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Foreword 

Norwegian national authorities are running a research project to investigate the feasibility of using 

Airborne green LIDAR Bathymetry to map the topography of in-riverscapes. As part of this project, 

the University of South-Eastern Norway (USN) was subcontracted to analyze the accuracy and extent 

of LIDAR data as compared with the alternative methods of traditional stratified transect point 

sampling and Multi Beam bathymetry. The results are reported here. We are grateful for the close 

collaboration with other participants in the project, in particular Morten Stickler (Norwegian Water 

Resources and Energy Directorate; NVE) and Christian Malmquist (Norwegian Mapping Authority; 

Statens Kartverk). 

 

 

 

 

Bø, 15 December 2022 

 

 

Leif Kastdalen and Jan Heggenes 
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Abstract 

This report investigates the feasibility of using Airborne green LiDAR Bathymetry to map the 

topography of in-riverscapes. First, the accuracy of remote sensing green LiDAR data are compared 

with the alternative in situ methods of traditional stratified transect point sampling and MultiBeam 

bathymetry. Secondly, the factors potentially limiting the feasibility of green LIDAR in rivers, i.e., 

factors explaining the loss of/lack of green LiDAR data, are explored. Thirdly, three types of green 

LiDAR sensors with different specifications are compared. Relatively long and variable within-river 

reaches (4 km or more) were studied to explore data robustness across different hydraulic patterns 

and water depths.  

 

If signals were reflected, the different sensors generally provided remote sensing elevation data 

consistent with in situ elevation measurements, indicating high accuracy (±10 cm) across different 

hydraulic conditions. Loss of green LiDAR data was mainly a consequence of limited signal water 

penetration capability, i.e., the main environmental factor was water clarity. Secchi depth was a close 

proxy variable associated with green LiDAR penetration capability across rivers. Data loss was low 

until around Secchi water depth but increased rapidly thereafter. Surface water turbulence (‘white 

water’) and dark riverbed vegetation also increased green LiDAR signal loss. Point density and water 

penetration capabilities varied across sensors. Sensors with lower point density and thereby less 

spatial resolution, also had more signal strength and therefore penetrated deeper water. We 

conclude that green LiDAR bathymetry overall is a robust method that efficiently provides accurate 

elevation data across different hydraulic conditions and water depths. The main concern is signal 

loss, which is associated with Secchi water depth, and aggravated by surface turbulence (‘white 

water’) and dark coloured riverbed. Technically, this loss also depends on green LiDAR signal power, 

which vary across sensors. Therefore, signal power should be balanced with signal density (spatial 

resolution), depending on project objectives.  
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1. Introduction 

Remote sensing by airborne red LiDAR is the de facto labour and cost-effective standard methodology 

for obtaining high-resolution 3D-Digital Elevation Model (DEM) information in terrestrial landscapes 

(Mandlburger 2018; Kinzel, Legleiter & Grams 2021; Islam et al. 2022). The red laser provides high 

accuracy, although interpreting and categorizing which object reflects the laser signal may be 

challenging. This is implemented using post-processing algorithm software which may influence 

accuracy and utility of the data (e.g., Kinzel, Legleiter & Nelson 2013; Islam et al. 2022). Unfortunately, 

red laser signals do not penetrate water, and are even with additional DEM modelling and 

information less suitable for remote sensing bathymetric measurements (Smart, Bind & Duncan 

2009), especially in shallow water (< 2 m) (Pe'Eri & Philpot 2007; Pe'eri et al. 2011). Therefore, 

traditional in situ manual, time-consuming, and cost expensive methods as dGPS transect point 

measurements and MultiBeam Echosounder Mapping System (MBES) data collection, are still used 

for measuring topographic features in water covered areas, water depths and other habitat-relevant 

characteristics in rivers and lakes (e.g., Payne, Eggers & Parkinson 2004; Gard 2005; Jowett & Duncan 

2012), with dGPS point data inevitably providing (very) few data points per area unit.  

 

Recent developments in remote sensing monitoring and LiDAR technology are, however, highly 

promising. Green LiDAR have, although to variable extents, demonstrated water-penetrating 

capabilities and been applied in various types of remote sensing projects focusing on bathymetric 

measurements. Previous applications have been with relatively low resolution (one point per 1-2 m2) 

and on relatively short and uniform low-gradient river reaches (Hilldale & Raff 2008; Kinzel, Legleiter 

& Nelson 2013).  Recently developed sensors promise  increased spatial resolution (point density) 

and water depth penetration, although resolution and likely also depth-penetrating capabilities may 

vary considerably among sensors (below) (Awadallah 2021). To our knowledge, the accuracy and 

applicability of such remote sensing green LiDAR bathymetric measurements providing high point 

density (Mandlburger et al. 2020), have not been systematically evaluated and tested on larger 

spatial scales, e.g., across a variety of hydraulic conditions on meso-habitats (< 100 m) or river scales. 

Neither has green LiDAR been compared with alternative in situ bathymetric methods in smaller 

rivers with more complex and longitudinally variable hydraulics, i.e., more high-gradient and 

relatively shallow habitats, and for longer (> 2 km) and presumably more representative river reaches. 

(but see Kinzel, Legleiter & Nelson 2013 for shorter river reaches;  Kinzel, Legleiter & Grams 2021 for 

six close cross-sections in a river and tributary  ; Islam et al. 2022 for a uniform, wide, low gradient 

river reach).  

 

The scientific and management communities consider remote sensing Airborne green LiDAR 

Bathymetry (ALB) as a promising cost-effective tool for obtaining accurate data for in-riverscapes as 

well as in less challenging still water. Therefore, Norwegian federal agencies (The Norwegian Water 

and Energy Directorate, The Norwegian Mapping Authority and Norwegian Environment Agency) 

have established a national cross-sectoral research project with the main objective to i) evaluate the 

robustness of ALB technology on Norwegian rivers and shallow part of lakes with high variation of 
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bed slope and non-fluvial, semi-fluvial and fluvial reaches; ii) demonstrate selected application areas 

with respect to freshwater resource management, iii) facilitate involvement and collaboration across 

Norwegian management for future acquisition of green LiDAR; and iv) evaluate whether green LiDAR 

is a future cost-benefit tool that should be invested in in Norway.  

 

As a collaboration partner the University of South-Eastern Norway (USN) was invited to contribute to 

the national project “Validation and application of Airborne Laser Bathymetry (ALB) technology for 

improved management and monitoring of Norwegian rivers and lakes (2021-2022)”, structured into 

three main work packages; WP 1: Validation of ALB; WP 2: Application in River systems; and WP 3: 

Data acquisition and quality assurance, in which USN had the responsibility of WP 1 (Validation of 

ALB). The project acquired three different European green LiDAR providers/sensors that were applied 

on five different river systems and two different inland lakes, and then compared against “ground 

truth” based on dGPS and Multibeam data in pre-selected areas representing a range of water 

bodies.  

 

The present report documents the study design, analyses and findings based on systematic 

quantitative statistical evaluations of ALB data against ground truth data (dGPS and Multibeam 

echosounder) in three rivers. Specific objectives have been to explore and evaluate: 

1. The accuracy and robustness of airborne remote sensing green LiDAR data across a) rivers 

and b) sensors compared to the alternative in situ methods, and thereby 

2. Identify factors that may a) bias the accuracy (quality) and b) lead to signal loss (quantity) of 

green LiDAR data. 

 

To evaluate potential bias, we used a stratified design across pre-selected hydraulic variables, 

primarily water depth, water surface roughness/water column air-bubbles (turbulence, ‘white 

water’) associated with river gradient, bottom substrate (size, color), and in particular water 

clarity/underwater visibility (Hilldale & Raff 2008; Kinzel, Legleiter & Nelson 2013; Islam et al. 2022). 

 

 

2. Methods and materials 

2.1. Study areas 

Three rivers located in south Norway (Figure 1) were selected for study to represent a range of 

waterflows, gradients, river widths and depths, and water clarity expressed as Secchi depth (Table 1) 

(for further river details see https://vann-nett.no/portal/). 

2.2. Study design 

Sampling was stratified by rivers and green LiDAR sensors (as provided by commercial providers), and 

all data collected in late summer 2021. To be able to compare performance of green LiDAR across 

different types of river morphologies and habitats, one rather long within-river reach (4.8 – 14.8 km) 

https://vann-nett.no/portal/
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with varying characteristics (waterflow, gradient, i.e., water surface smoothness and bottom 

substrates, water depths, underwater visibility) were selected for study in each river (Figure 1, Table 

1).  

 

 
Figure 1. The reaches studied in the three rivers a) Bø (upper left; 7.7 km), b) Hallingdal (lower left; 
4.8 km), and c) Lærdal (right; 14.8 km) with the three largest pools delineated (red lines). Inset: 
location in Norway.   
 

 

 

Table 1. Characteristics of the sampled rivers and study reaches.  

River Mean 

flow 

(m3/s) 

Reach 

length 

(km) 

Mean 

depth  

(m) 

Total 

area 

 (ha) 

Gradient 

(m/km) 

(total, in m) 

Mean bed 

particle 

size (class) 

Secchi 

depth  

(m) 

Bø 18.2 7.7 0.65 29.7 4.0 (31) 8.8 3 

Hallingdal 108 4.8 2.15 83.0 0.3 (1.2) 4.5 5 

Lærdal 36.3 14.8 0.74 58.7 4.7 (9) 8.5 >9 

 

 

To compare accuracy of different green LiDAR sensors across different types of rivers, three 

commercial providers offering ALB services, and all using different sensors providing different power, 

point densities, and footprint (Figure 2, Table 2), participated in the study. The three providers fly 

with fixed-wing airplanes and use the sensors Riegl VQ-880, Leica Chiroptera 4x and Teledyne Optech 

CZMIL.  
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Figure 2. Examples of point density classified as water surface (blue) and river bottom (orange) across 
rivers and green LiDAR sensor providers (Table 2). 
 

 

For unfortunate logistic reasons, all sensors could not be used for all river reaches. AHM collected 

data for all three rivers, Terratec flew the Hallingdal and Lærdal rivers, whereas Hexagon flew the Bø 

river (Table 3). Terratec flew also with a Riegl VQ-840-G sensor on a helicopter along selected parts 

of the study reaches in all three rivers (Bø: 4.2 km; Hallingdal: 2.6 km; Lærdal: 1.3 km). 
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Table 2. Characteristics of the green LiDAR sensors evaluated in the project.  

Provider Sensor Puls 

energy 

(mJ) 

Pulse 

length 

(kHz) 

Laser 

footprint 

(cm) 

Sampling 

altitude 

(m) 

Sampling 

strategi 

Point 

density* 

(m2) 

AHM Riegl VQ-880-

NG 

 -550 38 cm 400 Adaptive 67-

91/939 

Hexagon Leica 

Chiroptera 4X 

0.1 140/500 2.0 m 450 Systematic 

coverage 

17/17 

Terratec – 

fixed-wing 

Teledyne 

Optech CZMIL 

Supernova 

1.75 90-270 2.9 m 380-

400 

Systematic 

coverage 

6/24 

Terratec - 

helicopter 

Riegl VQ-840-G  50-200 15-21 cm 90-140 Selected 

coverage 

40-

85/133 

* Stated by the manufacturer/measured from the received data. The increase in point density is due to 

overlapping flight lines. 

 

The logistic impossibility of implementing all field surveys at the same time, did imply some variation 

in waterflow (Table 3, Figure 3), and therefore different elevations in measured water surface level. 

