Nominal Voltage
In 5.02 A Nominal Current at rated load
Sn 2 kVA Nominal apparent power
Pn 1.6 kW Nominal active power
Qn 1.2 kVAr Nominal reactive power
cosφ 0.8 (lagging) - Powerfactor
Mr 24 kg Total mass of rotor
Ms 44 kg Total mass of armature
I fbase 0.88 A Field current needed for nominal

voltage during open circuit test.
Vfbase 34.9 V Field voltage at nominal voltage

during open circuit test

Table 3.3: Nominal losses of the Synchronous Generator
Loss Value Unit
Pf &w 170 W
Pcore 113.2 W
Pstray 90 W

3.2 Data acquisition application

This chapter will present the application that was made as part of the thesis work. Focus-
ing on the transition of the application onto LabVIEW, and the significant changes that
were made, an overall process flow diagram for the software will be presented, as well as
a process flow diagram for the measurement state of the software.

3.2.1 Labview

The application was adopted onto a Labview application as part of the thesis work. The
application was implemented as a state machine, with inspiration from Halvorsen [25].
The application consists of the following states;

• Initialization
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• Configuration

• Measurement

• Digital Twin

Where the initialization consists of resetting the application’s graphical user interface
and establishing whether the application is connected to the database. In between states
is the software sent to a waiting state, where it will act on input from the user, either
configuration of database parameters or transitions to another state. The measurement
and digital twin states are recurring states, while the others run once before the software
is sent to the waiting state. The overall state transitions are presented in Figure 3.3.

Figure 3.3: Flowchart for the overall application states

As seen from Figure 3.3, the software behaves differently, depending on whether there is
a connection to the database. In case of no connection to the database, does the software
save queries, measurement files and configurations on the computer. These can then be
uploaded to the database at a later point. If the software is connected to the database,
will configurations, and other queries with info be sent to the database upon change.
After a measurement session, can the measurements be uploaded or stored locally, and
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then be uploaded at a later occasion. The flowchart for the measurement state, from
reading measurement data to sending control signals, is presented in Figure 3.4.

Figure 3.4: Flowchart for the measurement and control process

The measurement process starts upon measuring values from the cDAQ device. The
measurements are then resampled, where frequency, phase and amplitude measurements
are done for alternating current signals. Soft sensor values are also estimated, as well
as common generator values, such as active and reactive power, rpm of the shaft, power
factor and power losses, according to Chapter 2.3. The software then estimates and sends
control signals. The control signal is estimated based on the control method, which can
vary from direct signals to AVR, governor or PID-controlled signals.

3.2.2 Digital Twin

The digital twin of the synchronous generator was implemented based on the fourth-order
model of the synchronous generator, presented in Chapter 2.2.6, together with the loss
model presented in Section 2.3, the loss model makes the basis for the heat generation in
the synchronous generator, which is represented by the thermal model from Section 2.4.
The overall process is presented in Figure 3.5.
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Figure 3.5: Digital Twin process

3.3 Electrical parameter estimation

Chapter 2.2 presented that the topology of the electromagnetic phenomena in the syn-
chronous generator is different in the steady state compared to transient operation, due
to the penetration depth of the armature flux linkage. In transient operation, will the
penetration depth of the flux linkage not fully penetrate the damper windings, hence
allowing damping winding currents and transient reactances. In the steady state, on the
other hand, will, the armature flux linkage fully penetrates the damping windings, and al-
low some assumptions which result in the simplified voltage equations, given by Equation
2.24.

3.3.1 Steady state parameter estimation

Considering the simplified voltage equations at steady-state as a linear stochastic state
space model gives the state space model in Equation 3.2

Id
Iq
I f


n+1

= A

Id
Iq
I f


n

+Bw (3.1)

 Vd
Vq
−Vf


n+1

= −

 R −Xq 0
Xd R Xad
0 0 R f

Id
Iq
I f


n+1

+Gv (3.2)

Where A = 1
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Kalman Filter KF- Parameter estimation of parameters of synchronous generator

Considering the 3.2, with the parameters as states, allow estimation of the parameter
values through a Kalman filter, with voltages as measurements, with currents building
the state to measurement matrix, results in Equation 3.4.

R
Xq
Xd
Xad
R f


n+1

= A


R
Xq
Xd
Xad
R f


n

+Bw (3.3)

 Vd
Vq
−Vf


n+1

= −

Id −Iq 0 0 0
Iq 0 Id −I f 0
0 0 0 0 I f


n+1


R
Xq
Xd
Xad
R f


n+1

+ v (3.4)

Where A = 1, with Q = diag[0.05,0.05,0.05,0.05,0.05] representing the process covariance
matrix and R= diag[0.05,0.05,0.05] representing the measurement covariance matrix with
values based on a similar filter [26].

Bayesian inference e1: parameter estimation at steady state

Considering the state space model in Equation 3.2 as the functional likelihood distribu-
tions for Bayesian inference. Assumptions for selecting prior distributions for the para-
meters are as follows.

• Resistance in stator windings is usually very small [26].

• Salient pole generator is considered, hence, Xd > Xq as seen in Chapter 2.2.1.

Based on these assumptions are the parameter priors with hyperparameters given in Equa-
tions 3.5-3.10. All hyperparameters are assumed weakly informed as uniformly distributed
in reasonable a p.u. range.

R ∼ U < 0,0.1] (3.5)
Xd ∼ U < 0,2] (3.6)
Xq ∼ U < 0,Xd] (3.7)

Xad ∼ U < 0,2] (3.8)
R f ∼ U < 0,2] (3.9)

(3.10)
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The likelihood distributions are given by Equations 3.11-3.13, all assumed Gaussian with
low standard deviations as the units are in p.u.

V̂d ∼ N(Vd(R,Xq, Id, Iq),0.1) (3.11)
V̂q ∼ N(Vq(R,Xd,Xad, Id, Iq, I f ),0.1) (3.12)
V̂f ∼ N(Vf (R f , I f ),0.1) (3.13)

Bayesian inference e2: parameter estimation without rotor angle measurements

When the rotor angle is not accessible either through measurements or by Equations
presented in Chapter 2.2.3, will the prior distribution change, given by Equations 3.14-
3.19.

R ∼ U < 0,0.1] (3.14)
Xd ∼ U < 0,2] (3.15)
Xq ∼ U < 0,Xd] (3.16)

Xad ∼ U < 0,2] (3.17)
R f ∼ U < 0,2] (3.18)
δi ∼ U < 0, π

2 ] (3.19)

Where δi is added rotor angle position at each steady state position considered. As
the available observations now consist of terminal quantities, will the resulting likelihood
distributions be given as Equations 3.20-3.22.

V̂di ∼ N(
Vd(R,Xq,Id ,Iq)

sin(δi)
,0.1) (3.20)

V̂qi ∼ N(
Vq(R,Xd ,Xad ,Id ,Iq,I f )

cos(δi)
,0.1) (3.21)

V̂f i ∼ N(Vf (R f , I f ),0.1) (3.22)

Where i represents the i′th rotor angle position, hence, given multiple steady-state rotor
angles, does the model have to be split into multiple sets of likelihood distributions.

3.3.2 Extended Kalman filter for Rotor angle state estimation

Chapter 2.2.1 presented a reference change from the time domain to the rotor angle
domain, with this making the reactances constant w.r.t. time. The reference change
demands knowledge of the rotor angle. Section 2.2.3 presented common methods of cal-
culating the rotor angle. The methods require knowledge of either parameters, optical
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measurements, or measurements of the mechanical velocity compared to the grid fre-
quency. All of which will be vulnerable to noise or error in measurements. As presented
in 2.5.2 will, a Kalman filter will be able to filter out stochastic noise and estimate non-
measured values with enough information about the system. As presented in Chapter
2.2.1 are, the electromechanical reactions in the synchronous generator non-linear, requir-
ing an extended Kalman filter.

Extended Kalman Filter - algorithm

Considering the case of measured terminal voltage, current, and angle, as well measure-
ments of active and reactive power. With the goal of estimating the rotor angle, the states
are presented as Equation 3.23.

x =


V
I
θ

δ

 ,z =


V
I
θ

P
Q
δ

 (3.23)

The resulting state transition matrix is given in Equation 3.24, using the theory presented
in Chapter 2.2 [7].

x̂k = f (xk−1) =


√

V 2
d +V 2

q√
I2
d + I2

q

θ

δ

 (3.24)

With the Jacobian given in Equation 3.25.

F(x̂k) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (3.25)
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The measurement to state-matrix is given in Equation 3.26.

h(x) =



√
V 2

d +V 2
q√

I2
d + I2

q

tan−1 Id
Iq
− tan−1 Vd

Vq

Vd · Id +Vq · Iq
Vq · Id −Vd · Iq


(3.26)

With the Jacobian of the state transition matrix given in Equation 3.27.

