
Universitetet i Sørøst-Norge

Fakultet for teknologi og maritime fag
–

Bacheloroppgave

2022

Sigurd Terland Danielsen, Julie Håndlykken, Marie Lovise Ulvestad

Bastesen, Rikard Wirkola Rasmussen, Sondre Daniel Lindkjølen

Data capture using augmented reality
ARque

Data capture application using augmented reality

I Abstract
In this bachelor thesis given by Semcon, the project group ARque has developed a

seamless way of using Augmented Reality (AR) technology for data capture when

measuring the torque of fasteners during assembly. This saves critical data without

the need for pen and paper or extra documentation. The prototype created uses

the Microsoft Hololens 2 and the NorTronic torque wrench.

2

II Table of Contents
I Abstract 2

II Table of Contents 3

III List of Figures 5

IV List of Tables 6

V List of Listings 6

VI Acronyms 7

VII Words and definitions 8

1 Introduction 10

1.1 Project description . 10

1.2 XR, MR and VR . 11

1.3 Measuring torque . 12

1.4 Team members . 13

2 Project Management 14

2.1 Project tools . 14

2.2 Scrum and Agile process model 14

2.2.1 Scrum Events . 15

2.2.2 Scrum Artifacts . 16

2.3 Practice of the methodology . 17

2.3.1 Meetings and core hours 17

2.3.2 Jira for handling workflow and progress 18

2.4 Project milestones and progress 20

2.5 Project roles . 21

3 Risk Management 24

3.1 Project management risks . 24

3.2 Technical risks . 24

3.3 Categorizing and scoring risks . 25

3.4 Risk analysis . 25

3.5 Risk reviews . 28

3

II TABLE OF CONTENTS

3.5.1 Non-identified risks . 28

4 Requirements 29

4.1 Testing . 30

5 System Architecture 33

5.1 System functions . 33

6 Server 35

6.1 Communication . 35

6.2 Data storage . 38

6.3 Server architecture . 39

7 NorTronic torque wrench 47

7.1 Data Retrieval and Communication 48

7.2 Interprocess Communication using Named Pipes 51

8 Augmented Reality 54

8.1 HoloLens 2 . 55

8.2 The ARque application . 57

8.2.1 Communication with the Server 57

8.2.2 QR Tracking . 60

8.2.3 Application user interface with POST and GET 63

8.2.4 Activate and deactivate buttons 64

8.3 Further development . 66

9 Proposed future work 68

9.1 AR application . 68

9.2 Data capture / torque wrench . 68

10 Conclusion 70

References 71

11 Appendices 73

11.1 Appendix 1: Technical Project Contribution 73

11.2 Appendix 2: Epics . 77

11.3 Appendix 3: Known issues . 78

11.4 Appendix 4: Gantt Diagram . 79

11.5 Appendix 5: Test Requirements 82

4

III List of Figures
1 System overview . 11

2 A virtual model as seen through AR glasses (Wikimedia Commons) 12

3 Torque is a measure of Newton meters (Nm) 12

4 The structure of work . 19

5 HTTP test client GUI for testing - setting partID to 1 to active . . 31

6 HTTP test client GUI for testing - showing part ID information . . 32

7 NorTronic torque wrench displaying a torque value torqued on a bolt 32

8 Block diagram of the overall system 33

9 Use case diagram of system functionality 34

10 Use case diagram of torque wrench communication 34

11 Sequence diagram of the system interactions 38

12 Class diagram of the server . 40

13 NorTronic torque wrench from Norbar 47

14 RF transceiver from Microchip technology 47

15 Logged values retrieved by TDS 48

16 Graphical user interface in work around program from Norbar . . . 49

17 AR used for education (Wikimedia) and HoloLens 2 (Microsoft) . . 54

18 Framework for HoloLens devlopment 55

19 Flowchart of the activation process when loading the application . . 57

20 Correctly placed holographic bolts over the physical test bench . . . 61

21 Application GUI GET and POST buttons and output textbox . . . 63

22 ARque system seen through HoloLens showing activation buttons

for part 2 and 3, holographic bolts and output on canvas after

deactivating bolt 2 . 64

23 Scene hierarchy . 66

24 Gantt diagram part 1 . 79

25 Gantt diagram part 2 . 80

26 Gantt diagram part 3 . 81

5

IV List of Tables
1 Weekly activities before exams . 17

2 Weekly activities after exams . 18

3 Project milestones . 20

4 Risk-scoring matrix . 25

5 Project management risks . 26

6 Technical risks . 27

7 Risk revisions . 28

8 Requirements . 30

9 Test card example . 31

10 HTTP methods . 36

11 A representation of the data that the BackendViewer class function

GeneratePage() returns . 42

12 List of known issues . 78

13 Test cards 2-8 . 82

14 Test cards 8-11 . 83

V List of Listings
1 HttpServer StartServer() . 42

2 HttpServer HandleIncomingConnections() 43

3 TorqueWrenchConnection to connect to client through Named Pipe 44

4 Part of the PartData class . 46

5 Function to send values in Norbar code 50

6 Functions to communicate with a Named Pipe server 52

7 Event function that sends HTTP request from HoloLens to server . 58

8 Using the UnityEngine with HTTP request 59

9 Example from the scene changer 67

6

VI Acronyms
API Application Programming Interface

AR Augmented Reality

ASCII American Standard Code for Information Interchange

CAD Computer Aided Design

CLI Common Language Infrastructure

CLR Common Language Runtime

CSV Comma Separated Values

DB Database

DLL Dynamic Link Library

DoD Definition of Done

GUI Graphical User Interface

HAZOP Hazard and operability study

HTTP HyperText Transfer Protocol

JSON JavaScript Object Notation

ID Identification Documentation

ISP Internet Service Provider

ISO International Standards Organization

LAN Local Area Network

LHS Left Hand Side

LTS Long Term Support

LUT LookUp Table

MRTK Mixed Reality Tool Kit

MR Mixed Reality

MVP Minimum Viable Product

7

V LIST OF LISTINGS

OS Operating System

RAM Random Access Memory

REST REpresentational State Transfer

RF Radio Frequency

RHS Right Hand Side

SDK Software Development Kit

SQL Structured Query Language

TDS Torque Data System

UI User Interface

URL Uniform Resource Locator

URI Uniform Resource Identifier

UWP Universal Windows Platform

VR Virtual Reality

WinRT Windows RunTime

WinUI Windows User Interface

QR Code Quick Response Code

XR Extended Reality

XML Exstensible Markup Language

XAML Extensible Application Markup Language

VII Words and definitions
• ARque - AR combined with torque

• Polygon (in AR applications) - Triangles used as building blocks in the

Hololens

• SQLite - A lightweight SQL database file

8

V LIST OF LISTINGS

• Unity - 3D development software

• Git - GitHub - a shared repository for working in teams

• Repository - A software project that is shared using source control

• Prefab - User defined game objects in Unity

9

1 Introduction
ARque is a bachelor’s project completed at the University of South Eastern Norway

(USN), campus Kongsberg, in cooperation with Semcon. Semcon is an interna-

tional company from Sweden, with an office in Kongsberg. They specialize in

product development and have particularly high competence on cybernetics and

robotics. They are working to create innovative solutions and have projects in

many interesting fields.

For this project Semcon were interested in developing a way to use AR technology

in an industrial context. AR is a technology that combines a real world environment

with virtual data. The augmented reality market has experienced great growth over

the years and the global market size is projected to grow from USD 6.12 billion

in 2021 to USD 97.76 billion in 2028 [1]. AR became especially useful during the

Covid-19 pandemic when isolation and home offices became a reality for many. For

example, it was made possible for on site laborers to get supervised expertise from

an engineer working from home. AR has also affected other industries such as

healthcare, education and retail, but it is probably most popular within the gaming

and media world. AR technology is creating new possibilities and changing how

we complete our rather mundane tasks, and we are excited to see if this could be

a new enabling technology.

1.1 Project description

As Semcon wanted to explore the use of AR technology in an industrial setting,

we were given the task of using a digital tool, specifically a torque wrench, to

communicate and send values to an application running in a pair of HoloLens 2

glasses. The goal was for a user to be able to mark an item while wearing the

glasses, such as a bolt in an installation, and save torque values to this specific bolt,

using the digital torque wrench. The values would also need to be saved in some

form of data storage, so that the user can view previously logged data. A reason

for developing data capture using a digital torque wrench is to create a seamless

way to measure and document the exact torque of all bolts during assembly, in

hopes it will help reduce the frequency of fastener failure. We decided the system

would consist of three parts. A Hololens application, a digital torque wrench and

a server. The server would work as a middle man between the torque wrench and

the Hololens, receiving, saving and sending data. The data would mainly consist

10

1 INTRODUCTION

of torque values measured by the torque wrench, connected to a part ID, chosen

by the user in the HoloLens application. Figure 1 shows a simple system overview.

Figure 1: System overview

Another aspect of using AR glasses to collect documentation is for the user to be

able to work with both hands free and not need to remember large amounts of

information beforehand.

1.2 XR, MR and VR

Extended Reality (XR) is the general term for all real and virtual environments

generated by computer graphics and wearables. The areas within this technology,

that are worth mentioning, are Augmented Reality, Virtual Reality (VR) and Mixed

Reality (MR). VR simulates a virtual environment which can be very different from

the real world, such as in video games. But it can also be used for education and

in military training, simulating special scenarios for the user to train on. AR is

different from VR, because it only uses virtual elements and combines them with

a real world environment, often seen through the camera lens on a smartphone or

smart glasses. MR is a hybrid between AR and VR, where real world and digital

objects interact.

11

1 INTRODUCTION

Figure 2: A virtual model as seen through AR glasses (Wikimedia Commons)

1.3 Measuring torque

Typically torque is measured with a mechanical torque wrench. This device is

adjusted to a preferred torque number, and gives a clicking sound when the torque

value is met. Torque wrenches are sensitive measuring devices often used in harsh

environments. This makes them prone to decalibration, and torque wrenches used

on particularly sensitive equipment usually needs to be calibrated regularly, to verify

that they measure correct. Digital torque wrenches use different technology to

internally register the torque, and are therefore less prone to incorrect calibration.

Figure 3: Torque is a measure of Newton meters (Nm)

The measurement of torque is done by measuring the applied rotational force by

the wrench to the bolt. The digital torque wrench uses strain gauges to measure

this forces. Strain gauges are a lot more precise and reliable than its mechanical

counterpart.