This required additional data post-processing and likely contributed some additional confounding 

noise in the data analyses (below).  

 

For comparison, in situ data were collected using wading and Multibeam techniques for mapping 

fluvial environments. Because they are surface-operated, Multibeam echosounder mapping systems 

may be difficult to operate in shallow-fast water. On a cautionary note, Multibeam data may also 

become more ‘noisy’ in shallower water and for more sloping riverbeds because of the increasing 

beam angle (e.g., Hughes Clarke, Mayer & Wells 1996; Calder & Mayer 2003). Therefore, Multibeam 

was primarily used for slow/deep pool areas in our study, with a focus on investigating water-

penetrating capabilities. Consequently, the three deepest pools in each river/study reach were 

covered by Multibeam (Figure 1; using a WIinghead i77h with tightly coupled GNSS/INS integration).  

 

Table 3. Water flow* (m3/s) at date of data collection in 2021, by river and data provider. 

  Bø     Hallingdal   Lærdal 

LiDAR data       

AHM 21  3. Sep. 75 3.Sep. 15  26. Sep. 

Hexagon 15  27. Aug.     

TerraTec fixed-wing    78  16. Jul. 20 21. Jul. 

TerraTec helicopter 13 25. Sep. 51  24. Aug. 15  25. Sep. 

Control data       

Multibeam (pools) 12 26. Oct. 90 10.Nov. 21  16. Nov. 

Wading points (transects) 19 22.Nov. 170 3. Nov. 21  16. Nov. 

*Measuring station in Bø: Hagadrag, in Hallingdal: Bergheim, and in Lærdal: Stuvane (https://sildre.nve.no/) 

https://sildre.nve.no/
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Figure 3.  Due to differences in time between control (transect points; in green), and green LiDAR 
acquisitions in Hallingdal, the water surface changed up to 1 meter. Therefore, some transect points 
measured in the field were above water at the time of the LiDAR recordings (transect points in red). 
Rectangles indicate the areas manually extended to provide a minimum of 10 points for estimating 
water elevation. The same area was used for all sensors. Blue (upper panel) and red (lower panel) 
lines indicate riverbanks as identified by the commercial providers based on LiDAR data. LiDAR points 
classified to water surface in blue, and to river bottom in orange. 
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Traditional stratified transect point sampling by wading was used for measuring water depth, bed 

substrates, embeddedness, and vegetation cover/type, i.e., relevant characteristics in the studied 

river reaches (e.g., Payne, Eggers & Parkinson 2004; Gard 2005; Jowett & Duncan 2012). For each of 

the study reaches, the entire reach was stratified into one of five river types according to Hauer and 

Pulg (2018). Considering fluvial and late glacial processes, the types were cascade, plane-bed-

dimictic, plane-bed-fluvial, riffle-pool-mixed og riffle-pool-fluvial. Within each river type, ten 

transects were visually stratified to represent varying river gradients, as expressed by surface water 

roughness, using high-resolution (10 cm) aerial photos (https://www.norgeibilder.no/). Five points 

(at the 10, 25, 50, 75, 90 percentiles) were measured across each transect, either across the river or 

to as deep as it was possible to wade (155 cm).  

 

All measurement points were accurately positioned using a dGPS (Trimble R6). In each 

point/associated area (0.5 x 0.5 m = 0.25 m2), water bottom height was measured, and dominant and 

subdominant substrate particle size classified according to a modified Wentworth scale (Heggenes 

2002), embeddedness scored 1-4 (0-25%, 25-50%, 50-75%. 75-100 %), and vegetation type and cover 

(Braun-Blanchet scale) was noted. Water surface height was measured in one point, regularly in the 

first point closest to the riverbank. 

 

2.3. Data processing 

The LiDAR data were pre-processed by the commercial providers using generic algorithms and 

software. Points were classified using the LAS 1.4 format, i.e., especially river bottom (class 26) and 

water surface (class 27). AHM and Terratec also delivered a shape file for the riverbanks/wetted area 

(Figure 3). In addition to the LiDAR data, AHM, Hexagon and Terratec also took concomitant aerial 

photographs of the green LiDAR flown river reaches, using high-resolution cameras (Hasselblad H/39, 

Leica RCD30, Phase one iXM-RS-150F) producing RGB orthophotos. Since Hexagon (in Bø) and 

Terratec (helicopter) did not deliver shape files of the riverbanks, the map detection algorithm 

’t_concave_hull’ in the R library ‘lidR’ was used to post-process the data to delimit the 

riverbank/wetted area from the points classified as 26 (bottom) and 27 (surface).  

 

Three sub datasets were derived for further analyses, all including the processed and relevant LiDAR 

data (Figure 4). The first dataset also included in situ control data based on the wading field 

measurements/classifications in the dGPS located transect points/associated areas, extending from 

the riverbank (Dataset 1). The second dataset included the nine deeper pool areas (three pools per 

river), where also the in situ Multibeam water depth data had been collected (Dataset 2). The third 

dataset included green LiDAR data for the entire mapped river reaches.  For dataset 1, green LiDAR 

data were aggregated within a buffer circle of 28 cm radius around each transect point, 

corresponding to the in situ transect point/associated area representing 0.5 x 0.5 m = 0,25m², and to 

a larger area with 56 cm radius corresponding to a spatial grid size of 1x1m, also used in the other 

datasets. For dataset 2 and 3 the data were aggregated and scaled into two alternative spatial grid 

sizes, 25x25 and 100x100 cm. Thus, potential small-spatial effects could be explored. Within each 

https://www.norgeibilder.no/
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spatial unit, we calculated number of LiDAR points together with mean, median, minimum, and 

standard deviation for the elevation values. The datasets were primarily analyzed using 

regression/classification models with measurement accuracy and LiDAR data availability as response 

variables (Figure 4). 
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Figure 4. Overview of the data and analyses. Four different LiDAR sensors from three data providers 
were used in three rivers along continuous, relatively long reaches. Control data were measured in 
situ in 1) wading stratified transect points in the field and 2) and Multibeam echosounder in the three 
deepest pools of each river. The green LiDAR data were, for the transect points, aggregated within 
buffer circles of radius 28 and 56 cm, and for the pool data and whole reaches point data were 
aggregated into two alternative grid sizes (25x25 and 100x100 cm), and analysed with regression and 
classification models with measurement accuracy and data availability as the primary response 
variables. (Hex = Hexagon with Leica Chiroptera 4x, AHM with Riegl VQ-880, TTD = Terratec with Riegl 
840 on a helicopter; TTF = Terratec with Teledyne Optech CZMIL).   
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2.4. Transect data 

Time-consuming wading transect point measurements are by necessity relatively few. Moreover, it 

turned out that green LiDAR point coverage was uneven for some sensors and river areas, reducing 

the number of points available for analyses even more (Appendix 1).  

Differences in measured water surface elevation were generally small across sensors and rivers, 

indicating similar water flows between sampling times. The exception was Hallingdal, where 

differences in water flows between sampling times (Table 3, Figure 3), changed measured water 

surface elevation, especially between lower flow green LiDAR data from Terratec in July and in situ 

wading transect points during higher flow in the fall, with a mean difference close to 1 m (Figure 5). 

This also reduced the number of transect points available for comparative analyses, since some 

transect points were ‘above water’ compared to the green LiDAR data at lower flows (78 of 685 

observations in total).  

 

Within the buffer areas used to analyse the transect points, many points were not covered by LiDAR 

data, especially for water surface elevation; of the remaining 607 points ‘in water’ (above, Figure 3), 

216 points did not have LiDAR surface elevation data, mainly because of their uneven distribution 

(above, Figure 5). In addition, 12 pairs of transect points had in-between distances less than 28 cm. 

From these pairs, the point lacking any additional data was removed, or the point closest to the 

riverbank.  

 

 

 
Figure 5. Differences in measured water surface elevation between control data and green LiDAR data. 
Left: In situ control data measured in transect points in the field with dGPS. Right: In situ control data 
measured with Multibeam echosounder. The elevation from green LiDAR is calculated as the peak in 
a frequency distribution of points classified to the surface, and for the Multibeam data as the 99% 
quantile of points with scan angle larger than 80° (below). 
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One side-channel transect in Lærdal lacked green LiDAR data. For another, registered LiDAR depths 

were only 0-8 cm. These data were removed.  

 

Because most transects were in relatively slow flowing river reaches, water surface elevation was 

similar across all transect measurement points, and surface elevation was mostly represented by one 

point measurement. Therefore, we increased the sample size by adding this value (or the mean value 

if more than one surface elevation measurement) to all points ‘in water’ in the transect for which 

there were also LiDAR data, to estimate water depth.  

 

Even after this extrapolation, however, elevation (in particular, surface) could not always be 

estimated from the LiDAR data within the 28 cm transect point radius. Therefore, data were also 

aggregated within a 56 cm radius (Table 4), roughly corresponding to the larger grid area of 1m² used 

for the later green LiDAR data analyses. In an additional step, the aggregated 56 cm circles around 

points along each transect were amalgamated into a 56 cm wide rectangle along a centerline 

covering the measurement points along the transect (Appendix 1). This extrapolation from the 

original in situ point/associated area size (0.5 x 0.5 = 0.25 m2), may potentially introduce more noise, 

if it includes more differences in elevations. On the other hand, it also includes more green LiDAR 

points and thereby sample size. Finally, if the number of green LiDAR points within this rectangle was 

less than 10, the rectangle was extended to include a minimum of 10 LiDAR surface elevation points 

(sensor with the fewest points). These transect polygons were manually controlled against aerial 

photos to ensure that no river areas with higher gradient/rougher surface were included. With this 

extrapolation (Appendix 1), most transect measurement points could be included in the comparative 

analyses of water surface elevation and water depth. In total, the 28 cm and 56 cm approaches left 

473 and 501 transect points for further comparative analysis (Table 4).  

 

A comparison of river bottom elevation measurements from the 28 cm and the 56 cm areas did not 

indicate any significant difference in elevation (paired t-test; mean difference = 12 cm, p = 0.12), and 

both scenarios were analyzed further.  

 

Table 4. Number of transect data points/associated areas (56 cm radius) available for comparative 
analyses. (For a radius of 28 cm, the number of comparative points/associated areas were reduced to 
473). All registered wading points which also provided minimum one LiDAR hit (bottom and surface), 
positive depth, and classified substrate. 

 dGPS LiDAR 

River Transects 

(per km) 

Points 

(n) 

Riegl 

 VQ-880 

Leica 

Chiroptera4x 

Teledyne 

Optech 

Riegl 

 VQ-840 
SUM  

Bø  27 (3.5) 143 125 104  64 334 

Hallingdal 11 (2.3)   74   47  22  71 

Lærdal 15 (1.0)   74   62  60 17 145 

SUM  53 291 234 104 82 81 501 
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2.5. Multibeam data 

The Multibeam echosounder mapping applied on pre-selected pools in the three rivers provided high 

point density for river bottom elevation measurements, up to 86 000 points per m². In comparison, 

overall point density for green LiDAR data classified as river bottom varied between 7 and 142 per 

m². Thus, for later spatial grid analyses between green LiDAR and Multibeam elevations, it was 

primarily the lack of LiDAR points that reduced the number of observations in the data set.   

 

Water surface elevations based on LiDAR data, were estimated as the peak in a frequency distribution 

of points classified to the surface (= class 27). Multibeam sensors do not directly measure water 

surface elevation. Because pools are primarily non-turbulent still-water surfaces, and the data used 

here were recorded with a scan angle up to 80°, i.e., in shallower areas, the upper 99% quantile was 

used as the surface water elevation reference for the Multibeam data. 

