

www.usn.no

Faculty of Technology, Natural sciences and Maritime Sciences
Campus Porsgrunn

FMH606 Master’s Thesis 2022

Master of Science, Industrial IT and Automation

Integrating Decentralized Ledger Technologies
with the Internet of Things (IoT) to handle

Operational Maintenance Data

Rejith Reghunathan

www.usn.no

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this student report.

Course: FMH606 Master’s Thesis, 2022

Title: Integrating Decentralized Ledger Technologies with the Internet of Things (IoT) to store
operational maintenance data.

Number of pages: 63

Keywords: IoT, Preventive Maintenance, Blockchain, Ethereum, IOTA, Smart contracts, Data
Storage.

Student: Rejith Reghunathan

Supervisor: Leila Ben Saad

External partner: N/A

Summary:
The number of IoT devices is over several billion as of 2020. The increased number of IoT
devices and the generated data introduces the challenge of privacy. There is a need for a safe
and trustworthy-based storage model. IoT devices can be used to monitor, predict, and
schedule machinery maintenance. The service history and generated IoT data for analysis
are critical, and data integrity is vital. The thesis presents a solution for storing such critical
IoT operational sensor data in a decentralized ledger. Instead of storing data in a traditional
database or in a cloud, the data is stored in both Ethereum blockchain and IOTA tangle. The
thesis develops an application that can acquire data from IoT devices, store it in the
decentralized ledgers such as Ethereum and IOTA, and stakeholders can view historical
operational data in immutable and secure technology. The performance of the proposed
solution is evaluated and a comparison between the distributed ledger technologies are
conducted.

 Preface

3

Preface
The thesis is carried out to partially fulfill the master’s degree in Industrial IT and Automation
requirement at the University of Southeast Norway (USN).
I wish to thank my supervisor, Ms. Leila Ben Saad, for her guidance and close supervision
throughout the project. Her mentorship and expertise aided me in challenging myself to step
out of my comfort zone and explore several topics for the thesis.

I thank the discord and community support for IOTA for their guidance during the project.
I wish to thank my good colleague at work, Mr. Jarle Melandsør, for sharing the hardware
needed for the thesis implementation. I also thank Mr. Siv S, a software developer in Smart
World, for providing a general overview of distributed ledger technologies.
My gratitude goes to my wife Krishna, our family in India, and our two beautiful kids,
Anamika, and Archie, for their encouragement throughout the course.

Horten, Norway.

3 September 2022

 Contents

4

Contents

1 Introduction ... 6
2 Background ... 9

2.1 IoT Concept .. 9
2.2 IoT benefits .. 10
2.3 IoT requirements ... 10
2.4 IoT in operational maintenance systems .. 10
2.5 Distributed Ledger Technologies .. 11
2.6 Blockchain ... 11

2.6.1 How BC works .. 12
2.6.2 Types of BCs .. 12
2.6.3 Consensus Algorithms .. 13

2.7 DAGs ... 15
2.7.1 IOTA .. 15

2.8 Smart Contracts ... 17
2.9 IoT and DLT integration .. 18
2.10 Distributed ledger security .. 19
2.11 Literature review ... 19

3 System Concept and Specification ... 20
3.1 System overview ... 20
3.2 System specification ... 21
3.3 System requirements and Use Case ... 21

3.3.1 Requirements ... 21
3.3.2 Use case diagram .. 22

4 System Design and Implementation .. 23
4.1 Sequence diagram for use cases ... 23

4.1.1 Read / Store IoT Data ... 23
4.1.2 Access IoT Data ... 24
4.1.3 Store Service History ... 25
4.1.4 Access Service Data .. 26

4.2 System architecture .. 27
4.3 System implementation .. 29

4.3.1 System Implementation diagram .. 29
4.3.2 Algorithm .. 30

5 Results and Discussion .. 33
5.1 Testing .. 33
5.2 Performance Evaluation ... 39

5.2.1 CPU and Memory Usage ... 39
5.2.2 Gas Cost ... 40
5.2.3 IOTA Vs. Blockchain .. 41

5.3 Discussion ... 41
6 Conclusion ... 43
References ... 44
Appendices .. 47

 Nomenclature

5

Nomenclature
IoT - Internet of Things
BC - Blockchain
DAG - Directed Acyclic Graph

HTML - Hyper Text Markup Language
DOS - Denial of service

AI - Artificial Intelligence
DLT - Distributed Ledger Technology

IPFS - Inter Planetary File System
DApps - Distributed Applications

EVM - Ethereum Virtual Machine
PoW - Proof of Work

PoS - Proof of Stake
WSN - Wireless Sensor Technology

PdM - Predictive maintenance
ISC - IOTA Smart Contracts
EOA - Externally Owned Account

API - Application Programming Interface
HTML - Hyper Text Markup Language

CSS - Cascading Style Sheets
MQTT - Message Queue Telemetry Transport

 1 Introduction

6

1 Introduction
Internet of Things, or IoT in its short form, is an emerging technology field where a global
network of devices communicates and exchanges data over the Internet [1]. Internet of things
can acquire data, analyze it, and make decisions based on the information collected [1]. Such
devices are gradually gaining recognition in various industries such as the health sector, supply
chain, energy distribution, shipping, and transport sectors. As of 2022, the IoT market is
expected to grow to 14.4 billion active connections [2]. It is expected that by 2025, despite the
global chip shortage in 2022, the growth accelerated approximately 27 billion connections [2].
The increased data generated from IoT devices introduces the challenge of privacy where there
is a need for a safe and trustworthy-based storage model [3]. The traditional techniques use a
centralized data server to control data transfer across different nodes. However, it increases
maintenance costs and, therefore, network expenses. Moreover, the centralized hubs constrain
the overall performance and are a single point of failure [3]. Consequently, it is necessary to
have a secure, trustworthy storage model that improves performance and shall not be a single
point of failure.
Decentralized Ledger Technologies (DLT) is currently used in financial applications as a
solution for secure peer-to-peer transactions as a decentralized solution. DLT technologies
include blockchain technologies such as Ethereum and Hash Directed Acyclic Graph (DAG)
technologies such as IOTA. Both these technologies have programmable capabilities on
distributed ledgers.
The following are essential advantages provided by decentralized technologies based on IoT
platforms [4]

• Decentralized technologies introduced an inherent trust as the data stored are immutable
[4].

• Costs related to a “trusted middleman” are removed [4].

With these advantages, the technology can be considered a solution for the challenges faced by
IoT industries to store data in a safe and trustworthy environment.

One of the applications benefitting IoT and distributed ledger technologies integration is
logging operational maintenance data. IoT devices are used to monitor critical equipment and
log maintenance data. DLT and IoT integration generate immutable operational data and
maintenance records [5]. The thesis presents a use case for storing IoT operational maintenance
data in a decentralized ledger environment. The stored data is accessible to the machinery
owner and service providers, providing an inherently trusted storage mechanism.

1.1 Objective
Consider a process industry where service companies need IoT operational data and the status
of the previous service history of machinery. Service companies use the data to identify trends
in the data to plan preventive and periodic maintenance of equipment. A distributed technology
can be seen as is a data storage mechanism as a replacement for traditional database or cloud
solution to store data.

 1 Introduction

7

Figure 1-1 shows the conceptual view of how a piece of machinery is monitored using several
IoT sensors to update maintenance data using distributed technology. Maintenance data of
equipment is collected using IoT sensors. The data is stored in distributed ledgers such as
Directed Acyclic Graph (DAG), IOTA chain, or Blockchain (BC) such as Ethereum chain [3],
[6]. Service companies use stored data for analysis and storing maintenance data ledgers.
Service companies can write service records to the distributed ledgers after a completed
service. Equipment stakeholders can read data from the distributed ledgers to know more about
the equipment’s health and service history.

Figure 1-1 Conceptual view of the use case

The following are the core objectives of the project:

• Presenting a review of the use of distributed ledger technology in the internet of things
domain.

