

University of South Eastern Norway
Faculty of Technology and Maritime Sciences

-
Master Thesis in Systems Engineering with Embedded Systems

Kongsberg Department of Engineering
June 10, 2021

Biplav Karna
UAV path planning in search and rescue (SAR) missions

i

Abstract

Unmanned Aerial Vehicle (UAV) and Search And Rescue (SAR) missions are hot topics
of research these days. UAVs come in a wide range with different capabilities. Due to
their applicability, they are being used for trivial as well as complex missions. The fre-
quent mishaps and disasters have brought SAR into the limelight. SAR missions have
unfavorable environments and short response times. SAR operations utilize various
resources. Among them, UAV is one of the key resources, and it plays a vital role in
such missions. This thesis explores the path planning of UAVs in SAR missions. Some
of the area coverage algorithms have been considered and simulated in SITL with PX4
flight software stack in Gazebo. Quadcopter has been considered for the area coverage
algorithms. Post-flight analysis of logs has been presented. Comparison between these
algorithms has been deduced. Rapidly exploring Random Trees (RRT) has been con-
sidered as a target reaching algorithm in the SAR mission. RRT has been implemented
in a 3D environment, modeling UAV as a 3D figure. Biased and unbiased flavors of
Rapidly exploring Random Trees (RRT) have been implemented, and their compari-
son is discussed.

ii

Acknowledgements
I want to express my gratitude to my supervisor Professor Antonio L. L. Ramos at the
University of South-Eastern Norway (USN) for providing me this thesis topic and for
his guidance throughout the process.
I am grateful to my co-supervisor Professor Paulo Rosa from the Military Institute of
Engineering (IME), Brazil, for his inputs and suggestions to improve this thesis.
The collaboration with Professor Paulo Rosa was made possible owing to the Bra-
nortech project (https://app.cristin.no/projects/show.jsf?id=2488728), a col-
laboration between USN and Norwegian University of Science and Technology (NTNU),
plus IME and the Federal University of Rio de Janeiro (UFRJ) in Brazil. This project is
co-funded by the Norwegian Agency for International Cooperation and Quality En-
hancement in Higher Education (Diku) and the Coordination for the Improvement of
Higher Education Personnel (CAPES), Brazil.

I am thankful to USN for the opportunity to pursue my masters. I am very thankful to
the academic staff at USN who tried their best to share their experience and knowledge
with the students.
I am grateful to my friends at USN, Sandeep Shivakoti, Leila Mozaffari, Victor Johan
Hansen, and Deivydas Kazokas. Their presence has helped me in many subtle ways,
which I can’t express in words. I especially want to thank my friend Ramesh Timsina
for all the support and motivation. I am indebted to my family for their love and
support. I want to thank my cousin, Saurav Kantha, for the discussions.
Finally, a special thanks to the open-source community without which this work would
not be possible.

Biplav Karna
Kongsberg, Norway, June 10, 2021

https://app.cristin.no/projects/show.jsf?id=2488728

iii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1
1.1 Background and Motivation . 2
1.2 Current State of the Art . 2
1.3 Objective . 3
1.4 Contributions . 3
1.5 Outline . 3

2 Background 4
2.1 Unmanned Aerial Vehicle . 4

2.1.1 UAV Classification . 5
2.1.2 Guidance, Navigation and Control 5
2.1.3 Regulation and Safety . 6

2.2 Search and Rescue Missions . 7
2.3 Path Planning . 7

2.3.1 Strategies . 9

3 UAV Navigation and Path Planning 11
3.1 Frame of Reference . 11

3.1.1 Geodetic Co-ordinate System . 11
3.1.2 Earth Centered Earth Fixed (ECEF) Co-ordinate System 12
3.1.3 Local East, North, Up (ENU) Co-ordinate System 13
3.1.4 Local North, East, Down (NED) Co-ordinate System 13
3.1.5 Vehicle Carried North East Down (NED) Co-ordinate System . . 13
3.1.6 Body Co-ordinate System . 14

3.2 UAV Maneuverability . 14
3.2.1 PID Control . 15
3.2.2 Quadcopter Maneuverability . 16

3.3 Path Planning . 18
3.3.1 Graph Theory . 19

Graph Theory and Path Planning 20

4 Path Planning Algorithms 21
4.1 Coverage Path Planning . 21

4.1.1 Parallel Line Search . 22
4.1.2 Creeping Line Search . 23
4.1.3 Spiral Search . 24

4.2 Target Reaching Path Planning . 28

iv

4.2.1 Rapidly exploring Random Trees (RRT) 28

5 Tools and Software 30
5.1 Gazebo . 30
5.2 Px4 . 31

5.2.1 Px4 Architecture . 31
5.2.2 Px4 Simulation . 31

5.3 QGround Control . 34
5.4 MAVLink and MAVSDK . 34
5.5 Flight Review . 34

6 Implementation and Results 35
6.1 System Description . 35
6.2 Coverage Area Implementation . 36

6.2.1 Setup . 36
6.2.2 UAV Modeling . 37
6.2.3 Environment Modeling . 37
6.2.4 Region of Interest and Height . 37
6.2.5 Parallel Line Search . 37
6.2.6 Creeping Line Search . 38
6.2.7 Spiral Search (Long Edge First) . 41
6.2.8 Spiral Search (Short Edge First) . 41
6.2.9 Comparison of the Algorithms . 41

6.3 Target Reaching Path Planning . 45
6.3.1 UAV Modeling . 45
6.3.2 Environment Modeling . 45
6.3.3 Obstacle Detection . 45
6.3.4 Unbiased RRT . 47
6.3.5 Biased RRT . 47
6.3.6 Comparison of Biased and Unbiased RRT 49

7 Conclusion and Future Work 52
7.1 Conclusion . 52
7.2 Future Work . 53

A MAVSDK Main Code 54

B Coverage Path Planning Code 55

C RRT Code 65

v

List of Figures

1.1 A glimpse of Nepal earthquake 2015. Picture Credit: Daniel Berehulak for
New York’s Time. 1

2.1 UAV classification based on flying mechanism. 6
2.2 Concept of operation of GNC in UAV based on [1]. 6
2.3 Path planning levels based on [2]. 8

3.1 Geocentric and Geodetic co-ordinate system. Source:GPS For Land Sur-
veyors [3]. 12

3.2 Earth-centered earth-fixed (ECEF) co-ordinate system. Source:GPS For
Land Surveyors [3]. 12

3.3 Local east, north, up (ENU) co-ordinate system. Source:GPS For Land
Surveyors [3]. 13

3.4 Co-ordinates system of UAV and ground. 14
3.5 PID control Diagram. 16
3.6 Quadcopter and its orientations. 17
3.7 Variation of rotors’ spins for movement of Quadcopter. 17
3.8 Region of interest with obstacles and no fly zones. 18
3.9 Example of UAV path. 19
3.10 Types of graphs. 20

4.1 Sweep width and height for a single camera. 21
4.2 Parallel Line Search. 22
4.3 Creeping Line Search. 24
4.4 Spiral Search. 24
4.5 Rapidly exploring Random Trees (RRT). 28

5.1 Gazebo client window. 30
5.2 Px4 Architecture. Courtsey:Dronecode[4]. 32
5.3 Px4 High Level Flight Stack. Courtsey: Dronecode[4]. 32
5.4 Px4 HITL. Courtsey: Dronecode[5]. 33
5.5 Px4 SITL. Courtsey: Dronecode[5]. 33
5.6 QGroundControl GUI. 34

6.1 Setup for coverage algorithm simulation. 36
6.2 Iris 3DS Quadcopter Model. 37
6.3 Environment for simulation. 38
6.4 Parallel line search mission analysis. 39
6.5 Creeping line search mission analysis. 40
6.6 Spiral long edge first mission analysis. 42
6.7 Spiral short edge first mission analysis. 43
6.8 Spherical model of an UAV. 45

vi

6.9 Environment model. 46
6.10 Obstacle detection with intersection. 46
6.11 Unbiased RRT algorithm. 48
6.11 Unbiased RRT algorithm (continued). 49
6.12 Biased RRT algorithm. 50
6.12 Biased RRT algorithm (continued). 51

vii

List of Tables

6.1 Details of components of computer used. 35
6.2 List of tools and their version. 35
6.3 Used python libraries and their versions. 36
6.4 Comparison of algorithms. 44

viii

Acronyms

2D 2-Dimensions. 2, 9, 52, 53

3D 3-Dimensions. i, 2, 4, 9, 18, 19, 28, 45, 52, 53

A* A Star. 2, 8, 9

API Application Programming Interface. 31, 34

CCW Counter Clock-wise. 16, 25

CG Centre of Gravity. 14

CW Clock-wise. 14, 16, 25

DOF Degree of Freedom. 14

DTAM Dense Tracking And Mapping. 2

EASA European Union Aviation Safety Agency. 7

EU European Union. 7

FastRTPS Fast Real Time Publish Subscribe. 31

GNC Guidance Navigation and Control. v, 4–6, 31

GPS Global Positioning System. 5, 11, 31, 34, 37

GUI Graphical User Interface. 30, 34

HITL Hardware In The Loop. v, 31, 33, 34

HTOL Horizontal Take Off and Landing. 5

IMU Inertial Measurement Unit. 31, 37

INS Inertial Navigation System. 5

LSD-SLAM Large-Scale Direct Monocular SLAM. 2

MAVLink Micro Air Vehicle Communication Protocol. 34

PID Proportional Integral Derivative. 15

PTAM Parallel Tracking And Mapping. 2

ix

RAM Random Access Memory. 30

RC Remote Control. 34

ROS Robot Operating System. 30

RRT Rapidly exploring Random Trees. i, v, 2, 3, 8, 28, 29, 45, 47, 49, 52

SAR Search And Rescue. i, 3, 4, 28, 49, 52, 53

SITL Software In The Loop. i, v, 3, 31, 33–36, 52

SLAM Simultaneous Localization And Mapping. 53

TCP Transmission Control Protocol. 31

UART Universal Asynchronous Receiver Transmitter. 31

UAV Unmanned Aerial Vehicle. i, iv, v, 2–8, 11, 14–16, 18, 21, 28, 31, 34, 36–38, 41, 45,
47, 49, 52, 53

UDP User Datagram Protocol. 31, 34

USB Universal Serial Bus. 31

VTOL Vertical Take Off and Landing. 5

1

Chapter 1

Introduction

FIGURE 1.1: A glimpse of Nepal earthquake 2015. Picture Credit: Daniel Berehulak for New York’s
Time.

Unmanned Aerial Vehicle (UAV), also popularly known as a drone, has become a
hot topic in current days. Its application is being explored in a wide range of areas.
The recent progress in technology has led to the development of UAVs with sizes from
few inches to 80 feet in length. Various types of advanced sensors have enhanced the
capabilities of UAVs for being autonomous and efficient. The advancement in battery
technologies has made long flight time possible. In various ways, autonomous UAVs
can benefit in search and rescue missions. Surveying an area, searching for persons
and items of interest, localizing and mapping of the area, reaching out to the places
where humans can’t reach easily are some applications where UAVs can be handy in
SAR missions.

