
www.usn.no

FMH606 Master’s Thesis 2023
Industrial IT and Automation

Colour Quality Monitoring System for

Plastic Pipes Exterior Walls Colour with

Machine Learning and Image Processing

Hans-Christian Ringstad

Faculty of Technology, Natural Sciences and Maritime Sciences

Campus Porsgrunn

http://www.usn.no

www.usn.no

Course: FMH606 Master’s Thesis 2023
Title: Colour Quality Monitoring System for Plastic Pipes Exterior Walls Col-

our with Machine Learning and Image Processing
Pages: 89

Keywords: Plastic pipes, quality control, machine learning, CIELAB, CIE L*a*b*,
L*a*b*, Lab, Raspberry Pi, Picamera, python, scikit-learn, scikit-image

Student: Hans-Christian Ringstad
Supervisor: Ru Yan

External partner: Daniel Zwick, Pipelife Norge AS

Summary:

Pipelife Norge AS is working on automating quality control for their pipes, specifically
monitoring the exterior wall colour. Currently, operators manually inspect the pipes and
rely on their experience to judge the colour.

When a colour monitoring system take a measurement of the colour they are usually measur-
ing and comparing the colour against a standard, but at the factory a mathematical standard
does not exist.

To modernize and streamline this process, a colour quality camera station has been con-
structed in this study. This station consists of a lightproof metal frame through which
newly produced pipes can travel. The station is equipped with LED’s and web cameras
controlled by a Raspberry Pi 4 B, designed to capture the colour defects of each pipe in a
more objective and consistent manner than human operators

Approximate 1100 images of brown and red PVC 110ø pipes were collected to the dataset.
The histogram used for the evaluation is based on the L∗, C∗

ab and hab from the CIELAB
colour space.

A set of machine learning models are developed using a voting ensemble method to evaluate
the pipes. The model’s performance was largely satisfactory, producing reliable results with
most images. However, some challenges were observed with images that even a human
eye would struggle to discern accurately. This indicates that while the system has made
substantial strides in automating colour quality control, there are still areas for improvement
and fine-tuning.

The University of South-Eastern Norway accepts no responsibility for the results and
conclusions presented in this report.

http://www.usn.no

Preface

This thesis was written by Hans-Christian Ringstad, a student of the industry master
version of the Master of Science Industrial IT and Automation study at the University of
South-Eastern Norway, in collaborations with Pipelife Norge AS.

I would like to thank Ru Yan for supervising and her guidance in this project. Daniel
Zwick and Marius Nordheim with their assistance with the project. And Nils Skei and the
rest of the maintenance department for building the frame of the station and installing
the equipment.

Porsgrunn, 15th May 2023

Hans-Christian Ringstad

5

6

Contents

Preface 5

Contents 8

List of Figures . 10

List of Tables . 11

1 Introduction 15

1.1 Background . 15

1.2 Previous Proof-of-Concept . 16

1.3 Problem Description . 18

2 Theory 19

2.1 Light Reflection . 19

2.2 Colour Analysis . 21

2.3 Machine Learning Algorithms . 23

2.3.1 SVM . 23

2.3.2 Softmax Regression . 23

2.3.3 Decision Tree . 24

2.3.4 Random Forest . 24

2.3.5 Voting Ensemble . 24

3 Methods 25

3.1 Hardware . 25

3.1.1 Material . 25

3.1.2 Design of the Station . 26

3.1.3 The Frame of the Station . 29

3.2 Software . 32

3.2.1 Design of the Software . 32

3.2.2 Collect Samples . 38

3.2.3 Image Processing . 40

3.2.4 Development of Machine Learning Models 42

4 Result 51

4.1 Finished Design of the Station . 51

4.2 Software . 52

7

4.3 Finalization of Machine Learning Models . 55

5 Discussion 57

5.1 Future Improvements and Use Cases . 59

6 Conclusion 63

Bibliography 65

A Master Thesis Problem Description 67

B Gantt Chart 71

C Draft of the Station 75

D Line Speed on E01 79

E Experiment Log of the Machine Learning Development 81

F Image Set 83

G Circle Reflection Simulator 85

H Source Code 87

I Work Folder 89

8

List of Figures

1.1 Simple figure of a extrusion line used to make plastic pipes. 15
1.2 The proof-of-concept used to test the feasibility of inspecting 17
1.3 An example image captured by the previous proof-of-concept station. . . 17
1.4 The test conducted on the image of the pipe shown in figure 1.3. 18

2.1 Geometric relationships between the angles used when calculating the new
directional angle when the light vector shall be reflected off the pipe 6 L∗. . 21

3.1 Drawing shows the coverage of the cameras on the pipe where the marked
area is the area to be inspected and the green dotted lines are the 27

3.2 The calculated reflections on the pipe where the sign of the direction for
the light were set wrong. 28

3.3 The calculated reflections on the pipe, N is the total amount of lines, n is
the amount of lines per light source and nl is amount of lamps. 28

3.4 Images of the metal frame. 30
3.5 Images of the cameras. 30
3.6 The LED strip was installed into the metal frame. 31
3.7 Images of the inside and the outside of the painted metal frame. 31
3.8 The base plate from the electrical cabinet with the wiring is done. 32
3.9 Use case model of the software used for the light box. 33
3.10 Domain model of the software used for the station. 34
3.11 The flowchart for the software used for the station. 35
3.12 The setup of the test of the system being tested showing the plate from

figure 3.8 with the power connected and the cameras connect through a
USB hub. 36

3.13 The ERD of the MES database. 37
3.14 The pipe sections used for generating datasets for training and evaluating

machine learning models. 38
3.15 The GUI for the CQCS controller shows the LED controls and the image

viewer. 39
3.16 The GUI for the CQCS controller showing the camera controls and the

image viewer. 39
3.17 The original image from the good BROWN set compared with the blurred

version of the same image. 40

9

3.18 The original image from the bad BROWN set compared with the blurred
version of the same image. 40

3.19 The threshold at 0.875 and the blurred image from the good BROWN set
with the threshold overlaid. 41

3.20 The threshold at 0.875 and the blurred image from the bad BROWN set
with the threshold overlaid. 41

3.21 Here the image shown is the original image from the good BROWN set
with the produced histogram of the L∗, a∗, b∗, C∗

ab , and hab. 42
3.22 Here the image shown is the original image from the bad BROWN set with

the produced histogram of the L∗, a∗, b∗, C∗
ab , and hab. 42

3.23 Confusion matrix of experiment 1. 44
3.24 Confusion matrix of the errors of experiment 1. 44
3.25 Confusion matrix of experiment 7. 45
3.26 Confusion matrix of the errors experiment 7. 45
3.27 Confusion matrix of experiment 26. 46
3.28 Confusion matrix of the errors in experiment 26. 46
3.29 Confusion matrix of experiment 33. 47
3.30 Confusion matrix of the errors in experiment 33. 47
3.31 Confusion matrix of experiment 36. 49
3.32 Confusion matrix of the errors in experiment 36. 49
3.33 Confusion matrix of experiment 40. 50
3.34 Confusion matrix of the errors in experiment 40. 50

4.1 The calculated reflections on the pipe, N is the total amount of lines, n is
the amount of lines per light source and nl is amount of lamps. 51

4.2 The front of the finished of the station. 52
4.3 The back of the finished station. 53
4.4 The display of the station showing brown pipes and a red pipe about to

be placed in the station. 54
4.5 The display of the station showing red pipes. 54
4.6 Confusion matrix of the preliminary experiment 42. 56
4.7 Confusion matrix of the errors in the preliminary experiment 42. 56

5.1 Images captured by camera one showing the difference between normal
colouring and the colouring after the blue tint has appeared. 57

5.2 Here the image shown is the original image from the good RED set with
the produced histogram of the L∗, a∗, b∗, C∗

ab , and hab. 58
5.3 Here the image shown is the original image from the good RED set with

the produced histogram of the L∗, a∗, b∗, C∗
ab , and hab. 58

5.4 The coverage of the of the pipe from the cameras if more stations are placed. 59

10

List of Tables

3.1 Cross validation of the classifier from experiment 1. 44
3.2 Cross validation of the classifier from experiment 7. 45
3.3 Cross validation of the classifier from experiment 26. 46
3.4 Cross validation of the classifier from experiment 33. 47
3.5 Cross validation of the classifier from experiment 36. 49
3.6 Cross-validation of the classifier from experiment 40. 50

4.1 Cross validation of the classifier from experiment 42. 56

C.1 Here the references and the description of the equipment in the found in
the main electrical cabinet. 75

11

12

Nomenclature

Symbol Explanation

CQCS Colour Quality Camera Station
ML Machine Learning
GUI Graphical User Interface
MES Manufacturing execution systems
fps Frames per second
ERD Entity Relationship Diagram
SVM Support Vector Machine
SVC Support Vector Classification

13

14

1 Introduction

The world is becoming more and more automated. Automation removes humans from
doing repetitive tasks. At Pipelife Norge AS the bundling of the pipes are being automated
and part of this automation project is to automate the quality control. A part of the
quality control will be to monitor the colour of the exterior wall of the pipes.

When a colour monitoring system take a measurement of the colour they are usually
measuring and comparing the colour against a standard, but at the factory a mathematical
colour standard does not exist. Today operators inspect the pipes manually and judges
the colour based on their experience.

