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Summary:  

The new sensors, accelerometers, and ultrasonic sensors were installed in the existing 

multimodal sensor suite used in the multiphase flow in the process hall in Campus 

Porsgrunn of USN. Multiphase flow experiments were conducted, and measurements 

were recorded using different data acquisition systems. 

The collected measurements were preprocessed and analyzed to extract the useful features 

from the raw signals. To classify the flow regimes, the Classification Learner application 

was used, and the results from different models were compared based on their accuracies. 

The feature selection technique was implemented to evaluate the importance of each 

feature. Then, the models were trained with the new features. As a result, the accuracy of 

the Ensemble model with Bagged Trees was increased from 94.2 to 97.1%. The Random 

Forest and Decision Trees techniques were also implemented to classify the flow regimes. 

The flow rates of oil, water, and gas were successfully predicted using the Regression 

Learner tool. However, the measurements from ultrasonic sensors were not satisfactory 

due to technical problems related to wedge. In this case, the new wedge was designed and 

manufactured for the experiment but was unable to implement and collect measurements 

for this work due to time constraints. 
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1 Introduction 
Over the past few decades, the proper measurement of multiphase flow has been evident and 

subjected to a lot of research to better understand the different parameters of multiphase flows. 

Many traditional devices have been in use for flow measurement for centuries, but with the 

advancement of technology each day, more efficient systems are being sought. However, the 

prediction of multiphase flows is one of the most difficult tasks because of the complexity 

between the flow geometry and phase changes. 

It is vital that any industry measures different parameters and monitors the results properly to 

ensure smooth operation. In particular, in the oil and gas industry, an accurate measurement of 

flow rate and flow type plays a huge role in improving production. The fluids are extracted 

from wells, which are later supplied and processed to obtain the final product. The raw fluid 

contains a mixture of oil, gas, water, sand, and other additives that are present in the well. It is 

necessary to know the content of each fluid at different stages of production. Understanding 

the behavior of distinct flows helps improve the overall efficiency of the system by controlling 

the production more effectively. So, the accurate measurement of different flows plays a crucial 

role in determining the performance of the system. Thus, it is important to have a better 

understanding of the multiphase flow to optimize the safety, productivity, and reliability of the 

system [1]. 

In the past, the study of multiphase flow was more challenging due to measurement uncertainty, 

and time-consuming techniques. In the traditional measurement procedure, different phases 

need to be separated and processed separately. During the testing process, a plant must be 

partially or completely shut down to monitor the flow parameters in multiphase flows. Thus, 

the traditional methods of phase separation for multiphase flow measurement are complex and 

limited in different aspects as compared to modern techniques. In recent years, the development 

and advancement of technologies have enabled accurate measurement and monitoring of the 

parameters of multiphase flow without separating each phase. At present, researchers have 

been working on the development of new methodologies and are using modern software and 

tools to measure multiphase flow. Of all the methods, machine learning has proved to be the 

most promising for multiphase flow measurement. As machine learning continues to advance, 

its abilities for handling large and complex datasets have increased significantly. In machine 

learning, large as well as small amounts of information can be processed, and both produce 

impressive results. Over recent years, there have been numerous attempts at using machine 

learning techniques for multiphase flow estimation, like the prediction of flow regime with 

long short-term memory (LSTM) and recurrent neural network (RNN) for two-phase flow, and 

similar information can be found in these documents [2]– [4]. The estimation of multiphase 

flow parameters can be accomplished using both supervised and unsupervised methods of 

learning. Flow regimes are already known in the supervised learning process but unknown in 

the unsupervised one. 

In this work, the new accelerometers and ultrasonic sensors will be installed in the existing 

multiphase test rig in the process hall in Campus Porsgrunn of USN. The data will be collected 

by running the experiments. After that, the collected data will be preprocessed and analyzed 

using machine learning techniques. This thesis aims to utilize these data to estimate different 

parameters of multiphase flow, mainly focused on the estimation of flow rates and flow 

regimes. 
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1.1 Report Structure and Outline 

In this experimental setup, the new sensors, such as ultrasonic sensors, accelerometers, and 

data acquisition systems, are installed in the existing multimodal sensor suite used in the 

multiphase flow rig. 

Chapter 2 

This chapter presents information about the fundamentals and background of this thesis. 

Firstly, it gives an overview of the system and describes the different sensors that are used for 

this experiment. It also provides information related to past work on multiphase flows. Basic 

concepts of different flow regimes are explained and a short discussion on different machine 

learning algorithms is given. 

Chapter 3 

Experimental planning of measurement using the multiphase test rig is presented in this 

chapter. It also explained the experimental setup and modifications made to the existing system 

on the test rig. The procedures to run the experiments and collect the data are described. 

Chapter 4 

In chapter 4, the most important parts of the thesis, i.e., data preprocessing and exploratory data 

analysis on the dataset, are explained. The feature extraction techniques are explained in this 

chapter. 

Chapter 5 

The results are presented and compared in this chapter.  

Chapter 6 

The conclusion chapter summarises the results related to flow regimes and flow rates from 

different machine learning approaches. 
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2 Background 
The background chapter provides information regarding the fundamentals of this thesis and 

briefly describes past work performed in multiphase flow, sensors, different types of flow 

regimes, and machine learning techniques. In this work, the different parameters related to 

multiphase flow are predicted using machine learning (ML) techniques. Figure 1 shows the 

overview of the system for predicting the multiphase flow rates and flow regimes. 

 

Figure 1 Overview of the system for predicting the multiphase flow rates and flow regimes. 

2.1 Previous works 

Over the past three decades, the multiphase flow rig at the University of South-Eastern Norway, 

Porsgrunn, has been conducting different research projects related to multiphase flow. It has 

been a great platform for researchers and students to perform different experimental studies 

and research. USN has established and improved this research center through continuous 

collaboration with several companies and the Norwegian Research Council. Over the period, 

the test rig has been modified and upgraded in accordance with the objectives of the research. 

In recent years, the companies Equinor, and SINTEF, which are external partners for the thesis, 

have been working together with USN to conduct research studies regarding multiphase flows 

in the test rig. 

In a previous study at USN, "Machine Learning Algorithms in Multiphase Flow Regime 

Identification using Electrical Capacitance Tomography" by Rafael [2], a machine learning 

technique, particularly Convolutional Neural Networks (CNN), was implemented for 

identifying flow regimes. Images obtained from electric capacitance tomography (ECT) that 

contain flow dynamics, as well as the specific nature of the fluids, were processed through 

CNN using image recognition techniques and further optimized using a genetic algorithm. The 

accuracy of classification was compared among different compositions of pixel strips, and the 

performance of the model was concluded for different flow regimes. 

Aleksander T. P. [3] implemented Long Short Time Memory (LSTM) of deep learning 

algorithms for evaluating the void fraction, and water-cut to identify the flow regimes. In this 

study, the combinations of ECT, EIT, GRD, and PDT were processed and used to classify the 

flow regimes. The neural network parameters need to be adjusted according to the specific 
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experiment data to extract useful information from the data. Eigenvalues and preprocessing 

techniques improve the accuracy of flow identification. It also concluded that the accuracy of 

the model was improved by increasing the acquisition rate of the sensor. 

2.2 Multiphase flow 

In this work, a mixture of oil, gas, and water will be considered, and different parameters related 

to multiphase flows are estimated based on machine learning techniques. As part of this project, 

USN plans to upgrade the existing multimodal sensor suite with new sensors and data 

acquisition systems in the process hall in Campus Porsgrunn. The experimental setup with 

accelerometers and ultrasonic sensors, along with data acquisition systems, will be established 

to conduct experiments related to multiphase flows. The main goal of this research project is 

to identify different parameters that are related to multiphase flow in the horizontal pipe from 

a new experimental dataset of ultrasonic and accelerometer measurements. 

Multiphase flow is a complicated phenomenon that occurs when two or more than two phases 

flow at the same time. This phenomenon results in the formation of different flow regimes or 

flow patterns. Flow regimes are mostly determined by fluid properties and flow conditions. In 

this work, flow regimes occur from the mixing of multiple fluids under different flowing 

conditions. The flow pattern is influenced by various factors like fluid properties, flow velocity, 

mixture ratio, pipe geometry, and its orientation in the system. Because of its dependency on 

several flow characteristics, multiphase flow is difficult to understand and predict. Figure 2 

shows the flow regime map of the two-phase flow. Any change in the flow conditions and fluid 

properties results in a new flow regime map. As the flow rates of the fluids are changed, the 

flow regime changes from one type to another, as shown in the figure below. 

 

 

Figure 2 Flow regime map of two-phase flow [4]. 
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This study will mainly focus on estimating the flow rates and flow regimes such as slug, wavy, 

annular, plug, and annular. Figure 2-3 shows the different flow regimes in the horizontal pipe 

with different flow rates of liquids and gases. Stratified flow is a simple flow where the liquid 

and gas phases are completely separated. The gas-phase will be at the top and the liquid phase 

will be at the bottom of the pipe. This smooth flow type is usually observed at very low liquid 

and gas velocities. If the gas flow rate is slightly increased without changing the liquid flow 

rate, it will form small waves at the interface of liquid and gas. As the gas flow rate is further 

increased, waves will form with higher amplitudes. This flow is called the wavy flow regime. 

Gas velocity within the channel determines the amplitude of the wave. If the flow rate of the 

gas is gradually increased, the flow changes from wavy flow to annular flow. In this regime, 

the flow is not as smooth as compared to the stratified flow. In annular flow, gas flowing at 

high velocity will form thin liquid films on the walls of the pipe where the gas and droplets are 

in the center of the pipe [5]. 

 

Figure 3 Plug, slug, annular, stratified, and wavy flow regimes in the horizontal pipe[2]. 

Plug and slug have slightly different characteristics as compared to stratified, wavy, and 

annular flow. These flow regimes occur at higher liquid velocities and lower gas velocities. In 

both flow regimes, there will be fluctuations in liquid flow and instant changes in pressure that 

completely fill the pipe with liquid. Plugs and slugs appear similar during the experiments, but 

their fluid properties are quite different. 