Chapter 1. Introduction 2

1.1 Background and Motivation

The first UAV dates back to 1783, a hot air balloon which demonstrated unmanned
aircraft [6]. In 1849, Austria used unmanned balloons to attack Venice. It was the first
military use of UAV [7]. The first modern UAV was developed by UK Royal Air Force
in 1935[8]. Now it’s being used for multiple purposes like cinematography, agriculture,
toys, advertisement, military and defense, search and rescue, recreation, and others[9].
The ability of the latest drone to maneuver efficiently and carry enough load makes it
suitable for search and rescue missions. Today, autonomous UAVs and the collective
work of UAVs are possible due to the achievements in artificial intelligence.

Search and rescue (SAR) operations are carried out after natural disasters, catastro-
phes, accidents, mishaps, and other incidents. Most of the countries which have access
to the ocean have search and rescue squad. The Maritime sector exercises frequent
search and rescue operations. The first SAR operation that was well documented was
a maritime incident, where it was carried out after the wreck of the Dutch merchant
ship Vergulde Draeck near Australia in 1656 [10]. Incidents in which SAR operations
are required occur frequently. The search areas are usually large, having unfavorable
terrain, and sometimes difficult to access.

UAVs are being used for SAR operations for surveying the area, tracking the lost
person. UAVs are used alongside other machines and humans for the mission. UAV
can also be used for creating a map of the area where the SAR operation takes days, like
in earthquakes, tsunamis, etc. Planning the path for UAV is crucial in such situations.

1.2 Current State of the Art

A UAV has to avoid the obstacles and maneuver in the free space utilizing the least of
resources for successful completion of a mission. The planning of this maneuverability
of a UAV or multiple UAVs is path planning. Path planning determines the direction
and length of path segments and their interconnection. The dynamics parameters like
thrust, speed, acceleration, etc are not emphasized in path planning, unlike motion
planning and trajectory planning. The path planning algorithms are designed for 2D
and 3D environment. The many 2D algorithms cannot be extended for 3D environ-
ment. The path determination for 3D is NP-hard[11] [12]. This means no algorithm is
efficient to solve the problem in polynomial time. There is great scope of research in
path planning in 3D environment.

Till recent days, many path planning algorithms have been designed which are
applicable to platform like UAV. The path planning algorithms are associated with
the type of objective of the mission. The objectives are localizing and mapping the
area [13], area coverage [14], and reaching the target point. Back and forth [15], sector
search [15], spiral [15], barrier patrol [15], genetic algorithm [16], and chaotic ant colony
optimization to coverage [17] [18] are algorithms for area coverage. Dijkstra[19], A*
[20] and its variants, and RRT[21] and its variants are algorithms used to reach the
target point. MonoSLAM[22], PTAM[23], DTAM[24], LSD-SLAM[25] are algorithms
for simultaneous localization and mapping.

Chapter 1. Introduction 3

1.3 Objective

The main objective of this thesis is to study existing path planning algorithms that can
be applicable to UAV in the SAR mission. The focus is on algorithms related to cov-
erage of the region of interest and non-deterministic path planning to reach the target.
The quadcopter model of UAV is taken into consideration to simulate and implement
the algorithms. The aim is to simulate the algorithms in Software In The Loop (SITL)
mode and provide the statistical analysis. The detection of obstacles and perception of
environment with the sensors are not in the scope of this work. The tasks involved in
this work are:-

• Literature review on current achievement in path planning algorithms

• Literature review on UAV and SAR

• Research on available simulation tools for UAV

• Implementation of algorithms relevant to SAR mission, using frameworks and
tools

• Analysis of simulation

1.4 Contributions

Selected coverage path planning algorithms and target reaching algorithms were stud-
ied for applicability in SAR missions. Parallel line, creeping line, spiral long edge first,
and spiral short edge first path planning algorithms were implemented with regard to
region coverage. The implementations of these algorithms were simulated using the
Gazebo simulator with a quadcopter and PX4 [4] software stack in SITL. The logs of
these algorithms were analyzed after the completion of the missions. This thesis pro-
vides the comparison of these algorithms based on the logs. In this work, the RRT al-
gorithm was implemented with regard to the target reaching algorithm. Two versions
of RRT have been implemented, one without bias and the other with bias. Modeling of
environment and UAV for the RRT is discussed. Comparison of biased and non-bias
RRT is drawn.

1.5 Outline

The remainder of this document is formatted as follows. Chapter 2 provides the back-
ground of SAR, UAV and UAV path planning. Chapter 3 presents reference of frames,
UAV maneuverability and graph theory. Chapter 4 provides the details of algorithms
selected for simulation and evaluation. Chapter 5 documents the description of tools
and the software used for implementing the algorithms. Chapter 6 provides the imple-
mentation and results of the simulation. Chapter 7 concludes the thesis with observa-
tion and future works.

4

Chapter 2

Background

This chapter provides the background of UAV, Search And Rescue (SAR), and path
planning in general. It provides a description of the uses of UAVs, their classifica-
tion, GNC, and regulations and safety. Various phases of SAR are mentioned. Various
aspects and strategies of path planning are discussed here.

2.1 Unmanned Aerial Vehicle

An Unmanned Aerial Vehicle (UAV) is an aircraft that flies and carries out tasks with-
out a human pilot inside it. UAVs are most commonly referred to as drones. Its oper-
ation is carried out by remotely based humans via the controller or autonomously via
intelligent software. UAVs are used in agriculture, surveillance, cinematography, recre-
ation, military and defense, search and rescue, advertisement, and others [9]. Based on
the market, the sector of use can be broadly classified into categories toy, hobby, profes-
sional, commercial, and military [26].

Children are the primary target for toy drones. These are low-cost drones having a
minimal number of sensors. These are used for recreational activities by kids.

In the hobby sector, hobbyists and enthusiasts use drones for capturing outdoor
activities and sports. Videos of such activities shot from drones are posted by many
professionals and amateurs athletes on multiple video streaming websites as well as
on social websites. These drones have an emphasis on ease of control and image and
video capturing capabilities.

Cinematography, surveillance, and agriculture are the professional sectors of the
drone market. In cinematography, images from various angles are needed. UAV can
take images from a wide range of angles. It can be used to take wide-angle image
frames, where a large area needs to be in one frame. Using optical zoom of camera
and moving drone far and near, provide a good way to zoom in and zoom out the
scenes. Multiple drones are used in an array to create 3D videos and images. The use
of drones in cinema has made the experience better and lively. When it comes to large
area surveillance, drones are preferred. The forest, crop fields, and critical areas are
monitored round the clock by drones. In recent days drones are used to monitor huge
public gatherings, mobs, and public demonstrations. In the agriculture sector, apart
from surveillance, drones are used for the dispersal of seeds, watering the field, and
spraying insecticides and pesticides. DJI Agras-T16 [27] and DJI MG-1S [28] are drones
made for agriculture by DJI.

In commercial space, custom-designed UAVs are manufactured for special purposes.
It also includes the services associated with it. It includes UAVs for providing internet
to remote areas, UAVs as telecommunication fronthaul, etc. Amazon’s prime air[29]

Chapter 2. Background 5

service delivers items by drones. The items are bought by customers online, and the
items are picked from the warehouse and delivered to the customer’s address by au-
tonomous drones. The service was started on December 7, 2016. In 2016, Facebook
experimented with a solar-powered drone as an atmospheric satellite to provide in-
ternet to remote places [30]. The drone named Aquilla acted like a relay for ground
stations and communicated through laser beams.

UAVs used in the military sector are for combat and defense purposes, usually in
a swarm of drones configuration. These are used for monitoring, supporting ground
forces, and attack the targets. These carry ammunition like missiles and bombs with
them. MQ-9 Reaper [31] used by U.S. Air Force and Bayraktar TB2 [32] used by Turkish
Air Force are popular combat drones. These drones are partially autonomous, i.e.,
require a human operator for missions.

2.1.1 UAV Classification

UAVs come in various shapes and sizes, with different flying mechanisms and pay-
load capacity. UAVs can operate with different levels of autonomy. The combination
of these factors and capabilities are used to design UAVs for applicability in specific
projects. UAVs can be categorized using different characteristics as a basis.

The classification of UAVs based on the flying mechanism is shown in Figure 2.1.
Fixed-wing UAVs have large wings like an aircraft and need a runway to take off and
land. This mechanism of flight is termed Horizontal Take Off and Landing (HTOL).
These can glide in the air and have a higher speed than rotorcraft. Their performance
in turning with different angles is not as par to rotorcraft.

Rotorcraft UAVs utilizes rotor blades for take-off and landing. These can take-off
and land vertically and don’t require a runway. This mechanism is known as Vertical
Take Off and Landing (VTOL). They have very good maneuverability with different
angles in 3-dimensional space. They can hover over a point with stability. These have
less fuel/energy efficiency and have a short flight range. Their speed is comparably
less than other types. They are further classified into helicopter and multi-rotor UAVs.
Helicopter, also known as a single-rotor UAV, has a single large rotating blade for thrust.
Multi-rotor UAVs have multiple rotors, and generally, they come with 4 rotors (quadro-
tor), 6 rotors(hexarotor), 8 rotors(ocatarotor), and 12 rotors (dodecarotor).

2.1.2 Guidance, Navigation and Control

Guidance, navigation, and control (GNC) are three aspects that every UAV posses for
smooth functioning during flight. A high-level concept of operation is presented in
Figure 2.2.

Navigation infers to moving in a stipulated path with stipulated motion parameters.
UAV requires a three-dimensional co-ordinate system to navigate in an environment.
The angles made by UAV with the x-axis, y-axis, and z-axis are roll, pitch, and yaw
respectively. The time varying factors like speed and acceleration along the 3 axes
are also required for navigation. The navigation system utilizes Global Positioning
System (GPS), Inertial Navigation System (INS), and gyro sensors to determine these
parameters.

Chapter 2. Background 6

FIGURE 2.1: UAV classification based on flying mechanism.

Guidance ensures that the UAV is in the expected state and follows the planned path
during the mission. The guidance system in UAV continuously monitors the naviga-
tional parameters against the expected path and motion during the course of the flight.
If any deviation is detected, corrective control signals are forwarded to the control sys-
tem.

Control means controlling the thrust, elevation, speed, angles, etc., to have desired
motion. The Control system receives the information from the guidance system and
translates to the signals to the actuators and sensors.

FIGURE 2.2: Concept of operation of GNC in UAV based on [1].

2.1.3 Regulation and Safety

UAVs are regulated by a government body, and may vary from country to country.

Chapter 2. Background 7

In Europe, European Union Aviation Safety Agency (EASA) drafts the regulation for
UAVs. EASA categorizes UAVs into open, specific, and certified categories [33]. UAVs
in the open category don’t require any authorization or certification. These are mostly
lightweight drones used for personal use and are operated within the area of sight.
Specific category UAVs require operational authorization from the related authority
before use. Certified category UAVs need to get certification according to the regula-
tion framed in [33]. The minimum age of a remote pilot is 16 years [33]. Each member
country in EU, decides the geographical zones and altitude of flight of UAVs[33].

