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Abstract

This thesis will address the development of a system based on a description delivered by
clients IoT-labs and Applied Hydrogen. The system implemented is a data collection unit
fitted with multiple components for data collection, as well as a webcam for surveillance
purposes. The data collection unit will in due course be mounted in an excavator to collect
data in order to provide helpful information to any other parties involved.
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1 Introduction

1 Introduction

Data recording of Excavator CAN bus for Hydrogen Operation (D.E.C.H.O) is a collab-
orative project between IoT-labs, Applied Hydrogen and the University of South-Eastern
Norway (USN). The project was carried out by a team of undergraduate students as part
of their bachelor’s thesis.

1.1 Background

Construction is today responsible for 23% of all air pollution, and heavy machinery is
responsible for a significant part of that [1]. Applied Hydrogen (AH) has taken aim at
wanting to convert construction vehicles to hydrogen operation as part of the green shift
within the construction industry. They are currently carrying out this project by imple-
menting this conversion on a Volvo EC300DL excavator, donated by Tveito Maskin AS. To
carry out such a conversion the plan is to replace the diesel engine of the excavator with
a hydrogen fuel cell combined with a battery in such a way that no further upgrades or
replacements are required. Once the conversion is completed, it is in AH’s best interest to
monitor the excavator’s behavior through some sort of data collection system. The data
should be collected while the excavator is being operated as normal, and would be used for
troubleshooting purposes in the future. The data would also help potential partners with
their own endeavours.

1.2 Changes to Project

Throughout the project life cycle there has been a change in the team’s task at hand. The
original task was concerning the unknown messages collected from CAN bus. It was the
team’s job to decode these unknown messages to gain information about the contents of the
messages, as well as the location they were sent from, and their destination. CAN bus is
defined as a serial protocol, commonly used within the automotive industry [2]. For more
information regarding CAN bus, see Appendix H.
The expired task also included making a simulator that would simulate the excavator’s
functions, as well as an emulator that would emulate the excavator’s engine.

On the 14th of February the team was given a new modified project description. Through
meetings between Applied Hydrogen and Volvo, the clients Applied Hydrogen and IoT-
labs determined the current project was not feasible. In short, there seems to be essential
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1 Introduction

information on the J1708 bus of the excavator the team was working on. Since the 1708
bus does not exist in newer excavators, the original plan of decoding was deemed a waste
of both time and energy.

Instead of decoding CAN-messages, the modified project description ordered the team to
collect them. The new project revolved around designing and implementing a system that
can collect both CAN bus and sensor data.

1.3 Project Assignment

The following project assignment is based on information provided by the client IoT-labs
through written descriptions of the task at hand.

The team has been given a smaller part of the full-scale project and the team’s contribution
will be concerning the collection of data from the excavator. The architecture presented in
Appendix C is what the integration of a hydrogen extension will ultimately look like. The
Integration Control Unit (ICU) as seen in the architecture is a vital part of the project.
This unit shall be designed and implemented to work as a data recorder. The recorder will
be an integral part of the system and shall include multiple functions explained later in the
report. Sensors for data collection will also be implemented in the final system.

1.4 Scope of Work

The aim of this thesis is to develop a CAN bus application system that will allow for
both data collection and surveillance of the excavator. The CAN bus application will also
generate data to cloud storage. Furthermore, data from the application system can be
consumed for troubleshooting purposes. The software will be developed in such a way that
it can simply be upgraded and reused for other implementations as well as various types of
construction machines.

9



2 Project Management and Development Process

2 Project Management and Development Process

This section addresses the team’s choice of project model and the principles of project
management. It also introduces elements of the team’s development process in terms of
requirements, tests and risks.

2.1 Project Model

After some discussion, the team decided to adopt an agile project management model based
on Scrum. The Scrum model is easy to follow, and allows for each member to work inde-
pendently (as seen in Fig.1). Since it is difficult to figure out how far the team will advance
with the project, an agile approach was agreed upon, which allows for both adding and
removing requirements if necessary.

Figure 1: Scrum model

Agile is a development process that emphasizes iterative and incremental development of
products and testing that takes into account system requirements and potential solutions
throughout the project’s life cycle [3]. Agile is most commonly associated with Scrum, and
for good reason. The sprints are short, manageable cycles that divide the project into small
parts. Shorter cycles make processes more adaptable to changes and allow them to respond
more quickly, which results in a greater solution.

10



2 Project Management and Development Process

In order to maximize the efficiency of Scrum and Agile, the team started using "mon-
day.com" for project management at first, however, it was too expensive and limited in its
use in terms of the student package. Therefore, it was replaced by Jira.

2.1.1 Jira

Jira is an advanced project management tool designed for Agile teams to perform essential
project planning. As an issue-tracking tool for all types of testing, it is widely used in all
facets of software development, but one can also create project management workflows that
work for different types of businesses. A great aspect of Jira is that it is free for small teams
of up to ten users [4].

Jira has the advantage of explicitly supporting the management of the aforementioned
artifacts, such as a backlog, sprints, and roadmap that will be utilized with the current
project model. Jira will ultimately give the team the ability to develop an agile process that
can be broken down into stages such as functionality, planning, implementation, testing,
and review [4].

2.1.2 User Stories

User stories are critical Scrum artifacts that are used to define high-level functional require-
ments. They are brief, straightforward descriptions from the perspective of the consumer,
and in the current instance, the team is following the prevalent practice of: "As a [persona],
I [want to], [so that]". The purpose of user stories is to encourage team discussion and offer
the team a clearer picture of what the user wants the solution to accomplish[3].

The team utilized "Easy Agile" on Jira to add user stories. The application did not only
provide an intuitive, collaborative and visual mode of understanding and defining the user’s
journey with the product, but it also helped maintain an overview of the whole product
development process without it being separated from the rest of the project’s activities (as
seen in Fig.2).

11



2 Project Management and Development Process

Figure 2: User story mapping

2.1.3 Sprints

When creating a new project, utilizing the Scrum template gives one the ability to collab-
orate using sprints in order to break down large, complex projects into manageable chunks
[5]. A sprint is a condensed period of time during which a Scrum team works to complete a
specific amount of work. Scrum and Agile approaches are built around sprints, and getting
sprints right can help our team ship a better product with less issues [5]. Fig.3 shows the
duration of each sprint, as well as which tasks are completed, which are in progress, and
what tests and reviews are waiting to be completed.
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2 Project Management and Development Process

Figure 3: Sprint overview

2.1.4 Product Backlog

The road map and associated requirements are used to create a product backlog, which is
a prioritized list of work for the development team. The most critical items are positioned
at the top of the product backlog, allowing the team to prioritize what should be delivered
first. Fig. 4 shows the product backlog that was created in Jira.

13
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Figure 4: Product backlog created in Jira

2.1.5 Sprint Planning

Sprint planning is a Scrum event that starts the sprint. The aim of sprint planning is to
figure out what can be achieved in a given sprint and how it will be accomplished. Since
the team don’t have a product owner, the Scrum team will collaborate on sprint planning.
The team will need to agree on the length of the sprint, the sprint goals, and what should
be prioritized. The sprint planning session sets the agenda and objectives for the sprint.
During sprint planning the Scrum team has to think about:

What - The sprint’s aim (or goal) is described by the team, along with which backlog
items contribute to that goal. The Scrum team determines what can be accomplished in
the course of the sprint and what they will do throughout the sprint to accomplish it.
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How - It is the team’s responsibility to develop a strategy for achieving the sprint goal.
In addition, the sprint plan represents a value and effort negotiation between members in
order to come to an agreement on the prioritization of each item.

Who - As previously stated, there is no product owner, thus the team decides on the
duration and planning of the sprints as a collective. A sprint can be planned if all or more
than four members of the team are present at the same time. For example, the sprint
cannot be planned solely by the group leader or Scrum Master. During meetings the team
will also decide who will be responsible for each task.

2.1.6 Daily Stand-up Meeting

Every morning the team has a short daily stand-up meeting to give a swift update on what
everyone is currently working on. It is not really a detailed status meeting in the traditional
sense. The Scrum Master is responsible for keeping meetings on track and making sure that
everyone answers these questions briefly and concisely:

• What did I accomplish yesterday?

• What am I going to work on today?

• Is there anything that is preventing progress?

When a member reports what they did yesterday in front of the team, they imply account-
ability. It will help the team in working harder because no one wants to be the member
who does the same thing repeatedly and never sees progress.

2.1.7 Sprint Review

At the end of each sprint, the team has a sprint review meeting where the team’s work is
demonstrated. During the meeting, the team members gather around a table and discuss
the work that has been accomplished in the current iteration. It is a great opportunity for
members to ask questions, give feedback, and try out new features. During the meeting the
team goes through what went wrong, what went right, and what can be improved upon for
the following sprint.
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2.1.8 Task Board

Task boards represent the tasks that should be completed during the current sprint. It
provides a great overview where one can see how many tasks each group member has, and
how long each of these tasks will take.

There are four phases to the road as shown in Fig.5. In the first table starting from the left,
one can see the number of tasks that need to be completed. The second table addresses
tasks that are currently in progress. The third table presents tasks that are currently in
the testing and reviewing phase. If the results of these tests are satisfactory, they will be
moved to the fourth and final table, which represents completed tasks.

Figure 5: Task board
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2.2 Project Tools

2.2.1 Communication Tools

Facebook Messenger
Facebook Messenger was used as the primary tool for communication within the team. It
was used to convey information quickly as most team members were checking the application
often.

Zoom
Zoom was used mainly for arranging video calls with clients at the start of the project when
stricter COVID-19 restrictions were ongoing.

2.2.2 Work Tools

Microsoft Teams
Microsoft Teams was used mainly for storing various documents, powerpoints and Visio-
drawings. It was also used occasionally for video calls within the team environment.

Jira
Jira was an essential administrative tool that was used for project management, as well as
user story mapping.

Overleaf
The team utilized LaTeX for documenting throughout the project. Overleaf was a cheap
option that allowed the team to work simultaneously on the same documents.

Solidworks
Solidworks was used primarily for 3D-modeling throughout the project.

Visio
Visio is a diagramming software that was mainly used to model UML-diagrams displaying
the structure of the software, as well as other diagrams to provide more context to the
system.

Github
Github was used for software development, in terms of providing backups for the team’s
code, as well as being used to easily transfer code from one device to another.
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2.3 Requirement Specification

To better understand what the product or service should do, it is important to set require-
ments. The requirements represent what the customer wants and helps develop the product
according to the customer’s demands. When finding requirements, it is important to keep
in mind that these will have to be tested and documented. One way to help do this, is by
making the requirements SMART, meaning Specific, Measurable, Achievable, Relevant,
Time bounded, as shown in Table 1.

Table 1: SMART methods
S Specific E.g., state what we need to do.
M Measurable E.g., provide a way to evaluate.
A Achievable E.g., it must be within our scope.
R Relevant E.g., make sense within our job function/similar.
T Timebound E.g., state when we will get it done.

Because of the big changes to the project, new requirements were necessary (See Appendix
T). These requirements were more specific and attainable, as the project was more cen-
tered around creating a finalized product and not a development system as earlier. This
would also make testing of the requirements easier, which in turn made the project more
manageable, and made it easier reaching the desired goal.

2.4 Stakeholder Analysis

To create a good product or service, it is important to know who has interest in what is
being developed. One way of doing this is performing a stakeholder analysis. This can help
map who has interest in the project, and what role they play. This bachelor project is a
small part of a bigger main project owned and managed by Applied Hydrogen. This means
that there are several levels in terms of project management and roles, which can make it
difficult to identify the stakeholders, and what part they play. To get a better overview of
this, the stakeholders have been divided into two main levels, top-level and low-level.
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Figure 6: Stakeholders top-level

Top-level (as seen in Fig.6) is in this case, the bigger main project, owned and managed
by Applied Hydrogen. They are themselves internal stakeholders, as they are the owners
of the project. Externally some of the stakeholders are investors like Enova that helps with
funding, and Volvo and Tveito Maskin AS, as they are the ones providing the excavator
used. AVL is also an important stakeholder, as they are the ones providing the hydrogen
driveline used for the project.

Low-level (as seen in Fig.7) is the bachelor project, as it only makes up a small part of the
main project. Here the internal stakeholders are IoT-Labs and D.E.C.H.O. Since IoT-Labs
are the ones outsourcing the project, they are the project owners. The bachelor group is
categorized as employees and maintainers, as the group are the ones performing the work
tasks, and will be the ones maintaining the systems developed. On this level, the external
stakeholder is Applied Hydrogen as customer and user. This is because they are the ones
the system is mainly created for, and the ones that will make use of the information found
and systems created.
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Figure 7: Stakeholders low-level

2.5 Test Plan

During the project life cycle multiple tests were carried out. It was important for the team
to perform tests consistently throughout the project to identify and remove potential errors
and mitigate flaws in the components or system. These tests would also follow the SMART
method as shown in Table 1.

When performing a test the test results would be placed in individual test tables. These
tables would include:

• The objective of the test.

• The method used to test.

• The expected result of the test.

• The actual result of the test.

• Whether the test was a success or not.

• The date of the test.

20



2 Project Management and Development Process

The tests performed were sometimes needed to be revisited. As new changes were made
to the system, some tests would eventually become irrelevant and new tests would have to
take place in order to maintain the working functions of the system.