12

1 INTRODUCTION

1.4 Team members

Group Leader & Risk Manager
Sigurd Terland Danielsen
Electrical Engineer, Cybernetics

Product Owner
Sondre Lindkjølen
Software Engineer, Virtual Systems

Scrum Master
Marie Bastesen
Software Engineer, Embedded Systems

Test Lead & Requirement Manager
Rikard Wirkola Rasmussen
Software Engineer, Virtual Systems

Document Manager
Julie Håndlykken
Software Engineer, Virtual Systems

13

2 Project Management
In the initial phase of the project the group discussed different project methodolo-

gies and which project framework would be the best fit for the project group. The

project models discussed were Kanban, Unified Process, Scrum and Agile. The

result was an agile model based on the Scrum methodology. The agile process is

an iterative method, where one can repeatedly evaluate the completed work, and

quickly adapt to changes and discoveries along with the project timeline. Also,

since the project was software based the Scrum methodology was a good fit. Be-

cause this project consists of many small functions added together, an agile and

flexible model was decided to be the most useful.

2.1 Project tools

We started off using Trello for task organization, but once we decided on the Scrum

model we changed to Jira, because it covered our project methodology better. The

communication tool Discord was used for sending messages to the group, as this

was a program the project group already was familiar with. Another advantage

was the possibility to have multiple channels for different topics. Zoom was used

for digital meetings.

2.2 Scrum and Agile process model

The agile process model gave the group the freedom to affect the supervision and

progress of the project. It also made it possible to add aspects of other project

methodologies that benefitted the groups preferred process, althoug many of these

aspects were inlcuded in the Scrum model. Scrum is interactive, which provided

better risk management. It also gave each team member insight in the project as

a whole.

In Scrum there are tree main pillars, which are important to the quality of the

project outcome. Transparency, so stakeholders and the project group have a

clear overview of the project framework and the product to be made. Inspection,

so that any issues and deviations which can hinder reaching the project goal can

be addressed. Adaption, if any deviations what will put the Sprint Goal and/or

the Product Goal at risk the project group should be able to adjust to minimize

the damage [2].

14

2 PROJECT MANAGEMENT

2.2.1 Scrum Events

Scrum consists of multiple fixed events to minimise the need for meetings and keep

a lightweight process. A project is divided into Sprints, which is a fixed period of

time. A sprint starts with a Sprint Planning, followed by a development period and

finishes off with a Review and Retrospective [2].

Sprint Planning

This timeboxed meeting is where the project group creates a plan for the upcoming

Sprint. Work from the Product Backlog, planned to be done during the Sprint, are

placed in the Sprint Backlog. Along with agreeing upon a Sprint Goal the project

group answers the questions:

• What should/can be done?

• How will the task be achieved?

Daily Scrum

The Daily Scrum is a short meeting of maximum 15 minutes. It is scheduled every

workday where each group member answers the following questions:

• What have you done since the last Daily Scrum?

• What will you work on today/until next Daily Scrum?

• Is there any issues or concerns regards your work that have an impact on the

Sprint Goal?

Also, if there are any interesting discoveries that could be of use to the rest of

the group. Any further discussions are to be had after the Daily Scrum meeting.

This short meeting is important for inspection of the completed work and for

the transparency of the project. This is so that the project group can adapt, with

updating the Sprint Backlog, and adjust the future work in the Sprint. An example

is if there is a task that needs immediate attention or more resources the group

can rearrange to focus on these needs as soon as possible.

Sprint Review

The Sprint Review is scheduled at the end of every Sprint. Inspecting the completed

work of the finished Sprint is the key for this event. After the Sprint Review, the

Backlog should be ready for the upcoming Sprint Planning meeting.

15

2 PROJECT MANAGEMENT

The meeting agenda should follow these steps:

• The Product Owner explains what has been done, and what has not been

done.

• The development team gives a demo/explain their work during the Sprint.

Discuss what went well and not.

• The Product Owner and team members discuss the Backlog status. The

whole Scrum team collaborates to define future work based on the previous

Sprint.

The new revision of the Product Backlog after the review meeting should reflect

upon the changes that occured during the Sprint.

Sprint Retrospective

After the Sprint Review meeting there should be a Retrospective meeting. The

purpose of the Retrospective is to highlight what went well and what could be

better, and how to implement that improvement. Compared to the Sprint Review

where the focus was ”what has been done during the Sprint”, the focus in the

retrospective is ”how has the work been done following the project methodology”.

The Retrospective should give the answers to the following questions:

• What went well in the previous Sprint?

• Can something be improved?

• How can that improvement be implemented?

2.2.2 Scrum Artifacts

Scrum artifacts is the Product Backlog, the Sprint Backlog and the Increment

[2]. Several Increments can be created by group members during a Sprint. An

Increment is a piece of work that adds value towards the Product Goal. The

Sprint Backlog is the items from the Product Backlog selected to be done during

the Sprint. The issues in the Sprint Backlog should give the group members a good

understanding of the necessary work to be done. The Product Backlog is a list of

items which is organized by priority based on importance and project timeline. The

project group had a low threshold for adding new items to the Backlog throughout

the project. The Product Backlog is not finalized until the end of the project,

16

2 PROJECT MANAGEMENT

as new issues are added continuously [2]. The Product Backlog items include

functionality, requirements, improvements and more.

2.3 Practice of the methodology

2.3.1 Meetings and core hours

In table 1 and table 2 all weekly group activities is shown. The Scrum events are

marked with a light pink color. These scheduled events are fixed.

During the initial phase the project group tried various ways of scheduling the

Scrum events, but after a few weeks of testing we found the presented weekly

schedule to be the best fit.

Table 1: Weekly activities before exams

The project group set core hours to be between 9-15 on Wednesdays, Thursdays

and Fridays. Core hours is when the group members should be available, unless

else is agreed upon.

17

2 PROJECT MANAGEMENT

Table 2: Weekly activities after exams

2.3.2 Jira for handling workflow and progress

The project group used the project tool Jira for process handling and Sprint Plan-

ning. A hierarchical view of how the work was divided is shown in fig. 4, with a

structure consisting of an initiative, epics, stories, and sub tasks. The initiative is a

large component that lead to a one common goal, and consists of epics which are

smaller pieces of work but still not small enough to be finished in one Sprint. The

epics are therefore divided into stories or tasks that can be completed throughout a

Sprint. The epics and stories are written in a typical user story expression, such as:

”As a [persona], I want [need], so that [purpose]” [3]. User stories gives context

to the the work ahead with focus on the goal and user.

As shown in fig. 4, we structured two categories of the project; Product and Project

management. The epics in Project management are the Sprint admin epic and the

documentation and presentation epic, which again is divided into stories and tasks,

and then sub tasks.

18

2 PROJECT MANAGEMENT

Figure 4: The structure of work

19

2 PROJECT MANAGEMENT

2.4 Project milestones and progress

As seen in table 3, the project group created milestones they would work towards,

so the process could be measured.

Table 3: Project milestones

Initial phase

The goal of the initial phase was to create a foundation for the project by the first

presentation.

• Get a common understanding of the project and the final product to be made

• Research and finding the correct tools, workflow and project model fitting

for the team and project

• Distribution responsibility in the team

• Create templates for necessary documents and structure for the documents

Nothing in the initial phase is 100% fixed, since Scrum is an agile model, changes

throughout the project is expected. However, it was necessary for the group to

focus on these bullet points during this period to create a good overview of the

project.

MVP

After the initial phase, the client asked for a demonstration of a Minimum Viable

Product (MVP). An MVP should give the client an indication of what the finished

product will look like. This gives the client the opportunity to give feedback early

in the process, and the project group to implement eventual changes based on

the clients wishes. This milestone was important because it forced the group to

develop a product based on the most essential components and requirements, in

20

2 PROJECT MANAGEMENT

a short amount of time. It also gave the group an indication of new risks and

challenges to be taken into account before continuing further development.

Prototype

The third milestone set to 29th of April, was a further developed prototype, then

the MVP. The goal was for the prototype to have a product where the torque

wrench could be connected to and communicate with the HoloLens. It should also

have the ability to have data storage. Another added goal for the prototype was to

have an application in the HoloLens to position the 3D model. By the milestone

date we had accomplished to get a connection between the server and the torque

wrench application using Named Pipes. The server had the possibility to store data

in an Extensible Markup Language (XML) file and could communicate with a client

using HyperText Transfer Protocol (HTTP) GET requests. The only thing missing

was the communication from the HoloLens which was achieved in the following

week, on May 6th. The HoloLens application was able to send HTTP requests

to the server, and in that way the communication could go all the way from the

torque wrench to the HoloLens application.

Documentation hand in

Optimize the product for final hand in and complete documentation. After the third

milestone the group worked on further development by adding more functionalities

to the system, to get a more robust system. Development stopped the last week

before the project deadline, as the project group had decided to spend the last

week on documentation.

2.5 Project roles

In the Scrum model there are three types of roles defined; Scrum Master, Product

Owner and Team Member/Developer. In addition to these, the project group

decided to add the following roles; Team Lead, Document Manager, Test Lead,

Requirement Manager and Risk Manager. The group found this to be a useful

addition because it provides everyone with an area they can specialize in, and feel

a sense of responsibility.

21

2 PROJECT MANAGEMENT

Scrum Master

The Scrum Master is responsible for making sure the group follows the agile frame-

work by promoting the Scrum values, theory, rules and practice. They are responsi-

ble for ensuring the Scrum events take place within the fixed timeboxes and follow

the agenda. The Scrum Master should make sure the three pillars of Scrum are

met and the four activities of Scrum are done, such as explained in section 2.2.

Product Owner

The Product Owner has the responsibility of maximizing the value of the project.

One of the most important responsibilities is to order the Backlog, and to keep it

comprehensible and clearly expressed for the team to understand. The Backlog is

fundamental to make the Sprints as productive as possible and to maximize the

value of the work the team delivers. Tasks related to the Backlog can be delegated

to the development team, but the Product Owner is still the one accountable [2].

Team Lead

The Team Lead was responsible for the contact with our primary stakeholder, Sem-

con. This was to ensure continuity in the communication and that the company

only had to refer to one person throughout the project. The Team Lead was also

responsible for the overall atmosphere in the group and to eliminate the risk of

conflict.

Risk Manager

The Risk Manager was responsible for keeping a thorough risk analysis throughout

the project. The analysis needed to be updated frequently to make sure risks and

risk levels are a reflection of the projects current status. The Risk Manager also had

the main responsibility of highlighting risks that might appear, and communicating

these to the rest of the group.