 

Data quality control indicated that a few grid cells (less than 5 %) estimated water depth turned out 

negative. Visual data control showed these cells to be located along the shallow edge of the water. 

In these cases, riparian vegetation and protruding boulders had presumably been mis-classified as 

river bottom. All negative depths were excluded from further analysis 

 

2.6. Data and analysis 

2.6.1. Data and variables 

For analysis of the accuracy of the remote sensing green LiDAR with regression models (below), the 

response variable was deviation between bottom elevation measured in situ, either in transect points 

(river reaches; Table 4) or Multibeam (selected pools; Figure 1), and the corresponding LiDAR bottom 

elevations.  

 

For analyses of the availability of green LiDAR data, classification models were used with a binary 

response variable indicating LiDAR pulse reflection or not in the areas covered by the control data. 

The green LiDAR signal is weakened by the depth of the water, and at a certain depth will this prevent 

signal reflection. Thus, ‘Water depth’ was included in all models, as were ‘River’ and ‘Sensor’ (below). 

The studied river reaches have different gradients (Table 1). Visual interpretation of aerial photos 

taken simultaneously with the LiDAR data, indicated substantial variation in the amount of ‘white 

water’ areas between and within river reaches. So did the riverbed substrate colours and lightness. 

Therefore, in an additional ‘visible lightness’ analysis, the RGB values (on a lightness scale, below) 

from the aerial images were classified and merged to the lidar pulse data. In addition to the RGB-

values derived from simultaneous aerial photos, values were also extracted from the publicly 

available best aerial images (https://www.norgeibilder.no/) for later modelling. Unfortunately, 

shadows from trees and water reflections confounded RGB values in the aerial photos available for 

Bø, and for the studied reach in Hallingdal only a small fraction was turbulent water. Therefore, the 

https://www.norgeibilder.no/
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effect of water ‘lightness’, as seen in aerial photos, was studied primarily for Lærdal (se examples of 

light variation in Appendix 4).  

 

Terratec delivered RGB-values based directly on the original aerial photos with 16-bits data, whereas 

AHM delivered data converted to the 8-bit scale. To analyze the data on the same scale, the RGB-

values were transformed to a ‘lightness’ index ranging from 1 (black) to 100 (white).  

A thematic land cover product was first derived from the orthophotos. Classification based on 

Terratec orthophotos was done at the original 25 mm pixel size, while AHM data was resampled from 

10 to 25 cm before classification. Main classes were dark, vegetated riverbed, lighter grey solid 

substrate (sand, gravel, stones not covered with vegetation), and white water surface. In addition, 

boulders protruding above the water and overhanging riparian vegetation were mapped (cover: less 

than 2% of the river) and omitted from further statistical analyses. Grid cells including more than one 

LiDAR point classified to ground (class 2) were also removed before analyses. The two maps were 

produced with a pixelwise classification using a Support Vector Machine algorithm, trained from 

point data collected by visual interpretation of the aerial photos (3786 and 7105 points used for 

Terratec and AHM, respectively).  

 

In situ classification of dominant substrate particle size indicated finer substrates in Hallingdal, i.e., 

dominated by sand and gravel, as suggested by the lower gradient (Figure 6, Table 1). In Bø and 

Lærdal substrates were similar, and generally larger, including rocks and boulders, but also covering 

a range of substrates (Figure 6). 

 

 

 
Figure 6.  Riverbed particle size class distributions and variation across the study reaches in the three 
rivers, as classified at the transect points. Value in parenthesis on top is mean class.  
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2.6.2. Data challenges and limitations 

Data tended to be unbalanced. Unfortunately, not all sensors were used in all rivers (Table 3, 4, Figure 

4). For Dataset 1, the transect control data (Figure 3), this unbalance was aggravated by the fact that 

number of transect points covered also varied among sensors, because of different water flows 

between in situ and remote sensing data collection in Hallingdal (above, Table 3, Appendix 1). Also, 

green LiDAR points indicating riverbed elevation, varied across sensors, not only because sensors 

have different point densities (Table 2), but more so because water penetration capabilities between 

sensors, mainly effected in the pools, turned out to vary considerably (Table 2, Appendix 2).  

 

For Dataset 2 there were major differences among pools (and rivers) in number of analysis units (grid 

cells), reflecting the pools’ different surface areas, e.g., for grid size 1 m there were 1 734 cells in the 

middle pool in Bø (Figure 1), but 43 967 in the middle pool of Hallingdal (Appendix 2).  

 

However, the large pool datasets allowed for balancing the data by randomized selection of a set 

number of datapoints from each pool dataset. That number was set to the smallest number of 

analysis units available for any pool, which still provided large datasets presumably generating little 

sampling error (Appendix 2). For evaluating the LiDAR data accuracy, 1000 grid cells per pool were 

selected, and for evaluating LiDAR data loss, 2000 grid cells were selected from each pool both for 

the 100 x 100 cm and 25 x 25 cm grid size. The Riegl VQ-840 (helicopter) data covered more limited 

pool surface areas than the fixed-wing data, and therefore may potentially be less representative, 

especially for grid cells 100 x 100 cm (Appendix 2).  

 

2.6.3. Data structure and statistical models 

The transect control data have a hierarchical (nested) structure, since each river reach has a set of 

transects, which again consist of 4-11 point measurements. Similarly, the Multibeam data are for 

each river from three within-river pools which again consists of many grid cells (Appendix 2). The 

analysis units are nested within rivers, and rivers are crossed with different sensors.  

For a nested and crossed design like the present datasets, there are some underlying potential 

correlations that may not be considered in the regression and classification models: The studied river 

reaches, and green LiDAR sensors, may have properties that influence the green LiDAR pulses, 

possibly reducing within river and sensor variation.  

 

Ordinary least squares regression assumes independence, and without pseudo-replicates (Hurlbert 

1984; Hurlbert 2009). Such violations may lead to significance for factors that may be of little 

importance. Tentative analyses of residual plots for transect/pool data did suggest that such linear 

models did not address all variation. Generalized mixed regression models (GLMM) may help 

consider such underlying data correlations, by introducing specified random factors in addition to the 

ordinary fixed factors. If more information about a random factor is wanted, it may be included in 

the model specification as both a random and fixed factor. Therefore, the accuracy and availability of 
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green LiDAR were first explored by multivariate generalized linear mixed models (Figure 4) (e.g., 

Bolker et al. 2009; Harrison et al. 2018; Silk, Harrison & Hodgson 2020), and general additive models 

(GAM) (Wood 2006; Pedersen et al. 2019) for modelling more flexible regression functions and 

smooth functional relationships between predictor variables and the response. 

 

Since river reaches and sensors both may have different properties, they were included as fixed and 

random factors in the analyses. The datasets in the present study, did generally not converge when 

using the frequentistic GLMM models. An alternative is to use Bayesian model approach, which tend 

to be flexible and more robust with unbalanced data. Therefore, the R-libraries ‘INLA’ (Integrated 

Nested Laplace Approximations) and ‘bmrs’ were used instead. The full Bayesian simulations in ‘bmrs’ 

are very computer intensive (Brooks et al. 2017; Bürkner 2017b; Bürkner 2017a), and were primarily 

used for control of transect data (Dataset 1, Figure 4). To balance speed and flexibility the ‘INLA’ 

modelling was preferred (Lindgren & Rue 2015; Rue et al. 2016; Niekerk, Bakka & Rue 2021). The 

‘brms’ gave similar results to the INLA, and only INLA results are reported. 

 

For model selection, the Deviance Information Criterium (DIC) was used (Ando 2007; Ward 2008; 

Maity, Basu & Ghosh 2021), i.e., a Bayesian parallel to the frequentistic Akaike’s Information Criterion 

(AIC) (Akaike 1974). Model selection was based on scaled factor values, starting with a model 

including all relevant predictors and with interactions. To have regression coefficients directly related 

to the units of measurements, models are presented using the original values. However, since scaling 

permits direct comparison of continuous variable predictor coefficients and their importance in the 

model (e.g., Schielzeth 2010), the coefficients from models with scaled variables are added when 

considered relevant. For a frequentistic model, the importance of relevant predictors may be 

evaluated also by estimated p-values and confidence intervals. A Bayesian model does not provide 

p-values, but 95% credible intervals. The importance of a variable may therefore be judged by how 

far the lower or upper limit is from zero.  

 

The categorical predictors ‘River’ and ‘Sensor’ were coded as dummy contrasts, using the omitted 

category as reference for comparisons, here AHM in Bø. For an alternative coding as effect contrasts, 

the grand mean will be the reference (here of the combined river and sensor). However, the values 

for Leica Chiroptera 4x sensor used in Bø drew heavily on the grand mean, making it more negative 

than Riegl VQ-880, thereby making it more difficult to explore potential deviations from zero. 

 

First, a null model (without variable predictors) was investigated to see if any of the included non-

variable factors (predictors) were un-informative. Then all relevant fixed and random factors were 

included in a full model, which thereafter was reduced stepwise by removing predictors; first random, 

then fixed predictors. The GLM(M) models calculate coefficients (parameters) which indicate 

explanatory factor direction and power, including for potential interactions. These models also 

output (smoothed) response curves between relevant variables. However, they also require relevant 

variables and interactions to be specified for a test model.  
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The differently structured machine learning algorithms (ML) on the other hand, are more flexible, 

and potential curvilinear relationships and threshold values may be identified. ML- algorithms may 

also be less sensitive to lack of independence in the underlying data. To make to analysis more robust, 

both parameterized and machine learning models are used. While the parameterized models are 

evaluated by an information criterium (above), the ML-approach to find the best model is evaluating 

sub-models continually through cross-validation. With the cross-validation technique, models can be 

evaluated with data not used in the development of the model. The predictive power of the ML-

models was calculated by 10-fold cross-validation procedures repeated three times for both the 

coefficient of determination R² and accuracy (for classification).  

 

The R-library ‘Boruta’ was used (Kursa & Rudnicki 2010; Speiser et al. 2019) to explore the overall 

importance of the relevant predictors. By using the machine learning algorithm Random Forest 

(Breiman 2001; Belgiu & Drăguţ 2016; Biau & Scornet 2016), Boruta adds a set of new factors which 

are being randomized such that the new factor values are uncorrelated to the response variable. 

Boruta then calculates an index for the importance of the original factors relative to the new 

uncorrelated factors, i.e., with importance = 0. The Boruta index will include the combined main and 

interaction effects for a factor.  

 

Finally, to elucidate more in detail how factors may influence 1) accuracy of the LiDAR elevation data, 

and 2) the probability of receiving a reflected LiDAR signal, i.e., the water-penetrating capabilities, 

the algorithm Gradient Boosting Machine (GBM) (Friedman 2001; Natekin & Knoll 2013; Touzani, 

Granderson & Fernandes 2018) was used. From the best GBM model, Accumulated Local Effects 

(ALE) values are estimated (Apley & Zhu 2020; Danesh et al. 2022). ALE interprets how a factor 

(predictor) influences the results from a machine learning algorithm. The values from an ALE-analysis 

may be interpreted as the effect of a factor relative to the mean prediction from the data. For a given 

value for a factor (predictor), ALE will return how much the prediction is increased or decreased from 

the mean prediction. Plots of accumulated ALE-values will visualize how the different predictors, 

including interactions, influences the prediction.  