2.2 Search and Rescue Missions

Search and rescue (SAR) refers to the operations which are carried out to search for,
and provide aid to, persons, or things which are, or are feared to be, in affliction or
imminent danger [34]. Such operations are generally carried out after catastrophes,
disasters, accidents, mishaps, etc. Ground personals, vehicles, naval vessels, dogs, air-
crafts, ground robots, and UAVs are the resources used for SAR. The area of operation
can be underwater, underground (e.g. cave, tunnels), on water, and on the ground.

UAVs are used in SAR operations along with on-ground systems and personnel.
Used UAVs are either autonomous or teleoperated. In most cases, UAVs’ role in SAR
is limited to search for the person and to provide supplements. UAV path determi-
nation is crucial in these tasks to ensure people are rescued as soon as possible. SAR
operations are carried out in various environments like combat, maritime, low lands,
cave, and mountain areas. Based on the areas of exploration, the challenges of the
mission differ.

The International Maritime Organisation (IMO) categorized SAR operations in stages
as follows [35]:

Awareness Stage: Local rescue body is informed about the incident in the awareness
stage.

Initial Action Stage: Information about the incident is gathered, and the degree of
emergency is evaluated.

Planning Stage: A comprehensive plan is laid out for the mission.

Operations Stage: The plan is executed in the operations stage.

Conclusion Stage: Mission is concluded with a report.

2.3 Path Planning

As mentioned in Section 1.2, path planning can be broadly categorized into three cate-
gories, i.e., localizing and mapping, coverage of the area, and reaching the target. The
problem of path planning, in general can be put into hierarchical levels [2], as shown
in Figure 2.3. A platform is any system that is used in a mission. It can be any type of
UAV or other robot. The first level deals with the degree of freedom and dynamics of
the platform.

Chapter 2. Background 8

The first level is divided into 3 types:

• Holonomic

If all degrees of freedom are controllable, then the platformm is called holonomic.
The holonomic constraints depend on the position parameters and time but not
on time derivative parameters like speed.

• Non-Holonomic

The platform for which the time derivative parameters are the constraints for
movement is termed non-holonomic. Cars and fixed-wing UAVs are non-holonomic
platforms.

• Kinodyamics

The problem which has kinematics and dynamics constraints fall under this cat-
egory.

FIGURE 2.3: Path planning levels based on [2].

The second level addresses the approach of finding the path. Path planning algo-
rithms like Dijkstra[19] and A* [20] require environment modeling to find solutions.
This means the information of the environment is required prior to finding the path.
Algorithms like RRT[21] don’t need environment modeling priorly.

The third level is about the architecture of the path planning system. The compu-
tation of path planning can be online, i.e., remotely on a server or offline, i.e., on the
platform. Some algorithms perform better online and some perform better offline.

The fourth level differentiates the nature of traversal by the platform in the envi-
ronment. In the deterministic approach, the paths and waypoints are pre-determined
for a platform. Dijkstra[19] and A* [20] are deterministic approach. In the probabilistic
approach, the paths and waypoints are dynamic and are determined during the mis-
sion by sensing the environment and sharing the information. RRT[21] is one of the
probabilistic algorithms.

Chapter 2. Background 9

2.3.1 Strategies

Solving path planning is a challenging task. Various strategies have been developed
over a period of time to tackle it and find solutions that are feasible and have conver-
gence. There are strategies for environment modeling, the number of platforms used,
and modes of communication. The algorithms of path planning make use of one of the
strategies or a combination of them.

The environment of the mission is limited by the region of interest. The mission is
carried out within the boundaries of this region. The region of interest and obstacles
are represented by enclosed planar shapes in 2D and enclosed 3D shapes and meshes
in 3D. The strategies for environment modeling are:

• No Decomposition[14]

The region of interest is usually non-complex 2D or 3D shapes. It is not further
decomposed into smaller grids. This modeling is suitable for algorithms using
one platform like Back and forth[15, 35] and A* [20].

• Regular Grids[2]

The region of interest is partitioned into smaller sections having equal area/vol-
ume. In 2D, generally used grids are triangular, rectangular, square, and hexagon.
Other polygons can be used as well. In 3D, the grids used are a cartesian grid and
rectilinear grid.

• Exact Cell Decomposition[36]

Parallel lines are drawn from the vertices of the obstacles to the boundary of the
region. Each cell is given a number, and a connectivity graph is created which
represents the adjacency of the cells. In the case of the region of the concave
shape, the decomposition makes the region into convex shaped cells which are
easier to deal with.

• Approximate Cell Decomposition [36]

The region is divided recursively with varying dimensions until the cell is com-
pletely in free space or in obstacle space or until the limit of cell dimension is
reached. In 2D, Quadtree[37] technique is used to form the irregular grids, while
Octree[38] is used in 3D.

• Roadmap Approach [36]

Each vertex of each obstacle is connected via lines to all other vertices of all ob-
stacles without crossing the interior of any. The connected lines represent the
set of the free path. Visibility Graph[39] and Voronoi Diagrams[40] are types of
roadmap approach.

• Occupancy Map

It is similar to the above decomposition strategies. Here as well region is divided
into small cells, except the cells are associated with the probabilistic value of oc-
cupancy instead of deterministic.

A single platform is sufficient for some approaches, while some require numerous
platforms. Based on the number of platforms, the strategies can be:

Chapter 2. Background 10

• Mono-system

A single platform is used for the mission.

• Homogenous system

Multiple platforms of the same type are used. The platforms’ co-ordination is
taken into consideration for designing algorithms.

• Heterogenous system

Multiple platforms of various types are used. A particular type of platform may
be able to do only some specific tasks. Coordination of multi-type platforms and
task assignment to the platform according to capabilities are taken into consider-
ation.

Communication plays an important role in path planning. The platform may op-
erate autonomously without communicating to ground control. In a multi-platform
system, the platforms may have to communicate with each other. The strategies of
communication are:

• No Communication

A platform would get a mission at the start point and have to complete it with-
out communicating in between with other systems. The platform can’t get any
instructions like a change of plan or change of path during the execution of an on-
going mission. The environments where there is a lack of communication means
require such strategies.

• Communication with ground control

A platform periodically communicates with ground control during the execution
of a mission. The updates of mission are sent to ground control, and ground
control can send command to change the mission in between.

• Inter platform communication

In the case of a multi-platform system, the platforms may communicate to each
other either directly or via some relays. Communication is required to co-ordinate
and efficiently carry out the mission.

11

Chapter 3

UAV Navigation and Path Planning

This chapter discusses the theoretical aspects involved with UAV and path planning.
Different frame of references and co-ordinate systems are covered. Theory related to
UAV maneuverability and path planning has been covered.

3.1 Frame of Reference

There are various co-orindate systems used in aircraft design and analysis[41]. The
co-ordinate system can be categorized into the following [42].

• Geodetic co-ordinate system

• Earth-centered earth-fixed (ECEF) co-ordinate system

• Local north-east-down (NED) co-ordinate system

• Vehicle carried north-east-down (NED) co-ordinate system

• Body co-ordiante system

One or more co-ordinate systems are required for maneuverability of UAV.

3.1.1 Geodetic Co-ordinate System

The geodetic co-ordinate system is used in GPS widely. This system used latitude (φ),
longitude (λ), and height (h) (or altitude) to locate the point near the earth’s surface.
The longitude ranges from -180° to 180°, which is measured from Prime Meridian. The
latitude ranges from -90° to 90°, which is measured from the equator of the earth. The
latitude(φ) of any point in the geodetic system is the angle between the perpendicular
line drawn to the surface of the earth from the point and the equatorial plane, which
is different from geocentric latitude. In a geocentric system, the latitude(φ’)is the angle
between the line passing through the point and centre of the earth, and the equatorial
plane. Figure 3.1 shows the difference between (φ’) and (φ). The coordinate vector of
the geodetic frame is expressed as

P =

φλ
h

 .

Chapter 3. UAV Navigation and Path Planning 12

FIGURE 3.1: Geocentric and Geodetic co-ordinate system. Source:GPS
For Land Surveyors [3].

3.1.2 Earth Centered Earth Fixed (ECEF) Co-ordinate System

ECEF is a geocentric co-ordinate system, and its origin is the earth’s centre of mass. The
x-axis passes through 0° latitude i.e., equator, and 0° longitude, i.e., Prime Meridian.
The y-axis is perpendicular the to x-axis in the CCW direction. The z-axis is towards
the true north direction. Figure 3.2 shows the x,y,z ECEF co-ordinate system. A vector
in this frame is represented as

Pe =

xeye
ze

 .

FIGURE 3.2: Earth-centered earth-fixed (ECEF) co-ordinate system.
Source:GPS For Land Surveyors [3].

Chapter 3. UAV Navigation and Path Planning 13

3.1.3 Local East, North, Up (ENU) Co-ordinate System

In this frame, east is the x-axis, north is the y-axis, and up away from the earth centre
is the z-axis.

FIGURE 3.3: Local east, north, up (ENU) co-ordinate system.
Source:GPS For Land Surveyors [3].

3.1.4 Local North, East, Down (NED) Co-ordinate System

Local NED frame is used in most aircraft systems. The north is the x-axis, east is the y-
axis, and down towards the ellipsoid normal is the z-axis. The origin is fixed arbitrarily
at one point on the surface of the earth. The x and y axes are on the tangent plane to
the origin on the surface of the earth. A vector of a point in this frame is represented as

Pn =

xnyn
zn

 ,

whereas the height is represented as

h = −zn.

3.1.5 Vehicle Carried North East Down (NED) Co-ordinate System

This frame is associated with the vehicle and carried by it. The origin is the center of
gravity of the vehicle. The geodetic (ellipsoid) north is the x-axis, the geodetic (ellip-
soid) east is the y-axis, and the z-axis is downwards along the ellipsoid normal. The
vector of the point in this frame is denoted as

Pnv =

xnvynv
znv

 .

Chapter 3. UAV Navigation and Path Planning 14

3.1.6 Body Co-ordinate System

The body co-ordinate system is on the body of the aircraft vehicle and is carried with
it. The origin is located at CG of the aircraft vehicle. The x-axis is towards forward
flying direction. The y-axis is perpendicular to x-axis in the CW direction. The z-axis
is pointing downwards.

3.2 UAV Maneuverability

UAV maneuverability is a complex task. UAVs have 6 degrees of freedom (DOF)
i.e.movement along x, y, and z axes, and rotation around those axes. If centre of gravity
of UAV is considered as origin, the x-axis is along the forward movement direction, the
y-axis is perpendicular to the x-axis towards the right or left direction, and the z-axis
is perpendicular to the both towards up or down direction. Roll, pitch, and yaw are
rotational angles around the x, y, and z axes, respectively. Figure 3.4 shows the axes
and rotational angles. UAVs have some constraints on their degree of freedom, e.g.,
fixed wind UAVs can’t take 90° turns.

A homogenous co-ordinate system is used for the maneuverability of UAVs. In this
system, UAV has its own local co-ordinate system, and the environment has a different
co-ordinate system, as shown in Figure 3.4. The relation between these co-ordinates is
developed, which helps in the transformation from one co-ordinate system to other.

FIGURE 3.4: Co-ordinates system of UAV and ground.