2.6 Risk Assessment

2.6.1 Risk Management

Risk management is a tool for any project used to achieve its goals. With good risk
management, one can anticipate any risks that will have a negative impact on the project.
A structured use of risk management enables the team to see risks, measure the impact if the
risks occur, prioritize them and remove unwanted risks. In this project, for each identified
risk, the risk management process model was followed. Risk management includes activities
to identify and assess the risks, describing them, analyzing their features and implementing
a planned response. The team processed risk management as followed: Identified new
risks, defined their statement, defined their probability and severity, laid strategy, and
documented steps taken, (as seen in Fig.8). An assessment was executed at the start of
each sprint. Iterating this process made the team able to assess and attend risks that were
amendable at the given stage of the project.

Figure 8: Risk process model
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2.6.2 Identifying Risks

Risk identification is an iterative process where the objective is to identify and record all
possible risks that may affect the outcome of the project negatively. Once a risk is identified,
an analysis must be carried out in order to develop a strategy to reduce its impact [6].

The team sorted risks into three different categories.

Project Risk: The ones associated with the success of the project.

Product Risk: Those associated with how the product works.

Technical Risk: Directly associated with hardware or software.

There were multiple methods that could be used to find and identify the risks that may have
had an impact on the project. Thinking aloud was one of the methods the team utilized.
It helped with putting together additional ideas and identifying factors that were critical
throughout the project period.

The thinking aloud method revolves around spontaneously reporting everything that goes
through ones minds whenever performing a task, not attempting to analyze anything [7].
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2.6.3 Risk Analysis

All risks identified must be analyzed and evaluated to get a better understanding of their
possible impact on the project. By doing this, one could prioritize those that needed
immediate attention and those who didn’t. Risk analysis identifies the possible causes of a
risk occurring, and its potential impact on the project. Risk evaluation helps with defining
the severity of the consequence. This is determined qualitatively through a risk matrix, as
seen in Fig.9. The severity is calculated by giving the likelihood and the consequence a
rank and then multiply them together [8].

Figure 9: Risk matrix
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3 Proposed System

This section presents the team’s proposal of a solution, as well as introducing both the
hardware and software options that were opted for.

3.1 Understanding the System

To gain greater understanding of the system the team decided on creating a system context
diagram to visualize the internal and external factors that must be considered for the
system. A system context diagram will often help work out the relationships without going
into detail [9]. The proposed system that was used in later implementation is presented in
Fig.10.

Figure 10: System context
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The system consists of the Integral Control Unit (ICU) that will be mounted inside an
enclosure, directly behind the cabin of the excavator, accompanying the Engine Electronic
Control Unit (E-ECU). Based on the placement of the ICU, it is able to simultaneously
collect CAN bus, Inertial Measurement Unit (IMU) and GPS data. The choice of hardware
(as seen in Fig.11) and the reasoning behind it will be discussed in the following section.

Figure 11: Overview of the proposed system
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3.2 Hardware

3.2.1 Inertial Measurement Unit

An Inertial Measurement Unit (IMU) is an electronic device designed to measure the forces,
angular rate, and orientation of a given object. This is achieved by combining data from
an accelerometer, gyroscope, and magnetometer. Each of these often measure in all axes
to ensure all movements in the 3D space are detected [10].

To find a suitable IMU for the project several IMUs were compared based on performance.
These devices range in price from less than 200 NOK for commercial use, to well over 200
000 NOK for application in Aerospace. The IMUs looked at for this project were all on the
cheaper end, below 700 NOK. These sensors are less accurate and have a smaller operational
range but are sufficient enough for the project. For easier comparison of the IMUs, selected
technical specifications relevant to the project were found for each device and noted in an
Excel sheet (See Appendix U).

Based on this information the IMUs were ranked in a Pugh matrix (as seen in Table. 2).
Scores were given based on performance compared to each other. As there were eight IMUs
being compared, the best for each category was rewarded eight points. The remaining IMUs
were further given points after order of performance. First place was awarded eight points,
second place seven points and so on. If specification for an IMU was not found, the IMU
was awarded zero points in that category.
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Table 2: PUGH matrix - IMU

Although the “Adafruit ICM-20948» received the highest score in the Pugh matrix, the
“Adafruit BNO055 was chosen as it has an onboard “Cortex M0” processor. This allows
for faster processing and handling of data, which in turn offers more functionalities like
different forms of data output.

As there seemed to be a high demand for IMUs the “Adafruit BNO055” selected for the
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project was only available on a single webpage but went out of stock before Applied Hy-
drogen managed to buy it. Therefore, the “Adafruit ICM-20948” was chosen, as it was the
second best IMU from the comparison.

Because of a test directly after the choice of IMU was made, yet another IMU had to be
ordered. The "SEN0373" (as seen in Fig.12) was the IMU selected for the test and has been
utilized ever since. It ranked as number four in the original comparison, but was chosen
due to its availability. This guaranteed that the IMUs could be acquired in time so that
the first tests could take place.

Figure 12: SEN0373 Inertial Measurement Unit

3.2.2 GPS Module

Alongside the IMU, Applied Hydrogen wanted a GPS placed in the excavator. All newer
models of Volvo excavators have GPS tracking as a feature, but Applied Hydrogen do not
have access to this data. Therefore a separate GPS module would be necessary.

To find a suitable GPS for the project, several different GPSs were compared based on
performance. As these devices can range in price from less than 200 NOK for commercial
use, to well over 20 000 NOK for application in Aerospace, the GPS looked at for this
project were all on the cheaper end, below 600 NOK. In this price range the devices are
less accurate and have a smaller operational range, but were enough for the project. For
easier comparison, selected technical specifications relevant to the project were found for
each device and noted in an Excel sheet (See Appendix V).

Based on this information the GPSs were ranked in a Pugh matrix, as seen in Table 3. Here
scores were given based on performance compared to each other. As there were six GPSs
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being compared, the best for each category was rewarded six points. The remaining GPSs
were further given points after order of performance. First place was awarded six points,
second place five points and so on. If specification for a GPS was not found, the GPS was
awarded zero points in that category. In the Pugh matrix the “Adafruit Ultimate GPS” (as
seen in Fig.13) received the highest score.

Table 3: PUGH matrix - GPS
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Figure 13: Adafruit Ultimate GPS

3.2.3 Raspberry Pi

To be able to collect data one needs an applicable system that can receive, filter and store
data in a sustainable way. Based on the requirements of storing data both locally and on
the cloud, the team decided to utilize a Single-Board Computer to fulfill the requirement.
The choice of Single-Board Computer (SBC) eventually came down to the Raspberry Pi
and the Orange Pi. Ultimately, the choice was relatively simple.

Compared to the Orange Pi, the Raspberry Pi comes with multiple advantages such as
an established community, active forum discussions, as well as ongoing updates to both
its Linux operating system and applications. Although the Orange Pi might have slightly
better computing power, the team valued the ease of use of the Raspberry Pi more [11]. The
team also has previous experiences working with the Raspberry Pi and Raspbian operating
system.

3.2.4 Arduino-based CAN bus card

The system consists of two CAN buses. One CAN bus is part of the current excavator,
while one is a part of the hydrogen driveline extension. Because there are two CAN buses
the system will need hardware that is capable of collecting data from both. Using the
Arduino Due with integrated dual CAN bus connection from Copperhill Tech (as seen in
Fig.14), the system would be able to collect data from both CAN buses simultaneously
before sending it to be stored in the Raspberry Pi. The CAN bus card incorporates dual
CAN transceivers and is fully compatible with Arduino IDE, making it effortless to write
C code and upload it to the card [12].
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Figure 14: Arduino-based CAN bus card from Copperhill Technologies

3.3 Software

3.3.1 Use Case

When designing a system architecture, use cases are a good place to begin. They can serve
as a simple way of describing what’s happening within the system. They also help in the
derivation of a technical grasp of how the system works.

An actor is represented in the diagram as the person who interacts with the product, such
as a user. Each bubble represents a possible action an actor could take in order to interact
with the system. The word "include" on the arrow indicates that the pointed subsystem
the user is acting on contains a component of the system from which the arrow is pointing
[3]. When some additional behavior needs to be added, "extend" will be used.

As shown in Fig.15, the team created three separate bubbles. The base use case is "Storing
data", where "Collecting data" is included. The included use case addresses collection of
data from the CAN bus, Inertial measurement unit, GPS, and camera continuously. "Dis-
playing data" will only be called once the user wants to display the collected information
on a screen.
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Figure 15: Use case diagram

3.3.2 Sequence Diagrams

The use case diagrams demonstrate the actor’s and the use case’s static relationships, but
they aren’t useful in designing an object-oriented system. One will need to turn to the
sequence diagrams for that purpose. The diagrams show how classes communicate by
sending messages to each other. Each class is used for a particular interaction and relate
to a specific use case. They don’t provide a comprehensive picture of how classes interact,
but they do provide a general understanding [3].
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3.3.2.1 Storing Data Sequence Diagram

The sequence diagram shown in Fig.16, presented by the use case, will show how the
different components relate to each other. The data from the camera, GPS and IMU will
be sent directly to the Raspberry Pi except the CAN-messages from the excavator that is
connected to the CAN bus card which is then forwarded to the Raspberry Pi. Once the
information is collected, it will be stored both locally on a SD-card, with enough memory
for a month (see Appendix R), and on the cloud.

Figure 16: Data storing sequence diagram

3.3.2.2 Display Data Sequence Diagram

In the sequence diagram shown in Fig.17, it shows the relationship between the user and
display controller. Here, the user can choose whether they wish to access the camera or
other data such as CAN bus logs, IMU, or GPS data. The data will then be displayed
through a user interface.
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Figure 17: Displaying data sequence diagram

3.3.3 Software Architectural Model

An attractive addition to the other diagrams is the Software Architectural Model. It is
deliberately simple, with the purpose of putting all things into perspective. It will show
the display of data elements, data storing and the relationships between them as shown in
Fig.18.
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Figure 18: Software architectural model

4 Implementation

This chapter addresses the implementation concerning the proposed system in the previous
section. It will discuss both the implementation of the physical design as well as the software
design.

4.1 Physical Design

4.1.1 Prototyping

4.1.1.1 Version 1

For the first version of the system, a junction box was bought from Clas Ohlson to house the
components as seen in Fig.19. This was done because the box had internal mounting points,
and was water and dust proof, which made it suitable for housing electric components in
the exposed environment the excavator is working in.

To fit all the required components in the box, the components had to be separated into two
different floors as seen in Fig.20. When positioning the components in the box, some holes
in the sides of the box had to be made to fit cards like the Arduino Due and Arduino Mega.
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Figure 19: Small junction box

This was because the cards with cables attached were too long for the box to contain. A
hole for access to power and cable for display was also made. These holes meant that the
box was no longer water and dust proof but could still be used for the prototype. However,
a solution for the lack of space had to be found and implemented in later versions of the
system.

Figure 20: Floor layout version 1

On the first floor, the Raspberry Pi and GPS were located. This was because access to
important ports such as power and display were necessary. For these ports to be accessible
from the outside, they had to be in line with the holes made in the box. This meant that
the Raspberry Pi had to be located on the first floor, as the second floor was higher up
than the holes. The GPS was also located on the first floor as it was to be connected to
the Raspberry Pi by cables.
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On the second floor, the Arduino Mega was located. Because of the small size of the box
used, the Raspberry Pi and Arduino Mega could not fit on the same floor. Therefore,
the Arduino Mega was placed on the second floor. For the most accurate measurements
the IMU was chosen to be placed in its own box as seen in Fig. 21. This box was to be
3D-printed with a mounting bracket included as a part of the box, for the most accurate
transfer of movement and vibrations.

Figure 21: External box for IMU

The Arduino Due was not mounted in the box for the first versions of the system. This was
because its features were not yet ready to be implemented in the system, which required
the card to be easily accessible for testing. Due to the card having to be tested by itself and
not part of the system, it was chosen not to be mounted in the box until code for recording
CAN-data was completed and data could be transferred from the card to the Raspberry
Pi

4.1.1.2 Version 1.1

For this version the Arduino Mega was replace by an Arduino Uno. This was because the
Arduino contained all the necessary functions, but only took up about half the space of the
Arduino Mega. The Arduino Uno, with cables attached, was small enough for the box no
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longer needing holes. This meant that yet again the system could be water and dust proof,
if a new box was bought.

4.1.1.3 Version 1.2

For the test planned 07.04.22, 3D-printing was unavailable. Because of this, the separate
box for the IMU, as seen in Fig.21, was not possible to produce and the IMU was therefore
mounted in the box with the other components. The IMU was mounted on the second floor
as it was to be connected to the Arduino Uno.

In this version the GPS was also moved to the second floor. This was due to the need for
good signals. Having the GPS on the second floor meant that there was nothing above
blocking signals, except the lid.

To help create space between the two floors, walls were created to prevent the second floor
from laying directly on the components mounted on the first floor. This mainly helps
prevent the cables from being bent and potentially broken, as well as creating space for the
air to cool the Raspberry Pi.

4.1.1.4 Version 1.3

For this version the Arduino Uno was removed completely from the system. It had previ-
ously been used to collect IMU data and transfer it to the Raspberry Pi. As this was made
possible on the Raspberry Pi, the need for the Arduino Uno was no longer there, and it
could therefore be removed. This change freed up a lot of space in the box, and two floors
were no longer necessary to mount all the components.

4.1.2 Final Design

As mentioned previously, there were problems fitting the bigger components with cables
attached, such as the Arduino Due. To overcome this issue, a bigger junction box was
bought from Clas Ohlson to house all the components for the final system as seen in Fig.22.