Requirement Manager

The Requirement Manager was responsible for making sure requirements and user

stories align, and that they are easy to understand for the rest of the group.

Requirements also had to be testable and include a Definition of Done (DoD).

22

2 PROJECT MANAGEMENT

Test Lead

The Test Lead was responsible for making sure the requirements were testable and

that they align with the wanted outcome of the project user stories. The Test

Lead also had to make sure the requirements go through a sufficient test before

before completion.

Document Manager

The Document Manager was responsible for ensuring that documentation is de-

livered on time and that all necessary documents are available to the group. The

manager was also responsible for document templates, the structure of content

and references in project documents, and the file structure in Google Drive.

23

3 Risk Management
To prevent unnecessary delays in the project a risk analysis was established in the

initial phase as an attempt to predict where the team could encounter obstacles.

The risk analysis is a tool and is used to ensure that any obstacles or challenges

are handled in a meaningful manner, and contribute to the project’s progress in a

positive way. For this project, the risk analysis was carried out early, and helped

lay the foundation for how the project group would handle incidents, deviations

and other challenges. The risk analysis was separated into project management

risks and technical risks, where we assess the system performance.

3.1 Project management risks

The risks in the project management part were an important part of the skeleton

of the model we had chosen. Since Scrum is an agile method, the risk analysis

should be under constant consideration with revisions along the way. This lets

us document when we see that something is either not as big of a risk or that

something is a greater risk than what it was considered to be during the project’s

start. It was also not realistic to be able to map all the risks at the beginning of the

project. Undeniably, unforeseen issues will emerge. These require targeted action

and will help define the course of the product development. The group collaborated

on a risk analysis session to map the vulnerabilities we found related to the project

management. The most severe risks identified were related to Covid-19 infection,

with a very high probability of occurring, and conflicts within the group. Possible

conflicts scored high on severity, but not as high on probability.

3.2 Technical risks

The risks associated with the technical part were also necessary to revise during

the course of the project. For the client to be presented with a good product

that meets their requirements, it was important to use the risk analysis actively

when mapping the technical specifications. If the system was to be developed

past a proof of concept level the systems expected performance would have to be

evaluated at each milestone. The technical risk analysis was used as a tool for the

continuing evaluation of the progress, ranking of to dos and adjusting the realistic

expectations during the course of the development.

24

3 RISK MANAGEMENT

3.3 Categorizing and scoring risks

The identified risks were categorized according to severity and probability. We

based our assessment on a collective score of how likely a risk were to occur, and

how severe each team member thought the risk would impact the project. The

final scores were weighted as an average of the scores. The final scores are a

mix of guesstimates based on discussion and experience from members familiar

with the technology. We created the matrix in table 4 with inspiration from risk

scoring in HAZOP analyses.The colorscheme we used was later used to identify

and prioritize system tests for performance evaluation. For this specific project the

Table 4: Risk-scoring matrix

immediate risks regarding project management was a mix of not fully understanding

or utilising the chosen model, or a failure to set realistic expectations for the

progress. Early on, the group created templates for all recurring documents, so

incorrect documentation was seen as an insignificant risk. This does not mean

there were no risk of failure, but if we implemented Scrum correctly it would stop

any development of bad habits as soon as they appeared. Using Scrum we were

confident that the project would be as agile as possible.

3.4 Risk analysis

The technology used in this project was still under development, and did not have

the same familiarity as other mature products. This meant that the documentation

would be sparse, or non existent for some important functionality. We were also

using equipment that was not open source, which meant software updates could

25

3 RISK MANAGEMENT

potentially make something the team had implemented unusable. To mitigate this

the team was looking to create a standalone application to run on the HoloLens

operating system, which is Microsoft Holographic. We were also tasked with

making two separate units communicate, hopefully in real time. The torque wrench

we were using uses proprietary software to collect the measured values with their

work IDs from the wrench, further described in section 7. The software relied on

user interaction, meaning this process had to be automated in some way.

Table 5: Project management risks

26

3 RISK MANAGEMENT

Table 6: Technical risks

27

3 RISK MANAGEMENT

3.5 Risk reviews

Table 7: Risk revisions

No. Description Date
1 Initial review 01/27/22
2 First revision 02/09/22
3 New risks added 03/09/22
4 Final revision 05/06/22
5 Rewritten wording 05/10/22

When we started with the thecnical development we had to review the technical

risks after some time since the scope of the project had been further adjusted.

Some of the identified technical risks were no longer relevant, such as RT-15.

After gaining insight about the technology the group also had a much better

understanding about the technical limitations, so planning for and mitigating risks

were a much simpler process. The latest review in table 7 also identified new risks

that were not considered at the beginning. The problems were related to data

handling with an external database, which was not considered in the early stages

of the project. To make the project as good as possible we decided to go for

a system divided into three; the HoloLens application, the Norbar torque wrench

system and a server solution to maximise the system performance.

3.5.1 Non-identified risks

As discussed earlier, the involved technology presented many problems during the

development of the technology. The torque wrench did not support direct commu-

nication on a hardware level, and the firewall at the school campus had intermit-

tently blocked packages sent to and from the HoloLens. The NorTronic problems

were not identified earlier because of a misunderstanding in the products manual.

This particular problem had a huge impact on the implementation of a true real

time system, since this meant we had no way to communicate without the pro-

prietary software, and the software needs to be operated by a user to synchronize

data. We managed to find a workaround to this problem, which ended up working

very well. To further elaborate the unidentified risks involved in this project we

made a list of known issues and bugs in section 11.3.

28

4 Requirements
Requirements for this project were prepared and set by the group with final approval

from Semcon. The requirements can be seen in section 4. The parameters used

in the table contains the requirement ID, the requirement description, when the

requirement was approved and which priority it has. Requirements with priority A

shall be completed during the project. Requirements with priority B are desirable

if all A priority requirements have been completed.

29

4 REQUIREMENTS

Table 8: Requirements

R-ID Description Date up-
dated

Requir-
ement

R-01 The torque wrench subsystem shall cap-
ture torque values from the torque
wrench

27.01 A

R-02 The torque wrench subystem shall store
data from the torque wrench in a data
storage with wireless connection

27.01 A

R-03 The HoloLens subsystem shall have a sta-
ble build environment in Unity

14.01 A

R-04 The Hololens subsystem shall be able
to build and run an application in the
HoloLens

27.01 A

R-05 The HoloLens subsystem shall upload a
CAD model into the application

27.01 A

R-06 The HoloLens subsystem shall visualize a
CAD model

27.01 A

R-07 The HoloLens subsystem shall allow a
specific part to be selected in the appli-
cation

27.01 A

R-08 Hololens subsystem shall be able to locate
an object in HoloLens application

30.03 A

R-09 The HoloLens and torque wrench should
communicate as one system

27.01 B

R-10 The system should read the correct data
from the torqued part selected inside the
HoloLens 2 application

27.01 B

R-11 The system should upload a model from
a database outside the system

27.01 B

4.1 Testing

The project group ran tests to see if the requirements were met. The test results,

as well as the related requirements were placed in test cards. Each of the test

cards contain a unique ID with the related requirement, as well as the criteria that

30

4 REQUIREMENTS

had be satisfied for the test to be approved. An example of a test card can be

seen in table 9, followed by the methods of how the requirements were tested.

Test example

Table 9: Test card example

By running the server, the torque wrench application and the HTTP client simul-

taneously the criteria in TR-01 seen in table 9 can be validated. The steps to

validate this test are further explained in the itemized list below.

• Entering partID “1” and click “Set PartID as active to Update” button as

shown in the 5

• Torque a bolt on the test bench, and click store on the torque wrench, as

shown on the 7

• After clicking the “get part information” button in the HTTP client GUI,

the torque wrench values will show, see 6

This test is approved.

Figure 5: HTTP test client GUI for testing - setting partID to 1 to active

31

4 REQUIREMENTS

Figure 6: HTTP test client GUI for testing - showing part ID information

Figure 7: NorTronic torque wrench displaying a torque value torqued on a bolt

32

5 SYSTEM ARCHITECTURE

5 System Architecture
The diagram in fig. 8 is a basic overview of the system architecture. The HoloLens

application receives torque values from the NorTronic torque wrench by commu-

nicating through a server. The server also handles the data storage. The torque

wrench application communicates with the server via Named Pipes, while the

HoloLens application communicates via HTTP requests.

Figure 8: Block diagram of the overall system

5.1 System functions

Use case and sequence diagrams are created to visualize the functionality and

communication within the system. The use case diagram seen in fig. 9 visualizes

the functionality of the system by defining three actors, the HoloLens operator,

the ARque server and the torque wrench application.

The operator using the HoloLens application can get part data from the server,

or measure torque using the NorTronic torque wrench after activating a specific

part. The torque wrench application sends data to the server. While the server

can, based on the HoloLens application and the torque wrench application, update

the part data. The server can also give an overview of the part data, and store it

to an XML file.

33

Figure 9: Use case diagram of system functionality

The torque wrench application gets connected to a RF transceiver, as shown in

fig. 10. It retrieves strings of data coming from the transceiver which is sent to

the server.

Figure 10: Use case diagram of torque wrench communication

34

6 SERVER

6 Server
A server provides a service. It responds to requests from devices, called clients,

connected over a network. A server can be hosted on any device that can store,

process, and share data. There are a wide variety of servers that provides a

variety of services. For example, a file server is a computer on a network with

files which other computers can access. A print server is a host with a printer

attached which other devices on the same network can access to be able to use the

printer. Application servers are used to host applications. The clients do not need

to download the data but get access to the application through a virtual server

connection. A web server, used to host websites and runs web server software.

HTTP is a commonly used protocol used for communication between the clients

and a web server. A database server typically operates along with other types of

servers. It uses a database application to provide the services or storing data in

groups [4].

The server acts as the binding link between the systems HoloLens application and

the torque wrench data retrieval system. The torque wrench with data storage

and management, can be seen as the backend of the system, while the HoloLens

application serves as the frontend. One of the requirements of the system, see

section 4, and a big focus for the customer was to route data all the way from the

torque wrench to the HoloLens, in real time. Along with the ability to log torque

values for each bolt tightened, and notify of remaining bolts to be tightened. Our

architectural philosophy was to have the server contain all data, and the HoloLens

act as a stateless frontend, in terms of collected torque data. In this way any

HoloLens with the frontend application installed can be connected to the server,

and with that connection resume any previous session.