H(x̂k) =



1 0 0 0
0 1 0 0
0 0 1 0

Id sin(δ )+ Iq cos(δ ) Vd sin(δ +φ)+Vq cos(δ +φ) VdIq −VqId 0
0 0 1

Vq(
V 2

d
V 2q

+1)
1

 (3.27)

Given the relationships between states as presented in Chapter 2.2.1, must the process
covariance matrix represent the covariances, the close covariance of the The process cov-
ariance matrix is given by knowledge of the system, or calculated using Equation 3.28.

Q =COV (V, I,θ ,δ ) (3.28)

Where V , I, θ , and δ are previous measurements/estimated values from the system. With
an estimated rotor angle, will the overall estimation process be as according to Figure
3.6.

Figure 3.6: Estimation process with extended Kalman filter for rotor angle estimation and Kalman filter
for parameter estimation at steady state
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3.4 Thermal parameter estimation

This chapter will use the theory presented in Chapter 2.4, to build a thermal model of
the synchronous generator. The model will consider general assumptions made from the
geometrical shape of the synchronous generator together with heat sources presented in
Chapter 2.3.

Heat sources

Considering the losses presented in Chapter 2.3, a summary of the power losses and their
physical location on the generator is presented in Table 3.4.

Table 3.4: Power losses and respective location and material
PowerLoss Location Material
Rotor ohmic loss Rotor winding Copper
Stator ohmic loss Stator winding Copper
Core loss Stator core Iron
Stray loss Unidentified Unidentified
Friction and Windage loss Unidentified Unidentified

Table 3.4 shows that there are three losses that can be identified to a specific location;
Rotor ohmic loss and stator ohmic- and core losses.

3.4.1 Thermal model

A summary of the assumptions made to establish a lumped capacity thermal model from
Chapter 2.4 is given as;

• Spatially uniform internal temperature of the object - conduction dissipation neg-
lected.

• Simultaneous heat dissipation through radiation and convection

• Radiation dissipated to the surrounding surfaces

• Convection dissipated to the surrounding fluid flow

When considering the heat sources from Table 3.4 and available measurements of the
generator test rig from Figure 3.2 together with the assumptions for the lumped capacity
thermal model it is clear that the model thermal model must be simplified as surface
areas such as the generator cage are not measured. From Chapter 2.4, it is seen that
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radiation is the dissipation process that is mostly affected by unknown surrounding surface
temperatures. Hence are the final assumptions for the thermal model of the synchronous
generator given;

• The friction and winding losses, as well as the stray losses, do not contribute directly
to power loss in specific components in the generator, therefore they are assumed
negligible for the heating of the stator core, stator windings, and rotor windings.

• Convection dissipation from all heat source elements to room temperature

• Dissipation between rotor and stator is neglected.

• The thermal buoyancy layers of the heat source elements in the stator will be affected
by each other. Hence will the intermedium finite fluid flow be affected by multiple
buoyancy layers. Based on this, it is assumed convective dissipation from the stator
core to a fluid with the temperature of the stator windings, and from the stator
windings to a fluid with the temperature of the stator core.

• Based on the aforementioned assumptions, specific radiation dissipation between
elements is neglected.

• Convection heat transfer coefficient is viewed as a total heat transfer coefficient,
with radiation included.

Using the Equation for simplified total heat transfer, Equation 2.68 are the considered
heat transfers in the model given by Equations 3.29-3.33.

Pr2a = hAr2a(Tr −Ta) (3.29)
Ps

cu2a = hAcu2a(T s
cu −Ta) (3.30)

Ps
f e2a = hA f e2a(T s

f e −Ta) (3.31)
Ps

f e2cu = hA f e2cu(T s
f e −T s

cu) (3.32)
Ps

cu2 f e = hAcu2 f e(T s
cu −T s

f e) (3.33)

Pr2a is the dissipation from the rotor to air. Ps
cu2a and Ps

f e2a are the dissipation from,
respectively, stator windings and core to air. Were Ps

cu2 f e are the heat transfer from stator
windings to the core, and Ps

f e2cu are the heat transfer from stator core to windings, where
hA f e2cu = hAcu2 f e as a result of the first law of thermodynamics [19]. Applying Equation
2.58 gives the heat storage capabilities in each element in Equations 3.34 - 3.36.
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Pstr = mr
cuĉcu

dTr

dt
(3.34)

Pstcu = ms
cuĉcu

dT s
cu

dt
(3.35)

Pst f e = ms
f eĉ f e

dT s
f e

dt
(3.36)

(3.37)

Where mr
cu is the weight of the copper windings in the rotor, ms

cu the weight of the copper
windings one stator winding, and ms

f e is the weight of the iron core. Considering the
energy balance presented in Equation 2.57 with the heat transfers in Equations 3.29-3.33
and stored energy from Equations 3.34-3.36, results in the thermal model of the generator
in Equations 3.38-3.40.

Ṫr =
Pr−hAr2a(Tr−Ta)

ccumr
cu

(3.38)

Ṫ s1φ
cu =

Ps−hAcu2 f e(T s
cu−T s

f e)−hAs2a(Ts−Ta)

ccums
cu

(3.39)

Ṫ s
f e =

Pf e−3hA f e2cu(T s
f e−T s

cu)−hA f e2a(Tf e−Ta)

c f ems
f e

(3.40)

Where Pr, Ps and Pcore are the power losses in, respectively, the rotor windings, stator
winding, and core. The parameters of the thermal model are summarized in Table 3.5.

Where the specific heat and temperature coefficients are given in Table 3.6.

3.4.2 Likelihood and prior distribution of thermal parameters

The unknown parameters in Table 3.5 were estimated by Bayesian inference in Python,
using the PyMc3 Library. In order to apply Bayesian inference must, the samples be
independently distributed, as presented in Chapter 2.5.3. This was achieved by forward
linearizing the model, resulting in Equations 3.41 - 3.43.

Tr+1 = Tr +∆t Pr−hAr2a(Tr−Ta)
ccuMr

cu
(3.41)

T s1φ

cu+1 = Tcu +∆t
Ps−hAcu2 f e(T s

cu−T s
f e)−hAs2a(Ts−Ta)

ccuMs
cu

(3.42)

T s
f e+1 = Tf e +∆t

Pf e−3hA f e2cu(T s
f e−T s

cu)−hA f e2a(Tf e−Ta)

c f eMs
f e

(3.43)
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Table 3.5: Parameters of the thermal model, *=estimated
Parameter Description Unit Known
Pr Power loss form the copper windings in rotor W Yes
Ps Power loss from one phase of stator copper

windings
W Yes

Pf e Power loss from armature core W Yes
Pf e Power loss from armature core W Yes
Ta Room temperature K Yes
Tr Rotor temperature K Yes*
Ts Stator winding temperature K Yes
Tf e Armature core temperature K Yes
ccu Specific heat copper J/kg ·K Yes
c f e Specific heat iron J/kg ·K Yes
αcu Temperature coefficient copper Ω/K Yes
Mrotor Total mass of rotor kg Yes
Mstator Total mass of stator kg Yes
hAr2a Total heat transfer coefficient and surface

area, rotor to air
W/m2 No

hAcu2 f a Total heat transfer coefficient and surface
area, stator copper to air

W/m2 No

hAcu2 f e Total heat transfer coefficient and surface
area, copper to iron

W/m2 No

hA f e2a Total heat transfer coefficient and surface
area, iron to air

W/m2 No

Mr
cu Rotor copper mass kg No

Ms
cu Stator copper mass kg No

M f e Stator iron mass kg No

The prior distribution for the parameters, the hyperparameters, was selected based on
the given assumptions.

• The total weight of the armature consists of the core and phase windings.

• The parameter distribution is unknown and therefore set to be uniformly distrib-
uted.

• The rotor copper weight is lower than the known total rotor weight of 24 kg.

• All masses are constrained to be positive.

• The heat dissipation from a source of heat to air is positive.
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Table 3.6: Specific heat and temperature coefficients [27] [28]-
Parameter Description Value Unit
ccu Specific heat copper 385 J/kg ·K
c f e Specific heat iron 462 J/kg ·K
αcu Temperature coefficient copper 4e−3 Ω/K

• The likelihood distributions are assumed normally distributed with a low standard
deviation.