When the velocity of the liquid is high, and the gas is low, small bubbles combine to form a 

big bubble that separates the liquid at the top of the pipe. whereas there will be a continuous 

liquid phase at the bottom of the pipe. This phenomenon is known as "plug flow." If the gas 

flow is increased, it shifts from plug to slug flow. During this flow regime, the liquid phases at 

the top of the pipe are separated by elongated bubbles followed by small gas bubbles [6]. 

Figures (a) and (b) of 3 show the main difference between plug and slug flow. 
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2.3 Multiphase flow metering  

Multiphase flow meters (MPFMs) are devices that can measure the flow rates of individual 

phases in a multiphase flow. These meters are commonly used by the oil and gas industry, 

where they need to continuously monitor each phase, starting from the well all the way to the 

final oil supply pipelines. 

The conventional way of measuring the multiphase flow is single-phase metering, where each 

of the states is separated for measurement. It requires more processing and needs a complete 

separation before the measurement. These traditional metering systems require more time and 

cost, eventually leading to lower production of the plant. To minimize the limitations of these 

traditional methodologies, many MPFMs have been developed over recent years. There are a 

lot of new advanced technologies and MPFMs that can measure the flow rates of each phase 

with any separation [1]. However, selecting an appropriate multiphase flow meter is crucial for 

optimizing production. So, the MPFMs must be selected based on their applications and 

requirements for measurement. 

Proper installation and regular calibration are also necessary to increase the accuracy of the 

system. This helps to reduce the measurement uncertainties to some extent. Although MPFM 

systems are capable of continuous metering, they have some limitations that need to be 

addressed before installing them in the plant.   

2.4 Sensors 

2.4.1 Accelerometer 

An accelerometer is a device that can measure the acceleration or vibration within any structure 

when it is attached to it. Its unit is G, which corresponds to the acceleration due to gravity of 

9.81 m/s. It is most often used in systems where vibration levels and related parameters need 

to be monitored. 

There are different types of accelerometers available on the market depending on their 

sensitivity range and applications. Capacitive accelerometers, piezoelectric accelerometers, 

and piezoresistive accelerometers are the types of sensors that are commonly used. The 

piezoelectric accelerometer is the most widely used in industrial applications to measure 

vibration and shock. It is a spring-mass system that consists of a sensor base, a piezoelectric 

element, and a sensor mass [7]. The piezoelectric element is located between the sensor mass 

and the sensor base. In the test section, the acceleration or change in motion causes forces in 

the piezoelectric element, which produces an electric charge proportional to vibration velocity. 

It has become more popular because of its high sensitivity rating, wide frequency response, 

and ease of installation. 

In this work, two accelerometers, Acc-810367 and Acc-810366, are mounted on the upper part 

of the pipe to measure the vibration caused by multiphase flow [8]. Acc-810367 is placed just 

before the transparent section of the test rig, and Acc-810366 is just before the bend of the pipe. 

The measured data is recorded with the help of the TWave T8 vibration analyzer system [9]. 

Table 1 describes the specifications of the accelerometer sensor. 
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Table 1 Description of the used sensor. 

Name  Acc-810367& Acc-810366 

Manufacturer TWave 

Description Standard IEPE vibration sensor with M12-4 

Model 1001005405 

Serial number 810367 

Input unit Acceleration (G) 

Sensor type Dynamic 

Sensitivity 0.1 V/(G) 

Offset 0 

Frequency range Max. 30k Hz 

Limits -80 to +80 G 

 

2.4.2 Ultrasonic sensor 

The ultrasonic sensor is a type of sensor that uses sound waves to measure distances. The 

ultrasonic sensor transmits sound waves with frequencies above 20 kHz, which are too high 

for human ears to hear. The ultrasonic transducer is mainly used for object detection and 

distance calculation based on the propagation of sound waves. For object detection and distance 

calculation, the desired sound waves are produced based on the calculation [10]. The nature of 

the material, which can be solid, liquid, or gas, can be determined by observing how sound 

waves travel to and from the object. Solids, liquids, and gases have different reactions to sound 

waves; therefore, any changes within the target object can be observed from changes in the 

sound wave. By observing the characteristics of sound waves, received echo, and time of flight, 

several parameters, such as distance, liquid level, object detection, flowline parameters, etc. 

can be measured. 

Nowadays, an ultrasonic sensor has gained more popularity due to its wide range of 

applications. It is also known as a piezoelectric transducer. It converts electrical signals into 

mechanical signals and vice versa. It consists of a transmitter and a receiver. In this method, 

the transducer emits an ultrasonic wave which is passed through a target section and reflected 

from the object. The transmitter and receiver can either be on the same transducer or on a 

separate transducer, depending on the application. For that reason, a transducer can be 

classified into two types: monostatic and bistatic. Figure 4 shows a monostatic transducer with 

a combined transmitter and receiver and a bistatic transducer with a separate transmitter and 

receiver. 
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Figure 4 Monostatic and bistatic transducer [10]. 

 

The distance depends on the velocity of sound waves and total time. It can be calculated with 

this formula.  

 
𝑑 =  

𝑐∆𝑡

2
 

(2.1) 

 

 

Where d is the distance, c is the velocity of waves and t is the time between the emitted and 

received signal.  

Similarly, the relationship between wavelength, velocity and frequency can be determined with 

the equation below. 

 
𝑊𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ(𝜆) =  

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑣)

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑓)
 

(2.1) 

 

In ultrasonic testing, the pitch-catch and pulse-echo methods have been popular ways of 

observing the test piece. When the pitch-catch method is implemented, one acts as a transmitter 

that transmits signals, and the other acts as a receiver to receive the reflected signal. In contrast, 

pulse-echo can transmit and receive using the same transducer. Although both methods work 

almost the same, the main difference is in the transducer used to receive the signals. 

The performance of the ultrasonic sensor depends on different factors such as transmission 

medium, acoustic impedance, ambient conditions, and so on. Table 2 shows the variation of 

acoustic velocity, density, and acoustic impedance in a different medium. 
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Table 2 Variations of acoustic velocity, density, and acoustic impedance on different mediums [10].  

Medium Acoustic 

velocity(ms-1) 

Density (kgm-3) Acoustic Impedance 

(kgm-2s-1×106) 

Air  330 1.3 0.00429 

Water 1450 1000 1.45 

Aluminum 6320 2700 17.1 

Iron 5900 7700 45.43 

Steel 5900 7800 46.02 

Skin 1540 1109 1.6 

In this work, the Panametrics-NDT ultrasonic transducers are used to perform the ultrasonic 

test. This transducer is a contact type that emits a longitudinal wave in the direction of the test 

piece. Figure 5 shows the ultrasonic sensor with a frequency range of 5 MHz, A, and B 

represent the diameter and height of the sensor. It is suitable for testing specimens that need a 

better signal-to-noise ratio (SNR) [10]. Here, the transducer transmits the pulse through the 

pipe containing a mixture of air, water, and oil. At first, the signal travels through the outer 

diameter of the pipe and then into a mixture of fluids. After that, the signal is reflected from 

the upper diameter of the pipe and received by the transducer. When different fluids at different 

flow rates flow through a channel, sound waves behave differently, and it is possible to 

determine the flow pattern by observing the pattern of the sound waves. 

 

 

Figure 5 Ultrasonic sensor with A and B representing diameter and height of sensor. 
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2.5 Machine learning 

ML is part of AI that developed the model for the analysis of data. The machine learning models 

are capable of learning from input data and have the ability to recognize patterns within the 

provided data sets. It makes a prediction based on the recognized patterns. The most common 

types of machine learning models are supervised and unsupervised learning models. In 

supervised machine learning techniques, the input and output variables are well known before 

making the prediction. In the end, the outcome of the model is compared with the known output 

to know the accuracy of the model. However, the unsupervised model makes a prediction based 

on the input data only. Figure 6 shows the different types of machine learning techniques.  

 

Figure 6 Supervised and unsupervised machine learning algorithms [11]. 

In this work, supervised machine learning techniques are used to estimate the multiphase flow 

parameters. The main aims are to classify the flow regimes and predict the flow rates of 

different fluids. The classification of flow types is performed in MATLAB using decision trees, 

random forests, and different models present in the classification learner application. In the 

regression part, the flow rates of the fluids are predicted using the regression learner tool 

present in the MATLAB software. These models are explained below. 

2.5.1 Decision tree 

A decision tree is one of the supervised learning methods whose structure is similar to a tree. 

As the name implies, it is made up of leaves, branches, nodes, and roots, each with its own 

importance and function in making the decision. It can be used both for classification and 

regression problems, but most typically, it is used for classification. The data is initially 

imported into the root and internal nodes of the decision tree where it is processed. After 

processing, the data is analyzed, and decisions are made based on the rules present in each 

branch of the model. Finally, the model reaches the leaves that represent the outcome of the 

model. The outcome may be a dependent variable in a regression problem or a category in a 

classification problem. In our work, the outcome of the classification is the type of flow regime, 

and the outcome of the regression is the predicted flow rates. Figure 7 shows the general 

structure of the decision tree algorithm. 
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Figure 7 Decision Tree algorithm structure[12]. 

2.5.2 Random forest 

A random forest is a tree-based model that consists of multiple decision trees to make 

independent decisions. Each tree makes its own decision on the provided data, just like in the 

decision trees algorithm. However, the final decision is made based on the majority or average 

of the outputs from different trees. The method of predicting the results based on the majority 

of votes made the model more accurate than the decision tree method. The performance of the 

model increases with the increase in the number of trees. An overview of Random Forest 

machine learning algorithms is shown in figure 8. 

 

 

Figure 8 Random Forest algorithm structure[12]. 



 
www.usn.no  

 

22 

 

2.5.3 Ensemble Method 

The ensemble model consists of multiple learners that can solve classification and regression 

problems. Multiple learners are trained with input variables to predict the target variable. It has 

better accuracy as compared to individual learning models. The most popular types of ensemble 

techniques are bagging and boosting. The bagging technique is also known as the bootstrap 

aggregating technique [13]. In the Bagging technique, multiple models of the same learning 

algorithm are trained with subsets of the dataset that are randomly picked from the training 

dataset. The base learners are formed independently, and it reduces the variance and minimizes 

the overfitting problem. The boosting technique is slightly different from the bagging 

technique. The main difference is that the base learners are dependent on the previous weak 

base learner, which helps to improve the performance of the model. 

 

Figure 9 Bagging and Boosting method of Ensemble method[14]. 

