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Abstract: A growing awareness of global climate change has led to an increased interest in investi-

gating renewable energy sources, such as the anaerobic digestion of biomass. This process utilizes 

a wide range of microbial communities to degrade biodegradable material in feedstock through a 

complex series of biochemical interactions. Anaerobic digestion exhibits nonlinear dynamics due to 

the complex and interacting biochemical processes involved. Due to its dynamic and nonlinear be-

havior, uncertain feedstock quality, and sensitivity to the process’s environmental conditions, an-

aerobic digestion is highly susceptible to instabilities. Therefore, in order to model and operate a 

biogas production unit effectively, it is necessary to understand which parameters are most influ-

ential on the model outputs. This also reduces the amount of estimation required. Through a scoping 

review, the present study analyzes the studies on the application of sensitivity analysis in anaerobic 

digestion modeling. Both local and global sensitivity analysis approaches were carried out using 

different mathematical models. The results indicate that anaerobic digestion model no.1 (ADM1) 

was the most commonly used model for analyzing sensitivity. Both local and global sensitivity anal-

yses are widely employed to investigate the influence of key model parameters such as kinetic, stoi-

chiometric, and mass transfer parameters on model outputs such as biogas production, methane 

concentration, pH, or economic viability of the plant.  
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1. Introduction 

Anaerobic digestion (AD), a biochemical process, is well-recognized as an alternative 

method for recycling and treating organic wastes while generating bioenergy [1]. The ap-

plication of AD has been widespread in several fields over the last few decades. It is pos-

sible to produce usable biogas as a source of clean energy through AD [2]. As a sustaina-

ble, renewable, and carbon-neutral energy source, the anaerobic digestion of biogas has 

been demonstrated to be an effective method of reducing the world's carbon footprint, as 

well as its reliance on fossil fuels [3].  

Several anaerobic digestion models have been developed over the past few decades. 

Emebu et al. [4] reviewed different AD models and classified them into single-equation or 

multi-step dynamic models. Typically, single-equation models are simple, requiring a limited 

number of inexpensive experiments to fit the curves and making them easily applicable for 

simulation and control. Models based on one equation assume that biogas can be produced 

from feedstock without incorporating the various biochemical, mass transfer, and physico-

chemical processes involved. The single-equation method can be categorized into dynamic, 

cumulative, and multi-regression single-equation models. In contrast, the multi-step dynamic 

model incorporates more than one sequentially interconnected dynamic equation to account 

for many AD process phenomena. Many equations are involved in biogas production predic-

tion, including microbial growth, feedstock and substrate utilization, biogas formation and 
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evolution, etc. The multi-step dynamic model can be classified into single-step, two-step, and 

multi-step degradation models. A single-step degradation model (SSDM) is a simplified 

model that can be used to evaluate biogas yield from a substrate directly. Two-step degrada-

tion models (TSDM), also known as AM2 models, are ideal for monitoring and controlling 

software sensors and AD systems. The multi-step degradation model (DSDM) represents the 

most comprehensive AD model that incorporates reaction dynamics for all intermediates. 

Mathematical models for AD were first proposed by Eastman and Ferguson [5] in the 

early 1980s. Based on ordinary differential equations (ODE) systems, they primarily modeled 

biochemical processes occurring in AD reactors, and in order to reduce the model complexity, 

different simplifications and assumptions were made [6]. Model development continued for 

several decades, and several approaches were consolidated during this time. For years, the 

mathematical modeling of AD processes has been challenging for the scientific community 

[7]. The International Water Association (IWA) task group developed the anaerobic digestion 

model no.1 (ADM1) in 2002, which offered a unified approach to AD mathematical modeling 

[8]. ADM1, as the most popular multi-step degradation model [9], provides a structured math-

ematical representation of complex processes in converting organic substrates into methane, 

CO2, and inert byproducts (biogas) [10]. It is important to note that, while the ADM1 does not 

cover all processes involved in the AD process (such as precipitation of solids and sulfur re-

duction), it is intended to provide predictions that are as accurate as possible and can be used 

to develop, operate, and optimize the anaerobic digestion process [11]. There are several steps 

involved in ADM1 [12]. The first step involves disintegrating complex solids into soluble and 

particulate inerts, carbohydrates, proteins, lipids, and inert substances (a non-biological step) 

[13]. In the next step, the disintegration products are hydrolyzed by enzymes, and sugars, 

amino acids, and long-chain fatty acids (LCFAs) are the main products. In the acidogenesis 

process, sugars and amino acids are fermented to produce volatile fatty acids (VFAs), hydro-

gen gas, and carbon dioxide. Lastly, methane is produced both by acetoclastic (cleavage of 

acetate to methane) and hydrogenotrophic (reduction of carbon dioxide to methane) methan-

ogenesis processes [14]. Figure 1 illustrates the reaction path in ADM1, as described in [8].  

 

Figure 1. The reaction paths in ADM1 described in [8]. 

Additionally, there are some other models for anaerobic digestion. One of the most 

widely used open-source implementations of ADM1 is the Benchmark Simulation Model 
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number 2 (BSM2), developed in the MATLAB/SIMULINK environment [15]. BSM2 is the en-

hanced version of BSM1, which does not allow for evaluating control strategies at the plant 

level. The activated sludge models (ASM) [16] and novel approaches such as the process sim-

ulation model (PSM) [17] and GM (1, N), which is a Grey model with N variable.  