Let x, y, z be co-ordinates with reference to ground co-ordinate system, and u, v, w
be co-ordinates with reference to UAV. Pg be any point represented w.r.t ground, Pf be
same point represented w.r.t. UAV, shown in Equation 3.1. Pf point can be transformed
to Pg using transformation matrix gTf as shown in Equation (3.2). gRf is a 3x3 rotational
matrix, and gDf is a 1x3 translational matrix. The subscripts of θ in Equation (3.4),
represents the angle between those axes. The translational matrix in Equation (3.5) has

Chapter 3. UAV Navigation and Path Planning 15

translational displacement between the corresponding axes of two co-ordinate system.

Pg =

xy
z

 , Pf =

uv
w

 (3.1)

[
Pg

1

]
= gTf

[
Pf

1

]
(3.2)[

Pg

1

]
=

[
gRf

gDf

0 0 0 1

] [
Pf

1

]
(3.3)

gRf =

cos θxu cos θxv cos θxw
cos θyu cos θyv cos θyw
cos θzu cos θzv cos θzw

 (3.4)

fDg =

Dxu

Dyv

Dzw

 (3.5)

Combining equations (3.1), (3.2), (3.4), and (3.5) leads to Equation (3.6). Pg point
can be transformed to Pf using the inverse of transformation matrix gTf as shown in
Equation (3.7).

x
y
z
1

 =

cos θxu cos θxv cos θxw Dxu

cos θyu cos θyv cos θyw Dyv

cos θzu cos θzv cos θzw Dzw

0 0 0 1

u
v
w
1

 (3.6)

[
Pf

1

]
= gT−1

f

[
Pg

1

]
(3.7)

3.2.1 PID Control

Proportional Integral Derivative (PID) control is a technique of control theory used to
achieve desired response in a system. It is widely used in numerous systems and in
UAVs as well. It is used to drive the actuators with the desired value. It is a closed feed-
back loop control system, as shown in Figure 3.5. Proportional, integral, and derivative
components are the three main components in it. This control system sits between the
generated signal r(t) and the actuator. The generated signal is converted to control
signal u(t) and fed to the actuator. The output of the actuator y(t) is fed back to control
system to determine the control signal. Equations 3.8 and 3.9 show the mathematical
relations between the signals shown in Figure 3.5.

u(t) = Kp ∗ e(t) +Ki

∫
e(t)dt+Kd

de(t)

dt
(3.8)

e(t) = r(t)− y(t) (3.9)

Chapter 3. UAV Navigation and Path Planning 16

FIGURE 3.5: PID control Diagram.

• Proportional

The proportional term Kp ∗ e(t) in Equation 3.8 is to minimize the error. The
proportional gain Kp determines the response to the error. If it is too high, the
response will oscillate with high frequency. If it is too low, the response will
change slowly to reduce the error.

• Integral

The integral term Ki

∫
e(t)dt in Equation 3.8 keeps the memory of errors and

sums them. The term minimizes the steady-state error. A high value of integral
gain, Ki, leads to oscillation [43].

• Derivative

The derivative term Kd
de(t)
dt

in Equation 3.8, improves the transient response of
the system [43]. The derivative gain Kd is the dampening factor and prevents the
overshooting of the signal.

3.2.2 Quadcopter Maneuverability

A quadcopter is a multi-rotor type of UAV which has 4 rotors on it. Figure 3.6a shows
a quadcopter, a market product from DJI company. Quadcopters come in two orienta-
tions, "+" and "x" orientations as shown in Figure 3.6b. The rotors are attached to the
four corners. The alternative rotors have opposite direction of spin. In Figure 3.6b, ro-
tors are numbered from 1 to 4. If rotor 1 rotates CW direction for upward thrust, rotor 2
rotates in CCW, rotor 3 in CW, and rotor 4 in CCW directions. The opposite rotation of
the alternative rotor makes the total angular momentum of the quadcopter zero when
all rotors rotate with the same speed. This helps to hover at a constant height and
maintains stability. In "+" orientation, the quadcopter’s front has one rotor, while in "x"
orientation, there are two rotors at front. Based on the orientation, the mechanism of
maneuverability varies.

Figure 3.7 shows the speed and direction of rotors for various movements in a quad-
copter with "+" orientation. The rotors are numbered from 1 to 4, where 1 is the front
of the quadcopter. The speeds of the rotors are represented by color-coding. The red
color represents high speed, blue the slow speed, and green the normal speed.

Chapter 3. UAV Navigation and Path Planning 17

(a) DJI Phantom 4 Pro V2. : Taken from DJI
website[44].

(b) Quadcopter Orientations.

Left: "x", cross orientation; Right:
"+", plus orientation.

FIGURE 3.6: Quadcopter and its orientations.

FIGURE 3.7: Variation of rotors’ spins for movement of Quadcopter.

From top left clockwise: lift, land, forward, backward, right, left, rotate
right, rotate left.

Chapter 3. UAV Navigation and Path Planning 18

FIGURE 3.8: Region of interest with obstacles and no fly zones.

3.3 Path Planning

Path planning has a region of interest where the mission has to be carried out. A region
of interest has a boundary, obstacles, access prohibited region, and free region. UAV
access prohibited region is called the no-fly zone and free region as the fly zone. Figure
3.8 shows a region of interest in 3D, with boundary in blue, obstacles in red, and no-fly
zone in black. 3D figures can be represented as a set of polygons, and polygons can be
represented as a set of points.

Polygon = {pt1, pt2, pt3,, ptn}where pt is a point.
Figures3D = {pl1, pl2, pl3,, pln}where pl is a polygon.
Region of interest, obstacles, no-fly zones, and free space can be represented as

follows:
Region of Interest (Roi) = {Bd1, Bd2, Bd3,, Bdbn}, whereBd is boundary polygon,

bn is number of boundary polygons.
Obstacles (Obs) ={Ob1, Ob2, Ob3, ..., Obon}, where Ob is 3D obstacle, on number of

obstacles.
No-fly zone (Nfz) = {Nf1, Nf2, Nf3, Nf4, ..., Nfnn}, where Nf is no-fly region, nn

number of no-fly region.
Fly zone (Fz) = Roi− {Obs ∪Nfz}
UAV fly in the fly zone between waypoints. Waypoints are the points where it stops

or pauses, or takes a turn. The path consists of waypoints and routes between them.

Chapter 3. UAV Navigation and Path Planning 19

FIGURE 3.9: Example of UAV path.

Each waypoint may not be connected to every other waypoint by the route. Figure 3.9
shows the path in 3D space. The lines represent the possible routes, the blue dots are
waypoints, and the red lines are path traversed. Each route has a cost or multiple costs
associated with it. The cost can be in terms of distance, time, energy, etc. The path
planning problem is to find a path in free space that connects the start waypoint and
the end waypoint, having minimal / optimal cost of traversal. Graph theory is used
heavily in path planning, where waypoints are the nodes and routes are the edges in a
graph.

3.3.1 Graph Theory

A graph is a collection of vertices and edges, where an edge connects two vertices.
Mathematically graph can be expressed as G = (V,E), where E ⊆ [V]2, E represents
edges, and V represents vertices. Graph theory is a study of graphs. Problems are mod-
eled into mathematical graphs, and solutions are explored using graph theory. The
graph and the graph theory are applicable in computer science, engineering, math-
ematics, natural science, networking, linguistics, etc. Figure 3.10 shows the directed
and undirected graphs. In an undirected graph, the edge doesn’t have direction and
can be traversed in any direction. In a directed graph, the direction of traversal is fixed
and is associated with the edge. The cost of traversal of between vertices is considered
as weight and is associated to the edge. The cost of traversal is model specific and can

Chapter 3. UAV Navigation and Path Planning 20

hold combination of multiple parameters. The graph having such weights is called
a weighted graph. The weights are used to find the ways to meet the criteria of the
problem. The criteria can be to maximize or minimize weight, or to limit within range.

(a) Undirected Graph.
(b) Directed Graph.

FIGURE 3.10: Types of graphs.

Graph Theory and Path Planning

Path in graph theory can be expressed as the edges connecting the start and the goal
vertex of the graph. Mathematically path is P = (V,E), where V = {V1, V2, V3, ..., Vg},
E = {V1V2, V2V3, V3V4, ..., Vg−1Vg}, V1 is start vertex and Vg is goal vertex. The number
of edges in a path is called path length. A path P with length l is denoted as P l. There
may be multiple paths to reach from the start vertex to the goal vertex. The set of
possible paths Ps is:

Ps = {P l1
1 , P

l3
2 , P

l4
3 , ..., P

ln
n }

The set of criteria for the feasible solutions Cs is:

Cs = {C1, C2, C3, C4, ..., Cm}

The paths which match the criteria of the problem are the solution paths.

Ps matching Cs−−−−→{P
ls1
s1 , P

ls3
s2 , P

ls4
s3 , ..., P

lsp
p }

This equation is a mathematical notation of path planning solutions. In real life, it
may not be desired to find all the possible paths between the start and goal vertices.
Various graph theory’s theorems, graph properties, and algorithms can be used to find
the feasible solution which meets the criteria.

21

Chapter 4

Path Planning Algorithms

This chapter provides the details of the algorithms that are considered for simulation.
Selected coverage path planning and target reaching path planning algorithms are dis-
cussed with pseudo-codes.

4.1 Coverage Path Planning

In coverage path planning, an entire region of interest is covered. In this type of mis-
sion, the area is swept with a constant width on the ground, maintaining a constant
height above ground. This width on the ground which a UAV covers at any instance
is termed as sweep width. The width of the area on the ground is considered based
on the capabilities of the sensors. The sensors can be a camera, microphone, thermal
imaging, or any other sensors. The UAV can have multiple sensors as well. The height
and angle of the sensor affect the sweep width and the quality of data. Figure 4.1 shows
the width coverage of a camera at a constant height. For a camera sensor, the width
coverage on the ground increases as the height increases. The resolution of the image
decreases as the height increases, i.e., the image gets bloated as height increases, and it
is difficult to identify an object or person. So an optimal height needs to be considered
based on requirement and camera capabilities. Similarly, the angle of the camera also
affects the width of the ground. At angle 90° with the horizontal axis, the width on the
ground is minimum. As the angle decreases, the width increases, but after some value,
the view shifts from the ground towards the atmosphere. An optimal angle has to be
determined before the mission.

FIGURE 4.1: Sweep width and height for a single camera.

Chapter 4. Path Planning Algorithms 22

The patterns for coverage of the area, i.e., parallel search pattern, creeping search
pattern, and spiral search pattern [35] are considered for study and simulation.

4.1.1 Parallel Line Search

Parallel line search is a back and forth pattern. It is the most common pattern and used
as the default pattern by ground control softwares. In this pattern, back and forth is
done parallel to the longer side of the region of interest, and turns are made parallel to
the short side. The pattern is shown in Figure 4.2. The path has two legs, the longer
leg termed as search leg and the short one termed as the cross leg. The search leg is
parallel to the long side of the rectangular area of interest. The cross leg is 90° to the
search leg and has a length of sweep width.

FIGURE 4.2: Parallel Line Search.