2.5.4 Classification and Regression Learner Application 

The Classification and Regression Learner tools are inbuilt tools in MATLAB and are present 

in the machine learning and deep learning sections. These applications consist of different 

models that can be implemented all at a time. Both applications can be used in machine learning 

to predict using supervised machine learning. Figure 10 shows the different models that are 

present in the Classification and Regression Learner tools. 
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Figure 10 Different models present in Classification and Regression Learner applications [15]. 

2.6 Data acquisitions system 

2.6.1 Vibration monitoring system 

TWave T8 is a monitoring system that is used to analyze the vibrations within different 

mechanical systems. This monitoring system has been designed to directly monitor the real 

condition of the system without the need for supportive software or external databases. One of 

the main advantages of this system is that it has an online monitoring feature that allows getting 

access to measured data by using a web browser. It has an inbuilt 4G modem/wireless Wi-Fi 

and an embedded web-based user interface that can be accessed through any operating system. 

The measured data is stored in a memory space and historical data can be easily accessible at 

any time via an internet connection. Figure 11 shows the internet connection between T8 and 

the device. 
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Figure 11 Communication between Twave T8 and laptop using a router[8]. 

 

Figure 12 Main screen of TWave T8 system. 

It is commonly used to measure the vibration of mechanical systems such as pumps, engines, 

fans, gearboxes, turbines, compressors, and motors. In this work, the T8 large model is used to 

measure the vibration that is produced during multiphase flow in the pipe. The T8-L has eight 

high-speed analog input ports with a range of 20kHz and an additional four input ports for 

tachometers and other purposes. It has different functions that allow for better visualization of 

measured data. The two accelerometer sensors, Acc-810367 and Acc-810366, measure the 

vibration at two different points of the test rig pipe. 

2.6.2 US-Key 

US-Key is manufactured by Lecoeur Electronique and is used in non-destructive testing. It 

manufactures different ultrasound products and is well-known for their precise measurements 

and ease of use. This US-Key system contains four channels in total, including four transmitter 

ports for transmitting the signal and four receiver ports for receiving the signal. The system is 

connected to ultrasonic sensors and a laptop that measures the echo produced by the reflection 

of the signal. Echoes are shown in the graph in the form of a waveform that indicates their 

amplitude and time of occurrence. The most important parameter of an ultrasonic test is the 

acoustic interface, which is primarily determined by the amplitude and time at which it occurs 

from the pulse transmission point. 
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The cracks or changes in the medium that cause the interface are determined by the change in 

amplitude of the echo. After that, other parameters are calculated based on the obtained ampli-

tude and time. Figure 13 shows the main screen of the US-Key data acquisition system. 

 

Figure 13 Main screen of US-Key system. 

The main screen of the system consists of 4 sections: a graphical display for showing the graph 

between amplitude and time, another for alarms and amplitudes that shows amplitudes and 

distances at different gates; the next for adjusting gain, delay, scale, position, width, and height 

of each gate; and the bottom one for additional settings. 
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2.6.3 Data logging and control program for test rig  

The multiphase rig has different pressure, mass flow, density, temperature, and volumetric flow 

sensors in the different locations of the test rig. These devices are controlled and monitored by 

using the LabVIEW software. In this system, the measurements of different sensors can be 

logged in two modes, fast logging, and slow logging, with a sampling time of 0.05 and 1.0 

seconds, respectively. In this case, both modes were used to record the measurements for the 

duration of 60 seconds. Figure 14 shows the Human Machine Interface for multiphase flow 

built using LabVIEW software. 

 

Figure 14 HMI of Multiphase Rig. 
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3 Multiphase flow rig  
In this work, the existing multimodal sensor suite was slightly upgraded, and two additional 

sensors accelerometers and ultrasonic sensors were installed to perform multiphase flow 

analysis. The experiments are performed by varying the flow rates of air, water, and oil 

separately. This chapter discusses a new experiment setup with accelerometers and ultrasonic 

sensors, and experimental results of both two-phase air-water flow and three-phase air-water-

oil flow. 

3.1 New experimental setup 

In this experimentally based thesis, the two accelerometers and ultrasonic sensors are installed 

in the existing test rig in the process lab of Campus Porsgrunn. The setup for this work is 

planned in collaboration with the USN team at USN. Figure 15 shows the piping and 

instrumentation diagram (P & ID) of the test rig with two accelerometers and two ultrasonic 

sensors added to the original system. In the P&ID diagram, the blue, red, and green lines 

represent the pipelines that carry water, oil, and air in the system. 

 

Figure 15 Piping and Instrumentation Diagram(P&ID) with accelerometers and ultrasonic sensors [3]. 

In this system, there is an air injector to inject the air and pumps to supply oil and water into 

the channel. Two large pumps and two small pumps are present in the system to achieve 

different flow rates effectively for both the water and oil supply. The flow rates of air, water, 

and oil are controlled individually with the help of different flow controllers present in the test 

rig, and fluids get mixed at the mixing point of the test section. As a result, the various flow 
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patterns are obtained in the test rig by controlling the supply of fluids from injectors and pumps. 

In the end, each of the fluids is separated with the help of a pre-separator and separator R100. 

The different parameters such as flow rates, temperature, pressure, density, and fluid level are 

monitored with the help of transmitters and Coriolis meters that are installed on the different 

parts of the test rig. 

The test rig consists of different blocks in its configuration, such as pumps, injectors, pipelines, 

sensors, transmitters, Coriolis meters, and data acquisition systems. It is crucial to have general 

knowledge of these blocks to perform experimental work effectively. Table 3 provides 

information about the dimensions of the pipe and the properties of the fluid that are used in the 

test rig. 

Table 3 Specification of the system[16]. 

Density Exxsol D-60 790 kg/m3(25°C) 

Viscosity Exxsol D-60  0.00164 Pa s (25°C) 

Density water 1000 kg/m3(20°C) 

Viscosity water 0.00102 Pa s (20°C) 

Interfacial tension (o/w) 43 mN/m (25°C) 

Inner pipe diameter 0.00563 m 

Flow area 0.0024895 m2 

Length PDT-120 10.21 m 

Pipe roughness 1.00×10-5 m 

Length PDT-121 5.37 m 

In this work, all the experiments have been conducted based on the mixture of oil, water, and 

air, while in the previous works, only air and water were used to study the multiphase flow. 

The existing test rig setup is slightly changed, and new sensors with data acquisition systems 

are used to collect the data. For the experiments, two accelerometers are installed on each side 

of the transparent section. According to the plan, two ultrasonic sensors, one as a transmitter 

and another as a receiver, will be mounted on the left side of the transparent section. It is not 

possible to mount the ultrasonic sensors using the existing wedges. For the initial phase, a 

single ultrasonic sensor, which serves as both transmitter and receiver, is mounted onto the 

transparent section of the test rig, as shown in figure 18. There are two new data acquisition 

systems and LabVIEW software to collect the data for this experiment. T wave and US-Key 

are two data acquisition systems to record the data of accelerometers and ultrasonic sensors, 

respectively. The LabVIEW software collects data from other existing sensors that are 

preinstalled on the rig. Figure 16 shows the experimental setup for this experiment. Figure 17 

shows the location of two accelerometer sensors in the test rig. Figure 18 indicates the location 

of the ultrasonic sensor in the test rig. 
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Figure 16 Experimental setup for multiphase flow. 

 

 

Figure 17 Two accelerometer sensors that are installed just before the transparent section (left) and near the 

bend of pipe (right). 
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Figure 18 Position of the ultrasonic sensor in the transparent section of the test rig. 

3.2  Experimental results  

The data were collected by performing the physical experiments at the test rig of campus 

Porsgrunn. In this work, different types of flow patterns are obtained by mixing air, water, and 

oil at different flow rates. Then, the flow profiles are categories into stratified, wavy, annular, 

plug and slug based on the nature of flow patterns. The measurements were recorded several 

times based on the results obtained from the models.  

3.2.1 Experiments with air and water 

At the beginning of this work, the experiments were performed with a mixture of air and water 

only. The main purpose of these experiments is to get familiar with the test rig and observe the 

results of past theses. A total of 86 measurements were conducted based on previous work 

related to multiphase flows. A flow regime map of air and water was taken as a reference to 

perform the experiments at the test rig in the process lab. As per a flow regime map, the flow 

rates of air and water were changed, and the different flow regimes were obtained. From the 

transparent section of the test rig, different types of flow regimes were inspected to get familiar 

with the nature of each flow. 

Table 4 Duration of each experiment.  

Unit Sample rate Duration  

Accelerometer 52KHz 2 seconds & 5.12 

seconds 

T-Wave platform 

Non-acoustic sensors 1Hz 60 seconds LabVIEW 

program 

Ultrasonic sensor 5MHz            - US-Key 
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In this case, the accelerometer data was observed and sampled manually. Each measurement 

was sampled for 2 seconds, for a total of 90200 readings per sensor. In addition, the fast and 

slow data were also saved from the existing LabVIEW program. Figure 19 shows the matrix 

of the first experiments that are performed based on the past test matrix. 

 

Figure 19 Experiments performed based on the past test matrix [3]. 

The US-Key is a new device that is particularly brought for this experiment. Firstly, it is 

important to know about the system before conducting actual experiments. So, the trial 

experiments were performed to get familiar with the system and its different modes. For the 

first trial experiment, a flat metal plate with a thickness of 5 cm was considered, and the setup 

was arranged as shown in Figure 20. Generally, this type of experiment helps to detect the 

defect in the metal piece. In our case, it was done to get familiar with the newly introduced US-

Key system. The pulse-echo mode was implemented to observe the internal structure of the 

test piece. For pulse-echo mode, a single ultrasonic sensor has been used that acts as both 

transmitter and receiver. The result was observed on the display screen of the US-Key software. 
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Figure 20  Ultrasonic testing in metal sheet to measure the thickness of metal. 

3.2.2 Experiments with air, water, and oil 

Different flow patterns were obtained by changing the mass flow combination of water, oil, 

and air. Based on the visual inspection, the flow regimes were classified into stratified, wavy, 

annular, plug, and slug flow. During the experiments, the type of flow regime slowly changes 

from one phase to another with the change in flow rates of air, water, and oil. So, it is necessary 

to take into account the transitional phase between different flow regimes. In order to do so, 

the flow rates of oil and water were kept constant, whereas the flow rate of air was gradually 

increased up to 4 kg per minute while considering the safety factor. More than 40 measurements 

were taken within a small variation of airflow rate. Then the air flowrate range was set to avoid 

transitional phases between different flow regimes. 