6.1 Communication

A web server can both store and deliver data to a web browser, typically through

HTTP. HTTP is also used to communicate between software applications, in a

communication form known as REpresentational State Transfer (REST) Applica-

tion Programming Interface (API). We chose to use this architectural style for our

communication between the HoloLens and server. HTTP uses various types of re-

quest methods, where some of them are described in table 10. With these HTTP

requests, the HoloLens can communicate with the server, to retrieve information

35

6 SERVER

and to update the information in the server.

Table 10: HTTP methods
HTTP Methods Description

GET Request and retrieves data from a resource in the server.
POST Sending data to the server to update or create a resource.
PUT Sends data to the server to create or update

DELETE Deletes resources that is indicated in the URL

REST is an architecture style which define a set of constraints for how a system

should behave. REST API is usually based on HTTP methods to access resources

via a Uniform Resource Locator (URL) encoded parameters. Requests made to

a resource Uniform Resource Identifier (URI) result in a response containing a

payload. This can be formatted in XML, JavaScript Object Notation (JSON),

HTML or others. When using HTTP as we have decided to do, the HTTP methods

provide the operations available as described in table 10. A large part of REST

is statelessness in the protocol, which means the URIs do not change based on

system state. Instead, the response is different [5].

Since we divided the project into multiple subsystems, REST makes it possible

to work on each subsystem independently. REST is also easy to debug since the

communication does not rely on a complicated state machine. This means trivial

simulators, or even a regular web browser, can be used to test and debug the com-

munication. Having this architectural style made the application less complex, and

easier for the project group to achieve the communication between the subsystems

without a long and difficult integration period.

When the client, the HoloLens, sends a request to the server, the servers response

is a representation of the state of the resource that is requested. This means when

the server gets a request to get information about a specific part ID, the server

responds with the current state of that resource.

For the project the POST and GET requests are used. The GET method is to

retrieve information about a specific part. The POST method is used to do a

change to the servers resources, meaning when a POST request is sent to the

server with a part ID, this part ID will be set as active. By setting the part ID

as active, the next torque data sent to the server will update the active part IDs

information.

The data that is sent in the HTTP request body, and can be formatted in many

ways. Besides using raw text and parsing it in any manner one chooses, some

36

6 SERVER

industry standards are JSON, XML, or HTML format. For our project the format

the representation of the state is sent as a string, though we have prepared the

code to use JSON with the use of a C# DataContract in the PartData class. This

allows C# library functions to quickly serialize and deserialize the class to or from

a JSON string.

The web server designed for the project has one-way communication, from the

client to server. As shown in the fig. 11, this implies that the HTTP client must

first send a POST request to set an active part ID. New torque values from the

torque wrench will then be stored under this part ID. In the mean time, the client

must continuously send GET requests to get the updated part data. Once a new

torque value has been received in the server, the HoloLens will see these changes

as a change in the response from the GET request. This is a simple way of

communicating, but has the disadvantage that the frontend client has to poll the

server to get the data. Since the HoloLens only displays information about the

selected part, this is considered acceptable.

The server has a state machine, while the frontend client can be seen as stateless

in terms of total system function. The server state is determined by the integer

activePartID and the flag inactivePartID. In the the sequence diagram in fig. 11

the communication flow is shown. The loop is showing that as long the server

is in the state where a part ID is set and the flag inactivePartID is false, all new

torqueData from the torque wrench application will overwrite and be stored with

the part ID.

37

6 SERVER

Figure 11: Sequence diagram of the system interactions

6.2 Data storage

The costumer wants a system that can store the torque values that have been

applied to a bolt. Meaning that when the operator of the system selects a bolt in

the HoloLens the next torque value the operator torques the torque wrench with

should be connected and stored on the selected bolt. To solve this we choose to

have a list with the part and their torque data. So when the operator selects a

part and stores a torque value, it will be added to the list. The list can be stored in

an XML file. In the future as the system grows, a more scalable means of storage

such as a database should be used instead of a list which is stored in the Random

Access Memory (RAM). The part of the server code that handles storage of the

38

data in a list, and converting to an XML file uses an interface. The same interface

functions can be used to do the same work towards a database instead. In this way

we have kept the server implementation independent of the exacted data storage

used.

6.3 Server architecture

The server that was created for the project is written in C#. The reason for this

is that C# is high level, simple to use, and we only need Windows support for the

project. The fig. 12 shows a class diagram of the server system structure showing

all the classes, the attributes, and methods in each class, and the relationship

between the classes.

39

6 SERVER

Figure 12: Class diagram of the server

40

6 SERVER

Program and ARqueServerForm

The program class has the main function which starts the ARqueServerForm class.

The form class is a user interface which has the function to create and open the

XML file with the torqued parts. It also contains a shutdown button to shutdown

the server. The relationship between the program and the ARqueServerForm, is

an aggregation. The program has an instance of the ARqueServerForm class.

HttpServer class

The HttpServer class provides the connection to the HoloLens through the HTTP

methods POST and GET. When the server program begins to run, the HttpServer

class is created and begins to listen for client connections. When a connection

is made, the task HandleIncomingConnection will be called to see if a GET or a

POST type method has been requested. If it is a GET request, HandleIncom-

ingConnection will check if the URL path contains “/partData/” followed by an

integer. If that integer is a valid part ID, the server will fetch the PartData object

from the IDataBaseController, and respond to the client with a string formatted

PartData object in the HTTP message body.

If the request is a POST request, HandleIncomingConnection will check if the part

ID is present in IDataBaseController, if not a new PartData object will be added

to IDataBaseController with default values. In both cases the part ID will be set

to active, meaning that the next torque value package coming though the Named

Pipes connection, will be connected to the active part ID on the server. This

class is aggregated to the ARqueServerform class, since the ARqueServerform has

an instance of the HttpSever created in the ARqueServerform constructor. The

BackendViewer class’ method GeneratePage() will be called if the GET request

does not contain an URL that is defined in the server. The GeneratePage() method

takes a list of PartData objects as an argument, and returns a string containing

HTML formatted code. The HTML code visualizes all the parts and their data in

a table, as shown in table 11.

41

6 SERVER

Table 11: A representation of the data that the BackendViewer class function
GeneratePage() returns

In listing 1, a part of the httpServer class is shown. The function StartServer() uses

the HttpListener(), from the namespace System.Net, to listen for clients, which

connects though the URL. In order to let other devices connect to the server the

URL has an asterix, so the clients can fill this with the IP address that the server

is hosted on. The function is asynchronous to prevent it from blocking.

38 public async void StartServer ()

39 {

40 // Create a Http server and start listening for

incoming connections

41 listener = new HttpListener ();

42 listener.Prefixes.Add("http ://*:8000/");

43 try

44 {

45 listener.Start ();

46 }

47 catch (HttpListenerException ex)

48 {

49 MessageBox.Show("Administrator rights are

required to start a server! " + ex.Message ,

50 "Unable to start",

51 MessageBoxButtons.OK,

52 MessageBoxIcon.Error);

53 return;

54 }

55 Console.WriteLine("Listening for connections on {0}

", url);

56

57 // Handle requests

58 await HandleIncomingConnections ();

42

6 SERVER

59

60 // Close the listener

61 listener.Close ();

62 }

Listing 1: HttpServer StartServer()

If there is a connection the HandelingIncommingConnections() will be called. The

method is async since it is a task to prevent it from blocking other functions.

Listing 2 shows the essence of the function, that it uses a switch case, for the

supported HTTP request POST and GET. The code shows a respond if a client

sends a POST request with the URL path ending with ”/shutdown”, or if the

client sends a GET request with the absolute path ”/hello”.

77 public async Task HandleIncomingConnections ()

78 {

79 // While a user hasn’t visited the ‘shutdown ‘ url , keep on

handling requests

80 while (runServer)

81 {

82 // Will wait here until we hear from a connection

83 HttpListenerContext ctx = await listener.GetContextAsync ();

84

85 // Peel out the requests and response objects

86 HttpListenerRequest request = ctx.Request;

87 HttpListenerResponse response = ctx.Response;

88

89 switch (request.HttpMethod)

90 {

91 case "POST":

92 // If ‘shutdown ‘ url requested w/ POST , then shutdown

the server after serving the page

93 if (request.Url.AbsolutePath == "/shutdown")

94 {

95 Console.WriteLine("Shutdown requested");

96 await WriteResponse(response , "Server shutdown

requested .!");

97

98 runServer = false;

99 continue;

100 }

101

102

103

43

6 SERVER

104 //GET request method request and retrives data from a

resource in the server.

105 case "GET":

106

107 //await parseGet(response , request);

108 if (request.Url.AbsolutePath == "/hello")

109 {

110 await WriteResponse(response , "Hello Hello!");

111 continue;

112 }

113

114

115

116 }

117

118 await WriteResponse(response , "invalid request");

119 }

120 }

Listing 2: HttpServer HandleIncomingConnections()

TorqueWrenchConnection

Like the HttpServer class, the TorqueWrenchConnection class handles the data

coming from a client. The client is the torque wrench application which sends

data packages though a Named Pipe. The TorqueWrenchData class is a helper

class which consists of variables that the data packages from the torque wrench

sends over the Named Pipe connection. method ParseString() splits the string in

an agreed format, so a new TorqueWrenchData object can be created from the

string received.

In listing 3, a part of the StartServer() method for the TorqueWrenchConnection

class is shown. The variable server is created of the NamedPipeServerStream

which is from the namespace System.IO.Pipes. It will then wait for connections,

and attempted to read string data by a new line character. This string is then

parsed into a TorqueWrenchData object in the ParseString method.

25

26 public void StartServer ()

27 {

28 Task.Factory.StartNew (() =>

29 {

44

6 SERVER

30 var server = new NamedPipeServerStream(@"

arque_pipe");

31 server.WaitForConnection ();

32 StreamReader reader = new StreamReader(server);

33 Console.WriteLine("pipe connection made");

34 while (true)

35 {

36 string line = reader.ReadLine ();

37 if (! string.IsNullOrEmpty(line))

38 {

39 ParseString(line);

40 }

41 }

42 });

43 }

Listing 3: TorqueWrenchConnection to connect to client through Named Pipe

IdatabaseController and PartListController

The IDatabaseController is an interface, so the HttpServer and TorqueWrench-

Connection do not need to know the exact implementation details of the database

controller. PartListController is a class that inherits from the interface, implement-

ing a simple list to simulate a database. A connection to a real database can be

easily integrated into the code by implementing a new variant of the IdatabaseC-

ontroller interface, without needing to change the surrounding code.