In this version the Arduino Due is included, so the box has to contain two floors, as seen
in Fig.23. Although all the components would have fit on one floor, it was opted against as
this would leave no room to access ports like power for the Raspberry Pi.

On the first floor, the Arduino Due and IMU are placed. The Arduino Due is placed there
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Figure 22: Big junction box

Figure 23: Floor layout for final system

because access to this component is not as important as with some of the others, and when
the system is assembled the second floor is blocking access to the first floor. The Arduino
Due still has to be connected by cable to both the excavator and the Raspberry Pi. These
cables are prerouted during the assembly for easier access when the second floor is mounted.

Although the IMU is connected to the Raspberry Pi by cable, it is placed on the first floor
as this places the IMU closer to the mounting point of the box. This lets the movement
and vibration of the excavator travel a shorter distance, and therefore give more accurate
readings.
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On the second floor the Raspberry Pi and GPS are located. The Raspberry Pi is the most
important component as it is the centre point of all data in the system. Because of this it is
the component most in need of access and is therefore placed on the second floor in the box.
This allows for access to all ports and pins on the card, without the need of disassembling
the system if changes or troubleshooting is needed.

The GPS, like in version 1.2, is placed on the second floor. This leaves only the lid covering
the antenna, minimizing the disruption of signals. A real-time clock function was also added
to the GPS by soldering on a mount for a clock battery. This allows the system to keep
track of time and keep its clock updated even when the system is powered off.

To power the system and not having to rely on electricity from an external source, a power
bank with a capacity of 10000 mAh is implemented in the box. This power bank is connected
to the Raspberry Pi delivering power to the other components. It is placed alongside one
of the long sidewalls of the box, in a cut-out made in both floors of the box. To better
organize the excess cables, both from the power bank and Arduino Due, two walls were
added to form a compartment. These are located on the first floor between the Arduino
Due and the power bank.

4.1.3 Production Method

To make creating and changing the system easier, a 3D-model of the system and the compo-
nents used was created using Solid Works (as seen in Fig.24. This allowed for experimenting
with designs and ideas without the need of physical parts. Creating 3D-models of the com-
ponents also made it easier during the production of other components, as measurements
for holes and clearances could be taken from the 3D-model, eliminating the need to measure
components several times.
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Figure 24: 3D-model of final system

The mounting plates used as floors in the system were laser cut from sheets of wood and
not 3D-printed with plastic as seen in Fig.25. This method of production was chosen as
it allowed for faster production time and eliminated the need for help from a teacher to
operate the 3D-printer. This allowed for fast correction of the product if mistakes were
made in the 3D-model, as laser cutting a new plate takes a fraction of the time it takes to
3D-print. As the plates were to hold small and light electrical components, they did not
need significant strength, and the sheets of wood would be strong enough to support the
weight.

Figure 25: Laser cut plate

41



4 Implementation

4.2 Software Design

4.2.1 Choosing Programming Language

Initially when choosing what programming language to use for the system, C/C++ looked
like an appropriate option. The Arduino-based CAN bus card would follow this preliminary
assessment, but throughout the stage of implementation Python was utilized in a larger
portion than initially planned. Because the Inertial Measurement Unit had limited options
regarding C language libraries and the existing code base for Python was larger, it became
the standard language used for the Raspberry Pi-side of the system.

4.2.2 CAN-messages

4.2.2.1 Arduino Communication Problem

In order to transmit a virtual message to the CAN bus card, an Arduino Uno and MCP2515
CAN controller was used to send messages (read more about MCP2515 in appendix I1).
At the start there was a communication problem between the Arduino Uno and CAN bus
card. After some days of troubleshooting, we discovered that the CAN bus card needs
terminating resistors at the end of each bus.

Figure 26: CAN bus resistors

As shown in Fig.26 it is necessary that both nodes are terminated with a 120 Ω resistance
resulting in a 60 Ω difference between CAN High and CAN Low[13, p.12-14]. Without the
applied resistors there will be no communication between them. To solve this problem the
jumper on the CAN bus board was activated in order to work as a termination resistor (as
shown in Fig.51).

42



4 Implementation

4.2.2.2 Physical Encoding of CAN duty and Troubleshooting

As mentioned earlier, a bus consists of two wires, CAN High and CAN Low. There are two
logical states defined by the CAN, the differential voltage between CAN_H and CAN_L
corresponds to one of two logic states: dominant (logic 0) or recessive (logic 1). Logic states
are recessive if the differential voltage is less than 0.5 volts on a reception condition and
less than 1.5 volts on a transmission condition. If the differential voltage is higher, the logic
state is dominant [13, p.12].

• Dominant (Logic 0): CAN_H = 3.5V, CAN_L = 1.5V

• Recessive (Logic 1): CAN_H = 2.5V, CAN_L = 2.5V [14, p.10-12]

In order to find the problem, one had to check if the voltage was outside of the ranges above
and measure the resistance between CAN_H and CAN_L.

• If there are 60 Ω terminators between CAN_H and CAN_L, both are working cor-
rectly.

• If there is 120 Ω between CAN_H and CAN_L, one CAN bus terminator is not
working properly.

• If there is 0 Ω between CAN_H and CAN_L, one or both CAN bus terminators are
not working properly.

Since voltage changes quickly, a voltmeter could not display a constant voltage or an exact
voltage for CAN High or CAN Low. It was necessary to use an oscilloscope to observe
the changes occurring on the CAN bus. As mentioned earlier, a jumper was used which is
utilized on the CAN bus board as a resistor to solve the issue.

4.2.2.3 Collecting CAN-messages

As mentioned in Sec. 3.2.4 in order to receive data both from the excavator and hydrogen
driveline extension a CAN bus board with dual CAN bus transceivers is used. The system
will use both J1939 and CANopen.

J1939 is a standard maintained by the Society of Automotive Engineers. The standards
describe how information can be transferred across a network in order to allow ECUs
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(computers) to exchange information with one another (e.g. vehicle speed information)[14,
p.81-89].

4.2.2.4 CANopen

CANopen is a standard containing several protocols and recommendations, ranging from
the physical layer all the way up to the application layer. It is also similar to J1939, since
it specifies not only connectors, cables and synchronization functions, but also transport-
level protocols, network management features, and standard services, including time and
synchronization, and especially a set of standards for application-level objects grouped into
application profiles and device-specific profiles [14, p.190].

4.2.2.5 Data Frames

The use of data frames provides a means of transferring information between a node and one
or more recipients. There is no explicit addressing used to identify the message recipients
when using data frames. An example of this is when a receiver node indicates what messages
it will receive based on the data that they contain. This information is encoded as part of
the identifier field in the frame. The CAN protocol uses two types of message identifiers
and the formats for CAN messages will depend on the type of message identifiers used.

The standard frame is defined as a frame whose identifier is an 11-bit value. With the 2.0
version of the protocol, extended frames have been made available, which is embodied by
a frame with a 29-bit identifier field. There is no restriction to which node can transmit
standard or extended frames on the same bus. Using the arbitration part of the proto-
col, messages with 29-bit and 11-bit identifiers can be transmitted on the same network
regardless of identifier version [14, p.14].

4.2.2.6 CanSniffer code

The code from appendix E1 has the functionality to read the incoming CAN-messages from
the excavator. Both the can_due.h, and DueLayer.h [15] libraries were used as they
contain tons of functions.

In order to have a faster transferring speed over the communication channel, the baud rate
115200 is used for the Arduino Due which is faster than the standard 9600.
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The printHex(a,b) function will store the data temporarily in an array and convert the
data to hexadecimal.

In the loop() function, a while loop was used to receive the CAN messages both in extended
and standard frame. The data will come as bytes and will always be somewhere between
0 and 8 bytes in length. Because Serial.print() will not be accepted by Arduino Due
when transmitting data to the Raspberry Pi, SerialUSB.print() was used instead. The
flowchart in Fig.53 gives an overview of how the code works.

4.2.2.7 Serial Communication

Aiming to send CAN-messages received by the Arduino-based CAN bus card to the Rasp-
berry Pi, the team managed to establish a serial communication between both devices.
Appendix D1 shows the flow of the serial communication script.

4.2.3 Sensor Data Collection

4.2.3.1 IMU

In order to communicate with the Inertial Measurement Unit, the device can be connected
directly to the Raspberry Pi through an Inter-Integrated Circuit (I2C), as seen in Fig.27.
I2C is a fairly common communication protocol that allows for data transfer between on-
board peripherals [16].

Figure 27: I2C communication

Using the BMX160 library from DFRobot [17] one can control the magnetometer, ac-
celerometer and gyroscope through I2C communication. Using the bmx.begin() function
the script (as seen in Appendix E14) initializes the i2c communication and returns the
status whether the initialization succeeded or not. The bmx.get_all_data() function is
used to get and return the data from the different sensors.

45



4 Implementation

4.2.3.2 GPS

The GPS uses UART communication to communicate with the Raspberry Pi (as seen
in Fig.28. UART stands for Universal Asynchronous Receiver and Transmitter and is
a transmission protocol for serial data used to communicate with a device serially [18].
Using gpsd, an interface daemon for GPS receivers, the Raspberry Pi is able to extract

Figure 28: UART communication

and display the GPS data [19]. One can also specify the GPS device to gpsd at startup
to start monitoring it on boot. To grab the information from gpsd in python the team
utilizes a buffer (as seen in Appendix E13) that loops and grabs each set of gpsd data using
GPSPoller(). It will continue to grab sets of data with a one second interval until the
buffer is fully clear.

4.2.4 Synchronizing Data

4.2.4.1 Run on Boot

In an effort to synchronize the different scripts there must be boot scripts (as seen in
Appendix E11) available that can run whenever the device is booted up. Using desktop
files and making them executable is a seamless way of doing it. It only requires to provide
a complete path to the directory where the scripts are located in order to run them, as seen
in Fig.29.
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Figure 29: Boot flow

4.2.4.2 Real-time Clock

Synchronizing data includes adding timestamps to the incoming data in order to ensure
different types of data is collected simultaneously if it were to be reviewed in non-real time.
Out of the box the Raspberry Pi does not include a real-time clock and needs an external
real-time clock to achieve said functionality [20].

Instead of using a real-time clock module the team decided to use the GPS’s real-time
capability in order to fulfill this necessity (as seen in Fig.30). Using the chronyd package,
a package for system clock synchronization [21], one can set the system clock equal to the
GPS’s built-in clock. More information regarding RTC implementation can be found in
Appendix Y.
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Figure 30: RTC-battery compatible GPS

4.2.5 Local Storage

When it came to local storage, the team decided to utilize the SD-card on the Raspberry Pi
to store data in text files. The reason as to why the team decided on text files over comma
separated files (CSV) was that occasionally the data would contain commas which would
collide with the CSV syntax.

Utilizing a real-time clock meant one could assign a timestamp to each text file, creating
a file for every session. All data would eventually be converted to string to satisfy the
requirements of a text file (as seen in , Fig.31, Fig.32).

Figure 31: Class diagram - GPS data to text file
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Figure 32: Class diagram - IMU data to text file

4.2.6 Cloud Storage

4.2.6.1 Streaming Various Data

Sending data allocated by the Raspberry Pi to cloud storage is among the most important
requirements in this project. Data can be shared in a variety of cloud services, such as
Amazon Web Services, Microsoft Azure, and Google Cloud. They all follow the same path,
but they have some differences.

4.2.6.2 Real-time Data Processing

Google Cloud Platform (GCP) was utilized for the system as it houses one the largest
databases, BigQuery. Because some databases cannot handle as many messages at once
and others have limited storage space, it is critical to pick a suitable one.

More cloud storage is required in order to store large amounts of data sent by the Raspberry
Pi. It is capable of deploying the world’s largest IoT-platform. Internet of Things (IoT) is a
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network of devices that communicate with one another. Through some form of connectivity,
all of the devices and sensors can receive and transmit data to a cloud service [22]. Google
Cloud delivers information directly to BigQuery, a massive parallel query engine able of
collecting a million rows of metrics per seconds, as well as running queries on terabytes of
data in less than ten seconds [23].

The data collection unit can collect data from various devices and sensors from any location.
There is no need to build a large distributed front end, load balancers, app servers and so
on. BigQuery provides all of these services in Google’s largest data center.

Figure 33: Raspberry Pi data handling architecture

4.2.7 Google Cloud Platform

4.2.7.1 Google Cloud Console

IoT Core is a Google cloud service. It allows users to easily interact with connected devices,
in this case a Raspberry Pi. It is scalable, as most cloud services, because it can handle
billions of messages [24]. The Google Cloud Platform IoT message server’s implementation
is based on MQTT. MQTT stands for Message Queuing Telemetry Transport, and is a
lightweight messaging protocol that is utilized in IoT Core to transmit and receive infor-
mation [25]. As seen in Fig.34 the cloud storage architecture consists of the Raspberry Pi
and several cloud services, including Cloud IoT Core, Cloud Dataflow, Cloud Pub/Sub,
and BigQuery.
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Figure 34: Cloud storage architecture

4.2.7.2 APIs

Google Cloud offers a wide range of APIs in various categories [26]. However, as shown
in Fig.35, the necessary APIs have been enabled. Cloud IoT Core is used to manage and
ingest data from devices. It essentially acts as the authentication service for the Raspberry
Pi. When sending data, Cloud Pub/Sub is enabled, allowing to subscribe to a specific topic.
Cloud Pub/Sub is used as a queue engine to collect data from MQTT or publisher.
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Figure 35: Enabled application program interfaces

4.2.7.3 Cloud Iot Core Service

Fig.36 outlines the steps taken in order to establish cloud connection. Using a configured
service account to generate new certificates and attaching policies to them, allowed ac-
cess from the Cloud IoT Core platform with appropriate certificates. Using filezilla, the
credential JSON file certificate was transferred over to the Raspberry Pi.
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Figure 36: GCP IoT Core and Raspberry Pi setup

4.2.7.4 GCP Iot Core and Raspberry Pi

The Python script (as seen in Appendix E) on the Raspberry Pi sends requests to the
Google Cloud service, where they are authenticated using the Cloud IoT Core. A Pub/Sub
pulls the request, which is then pushed to dataflow, which then writes data directly to the
cloud database.