 

Random forest (RF) and GBM are algorithms that use many decision trees (instead of parameterized 

models). RF draws (with replacement) large numbers of smaller datasets (both with respect to 

number of variables and data) and bases the final result on a mean of the independent smaller ‘trees’, 

i.e., datasets (‘bagging’). This ‘bagging’ approach makes the model more robust, especially for noisy 

data. On the other hand, the independence of this learning structure may reduce the precision for 

less noisy data. GBM use a ‘boosting’ approach, i.e., improves the result via an iterative procedure. 

For each new model, the GBM attempts to improve the parts of the model that came out worst in 

the previous round. Thus, the GBM weighs each new model by its predictive power.  
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3. Results and comments 

3.1. Data exploration for more detailed analysis of accuracy and 

robustness 

3.1.1. Accuracy: precision in measurement 

Overall, the remote sensing green LiDAR riverbed elevation data indicated high accuracy as compared 

with in situ control data. Median values were generally within deviations (in situ minus LiDAR data) 

less than ± 5 cm and not more than ± 10 cm for both the transect and Multibeam pool data (Figure 

7 b, c). For the transect data, this may be within expected sampling errors, considering the difference 

in methods and especially the on average relatively large substrate particle classes/sizes in Bø and 

Lærdal (Figure 6). For the finer and less variable substrates in Hallingdal, estimated riverbed 

elevations were virtually identical between in situ transect point and remote sensing green LiDAR 

data (Figure 7 b).  

 

The more extensive pool dataset with respect to both depth range (down to more than 10 meter) 

and number of data points, allowed for more confidence in the analyses of the effects of water depth 

on measurement accuracy, and also for analyses of data loss. The pool data lack spatially detailed 

information on substrate size, but in general variation in substrate size classes are rather narrow in 

the slow-deep pools, i.e., finer substrates. Instead, the high point density of the multibeam data allow 

the riverbed slope to be included in the models.  

 

Multibeam control data from the deep pools indicated similar overall accuracy as for transect control 

data, but with considerably more spread and more outliers (Figure 7 a,b). This may, at least to some 

extent, result from the very large datasets from Multibeam and green LiDAR. More detailed analysis 

of this larger spread in deviations in measured riverbed elevations in pools did not indicate any 

consistent pattern, neither across rivers, nor sensors. Visual inspection of grid cells exhibiting 

deviations of more than ± 50 cm, indicated that many of these were close to the riverbanks and to 

riverbed with steep slopes, and to grid cells with few data points (Appendix 3). Thus, outlying 

observations along the riverbanks may tentatively be caused by noise, rather than sensor technical 

errors, i.e., disturbance/misclassification of the green LiDAR data because of (overhanging) riparian 

vegetation and less precise Multibeam riverbed elevation data because of the increasing angle in 

shallower areas. Outlying data included in a statistical model cause noise and may mask the strength 

of main effects. Therefore, the grid cells covered by riverbed vegetation in the aerial photos acquired 

during the green LiDAR recordings and the Multibeam data with recording angle more than 80° were 

removed before further analyses, as were deviations of more than ± 50 cm. This amounted to less 

than 2 % of the data. 

 

Furthermore, deviations in riverbed elevations were not strongly or consistently related to water 

depth (Figure 8), neither for any sensor or river combination, nor for transect point or Multibeam 
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data. Still, variation in deviations appeared higher for in situ transect river measurements, than for 

Multibeam pool measurements. This may at least in part, be related to the greater substrate particle 

sizes in the more high-gradient river reaches with transect point measurements.  

 

Moreover, the LiDAR data for riverbed elevation tended to vary more than the corresponding 

Multibeam data, i.e., in the pools. Consequently, water depth from LiDAR data were estimated as the 

difference between water surface elevation from green LiDAR data and the riverbed elevation based 

on Multibeam data. 

 

Figure 7. Deviations in estimated riverbed elevation between in situ control and remote sensing green 
LiDAR data. a) Control data measured at points in situ with dGPS. b) Control data measured in deep 
pools with Multibeam sonar, c) Control data measured in deep pools with Multibeam sonar but with 
data outliers larger than 50 cm removed. The LiDAR data in a) are calculated as the median value of 
points within a 56 cm buffer around the control point and in b) for grid cells of 100 x 100 cm. 
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Figure 8. Deviations in riverbed elevation relative to water depth. No consistent pattern was indicated, 
neither across rivers, nor across sensors. LiDAR data were calculated as the mean value a) of LiDAR 
point elevations (within a 56 cm buffer around the in situ transect control point) compared to transect 
point elevation, and b) for grid of 100 x 100 cm compared to pool Multibeam data. The points in b) 
represent balanced random sub-samples of 1500 data points from each river and sensor combination. 
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3.1.2. Robustness: Green LiDAR data loss 

Visual exploration of the green LiDAR data indicates a pattern where the loss is located to the deepest 

parts of the pools, and not to riverbanks (Appendix 3). Therefore, all grid cells with a positive water 

depth were used in the analysis of data availability.  

 

Green LiDAR data loss was generally small in shallower areas but appeared to increase rapidly at a 

critical depth (reached in the deeper pool areas), and this pattern was the same across rivers 

(Appendix 3), with the greatest loss in Bøelva (up to 70%) and least in Lærdal (up to 7%), and to a 

lesser extent also across sensors. The difference and abruptness in data loss between rivers 

suggested an effect of water visibility, as indicated by Secchi depth (Table 1, Appendix 3). 

 

Water surface turbulence (‘white water’) may potentially also cause loss of green LiDAR data. 

However, the tentative proxy variable ‘Lightness index’ (‘white water’ due to air bubbles as derived 

from the RGB-values in the simultaneous aerial photos) did not show any clear pattern with turbulent 

water, neither for the transect point nor the Multibeam data. Manual control indicated that the 

‘Lightness index’ also turned out to be affected by especially green riverbank vegetation and incoming 

light/shadows along the forest lined river reaches in Bø and Hallingdal (Appendix 4). In the open 

landscapes along Lærdal, manual inspection indicated that the lightness proxy did reflect ‘white 

water’, i.e., surface turbulence, allowing for these analyses in Lærdal.    

 

3.2. Accuracy in the measurements of river bottom elevation  

Overall, the more detailed regression analysis corroborated the results from the data exploration. 

Since the main interest was to explore deviations between control and green LiDAR data, the absolute 

deviation values were first explored as the response. However, this would mask any directional 

tendency for LiDAR data (over- or underestimate riverbed elevation). For example, surface refraction 

might generate consistent bias.  A GBM model for the transect data (dataset 1) explained 42 % of the 

cross-validated variation with directional deviation as response, compared to only 27% when the 

absolute value of the deviation was used as response. For pool data (dataset 2), the difference in 

explained variation was similar. The preliminary analyses indicated directional deviation to be more 

informative than absolute values and directional deviation was therefore used as the response in the 

analyses. 

 

3.2.1. dGPS point data from transects 

The Boruta approach of using uncorrelated dummy variables with the Random Forest (RF) algorithm 

identified Sensor as the most important variable for the accuracy of green LiDAR measured from the 

transect data (Figure 9). Most of the data from transect points represented water depths around 45 

cm, with range down to 1.2 meter. This range might be too shallow to detect effects of water depth.  
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Figure 9. Importance of the predictors in a Random Forest model in explaining the response variable 
deviation in riverbed elevation between in situ transect points compared to remote sensing green 
LiDAR. The index is calculated via randomization of variables in a Random Forest model using the R-
library Boruta.  
 

The ‘best’ INLA mixed-regression model, derived from the DIC selection procedure, included as fixed 

predictors the same four variables Depth, Substrate, Sensor and River, and with River and Sensor, as 

well as Transects/points, as important random effects (Appendix 5). Results were similar for a 56 or 

a 28 cm radius around transect points, and with 6 % more data points (from 493 to 501) in the model 

and less variation, the 56 cm model is shown.  

 

The more detailed analysis results from the parameterized INLA model (Appendix 5), indicated the 

effect of increasing Substrate class is negative, meaning that with increasing substrate particle size, 

the green LiDAR estimates riverbed elevation to be somewhat higher than in situ transect point 

measurements. This deviation tended to be more pronounced for the smaller 28 cm radius data (not 

shown). One likely explanation for this, is the use of a measuring stick for the in situ transect point 

measurements. The footprint of a stick is very small. The stick was likely placed ‘on the bottom’, i.e., 

between raised rocks, and such a measurement error would increase with increasing substrate 

particle size. Green LiDAR data on the other hand, measured riverbed elevation as the mean (both 

mean and median gave the same results) across points within the defined area (56 or 28 cm radius), 

and with footprints of LiDAR point to more than 20 cm, the LiDAR measured elevation would increase 

with increasing substrate particle size. Regardless, the effect is small, as indicated by the small 

coefficient.  

 

The main effect of Depth was modelled as weakly positive (Appendix 5), and with the sensors 

Chiroptera 4x and Riegl VQ-840 emerging as important, and with the Riegl VQ-840 as weak. Depth is 

also in weak interactions with different sensors in the best INLA model. However, effects, i.e., 
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coefficients, were consistently small and only with Riegl VQ-880 and Teledyne Optech CZMIL 

emerging as important (Appendix 5). Also, their effects were opposite, with slightly increasing 

deviation with depth for Riegl VQ-880 and decreasing for Teledyne Optech. This is likely explained by 

the fact that the sensors Riegl VQ-880 and Teledyne Optech were used in three and two rivers, 

respectively, and Leica Chiroptera 4x only in one. Besides, Teledyne Optech results were negative (at 

zero depth) relative to the Riegl VQ-880 (reference (intercept) at zero depth), which in turn was 

positive, i.e., increased with depth.  

 

These depth-sensor interaction effects come in addition to the main effect, making it more difficult 

to see total effect. Therefore, the overall effect of water depth, as modelled with INLA and Gradient 

Boosting Machine (GBM) within the range of available data for river and sensor, is visualized in Figure 

10, keeping substrate constant on the river mean. Again, deviations are consistently small and around 

0 (generally less than 5 cm). An exception was the Leica Chiroptera 4x sensor in Bø in shallow water 

(< 50 cm), with green LiDAR consistently estimating the riverbed elevation about 10-20 cm higher 

than the in situ transect control measurements.  
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Figure 10. Deviation in riverbed elevation between in situ transect point measurements and remote 
sensing green LiDAR mean measurement within a 56 cm buffer area around the point. For 
comparison, riverbed substrate size (class) was kept constant at the mean for each river. The black 
line with grey credible interval indicates the INLA model result, and the blue line indicates the Gradient 
Boosting Machine model result. The red dots are the measured deviation for each river and sensor 
combination 
 
For deeper areas, measurements were similar, but data points were few. This exception and its 

systematic nature may suggest some sensor calibration problem. It may also to some extent perhaps 

be tied in with the increased deviation with increased substrate size (above). However, it would then 

be expected to appear also across sensors.  

 

The machine learning model GBM gave similar results (with R2 = 42 %) to the INLA model, except for 

Teledyne Optech in Lærdal (Figure 10). Here, the INLA model suggested a weak negative trend for 

deviation with depth, the GBM model found no effect (even line) for the same data. However, data 

here were few.  

 

As an alternative machine learning algorithm to study the influence of different predictors more in 

detail (not just strength), the Accumulated Local Effects (ALE) add more detail about predictor effects. 