The summarized prior distributions are given in Equations 3.44- 3.50.

hAr2a ∼ U < 0,20] (3.44)
hAcu2a ∼ U < 0,50] (3.45)
hA f e2a ∼ U < 0,50] (3.46)

hAcu2 f e ∼ U [−10,10] (3.47)
mr

cu ∼ U < 0,24] (3.48)
ms

f e ∼ U < 0,44] (3.49)

ms
cu =

44−Ms
f e

3 (3.50)

Almost every prior distribution is given as weakly informed with only a range specified
without any bias. The only prior that is not given distributed value based on hyperpara-
meters is ms

cu, which is deterministic, based on the known weight of the stator from Table
3.5. The likelihood distributions are given as Equations 3.51-3.53.

T̂r ∼ N(Ṫr(Pr,hAr2a,mr
cu,Tr,Ta),1) (3.51)

T̂s ∼ N(Ṫs(Ps,hAcu2 f e,ms
cu,Tcu,Tf e, ,Ta),1) (3.52)

ˆTf e ∼ N(Ṫf e(Pf e,hAcu2 f e,ms
f e,Tf e,Tcu,Ta),1) (3.53)
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4 Results

This chapter will present the results obtained from using the theory from Chapter 2,
together with the methodology presented in Chapter 3. The chapter is built up by first
presenting the implemented control system results, then three study cases will be con-
sidered; the first case, Study Case A, will simulate results from the electrical model
implemented in the digital twin. The Kalman filters, the basic KF, and the extended
Kalman filter, EKF will be applied for estimating the electric parameters and state of
the simulated model. Later will Study Case B present measured values through the data
acquisition application, from the test-rig, with applied Kalman filters for estimation of
electrical parameters. At last will, thermal measurements from measurement sessions
with the test-rig be presented, and thermal parameters will be estimated.

4.1 Control system

This section will present results from implemented control systems, both in the digital
twin and in the test rig through the DAQ.

4.1.1 Digital twin control systems

Both automatic voltage regulator and governor control were implemented in the digital
twin. Figure 4.1 presents a simulation initialized with approximately steady state, deliv-
ering 0.7 p.u. active power and absorbing 0.2 reactive power. The governor setpoint is
changed at t = 100 s and t = 200 s; voltage reactions with and without AVR are presented
in Figure 4.1.

The field voltage effectively oscillates to reduce the impact on the terminal voltage when
AVR is activated, compared to without AVR.
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Figure 4.1: Voltage oscillations due reaction due to a frequency deviation at infinity bus with and without
AVR (Non-reciprocal per unit rotor values).

Figure 4.2: Torque PID controlled to 50 Hz, reactions to load activation and rejections

4.1.2 Test rig control systems

Torque PID control reactions when subject to load activation and rejection are presented
in Figure 4.2.

As seen from Figure 4.2 does the torque output signal effectively adjust to the load
rejection and activations to restore the frequency of 50 Hz.

4.2 Case A: Electrical Parameter estimation - Simulation

This Study Case considered a simulation of generator reaction subject to several changes
in setpoint. The study case is simulated using the digital twin, hence the fourth-order
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synchronous generator model, presented in Chapter 2.2.1. The case will first consider
direct parameter estimation through the presented Kalman filter and Bayesian Inference
at steady-state conditions. Later will, the proposed extended Kalman filter, EKF, be
tested upon increasing noise to the rotor angle measurement, to get an overview of the
robustness of the filter. The Synchronous Generator parameters used for the study case
are listed in Table 4.1. The standard parameters are based on previous knowledge of the
test rig synchronous generator [2].

Table 4.1: Simulated Generator model parameters.
Parameter Value [p.u.]
M 3.5
D 0.5
R 0.03
Xd 0.86
X ′

d 0.75
Xq 0.65
X ′

q 0.65
T ′

d0 1.3 s
T ′

q0 0.03 s
R f 1.5
Xad 0.96

The selected transient directional and quadrature reactances, as well as time constants,
T ′

d0 and T ′
q0, inertia constant M and damping coefficient, D, are based on typical salient

pole generator values [7].

Simulated session

The study case simulation was selected to be simulated for 500 s, with an initial state of
no active or reactive power generation. The events applied to the generator model during
the simulation time are listed in Table 4.2.

Table 4.2: Simulated Generator model parameters.
Time [s] Event
0 Governor setpoint changed: Pm = 0.7
100 Governor setpoint changed: Pm = 1.0
200 Governor setpoint changed: Pm = 0.8
300 AVR setpoint changed: Vt = 0.9
400 AVR setpoint changed: Vt = 1.1
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The resulting simulation measurements of terminal voltage and current values, as well as
terminal active and reactive power, are presented in Figure 4.3.

Figure 4.3: Simulated terminal voltage, currents and power.

As presented in Chapter 3.3.1, does the presented methodology for electrical parameter
estimation require steady-state conditions. The identified steady-state conditions, with
reference to the rotor angle during the simulation, are presented in Figure 4.4.

Figure 4.4: Rotor angle throughout the simulated session with the identified steady-state operation.
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Table 4.3: Results Kalman Filter with correct initial values
Parameter Est. value Error [%] Mean last 100 iterations Std. dev. last 100 iterations

Noise=0
R 0.03 0.007 0.03 0.0
Xq 0.65 0.0 0.65 0.0
Xd 0.861 0.001 0.861 0.0
Xad 0.96 -0.0 0.96 0.0
R f 1.5 0.0 1.5 0.0

Noise=0.03
R -0.027 -1.905 -0.033 0.006
Xq 0.638 -0.018 0.63 0.01
Xd 0.985 0.146 0.983 0.002
Xad 0.933 -0.029 0.946 0.009
R f 1.506 0.004 1.493 0.012

Noise=0.1
R 0.108 2.609 0.099 0.021
Xq 0.664 0.021 0.673 0.04
Xd 0.752 -0.125 0.749 0.006
Xad 0.972 0.012 0.98 0.029
R f 1.529 0.019 1.514 0.035

Kalman filter electrical parameter estimation

Applying the presented Kalman filter, KF, for estimating standard electrical parameters.
Using the simulation measurements of directional and quadrature voltage and currents,
together with, the results of the estimated values, compared to the correct values as a
reference. The estimated parameters from the Kalman filter are listed in Table 4.3, with
correct initial values given to the Kalman Filter,KF.

The filter successfully keeps the correct values for all parameters at no noise, there are also
no deviations in estimates for the last 100 iterations. At higher noise levels are, the filter
still able to identify most parameters correctly, yet, with higher deviation in estimations
for the last 100 iterations. The estimation of parameter R, shows a higher error with 2.6
% at 0.1 % noise applied. Running the Kalman Filter again, with all initial parameter
values at zero, the estimated parameters are listed in Table 4.4.

The resulting estimations with zero initial parameters present larger estimation errors of
all parameters, with the highest estimation error with parameter R. The estimation of
parameters, Xd and Xad, does also present a higher estimate error, with the largest error
at zero noise. Using the final estimated values at all considered noise levels and initial
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Table 4.4: Results Kalman Filter with zero initial values
Parameter Est. value Error [%] Mean last 100 iterations Std. dev. last 100 iterations

Noise=0
R -0.04 -2.341 -0.04 0.0
Xq 0.629 -0.033 0.629 0.0
Xd 0.512 -0.405 0.512 0.0
Xad 0.839 -0.126 0.84 0.0
R f 1.5 0.0 1.5 0.0

Noise=0.03
R 0.061 1.025 0.06 0.005
Xq 0.666 0.025 0.665 0.01
Xd 0.646 -0.249 0.645 0.001
Xad 0.934 -0.027 0.936 0.006
R f 1.513 0.009 1.5 0.01

Noise=0.1
R -0.01 -1.328 -0.007 0.018
Xq 0.636 -0.021 0.645 0.031
Xd 0.33 -0.616 0.332 0.006
Xad 0.836 -0.129 0.829 0.026
R f 1.463 -0.025 1.51 0.033
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Table 4.5: Goodness of fit using the last value of the Kalman Filter.
Initial θ=0 Initial θ=θcorrect

State R2 MSE RMSE R2 MSE RMSE
Noise=0

Vd 0.984 0.0 0.008 1.0 0.0 0.0
Vq 0.744 0.0 0.022 1.0 0.0 0.0
Vf 1.0 0.0 0.0 1.0 0.0 0.0

Noise=0.03
Vd 0.981 0.0 0.009 0.997 0.0 0.004
Vq 0.744 0.0 0.022 0.944 0.0 0.01
Vf 0.887 0.001 0.033 0.9 0.001 0.031

Noise=0.1
Vd 0.992 0.0 0.006 0.995 0.0 0.005
Vq 0.538 0.001 0.03 0.212 0.002 0.039
Vf 0.394 0.012 0.107 0.419 0.011 0.105

values to calculate the directional, quadrature and field voltages. The results, compared
to the actual directional, quadrature and field voltage, are listed in Table 4.5.