Identifying the most influential input parameter or variable on the model's outputs 

in a complex model (such as ADM1) with several input parameters and output parameters 

is crucial. Sensitivity analysis (SA) is a practical tool for identifying how the outcomes of 

our models differ when assumptions are altered. There is a significant fluctuation in the 

results when specific assumptions are changed when sensitivity is high; these assump-

tions must be extremely well established [18,19]. Moreover, SA can assist in verifying the 

validity of model assumptions and identifying the parameters [1,20]. It is also possible to 

use SA to calibrate the model parameters to demonstrate a stronger correlation with ex-

perimental data. SA ranks the parameters according to their relevance, and nominal val-

ues are assigned to the parameters with the least influence [6].  

As discussed above, in order to determine whether each parameter of a model has a sig-

nificant effect on the system's behavior, sensitivity analysis is commonly used [21]. There are 

two main types of sensitivity analysis: local and global. Analyzing the impact of one parameter 

on the cost function at a time while keeping the other parameters constant is known as a local 

sensitivity analysis, and global sensitivity analysis (GSA) examines the effect of simultaneous 

variations in model parameters on model outputs [22–24]. Compared to GSA, local sensitivity 

analysis (LSA) is very straightforward, can easily be applied and interpreted, and often re-

quires fewer simulation runs. Global sensitivity analysis involves varying several input factors 

simultaneously and evaluating their sensitivity over the entire range [25]. There are different 

approaches to conducting a GSA. Tian [26] provided a classification with four methods: re-

gression, screening-based, variance-based, and metamodel-based methods. The regression 

method has the advantage of being easy to understand and fast to compute. Many indicators 

can be used for this purpose, usually, after Monte Carlo is performed, including standardized 

regression coefficients, partial correlation coefficients, and their rank transformations. Screen-

ing methods are often used to fix some input factors from a large number of factors without 

reducing the variance of the output. Among different screening methods, the Morris method 

[27] is the most commonly used approach. By calculating partial derivatives at different loca-

tions in the input variable domain variation, the Morris method overcomes the limitations of 

the local SA [28]. In a variance-based analysis, output uncertainty is decomposed according to 

input uncertainty. This variance-based method is considered a model-free approach suitable 

for complex nonlinear and non-additive models [26]. Although this method has a high com-

putational cost, it is capable of quantifying the variance of the output caused by each input as 

well as considering the interaction effects between variables. Fourier amplitude sensitivity test 

(FAST) and Sobol are two commonly used methods [29]. Although the Sobol method can de-

compose all output variances, it is much more computationally intensive than other global 

sensitivity analysis methods [30]. With the advancements in computing cost, the metamodel-

based method, or surrogate method, has received increased attention in recent years. These 

models have been extensively discussed in [31]. 

Following PRISMA guidelines [32–35], the present study aims to conduct a scoping 

review to identify and assess the frequency with which sensitivity analysis approaches 

are reflected in anaerobic digestion modeling studies. Therefore, the present study aims 

to address the following research questions: 

1. What type of sensitivity analysis and what method were addressed? 

2. What models of anaerobic digestion were used? 

3. How have sensitivity analysis methods been applied to resolve a particular problem? 

2. Research Methodology and Design: Scoping Review 

Arksey and O'Malley [31] and Peters et al. [32] proposed a methodological framework 

for scoping reviews. This method was employed because it is more rigorous than a traditional 
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literature review [23]. PRISMA flow diagrams include a report of the papers found at each 

stage [36]. As part of PRISMA's reporting methodology, flow diagrams (Figure 2) are an es-

tablished method for systematic and scoping reviews [21,32]. Since the literature identified is 

not intended to be critically assessed, this method is neither a mapping review nor a systematic 

review. An alternative approach is to present a descriptive and qualitative thematic analysis. 

As part of the research process, Figure 1 illustrates these six steps. 
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Figure 2. Overall research process scheme (adapted from [23]). 

2.1. Review Procedure 

The scoping review protocol involves different main stages, such as identifying research 

questions, selecting studies, charting data, and summarizing and reporting the results. As il-

lustrated in Figure 1, the following steps were taken under the scoping review protocol 

(PRISMA): 

1. As seen in Section 1, three research questions were defined. 

2. Several trial-and-error searches were performed using scientific databases (Web of 

Science, Scopus, and ScienceDirect) to begin the search. Each database's search 

strings are listed below.  
Web of Science: ALL= ((anaerobic AND digestion ) OR adm1 OR bsm2 ) AND sensitiv* 

Scopus: TITLE-ABS-KEY ((anaerobic AND digestion ) OR adm1 OR bsm2 ) AND sensitiv* 

ScienceDirect: ((anaerobic AND digestion ) OR adm1 OR bsm2 ) AND sensitivity. 

In the initial search, titles, abstracts, and keywords were searched with no limit 

throughout all databases. As a result, 1071, 1011, and 89 studies (in all categories) 

were listed in Web of Science, Scopus, and ScienceDirect, respectively. Asterisks can 

often be used to increase a search's search results by indicating terms with a similar 

first letter [21]. For example, sensitiv* can find sensitive, sensitivity, sensitivities, etc. 