Because ALE calculates the main effect of a predictor at a certain value compared to the average 

prediction of the data, plots of accumulated ALE-values visualize how the different predictors, 
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including interactions, influences the prediction. The ALE-plot for the GBM model (Figure 11) 

indicated again that among sensors, it was primarily Leica Chiroptera 4x, but also Teledyne Optech, 

that influenced the model negatively, i.e., measured the riverbed elevation higher than the in situ 

transect point control data. Moreover, as suggested by the INLA model, the ALE model also suggested 

a slight positive effect on deviation with increasing water depth. Assuming no bias in the in situ 

transect point measurements with increasing depth, the green LiDAR data tend to measure slightly 

lower riverbed elevations with increasing depth. However, this deviation may also result from the 

fact that in situ measurements become less precise with increasing water depth. Wading and 

accurate measurements become more difficult at greater water depths and velocities further out in 

the river. The ALE-analysis also suggested that the increased deviation with increased substrate 

particle size (above) tends to be linear (up to class 13; bedrock, also very few data point thereafter, 

only 4 % of the data).  

 

 
Figure 11. The Accumulated Local Effects (ALE) values visualizing the influence of the different 
predictors (including interactions) in the Gradient Boosting Machine model in explaining the response, 
i.e., the deviation in riverbed elevation between in situ transect point measurements and remote 
sensing green LiDAR. The main effect by the Leica Chiroptera 4x sensor (upper right panel) may be 
due to a calibration issue. The apparent rise in influence by the largest substrate size classes is likely 
an artifact due to few data points. For name abbreviations, see Table 2. 
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Loss of LiDAR data for riverbed elevation (56 cm radius) amounted to 21 transect points and all from 

Leica Chiroptera 4x data. These transect point losses were distributed across water depths and 

substrate size classes and reflected a clumped distribution of reflected points not associated with 

water depth. Thus, without data of loss linked to the water depth or substate size, data were not 

analyzed further.  

 

3.2.2. Multibeam point data from pools 

With the pool data, Sensor emerged again as an important variable from the Boruta analysis, but not 

more than River and Slope (Figure 12). Most data in the pools were from water depths around 2.5 

meter and ranging down to more than 10 meters (Lærdal). The increased importance of Rivers in the 

pools compared to the transect data, might be due to an emerging effect of different water visibility 

across rivers with deeper water.  

 

The ‘best’ INLA regression model for green LiDAR versus Multibeam data (1 x 1 m grid) indicated as 

important the fixed predictors Slope, Depth (including interactions with sensor and river), sensor 

Leica Chiroptera 4x, and river Lærdal. Important random effects were river, pool/grid cell, and sensor 

(Appendix 6). The coefficients for the fixed effects, and the variation of the random effects are very 

small, with differences between pools showing the highest variation among the random effects (SD 

= 4.3 cm). The negative association with increasing slope, means that the green LiDAR data estimated 

riverbed elevation to be higher than the Multibeam data. 

 

Additional regression analyses with the smaller grid size 25 x 25 cm (not shown) indicated that the 

predictors River and Sensor became somewhat more important in influencing riverbed elevation 

deviations, whereas the influence of Depth was reduced. This was expected, as a decrease in grid size 

may increase within-grid differences and variation in aggregated elevation data, particularly when 

measurement points are few and sporadic. The green LiDAR data has many more grid cells with few 

data than did the Multibeam.  
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Figure 12. Importance of the predictors in a Random Forest model in explaining the response variable 
deviation in riverbed elevation in pools between in situ Multibeam compared to remote sensing green 
LiDAR. The index is calculated via randomization of variables in a Random Forest model using the R-
library Boruta.  
 

The negative effect of riverbed slope might also be amplified from the known potential noise in the 

Multibeam data associated high with beam angle towards the edges of the pools where also the slope 

is highest. Regardless, with a coefficient for the slope of -0.18, the effect of slope on the deviation 

between multibeam and LiDAR is small. For the maximum slope registered (70°) the model estimates 

an increase in deviation from a flat surface of only 12.6 cm. 

 

The INLA regression model suggested only a weak negative effect of Depth on the deviation response 

(Appendix 6). The effects of water depth on sensors and rivers are, however, difficult to infer directly 

from the INLA model due to their interactions. By keeping the slope constant at the mean for each 

river, the effect of water depth (including interactions) may be seen more easily (Figure 13).  

 

The weak effect of depth is shown by the small changes in the relationship line for most of the river-

sensor combinations. The different slopes and deviations and with LiDAR data both above and below 

the Multibeam data, suggested that the depth effect may to some extent stem from an offset for 

some of the LiDAR sensor-river data, e.g., Riegl VQ-880 in Hallingdal and Teledyne Optech in Lærdal. 

As suggested for the offset measurement results for the in situ transect point data compared to 

remote sensing green LiDAR (Leica Chiroptera 4x) data above, this offset also for Multibeam versus 

green LiDAR data may stem from LiDAR calibration issues. Also, Multibeam data, typically very 

accurate in deeper areas, may become more ‘noisy’ in shallower water and for sloping riverbed 

elevations due to the increasing sensor/footprint angle (above) (e.g., Hughes Clarke, Mayer & Wells 

1996; Calder & Mayer 2003).  
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Figure 13. Deviation in riverbed elevation between in situ Multibeam measurements and remote 
sensing green LiDAR mean measurement within a 100 x 100 cm grid. The black line with grey credible 
interval indicates the INLA model result, and the blue line indicates the Gradient Boosting Machine 
model result. The red dots are a random sub-sample of 1500 datapoints for each river and sensor 
combination out of the 43 052 datapoints used in the development of the model. Outliers (deviation 
> 50 cm) were removed before running the model. 
 

The result from the INLA regression model, suggested only a weak negative effect on the deviation, 

was confirmed by the machine learning algorithm GBM. However, the GBM model only explained up 

to 39 % of the deviation between Multibeam and LiDAR data. Again, the relatively low explanatory 

power imply that the predictors slope, depth, sensor, and river have little influence on measurement 

accuracy, as also seen from the small deviations with slope close to zero in Figure 13. Therefore, 

further analyses of measurement deviations using these procedures, were not pursued. Instead, the 

focus was on the increasing data loss with increased water depths.  Overall, the results from the 

accuracy analysis indicate small measurement deviations, and when present and systematic, the 

cause is likely due to calibration issues.  
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3.3. Robustness of Green LiDAR:  loss of data in deep pools 

3.3.1. In situ Multibeam in pools 

Whereas water depth tended to have little effect on measurement accuracy, and calibration issues 

appeared to be more prominent, water depth had a major effect on the availability of green LiDAR 

signals, or loss, as indicated by the Boruta analysis (Figure 14). The Boruta analysis, with data loss or 

not as response variable, also suggested that river was a considerably more important predictor than 

sensor and slope for receiving a reflected green LiDAR signal (se also % loss in Appendix 2).  

 

The ‘best’ INLA binary regression model (green LiDAR signal or not), indicated a similar difference in 

importance between depth and slope, with depth having a coefficient more than 20-fold larger than 

slope in an analysis with scaled values (Appendix 7). The low variation for the two continuous 

variables indicated a consistent pattern. Most of the predictors, together with their associated 

interactions, in the ‘best’ model came up as important, probably due to the high number of 

datapoints analyzed.  

 

Again, the interpretation of the strength of the predictors is made more difficult by the interaction 

terms and is therefore more easily interpreted when plotted for each of the different river-sensor 

combinations (Figure 15). The figure clearly shows how the probability of receiving a green LiDAR 

signal abruptly drops at a critical depth rather specific for each river; around 3 m for Bø and 5 m for 

Hallingdal, i.e., corresponding to their Secchi depths (Table 1). The differences between the rivers are 

most easily seen for the Riegl VQ-880, which was used in all three rivers.  

 

 
Figure 14. Importance of predictors on the binary model with response green LiDAR signal loss or not, 
with in situ data by Multibeam compared to remote sensing green LiDAR. The index is calculated via 
randomization of variables in a Random Forest model using the R-library Boruta. 
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Also, with data from the same river, the pattern of the sensors Leica Chiroptera 4x and Teledyne 

Optech may be compared with Riegl VQ-880, indicating deeper penetration. The Riegl VQ-840 only 

covered deeper pool areas in Bø. Here, this sensor appeared to penetrate slightly deeper that the 

two other sensors used. The abrupt drop in probability of receiving green LiDAR data was also 

dependent of sensor, with a somewhat wider ‘drop’ range for Teledyne Optech, which had the more 

powerful sensor, but with lower point density. In Hallingdal Teledyne Optech penetrated about 1 m 

deeper than the Riegl VQ-880. Lærdal was, however, different with no abrupt ‘drop’. This reflects the 

fact that for the clear Lærdal, no pools were deep enough to estimate Secchi depth. Essentially, the 

bottom identified visible depth. For the less penetrating Riegl VQ-880 sensor, there appears to be a 

change in probability around 9 m depth. These results fit well with the more visual data presentation 

of overall data loss (Appendix 3). 

 

 

 
Figure 15. The probability of retrieving green LiDAR data as a function of water depth calculated from 
binary response models with grid size 100 x 100 cm (n = 43052). The slope was kept constant at the 
mean for each river. The black line with Credible Interval indicates the INLA model results, and the 
blue line the Gradient Boosting Machine model results. The red dots are the proportions of LiDAR data 
received within groups of 4 cm depth for each river and sensor combination. 
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Figure 16.  The influence of the predictors on the probability of receiving at green LiDAR return signal 
or not in the binary Gradient Boosting Machine model. Grid cell size was 100 x 100 cm, n = 44 000, 
and the GBM R2 = 94.4 %. The Accumulated Local Effects (ALE) values indicate how predictors 
influence the predictions of a machine learning model on average, including interactions. For name 
abbreviations, see Table 2. 
 

The combined effects of the three rivers and four sensors on the probability of receiving a green 

LiDAR return signal, summarized in the ALE-plot from the GBM algorithm (Figure 16), clearly indicate 

the threshold depths around 2-3 and 5-6 m for receiving a return signal (lower left panel). Slope does 

not seem to influence this probability much. The influence on receiving a signal is lowest in Bø and 

highest in Lærdal, whereas the effect of sensor is more marginal. These results indicate the 

importance of water visibility for the robustness of green LiDAR signals. 

 

To explore further the potential effects of higher resolution and water depth, the analyses were also 

run for grid size 25 x 25 cm. To balance effort and output and focus on the deepest areas with the 

largest potential for green LiDAR data loss, these analyses used data from the deepest pool in each 

river. A 10 000 data point randomized sub-sample was extracted for each sensor.  

 

As expected, the higher resolution and the deepest pool areas increased the probability of data loss 

(Table 5, Appendix 8), and especially for the Teledyne Optech sensor. With the 25 cm grid, the 
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probability of retrieving green LiDAR data with this sensor, was less than 50 %. However, this reduced 

probability was more related to riverbed elevation point density than water depth. With the 25 cm 

grid size, many cells did not have points at all.  

 

The loss of green LiDAR data points and reduced point density, i.e., the reduced number of points 

classified as riverbed and total number of points reflected, was as expected largest in Bø and smallest 

in Lærdal (Table 5). The larger loss per unit area relative to number of points, was caused by the 

increase in ‘empty’ grid cells, i.e., without any LiDAR data.  

 

To potentially mitigate the effect of data loss, interpolation algorithms were tentatively implemented 

and restricted to an extrapolation distance close to 1 meter from the nearest LiDAR point. Three 

different interpolation algorithms were explored using the R library LidR (TIN, kNN+iDW, MBA).  

 

The increase in mapped riverbed areas using interpolation, was small for the 100 cm grid (Table 5). 

However, for the 25 cm grid the increase was significant, with the percent loss for the interpolated 

25 cm grid, similar to the 100 cm grid (without interpolation) (Figure 15, 17 and Appendix 8). 

