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Abstract: Remote sensing data comprise a valuable information source for many ecological landscape
studies that may be under-utilized because of an overwhelming amount of processing methods and
derived variables. These complexities, combined with a scarcity of quality control studies, make the
selection of appropriate remote sensed variables challenging. Quality control studies are necessary
to evaluate the predictive power of remote sensing data and also to develop parsimonious models
underpinned by functional variables, i.e., cause rather than solely correlation. Cause-based models
yield superior model transferability across different landscapes and ecological settings. We propose
two basic guidelines for conducting such quality control studies that increase transferability and
predictive power. The first is to favor predictors that are causally related to the response. The second
is to include additional variables controlling variation in the property of interest and testing for
optimum processing method and/or scale. Here, we evaluated these principles in predicting ground
vegetation cover, soil moisture and pH under challenging conditions with forest canopies hindering
direct remote sensing of the ground. Our model using lidar data combined with natural resource
maps explained most of the observed variation in soil pH and moisture, and somewhat less variation
of ground vegetation cover. Soil pH was best predicted by topographic position, sediment type
and site index (R2 = 0.90). Soil moisture was best predicted by topographic position, radiation load,
sediment type and site index (R2 = 0.83). The best model for predicting ground vegetation cover was
a combination of lidar-based estimates for light availability below canopy and forest type, including
an interaction between these two variables (R2 = 0.65).

Keywords: remote sensing; soil pH; soil moisture; ground vegetation cover; transferability

1. Introduction

The use of remote sensing (RS) technologies has been a breakthrough for ecology,
which has long struggled with the field-based means for mapping spatial properties. Since
the first aerial photographs were taken in the mid-1800s, the range of remote sensing
technology has evolved greatly [1]. From multispectral satellite images to aerial laser
data, remote sensing is now utilized in a range of ecological contexts, such as for mon-
itoring biodiversity [2], assessing ecosystem services [3] and mapping terrestrial and
aquatic habitats [4,5]. With such methods, it should be possible to characterize large areas
with respect to environmental demands of vulnerable and threatened species in a more
efficient way.

When using RS data, a demanding step is the choice of processing method to obtain
derived variables. These processed RS variables should predict the property of interest
as accurately as possible. Without the resources needed to perform a pilot study, the best
alternative is to utilize previous studies testing alternative RS indices’ predictive power for
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the variables of interest, preferably in a similar landscape context. Hence, generating many
such studies in a variety of contexts is important, given that the results are transferable to
other study areas.

To increase transferability, models should not merely be built on predictive power,
but favor processed RS variables representing a causal, functional relationship between
predictor and response. This would make it more likely that the predictions will hold across
landscapes, under a range of conditions [6]. Sometimes, such causal data may be scarce
or lacking, which may favor including predictors with purely correlative relationships to
the response to increase predictive power. This type of predictor should be restricted to
those where the correlational relationship is well understood. However, too often, model
emphasis seems to be on maximizing predictive power, with the inclusion of predictors
with more vague relationships to the response (e.g., the use of “altitude” as a predictor for
soil pH [7] and soil moisture [8]). This may compromise transferability to other landscape
and ecological settings.

An additional way of maximizing the predictive power of RS-based models, which still
may be more in line with maintaining transferability, is to include more causal factors de-
termining the variation in the focal property, and testing for the optimal processing method
and/or spatial scale. When testing the predictive power of RS variables, focus has often
been on meticulously testing variations of RS-based variables representing the same func-
tional factor. For example, when predicting soil moisture from RS data, Oltean et al. [9] fo-
cused on the topographical control of water drainage, testing a single RS processing method
and its predictive power across various spatial scales. Similarly, Aagren et al. [8] compared
two processing methods for estimating topographically controlled water drainage, and also
across varying spatial scales. Although both studies included one variable representing the
effect of sunlight on evaporation (aspect), this was not evaluated in the same meticulous
way. There are several processing methods for estimating solar radiation load [10,11], and
aspect may not be the optimum representative for this factor with respect to predictive
power. We suggest including several RS indices representing important factors causally
related to the predictors and testing them with a similar level of meticulousness. Following
this guideline, one may increase predictive power without turning to variables with a
vague predictor–response relationship.

Working with RS data in forested areas is particularly challenging because forest
canopies obscure the ground, making direct sensing of the soil or below-canopy vegetation
more difficult [12]. Under such conditions, we may be unable to map the property of
interest directly (through direct remote sensing), and therefore resort to indirect prediction
via variables representing the mechanisms that control its distribution and/or variation.