According to the limited number of studies at this stage (with no limitation), alt-

hough there is considerable interest in studying anaerobic digestion, few studies 

have addressed sensitivity analysis. 

3. In order to obtain more precise results at this stage, the search was limited to just the 

tile. Therefore, the remaining articles dropped to 18, 21, and 11 for WoS, Scopus, and 

ScienceDirect. The limited number of studies at this stage (with no limitation) reveals 

that, although there is considerable interest in studying anaerobic digestion, few 

studies have addressed sensitivity analysis. 

4. Due to the reason above, no limit was applied on the year of publication, and all 

studies until September 2022 were considered.  

5. The language of the studies was also limited to English. Despite this, there was no 

language other than English, and the number of studies remained the same. 
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6. The list contained many duplicates. Therefore, after trimming the list and removing du-

plicates using Microsoft Excel® v2016 (Microsoft, Redmond, WA, USA), only 23 re-

mained.  

7. By screening the titles and full text of the studies, eligibility was assessed at two 

stages. During the title screening stage, one document was considered non-relevant, 

and two articles were eliminated during the full-text screening stage. At this stage, 

19 publications were included in the list. 

8. In the last step, by backward snowballing, 12 studies were found relevant and added 

to the list, and the final list consisted of 31 studies. A snowballing strategy that can 

be forward or backward involves identifying additional papers by using the refer-

ence list or citations to a paper [37,38]. 

After the extraction of bibliographic information, the collected articles were catego-

rized according to the characteristics such as year, country, type of papers, method, and 

tools. Section 3 presents a summary of the results. Figure 3 illustrates the results of the 

screening process in order to present the retained articles and studies at each stage follow-

ing the PRISMA methodology. 
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Figure 3. PRISMA flow diagram. 

2.2. Limitations 

This section discusses the limitations of the study. Three well-known and frequently 

used databases (Web of Science, Scopus, and ScienceDirect) were utilized among the nu-

merous metadata service providers and publishers. Adding additional databases, such as 

Google Scholar, would improve results. Additionally, this study only includes journal and 

conference papers, as well as book chapters, and not gray literature, white papers, pub-

licly available records, and technical reports. As discussed in Section 2.1, the search was 

limited to the titles only. Commonly, AD studies include sensitivity analysis, but this 

study aimed to address studies in which sensitivity analysis dominates. Despite the Eng-

lish language limitation, all selected studies were in English. Moreover, more extensive 

snowballing would enhance the outcome.  

3. Results and Discussion 

This section provides the descriptive information associated with the latest studies 

on performing sensitivity analysis in anaerobic digestion modeling.   
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3.1. Classification Based on the Publication Year 

A year-wise analysis informs the reader about the progress research, and highlights the 

researchers’ interest in the subject. Figure 4 illustrates the number of published studies since 

1984. There were some initiatives in 1984 and 1985, followed by three studies in 2003, 2005, 

and 2008. The main studies began in 2012, with the highest in 2015, 2019, and 2021 by four 

studies. Interestingly, as of September 2022, no studies have been registered.  One reason for 

this low interest could be the huge uncertainties associated with mathematical modeling. 

Moreover, as mentioned earlier, the current mathematical models are not covering all reac-

tions,  and because this analysis is mainly based on mathematical models, it is  challenging to 

interpret the results.  

 

Figure 4. The number of selected studies and overall trend from 1984 to September 2022. 

3.2. Classification Based on the Publication Country 

Analysis of the selected publications revealed that 23 countries contributed to this topic 

(1984–2022). As seen in Figure 5, the highest contribution belongs to Sweden and Denmark, 

with five studies (4 joint publications), followed by Italy, with four studies. Brazil, Canada, 

South Korea, and Belgium contributed to three publications. France, Spain, the USA, China, 

and Chile had two publications each. Eleven countries were involved in only one publication 

each, categorized under “Other Countries.” Norway, Romania, Australia, Russia, Finland, 

Iran, Lebanon, Saudi Arabia, the UK, France, South Africa, and Cuba belong to this category.  

 

Figure 5. Contributions from different countries from 1984 to September 2022. 
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3.3. Classification Based on Document Type 

As discussed earlier, this review considered all types of publications, excluding re-

ports and gray literature. According to Figure 6, there are three types in the selected doc-

uments. Articles have the highest rank of 84%, conference papers have the second-highest 

rank of 13%, with four studies [39–42], and one thesis [43] makes up only 3%. Book chap-

ters and, most importantly, reviews were not addressed in the 30 selected studies, which 

emphasizes the importance and lack of review studies on this topic.  

 

Figure 6. Categorization based on document type. 

3.4. Anaerobic Digestion Models 

Apart from limited studies based on experiments, most of the analyses were based 

on mathematical models, emphasizing the importance of developing mathematical mod-

els. A summary of the models and frequencies found in the 30 selected studies is presented 

in Table 1. 

Table 1. Models used in sensitivity analyses. 