• Connecting to IoT devices using the python programming language.
• Developing distributed ledger programming to handle decentralized operations.
• Use of python’s libraries for connecting and writing data to decentralized technologies.
• Developing front-end client applications.
• Evaluating and testing decentralized technologies for storing maintenance data, service

data, and user interaction.
• For the specific use case, a comparative study of the two types of DLT technologies:

Blockchain (BC) and Directed Acyclic Graph (DAG).
• Discussing the limitations and challenges of integrating distributed ledgers in IoT

domain and propose possible improvements.

 1 Introduction

8

1.2 Outline
This section provides a summary of the chapters of the thesis.

• Chapter 2 presents a general concept of the Internet of Things technology. The section
introduces IoT devices in operational maintenance, where the collected data helps in
periodic maintenance. The section also discusses the benefits of IoT devices. The
chapter also covers an overview of distributed ledger technologies, both blockchain and
DAG technology. The general structure of Smart contracts and their applications are
presented. The applications and challenges of DLT and IoT integration are also a part
of the chapter.

• Chapter 3 discusses the developed system concepts and specifications. The chapter
introduces the system overview and system requirements.

• Chapter 4 gives a detailed explanation of the system implementation.

• Chapter 5 presents the results of the work. The chapter also discusses the comparison
between BC and DAG technologies and carries out a general discussion of the thesis.

• Chapter 6 discusses some conclusions and proposals for future work.

 2 Background

9

2 Background
The chapter presents the general concept of the Internet of Things, Distributed Ledger
Technologies, and the integration of IoT and DLT. A review of recent research papers in the
field of DLT and IoT is also presented.

2.1 IoT Concept
Significant developments in wireless sensor technology and informatics have paved the
development of the Internet of things (IoT) technologies. The Internet of Things is present on
both a personal and professional level. The IoT is critical in improving living standards through
e-health and smart homes. In addition, automation, smart supply chain and transportation,
remote monitoring, and shipping industries are all areas where IoT is utilized [11].
Kevin Ashton and his work at Procter and Gamble use RFID tags and introduced the term
“IoT”. The concept of IoT has grown from simple RFID tags to a giant ecosystem where it is
estimated to have over 1 trillion Internet-connected devices by the year 2030. IoT devices have
affected various sectors such as industries, health, and consumer markets [8].
The following are the basic requirements of a device to be considered part of the IoT [8].

• IoT devices should be powerful enough to host an Internet protocol software stack.
• The hardware and power capacity should be ethernet or wireless network connection.
• IoT devices cannot be traditional Internet-connected devices, such as PCs, laptops,

servers, etc.
• IoT devices should monitor data from the environment.

In short, IoT devices are compact, intelligent sensors that collect data from their environment;
the data is sent to a server or a cloud for storage and processing. The processed information is
provided structured via an internet application [9]
Traditionally, the Internet introduced the concept of interconnecting communication devices
and enabled end users to communicate using the technology. With technological advancements
and Wireless Sensor Networks (WSN), real-time data flow from the sensor devices was
possible. The amount of data generated from these devices paved the way for an ample storage
cloud-based solution. The specialized cloud services are designed to collect data from WSNs.
The results are reverted via the Web by evaluating data precipitously when client requests are
received. However, cloud and web-based evaluation introduced security concerns in the IoT
applications [9].
RFID tags in factory production materials are an excellent example of IoT solving process
management bottlenecks. RFID readers can solve segregation according to the production
process and improve the production process’s overall efficiency. Still, it also introduces
traceability since the smart sensor devise transfers the information to cloud service, which can
be analyzed later [9].
IoT applications include lifestyle, health care, smart cities, industries, and environments. The
data collected from the smart sensors are stored in cloud environments, creating a “big data”
[9].

 2 Background

10

2.2 IoT benefits
There are several benefits of IoT [9]:

• Distributed intelligence where the need for a central control unit is removed. The smart
device on the network can make decisions based on the environment and situations.

• Communication speed is improved with the development of specific protocols such as
OPC UA to facilitate machine-to-machine communication.

• Since the development of IoT devices is cheap, several IoT devices are used to collect
information. The collected data is evaluated and analyzed for business decision
processes.

2.3 IoT requirements
There are three requirements categories for the IoT devices [10].

• Low resource consumption: IoT devices generate a vast amount of data. Therefore,
power consumption is an important criterion in the design phase to increase the lifetime
of the device and the life of onboard batteries.

• Widespread interoperability: Due to the integration with web-based technologies and
information analysis, it is vital to have IoT devices able to communicate with both the
web and other IoT devices.

• Nano transactions: Several transactions are generated by IoT devices, which need to be
maintained without sacrificing security or performance. There shall be an infrastructure
to handle such micro-transactions.

2.4 IoT in operational maintenance systems
Several sensors can measure temperature, pressure, humidity, etc., directly impacting the
equipment life cycle in an industrial environment. Introducing IoT sensors embedded in the
machinery makes it possible to identify the condition to diagnose equipment failure. By
monitoring these indicators, we can plan preventive maintenance and, to some extent, delay
planned maintenance [11]. Predictive maintenance (PdM) helps to reduce maintenance costs
and ensure sustainable operational management [12]. PdM aims to predict the next error to
perform preventive maintenance before the failure [12]. With several machines in an industrial
environment, it becomes challenging to survey these data manually. Therefore, it is necessary
to introduce automated data collection and analysis. Industrial giants such as General Electric
have developed service-oriented business models using IoT sensors to monitor the performance
of their products [11]. Preventive maintenance helps promote sustainable production practices
by extending the equipment's life [12].
Classic models used in the modern period primarily use age-dependent failure rates. The
models do not consider equipment deterioration [11]. With IoT sensors and the introduction of
big data and destructive technologies such as distributed ledgers, failures are detected using a
detailed analysis of the equipment characteristics. For example, consider a diesel engine; by
using vibration and acoustic sensors, a healthy state of the machine can be plotted. A variation
on the sensor patterns can assist in predicting equipment failure characteristics. Temperature
sensors are also an excellent indicator of the failure distribution [11].

 2 Background

11

Using data-driven Artificial Intelligence (AI) applications utilizing data collected from IoT
devices can help in the excellent data analysis [12]. In addition, AI analysis helps in preventive
maintenance. However, the use of AI in the analysis is not in the thesis scope.

2.5 Distributed Ledger Technologies
Centralized and decentralized systems are the two types of data storage systems based on how
data is stored. The centralized systems are vulnerable as a failure in the central authority can
cause the collapse of the whole system [3]. There is an additional challenge of privacy where
a single source has access to the data. The use of distributed technology-based storage solves
the limitations of centralized systems. This section discusses the basic concepts of distributed
ledger technologies. Distributed Ledger Technology (DLT) uses several technologies such as
private/public-key cryptography, hash functions, databases distributed across various nodes in
the network, credible consensus algorithms, and a decentralized processing [13]. DLT is a
distributed ledger where the owners of digital goods can transfer from peer to peer, and a
register stores the transfer information [14]. The technology is tamper-proof and immutable,
where the decentralized network maintains a copy of the whole database, which is
synchronized [3].
Figure 2-1 illustrates a server-based centralized network and a blockchain network.

Figure 2-1: Server-based network and Blockchain network [15]

The two main types of distributed ledgers technologies are:

• Blockchain technology.
• Directed Acyclic Graphs (DAGs).

2.6 Blockchain
Blockchain (BC) technology is a fully distributed and trusted ledger technology that Satoshi
Nakamoto initially found to store and transfer Bitcoin cryptocurrency from peer to peer [3].
The BC technology removes the need for a centralized authority. The technology is tamper-

 2 Background

12

proof and makes data modification impossible [2]. All the nodes in the network store a copy of
the data in a ledger and are updated simultaneously. The data update method avoids any data
loss [3].
Several case studies of the application of BC technology are implemented across different
fields.	 The research studies ranged from developing Blockchain-based IoT solutions to
blockchain-based industrial applications [13]. The research work made a way for applications
in Blockchain called Distributed Applications (DApps) [13].