Soil pH, soil moisture and ground vegetation cover all have high ecological predictive
relevance in terrestrial habitat studies [13,14], in biodiversity assessments [15,16] and when
addressing ecosystem services [17–19]. Therefore, we evaluated the potential for building
RS-based predictive models for these ecologically relevant spatial properties, adhering to
the guidelines suggested above.

For soil pH, parent material (bedrock and/or sediment type) can be important, due to
variations in calcium content and release rate of basic cations, and differences in dominant
particle size which affects the leaching rate [20]. Topography may also affect soil pH,
due to its control over water drainage patterns [21]. In addition, coniferous forests are
often associated with lower soil pH than deciduous forests [22], due to differences in litter
acidity, litter decomposition, nutrient uptake and leaching rate [20,23]. Moreover, site
index, i.e., forest productivity estimated from tree height at a certain age [24], is closely
related to soil nutrient and moisture conditions [25]. Soil pH is closely related to nutrient
availability and recycling [26], and thus is likely strongly correlated with site index. For
soil moisture, topography is an important factor because it affects the pattern and rate
of water drainage and accumulation [27]. Soil properties, such as particle size and soil
depth, may affect soil moisture via differences in the water holding capacity and drainage
rate [20]. In addition, solar radiation load may affect soil moisture through its effect on
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evapotranspiration [28]. Furthermore, forest type may show correlation to soil moisture
due to differences in the tree species requirements with respect to soil moisture conditions,
i.e., Pinus sylvestris being more drought tolerant than Picea Abies [29]. For ground vegetation
cover, an important controlling factor is light availability, presumably modulated by forest
type [30]. Unfavorable growing conditions due to poor nutrient or moisture conditions,
or unstable masses on steep slopes, may also affect ground cover due to lower plant
establishment and growth [31–33]. In addition, ground vegetation cover may correlate with
soil depth, because areas with thin soils are more likely to have patches of bare rock.

Therefore, in this study we address the question: Can we build RS-based models with
high predictive power, using mainly variables that have a causal relationship to the three
ecological properties of soil pH, soil moisture and ground vegetation cover?

2. Materials and Methods
2.1. Study Area

We collected vegetation data from two areas in southeastern Norway, including a
range in topographical relief, dominating vegetation and sediment types. The two areas are
approximately 50 km apart and span from the boreonemoral to the middle boreal vegetation
zone. The first area (59◦38′02.6′′N, 9◦18′07.8′′E; Figure 1) is a hilly area 250–560 m.a.s.l.
covered by coniferous forest (Pinus sylvestris (74%), Picea Abies (21%)) with patches of mixed
forest (5%, covered by Betula pubescens, Populus tremula). The second area (59◦50′27.5′′N,
10◦13′47.5′′E; Figure 1), 40–410 m.a.s.l., includes a broad valley with agricultural land and
patches of forest, and east-facing hills. The main sediment type is marine clay, and here,
forest patches are dominated by temperate deciduous tree species (86%, Ulmus glabra,
Fraxinus excelsior, Acer platanoides), with smaller areas dominated by spruce (9%) and
pine (5%). At higher elevations (>200 m.a.s.l), the marine clay layer is replaced by glacial
tills dominated by coniferous forest (spruce (64%), pine (24%)), with patches of deciduous
forest (12%).
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Figure 1. Map showing the location of study area 1 and 2 in southeastern Norway. The distribution
of sample plots is shown relative to topography and surface water in (a) study area 1 (n = 36) and
(b) study area 2 (n = 20). Coordinate system: ETRS89: UTM 32 N.

2.2. Field Data Collection and Processing

Forest-covered areas inside the two study areas were delimited using ArcMap v10.7.1
(excluding clear-cuts and young forests). Random sampling points were generated in
QGIS v3.16.3, with a minimum distance of 200 m between points to tentatively reduce
the likelihood of spatial autocorrelation. This was also achieved in area 2, where small
patches of forest within the agricultural area led to sample plots becoming very clustered.
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During the field survey, conducted in June 2021, a high-precision GPS (Topcon HiPer SR)
was used to mark the exact coordinates at the center of each plot. Around each sampling
point, a 10 × 10 m sampling square was marked, 56 squares in total (area 1: n = 36, area 2:
n = 20). Within each square, data on ground vegetation cover (%), vascular plant species,
dominating tree species, soil depth (cm) and vegetation type were recorded. Vegetation
type was determined following the Norwegian system “Nature in Norway” (NIN) [34,35].
From the collected data, the mean Ellenberg indicator value for soil pH was calculated [36].
The NIN vegetation types were used to quantify soil moisture, as they are ordered on an
ordinal scale after vegetation drought tolerance (4 levels). In addition, we included an
additional level for vegetation affected by ground water, increasing the number of levels
to 5. Using vegetational bioindicators to represent soil pH and soil moisture has some
advantages and disadvantages. On the positive side, vegetation patterns are a more stable
expression of the abiotic conditions that often fluctuate with time [37]. On the negative side,
using vegetation as a bioindicator depends on how well one can identify a representative
number of the species present. This can be difficult when vegetation cover is suppressed,
such as under low light conditions.