Model Reference 

ADM1 [6,12,43–53] 

BSM2 [39,40,54,55] 

Economic models of AD plants [56,57]  

BSM [58] 

Experimental-based model [59] 

Simplified AD bioprocess [42] 

Structured model for high-solids AD [60] 

Single-component feedstock digestion model with 

substrate inhibition 
[45] 

Simplified AD model (ADM1) [1] 

Surface-based ADM1 [7] 

Linearized ADM1 [61] 

1-D reactor model with six parabolic partial differen-
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[41] 
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Other mathematical AD models [63–65] 
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3.5. Sensitivity Analysis Approaches  

A comprehensive content-based analysis was conducted in order to answer the re-

search questions. Following is a summary of 30 selected research studies conducted over 

the years. As discussed earlier, generally, there are two approaches to analyzing sensitiv-

ity: local and global. Table 2 summarizes two main sensitivity analysis approaches and 

their frequency in the selected publications. As expected, the local approaches dominate 

by almost 60 percent. The local sensitivity analysis is a one-at-a-time technique that exam-

ines the impact of one parameter on the output at a time while keeping the other param-

eters constant. As the biggest limitation, this method does not consider parameter inter-

action. Four studies used a specific method in a local sensitivity analysis. Local relative 

sensitivity analysis introduced by Dochani and Vanrolleghem [66] is a method for calcu-

lating sensitivity functions for dynamic simulations utilizing finite difference approxima-

tions. The objective of parametric sensitivity analysis (SA) is to select the sensitive param-

eters that have the greatest impact on the model output variables, thus improving the 

efficiency of design optimization by adjusting a limited number of sensitive parameters 

rather than all the adjustable parameters [67]. A dynamic sensitivity analysis is one in 

which the sensitivity indexes are time-dependent [68,69]. 

In contrast with local sensitivity analysis, when all input factors are varied simulta-

neously, and the sensitivity is evaluated over each input factor's full range, a sensitivity 

analysis is considered global [25]. As discussed in Section 1, there are different global sen-

sitivity analysis methods. Several approaches were identified from the selected studies, 

which will be discussed further. 

Table 2. Sensitivity analysis approaches and their frequency. 

Sensitivity Analysis Methods Freq. Ref. 

Local Approaches 19  

Local sensitivity analysis (LSA) 15 
[7,12,41,42,44,47,51–

53,56,57,59,61,63,64] 

Local relative sensitivity analysis (LSRA) 1 [48] 

Parametric sensitivity analysis (PSA) 2 [46,65] 

Dynamic sensitivity analysis (DSA) 1 [50] 

Global approach 12  

Global sensitivity analysis (GSA) 12 [1,6,39,40,43,45,49,54,55,58,60,62] 

Total 31  

3.6. Local Approaches 

3.6.1. Local Sensitivity Analysis 

According to Table 2, fifteen studies used local sensitivity analysis, indicating the 

highest level of interest. In a comprehensive LSA, Barahmand [12] explored the potential 

effects of varying 48 stoichiometric and kinetic parameters in ADM1 on 35 output varia-

bles. As a result of the analysis, all correlations and sensitivity indexes between input var-

iables and output variables were provided. As a conclusion, in this study, pH, as one of 

the critical output variables, shows the highest sensitivity to 𝑇𝑏𝑎𝑠𝑒 , 𝑘𝑑𝑒𝑐,𝑎𝑐, and 𝑆𝑎𝑛.𝑖𝑛. Pa-

naro et al. [7] performed calibration, validation, and sensitivity analysis on a surface-based 

ADM1 model for the AD of potatoes to investigate the most sensitive parameters. In order 

to validate and calibrate the model at a laboratory scale, ad-hoc anaerobic digestion ex-

periments were applied. Moreover, LSA investigated the importance of selecting the cor-

rect parameters for methane generation and volatile fatty acid concentrations in real AD 

bioreactors. Depending on which partial derivative is greater in absolute terms, the max-

imum or minimum value of those partial derivatives was used as a sensitivity index for 

each parameter [7]. Disintegration kinetic constant Ksbk presented the highest sensitivity 

among disintegration/hydrolysis-related parameters and Monod-specific uptake rates.  
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In order to implement a model predictive control system for AD systems, Li et al. [61] 

developed linearized ADM1 (LADM) as a model predictive control for anaerobic diges-

tion systems. Model input data from the lab-scale AD system was used for the sensitivity 

test. SA resulted that kdis, khyd_ch, km_ac, KS_ac, and Yac were the most influential parameters. 

Based on an anaerobic digestion model, Silva and De Bortoli [63] calculated the first-order 

sensitivity coefficients for a system of stiff nonlinear differential equations. As part of this 

approach, the auxiliary equations were used to calculate the sensitivity coefficients solved 

separately from the model equations, using the same numerical approximations and time 

steps used to calculate the model solution using the 4th-order Rosenbrock method [70]. 

Based on the results, they could determine the importance of each reaction for each species 

involved in the model. Fatolahi et al. [44] calibrated ADM1 incorporated into Matlab/Sim-

ulink to simulate a mesophilic lab-scale reactor fed with the organic fraction of municipal 

solid waste. A sensitivity index based on Shannon entropy was used to determine five 

parameters as indicators: biogas flow, methane flow, pH, effluent COD, and ammonia 

concentration. Shannon entropy [71] refers to a measure of the uncertainty regarding the 

occurrence of a given event, given partial information about the system. According to the 

results, all other indicators’ parameters could be covered by the parameters of the biogas 

flow indicator with an entropy greater than 0.2 dB. In addition, genetic algorithms were 

used to estimate 13 critical kinetic parameters, including the maximum specific uptake 

rate of sugar, propionate, acetate, etc. Based on a techno-economic approach, Fuess and 

Ziait [57] identified the key factors affecting the economic performance of sugarcane bio-

refineries’ AD of vinasses.  