Here in this thesis I will make a colour quality camera station that will monitor and
evaluate the colour of the exterior walls of plastic pipes.

1.1 Background

Pipelife Norge AS is one of the biggest producers of plastic pipes in Norway and is part
of Pipelife International GmbH[1]. Today, plastic pipes are produced on production lines
called extrusion lines, as illustrated in the figure 1.1.

Figure 1.1: Simple figure of a extrusion line used to make plastic pipes.

The production process starts with melting plastic pellets or granules made from recycled
pipes and blending in a colourant to create a coloured liquid plastic. Then, the plastic
liquid will be extruded and cooled to form a solid pipe. Next, the pipe will be cut into
segments by a cutting unit, socketed at a pipe-socketing bench, and placed in a pipe cart.

15

In the end, operators will bundle the pipe cart onto a pallet. During the last step, the
operators also will perform visual quality inspections of the pipe exterior colour before
bundling the pipes.

However, with the implementation of a new automatic pipe bundling system in the factory,
this visual quality inspection method has become unfeasible. Operators can no longer
inspect the pipes’ colours while the bundling machine is in operation, yet colour quality
inspections remain necessary.

After consulting with the new bundle system’s manufacturer, it was concluded that mak-
ing a regular sensor-based quality check system for pipes exterior wall colour would be
complicated and potentially unreliable. Consequently, applying computer vision (camera-
based) and machine learning techniques to develop a colour quality inspection system was
explored. A successful proof-of-concept for a camera-based solution was demonstrated us-
ing a single camera.

1.2 Previous Proof-of-Concept

A proof-of-concept was developed prior to this thesis. The proof-of-concept was based
on a school assignment [2] in the course IIA1319 Software Engineering at USN where the
assignment was decided by the student and here the assignment were to make a quality
monitoring and inspection system for the pipe colour.

It was made to assess the feasibility of a system capable of inspecting the exterior walls
of the produced pipes while they were being produced. The goal was to determine if it
was possible to inspect these aspects by capturing an image of the pipe simultaneously.

Figure 1.2 shows the station used in the feasibility experiment. The cameras were posi-
tioned high enough to capture an image of the whole marking on the pipe. But at this
distance, while also evaluating the pipe’s color differentiation. The CIELAB color space
was utilized to establish a hard upper and lower color limits, but due to the missing
written colour standards at the factory, this method could not be directly applied to the
production line..

Capturing an image of a pipe presents a significant challenge due to light source reflections
on the pipe. This is the main reason for the requirement for the station to be as lightproof
as possible. Even the ceiling light in the factory will cause unwanted reflections, leading
to inaccuracies in the colouring measurements. In figure 1.3 an image captured under an
experiment illustrates the noticeable reflection and resulting measurement noise.

In figure 1.4 a test to differentiate the colours using the CIELAB colour space is shown.
The first image shows the original image to be differentiated for reference for the viewer.
The marked areas on the other subfigures shows where the colour is outside of the limit

16

Figure 1.2: The proof-of-concept used to test the feasibility of inspecting

Figure 1.3: An example image captured by the previous proof-of-concept station.

shown in the title of the figure. The red markings means the value is above the upper limit,
while the blue marking means they are below the lower limit. The L∗, a∗ and b∗ subfigure
has a grayscale image with the their markings overlaid. In the next subfigure the overlaid
marking of the error, ∆E∗, is seen where in the original image it was practically white. And

17

the last image shows the acceptable areas where the white colour is placed. Here as seen
the reflection from the light source make the lines unusable for proper differentiation.

Figure 1.4: The test conducted on the image of the pipe shown in figure 1.3.

1.3 Problem Description

In this thesis a system will be made to inspect the colour of the exterior wall of a plastic
pipes. The machine will be designed to collect a training and test set for the development
of a machine learning algorithm, which will do the inspections of the colour. Part of the
development will involve extracting any useful features from the dataset to facilitate the
algorithm’s functionality.Additionally, we will discuss potential further developments for
the machine and explore other use cases within a factory setting, if applicable.

18

2 Theory

Prior to designing the station, it is necessary to calculate and simulate the reflections.
Then some knowledge of the colour space which shall be used to find the difference in
colour and lastly some words of the algorithm used.

When the the dataset shall be evaluated histograms will be used. Some statistical variables
will be added to help with the evaluation. They will be the mean, the standard deviation
and the variance. The equations 2.1 to 2.3 are from [3].

Mean: µX = E(X) = ∑
over all x

xp(x) (2.1)

Standard deviation: σ2
X = E

[
(X −µX)

2]= ∑
over all x

(x−µX)
2 p(x) (2.2)

Variance: σX =
√

σ2
X (2.3)

The histogram is treated as the stochastic variable X while the bins are the variable x. X
is divided with N, the sum of the values in X , and is thereafter treated as a probability
as p(x).

2.1 Light Reflection

In this scenario, we have N light vectors being simulated, with nl light sources, each
generating n light vectors per light source. A light vector will always need a light source to
originate from. Therefore, the total number of light vectors, N, is obtained by multiplying
the amount of light sources, nl,with the amount of light vectors per source, n.

The reference matrix, rk, is used to represent the ...the position of the of the light vectors
in the Cartesian plane and r0 is the known starting position vectors, Equation 2.4 shows
the composition of rk.The angle matrix 6 L represent the known directional angle of all
the light vectors, and its composition is shown in equation 2.5. Equation 2.6 shows how
one step of the light vectors is calculated.

The constant δt is the step constant, determining the length of one vector step.

19

Reference matrix: rk =

rx,1,1,k ry,1,1,k
rx,1,2,k ry,1,2,k

... ...
rx,1,n,k ry,1,n,k
rx,2,1,k ry,2,1,k
rx,2,2,k ry,2,2,k

... ...
rx,nl ,n,k ry,nl ,n,k

∈ ℜ

N×2 (2.4)

Angle matrix: 6 L =

1n×1 ⊗ 6 L1
1n×1 ⊗ 6 L2

...
1n×1 ⊗ 6 Lnl

 ∈ ℜ
N×1 (2.5)

One step: rk+1 = rk +δt
[
cos(6 L) sin(6 L)

]
(2.6)

To ensure the new angle for the light vector is correct the crossing point between the
vector and the pipe wall is calculated. By combining the standard equation for a straight
line, y = ax+ b, representing the vector and a circle, r2 = x2 + y2, representing the pipe
wall the equation 2.7 is then derived. At the crossing point of the light vector and the
pipe wall it is assumed the equation will be equal to 0. Then Newton’s method is used to
calculate the approximation of the point and the equations used are shown in equation
2.10 and 2.11. The a in equation 2.10 and 2.11 are used to control the convergence rate
of the equations.

Combined equation: f = y2 − y+ x2 +ax+b− r2 (2.7)

Partial derivative of f dependent of x: ∂ f
∂x

= 2x−a (2.8)

Partial derivative of f dependent on y: ∂ f
∂y

= 2y−1 (2.9)

Newtons Method for x coordinates: xk+1 = xk −a · f
∂ f
∂x

(2.10)

Newtons Method for y coordinates: yk+1 = yk −a · f
∂ f
∂y

(2.11)

Afterwards, the new angle for the light vector angle is calculated. To get the angle α , the
input directional angle must be inputted into the equation 2.12 to adjust the incoming
light vector angle. To get the angle β the crossing point coordinates are inputted into

20

the trigonometric function arctan2. Then the difference between α and β is calculated to
yield the difference angle γ . Finally, the new light vector will be calculated by subtracting
twice the difference times two.

The relationship between the angles is illustrated in figure 2.1.

Incoming light vector angle: α = 6 L−π (2.12)
Crossing point angle: β = arctan2(yopt ,xopt) (2.13)

Difference angle: γ = α −β (2.14)
New light vector angle: 6 L∗ = α −2γ (2.15)

β

α

γ

γ

L

L*
[x,y]

Figure 2.1: Geometric relationships between the angles used when calculating the new directional angle
when the light vector shall be reflected off the pipe 6 L∗.

2.2 Colour Analysis

The most common computer images colour standard used is sRGB which has an 8-bit
value range for each colour, red, green and blue, but these values are not ideal to be used to
differentiate between colours. The CIELAB colour space was made to do differentiation

21

between colours. To calculate the L∗, a∗, b∗ values the XYZ reference frame must be
known. Equation 2.16 shows the transformation matrix from sRGB and to the CIE XYZ
reference frame using illuminant D65 as recommended by CIE. Before using the equation
the sRGB are linearized from the range [0,255] to [0,1].

Equation 2.16 to 2.23 can be found in [4][5]. The scikit-images library[6] uses the equation
below.

sRGB to CIE XYZ:

X
Y
Z

D65

=

0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

RLinear
GLinear
BLinear

 (2.16)

The Xn, Yn and Zn are the reference illuminant which are changed depending of what
illuminants are used. The standard illuminant D65 is used here which means the reference
illuminant will be Xn = 95.04, Yn = 100.0, Zn = 108.88.

The axes in the CIELAB colour space are defined where the L∗ is the lightness, the a∗ is
the red-green opponency and b∗ is the yellow-blue opponency. If a∗ is a positive number
the colour has a red part, but if it is negative it has a green part. If b∗ is a positive
number the colour has a yellow part, but if it is negative it has a blue part. The ranges
of the values are L∗ ∈ [0,100], a∗ ∈ [−128,127], b∗ ∈ [−128,127].

