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Abstract 
A moving bed biofilm (MBB) process was modelled in 

AQUASIM using the standard activated sludge model 1 

(ASM1) as a baseline. The model was controlled against 

experimental data from a  pilot Hybrid Vertical 

Anaerobic Biofilm (HyVAB) reactor installed at 

Knarrdalstrand wastewater treatment plant, Porsgrunn, 

Norway. High ammonium concentration removal from 

reject water was studied by applying different aeration 

schemes at the plant and the modelling tool. Results 

show that the standard ASM1 model was poor to fit 

experimental data. Simulation results evidenced missing 

biochemical mechanisms related to anaerobic 

ammonium oxidation (Anammox) and short cut 

nitrogen removal processes. However, the essential 

simulation outputs are biofilm thickness, substrates 

concentration variation, and biomass distribution, 

partially validated with experimental results. The 

model, therefore, helped to realise the nature of the 

bioprocess observed at the pilot reactor. 

  

Keywords:     Moving bed biofilm reactor, Reject water, 

Activated sludge model, Intermittent aeration, 

AQUASIM 

1 Introduction 

Reject water originated from digested sludge 

dewatering is usually rich in ammonium (Guo et al., 

2010). The untreated discharge causes many 

environmental and health hazards (i.e., eutrophication 

and blue baby syndrome) that strictly requires proper 

treatment. Mixing reject water into the mainstream 

wastewater line is a common practice (Sivalingam et al., 

2019). However, the higher nutrient load of reject water 

causes process instabilities. Reject water requires, 

therefore, an additional treatment before mixing with 

the mainstream treatment process. 

A pilot Hybrid Vertical Anaerobic Biofilm (HyVAB) 

reactor was installed in the reject water line (Figure 1). 

Intermittent aeration was implemented into the aerobic 

chamber to achieve simultaneous nitrification and 

denitrification. The intermittent aeration strategy has 

several advantages compared to the conventional 
activated sludge process; thus, less aeration energy 

requirement and a single rector setup are sufficient to 

achieve aerobic and anoxic treatments (Di Bella and 

Mannina, 2020).  

Authors have earlier investigated different 

intermittent aeration patterns to remove higher 

ammonium concentrations from Knarrdalstrand 

wastewater treatment plant (KWWTP) reject water 

(Sivalingam et al., 2020). However, experimentally 

examining various aeration schemes is tedious and 

resource-intensive. Therefore, a theoretical study was 

carried out by modelling and simulation. 

 

 

Figure 1. HyVAB pilot reactor integration at KWWTP. 

This research develops a moving bed biofilm (MBB) 

model to study the impact of intermittent aeration on the 

HyVAB pilot reactor, treating reject water. The standard 

activated sludge model 1 (ASM1) is applied to the MBB 

compartment in the HyVAB reactor modelled by 

AQUASIM software. We present the preliminary 

simulation results of the 1D multi-substrate and 

multispecies biofilm model to give an overview of the 

possible process parameters examination when 

integrating the MBB process and ASM1 model into 

AQUASIM.  

1.1 Activated Sludge Model 1 

The ASM1 was introduced in 1983 and has been 

extensively studied (Nelson and Sidhu, 2009); it was 

developed futher to investigate the activated sludge 

organic and nitrogen removal process (Van Loosdrecht 
et al., 2015). Only a few key elements are briefly 

presented here to ensure the proper reading flow of this 

article. 
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In ASM1, oxygen and nitrate are the primary electron 

acceptors. The organic matters are classified into 

biodegradable chemical oxygen demand (COD), non-

biodegradable COD, and active biomass. The active 

biomass has two subsets pertaining to heterotrophic and 

autotrophic organisms. The ASM1 model consists of 13 

state variables. Some of the essential variables are: 

Active heterotrophic and autotrophic biomass, 

alkalinity, ammonium, nitrate, soluble and 

biodegradable organics, and dissolved oxygen. 

The ASM1 consists nitrification and denitrification as 

conventional single-step reactions, converting ammonia 

to nitrate (nitrification) and nitrate to nitrogen gas 

(denitrification) (Henze et al., 2000). However the  

intermittent aeration facilitates conventional, short cut 

and anaerobic ammonium oxidative pathways to 

remove nitrogen from the wastewater (Miao et al., 2018) 

1.2 Moving Bed Biofilm Process 

Moving bed biofilm process is a Norwegian technology 

specially designed for nutrient removal from wastewater 

(Rusten et al., 1997). It is an attractive solution for high 

strength wastewater treatment (Sivalingam et al., 

2020b) due to stable biofilm growth into a protected 

surface area, which is more tolerant to the process 

variance. 

