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Abstract
In a microgrid with both intermittent and dispatchable
generation, the intermittency caused by sources such as
solar power and wind power can be balanced using dis-
patchable sources like hydro power. Both generation and
consumption are stochastic in nature and require future
prediction. The stochasticity of both generation and con-
sumption will drift the grid frequency. Improved perfor-
mance of the grid can be achieved if the operation of the
microgrid is optimized over some horizon, for instance
formulating Model Predictive Control (MPC), with the
added problem that intermittent sources vary randomly
into the future. In this paper, first, we have formulated a
deterministic MPC and compared it with a PI controller.
Second, a stochastic MPC (SMPC) based on a multi-
objective optimization (MOO) scheme is presented. Re-
sults from deterministic MPC show that the overall perfor-
mance of MPC is better than the PI controller for dispatch-
ing the required amount of hydro power into the grid and
simultaneously constraining the grid frequency. Results
from SMPC indicate that there exists a trade-off between
the amount of water flow through the turbine and the rate
of change of the turbine’s valve while constraining the grid
frequency.
Keywords: microgrid, load and generation balance, in-
termittent injection, dispatchable hydro power, frequency
stability, stochastic MPC

1 Introduction
1.1 Background
The demand for electricity generation from renewable en-
ergy is increasing because of oil insecurity, climatic con-
cern, and the nuclear power debate. Renewable energy
consists of intermittent and dispatchable energy sources.
Intermittent generation from sources such as solar power,
wind power, and tidal power exhibit fluctuating power pro-
duction and creates an imbalance between generation and
load. However, renewable dispatchable sources such as
hydro power plants play a significant role in balancing out
the variability caused by intermittent sources.

For instance, in a microgrid supplying electrical power
to a common consumer load with generation from inter-
mittent solar power and a dispatchable hydro power plant,
injection of intermittent solar power into the grid creates
a fluctuation in grid frequency. Assuming that he grid fre-

quency must be maintained at the range of (50±5%) Hz,
it is of interest to dispatch the required amount of hydro
power into the grid for balancing out the load and the gen-
eration while maintaining the grid frequency in that range.

However, the required amount of hydro power produc-
tion can not be dispatched instantaneously. In reality,
changes in hydro power production are constrained by in-
ertia in water and rotating mass, and the need to avoid
wear and tear in actuators and other equipment. Further-
more, both solar power and consumer load are not known
perfectly. The solar power and consumer load intermit-
tency cause power imbalance into the grid and drifting in
grid frequency. Improved performance can be achieved
if the operation of the microgrid is optimized over some
horizon with the added problem that intermittent power
varies randomly into the future. Optimal management of
dynamic systems over a future horizon with disturbances
is often posed as an MPC problem.

1.2 Previous Work
An MPC approach had been applied for controlling water
flow into the turbine in (Zhou, 2017). The use of MPC
with consideration of dynamical model of hydro power
systems is presented in (Munoz-Hernandez et al., 2012).
Simulation results with different operating conditions and
disturbances from previous work emphasize the use of
an MPC-based approach over the optimal PI controllers
(Avramiotis-Falireas et al., 2013; Bhagdev et al., 2019;
Reigstad and Uhlen, 2020). In a recent study of (Pandey
et al., 2021) stochastic analysis of deterministic MPC for
a dynamical model of microgrid was performed. It is of
interest to further extend the work of (Pandey et al., 2021)
with SMPC with the addition of comparison between a PI
controller and deterministic MPC.

1.3 Outline of the Paper
Section 2 provides a system description. The mathemat-
ical model of the microgrid is detailed in Section 3. The
implementation of a deterministic MPC and a stochastic
MPC is given in Section 4 and Section 5, respectively.
Section 6 provides results and discussions. Conclusions
and future work are outlined in Section 7.

2 System Description
Consider a microgrid as in Figure 1 a) operated at con-
sumer load P̀ and supplied with intermittent solar power
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Figure 1. System description.