CIELAB L∗: L∗ =

116
(

Y
Yn

)1/3
−16 , f or

(
Y
Yn

)
> (6

29)
3(29

3

)3
(

Y
Yn

)
, f or

(
Y
Yn

)
≤ (6

29)
3

(2.17)

CIELAB a∗: a∗ = 500

[(
X
Xn

)1/3

−
(

Y
Yn

)1/3
]

(2.18)

CIELAB b∗: b∗ = 200

[(
Y
Yn

)1/3

−
(

Z
Zn

)1/3
]

(2.19)

In the equation 2.20 and 2.21 the chroma and the hue angle is calculated. By comparing
the CIELAB a∗ and b∗ to the CIELAB C∗

ab and hab. It it can be interpreted that these
values can be compared to transforming the Cartesian coordinates system to a cylindrical
coordinates system. L∗ is considered the height in both system.

CIELAB chroma: C∗
ab =

√
a∗2 +b∗2 (2.20)

CIELAB hue angle: hab = arctan
(

b∗

a∗

)
(2.21)

22

The equation 2.22 and 2.23 is the difference equations for colour and hue difference. When
a colour standard is known, (L∗

1,a
∗
1,b

∗
1), then it would be possible calculate the difference

with the measured colour, (L∗
2,a

∗
2,b

∗
2).

CIELAB colour difference: ∆E∗
ab =

√
(L∗

1 −L∗
2)

2 +(a∗1 −a∗2)
2 +(b∗1 −b∗2)

2 (2.22)

CIELAB hue difference: ∆H∗
ab = 2

√
C∗

ab,1C∗
ab,2 sin

(
hab,1 −hab,2

2

)
(2.23)

2.3 Machine Learning Algorithms

In this project, several machine learning algorithms were used, each with a brief descrip-
tion and relevant hyperparameters. All hyperparameters used are mentioned here. If a
hyperparameter is not mentioned, it is either not in use or the default value is in use as
stated in the documentation for the scikit-learn library[7].

2.3.1 SVM

Support Vector Machine, or SVM, is a machine learning algorithm that is an effective and
versatile method to create a machine learning model. It is able to be used in both linear
and nonlinear cases. It can use different kernel functions to predict a class, including both
linear and polynomial functions. Here only a polynomial kernel function will be used. The
hyperparameters for this algorithm will be the C, which is used by the L1 penalization to
allow the control of how complex the model shall be, the d, the order of the polynomial,
and r, the constant coefficient[8]. In the scikit-learn library the type of SVM used is called
Support Vector Classification, or SVC[7].

2.3.2 Softmax Regression

Softmax regression, also known as multinomial logistic regression is a generalized version
of logistic regression to support being used as a classifier. This classifier creates a score
for each class. Then normalized exponential or softmax function is applied to the score
and then returns a probability of every class. The hyperparameter C is used to regulate
the allowed complexity of the model[7][8].

23

2.3.3 Decision Tree

Decision Trees is a machine learning algorithm, which is a versatile method to create a
machine learning model. It is cheap on computing power and it is possible to export the
tree to see why it makes its decision. The tree can be seen as a collection of if-statements
that are trained to find rules to fit a dataset. The hyperparameter for this method is the
maximum allowed depth the tree is allowed to train to[7][8].

2.3.4 Random Forest

Random Forest is an ensemble of decision trees and thereby why it is called a forest.
This algorithm takes and train the data to subset of the dataset and returns an average
probability of the classes. The hyperparameters for this method is the amount of trees
and the maximum allowed depth the tree is allowed to train to[7][8].

2.3.5 Voting Ensemble

Unlike the previously mentioned algorithms, the voting ensemble is not a single machine
learning algorithm. Instead, it combines different algorithms into an ensemble and votes
on what is the most probable correct prediction. This approach is useful when individual
algorithms are not able to deliver good enough predictions[7][8].

24

3 Methods

In this chapter the methods to build the colour quality camera station is described. The
first part will describe the hardware and the second part will describe the software.

3.1 Hardware

In this section the hardware for the station is described. The first part twill be to described
materials who holds some significant importance to the result. Then the frame will be
built and equipment installed.

3.1.1 Material

The materials used for this project are of significant importance for achieving desired
results. Here is a list of the materials:

Raspberry Pi

A Raspberry Pi is a microcomputer made by
the Raspberry Pi Foundation and it is the
computer to be used in this project. The
board is able to use Python and its associ-
ated packages and other open-source pack-
ages, including scikit-learn which is used for
the machine learning algorithm. It also has
USB ports which can be used for web cam-
eras and I/O pins that can be used for con-
trolling relays. In this project a Raspberry
Pi 4 B 8 ram is used[9].

25

LED strips

A strip of LED lights will be used for the
projects. It can be partitioned into smaller
pieces every 10 cm or so. It has four types of
LEDs with different colors, red, green, blue,
and white. The each colour can be individu-
ally controlled by relays and dimmers[10].

Camera

The cameras chosen for this project were
the FIT0729 by DFRobot. The standard Pi
Camera Module was considered but due to
only one camera can be connected to each
Raspberry Pi board and there being a short-
age of boards a substitute was chosen. The
FIT0729 is a USB web camera with similar
specifications to the Pi Camera Module and
could therefore be used[11].

USB hub

A USB hub was used to make sure the cam-
eras has enough power. This USB hub is
able to handle the industrial environment
of the factory. It has 4 USB ports and is
powered by 24V DC input. With this hub, it
is possible to power the cameras independ-
ently of the board[12].

3.1.2 Design of the Station

Before construction of the station can begin it must be designed. First the optimal
position will be calculated, then a draft based on the optimal position will be drafted.

26

Optimal Position:

When designing the station, the first step is to determine the optimal positions for the
cameras and LED strips. Due to the reflections created by the LED strips on the pipes,
as seen in the proof-of-concept, it will be assumed that it is not possible to get a 360◦

coverage from one station. Therefore, the goal is to obtain a minimum 180◦ coverage
instead. Section 5.1 discusses methods for achieving greater coverage.

Figure 3.1 shows the coverage of one station with its four cameras. To get the desired
180◦ coverage of the pipe it is split into four sections of 45◦ which is the marked fields in
the circle shown in the figure. The camera will be placed at a far enough distance from
the pipe to get most of the pipe in its field of vision.

Figure 3.1: Drawing shows the coverage of the cameras on the pipe where the marked area is the area to
be inspected and the green dotted lines are the .

Figure 3.3 shows the calculated light from the LED strip.

To find the optimal position the light from the lamps shall be simulated. The simulator,
found in appendix G, is based on the equations given in section 2.1. First the reference
values for r0 will be the coordinates for the light source where the light will be emitted
from. The vectors will be evenly spaced between each other when emitted. The angle will
be taken from the angle of the source as seen in figure 3.3. Then the vectors are simulated
by iterating over equation 2.6. The constant δt was set to 0.01.

27

For each iteration the distance of the vector is checked against the radius of the pipe.
When it gets lesser then the radius newtons method is applied to get the crossing x- and
y-coordinates as shown in equation 2.10 and 2.11.

Finally, a new directional angle is calculated according to equation 2.12 to 2.15. After it
is calculated it will continue the iteration until it is done.

Figure 3.2 displays the initial versions of the software, where the reference points’ angles
were improperly aligned, and the light vectors’ signs were incorrect.

Figure 3.2: The calculated reflections on the pipe where the sign of the direction for the light were set
wrong.

Figure 3.3: The calculated reflections on the pipe, N is the total amount of lines, n is the amount of lines
per light source and nl is amount of lamps.

28

Figure 3.3 shows the light vectors simulated with the simulator found in appendix G. It
shows it would be possible to put the cameras in the position shown in figure 3.1.

First Draft of the Station:

After finding the theoretical light vectors the first draft of the design is drawn, as seen in
appendix C. The station draft was made based on the calculated optimal position, with
cameras set 115 mm from the outer pipe wall from the top, bottom and to the sides.
The distance was measured to position the camera as close as possible while ensuring the
entire pipe is within the cameras field of vision as seen in figure 3.1.The LED’s were put
in a 45◦ direction towards the pipe far enough from the pipe for a diffusion fabric to be
fastened behind the cameras.

Then an arrangement diagram is made of the main electrical cabinet. The equipment
used is also listed in appendix C. The schematic shows the placement of the components
listed for the power supply for the Raspberry Pi, the USB hub, the LED’s, and other
components to control them.

Additionally, an electric schematic was also made illustrating the system’s wiring and
detailing how the relays are connected to the Raspberry Pi and how they are able to
control the LED’s.

3.1.3 The Frame of the Station

Figure 3.4 to 3.8 depict the metal frame of the station. As shown, the design follows the
drafts in appendix C. With the assistance from the maintenance department, the station
was constructed. Some decisions about the construction were made by them regarding
unspecified elements in the draft, such as the legs and the threaded rods. The legs are
fastened with bolts pressing on the steal square bars legs as seen in figure 3.4a.

The thread rods are shown in figure 3.4b. They will be used to hold the cameras, LED
strips, and the diffusion fabric. A rod was used so it would be possible to adjust the angle
for cameras and LED’s for when testing of the station begins.