The ground vegetation was initially defined as all vascular plants lower than 50 cm,
and percent cover was estimated visually. Lichen cover was later included in the definition
of ground vegetation cover to reduce model complexity and because the light lichen cover
can easily be delimited later using satellite images. Lastly, soil depth was measured using a
thin metal rod (max. 30 cm) to approximate the depth of the soil available for the ground
vegetation [38]. Soil depth was measured in the center of the 10 × 10 m plot, and in each
5 × 5 m square created when dividing the plot into four equal pieces. The average was
then taken for each plot.

2.3. Generating Predictor Variables from Remote Sensing Data

Recent lidar (light detection and ranging) data were acquired from the national map
service [39–41]. The data have a medium to high point density (2–5 per m2).

Five remote sensing indices representing topographically controlled water drainage
was included: Saga Wetness Index (SWI), depth-to-water table (DTW), topographic position
(TPI), deviation from elevation (DEV) and slope (SLOP) (Table 1). To represent variation in
spatial scale, SWI was generated from terrain models with different resolutions (1, 5, 10 and
30 m) using the Saga plugin in QGIS [42]. DTW was generated with a range in drainage
area sizes (1, 2, 4, 6, 8 and 10 ha) using ArcMap v10.7.1 and the D8 flow algorithm [43].
TPI was estimated by subtracting the elevation at each cell from the mean elevation of the
surrounding neighborhood. DEV was calculated the same way, but in addition normalized
by the standard deviation to account for local surface roughness [44]. The effect of the
neighborhood size was assessed using a radius of 10, 30 and 100 m. Slope was estimated
from a 1 m resolution terrain model. Representing light conditions or radiation load, four
different remote sensing indices were included: canopy cover (CC), heat load index (HLI),
Subcanopy Solar Radiation model (SSR) and a modified version of SSR accounting for
forest gaps (GAP) (Table 1). A canopy height model at 1 m resolution was used to calculate
canopy cover (%, canopies were defined as vegetation > 2 m height). A 2 m resolution
DEM was used to calculate HLI at each study site, using the “area solar radiation tool” in
ArcGIS v10.7.1. To model sub-canopy solar radiation, the heat load index was multiplied
with a light penetration index (LPI) [10]. LPI is the proportion of laser beams reaching the
forest floor when accounting for the filtering effect of the canopy. LPI was corrected for
solar angle using a moving kernel that “smooths” the canopy at a certain angle dictated
by the sun angle. Furthermore, gaps and edges in the canopy were accounted for in the
GAP model [10]. Spatial scale was assessed only for canopy cover. Here, the mean was
taken for the 10 × 10 m plot, but also for an area of 20 × 20 m and 30 × 30 m around the
plot center. The remaining light indices were assessed with respect to radiation properties:
diffuse, direct and a combination of direct and diffuse radiation proportionate to conditions
in southeastern Norway (52% diffuse, 48% direct) during the growing season.
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Table 1. Predictors used to model soil pH, soil moisture and ground vegetation cover.

Predictors Description

SWI Topographic wetness index corrected for random flow patterns at low
elevation [45]

DTW Approximation of water table depth based on both horizontal and vertical
distance to open water [46]

TPI Topographic position estimated by subtracting the elevation at a certain
point from the mean elevation of the surrounding neighborhood [47]

DEV TPI divided by the standard deviation to correct for local surface
roughness [44]

SLOP Slope (degrees)
CC Canopy cover (%) of vegetation > 2 m height

HLI Solar radiation load estimated from solar angle and topography, without
accounting for vegetation cover [48]

SSR Sub-canopy solar radiation estimated by multiplying HLI with the percent
of lidar pulses reaching the ground [10]

GAP SSR but accounting for forest gaps and edges [10]

SED Quaternary sediments (clay, peat, glacial tills and bare rock intermixed
with glacial tills) [49]

CA.bed Calcium content in bedrock (1–5) [50]

CA.sed Calcium content in bedrock but adjusted for thick layers of marine clay
decoupling the vegetation from the bedrock

BON Site index (bonitet), i.e., forest productivity estimated from tree height at a
certain age [24,51]

FOR Forest type (spruce-dominated, pine-dominated and deciduous) based on
field observations

DEP Soil depth (cm) measured in-field
LOC Location (area 1 and 2)