Ps. The difference between the intermittent generation and
load is balanced with dispatchable hydro power Ph. Figure
1 b) shows the hydro power plant with reservoir, intake,
surge tank, penstock, and turbine connected to the micro-
grid with an electrical generator. Figure 1 c) shows the Ns
future scenarios generated in SMPC from the past data of
Ps and P̀ . SMPC, as shown in the figure, keeps track of
the constraint violation in grid frequency f for 50±5%Hz
and generates the turbine valve signal uv and hydro power
Ph dispatched into the grid based on the stochastic input
from solar and consumer load.

3 Mathematical Model
3.1 Hydro Power Plant
The mathematical model for a hydro power plant shown in
Figure 1 b) is taken from (Pandey et al., 2021) and given
as

dh
dt

=
V̇s

As
(1)

dV̇s

dt
=

As

ρh
(pn− pa)−

πDsV̇s | V̇s |
8A2

s
fD,s−gAs (2)

dV̇p
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=
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ρLp
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p
fD,p +gAp
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with algebriac equations given by
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(
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(
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Cvuv

)2
)

(4)
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=
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ρLi
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Hi

Li

(5)

V̇i = V̇s +V̇p (6)

Ph = ηh (pt− pa)V̇p, (7)

where the intake, the surge tank, and the penstock are sub-
scripted with i, s and p, respectively. h is is the water level
and V̇ is the volumetric flow rate. Readers are requested
to follow (Pandey et al., 2021) for notation.

3.2 Solar Power and Consumer Load
Solar power is calculated based on the solar irradiance kI
and given by

Ps = ηsAkI (8)

where ηs is the efficiency of a solar panel and A is the
effective area of panels in the solar farm.

In contrast, the consumer load P̀ is modeled with the
measurement data.

3.3 Grid
The grid is modeled with the swing equation given as

d f
dt

=
Pm−Pe

4π2 f J
(9)

where Pm is the mechanical power input into the microgrid
with

Pm = Ph +Ps (10)

and Pe is the electrical power load from the grid. The total
inertia of the grid is represented by J.

3.4 Canonical Representation of the Model
The differential algebraic equations (DAEs) can be written
in a canonical form of

dx
dt

= f (x,z,u,w;θ)

0 = h(x,z,u,w;θ)

y = g(x,z,u,w,v;θ) ,

where x, z, u, and θ represents system states, algebraic
variables, inputs, and parameters respectively. w is the
process disturbances and v is the measurement noise. For
the microgrid shown in Figure 1 a) represented by mathe-
matical equations from Eqs. (1) to (10), we have

x =
(
h,V̇s,V̇p, f

)
z =

(
pt, pn,V̇i,Ph,Pm

)
u = uv

w = Ps

θ = (H j,L j,D j,A j,Hr,ηh,Cv) ,∀ j = {i,s,p} (11)
y = Pe,

where the intermittent solar power Ps is considered as pro-
cess disturbance and all states are assumed to be mea-
sured.

3.5 Case Study
It is of interest to see how a 5 MW hydro power plant
can be used for balancing a 4 MW rated consumer load
supplied with solar power. Table 1 lists specifications for
power plants containing rated information, geometrical di-
mensions and efficiencies.
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Table 1. Specifications of the power plants.

Parameters Symbols Values
Hydro power plant:
Rated power Pr

h 5 MW
Nominal head, discharge, valve signal Hn,V̇ n,un

v 120m,4m3/s,0.95120 m, 44 m3/s,0.95
Height difference of reservoir, intake, surge
tank and penstock

Hr,Hi,Hs,Hp 20m,20m,50m,70m

Length of intake, surge tank and penstock Li,Ls,Lp 1000m,50m,80m
Diameter of intake, surge tank and penstock Di,Ds,Dp 3m,2m,2m
Hydraulic efficiency of hydro turbine ηh 0.96
Inertia of turbine-rotor Jh 1 ·103 kgm2

Solar power plant:
Rated power and irradiance Pr

s ,k
r
I 2.5MW,600W/m2

Effective area of total panels A 25000m2

Solar panel efficiency ηs 0.14

4 Deterministic MPC
A deterministic MPC can be formulated assuming known
inputs from solar power Ps and consumer load P̀ . We want
to formulate a setpoint tracking problem for P̀ .