Figure 3.5a shows the holder for the cameras with the installed cameras. The camera are
fastened to a metal plate with a non-conductive material between the camera and the
plate. The plate is welded to a cylinder, which is then inserted into the thread rods. An
image of the cameras installed in the metal frame is shown in figure 3.5b.

The LED strips are fastened on the thread rods as shown in figure 3.6. They are secured
to the threaded rods at the angle specified in appendix C. It uses four approximately 20
cm of the strip at each corner of the station.

29

(a) The metal frame made from the draft in appendix C (b) The inside of the metal frame showing the thread rods.

Figure 3.4: Images of the metal frame.

(a) The metal holder for the cameras with the fastening. (b) The cameras are installed into the metal frame.

Figure 3.5: Images of the cameras.

And then, a 20×140 cm diffusion fabric was inserted into the frame. It was put around
the thread rods behind the cameras as seen in the draft. They are fastened with safety
pins to keep it in place, as seen in figure 3.7a.

To prevent any foreign reflection a rubber ring is used around the pipe inlet hole. The
ring will ensure that light from the outside of the station does not cause any noticeable

30

Figure 3.6: The LED strip was installed into the metal frame.

(a) The diffusion fabric installed in the metal frame.
(b) The painted metal frame showing the red rubber ring at

the pipe inlet hole.

Figure 3.7: Images of the inside and the outside of the painted metal frame.

disturbances in the captured images. Figure 3.7b displays the completed, painted box
and the rubber ring.

In figure 3.8 the equipment is mounted on the base plate for an electrical cabinet. It is
following the arrangement diagram and the electrical schematic in appendix C.

31

Figure 3.8: The base plate from the electrical cabinet with the wiring is done.

3.2 Software

Here the software for the station will be described. Two UML models, use case model and
domain model, and a flowchart for the software is shown. Then describing how the light
controls and camera control works. Then the setup of the database and its structure.

Afterwards a dataset must be collected to train the machine learning algorithms and how
the dataset will be built.

Finally the setup of the machine learning algorithm and some notable experiments.

3.2.1 Design of the Software

Here the software will be designed. Two UML models, a use case model and a domain
model, and a flowchart will used as a base for the software. Then a description on how
the light control and camera control will work and lastly the structure of the database.

32

Use Case Model:

A use case model is developed to identify relevant use cases in this project. One use case
involves controlling the LED strips within the station, allowing the operator to turn them
on and off via a GUI or display.

Another use case involves yo display the captured images and their evaluation on the
display/GUI.

Capturing images with the cameras at timed intervals is another use case, as is storing
captured images in a local database.

The final use cause is to evaluate the image using a machine learning (ML)model, and then
storing the results in the local database, and sending the results to the MES database.

Figure 3.9: Use case model of the software used for the light box.

Domain model:

A domain model for the software was also made, which is shown in 3.10. The main
program will be the QualityCameraStation, it will control the cameras with the Timer
telling when to capture an image.

The Display class is responsible for showing the last evaluation and the last image.

33

The Camera and LED class handles the communication to the relevant equipment. The
Camera class communicates with the web cameras used to capture frames, while the LED
class controls the colour emitted from the LED strips.

The MLModel class will be used to hold the classifier which will be used to evaluate and
predict the colour in the images captured by the cameras.

The Database class connects to the local and MES database.

Lastly, is the Timer class and the ConfigDB class. The Timer class times the updating
cycle for the QualityCameraStation class and Display class if needed. The ConfigDB class
will store all configurable data and confidential data.

Figure 3.10: Domain model of the software used for the station.

Flowchart:

A flowchart for the station software is presented in figure 3.11. It shows the flow that the
software shall follow. The program initializes by setting up constants from the configur-
ation, such as the video sources for the cameras and identifiers for the station.

Before the main loop starts, the LED’s are set to ON or another setting specified in the
configuration.

The main loop begins by capturing a frame from the cameras, processing the images, and
inserting them into an evaluator algorithm. Lastly, after the processed image is evaluated
the result will be sent to the local database and a MES database.

34

Figure 3.11: The flowchart for the software used for the station.

Light and Camera Control:

Testing the cameras proved time-consuming, as improperly closed cameras often required
a complete board reboot to free the video source.

The light control from the proof-of-concept was reused, simulating a switch-case statement

35

that does not exist in the Python 3.9 distribution. A class was made where the cases are
functions in the class and a function called switch() will look for any attributes in a class
by using the getattr() function. In each of the cases, the pins for the Raspberry Pi are
set according to the case.

It was observed that using cameras in quick succession resulted in the next camera being
unable to capture a single frame correctly. This issue is suspected to be caused by OpenCV
creating background threads, which was resolved by implementing the sleep() function
from the time library, allowing the main thread to wait for background threads to complete
their tasks.

The logic for the camera was put into its own class, named USBCamera, which is used
to communicate with the OpenCV-Python library. To use this class an object must be
initialized first with the video source, resolution, and fps as parameters. Then use the
start() function to start the camera in a new thread in the background to make sure
the image is captured properly. Then a frame from the video stream is taken with the
getFrame() function. Afterward, the camera can be stopped with the stop() function.

Figure 3.12: The setup of the test of the system being tested showing the plate from figure 3.8 with the
power connected and the cameras connect through a USB hub.

In figure 3.12 the test setup is shown. The system is connected to power and the cameras
are connected to the Raspberry Pi through a USB hub.

During testing , it was discovered that when the web cameras were used in rapid succes-
sion, they were unable to capture proper images. This issue is suspected to be caused by
the Raspberry Pi is not able to draw enough power for all four cameras at once. Therefore
a USB hub for extra power was added.

36

However, it was found that OpenCV could not adjust any camera parameters when using
the USB hub, only passing on frames from the cameras. Although the frames from the
cameras did return faster than before. Due to the power requirements, it was not possible
to circumvent this problem. The frames returned with the resolution 1920x1080.

Database:

As this project will be used as a feedback sensor for a future colourant control system, the
values obtained from the station must be stored in a database. The ERD for the database
is shown in figure 3.13. Various tables were made to identify where the measurements
were from. The identifiers with their own tables are the factory, the production line, the
colour quality camera station, the cameras and the colours. The measurements table is
the table to hold all measurements from the system. It will hold which camera the meas-
urements came from, the expected colour and the timestamp to identify the individual
measurements. Then the measurements used are the mean of L∗, a∗, b∗ and the predicted
evaluation from the machine learning algorithm.

Figure 3.13: The ERD of the MES database.

The colours are stored in their own table to make sure any operator or programmer would
not use an unknown colour in the table.

37

3.2.2 Collect Samples

Defective/bad pipes are not stored in storage at the Pipelife factory, as they are religiously
granulated as fast as possible and reused for new pipes. To collect bad samples, new pipes
were intentionally produced with insufficient colourant. The good pipes were taken from
storage. The number of pipes used are 6 good and 7 bad brown pipes and 6 good and 5
bad red pipes. The pipes were 110mm in diameter and 1m in length, in figure 3.14 the
pipes used are shown. The image set can be found in appendix F.

Figure 3.14: The pipe sections used for generating datasets for training and evaluating machine learning
models.

A GUI was developed in PyQt5 to simplify the process of collecting sample images from
the sample pipes. The interface developed in this study, is shown in figure 3.15 and figure
3.16. Figure 3.15 shows the default image if there are no images in the memory. The
GUI is utilising the functions from the main program to capture the images. The GUI
features a controller for adjusting the LED light settings in the box and offers different
colour combinations, as shown in the LED controls in figure 3.15.

It will also have camera controls to capture images as shown in figure 3.16. It has a button
to capture one image from all of the cameras and it also has some buttons to capture one
individual image from one of the cameras. The images captured will be stored locally in
a list with their generated filename. And lastly, it has a text field that will be used when
image capturing is complete.

There is also an image viewer to display any of the images taken with the cameras. The
oldest stored image is shown to the viewer for the user to decide on the desired action.
The ”Save image” button saves the image to the Raspberry Pi.

38

Figure 3.15: The GUI for the CQCS controller shows the LED controls and the image viewer.

Figure 3.16: The GUI for the CQCS controller showing the camera controls and the image viewer.

Approximately 40 images per pipe were collected by moving and rotating the pipes
through the station.

Labels chosen for the dataset were BROWN and RED for the good pipes and SCRAP
for the bad pipes. The initial dataset is consistent with 170 BROWN samples, 316 RED
samples and 467 SCRAP. After all the images were collected for the dataset, one of the
good pipes for each of the colours had a marker mark the pipe to simulate a burn mark.
48 samples were captured and increased the SCRAP set to 515 samples. Later after
experimenting with the machine learning algorithms, it was found the amount of samples

39

of BROWN was not enough for a stable algorithm so the amount was increased with 148
samples to a total of 318 samples.

3.2.3 Image Processing

The images must be processed to retain as much relevant information as possible and
make it more accessible for the machine learning algorithm. The image is first blurred
with the Gaussian filter from the scikit-image library[6] in its filter module. It is presumed
the filter will remove any white noise in the image. Then the image is transformed into
grayscale images so it is easier to get the threshold. A threshold is needed to minimize
the noise in the images. The noise to be removed is the white diffusion fabric in the
background of the images, as observed in figure 3.17 and 3.18.

Figure 3.17: The original image from the good BROWN set compared with the blurred version of the
same image.

Figure 3.18: The original image from the bad BROWN set compared with the blurred version of the same
image.

