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Abstract— Understanding the nonlinearity in ultrasound
probes is important for tissue harmonic imaging, as 2nd
harmonic components transmitted from the probe may interfere
with harmonics from the tissue and degrade the image quality.
The aim of this paper was to identify the main sources of
nonlinearity in a medical ultrasound probe. This was done
by investigating the capacitive part of its electrical impedance
under high excitation voltages, at frequencies well below and
well above resonance. We found that when the excitation
voltage amplitude was increased from 10 V to 110 V, the free
capacitance increased by 50 %, while the clamped capacitance
remained unchanged. We also observed an increase with voltage
in the loss tangent under free conditions, but not under clamped
conditions. We conclude that the nonlinear electrical impedance
of the acoustic stack was associated with the mechanical motion
and piezoelectric coupling, while contributions from dielectric
nonlinearity was negligible.

I. INTRODUCTION

Tissue harmonic imaging is today the preferred modality
in cardiac ultrasound imaging, mainly due to its ability to
suppress reverberations [1]. This technique creates images
from echoes at the 2nd harmonic of the transmit frequency,
generated from nonlinear sound propagation in the tissue
[1]–[4]. Nonlinearity in the transmit stage of the ultrasound
scanner may interfere with the harmonics from the tissue,
diminishing the advantage of harmonic imaging and de-
grading the image quality. Such nonlinear effects normally
increase when the probe is driven by a high voltage, but
there are exceptions, e.g. diodes behave nonlinearly at low
voltages. The transmit chain of an ultrasound scanner can
be divided into two main parts: the electronic transmit
circuitry, comprising electrical excitation sources and tuning,
and the ultrasound transducer. The transducer consists of an
acoustic stack with a piezoelectric layer sandwiched between
acoustic matching and backing layers, with an acoustic lens
in front. In a previous study [5] we found that harmonics
in the transmit stage were predominantly generated in the
ultrasound transducer, i.e. in the acoustic stack. The present
study goes one step further to identify the main sources of
nonlinearity inside the stack. This is done by investigating
how the capacitive part of the transducer impedance changes
at high excitation voltages, measured at frequencies well
below and well above the transducer resonances.

This work was supported by the Research Council of Norway, project
number 237887.

Nonlinearities in the transducer may relate to its struc-
tural design, e.g. CMUTs have an intrinsic nonlinear re-
lation between membrane vibration and applied voltage.
For transducers using a bulk piezoelectric, this relation is
commonly assumed to be linear, but high excitation levels
may create nonlinearities also in these devices. In the passive
materials that constitute the backing and matching layers,
nonlinearities may occur at high strain and stress levels, seen
as a nonlinear stress-strain relation [6]. In the piezoelectric
material, a nonlinear response can be explained by nonlinear
mechanisms on the microscopic level. Several studies on
nonlinearity in the piezoelectric attempt to separate the
nonlinearity into 3 main sources using the corresponding
coefficients in the piezoelectric constitutive equations: elas-
tic, electric and piezoelectric [7]–[11]. Perrin et. al observed
analogies between the dielectric and piezoelectric nonlinear-
ities, and suggested they are controlled by the same 90°
domain wall translation mechanism [12]. Other researches
showed that nonlinearity in electric, elastic and piezoelectric
material coefficients have a common origin, identified as the
movement of the domain walls [8], [13], [14]. However,
distinguishing the nonlinearity into elastic, dielectric and
piezoelectric is challenging, and will depend on the chosen
form of the piezoelectric constitutive equations.

The aim of this paper was to investigate and identify mech-
anisms contributing to nonlinearity in the acoustic stack. This
was done by measuring the capacitance at frequencies well
below and above the resonances, and study how they varied
with excitation voltage.

II. METHOD

A. Theory

A common lumped circuit model for an electro-acoustic
transducer is the Butterworth Van-Dyke (BVD) model [15]
shown in Fig. 1. The right branch of the circuit (Cm, Rm, Lm)
is the motional branch, with electrical equivalents of the me-
chanical elements, while C0 is the clamped capacitance. At
low frequencies, the capacitor Cm dominates the impedance
in the motional branch, and the impedance is capacitive with
the free capacitance C f =C0+Cm. At frequencies well above
resonance, the mechanical inductor Lm blocks the mechanical
branch and the impedance will also be capacitive, now with
clamped capacitance C0. The physical interpretation of this
is that the transducer is free to move at low frequencies,
while inertia blocks movements at high frequencies.
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Fig. 1. Butterworth Van-Dyke (BVD) model for the electro-acoustic
transducer. The free capacitance C f measured at low frequency is the sum
of the clamped capacitance C0 and the capacitance in the motional branch
Cm. At high frequency, the impedance approaches C0.