The pseudo-code for the parallel line search for a rectangular area of interest is
presented in Algorithm 1. The sweep width should be relatively smaller than both
the length and breadth of the rectangle. The direction of the search leg is determined
in line 4 from starting point towards the opposite side of the rectangle along the long
side. The direction of the cross leg is determined in line 5 towards the opposite side of
the rectangle along the short side. Inside a while loop (line 9-24), waypoints are added
(line 10) until the points are within the boundary of the region of interest. Starting
waypoint is chosen towards the search leg with the dimension of the length of the
rectangle minus sweep width (line 12). The next waypoint is chosen towards the cross
leg with the dimension of sweep width (line 20). The cross leg dimension will be the
width left to cover, in case it is less than sweep width (line 18). The next waypoint is
chosen opposite to the search leg direction with the same dimension that of the search
leg (line 14). This continues in a loop until the area is covered.

Chapter 4. Path Planning Algorithms 23

Algorithm 1 Algorithm for Parallel Line Search.
Ensure:

sweep width << length of rectangle
sweep width << breadth of rectangle

1: procedure PARELLELLINEPATTERN(rectangle,sweepWidth, startPoint,height)
2: bounds← boundary of rectangle
3: length← long side length of rectangle
4: searchLegDir ← direction from startPoint towards opposite side of rectangle

along long side
5: crossLegDir ← direction from startPoint towards opposite side of rectangle

along short side
6: currentPoint← startPoint
7: currentDir ← longEdgeDir
8: pathCnt← 0
9: while currentPoint within bounds do

10: wayPoint[pathCnt]← (currentPoint.x, currentPoint.y, height)
11: if pathCnt % 4 == 0 then
12: currentPoint ← translate currentPoint towards searchLegDir with

length− sweepWidth
13: else if pathCnt % 4 == 2 then
14: currentPoint ← translate currentPoint opposite of searchLegDir with

length− sweepWidth
15: else
16: widthLeft← from currentPoint to boundary towards crossLegDir
17: if widthLeft > sweepWidth/2 and widthLeft < sweepWidth then
18: currentPoint ← translate currentPoint towards crossLegDir with

widthLeft
19: else
20: currentPoint ← translate currentPoint towards crossLegDir with

sweepWidth
21: end if
22: end if
23: pathCnt← pathCnt+ 1
24: end while
25: end procedure

4.1.2 Creeping Line Search

The creeping line search pattern is similar to the parallel line search 4.1.1, except the
search leg is parallel to the short side of the rectangular area, and the cross leg is parallel
to the long side. Figure 4.3 shows the path pattern of the creeping line search.

The creeping line search algorithm’s pseudo-code is presented in Algorithm 2. Here
as well, the sweep width should be relatively small compared to the length and breadth
of the area. Algorithm 2 resembles Algorithm 1 in most aspects except the selection of
search leg and cross leg direction. Here the search leg direction is selected from the start
point towards the opposite side of the rectangle along the short side of the rectangle
(line 4). The cross leg direction is selected from the start point towards the opposite
side of the rectangle along the long side of the rectangle (line 5).

Chapter 4. Path Planning Algorithms 24

FIGURE 4.3: Creeping Line Search.

4.1.3 Spiral Search

The spiral pattern has a path with expanding concentric squares, as shown in Figure
4.4. This pattern is also known as square search. The path can be expanding squares
starting from the center to outwards or contracting squares from outward to the center.
The expanding squares are useful in cases when the region of interest is not fixed prior
to the mission. The area of search can be rectangular as well. In such a case, the path
will be concentric rectangles.

FIGURE 4.4: Spiral Search.

Chapter 4. Path Planning Algorithms 25

Algorithm 2 Algorithm for Creepling Line Search.
Ensure:

sweep width << length of rectangle
sweep width << breadth of rectangle

1: procedure CREEPINGLINEPATTERN(rectangle,sweepWidth, startPoint,height)
2: bounds← boundary of rectangle
3: breadth← short side length of rectangle
4: searchLegDir ← direction from startPoint towards opposite side of rectangle

along short side
5: crossLegDir ← direction from startPoint towards opposite side of rectangle

along long side
6: currentPoint← startPoint
7: pathCnt← 0
8: while currentPoint within bounds do
9: wayPoint[pathCnt]← (currentPoint.x, currentPoint.y, height)

10: if pathCnt % 4 == 0 then
11: currentPoint ← translate currentPoint towards searchLegDir with

breadth− sweepWidth
12: else if pathCnt % 4 == 2 then
13: currentPoint ← translate currentPoint opposite of searchLegDir with

breadth− sweepWidth
14: else
15: widthLeft← from currentPoint to boundary towards crossLegDir
16: if widthLeft > sweepWidth/2 and widthLeft < sweepWidth then
17: currentPoint ← translate currentPoint towards crossLegDir with

widthLeft
18: else
19: currentPoint ← translate currentPoint towards crossLegDir with

sweepWidth
20: end if
21: end if
22: pathCnt← pathCnt+ 1
23: end while
24: end procedure

Algorithm 3 presents the pseudo-code of the spiral search in an expanding manner.
In an infinite loop (lines 6 - 14), "wayPoints" are added with increasing "sweepWidth"
after every two waypoints (line 9). The direction is rotated by 90° in a specified direc-
tion (CCW or CW) after every waypoint (line 12).

In Algorithm 4, an inward spiraling version of spiral search is presented with the
pseudo-code. The algorithm is applicable to the rectangular and the square area. The
"longEdge" argument in the procedure SpiralSearchInward (line1), determines either
the starting would be along long side or short side of the rectangular area. Same ar-
gument is used to decide if the direction of rotation will be CW or CCW (lines 5 -
11). The length of the path will vary according to length and breadth of the area, so
"lengthEdge" and "widthEdge" variables are assigned with initial values, which are
length minus sweep width and breadth minus sweep width, respectively (line 12 and

Chapter 4. Path Planning Algorithms 26

Algorithm 3 Algorithm for Expanding Spiral Search.

1: procedure EXPANDINGSPIRALSEARCH(sweepWidth, startPoint, height,
startDirection, rotationDirection)

2: currentPoint← startPoint
3: currentWidth← sweepWidth
4: currentDirection← startDirection
5: pathCnt← 0
6: while True do
7: wayPoint[pathCnt]← (currentPoint.x, currentPoint.y, height)
8: if pathCnt % 2 == 0 then
9: currentWidth← currentWidth+ sweepWidth

10: end if
11: currentPoint ← translate currentPoint towards currentDirection with

currentWidth
12: currentDirection← currentDirection rotated by 90° in rotationDirection
13: pathCnt← pathCnt+ 1
14: end while
15: end procedure

13). These variables decay with sweep width one after another in a while loop (lines
16 - 41). The while loop stops when "widthEdge" becomes zero or less. The direction
is rotated after every waypoint.

Chapter 4. Path Planning Algorithms 27

Algorithm 4 Algorithm for Inward Spiral Search.
Ensure: :

sweep width << length of rectangle
sweep width << width of rectangle

1: procedure SPIRALSEARCHINWARD(rectangle,sweepWidth, startPoint,height,
longEdge)

2: bounds← boundary of rectangle
3: length← length of rectangle
4: width←width of rectangle
5: if longEdge == True then
6: currentDirection← direction along long side
7: rotateDirection← rotation direction from long side to short side
8: else
9: currentDirection← direction along short side

10: rotateDirection← rotation direction from short side to long side
11: end if
12: lengthEdge← length− sweepWidth
13: widthEdge← width− sweepWidth
14: currentPoint← startPoint
15: pathCnt← 0
16: while widthEdge > 0 do
17: wayPoint[pathCnt]← (currentPoint.x, currentPoint.y, height)
18: if longEdge then
19: if pathCnt % 2 == 0 then
20: currentPoint ← translate currentPoint towards currentDirection

with lengthEdge
21: if pathCnt !=0 then
22: lengthEdge← lengthEdge− sweepWidth
23: end if
24: else
25: currentPoint ← translate currentPoint towards currentDirection

with widthEdge
26: widthEdge← widthEdge− sweepWidth
27: end if
28: else
29: if pathCnt % 2 == 0 then
30: currentPoint ← translate currentPoint towards currentDirection

with widthEdge
31: if pathCnt !=0 then
32: widthEdge← widthEdge− sweepWidth
33: end if
34: else
35: currentPoint ← translate currentPoint towards currentDirection

with lengthEdge
36: lengthEdge← lengthEdge− sweepWidth
37: end if
38: end if
39: currentDirection← currentDirection rotated by 90° in rotationDirection
40: pathCnt← pathCnt+ 1
41: end while
42: end procedure

Chapter 4. Path Planning Algorithms 28

4.2 Target Reaching Path Planning

In target reaching path planning, a destination point is given in prior, and the UAV
has to reach it, avoiding the obstacles. In SAR, the region of interest doesn’t have a
well-defined map to maneuver. Fixed waypoints or fixed nodes and pre-determined
possible paths are not known. An approach that is non-deterministic and can make
decisions on the fly is required in this case. RRT[21] is a non-deterministic algorithm,
and it doesn’t require environment modeling. This algorithm suits SAR missions and
is considered for this thesis.

4.2.1 Rapidly exploring Random Trees (RRT)

RRT[21] algorithm works well where information of environment is not known in
prior. It depends on sensors’ data to sense the surroundings and determine the next
step. It creates a tree by randomly selecting a node in the environment in each step.
The tree eventually fills up the free spaces in the environment. RRT explores the envi-
ronment, creates a graph of free spaces and finds a path from one point to other. The
path may not be optimal. This algorithm can address the non-holonomic and dynamics
constraint. Figure 4.5 shows the RRT in a 3D environment.

FIGURE 4.5: Rapidly exploring Random Trees (RRT).

The pseudo-code of RRT is presented in Algorithm 5. The input arguments are
the start point , goal point, and the maximum number of iterations (line 1). The start

Chapter 4. Path Planning Algorithms 29

point is the root of the tree. When the tree grows and able to find the goal point,
the algorithm stops (line 15). The algorithm explores the whole free space when the
number of iterations tends to infinity. It may happen the goal point is not found after
many iterations. The maxIteration argument is used to limit the iteration if the goal
point is not found. The algorithm continues to find random point 6 in a while loop
(lines 5 - 17). The core of RRT is the determination of random points. If the random
point is chosen without bias, then the algorithm may converge after infinite iteration.
A random generator with good estimation bias can converge the algorithm quickly.

Algorithm 5 RRT Algorithm.

1: procedure RRT(startPoint, goalPoint, maxIteration)
2: intialize empty graph rrtGraph(v, e)
3: rrtGraph.add(startPoint, 0)
4: count← 0
5: while count < maxIteration do
6: randPoint← RandomPoint()
7: count← count+ 1
8: if randPoint is in obstacle space then
9: continue

10: end if
11: nearestPoint← node in rrtGraph nearest to randPoint
12: randPoint.parent = nearestPoint
13: rrtGraph.add(randPoint, distance(randPoint, nearestPoint))
14: if randPoint is very near to goalPoint then
15: break
16: end if
17: end while
18: return rrtGraph
19: end procedure

30

Chapter 5

Tools and Software

This chapter covers the details of tools and software used for implementation. It also
presents the methodologies for using the tools to implement the path planning algo-
rithms. Available tools and frameworks were reviewed from the survey papers [45, 46].