Moreover, this depended on sensor, i.e., point density, and was strongest for Teledyne Optech, i.e., 

the sensor with the lowest point density (Table 2). This sensor has highest power, i.e., better water 

penetrating capabilities. This gives a more homogeneous distribution of reflected points for river 

bottom, which via interpolation provides better area coverage with bathymetric data (Figure 16, 17, 

Appendix 9).  

 

 

Table 5. Point density (per m2) and loss of data for 100 cm grid cells compared to 25 cm grid cells. 

Data only from the deepest pond in each river. 

 Point density (per m2) % loss 100 cm % loss 25 cm  

River/Sensor 

Multi-

beam 

All 

reflected   

River 

bottom* % loss Median 

Inter-

polated Median 

Inter-

polated 

Bø         

Riegl VQ-880 220 20.8 1.1 94.9 70 61.5 79 73 

Leica Chiroptera 4x  11.8 0.2 67.2 66 51.7 88 70 

Riegl VQ-840   77.0 1.5 79.0 52 43.3   

Hallingdal         

Riegl VQ-880 104 75.6 2.5 96.8 43 36.6 54 45 

Teledyne Optech  22.6 0.4 81.7 5 2.0 64 6 

Lærdal         

Riegl VQ-880 177 18.1 5.4 71.2 2 0.8 14 3 

Teledyne Optech  1.9 0.4 74.7 2 0.0 66 5 

* Classified as river bottom 
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Figure 17. The probability of retrieving green LiDAR data as a function of water depth calculated from 
binary response models and grid of 25 x 25 cm with interpolation (n = 70 000). The slope was kept 
constant at the mean for each river. The black line with Credible Interval indicates the INLA model 
results, and the blue line the Gradient Boosting Machine model results. The red dots are the 
proportions of LiDAR data received within groups of 4 cm depth for each river and sensor combination. 
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Figure 18. Bathymetric model for the deepest pool in Lærdal (about 9 m) as estimated via interpolation 
(limited to approximately 1 m from a LiDAR point) of the green LiDAR data with a grid resolution of 
100 cm and 25 cm, and for two different sensors. a) Riegl VQ-880 and 100 cm grid, b) Teledyne Optech 
CSMIL and 100 cm grid, c) Riegl VQ-880 and 25 cm grid, d) Teledyne Optech CZMIL and 25 cm grid. 
 

A set of GBM models were used to sum up the effects of different predictors and interpolation on 

the power and accuracy in estimating correct fate of green LiDAR signals (Table 6). Removing 

variables and running new models emphasize the opportunities to substitute a variable for another, 

in contrast to the ALE which focus on the influence of variables in a particular model.  

 

The achieve high predictive power for a 100 cm grid, the variable depth was included in all models. 

With also predictor river added, a proxy for some properties of the studied river reaches, notably 

water clarity, the accuracy was almost as high as for the most complex model with all four tested 

predictors included. Thus, adding sensor did not contribute much to the accuracy.  
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Table 6. Robustness of alternative GBM models in predicting the availability of green LiDAR data in 

grid cells of 100, 25 cm, and 25 cm interpolated grid. Models are sorted by their accuracy value in the 

first column. The proportions of grid cells with LiDAR data received will be the expected accuracy for 

a random model. The reduced ‘success’ in a 25 cm grid size was primarily due to fewer points classified 

as river bottom.  

  Robustness* 

Variables 
100 cm 

median 

25 cm 

median 

25 cm 

interpolated 

Expected accuracy from the proportion 78% 50% 76% 

River + Sensor +Depth + Slope  94 % 82 % 93 % 

River + Sensor +Depth  94 % 82 % 93 % 

River + Depth 93 % 72 % 93 % 

Sensor + Depth 86 % 74 % 85 % 

Depth 83 % 65 % 81 % 

River + Sensor 79 % 72 % 77 % 

River 78 % 61 % 76 % 

Sensor 78 % 68 % 76 % 

* Expressed as the mean of the accuracy of the GBM models estimated from 10-fold cross validation repeated 

3 times. 

 

Interestingly, the conspicuous decline in accuracy seen with the higher 25 cm grid resolution (Figure 

18, Table 6), was almost perfectly ameliorated when implementing interpolation. The accuracy of 

94% achieved with four predictors is strong, even when the expected accuracy by chance alone was 

78%. The Kappa value, which better reflect the accuracy when the proportion of signal/not signal is 

different, as here, was as high as 0.83 (not shown).  

 

These results indicate a high probability of estimating the success of using airborne green LiDAR 

correctly, provided knowledge about river-specific characteristics, i.e., depths and (presumably) 

water clarity. To some degree sensors may also be important.  

 

3.4. Robustness of Green LiDAR:  effect of turbulence and dark river 

bottom 

Analyses using the RGB-derived Lightness index as a proxy for surface turbidity (‘white water’) and 

the light and dark riverbeds in the clear and high-gradient Lærdal, indicated loss of green LiDAR 

signals associated with the lightness index (Figure 19). The probability of retrieving green LiDAR data 

was highest within the medium-to-low lightness range, with a gradual decline towards high lightness 

(60-70; i.e., white water), and a more abrupt decline towards the lowest lightness values (< 20; i.e., 

dark, vegetated bottom) (Figure 19). This did, however, depend strongly on green LiDAR point 

density, with much lower loss for the high point density LiDAR (Riegl VQ880 in Figure 19).  
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The dark areas, with lightness index mostly less than 30, correspond to dark vegetated riverbeds. The 

medium light reflection came from the lighter and more common riverbed type prevalent in Lærdal, 

mostly covered with rock or gravel substrates with no vegetation. 

 

 
Figure 19. Probability of retrieving green LiDAR data as a function of lightness estimated from a 
generalized additive model (GAM). The lightness is calculated from the green channel of the aerial 
photos taken simultaneously with the LiDAR data and scaled to the range 1-100. The lines represent 
probability with (blue) and without (red) interpolation. The interpolation is restricted to 1 meter from 
nearest LiDAR point. The red dots represent the percentage of grid cells with data for every 5 units 
interval of lightness values. The grey lines at the bottom of each figure represents the lightness range 
for the 10-90% percentile range of the typical three bottom conditions classified from the aerial 
photos. The brown lines show the lightness range of dark vegetated areas, the grey lines show the 
lightness range of light rocky bottom, and the white lines the lightness range of areas with turbulent 
surface water. The numbers above the lines are the percentage coverage of each area class in the 
studied river reaches (see Figure 1, Table 1). 
 

With lightness index values rising above 50-60, the river surface was increasingly dominated by white, 

turbulent water. This general pattern of the relationship between the probability of retrieving data 

and the lightness index (Figure 19) remained similar even when other recent orthophotos derived 

from https://www.norgeibilder.no/ (and not taken simultaneously with the LiDAR recordings) were 

used to derive the lightness index (Appendix 10, 11).  

https://www.norgeibilder.no/
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The importance of point density for retrieving green LiDAR data especially from turbulent river 

reaches, was reflected in the comparisons of results from both sensors and from grid cells of 25 and 

100 cm (Figure 19, Appendix 11). There was a more significant drop in the probability of retrieving 

green LiDAR signals from the lighter riverbed type for the Teledyne Optech CZMIL compared to Riegl 

VQ-880 (with higher point density), and especially when the grid size was reduced from 100 to 25 

cm.  

 

On a cautionary note, the higher signal probability seen in general for the Riegl VQ-880, is not only 

an effect of the signal density of the sensor, but also to the adaptive flight pattern for this sensor, 

with repeated flightlines. The Riegl VQ-880 has approximately 13 times higher point density than the 

Teledyne Optech CZMIL, but this difference increased to nearly 40 times for the data, due to the 

adaptive, and thereby overlapping, flight strategy.  

 

The importance of point density is also seen when LiDAR points are interpolated (i.e., restricted to 

approximately 1 meter from the nearest LiDAR point using a moving window of 3x3 cells for 1 meter 

grid and 7 x 7 for 25 cm grid). Even with interpolation across such small distances, the probability of 

having green LiDAR data increases dramatically, and especially for areas with high surface turbulence 

(Figure 19, Appendix 11). Increasing cell area provides more data points, and spots where the bottom 

can be ‘seen’ become more likely.  

 

This association with spatial scale, reflects that ‘white water’ is not uniformly white due to turbulence, 

but a micro-mosaic of varying ‘whiteness’, i.e., degree of surface turbulence. Even apparently ‘white 

water’ has small cells with smoother water surface that high-density green LiDAR sensors can hit and 

penetrate. Data loss reflects a balance between water ‘whiteness’ and green LiDAR point density. An 

adaptive flight strategy with several overflights further enhances this ‘smooth-surface-hit’ 

probability. With repeated flightlines the angles the green LiDAR pulses hit the water surface will also 

differ. Moreover, turbulent surface water is dynamic, and new flight might hit a new micro-mosaic 

providing different smooth-surface hits.  

 

 

3.5. Robustness of Green LiDAR:  Total coverage of green LiDAR for 

the studied river reaches 

The combined effects of water depth, water visibility, riverbed lightness and water surface turbulence 

are reflected in the total coverage of green LiDAR data for the studied river reaches (Table 7). Loss of 

data is generally low, primarily depending on the combined green LiDAR pulse power and river water 

clarity (Secchi depth), and pulse/data density. 
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Table 7. Loss of green LiDAR data for the studied river reaches. 

Sensor River Area 100 cm loss 25 cm loss 

  (ha) 
Direct 

(%) 

Interpolated* 

(%) 

Direct  

(%) 

Interpolated 

(%) 

Riegl VQ-880 Bø 29.7 7.2 5.0 19.6 6.3 

Leica Chiroptera 4x Bø 29.7 16.1 8.3 61.2 12.5 

Riegl VQ-880 Hallingdal 82.9 13.4 11.2 22.6 12.4 

Teledyne Optech CZMIL Hallingdal 83.2 11.1 7.5 71.7 9.6 

Riegl VQ-880 Lærdal 58.7 0.4 0.1 8.3 0.2 

Teledyne Optech CZMIL Lærdal 58.8 4.1 0.6 66.8 2.4 

* Interpolation to a distance of approx. 1 meter from nearest LiDAR point.  

In Lærdal, with very clear water, coverage was almost complete with a grid size of 100 cm. For the 

high-point-density Rigel VQ-880, flown with an adaptive flightline strategy, the reduced coverage at 

25 cm was relatively small, compared to the lower-point-density Teledyne Optech CZMIL, flown with 

only small overlap between flightlines. However, the small distance interpolation brought the CZMIL 

coverage close to the Riegl VQ-880.  

 

In Hallingdal, with water visibility intermediate between Lærdal and Bø, the percentage covered of 

the river was less than in Lærdal. This is due to lower water visibility, but also to the combination of 

visibility and more deeper areas (Table 1). Here the Teledyne Optech CZMIL, with higher power 

pulses, covered the deeper river areas better, and therefore achieved a higher total coverage (Figure 

20).  

 

In Bø, The Riegl VQ-880 and Leica Chiroptera 4x showed the same pattern as between Riegl VQ-880 

and Teldyne Optech CZMIL in the Lærdal river.  
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Figure 20. Total coverage for the 1 meter grid size (green) for Bø and Hallingdal rivers.  