The free and clamped capacitances of a transducer can
be approximated from the imaginary part of the transducer
impedance measured at frequencies well below and well
above the main resonance. C0 is proportional to the clamped
electrical permittivity, while Cm depends on the piezoelectric
constant and mechanical stiffness. Characterization of these
capacitances can provide insight into the mechanisms behind
the nonlinearity in the acoustic stack: Measurements on how
the free C f and clamped C0 capacitances vary as function of
excitation voltage may make it possible to identify the main
nonlinear mechanisms behind the transmitted 2nd harmonics.

B. Nonlinear electric impedance of the acoustic stack

When a transducer is driven at frequency f0, a nonlinear
impedance can lead to harmonic terms in both voltage and
current. In this case, the total current I through and voltage V
over the acoustic stack will contain both the driving angular
frequency ω0 = 2π f0 and its harmonics,

V =
∞

∑
n=0

V̂ne jnω0t I =
∞

∑
n=0

Îne jnω0t , (1)

where n is an integer number representing the harmonics, and
V̂n and În are complex numbers giving amplitude and phase
of the harmonic terms in voltage and current. With harmonic
terms, the definition of a frequency dependent impedance
Z(ω) is not uniquely defined. We have chosen to look at
the ratio of voltage V (ω) to current I(ω) at the fundamental
frequency ω0, and define the electrical impedance Z(ω0) at
driving angular frequency ω0 by

Z(ω0) =
V̂1(ω0)

Î1(ω0)
. (2)

The capacitance C(ω0)at frequency ω0 is calculated from the
imaginary part of the impedance Im{Z0(ω0)} as

C(ω0) =−
Im{Z0(ω0)}

ω0
. (3)

C. Measurement setup

The measurement setup for measuring impedance is illus-
trated in Fig. 2. The transducer investigated in this this paper
was one element in a 1D array designed for adult cardiac
imaging, having a bandwidth from 1.4 to 4.6 MHz.
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Fig. 2. Schematic illustration of the experimental setup for measuring
electrical impedance at different voltage levels. The voltage VS over and
current I through the stack were calculated by measuring V1 and VR in the
schematic. The impedances were obtained by taking the ratio of voltage
to current at the center frequency of the driving voltage pulse, and the
capacitances were calculated from the imaginary part of the impedances.

The transducer element, referred to as the acoustic stack,
was driven by a 14-bit arbitrary waveform generator (Pi-
coScope 5244B, Pico Technology) connected to a power
amplifier (E&I 2100L, Electronics& Innovation, Ltd). The
amplifier was connected directly to the acoustic stack, with-
out any electric tuning network. The current through the stack
was found by adding a resistor in series and measuring the
voltage VR over this resistor. The resistor value 10 Ω was
much smaller than the stack impedance, so grounding con-
ditions were not violated. The power amplifier was designed
to work with a 50 Ω load, and its output voltage depends
on the load impedance. The impedance of the acoustic stack
varies with frequency, causing the output voltage from the
amplifier to change with frequency for a given input voltage.
This was compensated for by recording the voltage over the
stack by the oscilloscope (PicoScope 5244B) and using this
as feedback to the generator, maintaining a constant voltage
over the stack when measuring at low and high frequencies.

The acoustic stack was driven by 5-cycle Gaussian
enveloped sine-wave bursts with center frequency either
fLF =0.1 MHz or fHF =10 MHz. Voltage v(t) and current
i(t) over the acoustic stack were measured as function of
time t, and transformed into the frequency domain using
fast Fourier transform (FFT) without windowing. At each
frequency, the impedance was calculated according to (2).
The measurements were repeated for 10 MHz pulses having
the same pulse duration as the 0.1 MHz pulses, enclosed in
the same Gaussian envelope, i.e. 500-cycle pulses. This was
done to compare pulses of the same total pulse energy, in
contrast to pulses with the same number of cycles.

Measurements were done first at the low frequency
0.1 MHz then at the high frequency 10 MHz. At each fre-
quency, the voltage amplitude was increased from 10 V
to 110 V. The measurement procedure was repeated with
the acoustic stack replaced by a passive load of similar
electrical impedance, implemented as the BVD-model in



Fig. 1. Component values used in the circuit were C0=120 pF,
Cm=50 pF, Rm=470 Ω, and Lm=60 µH. The impedance curves
of the stack and the passive load were also measured using
a vector network analyzer (R&S ZVL, Rohde & Schwarz,
Germany) to verify our setup against a reference instrument.

III. RESULTS

A. Capacitances

Fig. 3 shows how the capacitance depends on excitation
voltage at frequencies fLF =0.1 MHz and fHF =10 MHz. At
the low frequency, 0.1 MHz, the capacitance increased from
153 pF to 224 pF, approximately 50 %, when the excitation
voltage amplitude was increased from 10 V to 110 V. No
such variation was seen for the capacitance at 10 MHz,
showing less than 2 % variation over the voltage range.
Repeating the measurements with high frequency pulses
scaled to the same pulse duration as the low frequency pulses
gave CHF =(90±2) pF at fHF =10 MHz, with variation less
than 3 % over the voltage range.