A Google Cloud token for device authentication is run on the terminal in order to connect
the Raspberry Pi to the Cloud IoT Core, enabling the Raspberry Pi to be used for logging
data to the cloud [27].

BigQuery and a cloud storage bucket are also employed. Cloud storage buckets are simple
data containers. Everything stored in Cloud Storage is kept in a bucket. It is primarily
used to organize data and control data access [28]. BigQuery generates a dataset as well
as tables, which allows data to be pushed to BigQuery via dataflow. The data is then
published to the Pub/Sub topic. The system is also running a cloud dataflow job-template
as shown in Fig.37, where data is being pulled into BigQuery tables.
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Figure 37: Cloud dataflow job template

4.2.8 Remote Desktop Connection

Remote access is essential in order to view the data from the Raspberry Pi without con-
necting it to a monitor. It is necessary in this project to be able to view data on a laptop
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in order to control it from there if needed. Aiming to connect to the Raspberry Pi using
a laptop, Secure Shell (SSH) and Virtual Network Computing (VNC) was used by estab-
lishing communication through a local IP address. An IP address is assigned to any device
connected to a Local Area Network. If both the laptop and Raspberry Pi is connected
using the same local IP address it allows for using SSH and VNC to utilize the laptop as a
Raspberry Pi display (as seen in Fig.38) [29].

Figure 38: Remote desktop connection

4.2.9 Surveillance

Another addition to the system is a surveillance system using a web camera. The camera
was connected to the Raspberry Pi directly through a USB connection. Using fswebcam, a
simple webcam application for Linux, the Raspberry Pi is able to capture images through
the webcam [30]. Once the application was implemented a simple bash script was written
in order to take pictures every five minutes. This script also stored the pictures with
timestamps as JPG/JPEG files in a predetermined directory. Since JPG/JPEG files contain
less data than PNG files [31], it seemed like the better option considering storage space.
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5 Review and Future Work

This section will reflect upon the results that have been achieved, what could have been
done different, as well as what could be implemented through future development. Looking
back at what has been achieved, one cannot help but look for potential improvements to
the system.

5.1 Hardware

The system as of now is a closed box with no holes or gaps for air to get through. This
means that all circulation of air will be inside the box. As the components produce heat,
especially the Raspberry Pi, the air in the box will heat up with no way of cooling. This
may compromise performance of the components if temperatures become too high. A
potential solution to this could be to circulate the enclosed air inside the box. This will
give components with specific hot spots like the Raspberry Pi’s processor some airflow
which will help cool the components. This could be achieved by mounting a fan inside the
box. Holes could also be added to add cooling to the box by helping in circulating the air.
This would however make the system no longer protected from water and dust, which could
lead to damaged or broken components.

Mounting the box also creates a challenge when it comes to keeping the system secure from
water and dust. This is because the box as of now has no way of being mounted without
having to create holes for screws. A possible solution would be to create a custom box with
a bracket or external mounting points as part of the box. This would make it so that no
screw holes through the walls or floor of the box would be necessary and therefore would
let it maintain its water and dust proof capabilities.

For finishing details on the box the current mounting plates could be 3D-printed instead of
laser cut for a more finished look to the product. This would not increase the strength of the
plates by any significant means, but this is not necessary either as they are only supporting
small electronic components with no significant weight. It would however increase the
production time of the plates as 3D-printing is a much slower process. Another alternative
is to still use laser cutting as the production method, but use acrylic sheets instead of wood.
This would also give the system a more finished look while keeping the short production
time that comes with laser cutting.
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The cables currently used in the system are also a point of interest, as they are all premade,
meaning many are longer than necessary. This adds unnecessary clutter to the box as the
excess cables are in the way. The current solution is having a dedicated compartment inside
the box to tuck the excess cables into. This works, but takes up space within the box that
could be used for future upgrades or additions to the system. A solution to this could be to
reduce the length of the cables by creating custom cables to fit the box. This would free up
space in the box as the current compartment could be removed. On the downside shorter
cables would leave less room for flexibility when it comes to placement of the components
if they ever were to be moved.

As of now the system is powered by a 10000mAh power bank. This was chosen as a
temporary solution to power the system while testing. This means that a cable to a power
outlet is not needed, allowing for free movement of the system as it is totally wireless. As the
system is to be mounted in an excavator, a more permanent solution would be to remove the
power bank, and power the system with the battery in the excavator. This would remove
the need for recharging and would let the system turn on automatically when the excavator
is turned on. To achieve this a converter would need to be used, as the excavators systems
run on 25 volts, while the data recorder uses 5 volts.

5.2 Software

In regards to software there are several improvements to be made. There is currently no
way of easily streaming data to a display system for potential local demos. Some research
has been put into coming up with a solution to this, including finding software used for
development of said system. Qt, an application and UI development framework was on the
forefront of being utilized for this purpose because of its cross-platform capabilities [32]. As
seen in Fig.39 a sketch was made in order to provide a frame of reference to what the user
interface could look like.
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Figure 39: UI sketch

Cloud storage was one of the requirements that wasn’t fully developed at the end of the
project. While the cloud connection was established, code for storing data to the cloud
was not developed. Due to time constraints and inexperience working on a project of this
size, the code in general is not as good as it could be. Given more time this could also be
improved upon during future development.
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6 Conclusion

The goal of this thesis was to implement a system based on a description delivered by clients
IoT-labs and Applied Hydrogen. Ultimately, a data collection unit was developed for an
excavator based on requirements provided by the clients. The final system is capable of
collecting data from multiple devices in real-time. It includes an Inertial Measurement Unit
for determining the orientation of the excavator, a GPS module and webcam for tracking
and surveillance, as well as a CAN bus card for collecting crucial CAN-data. All of this
combined with local storage alongside advancements with cloud storage has resulted in an
up and running data collection unit. While a lot of work has been done, there are still areas
that require further improvements before the system is ready for deployment in a wide scale
industrial setting.
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Appendix B - Roles

This section contains brief descriptions of the different project roles.

The project lead is responsible for facilitating team collaboration and being a point of
contact for both USN and IoT-labs. They are also responsible for sending and submitting
the documentation.

The documentation lead is responsible for ensuring the quality of the documentation,
overseeing and approving revisions as well as ensuring the consistency across the thesis.
They are not responsible for sending and submitting the documentation.

The test lead is responsible for planning, deploying and managing the tests. They are
responsible for applying appropriate testing measurements as well as documenting the tests
in separate test tables.

The scrum master is responsible for leading the scrum team in agile methodology and
scrum practices. They are also responsible for managing daily stand-up meetings, creating
and managing tasks in Jira, and resolving conflicts and issues that may occur.

The design lead is responsible for planning and leading the design processes. They are
also responsible for approving concepts and managing production.

The risk lead is responsible for monitoring risks throughout the project cycle. They
are also responsible for identifying and adding new risks, in addition to pairing them up
with the right tests and requirements.

Software architects are responsible for developing, designing and implementing the soft-
ware. They are also responsible for troubleshooting and resolving issues within the code,
as well as updating the software if required.
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Appendix C - System Architecture

Figure 40: System architecture
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Appendix D - Flowcharts

D1 - Flowchart: Serial Communication

Figure 41: Flowchart: Serial communication

69



Appendices

D2 - Flowchart: Inertial Measurement Unit

Figure 42: Flowchart: IMU
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D3 - Flowchart: GPS

Figure 43: Flowchart: GPS
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Appendix E - Codes

This appendix includes the names of the code files that are used in the final system along
with code files that have expired and are no longer in use. These files can be found in the
attached folder called "Codes".

E1 - CAN message receiver

• APH_CAN_Sniffer.ino

• due_can.h

• due_can.cpp

• DueCanLayer.h

• DueCanLayer.cpp

E2 - GPC connection

sendmessagetobq.py

E3 - IMU and GPS data

bmx160imu.py
adafruitgps.c
adafruitgps.py
sensorInputdata.c

E4 - Virtual sender

SendV3.ino

E5 - Virtual receiver

receiveV33.ino

E6 - Virtual CAN message transmitter

Sender.ino
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E7 - CAN receiver Arduino uno

Receiver.ino

E8 - Storing IMU data to SD-card

Storing-IMU-data-to-SD.ino

E9 - Storing potmeter values to SD-card

Potmeter_value.ino

E10 - CanSniffer application

Folder 1: 01_canSniffer_arduino
Folder 2: 02_canSniffer_GUI

E11 - Boot Scripts

Folder "Boot scripts":

• canstart.desktop

• gpsstart.desktop

• imustart.desktop

E12 - Cloud Connection

Folder "GCP_connection": sendmessage.py

E13 - GPS data collection V1 and V2

Folder "GPS_data":

• gps_data.py (V1)

• gpsd_data.py (V2)

E14 - IMU data collection

Folder "IMU_data": imu_data.py
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E15 - Serial data collection

Folder "Serial_data": canbus_data.py

E16 - Webcam timelapse

timelapse.sh

E17 - MATLAB 3D simulation

Folder "MATLAB: "
matlab3D-simulation.txt
inertial-measurement.m
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Appendix F - Test Tables

Test: T1
Objective:
Establish communication between Raspberry Pi and Arduino Due.
Method:
Send messages from Arduino and print the messages on the Raspberry

Pi.
Expected result:
Managing to send messages from Arduino to Raspberry Pi.
Actual result:
Managed to send messages from Arduino to Raspberry Pi.
Pass/Fail:
Pass
Date:
03.03.2022

Test: T2
Objective:
Establish CAN bus connection through MCP2515.
Method:
Send CAN-messages from one Arduino Uno to another through

MCP2515.
Expected result:
Managing to send and receive CAN-messages.
Actual result:
Managed to send and receive CAN-messages.
Pass/Fail:
Pass
Date:
06.03.2022
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Test: T3
Objective:
Find suitable library for IMU.
Method:
Test library examples to check if it works together with the IMU.
Expected result:
The IMU generates data.
Actual result:
The IMU generated data.
Pass/Fail:
Pass
Date:
31.03.2022

Test: T4
Objective:
Write IMU data to Raspberry Pi file.
Method:
Send IMU data from Arduino to Raspberry Pi and write to a .csv/.txt

file.
Expected result:
Managing to store data in file.
Actual result:
Managed to store data in file.
Pass/Fail:
Pass
Date:
03.04.2022
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Test: T5
Objective:
Read the Adafruit Ultimate GPS position data.
Method:
Connecting GPS to Arduino Mega and using Arduino IDE to run the

code.
Expected result:
Being able to read the GPS position data.
Actual result:
Managed to read the GPS position data.
Pass/Fail:
Pass
Date:
05.04.2022

Test: T6
Objective:
Storing pot-meter data to SD-card while we wait for the Inertial Mea-

surement Unit.
Method:
Connected three pot-meters to Arduino and read the value from them

and stored values onto SD-card.
Expected result:
Read pot-meter and store on SD-card
Actual result:
Was able to store pot-meter data to SD-card
Pass/Fail:
Pass
Date:
28.03.2022
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Test: T7
Objective:
Establish Virtual CAN communication between two Arduino Unos.
Method:
Connect two MCP2515 (CAN-Controllers) with two Arduino Unos and
generate fake/virtual CAN-messages.
Expected result:
Managing to send virtual CAN-messages from one Arduino to the other
through MCP2515 and read through serial monitor.
Actual result:
Managed to send the CAN-messages via MCP2515 and read them

through serial monitor.
Pass/Fail:
Pass
Date:
18.04.2022

Test: T8
Objective:
Establish Virtual CAN communication between Arduino Uno and CAN
bus card.
Method:
Connect MCP2515 to Arduino UNO and use CAN bus card as a receiver
Generate CAN-messages on Arduino UNO and send to CAN bus card.
Expected result:
Managing to read the messages sent from Arduino Uno on the CAN bus
card.
Actual result:
Sent CAN-messages were received on the CAN bus card. .
Pass/Fail:
Pass
Date:
22.04.2022
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Test: T9
Objective:
Read CAN-messages from excavator CAN bus using CAN bus card.
Method:
Connect the CAN bus card to the excavator CAN bus and turn on the
engine to produce CAN-messages
Expected result:
Managing to read the CAN-messages from the excavator using CAN

bus card and print it to serial monitor.
Actual result:
Managed to read the CAN-messages from the excavator and print it to
serial monitor.
Pass/Fail:
Pass
Date:
25.04.2022

Test: T10
Objective:
Send both virtual standard and extended CAN-messages from via

MCP2515 to CAN bus card.
Method:
Connect two Arduino UNOs (transmitters) to two MCP2515 and con-

nect the two CAN-controllers to the CAN bus card (receiver).
Expected result:
Managing to send virtual standard and extended CAN-messages from