An automatic threshold was found to be around 0.57 when using the threshold_otsu
function in the filter module. However, to exclude reflections from the light sources on
the pipes, the threshold was adjusted to 0.875. Figure 3.19 and 3.20 shows the threshold
overlaid on the blurred image.

To minimize the feature inputs into the machine learning algorithm, it was decided to use
the CIELAB histogram instead of the images directly. If the image were to be used directly

40

Figure 3.19: The threshold at 0.875 and the blurred image from the good BROWN set with the threshold
overlaid.

Figure 3.20: The threshold at 0.875 and the blurred image from the bad BROWN set with the threshold
overlaid.

there would be 6220000 features (1080 · 1920 · 3 = 6220000). But with the histogram, it
should be less by several magnitudes. The input features shall be made up of some
statistical variables based on the histograms from the values in the CIEALAB colour
space and the histogram of L∗, C∗

ab, and hab. After some tests the amount of bins in a
histogram were decided to to be 211 + 1 or 2049. With this amount of bins it should
enough information for an algorithm and easier to remove noise from the image. When
a histogram is made, the noise from the threshold has quite a large number compared to
the rest of the histogram. The variables will be the mean, as calculated with equation 2.1,
the standard deviation, as calculated with equation 2.2, and the variance, as calculated
with equation 2.3. Then they are combined with the histogram of the lightness, chroma
and hue angle. The a∗ and b∗ histograms are not used as they are used to calculate the
chroma and the hue angle as seen in equation 2.20 and 2.21. The number of input features
will then be 6162 (5 ·3+2049 ·3 = 6162). The figures 3.21 and 3.22 show the histograms
of the CIELAB values of an image from the good BROWN set and the bad BROWN
set. By comparing the two figures it is possible to see the difference between them which
would mean it should be possible for a machine learning algorithm to distinguish them
aswell.

Before the histograms are combined, the position of the noise is a located. An image with
calculated noise is used for each processed image.

41

Figure 3.21: Here the image shown is the original image from the good BROWN set with the produced
histogram of the L∗, a∗, b∗, C∗

ab , and hab.

Figure 3.22: Here the image shown is the original image from the bad BROWN set with the produced
histogram of the L∗, a∗, b∗, C∗

ab , and hab.

3.2.4 Development of Machine Learning Models

After the image processing the images are incorporated into a dataset based on the method
described in section 3.2.3. The first columns consist of statistical values found in the
histograms for the CIELAB values L∗, a∗, b∗, C∗

ab, hab. The first 15 columns include the
means, the standard deviation and the variance. The histogram for the lightness, chroma
and the hue angle then will be added to the set. The red-green opponency and the yellow-
blue opponency histograms will be disregarded to minimize the amount of features used
for the algorithm, since the chroma and the hue is calculated from the opponency.

Various machine learning algorithms were tested. Appendix E shows the different exper-

42

iments done to make a satisfactory classifier. Each experiment documents the algorithm
type, hyperparameters, dataset size, and the training and test set divisions. After each
experiment, two confusion matrices are created: one showing the distribution of samples
between the true and predicted labels, and the other showing the percentage of incorrect
predictions.

Before deciding to make a machine learning algorithm the dataset are tested with the
decision tree. In table 3.1 the cross validation of the classifier from experiment 1 is
shown, figure 3.23 shows the confusion matrix of the preliminary experiment and figure
3.24 show the percent error of the experiment. This experiment were done to check if it
would be possible to make a machine learning algorithm. And by comparing the cross
validation and the confusion matrix it shows it would be possible to make an algorithm.

Here the the target features for the labels were set to 0 for SCRAP, 1 for BROWN and 2 for
RED. For later experiment the target features were set to -1 for BROWN, 0 for SCRAP,
1 for RED. After the change the accuracy of the model were increased. And almost
all experiment afterwards show 100% accuracy when differentiating RED and BROWN
samples.

After the the first few experiments, it was found the algorithm were somewhat unstable
and the BROWN sample had a high error rate compared to the RED sample. The set for
the good pipes were then increased. Afterwards the tests did become more stable.

In experiment 7 the algorithm used is the decision tree. In table 3.2 the result of the cross
validation is presented. Here the precision and the recall is about the same for each label
with upto about 1.5% difference where the F1 score for SCRAP is 93.13%, BROWN is
93.47% and RED is 96.88%. Figure 3.25 and 3.26 shows the best found hyperparameter
for the decision tree. Maximum depth of 5 were found to be giving the best results.
Whenever a larger depth were used it would overfit and return a worse result.

In experiment 26 the algorithm used is softmax regression. In table 3.3, it presents the
result of the cross validation from the softmax regression model. Here the colours have
lower precision, but higher recall, so it is assumed it might have more false negatives
than false positives. Figure 3.27 and 3.28 shows the best found hyperparameter for the
regression. The optimized C were found to be 30. Other parameters used did not return
as low error as other parameters that were tried. Other types of regressions algorithms
were tested as well, but they were not able to handle classification.

In experiment 33 the algorithm used is random forest. In table 3.4 the result of the cross
validation is presented. Like with experiment 26 here the colours have lower precision,
but higher recall so it is assumed it might have more false negatives than false positives.
Figure 3.29 and 3.30 shows the best found hyperparameter for the random forest. As
with the decision tree the best depth were found to be also 5. The amount of trees used
were the default value of 100.

43

Table 3.1: Cross validation of the classifier from experiment 1.
Labels SCRAP BROWN RED
Precision 0.89519651 0.66507177 0.88922156
Recall 0.7961165 0.88922156 0.93987342
F1 0.84275437 0.73350923 0.91384615
Accuracy 0.83233533 0.89820359 0.85885886

Figure 3.23: Confusion matrix of experiment 1.

Figure 3.24: Confusion matrix of the errors of experiment 1.

44

Table 3.2: Cross validation of the classifier from experiment 7.
Labels BROWN SCRAP RED
Precision 0.92424242 0.93939394 0.96875
Recall 0.93846154 0.93 0.96875
F1 0.93129771 0.93467337 0.96875
Accuracy 0.90909091 0.92105263 0.97368421

Figure 3.25: Confusion matrix of experiment 7.

Figure 3.26: Confusion matrix of the errors experiment 7.

45

Table 3.3: Cross validation of the classifier from experiment 26.
Labels BROWN SCRAP RED
Precision 0.88571429 0.95789474 0.90625
Recall 0.95384615 0.86666667 0.98305085
F1 0.91851852 0.91 0.94308943
Accuracy 0.92207792 0.88157895 0.96052632

Figure 3.27: Confusion matrix of experiment 26.

Figure 3.28: Confusion matrix of the errors in experiment 26.

46

Table 3.4: Cross validation of the classifier from experiment 33.
Labels BROWN SCRAP RED
Precision 0.88732394 0.96666667 0.91176471
Recall 0.95454545 0.86138614 1.
F1 0.91970803 0.91099476 0.95384615
Accuracy 0.88311688 0.94736842 0.94736842

Figure 3.29: Confusion matrix of experiment 33.

Figure 3.30: Confusion matrix of the errors in experiment 33.

47

In experiment 36 the algorithm used is SVC. In table 3.5 the result of the cross validation
is presented. Here only BROWN has lower precision and high recall where it is assumed
it might have more false negatives than false positives. The RED has equal precision
and recall. Figure 3.31 and 3.32 shows the best found hyperparameter for the SVC. The
hyperparameters found were C equals to 1, the coefficient, r, is equal to 2 and the order
of the polynomial, d, is equal to 3.

In experiment 40, the algorithm used is a voting ensemble. In table 3.6 the result of the
cross-validation is presented. Here the BROWN pipes have lower precision but perfect
recall. SCRAP here has high precision and lower recall so it is assumed it will have
fewer false negatives than false positives. And RED has about equal precision and recall.
Figure 3.33 and 3.34 shows the best-found hyperparameter for the Voting Ensemble. This
experiment is using the previous algorithms with their found hyperparameters. It uses
the weights 2.5 for the SVC, 1.2 for the decision tree, 2.5 for the random forest, and 1.8
for the Softmax regression and it uses the voting type hard voting.

Unfortunately, the classifier made in experiment 40 could not be used due to compatibility
issues between the 64-bit and 32-bit versions of NumPy on the Raspberry Pi 4. Subsequent
experiments are detailed in section 4.3.

48

Table 3.5: Cross validation of the classifier from experiment 36.
Labels BROWN SCRAP RED
Precision 0.9375 0.96039604 0.953125
Recall 0.98360656 0.93269231 0.953125
F1 0.96 0.94634146 0.953125
Accuracy 0.97402597 0.97368421 0.90789474

Figure 3.31: Confusion matrix of experiment 36.

Figure 3.32: Confusion matrix of the errors in experiment 36.

49

Table 3.6: Cross-validation of the classifier from experiment 40.
Labels BROWN SCRAP RED
Precision 0.91549296 0.9673913 0.96969697
Recall 1. 0.91752577 0.95522388
F1 0.95588235 0.94179894 0.96240602
Accuracy 0.94805195 0.97368421 0.92105263

Figure 3.33: Confusion matrix of experiment 40.

Figure 3.34: Confusion matrix of the errors in experiment 40.

50

4 Result

Here the result of the project will be described. The finished colour quality camera station
is shown and the optimal position for the cameras and the simulated reflection. Then a
little about the cycle time for the software created for the project and the display. And
lastly the finalization of the machine learning model development.