Macleod et al. [59] determined the models’ quantitative sensitivities using factorial 

design. A factorial design allows the effects of a factor to be assessed at several levels of 

the other factors, enabling valid conclusions to be drawn over a wide range of variables 
[72]. The retention time had the greatest impact on total solids removal and volatile solids 

removal, and biogas was greatly influenced by loading rate and temperature. There was 

a high degree of precision in the regression model fitted to the experimental data, indicat-

ing that small reactors were as sensitive to changes in loading, retention time, and tem-

perature as full-scale digesters. Benbelkacem et al. [47] performed a sensitivity analysis on 

ADM1 to investigate how biogas production was affected by KLa and KmX. Atallah et al. 

[51] conducted an LSA on ADM1 based on the two sets of digester data to optimize pa-

rameters based on five performance indicators: methane generation, pH, acetate, total 

COD, and ammonia. It was concluded that at one end of the simulated range, some pa-

rameters are highly sensitive. However, on the other end, they are less sensitive. In order 

to simulate the operation of continuous digesters fed at different HRTs, Souza et al. [52] 

evaluated the feasibility of using biochemical methane potential (BMP) tests data to cali-

brate ADM1. Based on data from BMP tests, a sensitivity analysis was conducted to de-

termine the most sensitive ADM1 parameters to be calibrated. The “fminsearch” function 

from MATLAB® (Mathworks, Natick, MA, USA) was used for calibrating the differences 

between experimental and simulated values. As a result, asymmetric characteristics were 

observed for kdis, khydch, khydpr, and khydli when the parameters were varied at low levels. At 

low ranges, kmac also showed a high degree of sensitivity. In order to establish the basis 

for the appropriate application of the ADM1, Jeong et al. [53] developed a model for the 

serum bottle test that allows for a comparison of stoichiometric and kinetic parameters 

with the components. The results showed that the product yield on the substrate had a 

high sensitivity to model components, with methane concentration being the most sensi-

tive. Although Monod’s maximum specific uptake rate was strongly associated with bio-

mass concentration, individual values could not be determined.  

Pinto et al. [56] identified the most sensitive parameters affecting the economic via-

bility of investments for generating electrical energy through anaerobic bio-digestion of 

vinasses. Several strategically selected variables were subjected to a univariate sensitivity 

analysis. In the sensitivity analysis, the NPV for the vinasse daily flow, the electricity sale 

price in the RCE, the contracted amount in the FCE, and the power limit of the installed 
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plant were examined. The profitability of the process was also evaluated using a sensitiv-

ity analysis. Biogas reuse is governed primarily by investment costs for AD power plants 

and product prices (electricity or biomethane). In order to design an optimal control strat-

egy for the bioprocess, Iancu and Petre [42] performed a system sensitivity analysis to 

determine how command and parameter changes affect the evolution of the system states 

and outputs.  

Although the most commonly used sensitivity analysis method for adapted ADM1 

models is the local sensitivity method, it has some drawbacks [26,73,74]. LSA does not 

consider interaction effects between parameters. Moreover, small variations and fluctua-

tions make the analysis challenging [6]. 

3.6.2. Parametric Sensitivity Analysis 

Chen et al. [46] concocted a parametric sensitivity analysis on the ADM1 model using 

AQUASIM 2.0 (Reichert, 1994) to simulate biogas production from Hydrilla verticillata 

and select the most sensitive parameters for estimation using the absolute–relative sensi-

tivity function. The results indicated that biogas production is greatly influenced by the 

disintegration constant (kdis), the protein hydrolysis constant (khyd_pr), the maximum specific 

substrate uptake rate (km_aa, km_ac, km_h2), and the half-saturation constants (Ks_aa, Ks_ac). The 

model equations were optimized by fitting the batch experiment data to the model equa-

tions. They could predict the experimental results of daily biogas production and compo-

sition using their ADM1 model after parameter estimation. According to them, batch ex-

periments alone are not sufficient to determine the actual biogas potential of HV under 

actual process conditions; continuous anaerobic digestion reactions will also be necessary. 

Furthermore, a future plan for their study was grouped into three steps: (1) developing 

an anaerobic digester with continuous flow, such as an up-flow anaerobic sludge blanket 

(UASB) or a continuously stirred tank reactor (CSTR); (2) analyzing the stability of the 

anaerobic reactor by applying the modified ADM1 model to simulations of continuous 

AD processes in CSTR or UASB reactors; and (3) experimentally verifying the predictive 

effects of the modified ADM1 model by conducting continuous AD experiments in the 

CSTR or UASB reactor. 

In another study, Havlik et al. [65] applied a parametric sensitivity method to a math-

ematical model of anaerobic digestion in order to determine how individual model pa-

rameters affected selected output variables. According to the relative parametric sensitiv-

ity value, yield coefficients and rate constants were the most influential parameters in the 

process. As a result of the parametric sensitivity analysis of the anaerobic digestion model, 

it was concluded that the stoichiometric coefficients and rate constants should be evalu-

ated with the highest priority during the construction of the model. In contrast, other co-

efficients, such as saturation and inhibition constants, had relatively little influence, and 

their order-of-magnitude estimates were sufficient for construction.  