The R2 of the estimates of the directional voltage, Vd, presents the highest value through-
out changing initial values and noise level applied. With the R2 of the estimations of the
quadrature voltage, Vq, presenting a low value at the wrong initial parameters, as well as
in the highest noise case. The estimation of field voltage, Vf , presents a R2 which becomes
lower with applied noise to the signals. The MSE and RMSE of the estimates are lowest
for the directional voltage and quadrature voltage, be

Bayesian Inference

Applying Bayesian Inference, using the prior and likelihood distributions presented in
Chapter 3.3.1, using the steady-state measurements as observations, results in the pos-
terior parameter distribution Figure 4.5.

The mean values of the posterior distributions present correct estimates. The confidence
interval of the estimated parameters is in the order of magnitude of -5 for all paramet-
ers except the parameters R and Xd, which got a confidence interval in the order of
magnitude -4. The standard deviation, σ , of the observations from the likelihood distri-
butions is given a mean value of 5.1e−5. The kernel density estimation of the estimated
parameters is presented in Appendix B, Figure B.1. The kernel density estimation for
the parameters presents a low correlation for most of the parameters, with some a small
positive correlation for Xad - R, R - Xq, and R - Xad.
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Figure 4.5: Posterior distribution simulation.

Table 4.6: Goodness of fit measures of the estimated rotor angle versus simulated value during the simu-
lation.

Noise R2 MSE RMSE
0.01 0.932 0.001 0.027
0.1 0.956 0.0 0.022
0.5 0.58 0.004 0.067
1.0 -0.29 0.014 0.117

4.2.1 Rotor angle state estimation

The extended Kalman filter, EKF, was applied to estimate the rotor angle throughout the
simulated session, with an increased degree of noise added to the rotor angle measurement
provided to the filter. The noise added to the remaining measurements was kept at 0.01.
The resulting estimation of the rotor angle at different noise levels is presented in Figure
4.6, with the actual rotor angle as a reference.

The noisy rotor angle measurements given to the filter are included in Appendix B, Figure
B.2. The goodness of fit measures for each of the noise levels is presented in Table 4.6.

The filter was able to estimate the rotor angle at low noise levels. With added noise of
0.01 and 0.1 radians, the filter estimates the rotor angle with a R2 value of, respectively,
0.932 and 0.956. The mean error is 0.027 radians for the case with 0.01 noise, and 0.022
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Figure 4.6: Estimated rotor angle at different noise level added to the rotor measurements

in the case with 0.1 noise. At higher noise levels, does the R2 value decrease to 0.58 at
0.5 noise, and -0.29 at 1.0 noise. Yet, the filter keeps a low mean error, 0.067 radians at
0.5 noise, and 0.117 at 1.0 noise.

4.3 Case B: Electrical Parameter estimation - test rig

This section will present a study case consisting of the estimation of the electrical para-
meters of the generator test rig. Unlike Case A, this case does not access measurements
of quadrature and directional voltage and current measurements. As a result, are EKF-A
applied as an intermediate step of estimating the electrical parameters of the generator.
The algorithms will be applied to a measurement session made from a dynamic loading
session. The dynamic loading session represents the measurements of generator values
during different loading conditions. The session was initially used to establish nominal
stray loss of the generator, Journal in Appendix C. Post-processed measurements of ter-
minal voltage, current and active and reactive power with identified steady-state condi-
tions; SS1,SS2,and SS3, are Presented in Figure 4.7. Raw measurements are available in
Appendix B, Figure B.3.
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Figure 4.7: Measured terminal values during the session.

4.3.1 Per unit values

Xad are calculated as the slope of the open circuit measurements of the generator presented
in Figure 4.8 [2] [7].

Figure 4.8: Estimated slope of the open circuit curve of the generator

The resulting reciprocal per unit base values of the generator, given the previously known
parameters of the generator, the Equations presented in Chapter 2.2.5 and estimated Xad
are presented in Table 4.7.
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Table 4.7: Reciprocal per unit values
Variable Reciprocal base value Unit
Sbase 2000 VA
Vbase 230 V
Ibase 5.02 A
Zbase 26.5 Ω

v fbase 22.33 V
i fbase 0.845 A

Where Sbase, Vbase, Ibase, and Zbase are stator base values and v fbase , i fbase are reciprocal
rotor base values.

4.3.2 Bayesian Inference

Applying Bayesian inference, at the identified steady-state conditions, with the prior and
likelihood distribution presented in Chapter 3.3.1. The resulting posterior rotor angle
distributions are presented in Figure 4.9.

Figure 4.9: Estimated rotor angle during steady states during the dynamic loading session.

The posterior rotor angle distribution at steady state condition 1 is estimated to be 0.37
radians, with a certainty of 95 % that the rotor angle is in the interval from 0.3-0.44
radians. Steady-state condition 2 has an estimated rotor angle of 0.269 radians, with a
certainty of 95 % that the rotor angle is within the interval of 0.244 to 0.294 radians. The
posterior rotor angle distribution in the latter steady state condition that was considered
resulted in an estimate of 0.427 radians with a certainty of 95 % that the rotor angle is
within an interval of 0.387 to 0.471 radians. The resulting posterior parameter distribution
is presented in Figure 4.10.

The posterior distribution of most parameters presents identified parameters, yet, the
posterior distribution of stator phase resistance R does not have an amplified protrusion.
The estimated parameter of the field winding resistance is the most certain estimation,
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Figure 4.10: Estimated rotor angle during the dynamic loading session.

with a 95 % certainty of the resistance being in the interval of 1.56-1.57 p.u. The react-
ances are all estimated with a confidence interval of 0.2 p.u. The kernel density estimation
of the estimated parameters is presented in Appendix B, Figure B.4. The kernel density
estimation presents a high positive correlation between rotor angles 1 and 3, as well as
some positive correlation between Xd and Xad. The remaining densities present a very low
correlation, the stator windings resistance presents an increased value of the peak density
throughout the kernel density estimation.

4.3.3 Rotor angle estimation

Based on the resulting parameter estimation of the test rig parameters, the rotor angle
calculated using Equation 2.20, considered as the stochastic parameter presented in Figure
4.10, approximately a standard deviation of 0.05. The proposed extended Kalman filter
is applied to estimate the true rotor angle, both calculated and estimated through the
EKF is presented in Figure 4.11.

4.3.4 Parameter estimation from the estimated rotor angle

Applying the Kalman Filter, KF, to estimate parameters at the identified steady-state
conditions, based on the estimated rotor angle from Figure 4.11. Electrical parameters es-
timated from initial conditions at zero are presented in Table 4.8, with the error calculated
as a percentage deviation from the mean posterior parameters from Figure 4.10.
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Figure 4.11: Estimated and calculated rotor angle during the session.

Table 4.8: Results Kalman Filter with zero initial parameter values
Parameter Est. value Error [%] Mean last 100 iterations Std. dev. last 100 iterations

Noise=0.01
R -0.062 -1.963 -0.156 0.099
Xq 0.729 -0.028 0.496 0.233
Xd 0.509 -0.371 0.196 0.318
Xad 0.805 -0.118 0.623 0.18
R f 1.392 -0.11 1.498 0.12

Noise=0.1
R 0.207 2.222 -0.126 0.32
Xq 0.737 -0.018 0.4 0.452
Xd 0.66 -0.184 0.229 0.467
Xad 0.948 0.04 0.639 0.295
R f 1.406 -0.101 1.509 0.128
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Table 4.9: Results Kalman Filter with correct initial parameter values
Parameter Est. value Error [%] Mean last 100 iterations Std. dev. last 100 iterations

Noise=0.01
R -0.044 -1.683 -0.018 0.016
Xq 0.725 -0.033 0.738 0.013
Xd 0.664 -0.18 0.714 0.038
Xad 0.846 -0.072 0.863 0.023
R f 1.388 -0.113 1.498 0.121

Noise=0.1
R -0.225 -4.51 -0.179 0.096
Xq 0.5 -0.334 0.577 0.127
Xd 0.555 -0.314 0.746 0.162
Xad 0.74 -0.188 0.815 0.127
R f 1.372 -0.124 1.51 0.124

The error in the estimates is highest for the stator winding resistance and directional
reactance, with an error from 1.4 to 2.22% for the resistance. The quadrature reactance
and magnetisation reactance proves the highest accuracy of the estimates. Electrical
parameters estimated from initial conditions at correct values are presented in Table
4.9.

The error in the estimates proved again highest for the stator winding resistance and
directional reactance, with an error of -4.51 % for the resistance at a noise level of 0.1.
The quadrature reactance and magnetisation reactance did also prove the highest accuracy
of the estimates. The Bayesian Inference (e1), was applied using the estimated rotor angle
from Figure 4.11, and the resulting posterior distributions are presented in Figure 4.12.