2.6.1 How BC works
BC technology uses cryptographic principles. Every node has both public and private keys. A
public key is for encryption used by other nodes to encrypt data targeted to a particular node
and is the unique identifier for each node. A private key allows you to decrypt and read
messages to the node. In addition, the nodes use private keys to authenticate and sign
transactions. After approval, the node’s peer receives the transaction and broadcasts it through
the network. Each node verifies the transaction’s validity before retransmission, confirming
data integrity. Specific nodes called miners organize the proven transactions into blocks. The
Blockchain’s consensus algorithm (validation algorithm) determines miners and data on each
block. “Genesis block” is the initial block in the chain. Each block contains a header and a
transaction list. Each block’s header includes the previous block’s hash, and the block’s
transaction list has data transactions. Since the hash depends on the parent, if there is any
change in data – it will affect consequent blocks. Therefore, any data change will require a new
validation. The network nodes verify that the integrity of previous transactions is intact, and
that the new block’s hash matches the last block. The ledger now includes a new block when
transaction and hash are confirmed [3] [13].

Figure 2-2 shows the basic blockchain structure.

Figure 2-2Blockchain structure [13]

2.6.2 Types of BCs
BCs can be divided into the following three types:

 2 Background

13

2.6.2.1 Public Blockchain

A public blockchain is a decentralized distributed system where members can share and verify
blockchain transactions. The usage of a trustworthy third party is not necessary for
authentication. Such chains are usually utilized efficiently in the financial industry for
transactions like digital currencies, tokens, international payments, and other areas like
crowdfunding. Despite these advantages, there is a disadvantage: writing and processing times
may be slowed when there is an increase in the number of participants [15].

2.6.2.2 Private Blockchain

A private chain is related to the public chain, with the difference in that not all can participate
in the chain. The service provider limits the individuals who can access the chain. Due to the
limited access, the blockchain is seen as a centralized chain with improved security and
transaction speed. Only nodes that can take legal responsibility are authorized to approve and
verify a transaction. Block creation time is short as only approved nodes participate in the
chain. The reliability of the chain is often in question as the nodes depend on the service
provider [15].

2.6.2.3 Consortium Blockchain

A consortium blockchain limits users by approving only those with certain participation
requirements. Several levels of authorization limit participants from viewing all or part of
transactions. These chains are semi-centralized where the participants are companies or
organizations [15].

2.6.3 Consensus Algorithms
Safety and liveliness are the core principles for designing consensus algorithms. Safety is the
ability to handle corrupted or out-of-sync messages so that all non-faulty nodes can reach a
valid consensus according to the state machine’s rule. The liveness of a system means that
despite faults, non-faulty nodes can continue to handle other distributed processes. However,
it is possible for a distributed system running a consensus protocol to fall under “Byzantine
fault”. The fault is where a node sends false messages and misleads other nodes. A node
developing such a fault may be due to software bugs or compromised. Several consensus
algorithms can handle such defects by considering network performance, uses-cases, and
maliciousness of compromised nodes [16].
Publicly deployed blockchains cannot use voting as a consensus mechanism. Therefore, the
participants can use multiple accounts in Blockchain and launch a Sybil attack to drive
decisions in their favor. In such cases, the lottery-based selection is employed in the consensus
algorithm, where a single node publishes new blocks in the Blockchain. Block creation is
intentionally set as “expensive” to avoid biasing consensus decisions in a participant’s favor
[16].

Figure 2-3 shows a typical blockchain process with consensus for transaction validation.

 2 Background

14

Figure 2-3 Blockchain Process with Consensus Mechanism [3]

2.6.3.1 Proof of work

Proof of Work (PoW) is Bitcoin's first public blockchain consensus algorithm. Any node can
publish a new block to the Blockchain when performing computationally intensive work.
Posting new blocks is called “mining”, where participants race to find the value of nonce when
hashed with the hash of the block results in a resultant smaller than the predefined threshold.
As the number of participants rises, the difficulty level of the threshold is changed. The block
header records the changes to maintain an average block processing time. After calculating
nonce, the miner adds the value to the block header and broadcasts its block to the network.
Participating nodes verify this, and the miner receives the processing fee associated with the
transaction as a reward. Expensive block creation and transaction fees secure the network from
attacks and false block creation [16].

2.6.3.2 Proof of Stake

An environmentally friendly alternative for PoW is Proof of Stake (PoS). The consensus
algorithm aims to cut down electricity costs associated with PoW. Here the algorithm seeks to
stake the economic share of peers in the network. “Validator” corresponds to “miner” in PoW.
One of the validators publishes a new block onto the Blockchain in the concept. The validator
selection is in a pseudorandom method where the probability depends on the proportion of the
validator’s share in the network [16].

2.6.3.3 Proof of Activity

Proof of Activity combines the features of the proof of work and proof of stake. The concept
focuses on rewarding stakeholders who are actively participating in the network. The first step
is mining potential block headers, followed by a random group validating the mined block
header. The probability of the validator selection is proportional to the peer’s share in the
network. Finally, the miner and validators share transaction fees. There are several criticisms
of the type of consensus mechanism due to its high energy requirement. Additionally, there can
be a possible “nothing at stake” attack [16].

 2 Background

15

2.7 DAGs
DAGs or Directed Acyclic Graph is an excellent alternative to solve scalability issues of BC
technologies. Unlike a blockchain containing blocks, DAG is a data modeling tool with vertices
and edges. The transactions are stored on top of one another, known as vertices. The
transactions are submitted to the DAG via nodes, where nodes must perform PoW as a
consensus mechanism. The model allows for more transactions, and the wait time for
transaction completion is considerably reduced compared with BC. Obyte, IOTA, and Nano
are a few examples of DAG [17].

2.7.1 IOTA
IOTA means infinitesimally minor in Greek, adequately coined since it enables micropayments
[18]. It is an open-source distributed ledger technology known as the “cryptocurrency without
a blockchain” [4]. The technology allows data transfer between IoT devices based on Hash
directed Acyclic Graph known as the “Tangle” [4]. Unlike miners in the Blockchain, IOTA
uses a PoW consensus algorithm. Hence, there are no fees associated.
Figure 2-4 shows the structural difference between a blockchain and IOTA tangle.

Figure 2-4 BC Vs. IOTA ledger [6]

2.7.1.1 How IOTA works

The tangle is a special type of “DAG”, a lightweight protocol, and a block-less ledger for
storing transactions specially designed for IoT devices. A tangle is a collection of vertices
(transactions) connected by edges. Each edge is a participant whose consensus mechanism is
the Proof of Work (PoW) [10].

 2 Background

16

Proof of work is carried out in three steps [19]:
1. Construct a transaction bundle that contains individual transactions for the value

transfer.
2. Randomly choose unapproved transactions or call tips in IOTA to join the tangle.
3. Calculate the nonce to join the transaction as vertices using PoW.

Figure 2-5 shows the proof of work algorithm and how IoT data is bundled into the IOTA
network.

Figure 2-5 IOTA Proof of Work [19]

The following are the main differences between IOTA and blockchain [6]:

• In BC, blocks follow the last block and can only be attached to a single point.
Transaction approval occurs once miners include the transaction in a newly issued
block. Usually, miners decide which transaction they want to include in the block.
Therefore, fees play a major role in BC. Miners favor users willing to pay a higher fee
for the transaction. In the IOTA tangle, there are no miners, and all users can issue a
new transaction and attach it to the tangle. It is a network of parallel processed
transactions called Tips. All transactions are included as long as they do not break the
rules of the protocol [6].

• Blockchain must have a single leader, the block producer, who will earn all transaction
fees. The situation will introduce a “miner race,” meaning that a miner with the highest
computational power or staker with the highest stake is highly likely to be the next
block leader. IOTA is a leaderless protocol, and everyone is free to attach transactions.
IOTA is a multi-threaded ledger with a high transaction throughput [6].

• IOTA has a coordinator – a temporary solution to send signed messages. There is no
coordinator in blockchains. Upcoming IOTA 2.0 will remove the coordinator. A
coordinator is a client who can send signed messages called milestones that nodes use
to confirm messages. Messages in the tangle are confirmed only when validated nodes
directly or indirectly reference the message. To ensure that new messages always have
a chance to get validated, the coordinator sends indexed milestones every 10 seconds.