3.6.3. Local Relative Sensitivity Analysis 

Barrera et al. [48] modeled the anaerobic digestion of cane-molasses vinasses. They 

extended ADM1 with sulfate reduction for high-strength and sulfate-content wastewater. 

Four parameters of the original ADM1 (km,pro, km,ac, km,h2, and Yh2) and all sulfate reduction 

parameters (Spro, Sac, pH, Qgas, Sgas,ch4, Sgas,co2, Sso4, Sh2s, and Sgas,h2s) were calibrated based on a 

local relative sensitivity analysis. It was found that the mentioned process variables were 

accurately predicted during model validation, despite some deviations between the 

model predictions and the experimental values. Thirty-six days of dynamic data were 

used to calibrate the model. Using an iterative approach [75], the most sensitive parame-

ters were calibrated by fitting the model to the experimental results for the mentioned 

process variables. Their model showed high-to-medium accuracy (10–30%), with a mean 

absolute relative error ranging between 1 and 26%. As the sulfate loading rate increased, 

the model was able to predict the failure of methanogenesis and sulfidogenesis. 
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3.6.4. Dynamic Sensitivity Analysis 

Lee et al. [50] conducted the anaerobic model for co-substrate degradation by a tem-

perature-phased anaerobic digestion process based on ADM1 in order to validate the per-

formance of ADM1. Moreover, dynamic sensitivity analyses of kinetic parameters were 

carried out. In order to analyze the dynamic sensitivity of the continuous experimental 

model, the average of absolute differences between simulation results with parameters 

previously determined by Batstone et al. [8] and parameters with a relative change of the 

target parameter was used as the sensitivity index. For sensitivity analysis, the kinetic 

parameters were taken into account. However, stoichiometric parameters were negligible 

due to their small variation. According to the sensitivity analysis, the maximum specific 

uptake rate and half saturation value were highly sensitive to model components. For 

propionate users and acetate utilizers, key parameters, including the maximum uptake 

rate and half saturation constant, were estimated using iterative methods, which opti-

mized the parameters based on experimental results. For acetate utilizers, the maximum 

uptake rate was estimated using iterative methods. Table 3 summarizes the sensitivity 

approaches and methods in the selected studies.  

Table 3. Sensitivity approaches and methods used in analyses. 

Approach Via Ref. Year 

LSA Sensitivity index [12] 2022 

GSA 
Definitive screening design and multiple linear regression 

analysis 
[1] 2021 

GSA Screening analysis with the Morris method and Sobol indices [6] 2021 

LSA  [7] 2021 

LSA  [61] 2021 

LSA  [56] 2020 

LSA 
Calculating sensitivity coefficients, 4th order Rosenbrock 

method 
[63] 2020 

SA Shannon entropy concept and genetic algorithms [44] 2020 

GSA 
Integrating with functional principal component analysis 

(FPCA), rank-clustering techniques, and Morris’ technique 
[45] 2019 

GSA Sobol analysis [60] 2019 

GSA Monte Carlo simumation [43] 2019 

GSA Metamodel-based method [54] 2019 

LSA  [57] 2018 

SA Sensitivity matrix [42] 2017 

PSA 

Using the absolute–relative sensitivity function and minimiz-

ing the absolute–relative sensitivity function, the sum of the 

squares of the weighted deviations between measurements 

and calculated model results 

[46] 2016 

SA Factorial design of experiments [59] 2015 

LSA  [47] 2015 

LRSA Fisher information matrix [48] 2015 

GSA 
Standardized regression coefficients (SRCs), and Morris’ 

screening (MS) 
[49] 2015 

DSA  [50] 2014 

SA Multi-objective optimization [51] 2014 

GSA 
linear regression of Monte Carlo simulations (SRC method), 

and Morris screening 
[55] 2014 

GSA Sobol analysis [62] 2013 

LSA Sensitivity index [52] 2013 
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GSA 
Monte Carlo simulations, standardized regression coefficients 

(SRC), and cluster analysis 
[58] 2012 

GSA 
linear regression of Monte Carlo simulations (SRC method), 

and Morris screening 
[39] 2012 

GSA Monte Carlo simumation [40] 2008 

LSA  [53] 2005 

LSA  [41] 2003 

SA  [64] 1985 

PSA  [65] 1984 

3.7. Global Approaches 

Twelve of the thirty selected studies utilized GSA as the sensitivity analysis method. 

Based on a definitive screening design and multiple linear regression analysis, Boutoute 

et al. [1] demonstrated the reliability of a GSA methodology. The method was applied to 

a simplified model of anaerobic digestion. According to the sensitivity analysis, the slow 

hydrolysis constant and the upper pH inhibition limit of the hydrolytic biomass were cru-

cial for accurate prediction of the biogas production rate, and biogas methane percentage 

varied slightly with kinetic parameters. Furthermore, the mass transfer coefficient signif-

icantly impacted the pH due to CO2 desorption. Trucchia and Frunzo [6] conducted a GSA 

and uncertainty quantification (UQ) for a modified version of the ADM-based model. A 

large number of parameters were analyzed to perform GSA, which led to a first prelimi-

nary screening analysis using the Morris method. Based on the two defined quantities of 

interest (QoI), a surrogate model for ADM1 was developed. For the quantitative GSA, the 

output results from the surrogate model have been analyzed with Sobol indices. They 

resulted that for the whole set of QoI which was adopted, the role of parameters particle 

radius (r0) and surface-based kinetic constant (Ksbk) were crucial. 