The standard deviation from the likelihood distributions has a mean probability of 0.074
p.u. The magnetizing reactance is estimated to have a mean probability of 0.88 p.u. with
95% certainty of the value being in the range of 0.86 to 0.91 p.u. The directional and
quadrature reactances mean probabilities are estimated to have the same value of 0.77
p.u. with a confidence interval in the range of 0.74 to 0.81 for the quadrature reactance,
and 0.71 to 0.83 p.u. for the direct reactance. The field winding resistance is estimated
to have a value of 1.6 p.u. while the phase winding in the stator have an estimated value
of 0.017 p.u. with a confidence interval of 95 % from 5.3e−5 to 0.039. The kernel density
estimation, presented in Appendix B, Figure B.5, presents a low correlation between
the parameters, with some positive correlation between the magnetizing reactance, Xad
and directional reactance, Xd, and little positive correlation between the stator winding
resistance and quadrature reactance, R and Xq.
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Figure 4.12: Bayesian inference, based on extended Kalman filter values.

4.4 Case C: Thermal Parameter estimation

This section will present the results from the estimation of the thermal properties of the
test rig generator from two separate measurement sessions, together with the goodness of
fit.

4.4.1 Dynamic load

The measured temperatures during the dynamic loading session are Presented in Figure
4.13.

The changes in estimated power losses that cause the deviation in temperature gradients
for the windings and core during the session are presented in Figure 4.14.

Parameter estimation of stator thermal parameters

Bayesian inference was applied with the presented measurements as observations, and
likelihood and prior distributions as presented in Chapter 3.4.2. The resulting posterior
distribution for each of the parameters is presented in Figure 4.15.

The overall standard deviation for the likelihood distributions was estimated at 0.003
K. The total heat transfer coefficient and surface area from the core to the air at room
temperature, hA f e2a, was estimated to have a mean probability of 17.8 W/K, with a
95 % certainty that the value is within the range of 16.9 to 18.6 W/K. The total heat
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Figure 4.13: Measured temperatures of stator windings and core during the session.

Figure 4.14: Estimated power losses in core and stator windings during the dynamic load session.

82



Figure 4.15: Posterior distribution of armature thermal parameters from stray loss estimation session

transfer coefficient and surface area from each of the stator phase windings to air at room
temperature, hAcu2a, was estimated to have a value of 3.15 W/K, with a 95 % certainty
that the value is in the range of 2.88 to 3.41 W/K. The total heat transfer coefficient and
surface area between each stator phase winding and the core, hAcu2 f e, was estimated to
have a value of 6.44 W/K, with a 95 % certainty that the value is in the range of 5.44 to
7.38 W/K. The estimated masses for a phase copper winding and the core were estimated
to respectively be 6.44 kg and 25.3 kg, with a 95 % certainty that the value is in the range
of 6.1 to 6.38 kg for a winding, and 24.9 to 25.7 kg for the core.

The kernel density estimation plot, available in Appendix B, Figure B.6, presents a low
correlation between the estimated parameters, except for the masses, which presents a
high correlation due to the deterministic prior. The heat transfer coefficients from copper
windings are also negatively correlated with the heat transfer coefficient from the core.

The mean values from the parameter posterior distributions were used to estimate the
temperatures, given the measured power losses and temperature change in the room. The
resulting simulations, compared to the measured temperatures, are presented in Figure
4.16. 4.16.

Rotor temperature and parameter estimation

The rotor temperature was calculated using Equation 2.44 and measurements of field
voltage and current. The calculated rotor temperature is presented in Figure 4.17.
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Figure 4.16: Comparison between estimated and measured temperatures in stator core and phases during
stray load loss session

Figure 4.17: Calculated rotor temperature, during the dynamic load session.
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Bayesian inference was applied with the calculated rotor temperature as observation to-
gether with measured room temperature, and likelihood and prior distributions as presen-
ted in Chapter 3.4.2. The resulting posterior distribution is presented in Figure 4.18. The

Figure 4.18: Posterior distribution of the rotor thermal parameters

standard deviation of the likelihood was estimated to be 2.7 K, the estimated total heat
transfer coefficient and surface area from the rotor to air was estimated to have a mean
probability of 60.4 W/K, yet, with a 95 % certainty of being in the range of 17.1 to 100
W/K. The mass of the rotor was estimated to have a mean probability of 12.3 kg, with
95 % certainty of the value being in the range of 2.42 to 22.7 kg. The kernel density
estimation, available in Appendix B, Figure B.8 presents no significant kernel density, as
also seen from the high confidence intervals in the posterior distributions. Figure 4.19
presents a simulation with the mean values of the posterior probabilities, compared to the
calculated temperature.

Figure 4.19: Comparison plot of Bayesian estimated- and calculated temperature of the rotor.
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Goodness of fit

The goodness of fit for the simulated temperatures versus the measured and calculated
values are summarized given in Table 4.10.

Table 4.10: Goodness of fit measures for estimated versus measured temperatures.
Location R2 MSE RMSE
Phase 1 0.999 0.001 0.037
Phase 2 0.989 0.015 0.122
Phase 3 0.998 0.003 0.057
Core 0.997 0.006 0.078
Rotor 0.041 234.452 15.312

All phase winding and core estimates was measured to a R2 value of 0.99 when rounded
to two digits, with a low mean error of 0.1 K being the highest mean error for the afore-
mentioned estimations. Yet, the rotor temperature estimate proved a poor fit, compared
to the measured value.

4.4.2 Constant load

A steady-state laboratory test was conducted with the test rig. The journal from the
laboratory session is included in Appendix C. Measured temperature values are presented
in Figure 4.20.

Figure 4.20: Temperature measurements from the steady state temperature session.
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The core temperature proved the highest change in temperature, with each of the stator
windings temperature rise being a little less. There was also a significant increase in room
temperature, as well as the air going out of the generator.

Parameter estimation of stator thermal parameters

Applying Bayesian Inference, using the obtained measurements from the steady state ses-
sion as observations. The selected prior and likelihood distributions presented in Chapter
3.4.2, resulting in the posterior distribution of stator thermal parameters, are presented
in Figure 4.21.

Figure 4.21: Posterior distribution of armature thermal parameters from steady state session

The standard deviation from the likelihood distributions was estiamted to a mean prob-
ability of 1.87 · 10−3, with a 95 % certainty that the value is in the range of 1.85 · 10−3

to 1.87 ·10−3. The mean posterior probability for the total heat transfer coefficient and
surface area between the core and windings was estimated to be -0.97 W/K, with a 95 %
certainty of the value being in the range of -1.16 to -0.777 W/K. Considering the temper-
atures in Figure 4.20, and the thermal model in Chapter 2.4, does this result in the core
being heated by copper windings. The total heat transfer coefficient and surface area from
the core to the air at room temperature, hA f e2a, was estimated to have a mean probability
of 14.9 W/K, with a 95 % certainty that the value is within the range of 14.8 to 15 W/K.
The total heat transfer coefficient and surface area from each of the stator phase windings
to air at room temperature, hAcu2a, was estimated to have a value of 3.09 W/K, with a
95 % certainty that the value is in the range of 3.07 to 3.11 W/K. The mass of the core
was estimated to have a mean posterior probability of 25.3 kg, while each copper winding
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was estimated to have a mean posterior probability of 6.24 kg, with a 95 % certainty of
the masses being in the range of 25.1-25.5 kg and 6.17-6.3 kg respectively.

The kernel density estimation plot, available in Appendix B, Figure B.9, presents a low
correlation between the estimated parameters, except for the masses, which presents a
high correlation due to the deterministic priors. The heat transfer coefficients from copper
windings are also negatively correlated with the heat transfer coefficient from the core.

The mean values from the parameter posterior distributions were used to estimate the
temperatures, given the measured power losses and temperature change in the room. The
resulting simulations, compared to the measured temperatures, are presented in Figure
4.22.

Figure 4.22: Comparison between estimated and measured temperatures in stator core and phases.

Rotor estimation

The rotor temperature was calculated using Equation 2.44 and measurements of field
voltage and current. The calculated rotor temperature is presented in Figure 4.23.
Bayesian inference was applied with the calculated rotor temperature as observation to-
gether with measured room temperature, and likelihood and prior distributions as presen-
ted in Chapter 3.4.2. The resulting posterior distribution is presented in Figure 4.24.

The standard deviation of the likelihood was estimated to be 2.25 K. The estimated total
heat transfer coefficient and surface area from the rotor to air was estimated to have a
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Figure 4.23: Estimated rotor temperature during the steady state measurement session.