The IdatabaseController and the PartListController is the heart of the server since

they connect the data coming from the HttpServer connection and the TorqueWrench-

Connection. Since the PartListController inherits from the IdatabaseController in-

terface, the class can use the methods defined in the interface rather than PartList-

Controller. To update a PartData object an active part ID must be set from the

request from the HttpServer. Then once the TorqueWrenchConnection receives

new data, this information will used to update the PartData object with the ac-

tive part ID. LoggedTorques implements a SaveToFile function this converts the

LoggedTorqued class of an XML representation of the list. The purpose is that

the file can be reopened by the program, so the session can continue. This class

is kept external to IDatabaseController, so saving to file is independent from how

the data is stored internally in the system.

The code in listing 4, shows the PartData class, which structures the data that

45

6 SERVER

will be stored for each bolt in the system. In addition to an ID, each bolt also

has a flag to indicate whether it has been torqued, an actual torque value, the

unit for torque value, and the time stamp. The class itself, and each data member

is tagged with a DataContract attribute or DataMember attribute, which comes

from the namespace System.Runtime.Serialization. These allow the class to be

automatically serialized or deserialized, into either JSON for sending via the HTTP

server, or into an XML format, which is used to save the list of PartData objects

to an XML file.

11 [DataContract]

12 public class PartData

13 {

14 [DataMember , XmlAttribute]

15 public int partID;

16

17 [DataMember , XmlAttribute]

18 public bool isTorqued = false;

19

20 [DataMember , XmlAttribute]

21 public double torque;

22

23 [DataMember , XmlAttribute]

24 public string unit;

25

26 [DataMember , XmlAttribute]

27 public double targetTorque;

28

29 [DataMember , XmlAttribute]

30 public DateTime timeStamp;

31 }

Listing 4: Part of the PartData class

46

7 NorTronic torque wrench
This project uses the NorTronic digital torque wrench from Norbar to capture

torque data. The torque wrench has a digital display, equipped with dual color

OLED displays, which can be seen in fig. 13. The display is used to display torque

values while measuring torque and can give off warnings when the applied torque

is higher than the torque target. The torque wrench is also equipped with different

buttons, allowing the user to save measured values and navigate between them.

It is also possible to define a torque target and other variables such as ’snug’.

The wrench has an accuracy of ± 2% over the full measurement range. For small

values this can be neglected, but for larger values, especially for large equipment

installed for a long duration of time, the value has to be more precise. [6].

Figure 13: NorTronic torque wrench from Norbar

Figure 14: RF transceiver from Microchip technology

47

7 NORTRONIC TORQUE WRENCH

The wrench comes with a wireless RF receiver shown in fig. 14. The data transfer

is done over RF at 868 MHz [7]. The RF transceiver is ultra low power, in order to

meet European regulation. The receiver makes it possible to connect the torque

wrench to Norbars integrated program for data storage, called Torque Data System

(TDS). This program displays torque data captured by the torque wrench and saves

it to an SQLite database. An example of logged values in TDS can be seen in

fig. 15.

Figure 15: Logged values retrieved by TDS

7.1 Data Retrieval and Communication

Part of the requirements in this project was to capture torque values from a digital

torque wrench, as well as sending these values to an external device for data

storage. This was to make it possible for an application to retrieve the data and

display it in the HoloLens, as well as connecting the data to a unique part ID. At the

beginning of our project we planned to use American Standard Code for Information

Interchange (ASCII) commands, provided in the operators handbook, to retrieve

data. However, as the torque wrench we were given was of an earlier model, ASCII

communication had not yet been integrated. This meant we had to look at other

options for data retrieval. First, we decided to look at possibilities using the TDS

program. In order for the torque data to be sent to an external device, the data

would have to be retrieved from the SQLite database, containing all the logged

torque values. Different test scripts were created which would retrieve and send

data in various ways. Either by converting the database to an Comma Separated

Values (CSV) file or by printing the values in a terminal window. However, the

48

7 NORTRONIC TORQUE WRENCH

outcome was not satisfactory. The goal was also to achieve real time logging,

which proved to be a challenge when collecting data from the SQLite database.

The group contacted Norbar, the manufacturer of the NorTronic torque wrench,

as well as VASI, the Norwegian Norbar distributor to portray the problem of the

missing ASCII communication, and by the beginning of April we were sent a

”workaround” code from Norbar. This was a comprehensive project file which

consisted of several thousand lines of code. The project created an application

which would retrieve logged data from the torque wrench in real time, and display

them on a graphical user interface as seen in fig. 16. Although the functionality

was similar to the TDS program, being given the source code to the application,

we were able to modify and further develop the code to implement our wanted

functions. The application was modified to send the retrieved values to the ARque

server, which distributes the data by making it available for the HoloLens applica-

tion, as well as storing the data in an XML format. Once the server receives the

measured torque values, the HoloLens is able to retrieve them and display them in

the glasses, along with the appropriate part ID.

Figure 16: Graphical user interface in work around program from Norbar

In order to develop the functions we wanted, we first needed to dive into the

code and understand all the functions it had. Norbar provided us with a document

which explained several of the functions concerned with torque wrench connection,

49

7 NORTRONIC TORQUE WRENCH

logging and retrieval. The application first establishes a connection with the torque

wrench by using the yellow Radio Frequency (RF) dongle mentioned previously.

Once a torque wrench is connected, its serial number and node name will show in

the ’selected node’ box, as can be seen in fig. 16. After a connection is established,

the user will be able to retrieve values from the torque wrench by entering logging

mode. This is done by clicking the ’start logging’ button. Once in logging mode

the measured torque will be displayed in the programs GUI, as seen in fig. 16.

This is were the code has been modified, so that once logging mode is entered,

the program establishes a connection to a server via Named Pipes communication

and sends the measured torque values to the server, as well as displaying it on the

application GUI. Each time the user saves a torque measurement using the torque

wrench it will be sent to the server, until the user exits logging mode where the

connection will be broken. Before creating a Named Pipe client to send values to

the server, we tested the retrieval of values by sending them to a text file. For

each logging session, the text file would be overwritten with new values, but it

gave us a way of testing that the correct values were retrieved and sent by the

Norbar program. Even though we have established a connection to the server,

the values are still being sent to a text file to help when troubleshooting. At the

beginning some of the sent values weren’t received by the server, reading the text

file helped us see that the correct values were in fact being sent, but an error had

recurred with the server. Listing 5 is an excerpt from where the Norbar code has

been modified to send values to a text file for testing, as well as creating a string

with values to send to the Named Pipe server.

2890

2891 // Prints values in a textfile called "textfile.txt"

2892 TestFile << "Torque: " << dTorque << "\n"

2893 << "Target Torque: " << dTorqueTarget << "\n"

2894 << "Snug: " << dSnug << "\n"

2895 << "Angle: " << nAngle << "\n";

2896 TestFile.close ();

2897

2898 m_IDC_LIST1.UpdateWindow ();

2899

2900 // Sends string with values to the named pipe server when torque

data is retrieved

2901 if (new_torque != dTorque) {

2902 string result_string =

2903 "Torque; " + to_string(dTorque)

2904 + ", TargetTorque; " + to_string(dTorqueTarget)

50

7 NORTRONIC TORQUE WRENCH

2905 + ", Timestamp; \n";

2906

2907 const char* message = result_string.c_str ();

2908 send(message);

2909 }

2910 else {

2911 string result_string = "No new value\n";

2912 const char* message = result_string.c_str ();

2913 send(message);

2914 }

2915 new_torque = dTorque;

2916 }

Listing 5: Function to send values in Norbar code

7.2 Interprocess Communication using Named Pipes

A Named Pipe is a one way or duplex form of communication between a pipe

server and one or more pipe clients [8]. Named pipes can be accessed by any

process, making it an easy form of communication between related or unrelated

processes. To distribute the retrieved torque values, we decided to use a server

written in C#. This server is able to communicate via HTTP requests, but because

the Norbar code is written in C++, we found it easier to implement Named Pipe

communication for Inter Process Communication (IPC).

Other methods that were researched was the use of sockets, Common Language

infrastructure (CLI) and Common Language Runtime (CLR). TCP sockets handles

IPC like the named pipes, but we estimated that it would be too time consuming to

program the C++ sockets in a robust way. The CLI would wrap the torque wrench

application and merge it in the server application[9]. To do so we would have to

continue with the new project for the torque wrench application, but we estimated

that it would have taken to long time to finish. The named pipes solution was the

simplest way of getting the functions that we needed to prove the functionality

of the system. This was done by first creating a test setup with a simple Named

Pipe client and server to ensure the communication worked, before integrating a

client in the Norbar code to communicate with the C# server. Listing 6 contains

an excerpt from the Norbar code with the functions to create a named pipe client

and establish a connection with the server, as well as the function used to send

strings containing data.

51

7 NORTRONIC TORQUE WRENCH

58 BOOL result;

59 HANDLE pipe;

60

61 // Function to create client and connect to server

62 int connection (){

63 wcout << "Connecting to pipe ..." << endl;

64 pipe = CreateFile(

65 L"\\\\.\\ pipe\\ arque_pipe",

66 GENERIC_READ | GENERIC_WRITE ,

67 FILE_SHARE_READ | FILE_SHARE_WRITE ,

68 NULL ,

69 OPEN_EXISTING ,

70 FILE_ATTRIBUTE_NORMAL ,

71 NULL

72);

73

74 if (pipe == INVALID_HANDLE_VALUE) {

75 wcout << "Failed to connect to pipe.\ nError: " <<

GetLastError () << endl;

76 return 1;

77 }

78 }

79 // Function to send string of values to server

80 void send(const char* message) {

81 wcout << "Sending data to pipe ..." << endl;

82 DWORD numBytesWritten = 0;

83 DWORD lengthofdata = static_cast <DWORD >(strlen(message) *

sizeof(char));

84

85 result = WriteFile(

86 pipe ,

87 message ,

88 lengthofdata ,

89 &numBytesWritten ,

90 NULL

91);

92

93 if (result) {

94 wcout << "Number of bytes sent: " << numBytesWritten <<

endl;

95 }

96 else {

97 wcout << "Failed to send data."