A computational approach was demonstrated by Fortela et al. [45] in order to explore 

the importance of biochemical mechanism parameters in AD models with variations in 

the concentrations of feedstock. Their methodology incorporated GSA, functional princi-

pal component analysis (FPCA), and rank-clustering techniques. With GSA-FPCA inte-

gration, the time-varying nature of GSA (Morris’ indices) was removed, while rank-clus-

tering provided a statistically based method to group parameter sensitivities based on 

variations in the feedstock. Based on the first principal component scores, the ranked Mor-

ris sensitivity indices revealed the stoichiometric parameters most likely to influence ki-

netic responses, as well as those that were the least sensitive. Pastor-Poquet et al. [60] eval-

uated the effect of high NH3 levels on the high-solids anaerobic digestion of organic frac-

tions of municipal solid waste through calibration and cross-validation of a high-solids 

anaerobic digestion model for homogenized reactors. Based on the experimental data 

available, the GSA was designed to identify the most influential parameter that should be 

calibrated. The identifiability of 35 biochemical parameters and 32 initial process condi-

tions were assessed using batch experiments at different solid-to-substrate ratios.  

Parameter optimization was carried out using variance-based global sensitivity anal-

ysis and approximate Bayesian computation. Xu [43] developed a method for calibrating 

parameters that could be incorporated into ADM1 built for industrial-scale digesters. A 

partial least squares (PLS) method was proposed, which consisted of four steps: a series 

of Monte Carlo simulations; GSA as a multivariate regression technique called PLS Re-

gression, which was applied to the results in the previous step; parameter calibration; and 

validation. According to the author, the parameter calibration method proposed in this 

thesis significantly improved the model’s overall accuracy, and comparing the PLS 

method with other methods, such as Group and Brute Force methods, showed promising 

results. A systematic framework for the construction and validation of high-accuracy 

meta-models for the efficient scenario-based GSA of complex wastewater treatment plant 

models was presented by Al et al. [54]. Four engineering scenarios were investigated in 
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order to assess the efficiency and robustness of three meta-modeling approaches, namely 

polynomial chaos expansion [76], Gaussian process regression [77], and artificial neural 

networks [78,79]. The proposed framework showed significant computational gains com-

pared to the Monte Carlo-based approaches. An investigation into the influence of influ-

ent fractionation, kinetics, stoichiometry, and mass transfer parameter uncertainties on 

biogas production in wastewater treatment plants was conducted by Solon et al. [49]. Us-

ing BSM2, the amounts of CH4, H2, and CO2 generated in a plant were quantified. In order 

to identify the set of parameters that have the greatest influence on the biogas production 

uncertainty, a comprehensive global sensitivity analysis was conducted based on stand-

ardized regression coefficients (SRC) and Morris’ screening’s (MS’s) elementary effects. 

GSA was repeated in the anaerobic digester for different solids retention times (SRTs) and 

temperature regimes. It resulted that unless the anaerobic digester operates at low SRT 

and mesophilic conditions, both SRC and MS are good sensitivity measures. The influent 

fractionation was the most influential parameter for predicting the emissions of CH4 and 

CO2 at high SRT.  

Using one-dimensional secondary settling tanks (1-D SST) models with first-order 

and second-order mathematical structures, Ramin et al. [55] examined the sensitivity of 

wastewater treatment plant model performance. Based on the input uncertainties associ-

ated with the biokinetic parameters in ASM1, the fractionation parameter in the primary 

clarifier, and the settling parameters in the SST model, a GSA was performed on BSM2. In 

particular, for the biogas production and treated water quality in the plant model, the 

settling parameters were found to have the most influence on uncertainty as the biokinetic 

parameters. A study was conducted by Ramin et al. [39] to examine the impact of two 

operational strategies for reducing excess activated sludge waste on the simulation per-

formance. They conducted GSA on BSM2 using linear regression (SRC method) with 

Monte Carlo simulations and Morris screening. According to the results obtained in this 

study, 1-D SST model parameters greatly influenced biogas production through anaerobic 

digestion and the quality of the plant's effluent water. However, they showed a limited 

effect on estimating the quality of nitrogen-rich returns from anaerobic digestion. 