In total, 106 new measurements were taken for the multiphase flow of air, water, and oil in the 

laboratory. The transparent section of the test rig allows for visual observation of different flow 

regimes. Each flow regime was separated into five distinct flow regimes based on visual 

observation, as shown in the figure below. 

 

Figure 21 Text matrix of multiphase flow of air, water, and oil. 
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3.2.3 Experiment with the ultrasonic transducer 

The experimental setup of the ultrasonic test consists of two ultrasonic transducers, wedges, 

and a data acquisition system to collect the data. The two parametric ultrasonic sensors of video 

scan type with a frequency of 5MHz were connected to US-Key using the LCM-74-6 cable 

from Olympus, and the ultrasonic data acquisition system, US-Key, was connected to a laptop. 

Initially, the ultrasonic sensors were first coupled with two existing wedges and then coupled 

to the outer diameter of the pipe using a coupling oil. For contact tests like ultrasonic testing, 

oil, grease, and gel can be used as coupling mediums to prevent an impedance mismatch 

between the ultrasonic transducer and the test piece. However, a suitable coupling medium 

must be used based on the nature and purpose of the experiment. To avoid the loss in signal 

transmission, sensors must be clamped correctly without any air in the joint. For higher sound 

energy, there should be no air between the transducer and the test piece. As per our plan, the 

two modes, i.e., pulse-echo and pitch and catch mode, will be used in this work, as shown in 

figures 22 and 23. 

  

 

 

 

 

 

Figure 22 Pitch and catch mode of ultrasonic testing. 
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Figure 23 Pulse-echo mode of ultrasonic testing. 

However, the experimental setup did not work as expected, and the US-Key was unable to 

detect the proper signal from the ultrasonic sensors. The location and orientation of the 

ultrasonic sensors were changed to solve the problem. But the US-key failed to record the 

signal from ultrasonic sensors in both pitch-catch and pulse-echo mode. The experiment was 

then conducted in a small aquarium to determine if the system without wedges was functioning 

properly or not. The system is functioning properly this time, and signals are being recorded as 

binary files using the US-Key system. 

Now, it's confirmed that the problem was caused by the geometry of the wedges. Since the 

existing wedges have different wedge angles, the signal transmitted by the transmitter was 

unable to be properly received by the receiver. During the weekly meeting, the problem was 

discussed, and it was decided to design new wedges for the experiments. 

3.2.4 Design of wedge 

A new wedge was designed in collaboration with the USN team. The wedge was designed to 

reduce the noise that was previously caused by the geometry of existing wedges. This new 

wedge was required to perform the pitch and catch mode of ultrasonic measurements. In the 

initial stage of design, the dimensions of the test section were considered and the signal 

properties were understood properly. Then, the calculations were made by considering the 

properties of the materials [17]. The calculation of the wedge for non-destructive testing is 

given below [18]. 

According to Snell’s law, 

 𝑛1𝑆𝑖𝑛Ɵ1 = 𝑛2𝑆𝑖𝑛Ɵ2 

 

(3.3) 
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The index of refraction is  

 n= 
𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡 𝑖𝑛 𝑎 𝑣𝑎𝑐𝑢𝑢𝑚 (𝑐)

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑒𝑑𝑖𝑢𝑚 (𝑣)
 

 

(3.4) 

 

 

Figure 24 Calculations of different distances and angles for new wedge. 

 

Now, 

Choosing 𝛼𝑎 = 60° 

𝛼𝑠 = sin−1 (
sin 60° ⋅ 5790

6420
) ≈ 51.4° 

𝛼𝑤 = sin−1 (
sin 57.9° ⋅ 1480

5790
) ≈ 11.5° 

  

 

The detailed calculation of different distances with respect the o different angle of incidence 

is shown in table 5.  

Table 5 Calculation of the refracted shear angle and distances from the different angles of incidence. 

 

Based on the calculation made, the new wedge was designed using solid works software. Figure 

25 shows the detail design of new wedge.  
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Figure 25  A new wedge for ultrasonic measurements. 

3.2.5 Final experiment with additional measurements  

After performing the initial testing of the model, the accuracy of the model was not quite good. 

The predictions of fluid flow rates were not accurate in regression models because of 

insufficient input data. Then, the experiments were performed, and the data were collected. A 

total of 173 measurements were obtained by combining the new measurements with the 

previous three-phase measurements. Figure 26 shows the test matrix of the final three-phase 

experiment with additional measurements. Figure 27 illustrates how the data from different 

flow regimes is distributed in the final test matrix. 

 

Figure 26 New test matrix with 173 experimental data. 
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Figure 27 Distribution of different flow regimes in the final test matrix.  

3.2.6 Ultrasonic measurements from transparent section  

The newly designed wedges could not be manufactured at the USN because of time and 

manpower constraints. The problem was discussed in a meeting, and it was decided to wait for 

4 weeks. Unfortunately, the wedges were not ready, so the problem was discussed, and it was 

decided to concentrate mainly on the acoustic part of this thesis. 

However, some measurements were collected using the available wedge. As part of these 

experiments, a single ultrasonic sensor was installed on the transparent section of the test rig 

for pulse-echo mode. Installing the ultrasonic sensor is not as realistic in the oil and gas industry 

as it should be in the pipelines. It is done so that the experimental setup and information can be 

used for future studies. 

The experimental setup was done, and a few experiments were conducted for different flow 

regimes. The measurements were collected, and the data was saved in binary file format. Then 

BIN files were converted into JPG files by using the code provided by Tonni. The code is 

attached in appendix F, and ultrasonic images of different flow regimes are shown below. The 

x-axis represents the line numbers. The y-axis represents the time traveled by the pulse in 

microseconds. 
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Figure 28 Wavy flow output from ultrasonic sensor. 

 

 

Figure 29 Stratified flow output from ultrasonic sensor. 
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Figure 30 Plug flow output from ultrasonic sensor. 

 

Figure 31 Slug flow output from ultrasonic sensor. 
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Figure 32 Annular flow output from ultrasonic sensor. 

3.2.7 Single-phase experiment for Sailesh’s thesis  

The data were collected for another thesis student who is doing a similar thesis but focusing on 

single-phase flow. The acoustic measurements were recorded by flowing one phase at a time 

in the same experimental setup. Figure 33 shows the test matrix for single-phase flow. 

 

Figure 33 Test matrix for single-phase flow. 
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4 Pre-processing and feature extraction 
This chapter explains how different processing techniques were implemented to convert raw 

data into useful information. The quality of collected data may be affected by external noise. It 

is therefore necessary to process the measurement data before using it for machine learning. 

Figure 34 shows the different steps of data preprocessing to obtain the input matrix for machine 

learning models. 

 

Figure 34 Workflow of data processing for classification and regression model. 

4.1 Pre-processing of collected measurements 

After the data collection, it is necessary to perform preprocessing and exploratory data analysis 

before developing the data-driven models. During the preprocessing, the signals from the 

acoustic sensors were plotted in MATLAB to observe the pattern of input signals. From the 

graph, it was found that there was an overlap in the collected data. Then, the spectrogram in 

MATLAB was plotted to confirm the nature of the signals. It was found that the signals were 

noisy. That may be caused by a short sampling period of 2 seconds. The signals from two 

accelerometers can be seen in figure 35. 
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Figure 35 Acceleration vs time plot of two acoustic signals.  

From the graph, it can be deduced that the signal has a low resolution and, therefore, the sensors 

are recording a low level of the signal. Then, the experiment was reconducted with the aim of 

recording signals for a long time. It was not possible to make longer measurements in our T-

Wave data acquisition system because the original purpose of this device was to monitor the 

vibration in mechanical components for a short period of time. It was found that the maximum 

time for the measurement of a signal is 5.12 seconds. Then, the measurement of duration was 

increased from 2 seconds to 5.12 seconds. In the next step, the graph was plotted by combining 

several measurements, and Figure 4-3 shows the zoomed version of the graph. 

 

Figure 36 Output of new measurements with longer time. 
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From the graph, it is evident that the noise level has slightly decreased as compared to previous 

measurements. But it is still possible to increase the quality of signals by increasing the signal-

to-noise ratio. The sample resolution can be increased by increasing the number of bits per 

measurement. Before making any changes, the raw signals were observed in excel format. 

While observing, it was found that there were a lot of measurements between 0.001 and -0.001 

G. It was observed that the file format suddenly changes when its value is below 0.001G. It 

was confirmed that the problem was caused by the type of file format. The problem of data loss 

was not solved by changing the file format as well as saving the signal in terms of a volt. 

Different methods were implemented to solve the problem related to recorded signals. Finally, 

the quality of the signal was improved by changing the sensitivity of the sensors. However, 

there are still some noises in the acoustic signal which will be removed by filtering it. After 

that, the decision was made to move forward with the adjustment as described above. It was 

wise to proceed in our case because the machine learning models perform the analysis based 

on the extracted features instead of raw signal measurements.  

 

Figure 37 Output of acoustic signals after making adjustment. 
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4.2 Signal analysis of acoustic signal 

In this work, the vibration measurements from each acoustic sensor were imported and 

combined as a single file for the signal processing technique. At first, a single data set was 

considered and processed to obtain the features from the vibration measurement. The acoustic 

signals were observed and analyzed using signal processing techniques. After obtaining the 

results, a new function was created to automate the process for all the experimental datasets. 

In this way, the raw data from the accelerometer sensors were converted into useful features. 

This preprocessing step includes data importing, signal processing, and feature extraction. The 

signal processing was done using a MATLAB program, the source code can be seen in 

Appendix B. 

At first, the acoustic signals were plotted in the time domain to observe how the signal changes 

over time. The experiments named exp25, exp34, exp57, exp119, and exp124 of the first three-

phase test matrix were plotted, which are stratified, wavy, annular, plug, and slug respectively. 

Figures 4-2, 4-3,4-4,4-5, and 4-5 show the time series plots of two accelerometers for stratified, 

wavy, annular, plug, and slug flow, respectively. 