98 << GetLastError () << endl;

52

7 NORTRONIC TORQUE WRENCH

99 }

100 }

101 // function to close pipe handle

102 int close() {

103 CloseHandle(pipe);

104 wcout << "Done." << endl;

105 return 0;

106 }

Listing 6: Functions to communicate with a Named Pipe server

53

8 AUGMENTED REALITY

8 Augmented Reality
Augmented Reality is a growing technology and involves overlaying virtual ele-

ments onto a real world environment to enhance the user experience. It is also

closely related to mixed reality, which merges real and virtual worlds to produce

new environments and visualisations. Well known applications like Instagram and

Snapchat use AR in their filters to add facial features and information. It is also

used in Google Maps for navigation and online shopping as a ’try before you buy’

option. For comprehensive use in enterprises and institutions, like in fig. 17 [10] and

military training [11], AR glasses and headsets might prove to be more relevant.

Figure 17: AR used for education (Wikimedia) and HoloLens 2 (Microsoft)

Holograms

Virtual objects that are rendered in the AR headset are called holograms. Holo-

grams can be static or dynamic, and will appear as a 3D object in the real world

that one can walk around to see from all angles. A hologram is an advanced form

of photography where the motive is three dimensional. Just like with motion pic-

tures, a hologram must be rendered at a rate of greater than 24 frames per second

to create the visual experience of motion. A hologram with motion is referred

to as a dynamic hologram [12]. The holographic equivalent of a pixel is called a

polygon. A polygon is any shape that can be drawn on a paper in one stroke where

the start and stop position of the stroke is the same, and the line is not crossed

over by itself. Many polygons together is what makes the hologram.

54

8 AUGMENTED REALITY

8.1 HoloLens 2

The HoloLens is an industrial product supposed to be customisable for several

fields, such as installations, which made it fitting for the ARque project. The

HoloLens uses spatial sensors to map the users environment, and has special track-

ers focusing on the hands of the user. Controllers can be used to interact with

the holograms, but the hand trackers are reliable enough to make the experience

rely solely on the users own hands, making it possible for our application to run

without the need for extra equipment.

Development framework

The framework used is .NET 5. This is a unified platform developed by Microsoft

to build any type of .NET application with a single base class library, and provides

us with the additional features needed to build and develop an application running

on the HoloLens.

Figure 18: Framework for HoloLens devlopment

The .NET 5 Framework contains a lot of accessories in a wide scope of software

development [13] . Some of the technologies included in the .NET 5 Framework

that we use to develop our AR application are shown in fig. 18. The .NET library

must be included to be able to build the application. The parts of the .NET

55

8 AUGMENTED REALITY

framework allow user interaction and user interface in the mixed reality experience.

Universal Windows Platform (UWP) is a platform that runs on all devices that has

a Windows Operating System (OS). UWP has the same API on all devices running

Windows OS. The HoloLens runs a modified version of Windows 10 called Windows

Holographic, and falls under the UWP umbrella. The the HoloLens is an ARM64

Internet Of Things (IOT) device.

56

8 AUGMENTED REALITY

8.2 The ARque application

The flowchart seen in fig. 19 shows the application activation process when the

user loads the ARque application. The first view the user will see is a menu where

the user can click on a start QR scan button. When the user has clicked the button

to activate the QR scanning the application will create an instance of a QRtracker

object which will be responsible for detecting QR codes. When the application

detects a QR code the assembly handling communications with the server will be

overlaid in a known location relative to the origin of the QR code. This means we

can place the holographic overlay over a physical object correctly every time.

Figure 19: Flowchart of the activation process when loading the application

8.2.1 Communication with the Server

Part of all B requirements, see section 4, was to connect the two subsystem

HoloLens and NorTronic together. So, one of the main features to the AR appli-

57

8 AUGMENTED REALITY

cation that we developed was a communication line between the server and the

HoloLens.

The first method that we tested was using Web Real-Time-Communication (We-

bRTC). WebRTC is used to transfer data packets and video transmissions, so the

client can communicate inside the web and is supported by native apps and web

browsers. WebRTC uses POST and GET but this method did not quite fit this

task when we were going to retrieve torque values in clear text from the server.

So, we decided under the development for test if we can get the torque value to

use HTTP requests from the HoloLens to server.

Testing the application in Visual Studio

In order to communicate with the server we sat up a test application in a Visual

Studio UWP project that has a user interface in 2D Extensible Application Markup

Language (XAML) before it was going over to Unity. Listing 7 shows the test code

that first succeeded to communicate with the server. The code is a part of the

Windows.Web.Http namespaces [14] and the classes that are used is

• HttpResponseMessage

• ReadAsStringAsync

• HttpClient

• TryParseAdd

• GetAsync.

1 private async void Get_Event(object sender , RoutedEventArgs e)

2 {

3

4 HttpClient httpClient = new HttpClient ();

5 var headers = httpClient.DefaultRequestHeaders;

6 //error handlers

7 if (statment)

8 {

9 throw new Exception(statment)

10 }

11

12 Uri requestUri = new Uri("http:/ localhost :8000/ ");

13 HttpResponseMessage httpResponse = new HttpResponseMessage

();

14 string httpResponseBody = "";

58

8 AUGMENTED REALITY

15 try

16 {

17 httpResponse = await httpClient.GetAsync(new Uri("http

:// localhost :8000/"));

18 httpResponse.EnsureSuccessStatusCode ();

19 httpResponseBody = await httpResponse.Content.

ReadAsStringAsync ();

20 }

21 catch (Exception ex)

22 {

23 httpResponseBody = "Error: " + ex.HResult.ToString("X") + "

Message: " + ex.Message;

24 }

25 }

Listing 7: Event function that sends HTTP request from HoloLens to server

Listing 7 is the setup of events that are waiting for an input to send the requests

to the server.

Importing a UWP project from Visual Studio into Unity

Figure 18 shows the relationship between the .NET Framework and Unity. From the

UWP project we could not use the Unity API scripts without adding the reference to

the DLL files that Unity used. And to do that we need to add the references to the

dependency so that we can use UnityEngine DLL to use UnityEngine namespace.

HTTP Connection Integratet in Unity Enviorment

Listing 8 contains the code we used in Unity to connect to the server.

1 using UnityEngine.UI;

2 using UnityEngine;

3 namespace httpClientConnect

4 {

5 public class PostRequest : MonoBehaviour

6 {

7 InputField Output;

8 void Start()

9 {

10 Output = GameObject.Find("Output").GetComponent <

InputField >();

11 GameObject.Find("PostButton").GetComponent <Button

>().onClick.AddLi stener(PostData);

59

8 AUGMENTED REALITY

12 }

13 public void PostData () => StartCoroutine(

PostWithErorhandler ());

14 IEnumerator PostWithErorhandler ()

15 {

16 try

17 {throw statement ;}

18 catch(Exception e)

19 { catch statement ;}

20 yield return null;

21 }

22 }}

Listing 8: Using the UnityEngine with HTTP request

Listing 8 shows an event that is initialized when the application is running, shown

on line 10. MonoBehaviour was used to access UnityEngine so we could use the

start function that is a part of the UnityEngine DLL. Namespace httpClientConnect

was used to wrap up the classes so we could access the member inside of it using

UnityEngine and UnityEngine.UI outside of Unity.

Line 13 shows StartCoroutine() which is a method built into the Unity scripting

API. This method returns a yield statement. Inside PstWithErrorHandler we have

entered different statements ranging from error handler to sending a POST request

to the server. This feature is triggered by one of the buttons.

8.2.2 QR Tracking

There are several methods to place a hologram on a surface. They can be called

on by tags, exist in the room by default or be placed using buttons and commands.

We used tags to call and place holograms in this project.

There are also multiple types of tags that can be placed on a physical object so

it can be scanned by a camera to extract information. A common tag type is

the Quick Response (QR) code. QR codes are commonly used to be scanned by

cellphones to direct the phone to a website. QR codes are used for this purpose

because they are created for conveying information. In our case, the data we want

to receive using a tag/code is location, angular orientation and distance. Preferably

as fast and precise as possible. The team considered AprilTags for object tracking,

but they are not officially supported by the HoloLens. Using AprilTags we would

also have to use the web camera built into the HoloLens. The web camera is only

60

8 AUGMENTED REALITY

available to one process at a time, so if the user has to take photos or use video,

the camera would be unavailable. Because of the possibility of tying QR codes to

other functions and events we decided this was the preferable type of tag to use

in this project. The sensors used for spatial mapping also supports QR tracking,

so the web camera is available to other processes during runtime. We based our

application on the ability to scan a QR code to place a holographic object in the

three dimensional space as seen in fig. 20, and afterwards track the code if the

object should move.

Figure 20: Correctly placed holographic bolts over the physical test bench

Enabling QR tracking

To enable QR tracking on HoloLens 2 we needed access to the system level drivers

responsible for detecting the QR codes. The spatial cameras used to map the user

environment has built in support for QR-tracking, and is the resource we used to

detect codes and project the holograms correctly. Using the spatial cameras we

needed a translator mirroring the Left Hand Side (LHS) matrixes used to project

the hologram, to HoloLens’ Right Hand Side (RHS) detection matrixes [15].

To start we used the QRCode sample project provided by Microsoft, and further

developed the project from there. The QRTracking project from Microsoft’s own

repository is the foundation of all the projects we identified during the project. The

repository consists of scripts accessing, reading, storing and processing the codes

read on the OS level in the HoloLens. From the Git repository the important

61

8 AUGMENTED REALITY

scripts are

• QRCodesManager.cs

• QRCode.cs

• QRCodesSetup.cs

• QRCodesVisualizer.cs

• SpatialGraphCoordinateSystem.cs

QRCode.cs is the code that manages displaying the QR data on a Hologram inside

the application. The script is attached to a QRCode object. The QRCode object

is the 3D model that is attached to the physical QR code and serves as the visual

representation of the tracker. Having the QR tracking implemented, the next step

was to create a scene which contained the test bench model we built. Changing the

model itself was easy enough, but we needed to make sure we could be sure where

the model was placed every time the QR code was scanned. We used the origin

in the coordinate system as our basis, as covering the QR code with the physical

object would make the HoloLens unable to scan it properly. The result can be seen

in fig. 20. The QRCodesManager.cs script is responsible for the plugin itself and

does a check to make sure the device supports QR tracking as a feature. When

access has been granted and all the checks completed, the script is responsible for

handling the events through callback, starting and stopping the tracker, and main-

tains a local list of QR codes scanned. As mentioned before the actual detection

and tracking of the codes happens at the system level. QRCodesSetup.cs calls the

QRCodesManager to start the tracking functionality in the application. The setup

script is attached to a game object that acts like a trigger for the actual track-

ing to start. The QRCodesSetup is called in the QRCodesManager game object.