Figure 4.24: Posterior distribution of thermal rotor parameters.
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mean probability of 17.3 W/K, yet, with a 95 % certainty of being in the range of 15.9
to 18.7 W/K. The mass of the rotor was estimated to have a mean probability of 1.01
kg, with 95 % certainty of the value being in the range of 1 to 1.03 kg. Figure B.10
presents kernel distributions close to the edges of the given range. Figure 4.25 presents a
simulation with the mean values of the posterior probabilities, compared to the calculated
temperature.

Figure 4.25: Comparison plot of Bayesian estimated- and calculated temperature of the rotor.

Goodness of fit

The goodness of fit measurements for the core and stator phase are presented in Table
4.11.

Table 4.11: Goodness of fit
Location R2 MSE RMSE
Phase 1 0.975 0.109 0.33
Phase 2 0.992 0.036 0.189
Phase 3 0.987 0.057 0.239
Core 0.985 0.07 0.264
Rotor -0.392 41.184 6.417

All phase winding and core estimates proved a high R2 value of 0.975-0.99, with a low
mean temperature error, yet, the rotor temperature estimate proved a poor fit, compared
to the measured value. The rotor temperature presented a mean error of above 6 Kelvin.
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5 Discussion

This chapter will attempt to interpret the obtained results presented in Chapter 4, mainly
by considering the original problem statements presented in Chapter 1.3.

5.1 Data acquisition application

The thesis work was resolved around the main objective, further development of the data
acquisition application as presented in the (MO). To address this objective, the software
was rebuilt as a state machine in LabVIEW, with the key benefit of native support
for the sensor measurements as National Instrument does the data acquisition hardware
modules. The previously made SQL database solution was a cloud-based storage method
with improved offline storage solutions. The main improvements of the application include
improved measuring capabilities for the test rig and the making of a digital twin model.
The results obtained in these subjects will be addressed in the following sections.

General Hydropower plant

The basis of a hydropower plant had to be established to establish a valid digital twin
model of a hydropower plant. Hence, a brief survey of the hydropower plant was done in
compliance with the first sub-objective, (O2). The findings from the survey presented the
hydropower plant as an electromechanical model built on electromagnetic phenomena.
The primary energy source of the hydropower plant stems from converting kinetic energy
from a hydraulic system. The hydraulic part of the hydropower plant depends on the
geometrical shape of the landscape around the turbine with the effect on the waterway.
The hydropower plant’s hydraulic system mainly controls the amount of active power. In
order to maintain synchronous frequency in the power grid, the synchronous generator’s
active power production setpoint is set dynamically through the governor droop control,
which controls the opening of the gate valves. Due to peculiar reactions in the waterway,
hydropower plants acquire transient droop, lowering the initial movement of the gate
valves. The amount of reactive power is controlled through the degree of excitation of the
field winding, which controls the degree of magnetization. The degree of magnetization
is controlled through the AVR, controlled through feedback from the terminal voltage of
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the synchronous generator. The AVR control scheme contains configurable parameters
for limiting the excitation, reference limits, and a voltage stabilizer signal.

Control systems

In an attempt to address sub-objective 3, (O3), were relevant control systems for the
hydropower plant implemented into the application. In the digital twin were the control
systems implemented directly into the solver, resulting in excepted behaviour, as seen in
Chapter 4.1.1. When used to control the test rig, did the control systems get a time delta
between measurements and control signals, resulting in a required low gain to remain
stable, especially the AVR suffered from this added time delta, making it not possible
to implement during the project work. Governor control and speed and control were
implemented based on feedback measurements of the terminal frequency of voltage in
phase a. However, the experimental testing of the implemented control systems was brief
and required more testing and tuning.

Digital twin

The theoretical basis for an electromechanical mechanistic model of the synchronous gen-
erator was presented in Chapter 2.2.1, with the fourth-order model of the synchronous
generator as the choice, neglecting direct consideration of damping windings, only in-
cluding them through a damping coefficient. In addition, a simplified lumped capacity
thermal model was developed with certain assumptions. The heat sources in the thermal
model stem from the implemented power loss model presented in Chapter 2.3.

The digital twin was built using the relationship between the aforementioned electromech-
anical, power loss, and thermal models. Considering the types of digital twins, are the
resulting implemented digital twin to be considered a type T3 from Table 2.1, as this type
suggests a digital twin, compiled to represent a system of T2 twin models. Hence do the
objectives, (O3), and (O4), complement each other into a system of mechanistic models,
as they ought to be implemented in the same model or with some interaction between
the models. The implemented digital twin was implemented with a direct connection to
an infinity bus, which was assumed to represent a power grid with infinitely high network
frequency characteristics, meaning changes in the generator production had no effect on
the frequency of the power grid. This could be changed to a more realistic case with a
transformer and transmission lines between the digital twin and the infinity bus.

To improve the digital twin, can either one of the mechanistic models be improved, or
the system of mechanistic models can get a wider grasp of the entire hydropower process.
A critical model that needs to be included in the aforementioned mechanistic model is
the hydraulic system of the hydropower plant. The hydraulic system of the hydropower
plant represents the water dynamics, as seen in Chapter 2. Does this depend on the
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geometrical shape of the landscape close to the installed hydropower plant, as this affects
the waterway and hence the behaviour of the water to changes in the rest of the digital
twin. The hydraulic system plays a considerable role when putting together the rest of
the digital twin, for instance, the configuration of the governor control, more specifically
the transient droop as presented in Chapter 2.1.3, as this has to handle the waterway
reaction to initial shifts in the gate valve position.

Moreover, will the waterway affect the choice of the turbine, which, as presented in Fig-
ure 2.2, represents changed efficiency at different load ratios. The generator’s efficiency
should be considered at a long term-life time reference, which is considerably altered when
including the hydraulic efficiency with seasonal changes. The hydraulic system is part of
the entire powerplant system. The typical use cases of the implemented digital twin would
be of type S3 from Table 2.2, representing performance optimization. The expected beha-
viour of the synchronous generator can be significantly improved through simulations of
operational states. Considering the test rig, for example, responses to parameter changes
such as room temperature can be dynamically emulated, including varying operational
loading of active and reactive power.

Further study of the behaviour can enable the system to be optimized regarding the
possibility of using the controllable parameters to their strengths instead of possibly letting
them be a synergetic power loss process. At a larger scale, to comply with changes in
the other. For larger powerplant models that, for example, are cooled through a heat
exchanger, can the twin allow simulations of different setpoints in the heat exchanger,
together with planned production and expected power losses.

5.2 Parameter estimation

During the project work, several parameter estimation methods were applied in an at-
tempt to address the sub-objectives (O6) and (O7). Chapter 5.2.1 addresses the findings
concerning electrical parameter estimation applied to simulated measurements in Study
Case A and applied to the test rig in Study Case B. Section 5.2.2 will address the findings
concerning thermal parameter estimation, considering two separate measurement sessions
from the test rig.

5.2.1 Electrical parameter estimation

Throughout the process of electrical parameters and state estimation, in total, four al-
gorithms were considered. Where two of the algorithms, the Kalman Filter, (KF), and
Bayesian Inference, (e1), consider the estimation of parameters at steady state operation.
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Both require knowledge of either directional and quadrature voltage and currents or ter-
minal PMU quantities with available rotor angle measurement. Given knowledge about
the generator’s parameters, the rotor angle can be measured or estimated, as presented in
Chapter 2.2.3. The latter algorithms, Bayesian Inference, (e2), and the proposed extended
Kalman Filter, EKF, are measures that can be applied to increase the certainty of rotor
angle position as intermediate steps to the estimation of the parameters of the generator,
ending with the implementation of one of the two first mentioned algorithms.

Case A

Study Case A, considered electrical parameter estimation based on a simulation with
several setpoint changes for governor and AVR, providing several steady-state conditions
for parameter estimation. The simulation includes measurements of the rotor angle,
enabling direct usage of both the Kalman filter, KF, and Bayesian inference (e1) at steady
state conditions. Both estimation methods presented promising results, with Bayesian
Inference proving to be the superior estimation method of the two. The Kalman filter
presented deviations in estimated parameters depending on both applied noise and initial
parameter values, with increasing deviation when a greater noise was applied. The main
parameters that are misestimated from the Kalman filter are the stator winding resistance
as well as the directional axis reactance. The Bayesian Inference algorithm, on the other
hand, estimated correct parameter values with very low deviations for all parameters
estimated. At last, was the proposed extended Kalman filter applied, with different noise
levels added to the rotor angle measurement. The filter proved promising results regarding
filtering out the correct rotor angle. The higher deviation was seen at increased noise,
yet, a reaction that is to be expected.