4.1 Cost Function
The chosen cost function for formulating optimal control
problem (OCP) for the deterministic MPC is taken from
(Pandey et al., 2021) given as

min
uk

Jd =
Np

∑
k=1

(yk− rk)
2 + p ·∆u2

k−1 (12)

s.t.
xk+1 = f (xk,zk,uk,wk;θ)

0 = h(xk,zk,uk,wk;θ)

yk = g(xk,zk,uk,wk,vk;θ)

x` ≤ xk ≤ xh

u` ≤ uk ≤ uh

∆u` ≤ ∆uk ≤ ∆uh,

where ` and h represents low and high bounds for states,
inputs, and rate of change of inputs. Np is the number
of future samples in the prediction horizon where OCP is
formulated. p is scalar weight for tuning the controller. r
is the reference taken for consumer load power P̀ .

4.2 OCP Formulated in JuMP.jl
The internal structure of OCP is formulated in the Ju-
lia language1 using JuMP.jl (Dunning et al., 2017), a Ju-
lia package for modeling mathematical optimization prob-
lems. JuMP provides an easy way of describing optimiza-
tion problems containing linear and nonlinear constraints.
JuMP also supports automatic differentiation (AD) using
the package ForwardDiff.jl (Revels et al., 2016) which is

1https://julialang.org/

Figure 2. OCP formulated for deterministic MPC in JuMP.jl.

a most useful property rarely supported by other mod-
eling languages. Several open-source solvers are avail-
able for solving models described in JuMP. Our choice
of JuMP solver is Ipopt2. We have represented the plant
by a Modelica model, and the controller model is imple-
mented in Julia. These interact via OMJulia3. OMJulia
is an OpenModelica-Julia interface providing application
programming interfaces (APIs) for advanced model anal-
ysis in Julia.

Figure 2 shows the internal structure of OCP formu-
lated in JuMP.jl for deterministic MPC. In the figure,(

x∗(1),u∗(1),y∗(1)
)

represents first optimal values of states,
control inputs and control outputs from OCP. We have as-
sumed that all the states are known. These optimal con-
trol inputs are then applied to the emulated real plant de-
veloped in OpenModelica4. Similarly, both the optimal
states and the control inputs are applied to the mathemat-
ical model. The states, inputs, and outputs are accessed
through OMJulia APIs for further iteration.

2https://github.com/jump-dev/Ipopt.jl
3https://github.com/OpenModelica/OMJulia.jl
4https://www.openmodelica.org/
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5 Stochastic MPC
Several stochastic MPC algorithms can be used for han-
dling uncertainty in the system (Camacho and Bordons,
2016). A comparative study on stochastic MPC is given
in (González et al., 2020). Comparison of the different
stochastic MPC algorithms are out of the scope of this pa-
per. In this paper, more focus is on the implementation
of the dynamic formulation of the microgrid with stochas-
tic solar power and load power. We have chosen multi-
objective optimization (MOO) based stochastic MPC with
similar formulation from the previous work our institution
(Menchacatorre et al., 2020) as it is easier to formulate and
have a quick analysis. In MOO-based stochastic MPC, we
create scenarios of random disturbances; and in our case
the random disturbances are Ps and P̀ . Each scenario is
then assigned with an objective function or a constraint.
When each of the objective functions is summed together
by assigning weights to each of the objectives, a single ob-
jective function is created which is called a weighted-sum
MOO.

5.1 Cost Function
The MOO based cost function for Ns number of stochastic
scenarios for Ps and P̀ is given as

min
uk

Js =
Ns

∑
s=1

(
Np

∑
k=1

(ys
k− rs

k)
2 + p ·∆u2

k−1

)
(13)

s.t.
xs

k+1 = f (xs
k,z

s
k,uk,ws

k;θ)

0 = h(xs
k,z

s
k,uk,ws

k;θ)

yk = g(xs
k,z

s
k,uk,ws

k,v
s
k;θ)

x` ≤ xs
k ≤ xh

u` ≤ uk ≤ uh

∆u` ≤ ∆uk ≤ ∆uh,

where we have considered each of the scenarios to be
equally important; thus the total objective is formulated
summing objective function of each of the scenarios. This
cost function is used for formulating OCP for stochastic
MPC. A stochastic MPC is formulated by solving OCP for
each iteration considering Np number of future samples in
the prediction horizon.