5.1 Gazebo

Gazebo[47] is an open-source robot simulation tool maintained and developed Open
Source Robotics Foundation. It has distributed architecture with a server and a client.
The server is used for simulating world physics, rendering and, sensors. The client
is used for providing a graphical interface for visualization and interaction with the
simulation. It supports Robot Operating System (ROS) and flight simulators interac-
tion with it. Gazebo is supported only on Linux and Mac operating systems. It is very
lightweight and can run on general computers with adequate RAM and no graphics
card. Figure 5.1 shows the gazebo client, which is a GUI interface.

FIGURE 5.1: Gazebo client window.

Chapter 5. Tools and Software 31

5.2 Px4

PX4[4] is an open-source professional autopilot software stack. It is developed and
maintained by Dronecode Project. It supports various ground vehicles, drones, and
submersibles systems. All the types of UAVs shown in Figure 2.1 are supported by
it. The Px4 software supports many flight controller hardware like Pixhawk 4 [48],
Pixhawk 3 Mini[48], Pixracer[48], and others. There are many commercial UAVs that
run on Px4. Px4 stack also runs in Hardware In The Loop (HITL) and Software In The
Loop (SITL) modes.

5.2.1 Px4 Architecture

The software architecture of Px4 is shown in Figure 5.2. It has four major blocks flight
control, drivers, storage, and external connectivity. External connectivity block rep-
resents the support for two protocols, MAVLink[49] and FastRTPS, via UART and
UDP interface. Drivers block has drivers software for sensors like GPS, Camera, IMU
Drivers, etc. Storage block consists of database, parameters, and runtime logs. The
main logic resides in the flight control block. This block controls the actuators, gets
input from sensors, receives commands via MAVLink/FastRTPS, and retrieves/saves
data into the storage device.

The high-level block diagram of Px4 working is shown in Figure 5.3. It has guid-
ance, navigation, and control (GNC), functionality, which makes the autonomy of UAV
feasible. Navigator is responsible for navigation, position controller provides the guid-
ance, and attitude and rate controller acts like control for actuators. The estimator
fetches data from various sensors, computes the state and other parameters. It then
feeds that information to the navigator and controllers.

5.2.2 Px4 Simulation

Both HITL and SITL simulation is possible with Px4. In HITL the stack runs on a
hardware flight controller. The flight controller is connected to simulation software
via USB. The sensor data is fetched from the simulator and processed on the hardware
controller, and the control signal is forwarded to the simulator. The simulator can be
connected to ground control and offboard API via UDP ports. Figure 5.4 shows the
overview of HITL of Px4.

In SITL the software stack runs on a general computer. Figure 5.5 shows the setup
for Px4 on SITL. Px4 on SITL is connected to API and ground control via default UDP
ports 14540 and 14550, respectively. It is connected to the simulator via TCP port 4560.
Each of the blocks in Figure 5.5 can be run on different computers and communicate
over a network. The sensor data is passed on Px4 by the simulator, and the control
data is sent to the simulator after processing. The supported simulator are Gazebo[47],
flightgear[50], JSBSim[51], jMAVSim[52], and Airsim[53]. Simulators Gazebo[47] and
jMAVSim[52] run in lockstep mode with Px4 on SITL. In lockstep simulation, the Px4
stack waits for sensor data from the simulator, and the simulator waits for actuator
data from the Px4 stack.

Chapter 5. Tools and Software 32

FIGURE 5.2: Px4 Architecture. Courtsey:Dronecode[4].

FIGURE 5.3: Px4 High Level Flight Stack. Courtsey: Dronecode[4].

Chapter 5. Tools and Software 33

FIGURE 5.4: Px4 HITL. Courtsey: Dronecode[5].

FIGURE 5.5: Px4 SITL. Courtsey: Dronecode[5].

Chapter 5. Tools and Software 34

5.3 QGround Control

QGroundControl[54] is a GUI-based ground control software for Px4 and ArduPilot
powered platforms. It provides full control, setup, and monitoring of platforms via
the GUI interface. It runs on Windows, macOS, Linux, iOS, and Android devices. It
can be interfaced with a RC joystick and communicate with platform via MAVLink
protocol. It connects with simulators in HITL and with the platform stack in SITL via
UDP ports. Figure 5.6 shows the interface of QGround Control.

FIGURE 5.6: QGroundControl GUI.

5.4 MAVLink and MAVSDK

MAVLink[49] is the de-facto messaging protocol for UAVs. It is used for communica-
tion with UAV and between components on it. It is a combination of publish-subscribe
and point-to-point models. It has two major versions v1.0 and v2.0. MAVLink can
be used with MAVSDK. It is a collection of libraries and exposes APIs for various
programming languages. The supported languages are C, C++, Python, Java, Go,
Javascript, CSharp, and Rust.

5.5 Flight Review

A log file is created in PX4 software from the time of take-off till landing. The log file
is used for post-flight analysis. The Flight Review is an online PX4 log analyzer pro-
vided by the PX4 community. It is available at https://review.px4.io/. It provides
graphical charts for path, altitude, angles with axes, rate of change of angles, velocities
along axes, accelerations along axes, GPS data, resource utilization, and axes positions
w.r.t time. It also extracts and displays the log messages generated during the flight.

https://review.px4.io/

35

Chapter 6

Implementation and Results

This chapter provides details about the implementation and findings. It has a descrip-
tion of the system, tools and library, and the outcome of the simulation. The analysis
and comparison of different algorithms are presented here.

6.1 System Description

The details of the computer on which the implementation was carried out are provided
in Table 6.1. The versions of various tools used are listed in Table 6.2. Python program-
ming language was used for interacting with Px4 on SITL, modeling environment, and
implementing the algorithms. The python libraries used in the process are listed in
Table 6.3.

Computer Description
Model MacBook Air
OS macOs Big Sur Version 11.1
Processor 1.6 GHz Dual-Core Inter Core i5
RAM 8 GB 1600 MHz DDR3
Graphics Inter HD Graphics 6600 1536 MB

TABLE 6.1: Details of components of computer used.

Tools Description
Gazebo Version 11.3.0
PX4 SITL Version 1.11
MAVLink Protocol Version 2
Flight Review Online Service
Anaconda Version 4.9.2
Jupyter Notebook Version 6.2.0
Python Version 3.7

TABLE 6.2: List of tools and their version.

Chapter 6. Implementation and Results 36

Python Libraries
mavsdk Version 0.15.0
pygeodesy Version 21.2.12
shapely Version 1.7.1
geopandas Version 0.8.2
matplotlib Version 3.3.4
Geometry3D Version 0.2.2

TABLE 6.3: Used python libraries and their versions.

6.2 Coverage Area Implementation

The implementations of coverage area algorithms parallel line, creeping line, and spi-
ral search mentioned in 4.1, are described here. This section covers the setup for the
implementation, model of UAV, results, and analysis.

6.2.1 Setup

Gazebo with Px4 on SITL is used for simulation. Figure 6.1 shows the setup with the
flow of data and commands among the blocks. The setup was run on one computer,
and the flight logs were collected after the completion of the mission. The log was
uploaded to an online flight log analyzer to get an analysis of the mission. Python
MAVSDK was used on Jupyter Notebook to control the UAV. QGroundControl was
used to monitor the progress of the mission.

FIGURE 6.1: Setup for coverage algorithm simulation.

Chapter 6. Implementation and Results 37

6.2.2 UAV Modeling

A quadcopter model Iris 3DS was used. Figure 6.2 shows the model in Gazebo along
with its components. It has a body with links, joints, and plugins. At the joints, links
of the same object or other objects can be attached. At the joint "rotor_0_joint", link
"rotor_0" is attached. The link "rotor_0" is a component of the same object, "iris". At
the joint "gps0_joint", "iris::gps0" is attached, which is another object. The plugins con-
sist of a middleware program that simulates various components of the model. The
plugins for motors, magnetometer, barometer, mavlink, IMU, and groundtruth were
attached to the quadcopter. The GPS model was attached to the quadcopter as a differ-
ent object. The camera was not attached to the model.

FIGURE 6.2: Iris 3DS Quadcopter Model.

6.2.3 Environment Modeling

A custom environment was created for simulation. A flat ground of 1114.49 m long,
905.077 m wide, and 0.1 m thick was created. A random number of solid cylinders
were distributed over the ground. The height of all cylinders was less than the height
set for the flight mission. All the objects had mesh and physics body, i.e., had solid
shapes and collision enabled. The wind in the environment was set to zero. Figure 6.3
shows the environment of simulation in the Gazebo.

6.2.4 Region of Interest and Height

Four algorithms are taken into consideration for simulation. Region of interest and
height was fixed for all the algorithms so that a statistical analysis could be deduced
among them. The considered region of interest was an area of 300 m long and 100 m
wide. The considered height of the mission was 25 m.

6.2.5 Parallel Line Search

The algorithm mentioned in Subsection 4.1.1 was implemented. The pseudo-code in
Algorithm 1 was translated into python function (Appendix B, function getParal-
lelLineMissionItem, starting at line 178). The function requires polygon as an argu-
ment, either square or rectangle. The polygon’s co-ordinates have to be in longitudes

Chapter 6. Implementation and Results 38

FIGURE 6.3: Environment for simulation.

and latitudes. It is the region of interest of the mission. The first co-ordinate of the
polygon is considered as the starting corner. The other arguments are sweep width,
height, and speed. These are optional and take default values if not specified. The
function returns an array of MAVSDK MissionItem, i.e., the waypoints of the path.
The returned array is used to create Mission (Appendix A,line 34).

Figure 6.4 shows the graphical analysis of the mission. Sub-figure 6.4a shows the
completed mission path. It can be seen the back and forth path, with longer legs of
path parallel to the longer side of the region of interest. The mission starting point is
the base and returns back to the same point after completion of the mission. Sub-figure
6.4b shows the height of the UAV during the flight. Z-axis points are negative as the
graph show NED frame analysis. The mission was carried out at a constant height of
25 m and can be seen on graph 6.4b. After the mission, the UAV reaches the default
height of 30 m to return to the start point. Sub-figure 6.4c and 6.4d, respectively, show
accelerations and velocities along the 3 axes during the mission.

6.2.6 Creeping Line Search

The algorithm mentioned in Subsection 4.1.2 was implemented. The pseudo-code in
Algorithm 2 was translated into python function "getCreepingLineMissionItem" (Ap-
pendix B, function , lines 235). The arguments and return type of this function are
similar to that of "getParallelLineMissionItem", as mentioned in Subsection 6.2.5. The
underlying logic is different. It returns the path whose long leg is parallel to short side
of region of interest.

Figure 6.5 has a graphical analysis of the mission with this algorithm. Sub-figure
6.5a shows the completed mission path, Sub-figure 6.5b shows the variation of height,
Sub-figure 6.5d shows the variation of velocities along 3 axes, and Sub-figure 6.5c
shows the variation of accelerations along 3 axes.

Chapter 6. Implementation and Results 39

(a) Path traversed.

(b) Height graph.

(c) Acceleration graph.

(d) Velocity graph.

FIGURE 6.4: Parallel line search mission analysis.

Chapter 6. Implementation and Results 40

(a) Path traversed.

(b) Height graph.

(c) Acceleration graph.

(d) Velocity graph.