When the measurements were repeated on the pas-
sive load in Fig. 1, the capacitance was measured to
CLF =(172.0±0.2) pF at 0.1 MHz and CHF =(119±2) pF at
10 MHz. The variation over the voltage range was less than
2 % at both frequencies.

B. Loss tangent

The real and imaginary part of the measured impedances
Z(ω0) at frequencies fLF =0.1 MHz and fHF =10 MHz are
plotted Fig. 5, showing how the loss tangent depends on
excitation voltage. At the lowest voltage, VS=10 V, the
impedances at both the low and high frequency show a
phase lower than −83°, i.e. the impedances are almost purely
capacitive. As the driving voltage amplitude increases, both
the imaginary and the real part of the impedance increase at
the low frequency. This corresponds to an increase in loss
tangent. In contrast to this, at the high frequency, the loss
tangent did not change with increasing voltage.

IV. DISCUSSION

A. Interpretation of capacitance measurements

The capacitance measurements in Fig. 3 indicate that the
free capacitance C f increases with excitation voltage, while
no such dependence is seen in the clamped capacitance C0.
The clamped capacitance C0 corresponds to no motion, and
is given by the clamped electrical permittivity only. The
free capacitance C f includes additional contributions from
mechanical motion and piezoelectric coupling. The result
is interpreted as that the observed nonlinearity is linked to
mechanical motion and piezoelectric coupling, while nonlin-
ear electrical permittivity is negligible in comparison. The
plots of Z(ω0) in the complex plane (Fig. 5) display another
manifestation of nonlinearity seen under free conditions, but
not under clamped conditions: The increase in loss tangent
as driving voltage increases. This corresponds to the results
of Albareda et al. who observed a similar variation for the
motional impedance of a piezoelectric near resonance [16].

Fig. 3. Variation in acoustic stack capacitance as function of driving voltage
amplitude, measured at low (0.1 MHz) and high (10 MHz) frequency. As
the voltage increases, the stack capacitance measured at low frequency (C f )
increase while the capacitance at high frequency (C0) remains unchanged.

Fig. 4. Schematic (not to scale) illustration of excitation pulses and their
spectra. With the same number of periods, 5 cycles, the low frequency pulse
(red) is longer and contains more energy than the high frequency pulse
(green). Alternatively, the 5-cycle low frequency pulse can be compared to
a high frequency pulse with the same duration and envelope (blue).



Fig. 5. Real and imaginary parts of the impedance in the acoustic stack,
measured at low (0.1 MHz) and high (10 MHz) frequencies.

B. Parasitic capacitances

Parasitic capacitances in e.g. cables and connections may
influence the results. As long as these parasitic capacitances
are independent of voltage, they will cause a constant shift
of the curves in Fig. 3, and will not alter the conclusions of
this study. This is further confirmed by the results when the
acoustic stack was replaced by the passive load in Fig. 1.
These measurements showed negligible variation in the ca-
pacitances when the voltage was changed, demonstrating that
the variation with voltage is due to the acoustic stack and
not other parts of the system.

C. Effect of pulse energy

Comparing pulses of different frequencies is not unique.
When the same number of cycles is used, the relative band-
widths are equal, but the energy in the low frequency pulse
is larger than in the high frequency pulse. The phenomenon
is illustrated in Fig. 4, comparing two pulses at center
frequency 10 MHz with one at 0.1 MHz. One 10 MHz pulse
has the same number of cycles as the 0.1 MHz pulse, the
other has the same pulse duration and envelope.

If nonlinearities depend on energy and not on amplitude,
this may explain a stronger nonlinearity at low frequency
where a higher pulse energy was used. This was tested
by repeating the experiment with the high frequency pulses
having the same pulse duration and envelope, i.e. the same
energy, as the low frequency pulses. The result of this exper-
iment was identical to the results for the shorter pulses, both
giving less than 3 % variation over the voltage range tested.
This indicates that the observed nonlinear effect depends on
voltage amplitude and not on pulse energy.

V. CONCLUSION

Nonlinearities in clinical ultrasound probe was investi-
gated by comparing the capacitance at two frequencies. The

low frequency, well below resonance, corresponds to free
conditions while the high frequency, well above resonance,
corresponds to clamped conditions. When the driving voltage
amplitude was increased from 10 V to 110 V, we observed
a 50 % increase in the free capacitance, while no change in
clamped capacitance was seen over the same voltage range.
The loss tangent was found to increase with driving voltage
under free conditions, while it was independent of voltage
under clamped conditions.

We conclude that nonlinearity in a piezoelectric transducer
is connected to mechanical motion and piezoelectric cou-
pling, while the nonlinearity from dielectric properties is
negligible.
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