CAN0 and CAN1 and read through serial monitor on CAN bus card.
Actual result:
Managed to read both standard and extended CAN-messages on the

CAN bus card.
Pass/Fail:
Pass
Date:
28.04.2022
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Test: T11
Objective:
Read standard CAN-messages with CAN bus card and store it on SD-

card.
Method:
Connect CAN bus card to Raspberry Pi serially and store CAN-messages
locally on SD-card.
Expected result:
Managing to store CAN-messages to Raspberry Pi SD-card.
Actual result:
Managed to store CAN-messages to Raspberry Pi SD-card.
Pass/Fail:
Pass
Date:
02.05.2022

Test: T12
Objective:
Read the extended CAN-messages from the excavator CAN bus with

CAN bus card and store it on SD-card.
Method:
Connect CAN bus card to the excavator CAN bus and turn on the engine
to produce CAN-messages. Store onto Raspberry Pi which is connected
serially.
Expected result:
Managing to read the extended CAN-messages from the excavator and

storing locally on the Raspberry Pi.
Actual result:
Managed to store the CAN-messages locally on the Raspberry Pi.
Pass/Fail:
Pass
Date:
02.05.2022
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Test: T13
Objective:
Get GPS, IMU, and CAN bus data while the excavator is being operated.
Method:
Place the data collection unit inside the excavator and drive the exca-

vator in order to receive data.
Expected result:
Managing to collect and store CAN-messages, GPS and IMU data.
Actual result:
Managed to collect and store said data onto SD-card.
Pass/Fail:
Pass
Date:
02.05.2022

Test: T14
Objective:
Find suitable library for MCP2515 (CAN-controller) which works with

both Arduino Unos and Arduino Due.
Method:
Connect MCP2515 to Arduino Unos or Arduino Due and include the

library on Arduino IDE to see if library works.
Expected result:
Managing to send CAN-messages though MCP2515 with Arduino Unos
without getting library related errors.
Actual result:
Managed to send CAN-messages as expected without getting library

related errors.
Pass/Fail:
Pass
Date:
18.04.2022-02.05.2022
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Test: T15
Objective:
Find suitable Dual-CAN library for Arduino Due.
Method:
Connect two Arduino unos to Arduino DUE using MCP2515and include
the library on Arduino IDE for the Arduino Due side.
Expected result:
Managing to receive virtual CAN-messages through MCP2515 with on

the Arduino Due without getting library related errors.
Actual result:
managed to receive said CAN-messages without library related errors

occurring.
Pass/Fail:
Pass
Date:
18.04.2022-02.05.2022
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Test: T16
Objective:
Determine the frequencies of Arduino Due and MCP2515 (CAN con-

troller).
Method:
Use Analog Discovery DIGILENT (ADD) and Waveforms application

(Digital oscilloscope). Connect ADD to a PC and run the application.
Follow the ADD manual description for pin connections.
Expected result:
Managing to see the power range, frequencies, resistance range, baud-

rate (speed) of CAN controllers and Arduino Due on digital oscilloscope.
Actual result:
The only correct results were received when the test was running on the
ADD pin connected to itself. The test based on the expected result was
not successful.
Pass/Fail:
Failed
Date:
18.04.2022-02.05.2022

Test: T17
Objective:
Test the fit of the 3D-printed plate for Arduino DUE
Method:
Physically mount the Arduino DUE to the plate using screws
Expected result:
The holes in the plate align with the holes in the DUE, and are the right
size for the screws used Actual result:
All holes aligned and were the correct size, allowing the DUE to be

mounted as planned
Pass/Fail:
Pass
Date:
25.02.2022
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Test: T18
Objective:
Test the fit of the laser cut plate for Arduino Mega
Method:
Physically mount the Arduino Mega to the plate using screws
Expected result:
The holes in the plate align with the holes in the Mega, and are the

right size for the screws used
Actual result:
All holes aligned and were the correct size, but the screws available were
too big for the Mega to be mounted as planned
Pass/Fail:
Holes and plate: Pass

Screws: Fail
Date:
04.04.2022

Test: T19
Objective:
Test the fit of the laser cut plate for GPS and Raspberry Pi
Method:
Physically mount the GPS and Raspberry Pi to the plate using screws
Expected result:
The holes in the plate align with the holes in the GPS and Raspberry

Pi, and are the right size for the screws used
Actual result:
All holes aligned and where the correct size, but the screws available

were either too big or small for the Mega to be mounted as planned
Pass/Fail:
Holes and plate: Pass

Screws for GPS: Pass
Screws for Raspberry Pi: Fail
Date:
04.04.2022
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Test: T20
Objective:
Test the fit of the laser cut plate for IMU, GPS, and Arduino Uno
Method:
Physically mount the IMU, GPS, and Arduino Uno to the plate using

screws
Expected result:
The holes in the plate align with the holes in the IMU, GPS, and Uno,
and are the right size for the screws used
Actual result:
All holes aligned and where the correct size, but the screws available

were too big for the IMU and either too big or small for the Uno to be
mounted as planned. For the IMU a secondary mounting was created
that worked with the screws available
Pass/Fail:
Holes and plate: Pass

Screws for IMU: Pass
Screws for GPS: Pass
Screws for Uno: Fail
Date:
06.04.2022
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Test: T21
Objective:
Test the fit of the laser cut plate for Raspberry Pi
Method:
Physically mount the Raspberry Pi to the plate using screws
Expected result:
The holes in the plate align with the holes in the Raspberry Pi and are
the right size for the screws used
Actual result:
All holes aligned and where the correct size, but the screws available

were either too big or small for the Raspberry Pi to be mounted as
planned.
Pass/Fail:
Holes and plate: Pass

Screws for Raspberry Pi: Fail
Date:
06.04.2022

Test: T22
Objective:
Test the fit of the laser cut spacing walls on the laser cut plates
Method:
Physically mount the spacing walls to the plates
Expected result:
The notches cut in the spacing walls fit the holes cut in the plates,

creating a tight fit holding the walls upright
Actual result:
The notches cut in the spacing walls fit the holes cut in the plate, but

were cut a bit big, making the walls a bit loose, but still kept upright
Pass/Fail:
Pass
Date:
06.04.2022
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Test: T23
Objective:
Test the fit of the laser cut plate for Raspberry Pi, GPS, and IMU
Method:
Physically mount the Raspberry Pi, GPS, and IMU to the plate using

screws
Expected result:
The holes in the plate align with the holes in the Raspberry Pi, GPS,

and IMU, and are the right size for the screws used.
Actual result:
All holes aligned and where the correct size, allowing the Raspberry Pi,
GPS, and IMU to be mounted as planned
Pass/Fail:
Pass
Date:
22.04.2022
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Test: T24
Objective:
Test the fit of the laser cut plate for Arduino DUE, IMU, and power

bank
Method:
Physically mount the Arduino DUE and IMU to the plate using screws,
and fit the power bank in the designated cutout in the plate
Expected result:
The holes in the plate align with the holes in the Arduino DUE and

IMU and are the right size for the screws used. The power bank fit in
the designated cutout in the plate
Actual result:
All holes and cutouts aligned and were the correct size, allowing the

Arduino DUE, IMU, and power bank to be mounted as planned
Pass/Fail:
Pass
Date:
29.04.2022
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Test: T25
Objective:
Test the fit of the laser cut plate for Raspberry Pi, GPS, RTC, and

power bank
Method:
Physically mount the Raspberry Pi, GPS, and RTC to the plate using

screws, and fit the power bank in the designated cutout in the plate
Expected result:
The holes in the plate align with the holes in the Raspberry Pi, GPS,

and RTC, and are the right size for the screws used. The power bank fit
in the designated cutout in the plate
Actual result:
All holes and cutouts aligned and were the correct size, except for the

ones for the RTC. This meant that the 3d-model of the plate needed an
update and a new plate had to be laser cut with the correct holes and
cutouts
Pass/Fail:
Holes and cutouts for Raspberry Pi, GPS, and power bank: Pass

Holes and cutouts for RTC: Fail
Date:
29.04.2022
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Test: T26
Objective:
Test the fit of the updated laser cut plate for Raspberry Pi, GPS, RTC,
and power bank
Method:
Physically mount the RTC to the plate using screws
Expected result:
The holes in the plate align with the holes in the RTC, and are the right
size for the screws used
Actual result:
All holes and cutouts aligned and were the correct size
Pass/Fail:
Pass
Date:
29.04.2022

Test: T27
Objective:
Test the fit of the updated laser cut plate for Raspberry Pi, GPS, RTC,
and power bank
Method:
Physically mount the GPS to the plate using screws
Expected result:
The new cutout made in the plate align with the antenna on the GPS,

allowing the GPS to be mounted as planned
Actual result:
The cutout in the plate aligned with the antenna on the GPS, allowing
the GPS to be mounted as planned
Pass/Fail:
Pass
Date:
02.05.2022
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Test: T28
Objective:
Test the fit of the new laser cut plate for Arduino DUE, IMU, and power
bank
Method:
Physically mount the Arduino DUE and the IMU to the plate using

screws, and fit the power bank in the designated cutout in the plate
Expected result:
The holes in the plate align with the holes in the Arduino DUE and

IMU and are the right size for the screws used. The power bank fit in
the designated cutout in the plate
Actual result:
All holes and cutouts aligned and were the correct size, allowing the

Arduino DUE, IMU, and power bank to be mounted as planned
Pass/Fail:
Pass
Date:
06.05.2022
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Test: T29
Objective:
Test the fit of the new laser cut plate for Raspberry Pi, GPS, and power
bank
Method:
Physically mount the Raspberry Pi and the GPS to the plate using

screws, and fit the power bank in the designated cutout in the plate
Expected result:
The holes in the plate align with the holes in the Raspberry Pi and

GPS and are the right size for the screws used. The power bank fit in
the designated cutout in the plate
Actual result:
All holes and cutouts aligned and were the correct size, allowing the

Raspberry Pi, GPS, and power bank to be mounted as planned
Pass/Fail:
Pass
Date:
06.05.2022

Test: T30
Objective:
Test the fit of the laser cut walls for the cable compartment on the laser
cut plates
Method:
Physically mount the walls to the plates
Expected result:
The notches cut in the walls fit the holes cut in the plates, creating a

tight fit holding the walls upright
Actual result:
The notches cut in the walls fit the holes cut in the plate, creating a

tight fit keeping the walls upright
Pass/Fail:
Pass
Date:
06.05.2022
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Test: T31
Objective:
Establish communication between Google Cloud Platform and Rasp-

berry Pi.
Method:
Register Raspberry Pi as a Iot device on GCP and store test data.
Expected result:
Being able to send a message to GCP from Raspberry Pi and store to

BigQuery table.
Actual result:
Managed to store test data to GCP.
Pass/Fail:
Pass
Date:
13.05.2022

Test: T32
Objective:
Selection of a programming language for IMU and GPS
Method:
GPS and IMU sensor interfacing with Raspberry Pi via serial commu-

nication
Expected result:
Able to use either one of them python or C/C++
Actual result:
wrote GPS sensor into C on Raspberry Pi, but didn’t manage with the
IMU sensor
Pass/Fail:
GPS Pass

IMU Fail
Date:
19.04.2022
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Test: T33
Objective:
Establish GPS communication with Raspberry Pi through serial.
Method:
Collect GPS data with Arduino Uno and send to Raspberry Pi via serial.
Expected result:
Receive GPS data from Arduino Uno on the Raspberry Pi using Python
Actual result:
Received GPS data on Raspberry Pi
Pass/Fail:
Pass
Date:
05.04.2022

Test: T34
Objective:
Collect IMU data on Raspberry Pi through serial communication
Method:
Collect IMU data on Arduino Uno and send to Raspberry Pi via USB-
connection
Expected result:
Send IMU data from Arduino Uno to Raspberry Pi using Python
Actual result:
Received IMU data on Raspberry Pi
Pass/Fail:
Pass
Date:
04.04.2022
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Test: T35
Objective:
Generate virtual CAN-messages
Method:
Generate virtual CAN-messages using a Raspberry Pi, MCP2515 and

Arduino Nano
Expected result:
Being able to generate virtual CAN-messages through serial monitor
Actual result:
CAN 0 was initialized and some data was received on serial monitor
Pass/Fail:
Pass
Date:
24.02.2022

Test: T36
Objective:
Store CAN bus data using Arduino Uno and SD-card shield.
Method:
Connect Arduino Uno to SD-card shield and send test sample to SD-

card.
Expected result:
Being able to store test sample to SD-card.
Actual result:
Communication between components was initiated.
Pass/Fail:
Communication: Pass

Sending virtual CAN data: Fail
Date:
08.03.2022
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Test: T37
Objective:
Connect Raspberry Pi to a car through On Board Diagnostics.
Method:
Connect OBD-2 to Raspberry Pi via USB cable and connect to car.
Expected result:
Establish communication and receive CAN data on screen
Actual result:
Communication was established, but didn’t receive CAN messages
Pass/Fail:
Fail
Date:
02.03.2022

Test: T38
Objective:
Write GPS and IMU data to CSV or text file with time and date
Method:
GPS sensor and BMX160 sensors interfacing with Raspberry Pi and

storing data to SD-card
Expected result:
Managing to store GPS and IMU data to .txt file
Actual result:
Received GPS data. Did not receive IMU data.
Pass/Fail:
GPS: Pass