 2 Background

17

It illustrates how the coordinator monitors new transactions and confirms milestones
[6].

Figure 2-6 Coordinator confirming Milestones [6]

2.8 Smart Contracts
Smart contracts are computer programs deployed and automatically executed on the distributed
ledgers. The program is triggered when addressing a transaction after the smart contract is
deployed in the chain. Once triggered, the execution is automatic and is carried out by every
node on the network. The deployed smart contract cannot be modified; therefore, it is not
possible to tamper with the code [10]. In short, smart contracts are programs running on a
distributed network. The main requirement is that the ledger state should be agreed upon by all
nodes running it [20]. For example, a smart contract can contain some tokens (currency in the
distributed ledgers) for handling land ownership. The smart contract accepts both tokens and
the land ownership deed. Then the code will predictably exchange them between both parties.
It is therefore making it impossible not to deliver the promise. In this case, the smart contract
code is law [21].
Solidity is the programming language used by developers in the Ethereum chain to create smart
contracts. Ethereum is a transaction-based state machine. The first state is called the genesis
state, which is modified with the execution of each transaction. The transaction is validated
based on the information in the latest block accepted to the network. Ethereum is made of two
accounts – externally owned accounts and contract accounts. Contract accounts are referred to
as smart contracts. Both accounts contain a transaction counter called nonce, balance, and the
ability to send transactions. Smart contract accounts differ from the externally owned account
as it contains contract code and contract data storage [22].

 2 Background

18

In the case of IOTA, the smart contracts are called IOTA Smart Contracts (ISC). ISC attempts
to solve the scalability challenge in the DLT domain. Scalability leads to low throughput and
high transaction costs [23]. IOTA’s ISC provides multi-chain DLT, which hosts parallel. IOTA
2.0 is fully decentralized without a coordinator and implements Smart contracts [23]. IOTA
2.0 runs on the development network as of this writing. The structure of the IOTA 2.0 design
has several layers which separate messaging, transacting, and validating components from the
application layer. The application layer contains smart contracts. Smart contracts run on Wasp
nodes on layer two connected to Goshimmer on layer 1. Layer 1 handles transactions and
messaging [23]. The current release of IOTA smart contracts has experimental support for
Ethereum solidity codes and a native smart contract. Since IOTA fully supports Ethereum code,
the thesis attempts to use the same solidity code for developing the system.

Figure 2-7 shows the network layers on IOTA.

Figure 2-7 IOTA network layers [23]

2.9 IoT and DLT integration
Due to data transparency and immutability, IoT and DLT integration is getting quite popular.
The solution now is to store the data locally or in the cloud. As discussed earlier, storing
sensitive data in the cloud has inherent privacy issues. In the case of IoT data and especially
maintenance data storage, the data needs to be shared with several parties. Data integrity is also
vital, particularly since the data estimates maintenance schedules and involves machinery’s
health. IoT data handled through the immutable DLT enables classification authorities or a
future owner to trace the machine’s history and if the service is done properly at defined time
intervals [24].

 2 Background

19

2.10 Distributed ledger security
Decentralized technologies work without the need for a third party. Therefore, security is the
key to ensure trust in the trustless structure. Like traditional computing, DLT also faces attacks
such as Denial-of-Service (DoS), code vulnerabilities, endpoint security, and data protection.
There are routing attacks that delay the block propagation, eclipse attacks by isolating a
victim’s network view, and main-in-middle attacks that interfere with network nodes. DLT
security is also exposed due to human negligence and insufficient monitoring. The hackers
exploit the vulnerability of core software bugs, cryptocurrency exchange platforms, attacks on
wallets stealing wallet keys, the vulnerability in smart contract coding, and network attacks
such as controlling mining pools. Endpoint attacks inject crypto mining scripts to computers
on the web to mine cryptocurrencies [25].

2.11 Literature review
With the emergence of cryptocurrencies and concerns about data privacy, the idea of DLT has
become of great interest in recent times. The research paper in the reference [26] discusses IoT
networks' cybersecurity and data integrity challenges. Integrating BC helps address these
challenges as BC is “security by design” and is immutable, transparent, auditable, encrypted,
and resilient. The paper conducts a thorough survey of BC and IoT integration and the
challenges faced when integrating BC and IoT. A study of novel uses of BC in machine
economy is also a part of the study.
The thesis in the reference [27] proposes a method to gather sensor data from IoT devices and
use BC to securely save and recall collected data. They presented a solution of data storage
independent of a cloud-based storage solution. The application and performance of
Interplanetary File System (IPFS) and Ethereum Swarm are presented. The thesis suggested
that since Ethereum requires registration before data transfer and Swarm/IPFS data is stored in
an encrypted format; it is not necessary to use a private network. That data can be securely
stored in public chains such as Ethereum, IPFS, or Swarm.
The thesis in the reference [22] presents a solution for tracking and tracing products in the
supply chain using an application created with Ethereum. The paper develops an Ethereum
smart contract system and web-based applications where users can track products. The paper
also presents a solution to bridge communication between an Arduino UNO device and a smart
contract system. The study presents the benefits and challenges of such a system.
The paper in the reference [28] discusses the use of DLT to reduce security risks in IoT. The
paper introduces BC as a technology to eliminate the need for a central node, which at the same
time highlights computational costs and limited scalability. The paper presents IOTA as
providing unlimited scalability, particularly suitable for the IoT industry. The paper explains
the IOTA solution to overcome blockchain's limitations when using it together with IoT.
The current research in distributed technologies focuses on integrating IoT devices into
blockchain networks like Ethereum. However, there are limited studies on distributed ledger
technology applications storing maintenance data. This thesis aims to extend the IoT- DLT
integration for storing operational maintenance data. Additionally, the thesis presents using
DAG (IOTA-based) technology as an alternative to blockchain technology. The deployment of
Ethereum Solidity code on top of DAG technology is studied and implemented in the thesis.

 3 System Concept and Specification

20

3 System Concept and Specification
The chapter introduces a high-level overview of the developed application. This is followed by
the application’s specifications, requirements, and use cases.

3.1 System overview
A typical scenario of machinery monitoring using IoT is presented to understand the solution
of storing operational IoT data in a distributed ledger technology.
Consider a factory containing several pieces of machinery. A service company is contracted to
carry out maintenance of these machines. Several IoT sensors are installed on the equipment,
which will collect information about the state of the machines. The data is stored in distributed
ledgers using a program running on an Edge computer. Edge computer is connected to IoT
device using USB or communication protocols such as MQTT or Modbus. Once the data is
available in the ledger, the service company can process the data and identify patterns to check
if the machine needs servicing. The data is presented to the company using a webserver.
The service company can also carry out a periodic service on the machinery. Once the service
is completed, the service company will access their client portal and update the last service date
of the machinery into the ledger. The data is permanently stored in the distributed ledger.
Stakeholders such as the factory owner, factory operational managers, and authorities can
access the ledger using client portals. They can verify if the service is carried out as per the
contract. In case of equipment failure, stakeholders and the service company can extract data
from the ledger to identify the root cause of the failure.
Figure 3-1 shows the example scenario for storing operational and service data of machinery
health.

Figure 3-1 Typical Scenario of Machinery Monitoring

 3 System Concept and Specification

21

3.2 System specification
Considering a typical scenario is explained in section 3.1, the following are the core system
specification:

1. The developed system should enable IoT sensors to communicate with the distributed
ledgers.

2. The system should permit tracking of sensor name, current sensor value, the record's
time stamp, and unit of measurement. The data must be stored as an IoT record in the
distributed ledger to track historical data.

3. The system should give service companies, and machinery owners access to read the
historical IoT data record.

4. Service companies should be able to write service history records into the distributed
ledger and register the state of the machinery health based on their data analysis. The
record is called Machinery data record.

5. The developed system should store IoT and Machinery data to Ethereum blockchain
and IOTA Tangle using the same smart contract code written in solidity.

3.3 System requirements and Use Case
3.3.1 Requirements
Considering a typical scenario explained in section 3.1, and the system specification explained
in 3.2, the following are the system's functional and non-functional requirements. The
requirements are classified based on the FURPS+ method.