4.1 Finished Design of the Station

Figure 4.1 shows the simulation of the light reflection without a diffusion fabric, illustrat-
ing the field where the light reflection would be significant enough disturbance to interfere
with the camera when capturing an image. The cameras are positioned at an angle where
they can avoid the disturbance from the light.

Figure 4.1: The calculated reflections on the pipe, N is the total amount of lines, n is the amount of lines
per light source and nl is amount of lamps.

The simulator used for this project, found in appendix G, is owned by Pipelife Norge
AS and is confidential. It is not available to the public and can only be viewed upon
request.

51

Due to computing limitations with the Raspberry Pi, cameras could not be started before
the main loop and instead start and stop when a frame is needed.

Figure 4.2: The front of the finished of the station.

Figures 4.2 and 4.3 display the completed station. The first figure shows the station
awaiting a pipe, with no light escaping unless a pipe is not in the inlet hole. Cameras are
numbered 1 to 4, with the top camera being Camera 1 and proceeding clockwise when
seen from the front. The second figure demonstrates a pipe inserted into the inlet of the
station, with no light escaping the station.

The figure 4.3 shows the a pipe has been inserted and as mention no light escapes the
station. The USB hub were fastened on the side to ensure all cables would reach it.
The base plate accommodated the equipment and is placed on the table on the side.
Unfortunately the cabinet were not delivered in time for the end of the project.

4.2 Software

The finished program consistently ran with a cycle time between 120 to 125 seconds. By
looking at the speed on the production line from appendix D where the speed ranges from
3.2 to 4.1 m/min at normal operation. By transforming the cycle time to minutes it will be
2 to 2.08 minutes. If the station captured an image without a timer stopping the program
between cycles it would be able to get an image every 6.4 to 8.54 m (cycletime · linespeed =
distance) of a newly extruded pipe.

Figure 4.4 and 4.5 shows the display for the system, and it shows the captured images
from one loop. It also shows the evaluation from the algorithm above each image. In the

52

Figure 4.3: The back of the finished station.

first figure, all images have the correct evaluation except Camera 4 where the brown pipe
were changed out with a red pipe. The evaluation of this pipe is seen in the next figure.
Here there is one false negative at Camera 1 and the rest are true positive.

The display is written in HTML. To be sure it is kept updated with the latest images and
evaluations it utilizes this command: ”<meta http-equiv="refresh" content="60">”.
This command is placed in the header and it will make the file refresh itself every 60
seconds. In the main program before the loop starts a web browser is opened and opens
the HTML file. To update the file it is overwritten as an unformatted string stored in the
configuration file. In every loop it is formatted with the evaluation from the algorithm.

The source code for this project in appendix H is owned by Pipelife Norge AS. It is not
available to the public and it is confidential and can only be viewed upon request.

53

Figure 4.4: The display of the station showing brown pipes and a red pipe about to be placed in the
station.

Figure 4.5: The display of the station showing red pipes.

54

4.3 Finalization of Machine Learning Models

Appendix E shows all the experiments conducted to develop a satisfactory classifier.
Experiment 40 yielded the most satisfactory classifier, but due to the Raspberry Pi using
a 32-bit operative system and 32-bit version of NumPy instead of a 64-bit version, the
classifier had to be remade on the Raspberry Pi. It uses voting ensemble machine learning
algorithm. The voting ensemble algorithm uses SVC, Decision Tree, Random Forest, and
Softmax regression with weights of 2.5, 1.2, 2.5, and 1.8 respectively. The hyperparameters
used are the same as in Experiment 40, as shown in figure 4.6.

Table 4.1 displays the classifier’s cross-validation results, with high F1 scores for all labels
and precision and recall values above 90%. However, which is higher for the labels is
different. For SCRAP the the precision is 98.95% and the recall is 90.38%. And for the
colours BROWN the precision is 90.91% and the recall is 100.% and precision for RED is
94.11% and the recall is 98.46% respectively.

When testing experiment 42 against the whole dataset to see which images it wrongly
predicted and it was noticed that an image in the good BROWN set were misplaced from
the bad BROWN set.

55

Table 4.1: Cross validation of the classifier from experiment 42.
Target Features BROWN SCRAP RED
Precision 0.90909091 0.98947368 0.94117647
Recall 1. 0.90384615 0.98461538
F1 0.95238095 0.94472362 0.96240602
Accuracy 0.90909091 1. 0.94736842

Figure 4.6: Confusion matrix of the preliminary experiment 42.

Figure 4.7: Confusion matrix of the errors in the preliminary experiment 42.

56

5 Discussion

During the collection of samples from red pipes, an unusual phenomenon was observed:
the hue in the b∗ axis shifted as seen in figure 5.2 and 5.3, giving the images a blue tint
as seen in figure 5.1. This phenomenon was not observed in brown pipes or most bad
red pipes. It is suspected that this may be due to a heating disturbance affecting the
cameras or the cameras auto-adjusting their settings due to the red reflections from the
pipe. However, the Raspberry Pi was unable to adjust any camera settings. Despite the
blue tint, the algorithm could still make accurate predictions.

(a) Normal colouring. (b) With blue tint.

Figure 5.1: Images captured by camera one showing the difference between normal colouring and the
colouring after the blue tint has appeared.

When experimenting with machine learning it was found that it was not possible to get
a consistent error when experimenting. If some of the dataset which has the burn marks
on the pipes were not in the training set the classifier would not be able to differentiate
them from the good pipe images.

With these results from experiment 42, it is assumed the classifier will identify a lot of
real images of pipes that would be considered SCRAP. But it might miss identifying some
that would not be considered SCRAP instead of the true colour, but as mentioned when
tested against the images from the dataset it was able to find a misplaced image from the
bad BROWN set which was found in the good BROWN set.

Normally when accuracy is found to be 100% it usually is a sign of a bad model, but
when testing with experiment 42 it was able to even find an image misplaced in another
images set, but it also wrongly predicting some images, which were on the border between
acceptable and unacceptable, even to the human eye.

57

Figure 5.2: Here the image shown is the original image from the good RED set with the produced histo-
gram of the L∗, a∗, b∗, C∗

ab , and hab.

Figure 5.3: Here the image shown is the original image from the good RED set with the produced histo-
gram of the L∗, a∗, b∗, C∗

ab , and hab.

It should be noted that almost all experiments of the classifier algorithms were able to
differentiate between the colours with about 100% accuracy. With this, it can be inferred
that if a new camera system that classifies colours is to be constructed it might be better
to use the colour difference equations like equation 2.22 and 2.23 instead of a machine
learning algorithm.

After experimenting with the dataset, it became difficult to further increase the accuracy.
The current dataset may be insufficient in size and could benefit from an expansion of 5
to 10 times its current size.

After a discussion with between the external partner and the company about the database
it was decide a MES database would not be created. As the station were not put in the

58

production line they deemed it not necessary to make one. Therefore the only database
created is a local csv file which has the same setup as the Measurements table in figure
3.13.

The work folder for this project in appendix I is owned by Pipelife Norge AS. It is not
available to the public and it is confidential and can only be viewed upon request.

5.1 Future Improvements and Use Cases

To improve the accuracy of the of the colour monitoring it would be possible to add more
stations and set them in a series. By rotating the cameras and the light sources around
the center of the pipe in the new station it will be possible to cover other parts of the
pipe wall aswell.

With one station there is a minimum 180◦ coverage of the outer pipe wall. Then if the
the cameras and light in the second station are rotated 45◦ around the pipe all 360◦ of
the pipe wall should be covered. For redundancy it is also possible to have four stations
where the cameras and the light in the third and fourth station are rotated 22.5◦ around
the pipe. The proposed position of the cameras is seen in figure 5.4.

(a) 360◦ coverage of the pipe. (b) 720◦ coverage of the pipe

Figure 5.4: The coverage of the of the pipe from the cameras if more stations are placed.

It is clear from testing that the Raspberry Pi used in this project is not the best for
image processing. The cameras needed to use an external USB hub for additional power

59

to operate and decrease the cycle time, which were found to be over two minutes. A
stronger computer should be used for the finished developed product.

Before implementing the classifier a way to handle any inaccurate results from the al-
gorithm must be made. A way to limit the inaccuracy is to make the operators client
programs reading the evaluations decide if they think the evaluation is correct. A sugges-
tion will be to not give a warning to operators until there are two consecutive readings
from the same camera or from two different cameras. If there are still any inaccuracies
then an experiment to see how much tolerance for wrong evaluation is needed to minimize
any false alarms of the colour quality.

A way to improve the quality of the image from the camera would might be to add
dimmers to the lights. The LED strips used is dimmable and the reflections on the pipe
would be reduced in the images. Also it might be due to the strong light the peculiar
phenomena with the blue tint appeared.

Another way to diffuse the light might be to angle the light towards the walls instead of
angling them directly towards the pipe. If the light hits the walls then the pipe than the
pipe directly the light might disperse enough to light up the inside of the station, but
would not have a visible reflection when an image is captured by the cameras.

An improvement that would be desired is that the station would be able to handle different
sizes of pipe. The sizes of the PVC pipes made are from 50 to 250 mm diameter on the
production lines similar to the one this one was based on being used for. If one station
could be used for different sizes it would cut down on the amount of station needed for
the production.