2.4. Additional Information Included

Decent maps based on broad-scale field surveys are available for some spatial prop-
erties with high utility for many purposes. We included existing maps for quaternary
sediments, calcium content in bedrock and site index (Table 1). A disadvantage of predict-
ing soil pH based on bedrock calcium content is that the thick layer of marine clay likely
decouples the topsoil from the bedrock. Thus, we created a map using the calcium content
map as the base and exchanging the calcium content value for all areas covered by clay
to the second-highest level for calcium content (level 4). These maps had a considerably
lower resolution compared to the remote sensing data, with sediments and bedrock in
1:50,000–1:250,000 scale and site index 1:5000. The low-resolution data can be a problem
when used for predictions together with high-resolution lidar data, as they likely will
lead to some inaccuracies when making predictions on a finer scale. On the other hand,
including them may increase the model’s explanatory power and may thus give better
predictions than when not included.

In addition, we included forest type based on field observations (Table 1). However,
this variable can also be generated using remote sensing data [52]. Finally, soil depth from
field measures was included in the analysis, although it could been approximated using
remotely sensed data [53].

2.5. Statistical Analysis

A generalized least-squares linear model with Gaussian distribution was used for the
analysis of soil pH, using the nlme R package [54]. Soil moisture was analyzed using pro-
portional odds ordinal regression with a logit link via R packages rms [55] and MASS [56].
Here, the proportional odds assumption was checked for all predictor variables using the
brant R package [57]. For the analysis of ground vegetation cover, we used beta regression
with a logit link via the betareg R package [58]. All statistical analyses were performed in R
v4.0.4 [59].
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First, simple predictor–response regressions were used to identify the “best” alterna-
tive predictor variable representing topographic wetness (SWI, DTW), topographic position
(TPI, DEV), solar radiation load (CC, SSR, GAP, HLI) and soil properties (sediment type,
bedrock calcium content) for each response, with some exceptions. For soil moisture, we
chose sediment type to be the most relevant based on existing knowledge [20]. When
analyzing soil pH, solar radiation load was not deemed relevant. AICc was used for
model selection using the MuMIn R package [60]. In case the predictor had a nonlinear
relationship to the response, we included polynomial terms. The variables representing
light availability/radiation load were centered because of large values, and topographic
position variables were centered for easier interpretation [47]. Residuals were checked for
spatial autocorrelation using Moran’s I index from the ape R package [61]. If found to be an
issue, the model selection procedure was performed including either location or a spatial
correlation term in all models compared.

After finding the best alternative variable for topographic wetness (SWI, DTW), topo-
graphic position (TPI, DEV), solar radiation (CC, SSR, GAP, HLI) and soil properties (SED,
CA.sed, CA.bed) (Table 1), these predictors were included in a second model selection
procedure to find the best combination of variables, using multiple regressions and AICc
score to rank models. Location was included as a fixed effect, and whereas slope, soil depth,
site index and forest type were included in all the multiple regression analyses, soil depth
was excluded in the soil pH model. In the analysis of ground vegetation cover, an interac-
tion between light and forest type was included as part of the multiple regression model
selection. Model diagnostics on top-ranked models were performed using R packages
Dharma [62] and Sure [63], and prediction plots were generated using sjPlot [64].

3. Results
3.1. Soil pH

For soil pH, the best variable representing soil properties was sediment type (AICc
weight = 0.99), which was clearly better than the second-best variable bedrock calcium
content + clay (AICc weight = 0.01) (Table S1). Topographic wetness was best represented
by SWI at 1 m resolution (AICc weight = 0.51), followed by DTW with a flow initiation
threshold of 8 ha (AICc weight = 0.13). DEV30m was the best variable representing
topographic position (AICc weight = 0.86), followed by TPI30m (AICc weight = 0.14)
(Table S1).

The multiple regression model comparison ranked these models as the top three:

1. Soil pH = a + b1(SED) + b2(LOC) + b3(BON) + b4(DEV30M)2 + e
2. Soil pH = a + b1(SED) + b2(LOC) + b3(BON) + b4(DEV30M)2 + b5(SWI1m) +e
3. Soil pH = a + b1(SED) + b2(LOC) + b3(BON) + b4(DEV30M)2 + b5(SLOP) + e

The best model carried 45% of the cumulative model weight and explained a high
amount of the observed variation (adj. R2 = 0.91, or 0.90 if the location was excluded).
Including SWI1m or slope did not improve model fit (Table 2).