 

 

 

 

4. Discussion 

The objective of the present study was to explore and evaluate the accuracy and point density (spatial 

resolution) of remote sensing green laser LiDAR data. To do this, data were collected and compared 

with in situ methods (transect point and Multibeam data, and across three rivers and four sensors. A 

second objective was to identify which factors may lead to signal loss, and thereby bias or limit 

remote sensing green LiDAR data acquisition. A stratified design across pre-selected hydraulic 

variables, primarily water depth, ‘white water’ associated with river gradient, bottom substrate (size, 

color), and water clarity/underwater visibility. These variables have been identified as potentially 

important in previous studies, but based on limited data acquisition from selected cross-sections or 

one/ few short and uniform, low gradient river reaches, i.e., limited and benign ranges of hydraulic 

conditions ( e.g., Hilldale & Raff 2008; Kinzel, Legleiter & Nelson 2013; Mandlburger et al. 2020; 

Kinzel, Legleiter & Grams 2021; Islam et al. 2022). The novelty of the present study is a stratified 

design including 1) a variety of hydraulic conditions across three different rivers and 2) along long 

river reaches representing a variety of gradients and habitats, and with 3) data collection by both in 

situ (transect points, Multibeam) and remote sensing green LiDAR data, and 4) the use of recently 

developed green LiDAR technology with high point densities, with direct comparisons of data from 

four sensors.  
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4.1. High accuracy in reflected remote sensing green LiDAR signals 

Remote sensing green LiDAR measurements of riverbed elevation were consistently close to 

comparative in situ control measurements by the alternative methods transect point measurements 

(about 500 points with dGPS in typical river reaches) and Multibeam (about 42 000 measurements in 

pools). Deviations were generally less than ± 10 cm. It is important to note none of the measurement 

methods represent the ‘truth’, meaning that deviations represent the accumulated sampling errors 

across methods. However, Multibeam data in deep pools may be closest to the ‘truth’  (e.g., Payne, 

Eggers & Parkinson 2004; Gard 2005; Jowett & Duncan 2012).  

 

High numbers of outlying deviations were found for the pool data, but without any apparent pattern. 

These outliers may be due to more noise in the Multibeam data in shallow and sloping areas, and 

from riverbank vegetation causing noise in the green LiDAR data. It is known that Multibeam data 

tend to become more ‘noisy’ in shallower and more sloping riverbed areas due to increased beam 

angle (e.g., Hughes Clarke, Mayer & Wells 1996; Calder & Mayer 2003). Moreover, some offset 

measurements were probably due to sensor calibration issues. This should be avoided in the future. 

 

If a green LiDAR signal was reflected, accuracy was consistently high across sensors and water depths. 

There may perhaps be a weak tendency for more deviations with increasing depths and coarser 

substrates, but this was somewhat inconsistent in the data. Generally high accuracy in green LiDAR 

data have also been reported previously, although with some variation (Kinzel, Legleiter & Nelson 

2013; Mandlburger et al. 2020; Kinzel, Legleiter & Grams 2021; Islam et al. 2022).  

 

4.2. Loss of signals with increasing depth depends on water clarity 

Loss of remote sensing green LiDAR signals increased with increasing water depth, and abruptly at a 

‘critical’ threshold depth specific to rivers. This critical depth appeared to be closely associated with 

water clarity, as measured with a Secchi disc. Loss of signals increased abruptly around the measured 

Secchi depth. This also implies that remote sensing green LiDAR acquisitions should be implemented 

during stable, low flows, and rising flows avoided.  

 

The importance of water clarity for green LiDAR’s water penetrating capabilities have been reported 

in the few relevant previous studies found in the literature (Mandlburger et al. 2020; Kinzel, Legleiter 

& Grams 2021; Islam et al. 2022). Water clarity/turbidity emerge as a main issue for the application 

of remote sensing green LiDAR in rivers (see Kinzel, Legleiter & Grams 2021 for a thorough 

discussion). However, reported water penetration capability relative to clarity, as expressed with 

Secchi depth, varies across studies. In a recent study with a high point-density green LiDAR across 

three small ponds and a short river reach in the European Alps, Mandlburger et al. (2020) reported 

the penetration depth to be twice the Secchi depth. Similar results were reported  by Kinzel, Legleiter 
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and Grams (2021). Thus, green LiDAR penetration capability appear to be different across rivers, likely 

depending on what cause loss of clarity; light scatter due to suspended particles and/or light 

absorption due to dissolved materials. The results here suggest green LiDAR has reduced penetrating 

capability in humic-rich rivers like two of the rivers in the present study. A penetration depth to 

around Secchi depth, is to our knowledge the lowest reported.   

 

Interestingly, water penetrating capabilities also varied across sensors. For technical reasons, point 

density is balanced by signal power for each sensor. Sensors with fewer signals but more power per 

signal, penetrated water somewhat deeper. In turn, the higher signal strength gives a more 

homogeneous distribution of reflected points, which via interpolation provided better area coverage 

with bathymetric data. These are important pre-project considerations. Depending on project 

objectives and requirements for spatial resolution, point density should be balanced by signal power. 

More signal power gives deeper water penetration and also more continuous and spatially 

homogeneous data, which may compensate for reduced point density via post-processing 

interpolation procedures. For example, for basic bathymetric mapping of riverscapes, coverage may 

be first priority, and therefore higher signal strength with higher depth penetration more important, 

likely in combination with interpolation algorithms for increased spatial coverage. If high resolution 

is first priority, e.g., to capture substrate particle size/roughness for biotic (micro)habitat assessment, 

higher point density will be important. 

 

4.3. Loss of signals with increasing surface turbidity and dark river 

bottom 

The Riegl VQ-880 and Teledyne Optech sensors provided remote sensing green LiDAR data with 

simultaneous aerial photos from Lærdal. The more characteristic ‘white water’ river reaches used for 

further analyses were polygonised manually.    

 

Analyses using the RGB-derived Lightness index as a proxy for surface turbidity (‘white water’) in the 

clear and high-gradient Lærdal, indicated that any loss of green LiDAR signals in ‘white water’ areas 

was associated with sensor pulse/data density relative to the spatial scale of the analyses. On a larger 

100 x 100 cm grid scale, data loss was limited. However, on a 25 x 25 cm grid scale, there was a major 

data loss in many cells, especially for the Teledyne Optech sensor with the lower point density (lower 

point density also due to few overlapping flight lines). This association with spatial scale, reflects that 

‘white water’ is not uniformly white due to turbulence, but a micro-mosaic of varying ‘whiteness’, 

i.e., degree of surface turbulence. In apparently ‘white water’ have small cells with smother water 

surface that high-density green LiDAR sensors can penetrate. Data loss reflects a balance between 

water whiteness' together with bottom darkness/vegetation, and green LiDAR point density.  
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5. Conclusions 

1. Deviations in estimated riverbed elevation/water depth across methods were generally 

small and around 0 (< 10 cm), indicating high accuracy and robustness of the remote 

sensing green LiDAR. 

2. Tested predictors generally had limited predictive power (up to about 40 %), but alternative 

analyses/models gave consistent results with respect to indicating important predictors of 

deviation. 

3. Deviations were not or only weakly associated with in-river characteristics (Depth, 

Substrate, Slope). 

4. Deviations between remote sensing green LiDAR and in situ transect point measurement 

were perhaps to a small degree positively associated with water depth, resulting in slightly 

more deviation with increasing depth, but this trend was not consistent. Deviations were 

weakly positively associated with substrate size, resulting in slightly more deviation with 

increasing substrate size. Deviations were more strongly associated with Sensor and River, 

likely caused by sensor calibration issues and unbalanced study design (for logistic reasons 

not all sensors were tested in all rivers). 

5. Deviations between remote sensing green LiDAR and in situ Multibeam data in pools, were 

weakly associated with water Depth and riverbed Slope. The stronger association with 

Sensor and River, may again be explained by sensor calibration issues and unbalanced study 

design (above). 

6. Remote sensing green LiDAR data loss was strongly associated with Depth, River and Sensor, 

i.e., models including especially Depth and River had high predictive power (up to 93 %). 

7. Green LiDAR data loss was generally small in shallower areas. However, data loss increased 

abruptly at a critical and river-specific water depth. This critical depth for data loss 

correlated with the river-specific water clarity, as expressed by Secchi depth. 

8. Sensors with stronger signals (at the cost of lower point density) penetrated deeper (up to 1 

m deeper across tested sensors). 

9. Green LiDAR data loss increased with increasing amount of ‘white water’, i.e., surface 

turbulence. However, this loss was strongly reduced at higher point densities. There was 

also data loss associated with dark, vegetated bottom. 

10. Green LiDAR data coverage was generally high, but also depended on a balance between 

pulse power (depth penetration) and pulse density (white water penetration) relative to 

river depth/water clarity and amount of river white water. 
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5.1. Further research 

A main concern is the loss of green LiDAR signals in deeper river areas, i.e., the water penetrating 

capability. Apart from signal strength (pulse energy), it varies with water clarity, i.e., depending on 

light scatter due to suspended particles and/or light absorption due to dissolved materials (above), 

and the LiDAR point density.  

 

There is a tradeoff between signal strength and LiDAR point density that needs to be studied more in 

relation to water penetrating capability and the light absorption from turbulent water and dark, 

vegetated riverbed areas.   

 

Further insight into the effect of water clarity may be gained by combining the river data with similar 

data for shallow parts of lakes, and thereby increase number and variety of study objects. Including 

relevant water clarity variables, e.g., Seechi depth, turbidity, as factors in regression models across 

different types of water, will help to explore how different aspects of water clarity affect the 

probability of receiving LiDAR data. 

 

The potential ability of high green LiDAR point density to resolve substrate particle sizes/roughness 

should be explored with respect to point density relative to recording altitude and sensor. 
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6. Appendices 

Appendix 1. Measured wading transect points are for obvious logistic reasons few (green points). In 

addition, the LiDAR point coverage for riverbed elevation turned out to be uneven for some sensors 

(orange points), and did not always overlap with transect measurements, reducing the data available 

for comparative analyses. Here an example from Bø river and Leica Chiroptera 4x sensor.  
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Appendix 2. Data available1 for analysis of pool data with 1x1 m grid size. To balance data, the same 

number of datapoints were drawn randomly from each pond. The number extracted was dictated by 

the sensor-pool combination with the fewest data points, i.e., 1000 used for analysing deviation in 

riverbed elevation and 2000 to analyse LiDAR data loss. Riegl VQ-840 helicopter data covered parts 

of the total pool area, and the percent loss is not directly comparable with the fixed-wing data. 

   Deviation in elevation Loss of data 

Place Sensor All 
To 

analyse¹ 
Loss Selection 

To 

analyse¹ 
Loss Selection 

  N n % n % N % N % 

Bø Riegl VQ-880 14 005 4 193 70 3 000 21 12 997 7 5 526 43 

Bø L.Chiroptera 4x 14 005 5 551 60 3 000 21 12 997 7 5 526 43 

Bø Riegl VQ-840 12 094 5 901 51 2 000 17 11 326 6 4 000 35 

Halllingdal Riegl VQ-880 85 849 52 823 38 3 000 3 83 729 2 6 000 7 

Halllingdal Riegl VQ-840 6 789 5 952 12 1 000 15 6 632 2 2 000 30 

Halllingdal T. Optec CZMIL 85 849 66 310 23 3 000 3 83 075 3 6 000 7 

Lærdal Riegl VQ-880 29 492 27 392 7 3 000 10 28 068 5 6 000 21 

Lærdal Riegl VQ-840 4 148 4 034 3 1 000 24 3 875 7 2 000 52 

Lærdal T. Optec CZMIL 29 492 27 343 7 3 000 10 27 730 6 6 000 22 

Sum/mean  281 723 199 499 30 22 000 14 270 429 5 43 052 29 

1 Requirements for including grid cells in the analysis: 1) For deviation in river bed elevation: green 

LiDAR data available, positive water depth, the deviance in elevation less than 50 cm between 

Multibeam and LiDAR, grid cells not covered by riverbed vegetation seen in the aerial photos acquired 

during the lidar recordings. 2) For loss of data: positive water depth and possible to calculate slope 

from the Multibeam data. 