 

 

 

Figure 38 Time series plot of accelerometer 1 and accelerometer 2 of Stratified flow. 
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Figure 39 Time series plot of accelerometer 1 and accelerometer 2 of Wavy flow. 

 

Figure 40 Time series plot of signals from accelerometer 1 and accelerometer 2 for Annular flow. 
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Figure 41 Time series plot of signals from accelerometer 1 and accelerometer 2 for Plug flow. 

 

 

Figure 42 Time series plot of signals from accelerometer 1 and accelerometer 2 for Slug flow. 
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From the figures above, it’s hard to understand the results of accelerometer signals in the time 

domain. The time series plots can not provide important information about the various flow 

regimes. As the acoustic sensor records signal based on detected sounds, frequency is a key 

factor that should be considered when analyzing the acoustic signal. So, the signal was plotted 

in the frequency domain to better analyze and visualize the signal. The Fourier transform is 

one of the important methods for analyzing signals in the frequency domain. In this work, the 

Fast Fourier Transform (FFT) was used to obtain the frequency distribution of the 

measurement. Figure 43 shows the frequency content of the original signal after applying FFT. 

 

Figure 43 Accelerometer signal output after implementing FFT. 

From the above plot of the signal in the frequency domain, it can be observed that the peaks 

with high amplitudes are located around 13k and 25k Hertz in the frequency spectrum. 

Similarly, the measurements of each flow regime were plotted in the frequency domain to 

observe the nature of the curve in the frequency domain. From all the plots, it is observed that 

there are identical peaks of the same amplitude around 13k and 25k Hertz. Due to the presence 

of similar peaks in the same frequency range in the plot, it was closely analyzed and concluded 

that the peaks are caused by external factors like mechanical components of the test rig. 

Before designing the filter, it is appropriate to perform spectral analysis and confirm the useful 

frequency range of the signal in the frequency domain. For that, the power spectral density can 

be used to understand the distribution of the acoustic signals in the frequency domain. The 

power spectral density (PSD) measures the distribution of the power signal with respect to its 

frequency range [19]. In this work, the Welch method was used for estimating the power 

spectral density (PSD) of the signal. MATLAB has a function called pwelch that is used for 

computing the power spectral density. The pwelch function has different options along with 

FFT and windowing that can generate the single-sided power spectrum of the input signal. 
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Figure 44 Output of the signal after applying pwelch. 

The graph above shows that the same peaks exist within the same range of frequencies. Now, 

the focus is on the lower frequency range for estimating the multiphase flow. So, the filter 

needs to be designed to eliminate the peaks at 13k and 25k Hz. For that, the three different 

types of filters were designed to consider low-frequency signals. All the filters were designed 

with the help of a filter designer application of MATLAB and imported as a function to filter 

the unwanted signal present in the raw signal data. With the three filters, the main objective is 

to consider the signal in different frequency ranges and select the best one for further 

processing. The first filter is the low-pass filter with a passband frequency of 4500 Hz and a 

stopband frequency of 5000 Hz. Similarly, the second filter, is also a low-pass filter, with a 

passband frequency of 10 kHz and a stopband frequency of 11 kHz. For the last filter, the signal 

was filtered with a bandpass filter from 11kHz to 14kHz to remove the peak present at around 

13kHz. Then, the filtered signal was further filtered using the low pass filter, to 24k Hz, to get 

the appropriate signal. The main screen of filter designer apps can be seen in the figure below.  

 

Figure 45 Design of low pass filter using designer learner application. 
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 In the code, the filters were imported as lpfilter_4.5k, lpfilter_10k, and filter_24k functions 

and used separately to filter the acoustic signals. Then, the filtered signals are compared with 

the original signal in the frequency domain. Figure 4-13 shows the comparison between the 

original and filtered signal in the frequency range using the low-pass filter, lpfilter_10k, up to 

a frequency of 10k Hz. 

 

Figure 46 Comparison between original and filtered signal in frequency domain. 

For this work, peak analysis can be useful to extract valuable information from input signals. 

The peaks present in the signal can provide the information needed to uniquely characterize 

the signals for the estimation of multiphase flow. The next step is to find the peaks and extract 

the information from the peaks present in the signals. The peaks present in the signal were 

determined using the findpeaks function. For that, the local maxima of the input signal were 

found using the find peaks function available in MATLAB [20]. The peaks of the filtered 

signals can be seen in figure 47. 

 

Figure 47 Output of peak estimates of Power Spectral Density. 
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There are many peaks in the signal and using all of them can lead to overfitting the model. So, 

the limited peaks were estimated by specifying the conditions such as the number of peaks, and 

the minimum distance between the peaks [21]. The find peaks function returns the amplitude 

of the peak and its location in the signal as an output. The output of the find peaks function can 

be seen in figure 48. 

 

Figure 48 Output of find peaks function after specifying the conditions. 

As a result, the obtained matrix contains the peaks and their location as a feature to estimate 

the multiphase flow. However, these procedures can only extract the features from single 

measurement. For whole data sets, the new function, extractSignalFeatures, is defined in such 

a way that it will automatically perform all above steps to extract the features from raw 

measurements[20].  

 

Figure 49 extractSignalFeatures function for extracting features of whole data set.  
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In addition, this function can extract the statistical features such as mean, median, mode, 

standard deviation, and RMS value of the input signal. All the extracted features of acoustic 

signal are listed in Table 6. 

Table 6  Statistical and frequency features of the signal[22]. 

S. N Name  Description 

1. Mean The average value of the signal 

2.  Median The middle value of the signal 

3. Mode The most repeating value of the signal 

4.  Standard Deviation Measures the variation of signal from its mean value 

5.  RMS Calculates the average value of signal amplitude over 

time 

6.  Peaks and its location Estimates the number of peaks and their location in the 

signal 

4.3 Classification with acoustic signals 

The extracted features from acoustic signals were used as an input for flow regime 

classification. The flow regimes were classified using supervised machine learning models. For 

that, the extracted features and the label data were combined, and the integrated matrix was 

used as an input matrix for MATLAB's classification learner apps to classify the flow regimes. 

The results obtained from different models were unstable, and the accuracies of different 

models were below 65%. It indicates that the acoustic signals were not sufficient for developing 

models that could classify flow regimes based on the extracted features. To improve the model, 

the input data needs to be improved by further processing of acoustic signals and including 

more parameters in it. 
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4.4 Data preparation 

In this step, the features from the acoustic signals of accelerometers, pressure data from PT 

131, and differential pressure transmitter data from PDT 120 and PDT 121 were combined to 

form input matrices for machine learning models. The measurements from accelerometers were 

combined into a single CSV file for each experiment. Then, the extractSignalFeatures function 

was used to extract the features from all the experimental datasets. On the other hand, the data 

from PT131, PDT120, and PDT121 were also extracted from LabVIEW measurement datasets 

and considered as additional features. An overview of the different steps that are involved in 

the data preparation process is shown in Figure 50. 

 

Figure 50 Steps involved in data preparation process.  

In the first step, a total of 60 experiments, 15 measurements from each flow type, were 

considered from the first three-phase test matrix. The acoustic signals were processed, and 
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features were extracted by following the steps of the data preparation process for all 60 

measurements. The models were trained with training and test data sets. The results with these 

data sets were not so promising because of limited measurements.  

In the next step, 80 new experiments were retaken and combined with previously taken 

measurements to make a total of 173 measurements. Similarly, the features were extracted by 

following the same procedures. In this case, 15 peaks were selected, with a minimum distance 

of 550 between them. As a result, 43 features for each data were extracted for 173 input signals. 

In each measurement, there are 62 measurements that are averaged across 31 samples to obtain 

2 data points from each experiment. After averaging, 346 data points were obtained in total as 

output. The code is attached in Appendix E.  In the end, these 346 measurements were used as 

an input matrix to different models.  

4.5 Data preparation for image processing 

In the beginning, the images of 5 different types of flow regimes obtained from ultrasonic 

sensors were imported from image data stores. For this method, only 20 images from each 

category were considered because more measurements could be made due to technical errors 

in ultrasonic measurements.  Generally, a total of 20 images from each flow regime is not 

sufficient for image processing. But, in this case, the aim of this task is to get familiar with 

image processing and classify the flow regimes with collected measurements without worrying 

about the accuracy. 

In this case, the pre-trained convolutional neural network was used to perform image 

processing. ResNet 50, which is available in MATLAB, was installed on the laptop. The 

ResNet 50 has 1000 object categories, as well as 1.2 million training images loaded, and its 

architecture is visualized as shown in figure 51. 

 

Figure 51 Resize architecture of ResNet-50[23]. 

The images were converted into size of 224 × 224 with RGB image and imported as input to 

the first input layer of ResNet-50. 
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5 Results and Discussion 
In this chapter, the different models for both classification and regression models were built, 

and the parameters such as flow regimes and flow rates of different fluids were estimated based 

on the processed data. This section includes the results from different classification models that 

classify the different flow regimes in multiphase flow. The classifications made by different 

models were compared based on their accuracy. It also presents the results of the regression 

model that estimates the flow rates of gas, water, and oil in multiphase flow. 

5.1 Classification of flow regimes 

Different machine learning models were used to classify the flow regimes into stratified, wavy, 

annular, plug, and slug flow. For classification, MATLAB has a Classification Learner tool 

with different models that are based on supervised machine learning. In this work, the flow 

regimes were first classified using the Classification Learner tool, and the best model was 

discussed in detail. Besides the Classification Learner tool, the decision trees and random forest 

model were implemented to separate the flow regimes. In addition, the image processing 

technique was used for flow regime classification with images obtained from the ultrasonic 

sensor. 

In the model, the extracted features were used as an input for classification. Then, the total data 

is divided into 80% for training and the remaining 20% for testing the final accuracy of the 

model. The results for both training and test data are discussed below.  

5.1.1 Results from Classification Learner tool 

The classification Learner tool consists of different supervised classification algorithms that 

can be implemented all at a time. It is one of the simple and quick ways to find the best model 

suitable for different datasets. Multiple models can be run simultaneously in this application, 

and the best models were categorized according to their accuracy. 