The machine learning algorithm shown in section 4.3 experiment 42 can be seen as a good
classifier. But it still classifies some labels wrong. It would be possible for an operator
to check each image captured during production if the evaluations were correct. Then
after confirmation the classifiers is trained on corrected images by doing online learning
or batch learning.

Another improvement to the machine learning algorithm would be to expand the al-
gorithm to handle more colours, but it might be better to train a new model. The target
features might need to be changed to using one-hot encoding to be an handle more col-
ours.

But there are also some more improvements to the existing system that are possible.
There should be an increase in more images of red and brown pipes in a both good and
bad conditions. It would be recommended to expand the sets 5 to 10 times its current
size..

When an image is processed the noise is removed. A image where the noise position is
easy to find is used to get those position. In the current system the position is calculated

60

every time an image is processed. To improve the cycle time the position should only
calculated them once.

Another problem with removing the noise wil come when a classifier will try to monitor
the colour of the black pipes. As when the noise is removed from the image it removes
the black colour after the threshold is overlaid the image. This might remove the the pipe
from the image.

An addition for the operators would be to develop a GUI. This GUI would present the
current evaluation from the stations, similarly to the display from figure 4.4 and 4.5. It
could also be used to control the the station by changing which colour it shall identify as
the correct colour. Another ability could be to use the same GUI to verify that the image
are correct.

There are some future use cases that can be developed from this project. This type of
machine learning and camera system could be added to any of the production lines in the
factory where there is a requirement for the quality of the colour. An example would be
with the injection molding production lines. After the molding is done a camera would
capture an image then the algorithm would evaluate if the colour is correct or not, but
the cycle time must be low enough that a prediction can happened before the part is put
into a box for delivery.

Another example would be to use the algorithm in the production for double socket and
running socket for PVC pipe. When producing these a part of the process is to heat up
one end of a PVC pipe then socketing the heated up part. If the pipe is left too long in
the heater it will begin to burn. A camera could be inserted to monitor if any burn marks
are visible before socketing but as mentioned the cycle time has be reduced.

Another use case would be for a machine learning model to check if markers has marked
the pipes properly. Marker mark is put around the other end of the socketed end of the
pipes. By using a camera an image can be captured then the threshold can be computed
against pipe and marker line. By using the threshold image directly an algorithm could
be made.

Another use case would be to use a machine learning algorithm to check the contours
of the sockets. By using a camera an image can be captured then the threshold can be
computed against socketed end of the pipe and a background with different colour then
the pipe. By using the threshold image directly with an algorithm it should be possible
to make a model.

61

62

6 Conclusion

To conclude a functioning colour quality camera station was made and functions as ex-
pected, but with some improvements needed. There is a peculiar phenomena where the
yellow-blue opponency, b∗, is shifted towards blue and gives the images a blue tint after
some time has passed, but this did not affect accuracy of the predictions from the machine
learning algorithm. It is recommended this phenomena is looked into after the Raspberry
Pi has been changed to a stronger computer that does not need a USB hub to power the
web cameras. When the cameras used the USB hub, OpenCV was unable to adjust any
settings. The reason for this is unknown, but as it was possible when the hub was not in
use it is suspected that if Raspberry Pi is replaced with stronger hardware this problem
would be removed.

The reflection on the pipe images was still visible but not as disturbing as in the previous
proof-of-concept. One layer of diffusion fabric was used to diffuse the light, but in future
iteration it is recommended to add more layers of fabric or angle the light sources and let
the light bounce of the walls before lighting up the pipe.

A satisfactory classifier was made for the station in experiment 40. Even if it had to be
remade due to the experiment being trained on a 64-bit computer, while the Raspberry
Pi uses a 32-bit operating system. The remade model in experiment 42 used the same
hyperparameters and got about the same performance and was better then expected. It
was able to find a misplaced image from the bad BROWN set in the good BROWN set.

It is expected the model will be able to identify SCRAP, but it might misidentify the
other labels as SCRAP. A possible workaround to this problem would be for a GUI on
the operator side waiting for a repeated identification, but an analysis must be done to
decide how many repetitions would be needed.

It was also clear that using voting ensemble made a better model. When combining
multiple types of algorithms it was able to get a more stable and accurate model, but a
larger dataset would make an even better model. An example would be that there should
be more pipes with burn marks in the set as it was prone to be not properly added into
the training set.

63

64

Bibliography

[1] ‘Pipelife norge as.’ (), [Online]. Available: https://www.pipelife.no/om-oss.
html.

[2] H.-C. Ringstad, IIA1319: Software engineering: Assignment 4: Software development
based on user specification: Quality control, Course Assignment, 2021.

[3] F. Frisvold and J. G. Moe, Statistikk for ingeniører. Bergen (Norway): Fagboksfor-
laget Vigmostad & Bjørke AS, 2004.

[4] J. Schanda, Ed., Colorimetry: Understanding the CIE System, 1st ed. Hoboken (NJ):
John Wiley & Son. inc, 2007.

[5] C. Oleari and G. Simone, Standard Colorimetry: Definitions, Algorithms and Soft-
ware, 1st ed. Chichester (UK): John Wiley & Son. Ltd, 2016.

[6] S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias et al., ‘Scikit-image: Image
processing in Python,’ PeerJ, vol. 2, e453, Jun. 2014, issn: 2167-8359. doi: 10.
7717/peerj.453. [Online]. Available: https://doi.org/10.7717/peerj.453.

[7] F. Pedregosa, G. Varoquaux, A. Gramfort et al., ‘Scikit-learn: Machine learning in
Python,’ Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[8] A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow.
Sebastopol (California): O’Reilly Media, Inc., 2019.

[9] ‘Raspberry pi 4 8g model b | raspberry pi 4 b 8gb | RS.’ (), [Online]. Available: https:
//no.rs-online.com/web/p/raspberry-pi/1822098 (visited on 17/04/2023).

[10] ‘F12-RGBNW-24-60-65-FP | PowerLED 24v dc RGBW LED strip light, 4000k col-
our temp, 5m length | RS.’ (), [Online]. Available: https://no.rs-online.com/
web/p/led-strip-lights/1845180 (visited on 17/04/2023).

[11] ‘8 megapixels USB camera with microphone (compatible with raspberry pi/ Latte-
Panda/ jetson nano).’ (), [Online]. Available: https://www.dfrobot.com/product-
2188.html (visited on 17/04/2023).

[12] ‘5g4aindnp-USB-a-HUB | StarTech.com 4 port USB 3.0 USB a USB 3.0 hub, USB
bus powered, 7.0 x 2.3 x 0.9in | RS.’ (), [Online]. Available: https : / / no . rs -
online.com/web/p/usb-hubs/2566913 (visited on 17/04/2023).

65

https://www.pipelife.no/om-oss.html
https://www.pipelife.no/om-oss.html
https://doi.org/10.7717/peerj.453
https://doi.org/10.7717/peerj.453
https://doi.org/10.7717/peerj.453
https://no.rs-online.com/web/p/raspberry-pi/1822098
https://no.rs-online.com/web/p/raspberry-pi/1822098
https://no.rs-online.com/web/p/led-strip-lights/1845180
https://no.rs-online.com/web/p/led-strip-lights/1845180
https://www.dfrobot.com/product-2188.html
https://www.dfrobot.com/product-2188.html
https://no.rs-online.com/web/p/usb-hubs/2566913
https://no.rs-online.com/web/p/usb-hubs/2566913

66

Appendix A

Colour Quality Monitoring System for

Plastic Pipes Exterior Wall Colour with

Machine Learning and Image Processing

Thesis Problem Description

Here the master thesis description is found and signed by the student and USN super-
visor.

67

27.01.2023

70

Appendix B

Gantt Chart

Here the timetable of the project can be seen. A Gantt chart was used for readability
purposes.

71

ID Aktivitetsmodus Aktivitetsnavn Varighet Start

1 Write Master Thesis 96 dager ma 02.01.23

2 Write thesis 96 dager ma 02.01.23

3 LIterature search 90 dager ma 02.01.23

4 Design lightbox 28 dager ma 09.01.23

5 Make some models for the software 10 dager ma 09.01.23

6 Find optimal position 13 dager ma 16.01.23

7 Draw the first design 13 dager ma 16.01.23

8 Program the imaging software 10 dager to 02.02.23

9 Data collection and model development 59 dager ti 10.01.23

10 Collect training set and test set 39 dager ti 10.01.23

11 Image processing and data analysis 18 dager on 22.02.23

12 Create ML model 12 dager to 16.03.23

13 Further development 14 dager ti 11.04.23

14 Find and comment on further improvements 7 dager ti 11.04.23

15 Find and comment on further use cases 7 dager to 20.04.23

16 Easter 7 dager sø 02.04.23

17 Formal meeting 1 0 dager fr 06.01.23

18 Formal meeting 2 0 dager fr 10.03.23

19 Date of delivery 0 dager ma 15.05.23

06.01

19 26 02 09 16 23

des 22 jan 23

Aktivitet

Deling

Milepæl

Sammendrag

Prosjektsammendrag

Inaktiv aktivitet

Inaktiv milepæl

Inaktivt sammendrag

Manuell aktivitet

Bare varighet

Manuell sammendragsfremheving

Manuelt sammendrag

Bare start

Bare slutt

Eksterne aktiviteter

Ekstern milepæl

Tidsfrist

Fremdrift

Manuell fremdrift

Side 1

Prosjekt: Gantt chart

Dato: fr 28.04.23

06.01

10.03

15.05

23 30 06 13 20 27 06 13 20 27 03 10 17 24 01 08 15 22 29

jan 23 feb 23 mar 23 apr 23 mai 23 jun 23

Aktivitet

Deling

Milepæl

Sammendrag

Prosjektsammendrag

Inaktiv aktivitet

Inaktiv milepæl

Inaktivt sammendrag

Manuell aktivitet

Bare varighet

Manuell sammendragsfremheving

Manuelt sammendrag

Bare start

Bare slutt

Eksterne aktiviteter

Ekstern milepæl

Tidsfrist

Fremdrift

Manuell fremdrift

Side 2

Prosjekt: Gantt chart

Dato: fr 28.04.23

74

Appendix C

First Draft of the Station

The first draft of the colour quality camera station. The first page is the draft of the
station itself and shows where the cameras, the LED’s is placed and diffusion fabric. The
black dotted line is the diffusion fabric and the green dotted line is the approximate field
of vision of the camera. The second the page is the arrangement diagram for the main
electrical cabinet for the station. The last page is the electrical schematic of the main
electrical cabinet of the station.