IMU: Fail
Date:
15.04.2022
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Test: T39
Objective:
Use Raspberry Pi through remote desktop connection.
Method:
Assigning PC and Raspberry Pi to same local network and connecting

using SSH.
Expected result:
Remote control Raspberry Pi from laptop.
Actual result:
Remote control was established and was able to control Raspberry Pi

from laptop.
Pass/Fail:
Pass

Date:
23.04.2022

Test: T40
Objective:
Run log file on busmaster
Method:
Display log file using busmaster client
Expected result:
Being able to run log files on busmaster and sort CAN data
Actual result:
Didn’t work.
Pass/Fail:
Fail
Date:
27.01.2022
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Test: T41
Objective:
Visualize IMU data on Matlab
Method:
Connect Arduino Uno and IMU to MATLAB through serial communi-

cation and visualize collected IMU data in Matlab.
Expected result:
Visualize IMU data in 3D-format on Matlab
Actual result:
Initialized serial communication with Arduino, but failed to detect IMU.
Pass/Fail:
Fail
Date:
05.05.2022

Test: T42
Objective:
Establishing GPS communication with Raspberry Pi through UART
Method:
Connect GPS module to TX/RX pins, GND and 5V on the Raspberry

Pi and check if communication is established.
Expected result:
Managing to establish GPS communication.
Actual result:
Managed to establish GPS communication and monitor GPS info.
Pass/Fail:
Pass
Date:
01.04.2022
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Test: T43
Objective:
Establish IMU communication with Raspberry Pi through I2C.
Method:
Connect IMU to SCL/SDA pins, GND and 3.3V on the Raspberry Pi

and check if communication is established.
Expected result:
Managing to establish IMU communication.
Actual result:
Managed to establish IMU communication and monitor IMU data.
Pass/Fail:
Pass
Date:
03.04.2022

Test: T44
Objective:
Store GPS, IMU and CAN bus data to text files with timestamps.
Method:
Write scripts and test if the data is stored in said text files.
Expected result:
Managing to store data to text files in a structured manner.
Actual result:
Managed to store data to text files with no problems.
Pass/Fail:
Pass
Date:
24.04.2022
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Test: T45
Objective:

Have GPS, IMU and CAN bus scripts run at Raspberry Pi boot.
Method:
Create desktop files redirecting to scripts and running them.
Expected result:
Scripts should run on boot.
Actual result:
Scripts run on boot.
Pass/Fail:
Pass
Date:
25.04.2022

Test: T46
Objective:
Syncing Raspberry Pi clock using RTC module
Method:
Connect RTC module to Raspberry Pi through I2C and synchronize

time.
Expected result:
RTC module is able to synchronize Raspberry Pi clock to equal local

time.
Actual result:
RTC did manage to synchronize the Raspberry Pi clock successfully,

but IMU stopped worked due to problems regarding I2C.
Pass/Fail:
Fail
Date:
30.04.2022

100



Appendices

Test: T47
Objective:
Syncing Raspberry Pi clock using GPS’s real-time capability
Method:
Connect GPS to Raspberry Pi through Raspberry Pi and synchronize

time.
Expected result:
GPS is able to synchronize Raspberry Pi clock to equal local time.
Actual result:
GPS works for synchronizing time.
Pass/Fail:
Pass
Date:
02.05.2022

Test: T48
Objective:
Use webcam to take pictures with a predetermined interval.
Method:
Connecting webcam to Raspberry Pi through serial and create bash

script in order to continuously take pictures with a set interval
Expected result:
Managing to utilize webcam as a surveillance unit
Actual result:
Webcam does take pictures with a set interval as expected.
Pass/Fail:
Pass
Date:
05.05.2022
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Appendix G - Risk Management Framework
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Appendix H - A Brief Introduction to Controller Area Network

Introductory concepts

Vehicle data collecting within a structure for smart solutions is not a new or unusual
concept. The usage of microelectronics in construction machines dates back a few decades.
As time passed, more manufacturers added electrical capabilities to construction machinery.
Several control systems have been implemented to make it more user friendly, as well as
better interfaces of full machine operating parameters that are manufacturer navigable.
Because more electronic applications were being introduced to construction machinery, an
efficient communication system was necessary [33].

The Controller Area Network (CAN) was created by Automotive Bosch in the 1980s to fa-
cilitate inter-ECU (Electronic Control Unit) communication. The CAN bus, which is linked
to the ECUs, can broadcast messages to all nodes on the CAN bus to gather information
about the sensors attached to the automobile, such as vehicle speed and engine coolant
temperature [33].

The main limitation of today’s CAN buses is that they can only transfer data at a rate
of one megabit per second. Vehicles will, however, require a new version of the CAN bus
known as CAN FD in the future, which will boost the transmission rate to 8 Mbit/s and
the data packet size from 8 bytes to 64 bytes [34].

CAN bus in construction machinery

Computer-controlled heavy machinery requires a large number of signals [35]. Vehicle
subsystems conduct a massive set of measures per second and require information about
numerous parameters that these systems must share with one another. Communication is
essential for coordinating, sequencing, and cohering operations for each control unit.
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SAE J1939

Figure 44: Protocols and procedures of the OSI model. The CAN protocol defines the
OSI model’s bottom two levels.

In the early 1990s, the Standards of Automotive Engineering began work on a higher layer
CAN protocol draft. The upper layer protocol is based on the Open Systems Interconnection
(OSI) model’s seven layers (Fig.44). The CAN 2.0B architecture is used by SAE J1939 to
transmit a 29-bit message identification. SAE J1939 has a pre-defined communication
structure to allow many manufacturers to create systems that are identical. Parameter
Group Number is used to create the SAE J1939 message (PGN) (SAE J1939 Standard
Document). SAE J1939 communications are broadcast in hexadecimal format with specific
bit timing and byte size to signal the message’s priority, the message identity, and the data
contained inside it [36].

Figure 45: Typical CAN message

Fig.45 depicts a typical CAN message (PGN F004) being sent across the bus. The message
identification (F004) appears at the start of the message to let other ECUs on the bus
know where the message is coming from and what data is contained within it. For example,
F004 contains messages for Actual Percent Engine Torque and Engine Speed. A Suspect
Parameter Number (SPN) is allocated to certain parameters within each parameter group
(for example, SPN 185 inside PGN F004)[37].
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Appendix I - CAN bus and Arduinos

This appendix includes the reasoning behind methods used for CAN-communication and
sending of virtual CAN-messages.

Since the team did not have access to the excavator until Apr. 25, 2022, tests and prepa-
ration of technical hardware and software required different approaches. The team had to
create virtual CAN messages to make sure that the Arduino Due was capable of receiving
them, because one imagined the excavator would provide messages in similar ways.

I1 - MCP2515

MCP2515 is a stand-alone Controller Area Network (CAN) controller that implements the
CAN specification. The controller helps with filtering packages and removing anything
unnecessary traveling between CAN bus and the Arduino Due [38]. MCP2515 was used in
order to send virtual CAN-messages to the Arduino Due.
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I2 - Arduino UNO to Arduino Due

Figure 46: Flowchart of an Arduino UNO to an Arduino Due

First, the team tried reading virtual CAN-messages using an Arduino Uno as a sender. For
the virtual sender code, see Appendix E4. To get an idea of how it should work, a flowchart
was drawn. Figure 46 shows a flowchart of CAN communication between the Arduino Uno
(sender) and Arduino Due (receiver).

The Arduino Uno was capable of sending virtual CAN-messages, while the Arduino Due
would neither receive the virtual CAN-messages nor initialize the CAN bus communication.
The team checked multiple times if the hardware was wired correctly or not.
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Figure 47: Schematic of Arduino Uno to Arduino Due wiring

As shown in Fig. 47, the Arduino Uno is connected to the Arduino Due using a MCP2515
(CAN controller) in order to establish CAN communication between the two devices.

In order to try solve this issue, another method had to be used. The Arduino Due was
reokaced by a second Arduino Uno.

I3 - Arduino Uno1 to Arduino Uno2

Fig. 48 shows the connection between the two Arduino Unos, using a MCP2515 to establish
communication.

Figure 48: Schematic of an Arduino UNO1 to an Arduino UNO2
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After replacing the Arduino Due with an Arduino Uno, the sender code from the Appendix
E4 was used for one of the Arduino Unos, while the receiver code from Appendix E5 was
used for the second Arduino Uno. This resulted the Arduino Uno receiver being able to
initialize communication to the sender and receive CAN-messages. The team got outputs
on both the sender and receiver side as seen in Fig. 49, top side showing the sender output,
while bottom side is showing the receiver output.

Figure 49: Output of virtual sender and receiver

There was lots of confusion as to why the CAN-communication worked when replacing the
Arduino Due with an Arduino Uno. After some troubleshooting, the team found out that
the CAN bus interface on the Arduino Due had to use a 120-ohm resistance or jumper as
called in the schematics. For more information about the troubleshooting, see Sec. 4.2.2.2.
One had to be aware to not use a 120-ohm resistance when testing with the excavator
running. As a result of solving the issue, new tests were performed with the Arduino Due
sending two types of CAN-messages, standard and extended.
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There are two types of CAN message identifiers, standard format is an 11-bit identifier
which allows a total of 2 operand by 11 = 2048 different messages. An extended format on
the other hand is 29-bit identifier which allows for 2 operand by 29 = 536+million messages
[14, p.14, p.27, p.184].

Figure 50: Flowchart of an Arduino UNO1 to an Arduino UNO2

Fig. 50 showcases the CAN-communication between the two Arduino Unos, one being the
sender and one being the receiver.

To send both CAN-message formats, the team had to utilize two Arduino Unos, two
MCP2515 (CAN controllers) and an Arduino Due with CAN bus interface.
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I4 - Arduino UNO1 and Arduino UNO2 to Arduino Due

Fig. 51 shows how the two Arduino Unos are wired to two MCP2515s which are connected
to the Arduino Due.

Figure 51: Schematic of two Arduino UNOs and an Arduino Due

To get an idea how the code should work, a flowchart was drawn. The flowchart displayed
in Fig. 52 shows the CAN communication between the two Arduino Unos used as senders
to an Arduino Due used as a receiver. The two CAN controllers were used to send standard
and extended CAN messages. One can find more information in Sec. 4.2.2 about these and
about CAN sniffer used to read the CAN messages.
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Figure 52: Flowchart of an Arduino UNO1 and an Arduino UNO2 to an Arduino Due
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Appendix J - Flow Chart for CanSniffer code

The flow chart in Fig.53 gives a simple overview of how the code from Appendix E1 works.

Figure 53: Flowchart: CanSniffer
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Appendix K - Store Potmeter Values to SD-card

Appendix E9 is the code that was used before the Inertial Measurement Unit arrived to
read values from a potmeter and store the data onto a SD-card. It was just a test to obtain
a better understanding of how to read and store data before the team received the IMU.

K1 - PotMeter schematic

The figure below shows how potmeter and SD card are wired to an Arduino Uno. The color
codes demonstrate which wire is connected to which pin.

Figure 54: Schematic of potmeter and SD-card connection
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Appendix L - IMU data storing to SD-card using Arduino

In the beginning, the plan was to collect the IMU data using an Arduino Uno and transfer
the information to the Raspberry Pi and store the data onto a SD card. The code in
Appendix E8 was used to read the IMU data and store it to a SD card by using an Arduino
Uno [39].

L1 - IMU Flowchart

The following flowchart as seen in Fig.55 demonstrates how the code works.

Figure 55: Flow chart of storing IMU data to SD-card using Arduino Uno
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L2 - IMU Schematic

Fig. 56 demonstrates how the IMU and SD-card are wired to the Arduino Uno. The color
codes demonstrates which wire is connected to which pin.

Figure 56: IMU and SD card schematic
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Appendix M - CanSniffer Application

CanSniffer GUI and its features

The team decided to develop an application that can read and filter data packets in real-
time in order to get an overview of incoming traffic and decode unknown messages. After
some research on the internet, we came across a GitHub link that did exactly what the we
needed [40]. When we downloaded the code, I faced a library problem, which I resolved,
and used the time to learn about the application and how it functions.

CanSniffer is a program that reads CAN-messages in real-time. The purpose of this ap-
plication is to simplify the decoding of CAN-messages by providing an overview of which
packets contain new data. The most important part of the app is the filter section. One
has the option to group the packets based on their IDs, as well as highlight the changes in
the payload for each packet identifier. The old packets can be either shown or hidden if
wanted as well as specific packet identifiers.

Since the team had minimal access to an excavator for tests, the code in Appendix E10
was used to generate random virtual CAN-packets and sending them to the CanSniffer-
application for testing purposes. To start sniffing with the Arduino the preloaded code
should be connected, once the Arduino is in random mode the data packet will be sent by
the Arduino. Fig.57 demonstrates how the application looks like. It displays how many
different packets are available, how many messages are contained in each packet, and which
packet received new data. Purple indicates which packet received new data.
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Figure 57: CanSniffer application
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The application also provides the option of saving a session as a file and uploading it back
later for further review. As seen in Fig.58, one can also rename the message IDs to give them
more meaningful names after being decoded. These decoded messages will be stored in a
separate category called “label dictionary” which provides an overview of which messages
are decoded.