• Functionality:
o Read/Store IoT data: Read IoT sensor data and write in ledger Ethereum and

IOTA chains at a scheduled time interval.
o Access recent/historical data: Users such as service companies and machinery

owners read the latest historical data.
o Write Service history: Service companies should be able to analyze the IoT data

and write the latest service history to the DLT.
o Access service history data: Users such as service companies and machinery

owners read the latest historical service history data.

• Usability:
o Data should be presented in an easily accessible user interface like a web page.
o Both Ethereum and IOTA chain data shall be available at the same time.
o New sensors can be added to the code in new sensors/IoT devices are added

• Reliability:
o The script should be running on a continuous loop without any errors.

• Performance:
o None

• Supportability:
o The data shall be available on all web-based devices.

• +
o None

 3 System Concept and Specification

22

3.3.2 Use case diagram
The use case diagram is developed based on the project's requirement specified in 3.3.1.

Figure 3-2 Use case diagram of the project

 4 System Design and Implementation

23

4 System Design and Implementation
The chapter presents the system’s design, system architecture, and implementation.

4.1 Sequence diagram for use cases
As identified in the requirements in section 3.3.1, there are four functional requirements. The
requirements are converted as a use case in section 3.3.2. Each use case is analyzed and
converted to a sequence diagram as a part of the design process.

4.1.1 Read / Store IoT Data
Figure 4-1 shows the sequence diagram for reading sensor data and storing the received data
in the DLT. A smart contract is first deployed to the DLT, followed by reading sensor data,
reading the smart contract and private key, creating a data bundle with IoT data, and using the
smart contract function to write data. The DLT stores the data once the “success” flag is
received.

Figure 4-1 Sequence diagram for reading and storing IoT data use case.

 4 System Design and Implementation

24

4.1.2 Access IoT Data
Figure 4-2 shows the sequence diagram for reading data from the DLT. The securely stored
private key is used to initial smart contract functions and communication to the DLT. A smart
contract function written to read data is called to get the latest block. The function parameter
(block number) can be adjusted to call data from blocks. Once data is received, it is sent to the
request initiator.

Figure 4-2 Sequence diagram for Accessing IoT data

 4 System Design and Implementation

25

4.1.3 Store Service History
Figure 4-1 shows the DLT’s sequence diagram for writing in-service data. First, the smart
contract and private key are called and using the smart contract function to write service data,
the input from the service technician is written to the DLT. The DLT stores the data once the
“success” flag is received.

Figure 4-3 Sequence diagram for Writing Service data

 4 System Design and Implementation

26

4.1.4 Access Service Data
Figure 4-4 shows the sequence diagram for reading service data from the DLT. Like section
4.1.2, securely stored private keys are used to initial smart contract functions and communicate
to the DLT. The smart contract function written to read service data will return the value of
service records. The latest block is called to get the latest service data records. Once data is
received, it is sent to the request initiator.

Figure 4-4 Sequence diagram for Accessing Service data

 4 System Design and Implementation

27

4.2 System architecture
Figure 4-5 shows the architecture of the developed system containing the presentation layer,
interface layer, and Distributed Ledger (DLT) layer. System Architecture presents various
components used to implement functions in the application. The developed application utilizes
all three layers to handle the use cases discussed in section 3.3.

Figure 4-5 System Architecture of developed system [29]

• Distributed Ledger Layer – contains both the Ethereum blockchain and IOTA tangle
components. Ethereum blockchain is selected due to its popularity and support of smart
contracts. IOTA is selected due to its specific design for IoT applications, fee-less
structure, and recent development to migrate codes written in Solidity (Ethereum
programming language).
Ethereum nodes are the backbone of the application, containing all the network
computers storing the data and the consensus algorithm that confirms the data validity
[29]. There are two accounts in the Ethereum blockchain layer, irrespective of the type
used. The two accounts are Externally Owned Account (EOA) and Contract accounts
[29]. EOA is a regular account that holds the private key, public key, account address,
and balance. Contract Accounts has contract-byte-code, which executes on EVM,
contract address, balance, and storage [29].
Wasp node is the IOTA version of Ethereum Node. A software node on top of the IOTA
tangle validates smart contracts [6].
There are two storage records in both chains. They are IoT Data records and Machinery
status data records. IoT Data record stores sensor tag name, the time stamp of the data
entry, sensor data and the sensor, and sensor unit. Machinery data record contains the
last service date, next service date, the result of the service, service company, and
engineer name.

 4 System Design and Implementation

28

• The interface layer manages transactions on the blockchain and IoT devices. The layer
is the interfacing component acting as the intermediatory between the blockchain and
the front end.

The following are the components in the interface layer of the project.
o Pyfirmata module in python for interfacing Firmata protocol to communicate with

IoT device. Firmata protocol for communicating with microcontrollers
implemented in firmware on any microcontroller architecture [30]. For the project,
firmata for Arduino is implemented.

o Metamask wallet is a simple crypto wallet that runs a browser extension. For the
project, Metamask is installed as a chrome extension. Ethereum test net is used in
the implementation. The cryptocurrencies stored in the wallet are test Ethers.

o Infura.io is an Ethereum backend service provider that gives access to the Ethereum
chain without running an Ethereum Node. The Infura Ethereum API (application
programming interface) enables developers to connect to the Ethereum chain via
WebSocket and HTTPS [29]. Figure 46 shows an overview diagram of how Infura
connects devices to the Ethereum network.

Figure 46 Infura overview diagram[31]-

o Brownie and Web3.py are two python libraries used to interact with the Ethereum
network via Infura.io. Web3.py is a python version of web3.js, a library collection
that allows interaction with Ethereum nodes via HTTPS, IPC, or Web Socket [30]
[31]. Brownie is a smart contract development and testing framework based on the
web3.py library [34]. Using Brownie compiling smart contracts and testing, the
logic is simplified. Front-end interaction via python is limited in Brownie. Hence it
was necessary to use web3.py to interact with the python front end. A brownie
handles the use case for storing IoT data on the DLT. Displaying IoT data and
service data on the front end to store service data is handled by web3.py. Since
IOTA also uses Ethereum support, brownie and web3 libraries are used similarly
for the IOTA chain.

o Wasp-CLI is the command-line interface used to communicate with the wasp node
(IOTA node)

 4 System Design and Implementation

29

• The presentation layer is the GUI for presenting the data and interacting with the user.
Bootstrap framework on top of HTML and CSS is used to develop the front end.
Python flask module is used as the web framework. Contracts ABI components are
JSON formatted smart contract functions and arguments used in the front-end
application for smart contract function calls. Contract ABI does not reside on
blockchain but is created when compiling the contract using the brownie framework
[29].

4.3 System implementation
The programming language python integrates IoT, DLT interface, and starting the web server.
The below sections discuss the integration and algorithm used in the developed application.

4.3.1 System Implementation diagram
Figure 4-7 shows the implementation diagram of the project. Smart contact is compiled using
brownie and stored in both IOTA and Ethereum chains. Two Arduino devices are IoT devices
that have two sensors each. Using Pyfirmata [30], data is read from IoT and stored to the DLT
using brownie. Web3.py [32] library acts as an interface between the front end and chains.
Flask is the web framework that runs the front-end code interacting with the user. A script
written in bash starts all the python scripts and IOTA node.

Figure 4-7 System Implementation diagram

The developed application is installed on an Ubuntu server running Ubuntu 20.04.4 LTS, as
shown in Figure 4-8. The Ubuntu server has an Intel 2nd generation core i3 processor – four
cores, 250 GB hard drive, and 8GB RAM. IoT devices are two Arduino UNO devices (one for
the Ethereum chain and the other one for the IOTA chain). Each temperature sensor (LM35)

 4 System Design and Implementation

30

and potentiometer (as an analog vibration sensor was unavailable) are connected to each
Arduino device. The Arduino device is attached to the server via a USB port.

Figure 4-8 Ubuntu Release Version

4.3.2 Algorithm
The section shows the important algorithms used to implement the system. Detailed developed
code for the project is presented in the APPENDIX.