The top-ranked model predicted soil pH to be highest in area 2, but the confidence
intervals were overlapping with area 1 (Figure 2). Topographic position predicted higher
soil pH in terrain depressions and foot slopes and decreasing soil pH when moving upslope,
with the lowest soil pH predicted at terrain ridges. For sediment type, soil pH was highest
for clay sediments. The effect of the other sediment types could not be clearly distinguished
from each other, though sites with thin layers of glacial tills and bare rock tended to predict
somewhat higher soil pH than thicker layers of glacial tills. For peat sediments, we only
had two observations, which makes the predictions less reliable. Soil pH was predicted
to be lower on sites with low site index compared to medium. High site index predicted
medium soil pH, but confidence intervals were overlapping with both low and medium
site index (Figure 2).
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Table 2. The top three highest-ranked multiple regression models explaining variation in soil pH,
soil moisture and ground vegetation cover. Included is the adjusted R2 for the top-ranked soil pH
model, and pseudo-R2 for the top-ranked models for soil moisture and ground vegetation cover.

Response Model Rank df logLik AICc ∆AICc AICc Weight R2

Soil pH
1 11 −32.79 93.58 0.00 0.45 0.91
2 12 −32.28 95.82 2.24 0.15 0.91
3 12 −32.79 96.83 3.24 0.09 0.91

Soil moisture
1 10 −23.46 71.81 0.00 0.20 0.83
2 8 −26.84 72.74 0.93 0.12 0.80
3 11 −22.53 73.07 1.25 0.11 0.84

Ground
vegetation cover

1 7 32.24 −48.14 0.00 0.18 0.65
2 8 33.02 −46.98 1.17 0.10 0.66
3 8 32.95 −46.84 1.30 0.09 0.66

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 2. Predictive plots for each variable included in the top-ranked model explaining soil pH 
(mean Ellenberg indicator value for soil pH). 

3.2. Soil Moisture 
For soil moisture, the best topographical wetness variable was SWI1m (AICc weight 

= 0.31), but DTW with a flow initiation threshold of 1 and 2 ha were both clustered within 
ΔAICc less than 1, indicating similar support as for the top-ranked model (Table S2). 
Topographic position was best represented by DEV30M (AICc weight = 0.71), followed 
by TPI30m (AICc weight = 0.29). The best variable representing light availability was the 
SSR global model (AICc weight = 0.28); however, the SSR diffuse light model, HLI diffuse 
light model and SSR direct light model all had ΔAICc less than 1, indicating that they had 
similar support as the top-ranked model (Table S2). 

The three top-ranked models were: 
1. Soil moist. = a + b1(BON) + b2(SED) + b3(SSRglob) + b4(DEV30M) + e 
2. Soil moist. = a + b1(BON) + b2(LOC) + b3(SSRglob) + b4(DEV30M) + e 
3. Soil moist. = a + b1(BON) + b2(SED) + b3(SSRglob) + b4(DEV30M) + b5(DEP)+ e 

The top model carried 20% of the cumulative weight and explained 83% of the ob-
served variation (Table 2). In the second-best model, sediment type was replaced by loca-
tion. Including soil depth did not improve model fit (third-ranked model, Table 2). 

Medium site index predicted a higher probability for high soil moisture (level 0) com-
pared to low and high site index (Figure 3), the latter predicting a higher probability for 
somewhat moist areas (level 1). Site index did not separate between semi-dry and dry 
areas (levels 2 and 3). The moistest sites were somewhat more probable in areas with low 
radiation load, although the effect was uncertain. The semi-most sites were most probable 
in areas with medium radiation load, but the confidence intervals were wide at both high 
and low amounts of radiation, suggesting that the effect was uncertain (Figure 3). Semi-
dry or dry areas did not seem to be predicted by solar radiation, though confidence inter-
vals did suggest that areas with high solar radiation load may predict semi-dry areas. 
High soil moisture sites were not clearly predicted by any sediment type. Semi-moist areas 

Figure 2. Predictive plots for each variable included in the top-ranked model explaining soil pH
(mean Ellenberg indicator value for soil pH).

3.2. Soil Moisture

For soil moisture, the best topographical wetness variable was SWI1m (AICc weight = 0.31),
but DTW with a flow initiation threshold of 1 and 2 ha were both clustered within ∆AICc
less than 1, indicating similar support as for the top-ranked model (Table S2). Topographic
position was best represented by DEV30M (AICc weight = 0.71), followed by TPI30m (AICc
weight = 0.29). The best variable representing light availability was the SSR global model (AICc
weight = 0.28); however, the SSR diffuse light model, HLI diffuse light model and SSR direct
light model all had ∆AICc less than 1, indicating that they had similar support as the top-ranked
model (Table S2).

The three top-ranked models were:

1. Soil moist. = a + b1(BON) + b2(SED) + b3(SSRglob) + b4(DEV30M) + e
2. Soil moist. = a + b1(BON) + b2(LOC) + b3(SSRglob) + b4(DEV30M) + e
3. Soil moist. = a + b1(BON) + b2(SED) + b3(SSRglob) + b4(DEV30M) + b5(DEP)+ e
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The top model carried 20% of the cumulative weight and explained 83% of the ob-
served variation (Table 2). In the second-best model, sediment type was replaced by
location. Including soil depth did not improve model fit (third-ranked model, Table 2).