A GSA was conducted by Flores-Alsina et al. [58] on a phenomenological model 

based on BSM2 that generates dynamic scenarios of an influent disturbance at wastewater 

treatment plants. Combined Monte Carlo simulations and SRC were employed for the 

GSA. In the next step, cluster analysis was applied in order to categorize the influence of 

the model parameters into three groups: strong, medium, and weak. Flow rates during 

dry weather and their variability were strongly influenced by both catchment size and 

wastewater production per person. In wet weather conditions, the probability of a rain 

event, the catchment size, and rainfall falling on permeable surfaces were the most influ-

ential parameters. Bendetti et al. [40] applied GSA using the Monte Carlo approach to 

BSM2. Among the parameters, the design and operation parameters were found to be the 

most sensitive, followed by the parameters of the wastewater treatment model, while the 

adopted BSM2 evaluation criteria were relatively insensitive to variations in the parame-

ters of the sludge treatment model. Using a simplified AD model, Donoso-Bravo et al. [62] 

introduced a three-step procedure for estimating kinetic and stoichiometric parameters 

with a high degree of accuracy. A variance-based GSA and a multi-start strategy that 

helped to identify the possible local minima were all part of this process. Table 4 lists and 

provides information about anaerobic digestion models and the application of the sensi-

tivity analyses in the selected studies.  
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Table 4. Sensitivity approaches and methods used in analyses. 

Model Sensitivity of/Aim Ref. 

Simplified AD model 

(ADM1) 

biogas flowrate, the percentage of methane in the biogas, and pH to kinetic and 

mass transfer parameters  
[1] 

ADM1 model outputs to the key model parameter (37 parameters) [6] 

ADM1 model outputs to key model parameter [7] 

Linearized ADM1 methane production on the model input data from the lab-scale AD system [61] 

Economic study investments projects’ economic to contracted plant energy generation [56] 

A mathematical AD model 

with 7 reactions and 9 spe-

cies 

each reaction in the mechanism of chemical species to the chemical reaction mech-

anism 
[63] 

ADM1 
to identify the most sensitive parameters (6 parameters) for the ADM1 model cali-

bration 
[44] 

ADM1 and single-compo-

nent feedstock digestion 

model with substrate inhibi-

tion 

model parameters on the feedstock variation (22 parameters) [45] 

Structured model for high-

solids AD 

the practical identifiability of 35 structural/biochemical parameters and 32 initial 

conditions 
[60] 

ADM1 model outputs on key model parameters [43] 

BSM2 model outputs on key model parameters [54] 

Economic study 
different factors including the sensitivity of profitability of the process (IRR) to 

model’s economic parameters 
[57] 

Simplified AD bioprocess 
state variables of the bioprocess to the dilution rate, and the influent substrate 

concentration 
[42] 

ADM1 methane concentration to the key model parameter (16 parameters)  [46] 

Experiment-based model digester performance indicators to the operating conditions [59] 

ADM1 
model outputs to the mass transfer coefficient (kLa) and the maximum substrate 

consumption rate (kmX)  
[47] 

ADM1 to calculate sensitivity functions for the dynamic simulations [48] 

ADM1 
studying the influent waste composition and model parameters to estimate how 

the predicted biogas production  
[49] 

ADM1 model outputs to the kinetic parameters [50] 

ADM1 

methane, pH, acetate, ammonia, total chemical oxygen demand (COD), and 

equally weighted combination (EWC) of the five indicators to the key model pa-

rameter (15 parameters) 

[51] 

BSM2 

wastewater treatment plant (WWTP) model performance to the selection of one-

dimensional secondary settling tanks (1-D SST) models to biokinetic parameters in 

the activated sludge model No. 1 (ASM1), a fractionation parameter in the pri-

mary clarifier, and the settling parameters in the SST model 

[55] 

Anaerobic batch system biogas production and pH to key model parameter [62] 

ADM1 
to define the most sensitive ADM1 parameters to be calibrated using data from 

BMP tests. 
[52] 

BSM 
influent variations to generate dynamic wastewater treatment plant (WWTP) in-

fluent disturbance scenarios 
[58] 

BSM2 
to provide a parameter sensitivity ranking and predict key plant performance cri-

teria, including methane production and effluent water quality index 
[39] 

BSM2 model outputs to key model parameter (68 parameters) [40] 

ADM1 model outputs to 17 kinetic and stoichiometric parameters [53] 
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1-D reactor model with 6 

parabolic partial differential 

equations 

model variables (W-waste, B-biomass, VFA, CH4) to key model parameters 

(eleven parameter values within the ±50% range) 
[41] 

A mathematical AD model methane production to the key model parameter (seven parameters) [64] 

A mathematical AD model 
the sensitivity of methane production and degree of volatile solids degradation to 

the key model parameter (19 parameters) 
[65] 

4. Conclusions 

Sensitivity analysis is an integral part of anaerobic digestion modeling. The literature 

lacks reviews on this topic, and the present study, in order to fill the gap, aims to conduct 

a scoping review to investigate the application of sensitivity analysis in anaerobic diges-

tion modeling. The results indicate that in addition to calibration and estimation, it can be 

used to investigate the influence of input parameters on the model’s output. There is con-

siderable interest in both local and global approaches to sensitivity analysis in the litera-

ture. Mathematical models, in particular, ADM1-based models were commonly used to 

perform sensitivity analyses. The sensitivity of methane production, pH, COD, and biogas 

flow rate were studied extensively in the selected studies. Many advantages can be de-

rived from sensitivity analysis. It is far more reliable to make predictions based on a de-

tailed analysis of all the variables. As a result, decision-makers and designers can identify 

exactly where improvements can be made, and are able to make informed decisions about 

the process. Moreover, local sensitivity analysis can serve as the basis for uncertainty anal-

ysis, particularly possibilistic approaches such as fuzzy set theory. 
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