In the first case, the input matrix consists of 43 features that were extracted from the acoustic 

measurements with 14 peaks and data from pressure transmitters. There are five target variables 

which are represented as 0,1,2,3, and 4, representing stratified, wavy, annular, plug, and slug 

respectively. Since this is supervised learning, the target variables were also imported along 

with 43 features as an input to machine learning models. Then, all the models were selected to 

train the training dataset. During the training, an Ensemble model with the bagging technique 

was the best model for flow regimes classification. Similarly, various models were tested with 

test data set. Figure 52 shows the outputs of the different models on the test data set. 
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Figure 52 Results from different models on test data set. 

These are the top 12 models with an accuracy of more than 82% for the test dataset, arranged 

in descending order. In this case, too, the ensemble model with the technique of the bagged 

tree has the highest accuracy for classification. It concludes that the ensemble model was able 

to classify both the verification dataset and the test dataset correctly. In figure 53, the confusion 

matrix shows the estimated flow regimes using an ensemble with bagged trees. 
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Figure 53 Confusion matrix of Ensemble model. 

The confusion matrix shows how different flow regimes were classified into different 

categories by the ensemble model. It is clearly indicated that there is a misclassification of plug 

and slug flow as compared to other flow regimes. The model misclassified them because plugs 

and slugs have somewhat similar properties and natures. 

The next step is to select the important features only to improve the model. So, the feature 

selection has been performed to determine the score of each feature in the classification model. 

The Classification Learner application has different options for feature selection. Initially, the 

PCA technique was implemented to select the relevant features. The results from PCA were 

compared and it was found that the outcomes were not promising, so the ANOVA technique 

was applied for evaluating the features. This evaluation determines the significance of 

individual features in classifying flow regimes. Then, the features were selected by observing 

the graph between features and importance scores. This graph ranks the important features that 

help to classify the flow regime. Based on the ranking of the features, the relevant and irrelevant 

features can be selected for the classification model. At first, the irrelevant features were 

removed to avoid the overfitting of the model. Then, the useful features were selected to 

increase the accuracy of the models. Figure 54 displays the results of features sorted using the 

ANOVA algorithm. 
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Figure 54 Feature selection using ANOVA technique. 

Since the feature selection was done in the classification learning application, it was not 

possible to edit and add the actual name of each feature. So, the variables were named as the 

series of the final input files. But the result from the ANOVA technique indicates that PT 131, 

PDT 120, and PDT 121 are the top three features in this model. It was found that there were 

some features of the frequency and statistical domains that are not so important in this 

classification model. Then, the statistical features such as median, and standard deviation were 

removed, and only 6 peaks were considered.  

In the next step, a total of 25 features were considered, and other irrelevant features were 

removed. Then, the models were trained with a training data set, and the models were tested 

with a test data set. Figure 55 shows the results of the top 12 models for the test dataset with 

25 input features. Figure 56 shows the new confusion matrix of the Ensemble model with the 

Bagged Trees technique.  
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Figure 55 Results of different models on a 25- features test data set.  
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Figure 56 New confusion matrix of Ensemble model on 25 features test data set. 

It can be observed that optimizing the features increases the accuracy of different models. It 

was found that the accuracy of the Ensemble model with Bagging Trees has increased from 

94.2% to 97.1%. There is an improvement in the performance of the model for classifying each 

flow regime, as it is also observed in the confusion matrix above. 

5.1.2 Results from Decision Tree and Random Forest technique 

The models were built for Decision Tree and Random Forest with Bagged Trees with 150 trees. 

The models were trained and tested separately. In both cases, the model's results and the results 

obtained through the classification learner are of the same accuracy. It verified that the 

classifications made by the Classification Learner application were accurate. 

 

Figure 57 Results from Decision Tree and Random Forest models. 
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5.1.3 Results from image processing  

At first, the image dataset was randomly divided into 80% for the training and 20% for the 

validation by the splitEachLabel function. The image processing was performed by the 

augmentedIamgeDatastore function, which converts the greyscale image into an RGB image. 

Next, the features were extracted, and the model was trained by using the Fit-Class Error-

Correcting Output Codes (ECOC) function. The Fitcecoc function uses a k(k-1)/ 2 binary 

support vector machine model using a 1 versus 1 coding design. In our case, the learner was 

linear classification with one versus all coding instead of a 1 versus 1 coding design. Using test 

features, the model predicts the labels, and they are compared with the actual labels to find the 

accuracy of the classifier. Then, the confusion matrix was plotted to evaluate the performance 

of the classifier. The code is attached in Appendix G. Figure 58 shows the confusion matrix of 

all flow regimes. 

 

Figure 58 Confusion matrix for stratified, wavy, annular, plug, and slug flow. 

Due to the quality of the input data set, the results obtained from the model was not so good. 

So, in the next step, the wavy, annular and slug flows were only considered. The result obtained 

from new dataset is shown below. 

 

Figure 59 Confusion matrix for wavy, annular, and slug flow. 

It indicated that the wavy and annular flow were classified accurately, whereas slug flow was 

slightly misclassified. Then, the single image of each flow was tested, and the model accurately 

predicted the image of wavy and annular flow. 
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5.2 Flow rates prediction using Regression Learner tool 

The Regression Learner tool that is available in MATLAB was used to predict the flow rates 

for each phase of the multiphase flow. The Regression Learner application also has a variety 

of models that can be automatically trained with different models at a time. Just as in the 

Classification Learner application, the same procedures were followed, and the models were 

trained for the training and test datasets. 

5.2.1 Gas flow rates prediction 

For the prediction of gas flow rates, the Ensemble Boosted Trees is the best model that has 

more accuracy than other models. The R squared values for validation and test were 0.95 and 

0.97, respectively. It indicates that this model has fitted the values very close to the original 

measurements. Figure 60 shows the training and test results of the Ensemble Boosted Trees 

model. 

 

Figure 60 Results of training, and test data sets of Ensemble Boosted Trees. 

The graph between true and predicted measurements was observed to better analyze the 

performance of the gas flow rate prediction model. From the graph, the gas flow rates were 

correctly predicted, and the patterns of actual and predicted flow rates were similar. Figure 61 

shows the graph between actual and predicted gas flow rates. Figure 62 shows the relationship 

between actual and predicted responses for gas flow rates. 
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Figure 61 Actual vs predicted gas flow rates by Ensemble Boosted Trees model. 

 

 

Figure 62 Predicted vs true responses of gas flow rates prediction model. 
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5.2.2 Water flow rates prediction 

Similarly, different models were trained and tested to predict the flow rates of water in 

multiphase flow. In this case, the flow rates of water were accurately predicted by the trees 

model with a fine tree technique. The results of RMSE, R-Squared, MSE, and MAE for the 

training and test data sets can be seen in figure 63. 

 

Figure 63 Results of Trees model for training and test data set. 

In the graph below, the yellow and blue points indicate the actual and predicted flowrates of 

water.  

 

Figure 64 Actual vs predicted water flow rates by Trees model. 
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In the training data set, the R-squared value was 0.99, while the test data set had a value of 

0.97. In both cases, the R-squared value is very close to 1. This means that the model can 

predict the water flow rates more accurately as compared to the gas flow rate prediction model. 

Based on the MSE values, it is concluded that the model is more accurate for training data than 

for test data. Figure 65 shows the graph between the true and predicted responses of the Trees 

model with a fine tree technique. 

 

Figure 65 Predicted vs true responses of water flow rates prediction model. 

5.2.3 Oil flow rates prediction 

After training and testing, an ensemble model with boosted trees proved to be the best model 

for predicting oil flow rates. The R-squared values for the training and test datasets were 0.96 

and 0.91. The model was acceptable and the predicted oil flow rates were useful. Figure 66 

shows the results obtained after performing training and testing of the model.  
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Figure 66 Comparision between training and test results of Ensemble model. 

Figure 67 shows the comaprision between the actual and predicted oil flow rates.   

 

Figure 67 True vs predicted oil flow rates. 

The plot between predicted and true responses indicates that the model is correct for predicting 

oil flow rates. Since there is no any outliers, the accuracy of the model is not affected by them. 

Figure 68 presents the graph between actual and predicted oil flow rates.  
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Figure 68 Predicted vs true responses of oil flow rates prediction model. 
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6 Conclusion 
It has been demonstrated that machine learning models can estimate multiphase flow from 

different measurements taken from different sensors present in the test rig. The flow regimes 

have been successfully categorized into five different types based on the collected 

measurements. In addition, the flow classification has been performed by using a pre-trained 

convolutional neural network (CNN). The flow rates of different fluids in multiphase flow were 

predicted using the Regression Learner application. 

The new sensors, accelerometers, and ultrasonic sensors were installed in the existing test rig 

in the process lab of Campus Porsgrunn. A series of experiments for single-phase as well as 

multiphase flow were performed, and the measurements were collected using different data 

acquisition systems. The measurements were observed through the transparent section of 

the test rig, and they were labeled based on visual inspection. The measurements were 

analyzed, and different feature extraction techniques, including signal processing techniques, 

were implemented to extract the useful features from the raw data. Next, the extracted features 

were divided into training and test datasets and used for training different machine learning 

models. 

The Classification Learner application was used, and different supervised models present in 

the tool were trained and tested to evaluate the accuracy of each model. The results obtained 

from various models were compared, and the best model was chosen and discussed in detail. It 

has been observed that the performance of the model can be increased by optimizing the 

features. It concludes that the accuracy of the model could be improved by processing and 

extracting useful features from the dataset. In this case, the ANOVA technique helps to increase 

the accuracy of the Ensemble Model with Bagged Trees from 94.2 to 97.1%. Then, the 

Decision Trees and Random Forest techniques were implemented to classify the flow 

regimes. For the regression part, the flow rates of different fluids such as gas, water, and oil in 

multiphase flow were predicted using different models present in the Regression Learner tool 

of MATLAB software. Out of all, the best model for each fluid was selected, and the results 

were analyzed based on the confusion matrix. The accuracy of each model that predicts the 

flow rates of oil, water, and oil has an accuracy of more than 90%. 

Initially, it was planned to install two ultrasonic sensors and collect the measurements using 

pulse-echo mode and pitch and catch mode. However, because of the technical problem related 

to the wedge and time constraints, this task could not be performed properly. But the literature 

review was performed, and some data was collected by mounting the ultrasonic sensor on the 

transparent section of the test rig, which is not practical in a real-life scenario. After that, the 

collected measurements were processed and used for the classification of flow regimes by 

using image processing. In this case, the new wedge was designed and manufactured for future 

studies.  