Medium site index predicted a higher probability for high soil moisture (level 0)
compared to low and high site index (Figure 3), the latter predicting a higher probability
for somewhat moist areas (level 1). Site index did not separate between semi-dry and dry
areas (levels 2 and 3). The moistest sites were somewhat more probable in areas with low
radiation load, although the effect was uncertain. The semi-most sites were most probable
in areas with medium radiation load, but the confidence intervals were wide at both high
and low amounts of radiation, suggesting that the effect was uncertain (Figure 3). Semi-dry
or dry areas did not seem to be predicted by solar radiation, though confidence intervals
did suggest that areas with high solar radiation load may predict semi-dry areas. High
soil moisture sites were not clearly predicted by any sediment type. Semi-moist areas
were most probable on clay. Thin glacial tills and bare rock areas did also seem to predict
semi-moist areas, but here, confidence intervals were wider, indicating predictions with low
precision. Semi-dry areas were most probable in areas with thicker glacial tills, but with
high uncertainty. The driest areas did not seem to be predicted by any sediment type. For
topographic position, terrain depressions predicted the wettest areas, and semi-moist areas
were predicted by all other topographic positions, except terrain depression. However, the
wide confidence intervals suggested that the effect may be uncertain (Figure 3). In general,
the model did not perform well at predicting the driest soil moisture class (level 3). This
was most likely due to the low sample size, i.e., four observations.
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3.3. Ground Vegetation Cover

For ground vegetation cover, the best variable representing light availability was the
SSR model with diffuse light (AICc weights = 0.43), followed by canopy cover with a 30 m
resolution (AICc weight = 0.13) (Table S3). Topographical wetness was best represented
by DTW with a flow initiation threshold of 10 ha (AICc weight = 0.15), but the alterna-
tive variables were all within ∆AICc less than 2, implying that they had similar support.
DEV30M was the best variable representing topographical position (AICc weight = 0.28),
but not clearly better than the other variables that were all clustered within ∆AICc less
than 1. CA.sed was the best variable for soil properties (AICc weight = 0.65), followed by
CA.bed (AICc weight = 0.32) (Table S3).

For the multiple regression model selection, these models were ranked as the top three:

1. G. veg. cov. = a + b1(FOR) + b2(SSRdif) + b3(FOR) × (SSRdif) + e
2. G. veg. cov. = a + b1(FOR) + b2(SSRdif) + b3(FOR) × (SSRdif) + b4(DEV30M) + e
3. G. veg. cov. = a + b1(FOR) + b2(SSRdif) + b3(FOR) × (SSRdif) + b4(SLOP) + e

The top-ranked model carried a rather low amount of the cumulative weight (18%)
but explained a fair amount of the observed variation (pseudo-R2 = 0.65). Including
topographical position or slope did not improve model fit (Table 2).

Ground vegetation cover was predicted to be higher in pine and deciduous forest
compared to spruce forests (Figure 4). Pine and deciduous forest were more similar,
with overlapping confidence intervals. Vegetation cover was predicted to increase almost
linearly to an increasing amount of diffuse light. The uncertainty was highest under low
light conditions. The effect of light availability on ground vegetation cover varied with
forest type. In spruce forest, vegetation cover increased rapidly with an increasing amount
of light but leveled off when the light levels reached around two-thirds of the maximum
level. The predictions in the deciduous forest were similar, but here, the ground vegetation
cover was predicted to be somewhat higher than in the spruce forest, under the same
light conditions (Figure 4). When light levels reached around two-thirds of the maximum
level, the predicted ground vegetation cover in the deciduous forest started to converge
with that in the spruce forest. In the pine forest, the predicted ground vegetation cover
was higher than in the other forest types under low light conditions. Under high light
availability, ground vegetation cover was lower in pine forest compared to the other forest
types (Figure 4).
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4. Discussion

By combining RS data and natural resource information, we were able to build models
explaining moderate to high amounts of the observed variation in soil pH, soil moisture
and ground vegetation cover.