Case B

Study Case B, considered a measurement session with varying loading of both active
and reactive power. Hence, enabling estimation of rotor angles and parameters through
Bayesian Inference (e2), through the multiple steady-state operational conditions that
were identified. The shape of the posterior distributions is interesting, as it proves that
the non-linear system got multiple close-to-equilibrium points with multiple significant
protrusions. The resulting posterior distribution from the Bayesian inference presented
three reasonable estimates of the rotor angle, all within a 95 % confidence interval of
0.06 radians for the first steady-state condition, 0.05 radians for the second steady-state
condition and 0.09 radians for the latter Case. Converting to degrees, does this give an
estimate of the rotor angle with a 95 % certainty within a range of 2.9 to 5.2 degrees. The
estimated reactances all presented a larger confidence interval from their mean posterior
distribution, with the direct magnetizing reactance, Xad, as the most confident estimate
with a standard deviation of about 0.05 p.u. Considering the changes in delivered reactive
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power for the considered steady-state operations, could the deviations in the estimation
of the reactance stem from the changed degree of saturation during the session. The
test rig open circuit curve, Figure 4.8, presents increasing saturation at nominal voltage
and higher. The posterior distribution of the resistance in the stator winding did not
seem to settle to a significant protrusion, yet, interpreting the kernel density estimation
of the posterior distribution did, the resistance seem to increase during the session. When
considering the temperature evolution during the session, presented in Chapter 4.4.1,
the temperatures in the phase windings increased by about 3 Kelvin during the session.
Considering Equation 2.44, will the increased temperature increase the resistance in the
windings, hence is it expected that the estimated parameter would have an increased
estimated value throughout the session. Still, the estimated resistance proved a signific-
antly higher value than the previously estimated resistance. This can be explained by
the assumed increase in resistance when applying alternating current, compared to the
resistance when applying direct current, which was used to measure the resistance, further
explained in Chapter 2.3.1.

The proposed extended Kalman filter, EKF, was applied to the calculated rotor angle
throughout the measurement session, calculated by a stochastical approximation of the
estimated quadrature reactance. Both Bayesian Inference, (e1), and the Kalman filter,
KF were applied using the estimated rotor angle from the extended Kalman filter, with
promising results. In the estimated parameters from the Kalman filter, all parameters are
roughly estimated down to an error below ± 2 % in most cases. Only the stator resistance
estimation was higher at high noise levels. The quadrature and directional magnetiza-
tion reactance were the closest estimated values, with an error below 0.07 % in several
estimates, yet, the mean estimates for the last 100 iterations prove a high deviation from
the final estimates, with a high standard deviation, indicating that the filter is not fully
converged and further measurements are needed. In Case of further measurement points,
could the filter improve the estimation. The Bayesian Inference estimation presented both
lowered standard deviations in estimated parameters and lowered correlation in the ker-
nel density estimations, implying a more informative model compared to the parameters
estimated through Bayesian Inference (e2).

5.2.2 Thermal parameter estimation

Thermal parameter estimation was done through Bayesian inference based on a linearized
thermal model of the synchronous generator. The initially presented heat balance from
the first law of thermodynamics was used as a basis for the developed thermal model. As
a result of available measurements and known parameters of the synchronous generator
test rig, the thermal model was reduced to a lumped capacitance model with a total heat
transfer coefficient representing both radiation and convection. Two separate measure-
ment sessions were considered in an attempt to validate the assumptions that were made
when simplifying the thermal model.
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Considering the stator parameter estimations, both resulting parameters proved consist-
ency in regard to mass estimation, with the core being estimated to be 25.8 kg with a
certainty of 95 % that the mass is within a range of 24.9-25.8 kg, and each stator wind-
ing estimated to be 6.7 kg, with a certainty of 95 % that the mass is within a range of
6.08-6.37 kg from both sessions. The estimated total heat transfer coefficients varied a bit
when comparing the two estimations between the two measurement sessions, especially
when considering the total heat transfer coefficient representing heat transfer between the
core and stator windings. During the dynamic load session, the mean posterior estimated
value at 6.7 W/K, while the constant load session presented a mean posterior estimate of
-0.97 W/K. Simulation of the sessions with the different estimated parameters, presented
in Appendix B, presents that simulated temperatures fit better at lower temperatures,
while especially the core temperature deviates at higher temperatures. Considering the
heat transfer processes from Chapter 2.4.2, higher deviations are expected at higher tem-
peratures due to the simplification of including the radiation heat dissipation in a total
heat transfer coefficient. The heat dissipation due to radiation is given by the temperature
differences in absolute temperatures to the power of 4. Hence, the effect of radiation will
be amplified at higher temperatures, while the simplified thermal model only considers
the relative temperature differences.

The respective total heat transfer coefficients from surfaces to room temperature air are
within the same range from both sessions for both the core and windings, something
that is expected as the heat transfer process to the room temperature air is represented
mainly by convection, hence a more fitting model than for the heat transfer between the
objects.

Simulation of the temperatures proved promising results in both cases, with a R2 value of
0.99 for most of the estimates. The estimation of phase winding 1 in the constant session
proved the lowest 1 R2 value with 0.975.

The thermal parameters of the rotor were not possible to be estimated in either of the
measurement sessions. The rotor temperature had to be estimated through changes in
the field winding resistance, resulting in fluctuating measurements with much noise, res-
ulting in very broad estimates with unlikely mean. As the rotor thermal parameters
only were considered to dissipate heat through convection to fluid, the thermal model
of the rotor was greatly simplified, yet, the poor measurements of the rotor temperature
through voltage and current measurements are arguably the main reason for the poor
thermal parameter estimations. With an increased accuracy of the measurements could,
the thermal model of the rotor temperature be further developed to include dissipation to
surrounding objects also. Measurements of surface temperatures of the stator cage could
allow the integration of radiation dissipation, as it will represent a significant portion of
surrounding surface areas for the heat sources in the generator.
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6 Conclusion and further work

In an attempt to address the problem statements, the data acquisition software was fur-
ther developed with improved measurement and digital twin functionality. In an attempt
to thoroughly validate the implemented functionality of the software and increase inform-
ation about the test rig parameters, three rigorous parameter estimation studies were
conducted. In Case A, simulated electrical measurements were used to estimate electrical
parameters. In Case B, electrical parameters were estimated using measurements from
the test rig. Lastly, in Case C, thermal parameters were estimated using measurements
from the test rig. Estimation methods included Kalman filters for the electrical para-
meter estimation and Bayesian inference. Findings will be concluded in Section 6.1, and
proposed further work in Section 6.2.

6.1 Conclusion

Study Case A presented a simulated session with governor and AVR setpoint changes.
Electrical parameter estimation was applied at identified steady-state conditions through-
out the simulation. Both a Kalman filter and Bayesian inference were applied as estim-
ation methods. The Kalman filter was able to identify correct parameters at low noise
levels, with improved results when feeding the correct initial parameters. At higher noise
levels were, the general results less accurate, with the best accuracy when feeding zero
initial parameters. With the latter presenting superior estimation accuracy. The proposed
Extended Kalman Filter was also applied for filter validation, prior to a more vital role
in Study case B, the filter showed promising results in estimating the rotor angle, even
when subject to high noise scenarios.

In Study Case B, was Bayesian Inference applied with rotor angles included as parameters.
The resulting rotor angles and estimated parameters were used to further analyze the
parameters through the proposed Extended Kalman filter and Bayesian Inference without
rotor angles as parameters, as well as through a Kalman filter. The final estimates of the
Bayesian Inference presented more certain estimates with less standard deviation. In
contrast, the estimates through the Kalman filter presented deviating results, further
discussed in Chapter 5.2.1.
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The last Study Case evaluated the estimation of thermal parameters to a developed
lumped capacitance model of the synchronous generator. Two measurement sessions
were considered in an attempt to validate the model and assumptions that were made.
Thermal parameters were estimated using Bayesian Inference, and the resulting stator
parameters proved consistent mass estimations and a somewhat consistent estimate of
the total heat transfer coefficient from the surfaces to room temperature air. However,
comparing the two results, the total heat transfer coefficient between core and stator
windings deviated significantly. Hence, the results discard the simplification of assuming a
total heat transfer coefficient, including both convection and radiation, for the dissipation
between the objects.

Considering improvements in the data acquisition applications, the application moved
from C# to LabVIEW. Furthermore, the presented electrical model of the synchronous
generator electrical, power loss model, and thermal model of the generator was compiled
into a digital twin, implemented as a part of the application, with included governor
and AVR control. The measurement state of the application was also equipped with
controlling functionality, including control of the DC-motor applied torque and speed and
excitation current and voltage. Governor control was implemented as an option to control
the DC motor, which is yet to be thoroughly tested. The implemented AVR control of
the excitation proved unstable when discretized. As a result, it was not implemented into
the control system of the DAQ.