Figure 58: Decoded messages

The application was designed primarily for the decoding of CAN-messages, but the project
description changed from decoding to collecting and storing data, so this application is no
longer in use.
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Appendix N - Electrical System

Figure 59: Wiring diagram

One can see an overview of the wiring of the hardware system in Fig.59. The hardware
system consists of a Raspberry Pi as the unit which will receive data from various sensors.
The Arduino Due collects data from the excavator and hydrogen driveline CAN bus and
sends it to the Raspberry Pi together with IMU and GPS data. An Inertial Measurement
Unit (IMU) measures the three different angles of the excavator. A voltage converter or
power supply is used to lower the voltage so that the system can handle the voltage since
most of the components function with 3.3 V and 5 V. The real-time clock (RTC) will provide
correct time for synchronization.
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Appendix O - IMU 3D Simulation

In our system we use (IMU) "Inertial Measurement Unit" to read the data on how the
excavator orientation, and we want to show the different angles axis when the excavator
moves, we were trying to show it by using Matlab simulation, but we faced some problem
with the program and could not make it to work by using Matlab simulation,we’ve been
doing it for over two weeks. Figure 60 shows the orientation of the IMU.

Figure 60: IMU axis
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Appendix P - Soldering Hardware Components

Front side Back side IMU and RTC sol-
dered in veroboard

GPS front
GPS back

IMU
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Appendix Q - Power Consumption

As shown in figure 61 the power consumption of the different components have been cal-
culated. Both research and calculations were made for components in order to find the
difference between the current, voltage, and power of each of the components. This is
presented in figure 61.

Figure 61: Power consumption
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Appendix R - SD-card Calculation

Figure 62: SD-card size calculation

An SD card, is a movable memory card get used to read and write large amount of data in
a large different areas like in many kind of electronics, and more [41]. In the system it is
used to store data received from the CAN bus, IMU and GPS. The data received will be
stored in text files. Each character consists of 7 bits and the amount of characters varies.
The data will be saved every working day for each month, assuming a normal working day
is 10 hours. After calculations 2GB seemed like enough storage for storing text files.

A camera is also utilized in the system. The calculations were made based on video recording
62, the video quality is 10 frame per second with 960p resolution, the same working days
as the IMU and GPS which is 22 days, 10 working hours. after the calculation it ended up
with 25 GB for video recording data. We end up with 2 GB for text files and 25 GB for
video recording data, that end up with 27 GB, there is no 27 GB available in the market
so the closest one available is 32 GB, which we will be using in our system.
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Appendix S - Changelog for Physical System
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Appendix T - Requirements

Figure 63: Requirements
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Appendix U - Comparison of IMU

Figure 64: Comparison of IMU [42, 43, 44, 45, 46, 47, 48, 49, 50, 51]
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Appendix V - Comparison of GPS

Figure 65: Comparison of GPS [52, 53, 54, 55, 56, 57]
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Appendix W - Gantt Diagram

Figure 66: Gantt diagram
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Appendix X - System Design

The project is about collecting data from an excavator, sensors, and GPS and storing it
both locally, on the cloud, and displaying it in real-time. The diagram gives a high-level
picture of the whole system.

Figure 67: System design
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Appendix Y - RTC Implementation

When implementing a real-time clock there were lots of back-and-forths on how to accom-
plish it. First, the GPS module was used in order to set the Raspberry Pi’s clock to equal
the GPS’s real-time clock. When implementing this, the Raspberry Pi was set two hours
behind local time. Reading through the datasheet it seemed like using the GPS to sync
time would be impossible since the module is set to UTC time out of the box and it is not
“writeable” [58, p.44].

Because of the obstacle met, a new real-time clock was acquired. This new real-time clock
used I2C communication instead of UART communication like the GPS. Since the Inertial
Measurement Unit was also using an I2C connection, another obstacle was encountered.
The Raspberry Pi has multiple I2C pins which in theory should not cause any complications
when using two I2C units, but that was not the case. Both units were recognized by the
Raspberry Pi, but in order to access the real-time capability of the RTC one needs to assign
the I2C address exclusively to the unit. The problem with this is that both the IMU and
RTC have the same address of 68. When assigning the address to the RTC to access its
real-time capability the IMU no longer had access to this address and would stop working.

Because of the obstacles mentioned above, the team had to try utilizing the GPS module
once again. Thankfully there was a way of adjusting the GPS time on the Raspberry Pi
itself, disregarding the locked timer of the internal RTC and the Raspberry Pi would finally
be able to sync up to local time.
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Appendix Z - Alternative Mounting

Figure 68: Alternative mounting of system with sliders for easier access to components
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Abdirahman Ali

Student No. 233831

Group 8

Technical Contribution When Documented
At the beginning of the project, I was mostly in-
volved in planning and project management. I have
spent time reading the documentation we have re-
ceived from the client. Read on, among other things,
j1939-71 pdf, warning system, information system,
instruments.pdf.
- I have made gantt chart diagram
- Get started with the CAN shield for the Arduino
Mega

week - 1
10.01 - 18.01
week - 2
19.01 - 25.01

It is not documented

Week 3 through week 5 I continued working on what I
did in the first two weeks. I worked with log files that
were sent by the client, the log files were recordings
of the CAN bus messages. began researching what
the CAN messages are meant by and the frequency
of the number of messages per second. In addition,
I worked with bus master.

week - 3
26.01 - 01.02
week - 4
02.02 - 08.02
week - 5
09.02 - 15.02

In Appendix H

Week 6 through week 9, I worked to establish CAN
communication. We got Arduino uno with CAN
shield with SD card access to collect CAN data on it
until we were told to switch to raspberry pi instead of
Arduino. Week 7 and 8 I worked to establish commu-
nication between Raspberry Pi and Arduino DUE.
Communication between them I got it connected.
- I worked on sending virtual CAN messages using
two MCP2515 and Arduino nano and raspberry pi.
Week 9 so I started working on ssh connection to
raspberry pi

week - 6
16.02 - 22.02
week - 7
23.02 - 01.03
week - 8
02.03 - 08.03
week - 9
09.03 - 15.03

In section: Remote Desk-
top connection — page 53-
54

Week 11 and 12 I started working with inertial mea-
surement unit (IMU) and gps we received from the
company. In early April, the company wanted to
test IMU and GPS. I worked on getting them ready
for the test. I worked on compiling GPS and IMU
through on serial communication over on the Rasp-
berry Pi. I wrote python code for gps and connected
directly to raspberry pi. for IMU I used the arduino
uno and connected it to the Raspberry Pi via USB
cable.

week - 11
23.03 - 29.03
week - 12
30.03 - 05.04

In Appendix E3 IMU and
GPS data



Week 13 and week 14 I worked with rewriting codes
from python to C/C ++ for GPS and IMU. C/C ++
that we had on our plan for choosing a programming
language. I worked with IMU and GPS in parallel.
I got GPS written to C and then I started saving
GPS data on CSV file. IMU it was a bit difficult to
calculate the accelerometer, gyroscope and magne-
tometer together. I had random IMU-data written
on the screen.

week - 13
06.04 - 12.04
week - 14
13.04 - 19.04

In Appendix E3 IMU and
GPS data

Remote Desktop Connection: had to fix a bug that
appeared during a test with the client. there was
no local network, Raspberry Pi IP address could not
connect to SSH, I used VNC instead

week - 15
20.04 - 26.04

In Section: Remote Desk-
top Connection — page 55

From week 16 to 18 i was working with MATLAB to
visualize IMU in 3D
From week 16 to Week 18 I created the project web-
site (D.E.C.H.O)
From Week 16 to week 18, I established Connection
between Google cloud platform and Raspberry Pi.

week - 16
27.04 - 03.05
week - 17
04.05 - 10.05
week - 18
11.05 - 17.05

In Sections: Cloud Stor-
age – page 50 and GCP –
page 51-54 and Appendix
E2 – GCP connection.
Appendix E17 MATLAB
– inertial-measurement.m

The tests shown in appendix F: I have worked with
the tests from T31 to T41 in this project

week - 4 to
week - 18

In Appendix F: T31 - T41



Petter Wang Tveit

Student No. 213813

Group 8

Technical Contribution When Documented

Worked on decoding CAN-messages. Week 5
Not documented in final
report.

Picked out components used in the final system in
terms of Single-Board Computer and CAN bus card.

Week 6 Sec. 3.2.3, 3.2.4

Developed other diagrams to gain greater under-
standing of the system. This included:

• System Context Diagram

• Overview of proposed system

• Complete System Architecture

Week 6 Fig.10, Fig.11, Fig.40

Established communication between Raspberry Pi
and CAN bus card.

Week 8 Sec. 4.2.2.6, 4.2.2.7

Established communication between two Arduino
Unos through two MCP2515 CAN controllers.

Week 8 Appendix H3

Developed UML-diagrams for software architecture.
This included:

• Flow Charts

• Class Diagrams

I also helped with other flow charts, use cases and
sequence diagrams.

Week 11, 17
Fig.29, Fig 31, Fig.32,
Fig.41, Fig.42, Fig.43.

Established communication between Inertial Mea-
surement Unit and Raspberry Pi through I2C.

Week 12 Sec. 4.2.3.1

Established communication between GPS and Rasp-
berry Pi through UART.

Week 13 Sec. 4.2.3.2

Wrote code for collecting Inertial Measurement Unit
data and writing to a text file with timestamps.

Week 12, 15 Sec. 4.2.3.1, 4.2.5

Wrote code for collecting GPS data and writing to a
text file with timestamps.

Week 15 Sec. 4.2.3.2, 4.2.5

Wrote scripts that would run on boot in order to run
IMU, GPS and serial code whenever the system was
booted.

Week 15 Sec. 4.2.4.1

Wrote code for collecting serial data and writing to
a text file with timestamps.

Week 16 Sec. 4.2.4



Implemented RTC using RTC module communicat-
ing with Raspberry Pi through I2C

Week 16 Appendix Y

Implemented RTC using the GPS’s real-time capa-
bility.

Week 13, 16 Sec. 4.2.4.2

Implemented a surveillance system by adding a web
camera taking pictures with a fixed interval.

Week 17 Sec. 4.2.9

Established communication between Raspberry Pi
and Google Cloud.

Week 18 Sec. 4.2.7

Performed tests throughout the project Week 8-18

Appendix F:
Test T1, T2, T3, T13,
T31, T42, T43, T44, T45,
T46, T47, T48



Mahram H. Safdari

Student No. 222988

Group 8

Technical Contribution When Documented

Group work about the project plan.
Week 1:
10/Jan-
18/Jan

Group work about the requirements and finding
project models.
I have created a test plan where the plan should con-
tain a test objective, test method, expected result,
actual result, test condition (Pass/Fail), and date.

Week 2:
19/Jan-
25/Jan

Section: 2.5 Test plan.

Group work with first presentation, documentation,
and among other things I made: Test table for test
plan. Prioritization of test plan with table. Priori-
tization of requirements plan in table. Wrote docu-
mentation for the points above.

Week 3:
26/Jan-
01/Feb

Section: 2.5 Test plan,
Appendix F: Test Tables.

Group work with the first presentation, improved
and completed the presentation.

Week 4:
02/Feb-
08/Feb

Group work and I analyzed the ”belting” log. Found
the PGN numbers for the logs. Found out why there
is the same PGN in several places. Managed to iden-
tify sender and recipient, but still unsure of some re-
cipient in CAN messages. Since the project plan was
changed, this is not documented in the main docu-
mentation.

Week 5:
09/Feb-
15/Feb

Group work and I made a PUGH matrix for differ-
ent programming languages for to choose the right
language for hardware.

Week 6:
16/Feb-
22/Feb

• Second documenta-
tion. Sec: 5.5.6

• Third documenta-
tion Sec: 4.2.1

Group work, and I started to make a new test plan
based on the new project plan.

Week 7:
23/Feb-
01/Mar

Section: 2.5 Test plan,
Appendix F: Test Tables.



Group work and I produced a new test plan. Made
finished template for test plan with a test example.
I got a new assignment from the group to work with
Markus to find the right sensor for GPS. Found two
types of GPS, one with USB port power outlet, and
one that gets power by connecting via standard pins.
Got another task that was about helping Salem get
in touch with the CAN bus screen and Arduino Mega
to be able to read the SD card so that we can read
the messages from the SD card via the Arduino IDE.
To avoid repetition in our document, this will be
document it only in one place.

Week 8:
02/Mar-
08/Mar

Section: 2.5 Test plan,
Appendix F: Test Tables.

Group work and Improved PUGH matrix for pro-
gramming language selection.

Week 9:
09/Mar-
15/Mar

Section: 4.2.1.

Group work with presentation two, and documenta-
tion.

Week 10:
16/Mar-
22/Mar

Groupwork with second documentation and second
presentation preparation. I have documented new
tests in the test plan. Worked with code for Adafruit
Ultimate GPS in Arduino IDE to find position and
time. I wrote minutes of meetings with internal and
external supervisors.

Week 11:
23/Mar-
29/Mar

Appendix F: Test Tables

Group work with second documentation and second
presentation preparation. I managed to read GPS
coordinates (Adafruit Ultimate GPS) by connecting
to Arduino Mega, but the coordinates contain some
commas. The solution for empty values is an external
GPS antenna. Later the GPS has been used with
Raspberry Pi and IMU by Peter and Abdirahman.
To avoid repetition in our document, the GPS will
be document it only in one place. I have documented
new test in the test plan.