The spatial coordinate system script is where the interpretation of the real world

location happens and it also handles the translation into the spatial understanding

used by the HoloLens. There is a webcam built into the glasses, but this camera

can only be accessed by a single application at a time, so if we used this camera

for QR tracking the camera would be unavailable to other processes.

Prefabs is a very special type of game object in Unity. A prefab is a user defined

game object that is locked in a current state, but can be added to one or multiple

scenes where the parameters can be changed, but attached scripts and other pre-

requisites remain locked. A prefab is therefore the preferred type to be placed using

QR scanning. Aditionally a prefab is stored in the files system and can be added to

62

8 AUGMENTED REALITY

scenes, whereas normal game objects only exist in the scene. The prefab that is to

be displayed must contain the scripts QRcode.cs and SpatialGraphNodeTracker.cs

to be positioned relative to the physical QR code and tracked. These scripts must

be attached at the root of the prefab folder only.

8.2.3 Application user interface with POST and GET

For the user of the application, the user interface looks something like the setup

in fig. 21. It was the first design created before it was going to be combined with

the QR application.

Figure 21: Application GUI GET and POST buttons and output textbox

In fig. 21 the two buttons POST and GET sends requests to the server when the

buttons are pressed. The response from the server is written in the canvas as

shown in fig. 22.

The canvas also acts as an output for the error handler to be able to take on

different error messages. One example of an error we have used is if the IP to the

server does not match the one that the user of the application enters. If so there

will be thrown an ”invalid url” exception in the canvas. This also ensures that

the application does not crash every time there is a user error. One needs to add

the CanvasUtility.cs script for the output to be shown. CanvasUtility.cs is part of

Microsoft.MixedReality.Toolkit.Input.Utilities that allows the user to use the API

of HoloLens.

63

8 AUGMENTED REALITY

8.2.4 Activate and deactivate buttons

When the activate button shown in fig. 22 is pressed, a couple of events are

triggered. These are:

• Hide the part itself

• Display a sphere where the physical part is

• Hide the activate button

• Display the deactivate button of that specific part.

The deactivate button is displayed some distance from the actual part, to prohibit

unwanted triggering while actually working on that part. Additionally there are

some events called to let the server know what is going on. Each button has

the script Interactable.cs attached to itself, which has an Event property that

handles events triggered by the users interactions. The activate button uses the

PostRequest.cs script, accessible from the Canvas.

Figure 22: ARque system seen through HoloLens showing activation buttons for
part 2 and 3, holographic bolts and output on canvas after deactivating bolt 2

Both the PostRequest.cs and GetRequest.cs scripts are attached to the Canvas, and

accessed by the bolt objects. This is to provide better user experience, by getting

instant visual feedback that confirms the actions that are done in the application.

Unwanted events triggered by connection malfunctions with the server are likely

to happen if not. A POST request is used to send information to the server. In

this case, we want to send which part ID the server should write the next value to.

When a specific part is activated, a dim sphere is displayed around the physical

object, to indicate that this is the part to be torqued. No other holographic model

is rendered over the active part to avoid any visual disturbance while working.

After activating a specific part, we torque it, and the torque value is sent to the

64

8 AUGMENTED REALITY

server when saving it on the torque wrench. After torquing the selected part, we

press the deactivate button to see the new value.

The deactivate button reverses the four actions listed in the bullets above. To

get confirmation about the actions we have done, the Interaction Event uses the

GetRequest.cs script to acquire the desired information about the torqued part,

and display it in the Canvas fig. 22 in the application. The information is of course

also stored for each part separately in the database, and is easily checked in the

web browser GUI.

65

8 AUGMENTED REALITY

8.3 Further development

Scenes

During development we had trouble with the QR tracking breaking after loading

and reloading scenes, with the solution being to reset the HoloLens. We identified

the fault as a Null Reference Exeption, created by the instantiated instance of the

QR watcher. The QRCodesManager in the QR project is instantiated as a single-

ton, which should on paper be available to other processes across scenes. However

we did not manage to successfully recover the instance after scene changes, or

rewrite the scripts to avoid using a Singleton. Instead we focused on a workaround

that proved to have other benefits.

Figure 23: Scene hierarchy

Since we are using Unity as the main development tool for the AR application,

we made a setup inspired by game development. Our final setup shown in fig. 23

consists of a main scene where all the AR settings and features are placed. This

is to minimize the possibility of introducing duplicate players, which would make

the user unable to interact with holograms. In the same scene we have placed the

QR tracking capabilities, and the associated Prefabs.

66

8 AUGMENTED REALITY

When we load a new scene the scenes are always added in addition to the main

scene, so the player can exist in the same space at all times, with different models

shown in the room depending on what scene is loaded. During development we

wanted to make a foundation that is easily customisable. With the current setup

a developer can easily tailor the application to their needs, as long as the Main

Scene is kept intact. As long as the scene is added to the SceneChanger script

shown in Listing 9, and included in the build the user should be able to load and

unload the assets as they want.

1 public void ReturnHome ()

2 {

3 GetActive ();

4 if (SetActive)

5 {

6 ToggleActive ();

7 }

8 SceneManager.UnloadSceneAsync(scene);

9 }

10 public void ARqueScene ()

11 {

12 SceneManager.LoadSceneAsync("ARque_1 .3", LoadSceneMode.

Additive);

13 ToggleActive ();

14 }

Listing 9: Example from the scene changer

The example from Listing 9 shows two important functions for this setup to work.

The ToggleActive function is tied to the QR tracker, and only activates/deactivates

the visibility of it according to what scene is loaded. The ReturnHome function

is a global return to Main scene used in all scenes. If the QRtracker is active, it

is then disabled after before returning. This solution made us able to create an

environment with smooth transitions and good customisability in our opinion.

67

9 PROPOSED FUTURE WORK

9 Proposed future work
This project was aimed at implementing a specific scenario into an AR application

to see if the specific use case could be streamlined with the use of AR. As discussed

earlier the technology is rapidly advancing, and it can be difficult to identify real

world use cases for AR outside niche products and ”showcase” applications.

9.1 AR application

The use of QR codes in this project is mainly limited to object placement, but the

benefits of QR codes could be much bigger. Differentiating the codes and using

events and triggers in Unity would let the user choose scenes based on QR codes.

This means one could have multiple scenes with different models, and using known

QR codes to choose what model should appear. We decided to keep using the

instance of the QR tracking for stability, and relied on correct object placement

with the player as a reference for the other scenes without the use of QR codes.

When already using QR codes, we suggest looking into developing a web app to

store information about models, scenes and everything else. This primarily does

two things:

• The developer does not need to deploy to the HoloLens for testing.

• The scenes can easily be shared between devices.

• Secure connection

This can also make the general development a lot easier, and could make the

application easier to implement across device families such as phones, tablets and

VR headsets.

9.2 Data capture / torque wrench

The connection between the NorTronic wrench and the program receiving the data

has been unstable at times. There seems to be a problem in the program when it

comes to detecting the tool’s presence, and it requires restarting the application

to work. This should be rectified when moving forwards.

The data transfer between the HoloLens and the server should also be encrypted,

since the project focuses on demonstrating the functionality, security was not pri-

oritized. Also, a simple implementation is to instead of having a manually parse

68

9 PROPOSED FUTURE WORK

string function between the applications, JSON deserialize/serialize provided by

.NET should added. For the server a method that opens a XML file would be a

next step, so the operator can continue on a previous session.

For reliability there should be an option to create and store data captured from

the wrench locally on the HoloLens. This could be useful for creating a quick

LookUp Table (LUT) within the application for visualizing progress on what has

been worked on or not. The server handling the communication between the

wrench and the HoloLens should also get a database for managing the information.

At the same time the server / torque wrench application should be able to run

as a stand alone solution so the operator does not have to use the HoloLens for

documenting the work being done.

Another feature to add is the ability for the HoloLens to send the target torque

value along with the active part ID. The server can then store this and send it

down to the torque wrench. This ensures that the operator tightens the bolt to

the correct value, without needing to manually set the torque wrench setting. As

it is now the target value is set on the torque wrench, and is sent to the server.

69

10 Conclusion
The goal of our project was to develop a system that would enable communication

between a digital torque wrench and a HoloLens application. This was mainly to

ensure data storage of critical values and to minimize the need of bringing extra

documentation into industrial environments.

During the project we tested and created several ways of retrieving data from the

torque wrench. We also created different applications in the HoloLens to display

and update data, as well as a server to connect the two subsystems and distribute

information between the two.

We therefore conclude that the system we have developed fulfills the goal of the

assignment. We have created a solution that conveys information from the real

world to the virtual world in real time. The project has proved that there is

a possibility of creating environments combining real world operations with AR

technology, given the proper use of development resources. Using AR to ease

specific tasks is something that will be useful in the future, as long as the use is

seamless and does not interfere with the tasks themselves. We believe that AR

can make a strong contribution towards streamlining certain operations.

70

References
[1] Fortune Business Insights. Augmented reality market size, share and COVID-

19 analysis. 2022. url: https://www.fortunebusinessinsights.com/

augmented-reality-ar-market-102553.

[2] Ken Schwaber and Jeff Sutherland. The definitive guide to Scrum: the rules

of the game. White paper. Creative Commons, Nov. 2020.

[3] Brian. Vanderjack. The agile edge : managing projects effectively using agile

Scrum. First edition. Business Expert Press, 2015.

[4] Mark Michaelis. What is a server? TechTarget, 18 Aug 2021. url: https:

//www.techtarget.com/whatis/definition/server.

[5] Li Li and Wu Chou. “Design and describe REST API without violating REST:

a Petri net based approach”. In: 2011 IEEE international conference on web

services. Washington, DC, USA, 4-9 July 2011, pp. 508–515.

[6] Ioannis Giannopoulos, Damian Doroni-Dawes, Kyriakos Kourousis, and Mehdi

Yasaee. “Effects of bolt torque tightening on the strength and fatigue life of

airframe FRP Laminate Bolted Joints”. In: Composites Part B: Engineering

vol 125 (May 2017), pp. 19–26.

[7] Norbar Torque Tools Ltd. Operators manual 34399 Nortronic, pp. 11. Ver-

sion 3. 2014.