5.2 Stochastic Scenarios for Ps and P̀
Real measurement for solar irradiance is taken for Kjølnes
Ring 56, Campus Porsgrunn, University of South-Eastern
Norway, 9.6714 longitudes and 59.13814 latitudes from
www.solcast.com. The measurement data is updated at
every 5min throughout the day. The real measurement
for consumer load is taken for monthly hourly averaged
load for Norway from ENTOS-E5. The magnitude of mea-
surement data for electrical demand is modified as per our
case study with a microgrid with a power capacity of 5

5https://www.entsoe.eu/data/power-stats/

Figure 3. Scenarios generation based on the past measurement.

Figure 4. Scenarios generation for P̀ .

MW keeping the load dynamics preserved in hourly data.
Furthermore, the hourly sampled data is interpolated for
creating consumer load with a sampling of 5min.

Between each of the measurements, scenarios are gen-
erated using a stochastic evolution equation considering
a Brownian motion6. The stochastic evolution equation
based on the Brownian motion is used as a generatrix and
a straight line between the two measurements is used as a
directrix.

Figure 3 shows the method for generating future scenar-
ios based on the past and current measurements sampled

6https://en.wikipedia.org/wiki/Brownian_motion
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at 5min. In the figure, the future measurement F is pre-
dicted from past measurement P and current measurement
C. Assuming measurement P,C and F are co-linear we
have

F−C
(m+2)− (m+1)

=
C−P

(m+1)−m
,

which gives
F = 2C−P.

The stochastic scenarios are then creating using Brownian
motion between current measurement C and future predic-
tion F .

Figure 4 a) shows consumer load on a typical day with
measurement data taken at 5min. Figure 4 b) shows rate
of change of consumer load for ∆t→ 5min where the data
points within a day consist of 288 data points and repre-
sented as P̀ = {P̀ [m] ∀m ∈ 1 : 288}. The figure shows
that the bound for ∆P̀

∆t=5min lies in [−0.002,0.009]. The
standard deviation for Brownian motion for creating sce-
narios is then set to > 0.011. Figure 4 c) shows the fu-
ture predicted P̀ from the past measurement P and cur-
rent measurement C considering co-linear existence be-
tween P,C and F as shown in Figure 3. For P̀ in Figure
4 b) we have assumed that P = P̀ [99], C = P̀ [100] and
F = P̀ [101]. Figure 4 c) shows 20 scenarios generated us-
ing Brownian motion. The same procedure is applied for

Figure 5. Scenarios generation for Ps.

predicting Ps as shown in Figure 5 where the standard de-
viation for Brownian motion is set to > 0.3 which is com-
paratively larger than in case of consumer load scenarios
generation. The standard deviation in scenarios is much
higher in case of prediction of Ps because of the clouds.
A more rigorous algorithm for predicting scenarios of Ps
depends on the information of clouds injected into the pre-
diction algorithms. Since we have only focused on formu-
lation of stochastic MPC, we neglected the part of con-
sidering cloud information while generating scenarios for
Ps.

5.3 Stochastic OCP
We have considered the prediction horizon of Np = 10.
The discretization time of the controller for SMPC is cho-
sen to be ∆t = 5s based on our previous work for a micro-
grid with around 5MW (Pandey et al., 2021). For moving
along the stochastic prediction horizon of Ps and P̀ , the
states and the outputs are updated taking the mean of the
first value of each of the scenarios of states and outputs
from the stochastic OCP.