Week 12:
30/Mar-
05/April

Appendix F: Test Tables

Group work and I documented three new tests to
the test plan. With Abdirahman, I tried to get in
touch with the Raspberry Pi via Remote Desktop
Connection, but it was unsuccessful. But via Putty,
we managed to get contact with the Raspberry Pi.
I also found that the GPS code was correct anyway,
but the GPS is missing an antenna. The GPS re-
ceives signals without an antenna, but it is very slow.
When the GPS receives signal, the empty commas
that I last mentioned are replaced with values from
the satellites via the signal receiver on the GPS. I
wrote the minutes of the meetings with the internal
supervisor. Documentation in GPS section.
Me and Salem we received a new task, read (Read
J1939 (CAN bus) data on Arduino DUE by listen-
ing to CAN messages on Arduino DUE by connect-
ing MCP2515 CAN controllers), The challenge was
that we are depending on retrieving data from the
excavator that we do not have access to now. We
found a solution that we can test it in another way.
For example, we tried to read data from a computer
by connecting the Arduino DUE with two MCP2515
and an Arduino UNO to two computers.

Week 13:
06/April-
12/April

• Sec: 2.5 Test plan

• Sec: 4.2.2.1,

• Sec: 4.2.2.2

• Sec: 4.2.2.3

• Sec: 4.2.2.5

• Sec: 4.2.2.6

• Appendix F: Test
Tables

• Appendix H: CAN
bus and Arduinos



We did group work as usual. Then me and Salem,
we tried to read J1939 CAN bus data on the Ar-
duino DUE by connecting two computers to pretend
it was an excavator. We created virtual CAN mes-
sages to test it. We got output values on serial mon-
itor only via one PC, but our expectation was to get
output values on both PCs at the same time when the
Arduino DUE, Arduino UNO, and MCP2515 (CAN
controllers) are connected. I also documented new
performed test to the test plan.

Week 14:
13/April-
19/April

• Sec: 2.5 Test plan

• Sec: CAN-messages:
4.2.2.1 - 4.2.2.6
CanSniffer

• Appendix F: Test
Tables

• Appendix I: CAN
bus and Arduinos

We did group work as usual. Then me and Salem, we
continued working on reading J1939 CAN bus data
on the Arduino DUE by listening to CAN messages.
We tried to get the ”CAN-Sniffer” code to work, but
it did not work as planned. We thus had to inves-
tigate how the Arduino DUE, MCP2515 (CAN con-
trollers) and CAN bus work, and had to find out
more about the J1939 documentation. On Monday
we visited the workshop and tested our code on the
excavator. The code worked halfway where we got
some data from the excavator, but also some error
messages. We needed to keep working on the Ar-
duino DUE and fix our code. A lot of time was spent
looking, trying, changing, testing, and failing. I also
documented a new test to the test plan which was
performed.

Week 15:
20/April-
26/April

• Sec: 2.5 Test plan

• Sec: CAN-messages:
4.2.2.1 - 4.2.2.6
CanSniffer

• Appendix F: Test
Tables

• Appendix I: CAN
bus and Arduinos

We did group work as usual. Then me and Salem,
we had to continue working together to fix our issues
on the last task on the CAN bus communication. We
have spent a lot of time on troubleshooting on the
communication between Arduino Due and Arduino
Uno. We have also spent some time getting to know
the oscilloscope / ”Analog Discovery DIGILENT” to
measure the frequency etc. for troubleshooting. We
found that the MCP2515 (CAN controllers) used is
8kHz. We found that the ideal CAN ”topology” is for
the bus to have a connector with terminating resis-
tors at each end. Each resistor should ideally be 120
ohms to achieve a 60-ohm difference between CANH
and CANL. Due to different resistors between CANH
and CANL the communication failed, but the prob-
lem was solved when we switched resistors. We have
improved the code after the test we have taken on
the excavator at the company 02.05.2022. In addi-
tion, I worked on tests.

Week 16:
27/April-
03/May

• Sec: 2.5 Test plan

• Sec: CAN-messages:
4.2.2.1 - 4.2.2.6
CanSniffer

• Appendix F: Test
Tables

• Appendix I: CAN
bus and Arduinos

Group work as usual. This week we have been with
the company and performed tests on the excavator.
I have documented 11 new tests and documented
the programming part for transmitter and receiver
for virtual CAN communication. I have made three
”flowcharts”, in addition to documented wiring dia-
grams for these. I wrote the minutes of the meetings
with the internal supervisor.

Week 17:
04/May-
10/May

• Sec: 2.5 Test plan

• Sec: CAN-messages:
4.2.2.1 - 4.2.2.6
CanSniffer

• Appendix F: Test
Tables

• Appendix I: CAN
bus and Arduinos



Group work and worked with documentation on
tests, part of programming part (CAN bus commu-
nication (Arduino UNOs with Arduino DUE and the
excavator)).

Week 18:
11/May-
17/May

• Sec: 2.5 Test plan

• Sec: CAN-messages:
4.2.2.1 - 4.2.2.6
CanSniffer

• Appendix F: Test
Tables

• Appendix I: CAN
bus and Arduinos

Group work on documentation and EXPO stand
preparation with group. I documented tests, and
part of CAN bus communication etc.

Week 19:
18/May-
24/May

• Sec: 2.5 Test plan

• Sec: CAN-messages:
4.2.2.1 - 4.2.2.6
CanSniffer

• Appendix F: Test
Tables

• Appendix I: CAN
bus and Arduinos

Group work with EXPO stand, preparation for the
final project presentation three, and performing the
final presentation.

Week 20:
25/May-
01/June



Salem Rezaie

Student No. 235114

Group 8

Technical Contribution When Documented
Before week five, we worked almost exclusively on
project management and planning. From week five,
I was tasked with developing an application that can
read and filter data packets in real-time in order to
get an overview of incoming traffic and decode un-
known messages. I started to learn about QT and
how it interacts with Python to build an application,
but after some research on the internet, we came
across a GitHub link that did exactly what the we
needed [?]. When I downloaded the code, I faced a
library problem, which I resolved, and used the time
to learn about the application and how it functions.
By the end of week five, there were changes in the
project, and this application is not used in the new
project.

Week: 5 In appendix M and E10

Focused on familiarizing myself with the new project
and investigating how to implement the new require-
ments. In order to get a complete overview of the
project, I draw system design diagrams.

Week: 6 In appendix: X

Examined how sensor data can be stored and how to
synchronize CAN data and sensor data, in order to
transfer the data by using parallel threads. I have
also investigated how we can minimize the possible
delay of data transfer.

Week: 7

Developed UML-diagrams: use cases, sequence dia-
grams, and software architecture models.

Week: 10

Documented in:

• Sec: 3.3.1
Sec. 3.3.2
Sec. 3.3.2.1
Sec. 3.3.2.2
Sec. 3.3.3

• figures: 15, 16, 17
and 18



Wrote code for data storing on SD-card, but since we
did not have any ”Inertial Measurement Unit” (IMU)
to test, i used potmeter to read the values and store
them on SD-card by using an Arduino Uno.

Week: 8 and
11

Appendix K, K1 and E9

Finally, we received the IMU, wrote code to read
the data from the BMX160 sensor (IMU) and stored
data on SD card by using Arduino Uno.

Week: 12
Appendix: L, L1, L2 and
E8

The list of Schematics, diagrams and flowchart i
drown.

• CAN-bus resistance

Schamatics:

• Arduino Uno to - Arduino Uno

• Arduino Uno to - Arduino Due

• Two Arduino Uno to - Arduino Due

• Potmeter to and SD - Arduino Uno

• IMU and SD-card to- Arduino Uno

Flow charts:

• Flow chart of IMU using Arduino

• Flow chart of canSniffer

Week: 13-17

List of figurs:

• Fig. 26
Fig. 27
Fig. 48
Fig. 49
Fig. 52
Fig. 54
Fig. 55
Fig. 56

Group work with Mahram: From week 13 until week
17, we worked constantly with the requirement to
read the incoming data from the excavator. Since
we did not have access to the excavator all the time
to conduct tests, so we created virtual messages to
send to our receiver, an Arduino Due. In order to
resolve the communication problem between the Ar-
duino Due and Arduino Uno, we spent a significant
amount of time troubleshooting. However, the sys-
tem is able to read data from two CAN buses at the
same time in both extended and standard formats.
we wrote codes including virtual CANmessage trans-
mitter and CAN receiver

Week: 13-17

documented in:

• Sec. 4.2.2.1
Sec. 4.2.2.2
Sec. 4.2.2.3
Sec. 4.2.2.4
Sec. 4.2.2.5
Sec. 4.2.2.6
Sec. 4.2.2.7

In appendix:

• E1, E4, E5, E6, E7,
I, I1, I2, I3, I4 and J



Markus Danielsen

Student No. 223635

Group 8

Technical Contribution When Documented

Bought and created 3D model of small junction box
used in version 1 of project

Week 5
Chapter 4.1.1.1
Figure 19
Appendix S

Found information about IMUs and GPSs and put
it in an excel document and compared them

Week 6

Chapter 3.2.1
Chapter 3.2.2
Appendix U
Appendix V

3D-modeled plate for Arduino DUE Week 6 Appendix S
3D-printed plate for Arduino DUE Week 7 Appendix S
Chose what IMU to use for project by rating IMUs
in Pugh-matrix

Week 7
Chapter 3.2.1
Table 2

Chose what GPS to use for project by using rating
GPSs in Pugh-matrix

Week 8
Chapter 3.2.2
Table 3

Researched and compared more IMUs and GPSs be-
cause of test requiring IMUs and GPSs with fast de-
livery. Chose new IMU and GPS

Week 11

Chapter 3.2.1
Chapter 3.2.2
Appendix U
Appendix V

Created system overview to help decide what com-
ponents to use and how they should be connected.
No longer in use

Week 11
Second Presentation
Slide 14

3D-modeled components and plates Week 12
Chapter 4.1.1.1
Appendix S

Found placement of components in box Week 13
Chapter 4.1.1.2
Appendix S

3D-model components and plates, 3d-printing not
available

Week 13
Chapter 4.1.1.3
Figure 21
Appendix S

Laser cut plates, and assemble system Week 13
Chapter 4.1.1.3
Appendix S

Started on other concept for mounting of system in-
side box

Week 14 Appendix Z

Bought and 3D-modeled bigger junction box Week 15
Chapter 4.1.2
Figure 22
Appendix S



3D-modeled and laser cut simplified system Week 15
Chapter 4.1.1.4
Appendix S

3D-modeled complete system, except RTC and IMU
as these had to be soldered together on a Vero board
first

Week 15 Appendix S

Completed 3D-model for system and laser cut plates
for system in bigger box

Week 16
Figure 25
Appendix S

Created list of changes made to the project and 3D-
model

Week 16 Appendix S

Changed 3D-model for more optimal placement of
components

Week 17
Chapter 4.1.2
Appendix S

Updated list of changes Week 17 Appendix S
Tested fitment of all 3D-printed and laser cut plates
throughout the project

Week 7 - 17
Appendix F
Test T17 - T30

Created figures showing floorplan Week 18

Chapter 4.1
Figure 20
Figure 23
Figure 24
Appendix S



Fouad Irkayek

Student No. 212329

Group 8

Technical Contribution When Documented
first week I used my time to understand the project
that was given to us from the employer, also have
spent some time reading the documentation we re-
ceived from the employer. I downloaded bussmaster
program to find/read the signal from the ECU, and
worked with decoding of the encrypted code

week - 1 ( 10.01 ).
week - 2 ( 25.01 ).

not documented

I went through the wiring system to the excavator
so that can helps us to find the 5 different ECU’s
that inside the excavator. Have used bussmaster pro-
gram to analyze, filter and sort the different data-
logs we received from the employer to find the en-
crypted messages faster. I worked with ”digging”
log file, i used excel program to sort the date, the
time, PGN numbers, the encrypted code, data bytes
and the channel type.

week - 3 ( 26.01 ) -
week - 5 ( 01.02 ).

appendix N

I have been working on finding a method to store and
send data using Arduino MKR GSM 1400, with this
we can receive and store it directly. I also worked
with what is ”IP” and how to use in the our project.
I worked with finding how large storage space we
need to store the collected data. I made 3 different
types of risk tables. I made system context diagram
to understand the system even more. and made risk
process model on how we solve for risk.

week - 6 ( 16.02 )
week - 9 ( 15.03 ).

appendix R and G



I continued working with Risk Table for new risks,
I went through the different data sheets for the dif-
ferent components like IMU sensor Gps sensor,and
made wiring diagram for the different sensors we
used. also made a wiring diagram for the whole sys-
tem on how thing would be connected. as group we
discussed whether we will use arduino or raspberry
pi so, i know what operative system to use when
drawing the wiring diagram. also did some reading
on how long cable we need when use to send data.
but after a while we agreed to use wireless metod
of sending data when we were near the excavator. I
soldered IMU and GPS sensor.i made a table on how
much current each component draws.

week - 10 (
16.03 ) week
- 13 ( 12.04 ).

appendix G, P, O

After kowing how much current we need to power
the each component in the system, i started on what
type of voltage step-down we need since there are
many different type to choose from. I used visio pro-
gram to draw the wiring diagram, but was not the
best, so i tries to use solid-works program for design-
ing of eletrical system, it tok a lot of time to just
Barely understand how the system work. I soldered
IMU and RTC sensors to a veroboard. i worked with
MATLAB to show the Orientation of the imu in 3D
dimension when mounted to the excavator.

week - 14 (
13.04 ) week
- 18 ( 17.05 ).

appendix Q, G, O
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