4.3.2.1 Smart Contract Structure

Smart Contract can be seen as a database store procedure. Algorithm 1 shows the pseudocode
of the smart contract written in solidity Ethereum programming language. The code is deployed
to both IOTA and Ethereum chains.

Algorithm 1 : Smart Contract
1 Declare solidity version
2 Declare contract name
3 Declare IoT data variable as struct with multiple variables
4 Declare machinery data variable as struct with multiple variables
5 Create an array of IoT objects
6 Create an array of machinery objects
7 Define owner of the contact as the creator of smart contact
8 Function get_iot_data -> returns iot array
9 Function get_machine_data -> returns machinery data array
10 Function insert_iot_data (IoT data)
11 Function create_machine_data (machinedata)

4.3.2.2 IoT Device Integration and Data Storage to DLT

Algorithm 2 shows the pseudocode to read data from IoT devices and store value in both IOTA
and Ethereum chains. The Algorithm uses Brownie Framework [34]. Limited configurations
are needed to prepare a smart contract function call, unlike the web3.py module.

Algorithm 2 : Device Integration and Data Storage
1 Data : Sensor data, Smart Contract, Private Key
2 Result : Store sensor data in Ethereum and IOTA Chain
3 while True // Run Indefinitely
4 contractInstance = getSmartContract(LatestContract, PrivateKey);
5 board = Arduino(PortNumber);

 4 System Design and Implementation

31

6 channel = board(ChannelNumber);
7 voltage = readData(channel);
8 sensorValue = convertVoltToValue(voltage);
9 timestamp = getTimeStamp();
10 sensorUnit = getSensorUnit ();
11 iotDataStorage = setIoTData (sensorValue, timestamp,SensorUnit);
12 waitTransactionToComplete ();
13 print(getIoTDataFromBlockchain);
14 end

4.3.2.3 Service Data Storage

Algorithm 3 shows the pseudocode to read data from IoT devices and store value in both IOTA
and Ethereum chains. Since the Algorithm uses web3.py – data storage needs to be written
explicitly.

Algorithm 3 : Store Service Data
1 Data : User Input from Web Form, Owner Address, Private Key
2 Result : Store service data in Ethereum and IOTA Chain
 // Wait for request method
3 if Request = ‘POST’
4 formData = getFormData(UserInput);
5 nonce= getLatestChainTranscationCount();

6 storeServiceData = smartContractStoreFunction(formData, gasPrice,
OwnerAddress, nonce);

7 signStoreServiceData = signTranscation(storeServiceData, PrivateKey);
8 print(getTransactionHash(signStoreSericeData.sendToChain()));
9 end

4.3.2.4 Reading Data from Chain and Data presentation

Algorithm 4 shows the pseudocode to read data from Ethereum/IOTA chain and display it on
the web page.

Algorithm 4 : Device Integration and Data Storage
1 Data : Smart Contract Address
2 Result : Display Data in the Web Page
 // Wait for request method
3 if Request = ‘GET’
4 IoTData = getIoTData(LatestContract);
5 waitTransactionToComplete ();
6 IoTDataList =IoTData.append();
7 ServiceData = getServiceData(LatestContract);
8 waitTransactionToComplete ();
9 ServiceDataList = ServiceData.append();
10 sendDataToFrontEnd(IoTDataList, ServiceDataList);
11 end

 4 System Design and Implementation

32

4.3.2.5 Script for starting all necessary scripts to enable IOTA and Ethereum Integration

The script shown in Algorithm 5 is the pseudocode of the script prepared to start python scripts
and IOTA services without individually starting the scripts. The script written in bash script
enables auto startup of applications and services to enable IOTA and Ethereum chain
integration.

Algorithm 5 : Bash script pseudocode for starting necessary programs

stop IOTA node if running
stop the IOTA command-line tool if running
stop all running python scripts if running
change to brownie folder
start script read_write_IOT_data_for_ethereum —select network as ETHEREUM
testnet
start script read_ethereum_data_for_front_end
change IOTA_WASP_Node_folder
start IOTA_WASP_Node select configuration as config.json
start IOTA_Etherum chain
request funds from IOTA Faucet
deposit funds to chain for transaction
start script read_write_IOT_data_for_IOTA_Chain —select network as local IOTA
network
start script read_IOTA_data_for_front_end

 5 Results and Discussion

33

5 Results and Discussion
The chapter presents the results of the developed application and discusses its performance.
The chapter also compares IOTA and Ethereum chains.

5.1 Testing
Figure 5-1 shows the screenshot of the results of the startup script. If any running processes
exist for the python or IOTA wasp process, they are stopped first and followed by the wasp
IOTA node and wasp Ethereum interface. Communication to the Ethereum test net called
Rinkeby is initiated. Data from IoT devices is stored on both Ethereum and IOTA chains.
Python flask application is started as well to serve frontend.

Figure 5-1 Results after running the Startup script

 5 Results and Discussion

34

A smart contract is the backbone of the application. Therefore, it is important to confirm that
smart contact is deployed correctly in the Ethereum test net. Figure 5-2 shows the screenshot
of smart contract “0xcF87B589F46da90e9d3eeB71e7387E7897e9e2E6” deployed in Rinkeby
Test network. The webpage etherscan.io is used to confirm the smart contract. The address
https://rinkeby.etherscan.io/address/0xcf87b589f46da90e9d3eeb71e7387e7897e9e2e6
confirms the validity of the smart contract.

Figure 5-2 Smart Contract in Rinkeby Test net

In the case of IOTA, the contract can only be viewed in the localhost address. The smart
contract address is “adc164b5“. Figure 5-3 shows the screenshot of the contract in the wasp
chain.

Figure 5-3 Smart Contract view in Wasp configuration page

 5 Results and Discussion

35

IoT integration test with Pyfirmata module is tested using simple print statements to confirm
that the voltage is read correctly from Arduino devices. An example of such a printout is shown
in Figure 5-4. If there is a communication error with the Arduino device, it will be shown in
the bash startup script.

Figure 5-4 Screenshot of IoT Sensor data

The script stores the data in both Ethereum and IOTA chains. Etherscan.io website is used to
confirm the Rinkeby Ethereum test network transaction. The same concept is used to confirm
the storage of service data. We can trace the data in the Ethereum test network using the
transaction hash printed in the python script.
Figure 5-5 shows the data of successful storage of sensor data. The web address
https://rinkeby.etherscan.io/tx/0xf58bc7cb080a0b9d1c09d5b5ba4fe642df9e7707c5816d9a9fb
bfa0956bbd1c5 shows the data storage in the test net.

Figure 5-5 Etherscan.io shows the temperature sensor data.

 5 Results and Discussion

36

Figure 5-6 shows the data storage in the case of the IOTA chain. Since IOTA 2.0 is still in the
testing phase, there are no websites like etherscan.io. The local host address hosted by the wasp
chain confirms data storage.

Figure 5-6 Data Storage in IOTA Chain

Historical data for both IOTA and Ethereum chains are stored as a text file to enable users to
access data without browsing through etherscan or local wasp sites. Figure 5-7 shows a
screenshot of data storage for the Ethereum network. Historical data for the smart contract is
stored in the file. The user can easily read the data.

Figure 5-7 Sensor data file

 5 Results and Discussion

37

Figure 5-8 shows the developed frontend for presenting the latest data, the last four sensor data
stored, and the latest service status. The front end is for maintenance data stored in the
Ethereum test network called Rinkeby. The latest data contains the current value of both
temperature and vibration sensor, machine health status entered from the latest service status,
and the possibility to enter new service data. The latest raw sensor data column contains the
sensor tag name, the timestamp when the data was stored, and the sensor value with its unit.
The service status block contains the data entered by a service technician. The status contains
the serial communication port address, last and next service, machine health status, company
name, and service technician's name.

Figure 5-8 Front End for Ethereum Chain

 5 Results and Discussion

38

Figure 5-9 shows the data stored in the IOTA chain. The data presentation is like the front end
of the Ethereum chain. Data is collected from a separate Arduino device connected to the
second USB port.