² Total number of data points were more than 4 million with grid size 25x25 cm. However, the 

proportion of grid cells with LiDAR data declined, so the minimum size available after selection 

increased only slightly.  
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Appendix 3. The majority of the outliers for the deviations (in situ control minus LiDAR data) in 

estimated riverbed elevation (red points) were located close to the riverbanks, to steep slopes, and in 

areas with low point density. Examples from the deepest pool in a) Bøelva for Riegl VQ-880, b) Leica 

Chiroptera 4x and c) Teledyne Optech; d) Lærdal for Riegl VQ-880; e) Hallingdal for Riegl VQ-880 and 

f) Teledyne Optech.    
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Appendix 4. The aerial photos showed extensive light variation across the river areas. When converted 

to a lightness scale, based on RGB values from aerial photos for an automated identification of 

turbulent water areas, green riverbank vegetation and light/shadow contrasts were scored similarly 

as surface white, turbulent water, as indicated by manual control. This lightness score therefore 

biased data along the forest lined Bø (left three panels) and Hallingdal river reaches. However, it 

worked well in the more open (agricultural) landscapes along Lærdal (right three panels). 

 

 
 

 

 

  



Kastdalen and Heggenes: Evaluating in-riverscapes 

 

  

___ 

47 
 

Appendix 5.  INLA regression parameters for remote sensing green LiDAR accuracy for riverbed 

elevation data relative to in situ measurements in transect points. The response variable (accuracy) is 

the deviation in measured riverbed elevation between the two methods, and within a buffer area of 

56 cm around the transect points. The intercept expresses the deviation from the reference, i.e., Riegl 

VQ-880 sensor in Bø. The effects are visualized by river and sensor in Figure 8. *Predictors with 

Credible interval not including 0 are considered important.  

 

Fixed effects Mean 95% Credible Interval  

Intercept 1.13 -3.03 5.29  

Leica Chiroptera 4x -15.18 -18.62 -11.74 * 

Riegl VQ-840 -3.59 -6.97 -0.21 * 

Teledyne Optech CZMIL -0.24 -36.11 35.62  

Hallingdal -1.76 -6.30 2.79  

Lærdal 3.27 -0.31 6.84  

Substrate (1-15) -0.45 -0.82 -0.08 * 

Depth (1-120 cm) 0.08 0.04 0.11 * 

T.Optech CZMIL: Halllingdal 4.39 -31.48 40.26  

Riegl VQ-840    :  Lærdal 3.59 -0.29 7.46  

T.Optech CZMIL:  Lærdal -4.64 -40.51 31.23  

L.Chiroptera4x :  Depth 0.06 -0.01 0.13  

Riegl VQ-840    :  Depth -0.04 -0.11 0.03  

T.Optech CZMIL:  Depth -0.14 -0.21 -0.08 * 

 

Random effects (SD) Mean 95% Credible Interval  

River 0.53  0.01  3.12 * 

Transect 3.98  2.92  5.29 * 

Points 0.38  0.01  1.80 * 

Sensor 2.82 -0.27 24.45  
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Appendix 6. INLA regression parameters for remote sensing green LiDAR accuracy for riverbed 

elevation data relative to in situ measurements in pools by Multibeam. The accuracy is measured as 

the deviation of the river bottom elevation when estimated for grid cells of 1 x 1 meter with the mean 

point value from Multibeam and green LiDAR. *Predictors with Credible interval not including 0 are 

considered important.  

 

Fixed effects Mean  95% Credible Interval  

Intercept 11.60 6.77 16.37 * 

Leica Chiroptera 4x -13.59 -15.10 -12.08 * 

Riegl VQ-840 0.08 -0.87 1.02  

Teledyne Optech CZMIL -5.68 -41.49 30.13  

Hallingdal 2.16 -4.54 8.90  

Lærdal -13.26 -19.91 -6.50 * 

Depth -0.04 -0.05 -0.04 * 

Slope -0.18 -0.20 -0.16 * 

Riegl VQ-840    : Halllingdal -8.21 -9.20 -7.22 * 

T.Optech CZMIL: Halllingdal -1.92 -37.73 33.89  

Riegl VQ-840    :  Lærdal -2.54 -3.15 -1.94 * 

T.Optech CZMIL : Lærdal -3.77 -39.57 32.04  

L.Chiroptera4x : Depth 0.04 0.03 0.05 * 

Riegl VQ-840    : Depth 0.01 0.01 0.02 * 

T.Optech CZMIL: Depth 0.00 0.00 0.00  

Hallingdal          : Depth 0.04 0.03 0.04 * 

Lærdal                : Depth 0.05 0.05 0.06 * 

     

Random effects (SD) Mean 95% Credible Interval  

River 0.19 0.03 0.66 * 

Pool 4.26 2.16 8.34 * 

Grid cell  0.16 0.04 0.44 * 

Sensor 0.12 0.05 0.23 * 
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Appendix 7. INLA regression parameters for a binary loss model in pools using grid cell size 100 x 100 

cm. The numbers in brackets are the coefficients for a model with scaled values for the covariates. 

Fixed effects Mean      95% Credible Interval  

Intercept 13.42 12.21 14.65  

Leica Chiroptera 4x -3.51 -4.45 -2.57 * 

Riegl VQ-840 1.02 -0.20 2.27  

Teledyne Optech CZMIL -3.92 -39.74 31.89  

Hallingdal -0.89 -2.52 0.73  

Lærdal -0.38 -2.50 1.83  

Depth (1-1300 cm)                  (-10.2)  -0.06 -0.07 -0.06 * 

Slope (0-70 °) (0.4)  -0.05 -0.05 -0.04 * 

Riegl VQ-840    :Halllingdal -1.23 -2.36 -0.03 * 

T.Optech CZMIL:Halllingdal -0.20 -36.01 35.6  

Riegl VQ-840    : Lærdal -6.64 -8.62 -4.46 * 

T.Optech CZMIL: Lærdal -3.72 -39.53 32.1  

L.Chiroptera4x : Depth 0.03 0.02 0.03 * 

Riegl VQ-840    : Depth 0.01 0.00 0.01 * 

T.Optech CZMIL: Depth 0.01 0.01 0.01 * 

Hallingdal     :     Depth 0.04 0.03 0.04 * 

Lærdal           :     Depth 0.05 0.05 0.06 * 

 

Random effects (SD) Mean 95% Credible Interval  

River 0.04 0.02 0.07 * 

Pool 0.67 0.36 1.02 * 

Grid cell 0.11 0.02 0.38 * 

Sensor 0.09 0.06 0.12 * 
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Appendix 8. The probability of retrieving green LiDAR data as a function of water depth calculated 

from binary response models and grid of 25 x 25 cm (n = 44 000). The slope was kept constant at the 

mean for each river. The black line with Credible Interval indicates the INLA model results, and the 

blue line the Gradient Boosting Machine model results. The red dots are the proportions of LiDAR data 

received within groups of 4 cm depth for each river and sensor combination. 
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Appendix 9. Bathymetric models. 

Bathymetric model for the deepest 

pool in Hallingdal river (studied 

reach) estimated through 

interpolation of Multibeam/LiDAR 

points to a grid resolution of 25 cm.  

a) Aerial photo from Terratec 

b) Multibeam 25cm median 

c) Riegl VQ-880 25cm median 

d) Teledyne Optech CZMIL 25cm 
median 

e) Riegl VQ-880 25cm  
Interpolation 

f) Teledyne Optech CZMIL 25cm  
Interpolation  

Bathymetric model for the deepest 

pool in Bø river estimated without 

and with interpolation of 

Multibeam/LiDAR to a grid 

resolution of 100 cm and 25 cm.  

a) Terratec Aerial photo 2019 

b) Multibeam 25cm median  

c) Riegl VQ-880 25cm median 

d) Leica Chiroptera 4x 25cm 
median 

e) Riegl VQ-880 25cm  
Interpolation 

f) Leica Chiroptera 4x 25cm  
Interpolation 
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Bathymetric model for the 

deepest pool in Lærdal river 

(studied reaches) estimated 

through interpolation of the 

Multibeam/LiDAR points to a grid 

resolution of 25 cm.  

a) Lærdal  Terratec Aerial 
photo 2021 

b) Lærdal  Multibeam 25cm 
Median 

c) Lærdal  VQ-880  25cm 
Median 

d) Lærdal  Teledyne Optech 
CZMIL  25cm Median 

e) Lærdal  VQ-880  25cm 
Interpolation 

f) Lærdal  Teledyne Optech 
CZMIL  25cm  Interpolation 
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Appendix 10. Percentile values for the lightness index of the three thematic classes used to map the 

Lærdal river. The “rgb” source represent the aerial photos recorded simultaneously with the LiDAR 

data, and “nib” the most recent photos from the archive norgeibilder.no.  

Classes Source Size Camera Q10 Q50 Q90 

LightBottom rgb 100 AHM 26 32 39 

WhiteSurface rgb 100 AHM 36 50 76 

DarkBottum rgb 100 AHM 20 24 31 

LightBottom rgb 100 TTF 28 40 52 

WhiteSurface rgb 100 TTF 36 58 82 

DarkBottum rgb 100 TTF 15 26 42 

LightBottom rgb 25 AHM 28 34 41 

WhiteSurface rgb 25 AHM 40 53 80 

DarkBottum rgb 25 AHM 23 26 32 

LightBottom rgb 25 TTF 28 41 59 

WhiteSurface rgb 25 TTF 37 64 90 

DarkBottum rgb 25 TTF 17 23 40 

        
Classes Source Size Camera Q10 Q50 Q90 

LightBottom nib 100 AHM 24 34 53 

WhiteSurface nib 100 AHM 25 45 89 

DarkBottum nib 100 AHM 18 26 46 

LightBottom nib 100 TTF 29 37 49 

WhiteSurface nib 100 TTF 29 46 86 

DarkBottum nib 100 TTF 23 29 44 

LightBottom nib 25 AHM 30 39 60 

WhiteSurface nib 25 AHM 29 49 96 

DarkBottum nib 25 AHM 24 32 55 

LightBottom nib 25 TTF 29 39 53 

WhiteSurface nib 25 TTF 28 46 90 

DarkBottum nib 25 TTF 24 30 47 
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Appendix 11. Probability of retrieving green LiDAR data as a function of lightness estimated from a 

generalized additive model (GAM). The lightness is calculated from the green channel of the latest 

aerial photos existing at the Norge-i-bilder.no database and scaled to the range 1-100. The lines 

represent probability with (blue) and without (red) interpolation. The interpolation is restricted to 1 

meter from nearest LiDAR point. The grey lines at the bottom of each figure represents the lightness 

range for the 10-90% percentile range of the three typical bottom conditions classified from the aerial 

photos (appendix 10). The brown lines show the lightness range of dark vegetated areas, the grey 

lines the lightness range of light rocky bottom, and the white lines the lightness range of areas with 

turbulent surface water. The numbers above the lines are the percentage of each class in the studied 

river reaches (see Figure 1, Table 1). 
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