[8] Steven White, Kent Sharkey, David Coulter, Drew Batchelor, Mike Jacobs,

and Michael Satran. Named Pipes. 2021. url: https://docs.microsoft.

com/en-us/windows/win32/ipc/named-pipes.

[9] James S. Miller and Susann Ragsdale. The common language infrastructure

annotated standard. Addison-Wesley Professional, 2004.

[10] Carolien Kamphuis, Esther Barsom, Marlies Schijven, and Christoph Noor.

“Augmented reality in medical education?” In: Perspectives on medical ed-

ucation (Jan. 25, 2014), pp. 304–306.

[11] Ahmet Ejder, Isa Haskologglu, and Ali Kemal Düsgün. “Augmented reality

in military training and education”. In: Defense resources management in

the 21st century (Nov. 15, 2012), pp. 1–2.

[12] Andrew Bañasa and Jesper Glückstad. “Holo-GPC: holographic generalized

phase contrast”. In: ScienceDirect 392.1 (2017), pp. 190–195.

[13] Mark Michaelis. .Net Reunified: Microsoft’s Plans for .Net 5. 2019. url:

https://docs.microsoft.com/en- us/archive/msdn- magazine/

71

https://www.fortunebusinessinsights.com/augmented-reality-ar-market-102553
https://www.fortunebusinessinsights.com/augmented-reality-ar-market-102553
https://www.techtarget.com/whatis/definition/server
https://www.techtarget.com/whatis/definition/server
https://docs.microsoft.com/en-us/windows/win32/ipc/named-pipes
https://docs.microsoft.com/en-us/windows/win32/ipc/named-pipes
https://docs.microsoft.com/en-us/archive/msdn-magazine/2019/july/csharp-net-reunified-microsoft%5C%E2%80%99s-plans-for-net-5
https://docs.microsoft.com/en-us/archive/msdn-magazine/2019/july/csharp-net-reunified-microsoft%5C%E2%80%99s-plans-for-net-5

REFERENCES

2019/july/csharp- net- reunified- microsoft%5C%E2%80%99s-

plans-for-net-5.

[14] Steven White, David Coulter, Mike Jacobs, Maira Wenzel, Mauricio de los

Santos, Eliot Cowley, Michael Satran, and Alexander Koren. HttpClient.

2021. url: https://docs.microsoft.com/en- us/windows/uwp/

networking/httpclient.

[15] Qian Wen, Tyler Pride Milligan, Vinnie Tieto, and Christopher McClister. QR

code tracking Overview - mixed reality. May 2022. url: https://docs.

microsoft.com/en-us/windows/mixed-reality/develop/advanced-

concepts/qr-code-tracking-overview (visited on 04/28/2022).

72

https://docs.microsoft.com/en-us/archive/msdn-magazine/2019/july/csharp-net-reunified-microsoft%5C%E2%80%99s-plans-for-net-5
https://docs.microsoft.com/en-us/archive/msdn-magazine/2019/july/csharp-net-reunified-microsoft%5C%E2%80%99s-plans-for-net-5
https://docs.microsoft.com/en-us/archive/msdn-magazine/2019/july/csharp-net-reunified-microsoft%5C%E2%80%99s-plans-for-net-5
https://docs.microsoft.com/en-us/archive/msdn-magazine/2019/july/csharp-net-reunified-microsoft%5C%E2%80%99s-plans-for-net-5
https://docs.microsoft.com/en-us/windows/uwp/networking/httpclient
https://docs.microsoft.com/en-us/windows/uwp/networking/httpclient
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/advanced-concepts/qr-code-tracking-overview
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/advanced-concepts/qr-code-tracking-overview
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/advanced-concepts/qr-code-tracking-overview

11 APPENDICES

11 Appendices
11.1 Appendix 1: Technical Project Contribution

Julie

Technical contribution In the report When was it done?

I modified the workaround code

from Norbar to retrieve values from

the torque wrench and send them

to a server. This includes re-

searching interprocess communica-

tion and setting up a named pipes

client and test server.

Nortronic torque

wrench section, 7

Research and develop-

ment happen mainly in

the end of April and be-

ginning of May

Code projects when researching and

testing retrieval of values from the

torque wrench SQLite-database.

Nortronic torque

wrench section,

7.1

Week 9

Discussed and created system ar-

chitecture with Marie

System Architec-

ture section, 5

Throughout the project

as diagrams were up-

dated throughout the

project, but especially

week 10-12 and week

18-20.

73

11 APPENDICES

Marie

Technical contribution In the report When was it done?

I worked independently on creating

the server and the matching HTTP

test application.

Server section, 6,

and fig. 7 shows

the test applica-

tion.

Research started in

week 10, the project

code that is used for

the project was devel-

oped in beginning of

April and worked on

until mid of May.

Created system architecture in col-

laboration with Julie.

System Architec-

ture section 5

Throughout the

project. Mainly in week

10 and 19.

Researched the torque wrench API

and began on a C++ project

In 7, and the code

project is men-

tioned in a para-

graph in section

7.2.

Research began in week

8. The C++ project in

Week 14, when we got

the demo software from

Norbar.

Created 3D model of the test bench

in Solid Works.

Mentioned in sec-

tion 8.2.2.

week 14.

74

11 APPENDICES

Rikard

Technical contribution In the report When was it done?

I have been working on communica-

tion between HoloLens app to the

server, and have worked

server and created the scripts in Vi-

sual Studio and Unity for HoloLens

8.2.1 end April to mid May.

Have created Flowchart and re-

searched .NET framework and

setup.

Section 8.2 In February the frame-

work and the Flowchart

may.

Created canvas in HoloLens appli-

cation that can output text from

server, post and get buttons.

Section sec-

tion 8.2.3

In May it was imple-

mented in Unity Enviro-

ment .

Collaborated with Sondre to imple-

ment communication app with QR

app (Sondre/Sigurd).

section 8.2.2 May.

Sigurd

Technical contribution In the report When was it done?

Collaborated with Marie and Julie

on the preliminary work on the

torque wrench, with most of the

early time spent on the ASCII

communication, and data extrac-

tion from the SQLite database.

Switched to Unity development af-

ter Julie succesfully implemented

the current solution.

section 7 February-March.

Reasearch, debugging and imple-

mentation of AprilTags and QR

tracking together with Sondre.

section 8.2.2 Research happened in

February, development

in early March to the

end of April.

Designed the scene hierarchy and

set up the scene management and

contents in the final application.

section 8.3 May

75

11 APPENDICES

Sondre

Technical contribution In the report When was it done?

Researched and debugging on QR

tracking compilation together with

Sigurd.

section 8.2.2 March and April

Correct placement of holograms ac-

cording to the position of the QR

codes, creating a GUI in the appli-

cation

section 8.2.2 May

Activate and deactivate buttons

with functionality, and collabora-

tion on integrating server function-

ality with Rikard.

section 8.2.2 and

section 8.2.4

May

76

11 APPENDICES

11.2 Appendix 2: Epics

Epic 1 Torque wrench and data storage

Story As a user of the subsystem,
I want a wireless transfer from the torque wrench to a data
storage,
So it can be checked what torque value a part have been
tightened with.

Epic ID ARQ-182

Epic 2 HoloLens

Story As a user of the subsystem,
I want to see a virtual 3D model in the HoloLens overlap-
ping with the physical model and pick a part of the virtual
assembly,
So the selected part are ready to be torqued.

Epic-ID ARQ-176

Epic 3 Documentation and presentation

Story As a project member of ARque,
I want to have an overview of the documentation and
presentation,
So it is separated from the technical work.

Epic-ID ARQ-61

Epic 4 Sprint admin

Story As a project memeber of ARque,
I want to have an overview of all administrative task to be
done for each sprint,
So it is separated from the technical work, and I am sure
it gets done.

Epic-ID ARQ-111

77

11 APPENDICES

11.3 Appendix 3: Known issues

Table 12: List of known issues

1
Using different versions of Unity and the packages in Unity could lead to
severe errors in the editor.

2
In a stable build environment in Unity we recommend postponing updates
unless it is absolutely necessary.

3

The QR tracking on Hololens 2 happens on the OS level, so direct control
over the stored codes is not possible through Unity. To work around this, a
developer should set the program to ignore codes with a timestamp that is
xxx old.

4

Unstable connection between the Norbar torque wrench and the receiving
application. This problem affects the example software we were given, so it
might be a bug in the DLL provided by Norbar. It may also be a hardware
fault, a low level connection loss, or a bug in the Norbar application, but not
in the DLL itself.

5
The bolts are currently not implemented in an object oriented way, both with
regards to the HoloLens application and the server, so the application in its
current state is not particularily adaptable to other assemblies.

78

11 APPENDICES

11.4 Appendix 4: Gantt Diagram

Figure 24: Gantt diagram part 1

79

11 APPENDICES

Figure 25: Gantt diagram part 2

80

11 APPENDICES

Figure 26: Gantt diagram part 3

81

11 APPENDICES

11.5 Appendix 5: Test Requirements

Table 13: Test cards 2-8

82

11 APPENDICES

Table 14: Test cards 8-11

83

	I Abstract
	II Table of Contents
	III List of Figures
	IV List of Tables
	V List of Listings
	VI Acronyms
	VII Words and definitions
	Introduction
	Project description
	XR, MR and VR
	Measuring torque
	Team members

	Project Management
	Project tools
	Scrum and Agile process model
	Scrum Events
	Scrum Artifacts

	Practice of the methodology
	Meetings and core hours
	Jira for handling workflow and progress

	Project milestones and progress
	Project roles

	Risk Management
	Project management risks
	Technical risks
	Categorizing and scoring risks
	Risk analysis
	Risk reviews
	Non-identified risks

	Requirements
	Testing

	System Architecture
	System functions

	Server
	Communication
	Data storage
	Server architecture

	NorTronic torque wrench
	Data Retrieval and Communication
	Interprocess Communication using Named Pipes

	Augmented Reality
	HoloLens 2
	The ARque application
	Communication with the Server
	QR Tracking
	Application user interface with POST and GET
	Activate and deactivate buttons

	Further development

	Proposed future work
	AR application
	Data capture / torque wrench

	Conclusion
	References
	Appendices
	Appendix 1: Technical Project Contribution
	Appendix 2: Epics
	Appendix 3: Known issues
	Appendix 4: Gantt Diagram
	Appendix 5: Test Requirements