The biofilm consists of different layers of mixed 

culture microorganism clusters, referred to as attached 

growth. The diversity of microorganisms depends on 

nutrient and oxygen gradients along with the biofilm 

thickness (Wang et al., 2019). For instance, in an aerated 

system, the outer layer of the biofilm is rich in aerobic 

culture. In contrast, the inner layers favour anoxic 

growth, and the layers near to the substratum contain 

anaerobic cultures. The different cultures perform 

specific biochemical reactions, such as nitrification 

occurs at the outer layer and denitrification happens at 

the inner layers. This is a key benefit of using moving 

beds (bio carriers) in this pilot study, facilitating biofilm 

growth.  

2 Material and methods 

The HyVAB pilot reactor has two compartments, the 

anaerobic part is at the bottom, and the aerobic part is at 

the top. The purpose of the anaerobic part is to recover 

energy as biogas. The anaerobic effluent enters to the 

aerobic compartment to undergo a nutrient removal 

process, especially ammonium removal. The aerobic 

part contains BWT15® type carriers (Biowater 

Technology AS, Tønsberg, Norway). The sketch of the 

reactor is presented in Figure 2, adapted from 

(Sivalingam et al., 2020a).  

 

 

Figure 2. HyVAB reactor and matured moving bed bio 

carrier. 

2.1 Reactor operation and experiments 

Centrifuged effluent from the KWWTP anaerobic 

digestor was used as the reject water feed to the HyVAB 

reactor. The hydraulic retention time was one day, and 

the operational temperature was 30±2 °C. Two different 

intermittent aeration schemes were tested, i.e., (1) 5 min 

on/ 15 min off (20 min. Aeration cycle); (2) 3 min on/4 

min off (7 min aeration cycle). The 2nd aeration pattern 

achieved 50% ammonium removal. The complete 

experimental study is presented in (Sivalingam et al., 

2020a). The 2nd aeration scheme is used here to compare 

the simulation results. 

2.2 Model Development 

Since ammonium removal is our primary concern in 

reject water treatment, only the aerobic part of the pilot 

reactor (Biofilm compartment) and the ASM1 are 

modelled.  The activated sludge process was 

incorporated into the biofilm compartment (attached 

growth). 

The biofilm compartment in AQUASIM has been 

modified to comply with the biofilm part of the pilot 

reactor. The following assumptions are adapted from a 

similar study (Wanner and Morgenroth, 2004): (1) The 

type of reactor is confined; (2) The pore volume consists 

only a liquid phase and dissolved solids; (3) The biofilm 

matrix is in rigid form, and the volume can be changed 

only due to microbial activities; (4) The surface 

detachment velocity was assumed as a global value of 

0.5*UF, where UF is the velocity by which the biofilm 

surface displaced due to the production and decay of 

microbial mass in the biofilm; (5) Biofilm surface area 

is constant at 10 m2. The porosity rate was considered 

zero by assuming that the fraction of pore water volume 

of the biofilm is constant. 

Nitrification, denitrification, aeration, autotrophic 

inactivation, heterotrophic inactivation, and aerobic 

heterotrophic growth are the main processes taken into 

account in the biofilm compartment. The complete 

process kinetics and stoichiometry coefficients are 

adapted from (Henze et al., 2000).  

 

BWT15® 

Carrier 
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2.3 Intermittent Aeration implementation 

Two approaches were performed to implement the 

intermittent aeration into this model. Firstly the aeration 

process activated in the biofilm compartment when 

aeration is 'on' and deactivated when aeration is 'off'. 

After activation and deactivation of the aeration process, 

the model was simulated with appropriate on/off time 

via the start/continue option from the simulation tool. It 

was challenging to simulate the model for a long time, 

like 250 days for a concise aeration cycle.  

Therefore, in approach an aeration switch was 

introduced. First, a formula variable called 'AerSwitch' 

was created. The expression was defined as a sinusoidal 

function 207*(sin(500*t) ^2). This expression was 

determined by trial and error to match with 

experimentally calculated gas-liquid mass transfer 

coefficient (KLa). The desired 3 min on/off cycle was 

achieved by increasing the omega terms in the sine 

function (ω of sin ωt). Then 'AerSwitch' was assigned as 

the expression for KLa. 

Approach 2 provides an equal time interval for both 

the 'on' and 'off' cycle because of the sine function. 

Therefore, if we indeed need more accurate cycles, the 

'AerSwitch' function should be fine-tuned. However, in 

our experimental case, on/off cycle was 3 min on and 4 

min off. Therefore 3 min on/off was considered as a 

reasonable number for the simulations.  

The initial conditions and the input values derived 

from the experimental study (Sivalingam et al., 2020a) 

are presented in Tables 1 and 2. Other required 

parameters are adapted from (Rauch et al., 1999;  

Mannina et al., 2011; Reichert, 1998), listed in Table 3.  