6 Results and Discussions
6.1 Deterministic MPC
Figure 6 shows setpoint tracking formulation of consumer
load P̀ using both deterministic MPC and a PI controller.
The MPC is characterized by tuning parameter p = 0.1,
Np = 5 and ∆t = 1s. Similarly, the PI controller is charac-
terized with Kp = 0.05 and Ti = 3s. The initial tuning of
the PI controller is based on the SIMC method (Skoges-
tad, 2001) and the final tuning was performed manually.
The setpoint tracking of P̀ using the PI controller is per-
formed using OpenHPL in OpenModelica while the MPC
is formulated as in Figure 2 in conjunction with real plant
considering from OpenHPL and the control model is for-
mulated in Julia. The control model is discretized using
Euler discretization.

Figure 6 a) shows the setpoint tracking using both MPC
and PI controller. A step change in P̀ is performed
at time =25s while a step change in Ps is performed at
time =50s. Figure 6 b) shows the hydro power dispatched
into the grid from both the MPC and the PI controller. The
control input, turbine valve signal uv, for controlling the
flow rate through the penstock for balancing the load and
the generation is shown in Figure 6 c). Similarly, Figure 6
d) shows the grid frequency f of the microgrid. In Figure 6
c) we see that uv in case of the MPC is smoother and less
fluctuating than uv in case of the PI controller. Further-
more, since an MPC works based on the future horizon, in
Figure 6 c) the turbine valve signal uv in case of the MPC
is increased from 0.4 to 0.6 at time≈23s keeping the con-
straint in grid frequency for f ≈ 50Hz (small deviation not
shown in the figure). Contrary to the performance of the
MPC, from the figure the turbine valve signal is increased
exactly at time =25s while the grid frequency f fluctuates
from 50Hz to 47.5Hz. The PI controller is able to regain
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Figure 6. Setpoint tracking using deterministic MPC and PI
controller.

the grid frequency around 50Hz after ≈ 5s. Similar, re-
sults can be seen in the case of hydro power Ph dispatched
into the grid and the electrical power Pe. The similar dy-
namics of P̀ and Pe with uv in case of both the MPC and
the PI controller can be related from Equations (4), (7),
and (9). Overall, the performance of the MPC is better

than that of the PI controller.

6.2 Stochastic MPC
Figure 7 shows the tracking of the future predicted con-
sumer load P̀ based on the future prediction of solar
power Ps into the grid where both future predicted P̀ and
Ps are taken from Section 5.2. The MOO based stochas-
tic MPC is characterized by Np = 10, Ns = 20, p = 0.1
and ∆t = 5s. The next scenarios for P̀ and Ps are updated
every 5min = 300s using the current measurement C and
the past measurement P as shown in Figure 3.

Figure 7 a) shows the turbine valve signal uv generated
for each of the scenarios considering a deterministic MPC.
The results for uv from the deterministic MPC for each of
the scenarios are considered as an ensemble of trajecto-
ries for uv. In the figure, uv (MOO) is the results from the
stochastic MPC based on MOO in tandem with the ensem-
ble of results from deterministic MPC for each of the sce-
narios. The fluctuation in the grid frequency is negligible
as in the range of 1 ·10−4 rad/s for both the deterministic
and stochastic case as shown in Figure 7 f). Figure 7 b), c),
d) and e) show the results from both the deterministic and
stochastic case for hydro dispatched Ph, electrical power
into the grid Pe, flowrate into the penstock V̇p, and the wa-
ter mass oscillation inside the surge tank h, respectively.

7 Conclusions and Future Work
In this paper formulation of a deterministic and a stochas-
tic MPC is performed for a microgrid supplied with in-
termittent solar power and dispatchable hydro power for
constraining the grid frequency at f = 50Hz. A determin-
istic MPC is compared with a PI controller. Furthermore,
for the stochastic MPC, the scenarios for solar power and
the consumer load are predicted using Brownian motion
using past and current measurement data. A MOO-based
stochastic MPC is implemented.

Results indicate that the deterministic MPC performs
better for constraining the grid frequency of the micro-
grid at f = 50Hz than to the PI controller. The stochastic
MPC based on MOO shows better result than determinis-
tic MPC while constraining the grid frequency.

Future work includes the implementation of stochastic
MPC with scenario generation for solar power with the
inclusion of cloud factors.
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