Table C.1: Here the references and the description of the equipment in the found in the main electrical
cabinet.

Reference Description
-H1, -H2, -H3, -H4 PowerLED RGBW LED Strip 5m 24V dc
-A1 Raspberry Pi 4 B 8GB
-J1, -J2, -J3, -J4 DFRobot, USB 2.0 with 3280 x 2464, FIT0729
-G1 Power supply, 230V AC → 24V DC
-G2 Power supply, 24V DC → 5V DC
-F1 Automatic Fuse, 1P 6A B 230V
-K1, -K2, -K3, -K4 3.5 A Solid State Relay, Zero Cross
-X1, -X2, -X3, -X4, -X5 Grey PT 1.5/S-QUATTRO Feed Through Terminal Block
-N1 4 Port USB 3.0 USB A USB 3.0 Hub, USB Bus Powered

75

3838

1
15

115

1
15

115

140

1
40

1
40

140

1
40

140

140

1
40

45
°

5
00

500

45°

45
°

4
5°

200

5
00

1
00
0

Ø110

1
10

PVC-rør
PVC-rør

3
0

8
5

3
0

8
5

230VAC to 24VDC

2
4V

D
C

 t
o

5V
D

C

-X2 -X3-X1 -X4

250
3

65

24VDC230VAC

-G1 -G2
-A1

5VDC

-F1

5
7

,5
9

5
9

5
9

5
2

2
,5

214

-K
1

-K
2

-K
3

-K
4

-X5

R
EV

IS
IO

N

LO
C

A
TI

O
N

:

D
oc

um
en

t
re

al
iz

ed
 w

ith
 v

er
si

on
 :

CO
N

TR
A
C
T:

SC
H

EM
E

CH
AN

G
ES

N
AM

E
R
EV

.
D

A
TE

1
2

3
4

5
6

7
8

9
10

03
+

L1
M

ai
n

el
ec

tr
ic

al
 c

lo
se

t

D
oc

um
en

t
bo

ok

23
68

15

0

2
0
1
9
.0

.5
.1

1
4

PI
pe

lif
e

N
or

ge
 A

S
FO

U

U
se

r
da

ta
 1

U
se

r
da

ta
 2

0
19

.0
1.

20
23

no
rin

ha
n

DesignSpark Electrical

-F
1

6A

1 21
-X

1
2

24
V

D
C

-G
1

2.
5A

L
N V-

V+

5V
 D

C

-G
2 3A

+
Vi

n
-V

in

+
Vo

-V
o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

3v
3

Po
w

er
5v

 P
ow

er
G

PI
O

 2
5v

 P
ow

er
G

PI
O

 3
G

ro
un

d
G

PI
O

 4
G

PI
O

 1
4

G
ro

un
d

G
PI

O
 1

5
G

PI
O

 1
7

G
PI

O
 1

8
G

PI
O

 2
7

G
ro

un
d

G
PI

O
 2

2
G

PI
O

 2
3

3v
3

Po
w

er
G

PI
O

 2
4

G
PI

O
 1

0
G

ro
un

d
G

PI
O

 9
G

PI
O

 2
5

G
PI

O
 1

1
G

PI
O

 8
G

ro
un

d
G

PI
O

 7
G

PI
O

 0
G

PI
O

 1
G

PI
O

 5
G

ro
un

d
G

PI
O

 6
G

PI
O

 1
2

G
PI

O
 1

3
G

ro
un

d
G

PI
O

 1
9

G
PI

O
 1

6
G

PI
O

 2
6

G
PI

O
 2

0
G

ro
un

d
G

PI
O

 2
1(I

2C
1

SD
A

)

(I
2C

1
SD

L)

(G
PC

LK
0)

(S
PI

0
M

O
SI

)

(S
PI

0
C

E0
)

(E
EP

R
O

M
 S

D
A)

(S
PI

0
C

E1
)

(E
EP

RO
M

 S
CL

)

(U
AR

T
TX

)

(U
AR

T
R

X)

(P
C

M
 C

LK
)

(S
PI

0
M

O
SI

)

(S
PI

0
SC

LK
)

(P
W

M
0)

(P
W

M
1)

(P
C

M
 F

S)

(P
CM

 D
IN

)

(P
C

M
 D

O
U

T)

Ethernet USB 3 USB 3 USB 2 USB 2 HDMI micro HDMI micro USB-C

C
am

er
a

D
is

pl
ay

R
as

pb
er

ry
 P

i 4
 B

-A
1

+ -

LA
N

LN
23

0V
 A

C

1
-X

3
2

-K
1

A1 A2

-K
2

A1 A2

-K
3

A1 A2

-K
4

A1 A2

1
-X

2

2

-H
1

+
24

v

G
R

B
W

-H
2

+
24

V

G
R

B
W

1
-X

4
2

3
4

-J
1

USB 3USB 3USB 3USB 3

USB A+ -
24

V
-N

1

-J
2

-J
3

-J
4

-H
3

+
24

V

G
R

B
W

-H
4

+
24

V

G
R

B
W

1
-X

5

2 3 4 5 6 7 8

-K
1

13 14-K
2

13 14-K
3

13 14-K
4

13 14

Appendix D

Line Speed on E01 for the Year 2022

Here the graph for the line speed of the production line E01 where mostly PVC 110
diameter pipes are produced. As seen in the graph the speed when the line is active
ranges from 3.2 to 4.1 m/min.

79

80

Appendix E

ml_experiment_log.pdf

A log of the experiments done to decide which machine learning algorithm to be used for
the project and its corresponding hyperparameter.

The experiment log is the property of Pipelife Norge AS and is not available to the public
and is only available on request at:

Pipelife Norge AS
Hamnesvegen 97
6650 Surnadal
Telefon: +47 71 65 88 00

E-mail: firmapost@pipelife.com

81

82

Appendix F

pipe_image_set.zip

The complete dataset used to train the machine learning models.

The dataset is the property of Pipelife Norge AS and is not available to the public and is
only available on request at:

Pipelife Norge AS
Hamnesvegen 97
6650 Surnadal
Telefon: +47 71 65 88 00

E-mail: firmapost@pipelife.com

83

84

Appendix G

circleReflectionSim.py

The script is the property of Pipelife Norge AS and is not available to the public and is
only available on request at:

Pipelife Norge AS
Hamnesvegen 97
6650 Surnadal
Telefon: +47 71 65 88 00

E-mail: firmapost@pipelife.com

85

86

Appendix H

colour_quality_camera_sta-

tion_source_code.zip

The source code for the software used in the colour quality camera station.

The code is is the property of Pipelife Norge AS and is not available to the public and is
only available on request at:

Pipelife Norge AS
Hamnesvegen 97
6650 Surnadal
Telefon: +47 71 65 88 00

E-mail: firmapost@pipelife.com

87

88

Appendix I

FMH606-1 23V Master’s Thesis.zip

The work folder of this project is the property of Pipelife Norge AS and is not available
to the public and is only available on request at:

Pipelife Norge AS
Hamnesvegen 97
6650 Surnadal
Telefon: +47 71 65 88 00

E-mail: firmapost@pipelife.com

89

	Colour Quality Monitoring System for Plastic Pipes Exterior Walls Colour with Machine Learning and Image Processing
	Summary

	Preface
	Contents
	List of Figures
	List of Tables

	Introduction
	Background
	Previous Proof-of-Concept
	Problem Description

	Theory
	Light Reflection
	Colour Analysis
	Machine Learning Algorithms
	SVM
	Softmax Regression
	Decision Tree
	Random Forest
	Voting Ensemble

	Methods
	Hardware
	Material
	Design of the Station
	The Frame of the Station

	Software
	Design of the Software
	Collect Samples
	Image Processing
	Development of Machine Learning Models

	Result
	Finished Design of the Station
	Software
	Finalization of Machine Learning Models

	Discussion
	Future Improvements and Use Cases

	Conclusion
	Bibliography
	Master Thesis Problem Description
	Gantt Chart
	Draft of the Station
	Line Speed on E01
	Experiment Log of the Machine Learning Development
	Image Set
	Circle Reflection Simulator
	Source Code
	Work Folder