FIGURE 6.5: Creeping line search mission analysis.

Chapter 6. Implementation and Results 41

6.2.7 Spiral Search (Long Edge First)

Subsection 4.1.3 elaborated on the spiral search and mentioned its applicabilities in
non-square region. The algorithm described in Subsection 4.1.3, started from the center
and kept on growing spirally in an outward fashion. The implementation is done
in a spirally inward way. Here the path starts with a path segment parallel to the
longer side of the region of interest. Python function "getLongEdgeSpiralMissionItem"
(Appendix B, function , starting line 293) has the implementation of spiral inward for
square/rectangle region of interest. Its arguments and return variable are similar to
that of "getParallelLineMissionItem", mentioned in Subsection 6.2.5.

The mission analysis of this algorithm is shown in graphical form in Figure 6.6. The
path traversed is shown in Sub-figure 6.6a. The fluctuation of height is shown in Sub-
figure 6.6b. The velocities and accelerations variations during the mission is captured
in graphs 6.6d and 6.6c, respectively.

6.2.8 Spiral Search (Short Edge First)

This algorithm is almost similar to Long Edge First Spiral Search mentioned in Sub-
section 6.2.7, except the first path segment is parallel to the short side of the region of
interest. Python function "getShortEdgeSpiralMissionItem" (Appendix B, function ,
starting line 375) has the implementation of this algorithm. The function’s arguments
and return variables are similar to that of "getParallelLineMissionItem", mentioned in
Subsection 6.2.5.

The graphical mission analysis is shown in Figure 6.7. The four sub-figures 6.7a,
6.7b, 6.7d, and 6.7c show the path, height, velocities, and accelerations, respectively.

6.2.9 Comparison of the Algorithms

Comparison among the algorithms was deduced based on the analysis of the algo-
rithms in subsections 6.2.5, 6.2.6, 6.2.7, and 6.2.8. Table 6.4 shows the comparison and
its parameter.

The parallel Line algorithm stands out as the fastest algorithm to cover the region.
It has the minimum number of turns in the path, among others. The time to return to
the base depends on the last waypoint of the mission. The last waypoint for the parallel
line would be near to either diagonally opposite corner or adjacent corner along with
the breadth of the region. The last waypoint for the simulation was near the adjacent
corner, so the return time to the base was short.

The creeping Line algorithm is the slowest among the considered algorithms. It
has the highest number of turns in the mission path, which added additional delays.
At each waypoint, the UAV has to de-accelerate to take the turn, it adds to the delay.
The number of turns can be considered as the cause of the slowest performance. This
algorithm has its end waypoint near to either diagonally opposite corner or adjacent
corner along the length of the region. The time to return to base would be either equal
or greater than the time to return of Parallel Line. This algorithm, in general, would
have the longest time to return compared to others.

The spiral long edge first and the spiral short edge first algorithms performances
are relatively similar. The spiral long edge first algorithm takes a little less time to
complete the mission than the later algorithm. The difference in mission time is due

Chapter 6. Implementation and Results 42

(a) Path traversed.

(b) Height graph.

(c) Acceleration graph.

(d) Velocity graph.

FIGURE 6.6: Spiral long edge first mission analysis.

Chapter 6. Implementation and Results 43

(a) Path traversed.

(b) Height graph.

(c) Acceleration graph.

(d) Velocity graph.

FIGURE 6.7: Spiral short edge first mission analysis.

Chapter 6. Implementation and Results 44

to the difference in the number of turns in the mission path. The spiral short edge
first algorithm had one turn more than the other in the selected simulation. Both the
algorithm ends the mission near the center of the region of interest. This is the reason
they have nearly equal time to return to base. These two algorithms have a shorter
time to return than the other two.

Algorithm Mission Time
(sec)

Time to return
(sec)

Number of
Turns

Parallel Line 394 63 18
Creeping Line 541 101 58
Spiral Long
Edge First

408 58 18

Spiral Short
Edge First

413 59 19

TABLE 6.4: Comparison of algorithms.

Chapter 6. Implementation and Results 45

6.3 Target Reaching Path Planning

The implementation of the RRT algorithm described in Section 4.2, is discussed here.
The implementation is done entirely in python using the Geometry3D library.

6.3.1 UAV Modeling

UAV is modeled as a sphere that is a mesh structure of 10 longitudes and 4 latitudes.
This can be seen in Figure 6.8. This creates 40 complex polygon meshes on the surface
of the sphere. The normal vector passes through the centroid of the polygon and per-
pendicular to the surface. Each polygon has a normal vector, as shown in Figure 6.8.
The directions a UAV can move are considered to be along these normal vectors as well
as along the x, y, and z axes.

FIGURE 6.8: Spherical model of an UAV.

6.3.2 Environment Modeling

The environment is modeled with 3D shapes, obstacles, and ground. The ground is
considered a parallelepiped of dimension 100 x 100 x 1 (length x breadth x height)
units. Its base is on the positive x-y plane with one corner as the origin. Obstacles
are modeled as spheres, cones, and cylinders of different sizes. These are distributed
randomly over the ground object. The ground and the obstacles’ can be seen in Figure
6.9. The environment limits are set to 100 units on all three axes.

6.3.3 Obstacle Detection

The intersection method of the Geometry3D library is used to detect the obstacle. This
method provides the intersection of the points of any two 3D Geometry3D objects.

Chapter 6. Implementation and Results 46

FIGURE 6.9: Environment model.

When a random point is selected in the environment, the path segment is the line join-
ing the current point and the random point. Taking the path segment as axis, a cylinder
with a unit radius is created, and the intersection is checked with all the obstacle ob-
jects. If no intersection is found with the obstacles, the path segment is in free space.
In Figure 6.10, the cylinder in cyan color shows the cylinder of path segment, and the
section in blue color shows the intersection with the obstacle.

FIGURE 6.10: Obstacle detection with intersection.

Chapter 6. Implementation and Results 47

6.3.4 Unbiased RRT

RRT pseudo-code presented in Algorithm 5 is implemented with the environment and
UAV modeling. Random point is chosen along the vectors of UAV movement men-
tioned in Subsection 6.3.2. The vector is chosen randomly without any bias. A point at
an incremental distance from the current point along the chosen vector is the random
point. The implementation of the RRT without bias is done in function run, listed in
Appendix C, line 413.

The algorithm was run with the iteration of 2000. The chosen start and goal points
are (80,78,5) and (7,50, 20) respectively. The algorithm found the goal in the 1642nd

iteration. Figure 6.11c shows the tree created by the algorithm. Figure 6.11a displays
the actual path covered by the UAV. The paths which encountered obstacles are shown
in Figure 6.11b.

6.3.5 Biased RRT

Similar implementation of RRT is done here, except the random points are chosen with
a bias. The logic chosen for bias of random point is captured in Algorithm 6. The vector
of movement of UAV which makes the least angle with the vector to goal from the
current point, is chosen as bias. The point distant along with this vector is chosen as
the random point. In case of a collision with the returned point, collisionCnt variable
is increased. If the returned point is in the collision-free region, then collisionCnt is set
to -1. In the case of collision, the RandomPointWithBias returns random point along any
vector of movement. After 10 collisions with a random point, collisionCnt is reset to
-1. The implementation of the logic can be found in function runToGoalAlongTheVector
listed in Appendix C 473.

Algorithm 6 Chosing random point with bias for RRT Algorithm.

1: procedure RANDOMPOINTWITHBIAS(collisionCnt, currentPoint, goalPoint,
distance, vectorsOfMovement)

2: if collisionCnt >= 0 then
3: Point← RandomPoint(distance, vectorsOfMovement)
4: return Point
5: end if
6: intialize vectorAlongGoal← V ector(currentPoint, goalPoint)
7: minAngle←∞
8: minV ector ← vectorsOfMovement[0]
9: for all vector in vectorsOfMovement do

10: angle← vector.angle(vectorAlongGoal)
11: if angle < minAngle then
12: minAngle = angle
13: minV ector = vector
14: end if
15: end for
16: Point← point distance along minV ector from currentPoint
17: return Point
18: end procedure

Chapter 6. Implementation and Results 48

The algorithm was run with 200 iteration limit. The start point was (80, 78, 5) and
the goal point was (7,50, 20). It was able to reach the goal point in the 60th iteration.
Figure 6.12c shows the created tree by the algorithm. In Figure 6.12a, the actual path

(a) Actual path travelled by UAV.

(b) Paths encountered with obstacles.

FIGURE 6.11: Unbiased RRT algorithm.

Chapter 6. Implementation and Results 49

(c) Tree created by the RRT algorithm.

FIGURE 6.11: Unbiased RRT algorithm (continued).

covered by UAV is displayed. The paths which encountered obstacles are shown in
Figure 6.12b.

6.3.6 Comparison of Biased and Unbiased RRT

RRT is suitable for SAR missions where the details of the environment are not known.
Unbiased RRT discussed in Subsection 6.3.4 converges near the goal point when the
number of iterations is high. When the iterations tend to ∞, the tree covers all the
open spaces and hence reaches the goal point. Sometimes the algorithm converges
quickly because sometimes the randomness leads to the goal point fast. The algorithm
was run for 2000 iterations, and it reached to the goal in the 1624nd iteration. Biased
RRT discussed in Subsection 6.3.5 converges very fast and reaches the goal point. There
can be various ways of biasing. The chosen bias logic of the random point selection is
discussed in Subsection 6.3.5. The bias chooses points towards the goal point along
the vectors of movement unless any obstacle is encountered. This convergence of this
algorithm is faster than with no bias. The number of iterations required for the biased
algorithm is relatively very low than without bias. The algorithm was run for 200
iterations, and it reached to the goal in the 60th iteration.

Chapter 6. Implementation and Results 50

(a) Actual path travelled by UAV.

(b) Paths encountered with obstacles.

FIGURE 6.12: Biased RRT algorithm.

Chapter 6. Implementation and Results 51

(c) Tree created by the RRT algorithm.

FIGURE 6.12: Biased RRT algorithm (continued).

52

Chapter 7

Conclusion and Future Work

7.1 Conclusion

Natural calamities and mishaps are inevitable, and human-created catastrophes emerge
every now and then. SAR task forces are made to handle such incidents. UAVs are be-
ing used for such SAR missions, helping out to save lives and secure resources. The
advancement in technology has increased the efficiency and reliability of the UAVs and
their applicabilities in SAR missions.

This thesis has explored the path planning of UAVs in SAR missions. Region cover-
age algorithms and target reaching algorithms that are applicable for SAR were stud-
ied, and simulations were carried out. The simulations were carried out considering
a single Unmanned Aerial Vehicle (UAV). A quadcopter was considered for region
coverage algorithms, and a 3D figure model was considered for target reaching algo-
rithms. Parallel line, creeping line, spiral long edge first, and spiral short edge first
algorithms were considered for region coverage algorithms. Non-deterministic path
planning algorithm RRT was considered for target reaching algorithm.