Table 1. Initial conditions for the model. 

Variable Description 
Initial 

values 
Units 

𝐿𝑓 Biofilm 

thickness 

1e-005 
𝑚 

𝑋ℎ𝑒𝑡   Heterotrophs 0.1*rho 𝑚𝑔𝐿−1 

𝑋𝑎𝑢𝑡 Autotrophs 0.1*rho 𝑚𝑔𝐿−1 

𝐶𝐻𝐶𝑂3
 Alkalinity 1e-005 𝑚𝑔𝐿−1 

𝐶𝑁𝐻4
 Ammonium 1e-005 𝑚𝑔𝐿−1 

𝐶𝑁𝑂3
 Nitrate 1e-005 𝑚𝑔𝐿−1 

𝐶𝑆𝑂𝑟𝑔
 Soluble organics  1e-005 𝑚𝑔𝐿−1 

𝐶𝑂2
 Dissolved 

oxygen 

1e-005 𝑚𝑔𝐿−1 

Table 2. Model input parameters. 

Variable Description Inputs Units 

𝑄𝑖𝑛 In flow rate 0.065 𝑚3𝑑−1 

𝑋ℎ𝑒𝑡   Heterotrophs 0 𝑚𝑔𝐿−1 

𝑋𝑎𝑢𝑡 Autotrophs 0 𝑚𝑔𝐿−1 

𝐶𝐻𝐶𝑂3
 Alkalinity  1952 𝑚𝑔𝐿−1 

𝐶𝑁𝐻4
 Ammonium  450 𝑚𝑔𝐿−1 

𝐶𝑆𝑂𝑟𝑔
 Soluble organics 100 𝑚𝑔𝐿−1 

𝐶𝑂2
 Dissolved oxygen 0.5 𝑚𝑔𝐿−1 

3 Results and Discussion 

Figure 3 shows the biofilm propagation. On day 75, the 

biofilm thickness (Lf) reached steady-state at 1.16 mm. 

The biofilm contains both autotrophic (XAut) and 

heterotrophic (Xhet) biomass. The distribution along the 

biofilm matrix is presented in Figure 4. Heterotrophic 

growth dominates the biomass composition. At 

substratum, heterotrophic biomass concentration 

decreases with time, the opposite happens for 

autotrophic biomass concentration. This could be due to 

the diffusion limitation of substrates. 

 

Figure 3. Biofilm thickness progression. 

 

 

Figure 4. Autotrophic and heterotrophic bacterial 

distribution in the biofilm matrix on 50th and 250th days. 
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Table 3. Model parameters. 

Symbol Parameter description Values Units Reference 

𝐷𝑆𝑂2 Diffusion coefficient of oxygen 2.1 𝑐𝑚2𝑑−1 (Rauch et al., 1999) 

 

𝐷𝑆𝑂𝑟𝑔 Diffusion coefficient of organic matter 0.58 𝑐𝑚2𝑑−1 (Rauch et al., 1999) 

 

𝐷𝑆𝑁𝑂3
 

 

Diffusion coefficient of nitrate nitrogen 2 𝑐𝑚2𝑑−1 (Rauch et al., 1999) 

 

𝐷𝑆𝑁𝐻4
 

 

Diffusion coefficient of ammonium nitrogen 1.8 𝑐𝑚2𝑑−1 (Rauch et al., 1999) 

 

𝐷𝑆𝐻𝐶𝑂3 

 

Diffusion coefficient of alkalinity 2 𝑐𝑚2𝑑−1 (Reichert, 1998) 

𝐷𝑆𝑁2
 

 

Diffusion coefficient of nitrogen gas 1.9 𝑐𝑚2𝑑−1 (Reichert, 1998) 

𝐷𝑋 

 

Diffusion coefficient of biomass 1e-7 𝑐𝑚2𝑑−1 (Reichert, 1998) 

µ𝐻𝑒𝑡 and µ𝐴𝑛𝑜𝑥  Maximum growth rate heterotrophs  2.8 𝑑−1 (Mannina et al., 2011; 

Rauch et al., 1999) 

µ𝐴𝑢𝑡 Maximum growth rate autotrophs 

 

1.0 𝑑−1 (Mannina et al., 2011) 

𝑌ℎ𝑒𝑡 Heterotrophic yield coefficient 0.65 𝑚𝑔𝐶𝑂𝐷

𝑚𝑔𝐶𝑂𝐷
 

(Rauch et al., 1999) 

𝑌𝐴𝑢𝑡 Autotrophic yield coefficient 0.22 𝑚𝑔𝐶𝑂𝐷

𝑚𝑔𝑁𝐻4
 

(Mannina et al., 2011) 