Sediment type was an important variable for predicting both soil pH and soil moisture.
For soil pH, the effect of sediment type was due to the difference between clay and glacial
tills. Similarly, Lamarche et al. [65] found that forest soils had higher pH when originating
from clay compared to glacial tills. The effect may partly be caused by differences in soil
texture, with clay having finer and easier weatherable particles, releasing basic cations at a
higher rate compared to coarser particles. In addition, finer particles bind cations better,
dampening the leaching rate [20]. However, both clay and glacial tills may vary in mineral
content [66,67], which may lead to differing effects on soil pH (e.g., Gruba and Socha [68]
found that clay content was positively correlated with total acidity). Calibrating the model
with soil samples may be sensible when using it in areas with differing sediment conditions.
This will still be less resource-demanding than creating field-based maps of soil pH where
sediment type varies less than soil pH. For soil moisture, the effect of sediment type was
also due to the difference between clay and glacial tills, clay being related to higher soil
moisture than tills. This was expected since clay has a higher water holding capacity than
glacial tills [20]. In a similar study, sediment type was found to be an important variable
in predicting soil moisture [69]. Here, glacial tills were also the driest sediment type (clay
was not included). In contrast, a similar study found that sediment type, including clay
and glacial tills, was not important for predicting soil moisture [8]. This study included
plots from a large geographical area, meaning that large-scale processes likely were more
important in this study compared to ours. In addition, contrary to our study, they included
elevation in the analysis. We omitted this variable due to its correlation with sediment type,
and since sediment type has a more direct relationship to soil moisture. Including variables
that possibly correlate with several factors affecting the response variable may bring
about results where variables that have indirect and vague relationships to the response
outperform variables that are more directly related to it. This can give the impression that
the indirect variable is important when predicting soil moisture in general, but this may
not be the case when moving outside the study area.

We expected that bedrock calcium content would be an important predictor of soil pH,
as it has been in other similar studies [70,71]. This was not the case in our study, even when
we accounted for the decoupling effect of the thick layers of marine clay in study area 2.
One explanation may be the glacial movement and transportation of material, which leads
to the calcium content of the sediments likely better representing upstream bedrock type.
The coarse scale of the bedrock map may also have played a part, as it does not capture all
small-scale variations.

Topography is important when explaining soil pH and soil moisture, as indicated by
DEV30M being represented in the top-ranked models for both properties. This is most
likely due to its control over water drainage and accumulation, including transportation of
material and basic cations [21]. Similar studies have found that topography is related to
soil pH and moisture, but it is not clear which topographic variable best represents this
mechanism. Li et al. [7] found that slope and cross-slope curvature explained soil pH better
than topographic wetness (topographic position was not included) in a broad-leaved forest
in China. Contrarily, Baltensweiler et al. [72] found that terrain wetness explained more
of the variation in soil pH than cross-slope curvature in a mountain forest in the Swiss
Alps. Similarly, Aagren et al. [73] found that depth-to-water table was a better predictor of
soil moisture compared to topographic position in a boreal forest in Sweden. In Finland,
Kemppinen [70] had more success predicting soil moisture using the Saga Wetness Index
(SWI) than a Topographical Position Index (TPI). This contrasts with our study, as we
found that topographic position was a better variable than both DTW and SWI. It is not
clear why the best variable varies between studies, but it has been suggested that soil
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transmissivity, variation in topography and local climate may affect the performance of
topographic indices and what represents the optimum scale [73].

Site index was included in the top-ranked model for both soil moisture and soil
pH. Since most plots with high site index were located on clay sediments, the effect was
confounded, and high site index was most likely caused by the clay sediment. Medium
and low site index differentiated between higher and lower soil pH and moisture for the
plots located on glacial tills. Site index represents forest productivity, which is caused by
the combined effect of soil moisture, soil pH and climatic conditions. Thus, it can be used
as an indicator for these three factors, as shown in our analysis. We did not use a remote
sensing-based version of the index, but it can be estimated with relatively high accuracy
using bitemporal lidar data [74].

Light availability or radiation load was included in the top-ranked model for both soil
moisture and ground vegetation cover. For soil moisture, the association was most likely
due to the effect of radiation load on evapotranspiration [28,75]. Here, the best variable was
one of the most comprehensive variables, including the effect of solar angle, topography,
canopy and both direct and diffuse radiation. This suggests that higher precision can be
achieved when using more complex estimations of solar radiation load, in comparison to
using more simple methods, such as topographic aspect.

As expected, ground vegetation cover increased with higher light availability. Al-
though light is known to be an important limiting factor for plant establishment and
growth [30], this does not always translate into a detectable association between light
availability and vegetation cover. For example, Tinya et al. [76] did not find a correlation
between the herbaceous cover and the amount of measured diffuse light inside a mixed tem-
perate forest in Hungary. This was assumed to be due to poor establishment of herbaceous
species in nutrient-poor soils. This suggests that how one defines the ground vegetation
cover is important. We included species that can tolerate both nutrient-poor soils (dwarf
shrubs) and dry soils (lichen); thus, we did not experience the same lack of correlation.
Our top-ranked model did, however, have other issues. Of the three ecological properties
included in our analysis, we had the least success explaining ground vegetation cover,
possibly because we did not account for dead trunks and snags in our model, which led to
lower estimated vegetation cover. In addition, estimating vegetation cover visually is not
a precise form of measurement. Measurement errors are unavoidable and create noise in
the data.