 

 

 

 

 



 
www.usn.no  

 

68 

 

7 Future work 
A few tasks that are recommended for future work are as follows: 

1. Study of bubble formation, droplets formation, classification of flow regimes, etc. 

using spectrogram plots of acoustic signals and machine learning. 

2. Predicting multiphase flow using ultrasonic sensors and image processing techniques. 
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Appendices 
 

Appendix A Task description 
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Appendix B Data processing of single experiment  

% Importing Data 

ae = importdata('exp18.csv',',',3); 

t = ae.data(:,1); 

ae1 = ae.data(:,2); 

ae2 = ae.data(:,3); 

figure 

subplot(2,1,1) 

plot(t,ae1) 

title('Accelerometer 1 -Slug flow') 

xlabel('Time (ms)') 

ylabel('Acceleration(G)') 

subplot(2,1,2) 

plot(t,ae2) 

title('Accelerometer 2 -Slug flow') 

xlabel('Time (ms)') 

ylabel('Acceleration(G)') 

 

%Fs1 = 52000; 

%t = 0:1/Fs1:5.12; 

%figure 

%subplot(2,1,1) 

%spectrogram(ae1,1560,1300,1560,Fs1,'yaxis') 

%title('Spectrogram of accelerometer 1-wavy flow') 

%subplot(2,1,2) 

%spectrogram(ae2,1560,1300,1560,Fs1,'yaxis') 

%title('Spectrogram of accelerometer 2-wavy flow') 

%applying FFt to original signal 

N1 = length(ae1); 

Fs1 = 52000; 

Ts1 = 1/Fs1; %Sampling Time 

T1 = N1*Ts1; % Total Time 

t1 = 0:Ts1:T1-Ts1; % Time array for plotting 

t1 = t1'; 

fft_1 = fft(ae1); 

fft_1 = abs(fft_1(1:length(fft_1)/2 + 1)); 

fft_1(2:end-1) = 2*fft_1(2:end-1); 

f1 = (0:length(fft_1)-1)/T1; 
 

N2 = length(ae2); 

Ts2 = 1/Fs1; %Sampling Time 

T2 = N2*Ts2; % Total Time 

t2 = 0:Ts2:T2-Ts2; 

t2 = t2'; 

fft_2 = fft(ae2); 

fft_2 = abs(fft_2(1:length(fft_2)/2 + 1)); 



 
www.usn.no  

 

74 

 

fft_2(2:end-1) = 2*fft_2(2:end-1); 

f2 = (0:length(fft_2)-1)/T2; 
 

figure 

subplot(2,1,1) 

plot(f1,2/N1*fft_1); 

title('Single sided frequency spectrum of Accelerometer1'); 

ylabel('Amplitude'); 

xlabel('Frequency [Hz]'); 

subplot(2,1,2) 

plot(f2,2/N2*fft_2); 

title('Single sided frequency spectrum of Accelerometer2'); 

ylabel('Amplitude'); 

xlabel('Frequency [Hz]'); 

%applying FFt to original signal 

X1=fft(ae1); 

X2=fft(ae2); 

%observing the effect of noise in both time and frequency domain 

Fs = 52000; %Sampling frequency 

f= linspace(0,Fs,length(ae1)); 

figure 

subplot(2,1,1) 

plot(f,log(X1)) 

title('original signal in frequency') 

xlabel('frequency(Hz)'); ylabel('magnitude') 

subplot(2,1,2) 

plot(f,abs(X2)) 

title('original signal in frequency') 

xlabel('frequency(Hz)'); ylabel('magnitude') 
 

% pwelch is used to comfime the useful frequency range 

Fs = 52000; %Sampling frequency 

T = 1/Fs; 
 

[P1,f1] = pwelch(ae1,[],[],[],Fs); 

[P2,f2] = pwelch(ae2,[],[],[],Fs); 
 

figure 

subplot(2,1,1) 

plot(f1,10*log10(P1)) 

title('Single-Sided Power Spectrum of Accelerometer 1') 

xlabel('f (Hz)') 

ylabel('PSD (dB/Hz)') 

subplot(2,1,2) 
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plot(f2,10*log10(P2)) 

title('Single-Sided Power Spectrum of Accelerometer 2') 

xlabel('PSD (dB/Hz)') 

ylabel('Amplitude') 
 

%%low pass filter with passband frequency of 4500 Hz 

%flp = lpfilter_4.5k; 

%%low pass filter with passband frequency of 10k Hz 

flp = filter_10k; 

%%low pass filter with passband frequency of 24k Hz  

%flp = lpfilter_24k; 
 

FilteredSignal1 = filter(flp,ae1); 

FilteredSignal2= filter(flp,ae2); 

%filtered signal converted into frequency domain for analysis 

FilterSignalTransform1 = fft(FilteredSignal1); 

FilterSignalTransform2 = fft(FilteredSignal2); 

 

%observe the original signal and filtered in time  

figure 

subplot(4,1,1) 

plot(t,ae1) 

title('Original signal of accelerometer 1 in Time') 

xlabel('time (ms)'); ylabel('magnitude') 

subplot(4,1,2) 

plot(t,ae2) 

title('Original signal of accelerometer 2 in Time') 

xlabel('time (ms)'); ylabel('magnitude') 

subplot(4,1,3) 

plot(t,FilteredSignal1) 

title('Filtered signal of accelerometer 1 in Time') 

xlabel('time (ms)'); ylabel('magnitude') 

subplot(4,1,4) 

plot(t,FilteredSignal2) 

title('Filtered signal of accelerometer 2 in Time') 

xlabel('time (ms)'); ylabel('magnitude') 
 

%observe the effect of filter on the signal in both time domain and 

%frequency domain 

figure 

subplot(4,1,1) 

plot(f,abs(X1)) 

title('original signal in frequency') 

xlabel('time(ms)'); ylabel('magnitude') 

subplot(4,1,2) 

plot(f,abs(X2)) 
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title('original signal in frequency') 

xlabel('time(ms)'); ylabel('magnitude') 

subplot(4,1,3) 

plot(f, abs(FilterSignalTransform1)) 

title('filtered signal in frequecny') 

xlabel('frequency (Hz)'); ylabel('magnitude') 

subplot(4,1,4) 

plot(f, abs(FilterSignalTransform2)) 

title('filtered signal in frequecny') 

xlabel('frequency (Hz)'); ylabel('magnitude') 
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Appendix C extractionSignalFeatures function to extract the feature 

function features = extractSignalFeatures1(ae,Fs,npeaks,minpeakdist) 
[~,n] = size(ae); 
fhp = lpfilter_10k;  
 
ae = filter(lpfilter_10k,ae); 
 
 
for k = 1:n 
    [p,f] = pwelch(ae(:,k),[],[],[],Fs); 
     
    fmindist = minpeakdist;                    % Minimum distance in Hz 
    N = 2*(length(f)-1);                % Number of FFT points 
    minpkdist = floor(fmindist/(Fs/N)); % Minimum number of frequency bins 
 
    [pk,loc] = findpeaks(p,'npeaks',npeaks,'minpeakdistance',minpkdist); 
     
    peaks(:,k) = pk; 
    freq(:,k) = f(loc); 
end 
features(1:n) = mean(ae,1); % Mean values  
features(n+1:2*n) = median(ae,1); % Median  
features(2*n+1:3*n) = mode(ae,1); % Mode 
features(3*n+1:4*n)= std(ae,1); % Standard Deviation 
features(4*n+1:5*n) = rms(ae,1);  % RMS value in signal 
features(5*n+1:(5*n+n*npeaks)) = peaks(:); % Peak estimates 
 
 
%features(1:n) = mean(ae,1); % Mean values  
%features(n+1:2*n) =  mode(ae,1); % Mode 
%features(2*n+1:3*n) = rms(ae,1);  % RMS value in signal 
%features(3*n+1:3*n+n*npeaks)= peaks(:); % Peak estimates 
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Appendix D Converting fast and slow files from labview to excel files 

import pandas as pd 

import os 

 

# pd.set_option('display.max_columns', None) 

# pd.set_option('display.max_rows', None) 

 

 

def find_title(f_url): 

 """ 

 return the row number of not data 

 :param f_url: file path 

 """ 

 container = [] 

 with open(f_url) as f: 

  lines = [line for line in f] 

  for i, item in enumerate(lines): 

   if '%' in item: 

    container.append(lines[i]) 

    pass 

   else: 

    break 

 return i, container 

 

 

def clean_csv_file(f_url): 

 """ 

 Clean the csv file into a readable format 

 :param f_url: file url 

 :return: csv file in the folder 

 """ 

 # How many rows are not data: 

 num_skip_raw, col_list = find_title(f_url) 
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 print('rows to skip: ', num_skip_raw) 

 

 # First 1 or 2 rows are datafile general info: 

 file_info = col_list[0].replace('logging:', ';').split(';')[1].replace('\n', '').replace(' ', '') 

 print(file_info) 

 

 # Remaining rows are variables descriptions: 

 temp = col_list[2::] 

 # print(temp) 

 

 # Text processing: 

 col_list = [temp_c.replace('%', '').replace(';\n', ';').replace(' ', '') for temp_c in temp] 

 col_list = [temp_c.replace(';Boolean', '-Boolean').replace(']\n', '];').replace(';All', ' All') 

for temp_c in col_list] 

 col_list = [temp_c.replace('.\n', '.;')for temp_c in col_list] 

 # print(col_list) 

 

 # Merge items in list and seprated by ';': 

 col_list = ''.join(col_list).split(';') 

 new_col_list = list(filter(None, col_list)) 

 

 # print('header info:  ', len(new_col_list)) 

 

 for ind, t in enumerate(new_col_list): 

  try: 

   if ind != int(t[0:2])-1: 

    print(ind, t) 

  except ValueError: 

   # print(ind, t) 

   pass 

 

 df = pd.read_csv(f_url, header=None, skiprows=num_skip_raw, sep='\t') 

 df.columns = new_col_list 
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 df.index.names = [file_info] 

 print(df.head(1)) 

 df.to_csv(f_url+'_updated.csv') 

 

# Slow 

folder_url_slow = r"D:\thesis\code\lates\plug and slug\w2.5,O3" 

g = os.walk(folder_url_slow) 

for path, dir_list, file_list in g: 

    for file_name in file_list: 