𝑏ℎ𝑒𝑡 Heterotrophic decay rate 

 

0.1 𝑑−1 (Mannina et al., 2011) 

𝑏𝐴𝑢𝑡 Autotrophic decay rate 

 

0.06 𝑑−1 (Mannina et al., 2011) 

𝜂ℎ𝑒𝑡 Coefficient for anoxic heterotrophic growth 0.80 - (Mannina et al., 2011) 

𝑖𝑋𝐵𝑎𝑢𝑡 Ammonia fraction in biomass 0.08 𝑚𝑔𝑁

𝑚𝑔𝐶𝑂𝐷
 

(Mannina et al., 2011) 

𝑖𝑋𝑃𝑎𝑢𝑡 Ammonia fraction in particulate fraction 0.06 𝑚𝑔𝑁

𝑚𝑔𝐶𝑂𝐷
 

(Mannina et al., 2011) 

𝐾𝑁𝐻 Saturation coefficient for ammonia 1 𝑚𝑔𝐿−1 (Mannina et al., 2011) 

𝐾𝑆𝑂𝑟𝑔
 Saturation coefficient for organic matter 20 𝑚𝑔𝐿−1 (Mannina et al., 2011) 

𝐾𝑁𝑂3
 Saturation coefficient for nitrate 0.5 𝑚𝑔𝐿−1 (Mannina et al., 2011) 

𝐾𝑂2
 Saturation coefficient for oxygen 0.2 𝑚𝑔𝐿−1 (Mannina et al., 2011) 

𝐾𝑂2ℎ𝑒𝑡
 Saturation coefficient for oxygen 

heterotrophic organism 

0.2 𝑚𝑔𝐿−1 (Mannina et al., 2011) 

𝐾𝐿𝑎 Oxygen transfer coefficient 207 𝑑−1 Calculated 
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The XAut and Xhet biomass distribution in the biofilm 

bulk profiles are depicted in Figure 5. In the beginning, 

the Xhet reached 30 mg L-1, which is six times higher 

than XAut. However, after 50 days of operation, it 

levelled at 10 mg L-1, while the XAut remained stable at 

around 5 mg L-1. The lack of soluble organics is the 

reason for such a remarkable reduction in Xhet. 

 

 

 

 

 

 

Figure 5. Autotrophic and heterotrophic biomass 

distribution in the biofilm bulk. 

Figure 6 illustrates the dissolved oxygen (DO) 

concentration during the changes in aeration cycles. The 

on/off aeration scheme facilitates the nitrification and 

denitrification process, resulting in 13% ammonium 

removal. In addition, nitrogen gas evolution was 

observed. Small amounts of nitrate were also produced. 

All these nitrogen species concentration profiles are 

shown in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. On/off aeration scheme enlarged version. 

The DO concentration along the biofilm thickness 

was investigated when the aeration was switched 'on' 

(aerobic) and switched 'off' (anoxic). The simulation 

results are depicted in Figure 8. Oxygen concentration 

(along with biofilm thickness) is higher when aeration is 

"on" than where aeration is "off". The significant change 

in the aeration profile proves that DO concentration is 

the rate-limiting factor for the nitrogen removal process. 

However, the DO difference in those two conditions is 

less significant at the substratum, while a notable 

difference is in the outermost layer.  
 

 

 

 

 

 

Figure 7. Nitrogen species variation in the bulk liquid. 

 

 

 

Figure 8. DO concentration profiles along with the 

biofilm thickness at aerobic and anoxic conditions. 

Ammonium, nitrate, soluble organics, and nitrogen 

gas concentration changes along with the biofilm matrix 

at 250th day are presented in Figure 9. The ammonium, 

nitrate and soluble organic concentration trends have 

corresponded to each other; however, the gradient 

differs due to the different diffusion coefficients. The 

nitrogen gas concentration remains stable at 50 mg L-1 

throughout the entire biofilm matrix. It is reasonable 

because of very sparingly soluble behaviour. 
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4 Conclusion and Further 

Development 

The MBB model with activated sludge processes was 

successfully implemented in AQUASIM software. The 

simulation results illustrate that the model can study the 

impact of intermittent aeration on biofilm thickness, 

biomass and substrate distribution within the biofilm, 

biomass and substrates concentration in the bulk liquid. 

The simulation results showed lower ammonium 

removal efficiency (13%) than the experimentally 

achieved efficiency (50%) from the pilot reactor. This is 

because the ASM1 does not include the possible 

shortcut and anaerobic ammonium oxidative pathways 

that occur in the experiment. Therefore, the model 

requires further development by integrating all possible 

ammonium nitrogen removal pathways to match the 

experimental results.  
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