Forest type was included in the top-ranked model for ground vegetation cover, both
as an additive factor and in interaction with light availability. The amount of light reaching
the forest floor depends on the amount of absorption, reflection and transmittance of the
light as it travels through the canopy [77]. Tree species may modulate these three factors
through differences in leaf angle, canopy structure and density [28]. These differences are
probably not fully accounted for by the lidar-based variables, so including tree species or
forest types gives better predictions. In our study, deciduous forests had higher estimated
light availability than spruce forests. Unlike us, Renaud et al. [78] found that deciduous
forests had lower levels of available light below the canopy compared to spruce forests.
In their study, the deciduous forests consisted mostly of beech (Fagus sylvatica), which
are generally much darker than the deciduous forests in our study area. This means that
dominating tree species may be a better predictor than forest type.

5. Conclusions

In this study, we found that soil pH, soil moisture and ground vegetation cover may
be modeled using a combination of remotely sensed data and natural resource maps.
By choosing variables based on causal or well-known correlational relationships to the
response, we were able to build more easily interpretable models that explained medium
to high amounts of the observed variation. We found that topographically controlled
water drainage patterns, which may affect both soil moisture and pH, are one of the more
challenging variables to select in advance because the optimum method and/or scale seem
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to vary between study areas. However, it may be possible to select the best variable based
on existing knowledge of a selected study area (e.g., sediment types, local climate) and
some measures of topographic variation estimated from digital elevation models. Future
studies should focus on testing the relationship between these factors and the optimum
topographical wetness variable for a better understanding of why and when the optimum
processing method and spatial scale vary, and how to select the optimum variable without
performing a pre-study field survey. If this can be sorted out, it would be helpful for future
ecological studies and other types of studies, as well for management projects, where
remote sensing data can be of great use.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14205207/s1, Table S1: Ranking of single regression models
for soil pH using AICc scores.; Table S2: Ranking of single regression models for soil moisture using
AICc scores.; Table S3: Ranking of single regression models for ground vegetation cover using AICc
scores.; Table S4: Model summary of the highest ranked multiple regression models for soil pH, soil
moisture and ground vegetation cover.
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Temperate Mixed Forests in Őrség, Western Hungary. Plant Ecol. 2009, 204, 69–81. [CrossRef]

http://doi.org/10.1016/S0734-189X(84)80011-0
http://doi.org/10.1672/0277-5212(2007)27[846:MWACOT]2.0.CO;2
https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/area-solar-radiation.htm
https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/area-solar-radiation.htm
http://doi.org/10.1016/j.rse.2013.09.006
http://doi.org/10.1016/j.geoderma.2012.09.009
http://doi.org/10.2307/2532457
https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=753578
https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=753578
https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html
https://strengejacke.github.io/sjPlot/
https://strengejacke.github.io/sjPlot/
http://doi.org/10.1080/11956860.2004.11682828
http://doi.org/10.1016/0169-1317(90)90018-K
http://doi.org/10.1016/j.catena.2016.01.020
http://doi.org/10.1002/esp.4301
http://doi.org/10.1371/journal.pone.0218563
http://doi.org/10.1016/j.geoderma.2020.114663
http://doi.org/10.5194/hess-18-3623-2014
http://doi.org/10.3390/rs11091020
http://doi.org/10.1029/1998WR900065
http://doi.org/10.1007/s11258-008-9566-z


Remote Sens. 2022, 14, 5207 15 of 15

77. Hagemeier, M.; Leuschner, C. Leaf and Crown Optical Properties of Five Early-, Mid- and Late-Successional Temperate Tree
Species and Their Relation to Sapling Light Demand. Forests 2019, 10, 925. [CrossRef]

78. Renaud, V.; Innes, J.L.; Dobbertin, M.; Rebetez, M. Comparison between open-site and below-canopy climatic conditions in
Switzerland for different types of forests over 10 years (1998–2007). Theor. Appl. Climatol. 2010, 105, 119–127. [CrossRef]

http://doi.org/10.3390/f10100925
http://doi.org/10.1007/s00704-010-0361-0

	Introduction 
	Materials and Methods 
	Study Area 
	Field Data Collection and Processing 
	Generating Predictor Variables from Remote Sensing Data 
	Additional Information Included 
	Statistical Analysis 

	Results 
	Soil pH 
	Soil Moisture 
	Ground Vegetation Cover 

	Discussion 
	Conclusions 
	References