   #print(os.path.join(path, file_name)) 

         clean_csv_file(os.path.join(path, file_name)) 

 

 

# Fast: 

#folder_url_fast = r"D:\thesis\code\lates\plug and slug\w13,o9" 

#g = os.walk(folder_url_fast) 

 

#for path, dir_list, file_list in g: 

# for file_name in file_list: 

#  print(os.path.join(path, file_name)) 

#  clean_csv_file(os.path.join(path, file_name)) 
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Appendix E Data preparation 

%% To combine the experiments data into single csv file 

clear all 

clc 

warning off 

rootdir='D:\thesis\code\lates\original\copyfile\labview'; 

outname='allfiles'; % a new name for the output file 

d=dir(fullfile(rootdir,'*.csv')); % retrieve the files 

fido=fopen(fullfile(rootdir,'newout.csv'),'w'); % open output file to write 

allCsv = readtable('D:\thesis\code\lates\original\copyfile\lab-

view\8_supdated.csv', 'HeaderLines', 1); 

for i=2:length(d) 

    fidi=fopen(fullfile(rootdir,d(i).name)); % open input file 

    fullfile(rootdir,d(i).name) 

    csv = readtable(fullfile(rootdir,d(i).name), 'HeaderLines', 1); 

    allCsv =[allCsv;csv]; % Concatenate vertically 

end 

header = readtable('D:\thesis\code\lates\original\copyfile\lab-

view\8_supdated.csv').Properties.VariableNames; 

allCsv.Properties.VariableNames = header; 

fido=fclose(fidi); 

clear fid* 

 

%averaging per 31 samples 

csvfinal= table2array(allCsv) 

N = 31; 

movingAverageA = movmean(csvfinal,[(N-1) 0]); % Trailing average of N rows 

outputfinal = movingAverageA(N:N:end,:); 
 

%%PDT and PT as a input variables 

x = outputfinal(:,4:6) 

 

 

Fs = 52000; 

npeaks = 15; 

mindistance=550; 
 

expp1 = importdata(append('exp8.csv')) 

exp1 = expp1.data; 

x1 = [exp1(:,2),exp1(:,3)]; 

X(1,:) = extractSignalFeatures1(x1,Fs,npeaks,mindistance); 
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for i = 9:101 

    expp1 = importdata(append('exp', int2str(i), '.csv')) 

    exp1 = expp1.data; 

    x1 = [exp1(:,2),exp1(:,3)]; 

    X2(1,:) = extractSignalFeatures1(x1,Fs,npeaks,mindistance); 

    X =[X; X2] 

    x2=[] 

end 

%%  

for i = 135:213 

    expp1 = importdata(append('exp', int2str(i), '.csv')) 

    exp1 = expp1.data; 

    x1 = [exp1(:,2),exp1(:,3)]; 

    X2(1,:) = extractSignalFeatures1(x1,Fs,npeaks,mindistance); 

    X =[X; X2] 

    x2=[] 

end 
 

 

 

N=2; 

%Z = array2table(X) 

Z= kron(X,ones(N,1)) 

%Z = X 

finalinput = [Z x] 

 

class = array2table(finalinput) 

label = table2array(readtable("labelfinal.csv")) 
 

label1= array2table(kron(label,ones(N,1))) 
 

new_table = [class label1] 
 

%corrplot(new_table); 
 

cv = cvpartition(size(Z,1),'HoldOut',0.2); 

idx = cv.test; 

dataTrain=new_table(~idx,:); 

dataTest=new_table(idx,:); 

testing=dataTest(1:end,1:end-1); 

b = new_table(:,[end]) 
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%Decision Tree Classifier Code: 

model = fitcensemble(dataTrain,'Var1') 

%model=fitcensemble(dataTrain,'Var1','Bag',100,'Tree','Type','classifica-

tion'); 

prediction=predict(model,testing); 

accuracy_Decisiontree =round((sum(prediction==table2ar-

ray(dataTest(:,end)))/size(dataTest,1))*100,2) 

%Random Forest Code: 

model=fitensemble(dataTrain,'Var1','Bag',150,'Tree','Type','classification'); 

prediction=predict(model,testing); 

accuracy_Randomforest=round((sum(prediction==table2ar-

ray(dataTest(:,end)))/size(dataTest,1))*100,2) 

 

 

%%water flowrate in kg/min 

%y1 = table2array(allCsv(:,11)); 

%y2 = table2array(allCsv(:,12)); 

%y1 = outputfinal(:,11); 

%y2 = outputfinal(:,12); 

%for i = 1:length(y1); 

    %if y1(i)> 1 

        %a(i) = y1(i) 

    %elseif y2(i)> 1 

        %a(i) = y2(i) 

    %end 

%end 

%waterflowrate = a' 
 

%%gas flowrate in kg/min 

%gasflowrate =table2array(allCsv(:,13)); 

gasflowrate =outputfinal(:,13); 

 

%%water flowrate in kg/min 

%y1 = table2array(allCsv(:,11)); 

%y2 = table2array(allCsv(:,12)); 

y1 = outputfinal(:,11); 

y2 = outputfinal(:,12); 

for i = 1:length(y1); 

    if y1(i)> 1 

        a(i) = y1(i) 

    elseif y2(i)> 1 

        a(i) = y2(i) 

    end 
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end 

Gasflowrate  = a' 

 

%%oil flowrate in kg/min 

%y3 = table2array(allCsv(:,8)); 

%y4 = table2array(allCsv(:,9)); 

y3 = outputfinal(:,8); 

y4 = outputfinal(:,9); 

for i = 1:length(y3); 

    if y3(i)> 1 

        b(i) = y3(i) 

    elseif y4(i)> 1 

        b(i) = y4(i) 

    end 

end 

oilflowrate = b' 

 

%predict = trainedModel.predictFcn(dataTest) 

%%accuracy 

%accuracy_E =round((sum(predict==table2ar-

ray(dataTest(:,end)))/size(dataTest,1))*100,2) 

%iscorrect = predict ==cell2mat 
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Appendix F Converting Bin files to JPG files. 

%% get file names 
 
[file_pc,path_pc] = uigetfile('.bin','Bscan file'); 
 
%%   Ultralyd data 
 
fid = fopen([path_pc,file_pc]);             % data file 
data_pc = fread(fid,2e7,'uint16','b'); 
fclose(fid); 
data_info = importdata([file_pc(1:end-3),'txt'],' ',0); % additional info file 
 
%.... get the data 
dt = data_info(2)*1e-9; 
fs = 1/dt; 
N_samp = data_info(3); 
N_line = length(data_pc)/N_samp; 
rfpc = reshape(data_pc,N_samp,N_line); 
t = (1:N_samp)*dt; 
 
%....filtering 
[bpc,apc]=butter(2,[1e5 1e7]*dt/2); 
rfpc_f = rfpc-mean(rfpc,2)*ones(1,N_line,1); 
rfpc_f = filtfilt(bpc,apc,rfpc_f.*tukeywin(N_samp,0.1)); 
 
%....get the echo envelope (abs(hilbert(), display in dB) 
rfpc_fh = hilbert(rfpc_f); 
figure 
imagesc(1:1248,t*1e6,20*log10(abs(rfpc_fh))) 
colorbar 
 
ylabel('t   (\mus)') 
xlabel('Line no') 
title(['Ultrasound data ',strrep(file_pc,'_','\_')]) 
set(gca,'YDir',"normal") 
[cmi,cma]=caxis; 
caxis([round((cma-50)/5)*5, cma])           % use e.g.,50dB dynamic range 
 
[maxval,indpc_max] = max(sum(abs(rfpc_fh))); 
[minval,indpc_min] = min(sum(abs(rfpc_fh))); 
 
%...alternative plot of the raw data, RF data plot, logarithmic coding (dB) 
figure, plot_wvf_db(1:1248,t*1e6,rfpc_f,60) 
set(gca,'YDir',"normal") 
title(['Ultrasound data ',strrep(file_pc,'_','\_')]) 
xlabel('Line no') 
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Appendix G Image processing for ultrasonic measurements 

file = fullfile("flowtypes") 

catagories = {'wavy','annular','slug'}; 

%imagedatastore 

imds = imageDatastore(fullfile(file,catagories),'LabelSource','foldernames'); 

%counting number of images in each catagories 

tb1 = countEachLabel(imds) 

 

plug = find(imds.Labels=='plug',1); 

slug = find(imds.Labels=='slug',1); 
 

%figure 

%subplot(2,1,1); 

%imshow(readimage(imds,slug)); 

%subplot(2,1,2); 

%imshow(readimage(imds,plug)); 

net = resnet50(); 

figure 

plot(net) 

title('Architecture of ResNet-50') 

set(gca, 'Ylim', [150,170]); 

 

net.Layers(1) 

 

net.Layers(end) 

[trainingSet, testSet]= splitEachLabel(imds,0.2, 'randomized'); 
 

imagesize = net.Layers(1).InputSize; 
 

augmentedTrainingSet = augmentedImageDatastore(imagesize, trainingSet,"Color-

Preprocessing","gray2rgb"); 

augmentedTestSet = augmentedImageDatastore(imagesize, testSet,"ColorPrepro-

cessing","gray2rgb"); 
 

w1 = net.Layers(2).Weights; 

w1 = mat2gray(w1); 
 

figure 

montage(w1) 

title('first convolutional Layer weight') 
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%%extrating feature from last layer 

featureLayer = 'fc1000'; 

trainingFeatures = activations(net,augmentedTrainingSet, featureLayer, 'Mini-

BatchSize',32, 'OutputAs','columns'); 
 

trainingLables =  trainingSet.Labels; 

classifier = fitcecoc(trainingFeatures, trainingLables,'Learner','Line-

ar','Coding','onevsall','ObservationsIn','Columns'); 
 

testFeatures = activations(net,augmentedTestSet, featureLayer, 'MiniBatch-

Size',32, 'OutputAs','columns'); 
 

predicLabels =predict(classifier, testFeatures, 'ObservationsIn','Columns'); 

testLables = testSet.Labels; 

confMat = confusionmat(testLables, predicLabels); 
 

confMat = bsxfun(@rdivide, confMat,sum(confMat,2)) 

 

mean(diag(confMat)) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