6.2 Further work

The proposed extended Kalman filter proved promising results when compared to simula-
tion results, although further experimental validation and tuning are necessary for better
accuracy of the filter. The basic Kalman filter proved less accurate than the Bayesian
inference estimations, yet, with the Kalman filter being able to run in real-time during
measurement sessions, it could prove to be useful in providing increased operational in-
formation. Proposed further work in regard to increasing parameter estimation of the
synchronous generator test rig is listed below.

• Implementation of Unscented Kalman filter.

• Implement the hydraulic system of the hydropower plant

• Include saturation in estimations.

Proposed Further work in regard to improving the test rig is listed below

• Improve accuracy of excitation voltages and currents

• Conduct conventional parameter estimation measures, enables comparison of the
estimated
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• Implementation of hardware AVR, enabling control over terminal voltage during
different operational conditions.
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Appendix A

Task description of the Master Thesis

This appendix presents the task description for the Master Thesis.
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Appendix B

Measurements of interest

This appendix contains figures, measurements and results that are referenced in the report,
yet, for readability, are placed here.

Electrical parameter estimation - simulation

Figure B.1: Kernel density estimation of estimated parameters
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Figure B.2: Estimated rotor angle with the noisy rotor angle measurement included

Electrical parameter estimation - test rig

This section presents measurements and results that are obtained from the electrical para-
meter estimation of the measurement session. Measurement files are found in Appendix
D.1.

Figure B.3: Measurements considered for electrical parameter estimation with noise.
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Figure B.4: Kernel density estimation for estimated posterior distributions of rotor angles and parameters
during the session.
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Bayesian estimation using rotor angle estimated from EKF.

Figure B.5: Kernel density estimation- post rotor angle estimation

Thermal parameter estimation

This section presents measurements from the thermal measurements sessions during the
project work.
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Figure B.6: Kernel density estimation - dynamic load session

Figure B.7: Estimated rotor temperatures with noise
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Figure B.8: Kernel density estimation of rotor parameters - dynamic session

Figure B.9: Kernel density estimation - steady state session
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Figure B.10: Kernel density estimation of rotor parameters - steady state session

Figure B.11: Estimated rotor temperatures with noise
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Figure B.12: Simulation of the steady state session using the estimated thermal parameters from the
dynamic measurement session.

Figure B.13: Simulation of the dynamic load session using the estimated thermal parameters from the
steady state measurement session.
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Appendix C

Calibration of torque sensor and estimation

of nominal losses

This appendix presents the journal from the calibration lab session, measurements used
in the Journal are available in Appendix E5. With the filenames:

• Stray_losses_measurements

• Torque_calibration_measurements

• Core_loss_measurements

• Friction_measurements
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1. Purpose 

The laboratory session will through linear regression estimate a scaling factor for determining the 

input torque provided to the rotor of the synchronous generator from the DC motor. The DC motor 

will Test object. 

 

2. Test object 

The test object for the laboratory session is the synchronous generator test rig, specifications given 

in figure 1. 

DC resistance measurements of the armature windings have estimated a phase resistance of 

0.804 Ω. 

 

 

 

 

Figure 1, Generator specifications 

 

3. Experimental set-up 

The setup for calibration of the torque sensor is presented in figure 2.  
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Figure 2, Setup torque calibration 

There was taken supplementary measurements to the setup in figure 2, listed in table 1. 

 

Table 1, Measurements 

Measured object Distance from center 
of inertia [cm] 

Length Torque Sensor arm 20 

Center of inertia to bearing 29,9 

Height of bearing 5,7 

Bearing to the force sensor 4,2 

Center of inertia to force sensor 20 

Radius from center of inertia to 
point of weight attachment 

17,9-18,3 

 

4. Procedure  

3.1 Torque estimation 

The estimation of the torque will be done by measuring physical scales and determining the radius 

from center of inertia to the sensor pressure point. There will be mounted assumed known weights 

while measuring the output mounted from the mounted sensor. The angle of the weights was 
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estimated from measurements of the tangential point and length of the rope and estimated center 

of inertia. 

 

 

3.2 Nominal loss estimation 

The nominal losses will be estimated through three sessions: 

The first session will determine the nominal friction and windage loss, given as the loss at the 

nominal angular velocity, without magnetization: 

 

𝑃𝑓&𝑤
∗ = 𝜏𝜔      |𝜔=𝜔𝑠

 

The second session will determine the nominal core loss, given as a difference from the friction 

losses to the losses at the nominal angular velocity, with magnetization giving rated voltage at the 

armature.  

 

𝑃𝑐𝑜𝑟𝑒  
∗ = 𝜏𝜔 − 𝑃𝑓&𝑤      |𝜔=𝜔𝑠,𝑉=𝑉𝑛

 

 

 

The third session will determine the nominal stray losses, given as the losses not accounted for by 

friction, core, or ohmic losses. The nominal stray load losses are given as input torque at rated load, 

the rated load. 

 

𝑃𝑠 = 𝜏𝜔 − 𝑃𝑒 − 𝑃𝑐𝑜𝑟𝑒
∗ − 𝑃𝑓&𝑤

∗ − 𝑃𝑎     |𝑃=𝑃𝑛,𝑄=𝑄𝑛
 

5. Results  

5.1 Calibration of torque 

The angle of the weight was estimated to 5.7 °, altering the effective gravitational acceleration. 

 

𝑔 = 9.81 ⋅ cos 5.7° = 9.76 𝑚/𝑠2 
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Figure 3, Torque measurements at different weights with removed bias 0.12 

The measured values at each weight were accounted into a mean value for each weight, the mean 

weight was used to calculate torque together with the distance from center of inertia, as 

𝜏 = 𝐹 ⋅ 𝑟 

Assuming the force to be perpendicular to the center of inertia. The measured and applied force 

was scaled to torque, using the equation above and distance from sensor and applied weight to 

center of inertia. Scipy curve fitting was applied to curve fit the measurements to a linear curve. 

The estimated curve is plotted together with the equation and the 𝑅2 of the estimated parameters 

and the measurements in figure 4. 
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Figure 4, Curve fitted line 

The resulting scale for estimation of force applied to the torque sensor is given as 

𝐹 = 85.12 ⋅ 𝑥 − 0.176[𝑁] 

Where x is the value from the sensor with the bias subtracted. Hence will the torque and Pmec be given as 

𝜏 = 𝐹 ⋅ 𝑟 = (85.12 ⋅ 𝑥 − 0.176) ⋅ 0.2 [𝑁𝑚] 

𝑃𝑚𝑒𝑐 = 𝜏 ⋅ 𝜔𝑚𝑒𝑐 = (85.12 ⋅ 𝑥 − 0.176) ⋅ 0.2 ⋅
2𝜋𝑓

#𝑝
 [𝑊] 

Where 𝜔𝑚𝑒𝑐 is given as mechanical rad/s, and #p is the pole pairs.  

 

5.2 Nominal losses estimation 

Using the calibrated estimate of the torque, the nominal losses are plotted in figure 5-8. 
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Figure 5, Measured Pmec for estimation of friction and windage losses 

 

  

Figure 6, Measured Pmec for estimation of core losses 

 

 

𝜔 = 𝜔𝑠 

𝑉 = 𝑉𝑛 
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Figure 7, Measured Pmec for nominal stray loss 

Summarized nominal losses, calculated by equations in section 4.2 is given in table 2. 

 

Table 2, Nominal losses 

Measured object Loss [W] 

𝑃𝑓&𝑤
∗  176.0 

𝑃𝑐𝑜𝑟𝑒
∗  113.2 

𝑃𝑠
∗ 87.7 

 

 

6. Conclusion 

An input mechanical power scale for the force sensor was proposed and the nominal losses were 

estimated based on assumed losses at different operational points. Rotor ohmic losses from 

excitation does not contribute to increased torque. Assumed room temperature in armature 

windings during load at stray losses. 

𝑃 = 𝑃𝑛 

𝑄 = 𝑄𝑛 



Appendix D

Electronic Appendices

The LabVIEW software developed as part of the project, together with relevant meas-
urements obtained during the thesis, are included as electronic appendices. They are not
included as part of the report as they take up a lot of pages, yet, they are included as
they are part of the thesis work.

Appendix number Description

Appendix E1 README file, which further explain the electronically submitted
appendices

Appendix E2 LabView Project Folder
Appendix E3 Powerpoint file with presentation videos, showcasing the use of the

developed application’s main features.
Appendix E4 Python Scripts used for parameter/state estimation and ana-

lysis/plotting of obtained data.
Appendix E5 Relevant measurement files obtained throughout the project work
Appendix E6 LabView application aliases
Appendix E7 SQL database setup
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