Figure 5-9 Front End for IOTA Chain

Figure 5-10 shows the pop-up form where the service technician enters the service data. The
pop-up form allows the service technician to enter when the service is carried out, when the
next service due date, the health of machinery based on analysis from the collected historical
data, the service company name, and the service technician's name. The data is stored in the
distributed ledgers.

Figure 5-10 Form for entering service data

 5 Results and Discussion

39

5.2 Performance Evaluation
A performance evaluation of the developed system is carried out. CPU and memory usage of
the server is performed. The analysis is conducted for both Ethereum and IOTA chains
together. Gas cost for storing IoT data is also performed during the performance evaluation
phase. Gas cost is the fee the sender is ready to pay. One unit of gas is comparable to the
execution of a computational step [29]. Gas cost analysis is done only for Ethereum chain as
the IOTA chain is still in the development phase with zero cost.

5.2.1 CPU and Memory Usage
NMON or Nigel’s performance monitor application is used to check CPU and Memory usage
of the developed application. NMON was originally developed for IBM AIX performance
monitoring and analysis, is now an open-source [35]. The application is started using the
“nmon” command in the terminal. Figure 5-11 and Figure 5-12 show current and long-term
CPU usage, respectively. It is observed that the CPU usage is less than 30% in both long-term
and short-term cases for both user and system. However, since the processer is Intel 2nd
generation core i3, a powerful retail processor process or – the usage of less than 30% of total
usage is on a high side, which means that less powerful processors such as Raspberry-Pi-based
architecture may struggle to handle the load. Extensive testing is necessary to confirm and
verify CPU requirements.

Figure 5-11 CPU Utilization Stats

 5 Results and Discussion

40

Figure 5-12 CPU Utilization Long Term

Memory usage is around 60% for the server, and only 40% is free, as shown in Figure 5-13.
Around 3 GB was free of available 8GB memory. The usage is on the high side. Extensive
testing is recommended to confirm and verify memory usage.

Figure 5-13 Memory Usage

5.2.2 Gas Cost
Gas cost analysis is conducted similar to the article “Blockchain for the Internet of Vehicles:
A Decentralized IoT Solution for Vehicles Communication Using Ethereum” [36]. Ethereum
test net – Rinkeby is used to deploy Ethereum smart contract, and the IOTA contract is
deployed in the wasp node running locally.
The following are the values as of 4th June 2022, 05:58 UTC.

• 1 ETH is $1767
• The average gas price is 35 GWEI
• 1 GWEI (0.000000001 ETH)
• Price in USD = gas required * gas price in gwei * 0.000000001* ETH to USD rate

Table 5-1 shows the execution cost of various functions in the deployed application. It is
observed that the cost of deployment and execution is expensive during the analysis.

 5 Results and Discussion

41

Table 5-1 Execution Cost of various functions

Function Transaction Fees Price (Approximate)

Deploy Contract 0.027 ETHER $49 (One Time / Rinkeby
Network)

Store IoT Data (per call) 0.000178 ETHER $0,32

Store Service Data (per call) 0.000178 ETHER $0,32

Read IoT Data (per call) 0 0

Read Service Data (per call) 0 0

5.2.3 IOTA Vs. Blockchain
Ethereum smart contract is fully developed and supported globally. The challenge with
Ethereum is its high gas cost for each transaction and delay in block creation. The arrival of
Ethereum 2.0 and the proof of stake mechanism is expected to solve both limitations. On the
other hand, IOTA is still in a continuous development phase. IOTA is a scalable decentralized
solution that does not require additional transaction fees associated with mining, unlike the
traditional BC technology [37]. The system development was entirely relying on the
documentation provided by IOTA Organization. The documentation does not cover all
scenarios for typical smart contract development. However, there is excellent support provided
by the IOTA community.

5.3 Discussion
Distributed Ledger Technology concepts were extensively surveyed in this thesis before
application development. Followed by identifying the system specifications, requirements, and
use cases. Case diagrams are further developed into sequence diagrams, and system
architecture is prepared. Algorithms are based on the DLT technology research and sequence
diagrams. Testing and performance analysis revealed that the application is working as
expected. However, the computation resource consumption is higher.
The solution presented in the thesis reflects how distributed technology can be used to solve
the challenges with IoT data handling and privacy. The system is transparent; this means that
both the owners and service companies can read the data from the IoT device and the service
history of the machinery. The data is decentralized and immutable. Therefore, the ledger can
be presented to any future owner of the equipment and authorities who needs to approve the
machinery.

 5 Results and Discussion

42

The solution is not considering a role-based access control. Any user can now write service
history into the distributed ledgers. Now, any IoT devices can be connected to the chain or even
swapped between ports – the program cannot detect if the connected IoT is from the correct
machinery and serial number.
The application is mostly developed in the python programming language. Limited research
materials are available to integrate blockchain and IOTA via Python or python modules. The
application development was quite time-consuming, especially with IOTA, where the wasp
node ran into errors. Several trials and errors were carried out during the application
development to integrate the blockchain back end to the front end. Java script programming
language is found to be highly supported by decentralized communities. JavaScript-based
languages such as react are more supported for front-end integration with blockchain. The
suggestion is that similar applications be developed in the Javascript programming language.
The developed application needs to be further optimized to handle more data and devices and
simultaneously reduce the gas price. With the development of Ethereum 2.0 soon, it is expected
that the gas and transaction fees will go down as the consensus method will be proof of stake
instead of existing proof of work. There are also concerns about increasing power consumption
regard to the mining process.
IOTA chain has a feeless structure and is effectively designed to handle many IoT devices.
IOTA resolved the major blockchain issues, transaction fees, scaling limitations, and
centralization [26]. It is worth mentioning that IOTA – Ethereum integration is still in the
developing stage. Due to limited knowledge and support available globally, the project
development met several changes due to this phase. However, the support of the IOTA
developer network is highly appreciated during the product development and challenges faced
during the development stage.

 6 Conclusion

43

6 Conclusion
The increased data generated from IoT devices introduces the challenge of privacy. Integrating
IoT and DLT solves the privacy issue. The solution acquires data from IoT devices, which
contains maintenance information from machinery. The necessary programs were developed
in python and solidity programming language. An Edge Box installed between IoT devices and
the blockchains process the data from IoT devices. The Box running Ubuntu operating system
will handle interactions with the decentralized ledger. The stakeholders and service companies
will use Web-based client applications to view historical operational data recorded on the
Blockchain. Maintenance companies can monitor operational data and can decide if service is
necessary. If a service on a piece of equipment is carried out, the service will be recorded on
the Blockchain using a Web-based client application. The performance analysis showed that
there is a requirement for computational resources. Cost analysis proved to be expensive. The
release of Ethereum 2.0 and IOTA 2.0 is expected to improve results.
The use of communication protocols such as MQTT and Modbus for data collection from IoT
devices and integration into distributed ledgers shall be considered in future studies. The
effectiveness of handling large data and stress test in blockchain can be further tested and
evaluated. The authentication and authorization aspect of blockchain programming is an area
which can be studied further as well. Lastly, future studies can explore the use of collected data
to develop machine learning models to recommend or delay periodic maintenance. Extending
the developed application by including a data analysis algorithm makes the quite usable in the
maintenance of machinery.

 Nomenclature

44

References
[1] Y. Ismail, Internet of Things (IoT) for automated and smart applications. 2019.
Accessed: Jan. 25, 2022. [Online]. Available: https://doi.org/10.5772/intechopen.77404
[2] Mohammad, “IoT connections market update—May 2022,” State of IoT 2022: Number
of connected IoT devices growing 18% to 14.4 billion globally. https://iot-
analytics.com/number-connected-iot-devices/ (accessed Jul. 11, 2022).
[3] V. K. Calastry Ramesh, “Storing IOT Data Securely in a Private Ethereum Blockchain”,
doi: 10.34917/15778410.
[4] A. Ahmad, “Integration of IoT devices via a blockchain-based decentralized
application,” 2017, doi: 10.18419/OPUS-9466.
[5] “What is IoT with blockchain? - IBM Blockchain.” https://www.ibm.com/se-
en/topics/blockchain-iot (accessed Jan. 23, 2022).
[6] “An Introduction to IOTA.” https://wiki.iota.org/learn/about-iota/an-introduction-to-
iota (accessed May 15, 2022).
[7] K. Shafique, B. A. Khawaja, F. Sabir, S. Qazi, and M. Mustaqim, “Internet of Things
(IoT) for Next-Generation Smart Systems: A Review of Current Challenges, Future Trends and
Prospects for Emerging 5G-IoT Scenarios,” IEEE Access, vol. 8, pp. 23022–23040, 2020, doi:
10.1109/ACCESS.2020.2970118.
[8] P. Lea, IOT and edge computing for architects: implementing edge and IoT systems
from sensors to clouds with communication systems, analytics, and security, Second edition.
Birmingham: Packt, 2020.
[9] A. M. Rahmani, S. Bayramov, and B. Kiani Kalejahi, “Internet of Things Applications:
Opportunities and Threats,” Wireless Pers Commun, vol. 122, no. 1, pp. 451–476, Jan. 2022,
doi: 10.1007/s11277-021-08907-0.
[10] M. Alshaikhli, T. Elfouly, O. Elharrouss, A. Mohamed, and N. Ottakath, “Evolution of
Internet of Things From Blockchain to IOTA: A Survey,” IEEE Access, vol. 10, pp. 844–866,
2022, doi: 10.1109/ACCESS.2021.3138353.
[11] S. T. March and G. D. Scudder, “Predictive maintenance: strategic use of IT in
manufacturing organizations,” Inf Syst Front, vol. 21, no. 2, pp. 327–341, Apr. 2019, doi:
10.1007/s10796-017-9749-z.
[12] S. Ayvaz and K. Alpay, “Predictive maintenance system for production lines in
manufacturing: A machine learning approach using IoT data in real-time,” Expert Systems with
Applications, vol. 173, p. 114598, Jul. 2021, doi: 10.1016/j.eswa.2021.114598.
[13] C. Nartey et al., “On Blockchain and IoT Integration Platforms: Current
Implementation Challenges and Future Perspectives,” Wireless Communications and Mobile
Computing, vol. 2021, pp. 1–25, Apr. 2021, doi: 10.1155/2021/6672482.
[14] “Distributed-Ledger-Technology (DLT).” https://iota-beginners-guide.com/dlt/
(accessed Feb. 07, 2022).
[15] “Blockchain Technology and Its Applications: Case Studies,” JSMS, Mar. 2020, doi:
10.33168/JSMS.2020.0106.

 Nomenclature

45

[16] M. S. Ali, M. Vecchio, M. Pincheira, K. Dolui, F. Antonelli, and M. H. Rehmani,
“Applications of Blockchains in the Internet of Things: A Comprehensive Survey,” IEEE
Commun. Surv. Tutorials, vol. 21, no. 2, pp. 1676–1717, 2019, doi:
10.1109/COMST.2018.2886932.
[17] M. Deer, “What is a directed acyclic graph in cryptocurrency? How does DAG work?,”
Nov. 07, 2021. https://cointelegraph.com/explained/what-is-a-directed-acyclic-graph-in-
cryptocurrency-how-does-dag-work (accessed Mar. 05, 2022).
[18] M. Bhandary, M. Parmar, and D. Ambawade, “Securing Logs of a System - An IoTA
Tangle Use Case,” in 2020 International Conference on Electronics and Sustainable
Communication Systems (ICESC), 2020, pp. 697–702. doi:
10.1109/ICESC48915.2020.9155563.
[19] Phani, “IOTA Proof of Work: Remote Vs Local explained.” https://medium.com/bytes-
io/iota-proof-of-work-remote-vs-local-explained-1cbd89392a79
[20] E. Drąsutis, “IOTA Smart Contracts.” IOTA Foundation, Nov. 10, 2021. [Online].
Available: https://files.iota.org/papers/ISC_WP_Nov_10_2021.pdf
[21] “Smart Contracts,” Smart Contracts, May 15, 2022. https://wiki.iota.org/smart-
contracts/guide/core_concepts/smart-contracts
[22] L. M. C. Augusto, “An application of blockchain smart contracts and IoT in logistics,”
Universidade Nova de Lisboa, Lisboa, 2019. [Online]. Available:
https://run.unl.pt/bitstream/10362/75035/1/Augusto_2019.pdf
[23] Dr. Achim Klein, “Exploring IOTA 2.0 Smart Contracts in a Private Network:
Developing a Prediction Market,” Sep. 16, 2021. https://medium.com/51nodes/exploring-iota-
2-0-smart-contracts-in-a-private-network-developing-a-prediction-market-c2d81988f75e
(accessed May 16, 2021).
[24] M. A. A. Mamun, “Real-time Integration of IoT Sensor and IOTA Tangle for Securing
IoT Infrastructure,” University of Manitoba, 2022. [Online]. Available:
http://hdl.handle.net/1993/36179
[25] H. Guo and X. Yu, “A survey on blockchain technology and its security,” Blockchain:
Research and Applications, vol. 3, no. 2, p. 100067, Jun. 2022, doi:
10.1016/j.bcra.2022.100067.
[26] A. Panarello, N. Tapas, G. Merlino, F. Longo, and A. Puliafito, “Blockchain and IoT
Integration: A Systematic Survey,” Sensors, vol. 18, no. 8, p. 2575, Aug. 2018, doi:
10.3390/s18082575.
[27] V. K. Calastry Ramesh, “Storing IOT Data Securely in a Private Ethereum Blockchain”,
doi: 10.34917/15778410.
[28] M. Alshaikhli, T. Elfouly, O. Elharrouss, A. Mohamed, and N. Ottakath, “Evolution of
Internet of Things From Blockchain to IOTA: A Survey,” IEEE Access, vol. 10, pp. 844–866,
2022, doi: 10.1109/ACCESS.2021.3138353.
[29] A. Ahmad, “Integration of IoT devices via a blockchain-based decentralized
application,” 2017, doi: 10.18419/OPUS-9466.
[30] firmata, “Firmata Protocol Documentation.” Accessed: May 31, 2022. [Online].
Available: https://github.com/firmata/protocol

 Nomenclature

46

[31] IVANONTECH, “Infura Explained – What is Infura?,” Jun. 16, 2021.
https://academy.moralis.io/blog/infura-explained-what-is-infura
[32] “Web3.py.” Accessed: May 31, 2022. [Online]. Available:
https://web3py.readthedocs.io/en/stable/index.html
[33] “Web3.js.” Accessed: May 31, 2022. [Online]. Available:
https://web3js.readthedocs.io/en/v1.7.3/
[34] “Brownie.” Accessed: May 31, 2022. [Online]. Available: https://eth-
brownie.readthedocs.io/en/stable/
[35] “About Nmon Performance monitor for Splunk.” Accessed: Jun. 11, 2022. [Online].
Available: https://nmon-for-splunk.readthedocs.io/en/latest/about.html
[36] R. Jabbar, M. Kharbeche, K. Al-Khalifa, M. Krichen, and K. Barkaoui, “Blockchain
for the Internet of Vehicles: A Decentralized IoT Solution for Vehicles Communication Using
Ethereum,” Sensors, vol. 20, no. 14, p. 3928, Jul. 2020, doi: 10.3390/s20143928.
[37] E. Exposito et al., “Tangle The Blockchain: Toward IOTA and Blockchain integration
for IoT Environment,” Sehore, India, Dec. 2019. [Online]. Available: https://hal-univ-
pau.archives-ouvertes.fr/hal-02957070

 Nomenclature

47

Appendices

Appendix A Thesis Description
Appendix B Solidity Smart Contract Code
Appendix C Python - Brownie Code for interacting with IoT and Ethereum Chain (IoT-
Ethereum interaction code)

Appendix D Python Code for Ethereum Front End Application
Appendix E Python - Brownie Code for interacting with IoT and IOTA Chain (IoT-IOTA
interaction code)
Appendix F Python Code for IOTA Front End Application

Appendix G Bash Script for Starting all applications
Appendix H Complete Code download link