Region coverage algorithms were simulated in Gazebo with PX4 in SITL. Iris 3DS,
a quadcopter model, was used. Flight logs of the mission using different algorithms
were analyzed using Flight Review, an online flight analyzer. Based on the analysis
form logs, comparisons among the algorithms were deduced based on mission time,
time to return to base, and the number of turns in the path. The parallel line pattern
took the least time to cover the region of interest. It had the least number of turns in the
path as well. The creeping line pattern was the slowest among others in terms of mis-
sion time and had maximum numbers of turns in the path. Spiral patterns with long
edge first and short edge first had almost the same performance. They had the least
time to return among other patterns. All the considered patterns were implemented
for a constant height and considering the region of interest as 2D plane.

RRT is a non-deterministic approach, i.e., the path is decided during the course
of the mission. The decision is made based on the sensors data, and other informa-
tion. Information of the environment is not required in prior, for RRT, which makes
it suitable for SAR missions. RRT algorithm was implemented in 3D the environment
by modeling Unmanned Aerial Vehicle (UAV) as a sphere, with 40 surface normals as
its possible directions of movement. The algorithm was simulated with and without
bias. The unbiased version took too many iterations to find the goal, while the biased
version conversed quickly within few iterations.

Chapter 7. Conclusion and Future Work 53

7.2 Future Work

Most SAR missions target wide regions and using a variety of sensors for a 3D map-
ping or the environment. Approaches described in this thesis apply to some sections
of the region of interest. This work considers only single Unmanned Aerial Vehicle
(UAV) and 2D planer region for coverage. Systems or humans will be required to di-
vide the region into sections where these algorithms will be applicable. The algorithms
do not consider optimization in the path for regions that require a UAV to re-fuel or
recharge multiple times during the course of its mission. As mentioned in Section 1.2,
path planning in 3D is NP-hard, and there is great scope of research in this area.

To expand the scope of this research, the following is considered for future devel-
opments:

• Path planning with multiple UAVs for coverage of larger regions. Factors to be
considered would be: division of region, collaboration among Unmanned Aerial
Vehicle (UAV), optimization of the path, and refuelling of UAV.

• Path optimization for covering larger regions using a single UAV considering
returning to different bases for refuelling or recharging.

• Covering a 3D environment is challenging and is required for SAR missions in
urban areas. Urban areas have skyscrapers and high rise buildings, and under-
ground subways and tunnels. Path planning and optimization for such 3D re-
gions using UAVs would be a good area to research.

• During catastrophes and calamities, the map of the region is unknown. SLAM
with UAVs in SAR can be explored.

54

Appendix A

MAVSDK Main Code

1 # !/ usr/bin/env python3
2 import sys
3 import asyncio
4 from mavsdk import System
5 from pathPlanner import *
6

7

8

9 async def mainloop () :
10 quadcopter = System ()
11 await quadcopter . connect (system_address="udp://:14540 ")
12

13 async f o r s t a t e in quadcopter . core . c o n n e c t i o n _ s t a t e () :
14 p r i n t (s t a t e)
15 i f s t a t e . i s_connected :
16 p r i n t (f " Drone discovered with UUID: { s t a t e . uuid } ")
17 break
18

19 async f o r val in quadcopter . te lemetry . p o s i t i o n () :
20 p r i n t (val)
21 break
22

23 currPos = val
24 polygon = getRectFromStart (3 0 0 . 0 , 1 0 0 . 0 , currPos)
25

26 i f pathType == " creeping " :
27 missionItems = getCreepingLineMissionItem (polygon)
28 e l i f pathType == " SpiralLongEdge " :
29 missionItems = getLongEdgeSpiralMissionItem (polygon)
30 e l i f pathType == " SpiralShortEdge " :
31 missionItems = getShortEdgeSpiralMissionItem (polygon)
32 e l s e :
33 missionItems = g e t Pa r a l l e l L in e M i ss i o nI t e m (polygon)
34 missionPlan = MissionPlan (missionItems)
35

36 await quadcopter . mission . s e t _ r e t u r n _ t o _ l a u n c h _ a f t e r _ m i s s i o n (True)
37 await quadcopter . mission . upload_mission (missionPlan)
38 await quadcopter . a c t i o n . arm ()
39 await quadcopter . mission . s t a r t _ m i s s i o n ()
40

41

42 pathType = " p a r a l l e l "
43 i f len (sys . argv) == 2 :
44 pathType = sys . argv [1]
45 looper = asyncio . get_event_loop ()
46 looper . run_unti l_complete (mainloop ())

55

Appendix B

Coverage Path Planning Code

1 import sys
2 from math import sin , cos , sqr t , atan2 , radians
3 from mavsdk import System
4 from mavsdk . mission import (MissionItem , MissionPlan)
5 from mavsdk . geofence import Point , Polygon
6 from mavsdk . te lemetry import Pos i t ion , PositionNed
7 from pygeodesy . e l l i p s o i d a l K a r n e y import LatLon
8 from pygeodesy . points import boundsOf , centroidOf , isenclosedBy
9 from shapely import geometry

10 import m a t p l o t l i b . pyplot as p l t
11 import geopandas
12

13

14 EAST_COMPASS_ANGLE = 9 0 . 0
15 WEST_COMPASS_ANGLE = 270 .0
16 NORTH_COMPASS_ANGLE = 0 . 0
17 SOUTH_COMPASS_ANGLE = 180 .0
18 NORTH_DIR = 0
19 SOUTH_DIR = 1
20 EAST_DIR = 2
21 WEST_DIR = 3
22

23 def plotGraph (area , path) :
24 pts = []
25 f o r pt in area :
26 pts . append ((pt . lon , pt . l a t))
27 areaPolygon = geometry . Polygon (pts)
28 waypts = []
29 f o r mpt in path :
30 waypts . append ((mpt . longitude_deg , mpt . l a t i tude_ deg))
31 wayPath = geometry . L ineSt r ing (waypts)
32 d1 = { ’ co l1 ’ : [’ path ’ , ’ area ’] , ’ geometry ’ : [wayPath , areaPolygon] }
33 gdf1 = geopandas . GeoDataFrame (d1 , c r s ="EPSG:4326 ")
34 # f ig , ax = p l t . subplots (1 , 1)
35 gdf1 . p l o t (legend=True , cmap= ’ gnuplot ’ , legend_kwds ={ ’ l a b e l ’ : " Path in

ROI" ,
36 ’ o r i e n t a t i o n ’ :

" h o r i z o n t a l " })
37 re turn gdf1
38

39

40 def getOppositeCompass (compassAngle) :
41 i f (compassAngle == EAST_COMPASS_ANGLE) :
42 re turn WEST_COMPASS_ANGLE
43 e l i f (compassAngle == WEST_COMPASS_ANGLE) :

Appendix B. Coverage Path Planning Code 56

44 re turn EAST_COMPASS_ANGLE
45 e l i f (compassAngle == NORTH_COMPASS_ANGLE) :
46 re turn SOUTH_COMPASS_ANGLE
47 e l i f (compassAngle == SOUTH_COMPASS_ANGLE) :
48 re turn NORTH_COMPASS_ANGLE
49 e l s e :
50 re turn compassAngle + 180 .0
51

52

53

54 # Point c l a s s i s in mavsdk and Latlon c l a s s in pygeodesy
55 # covers ion from one another i s required
56 def PointToLatLon (pt : Point) :
57 re turn LatLon (pt . la t i tude_deg , pt . longitude_deg)
58

59 def LatLonToPoint (pt : Point) :
60 re turn LatLon (pt . la t i tude_deg , pt . longitude_deg)
61

62

63

64

65

66 def getRectFromStart (length : f l o a t , breadth : f l o a t , s t a r t P o i n t : Point) :
67 ’ ’ ’
68 r e q u i r e s length and breadth in Km, and s ta r tPo in tA in l a t and long
69 North
70 D−−−−−−−−−−−−−−−−−−−−−−C
71 |b |
72 |r |
73 |e + | East
74 |d |
75 | t |
76 |h |
77 | |
78 | length |
79 A−−−−−−−−−−−−−−−−−−−−−−B
80

81 i t w i l l re turn l i s t of polygon points with mavsdk . geofence . Point
c l a s s

82 ’ ’ ’
83 # r e s e t points to 0 ,0 i f values are i r r e g u l a r
84 i f abs (s t a r t P o i n t . l a t i tude _deg) > 90 or abs (s t a r t P o i n t . longitude_deg

) > 1 8 0 :
85 s t a r t P o i n t . l a t i tud e_deg = 0
86 s t a r t P o i n t . longitude_deg = 0
87 pointALatLong = PointToLatLon (s t a r t P o i n t)
88 pointBLatLong = pointALatLong . d e s t i n a t i o n (length ,EAST_COMPASS_ANGLE)
89 pointCLatLong = pointBLatLong . d e s t i n a t i o n (breadth ,

NORTH_COMPASS_ANGLE)
90 pointDLatLong = pointALatLong . d e s t i n a t i o n (breadth ,

NORTH_COMPASS_ANGLE)
91 polygonPoints = [pointALatLong , pointBLatLong , pointCLatLong ,

pointDLatLong]
92 # l e t s get s tartPointNed
93 re turn polygonPoints
94

95

96 def getRect (length , breadth , c e n t r o i d P o i n t) :

Appendix B. Coverage Path Planning Code 57

97 ’ ’ ’
98 r e q u i r e s length and breadth in Km, and c e n t r o i d P o i n t in l a t and long
99 D−−−−−−−−−−−−−−−−−−−−−−C

100 | |
101 | centero id Point |
102 | + |
103 | |
104 | |
105 A−−−−−−−−−−−−−−−−−−−−−−B
106

107 i t w i l l re turn mavsdk Polygon
108 ’ ’ ’
109 # i f length and breadth are negative , j u s t take abs
110 length = math . fabs (length)
111 breadth = math . fabs (breadth)
112 # r e s e t points to 0 ,0 i f values are i r r e g u l a r
113 i f abs (c e n t r o i d P o i n t . l a t i tude _deg) > 90 or abs (c e n t r o i d P o i n t .

longitude_deg) > 1 8 0 :
114 c e n t r o i d P o i n t . l a t i tude _deg = 0
115 c e n t r o i d P o i n t . longitude_deg = 0
116 pointA = Point (c e n t r o i d P o i n t . l a t i tud e_deg − length , c e n t r o i d P o i n t .

longitude_deg − breadth)
117 pointB = Point (c e n t r o i d P o i n t . l a t i tud e_deg − length , c e n t r o i d P o i n t .

longitude_deg + breadth)
118 pointC = Point (c e n t r o i d P o i n t . l a t i tu de_deg + length , c e n t r o i d P o i n t .

longitude_deg + breadth)
119 pointD = Point (c e n t r o i d P o i n t . l a t i t ude_de g + length , c e n t r o i d P o i n t .

longitude_deg − breadth)
120 polygon = Polygon ([pointA , pointB , pointC , pointD] , Polygon . FenceType .

INCLUSION)
121 re turn polygon
122

123

124 def checkLimitToDest inat ion (pt , dst , currDir , pathDir , width) :
125 errorMargin=width/70
126 i f currDir != pathDir and pathDir != getOppositeCompass (currDir) :
127 re turn Fa l se
128 i f pt . distanceTo (dst [0]) <= (width/ s q r t (2)) + errorMargin or pt .

distanceTo (dst [1]) <= (width/ s q r t (2)) + errorMargin :
129 re turn True
130 e l s e :
131 re turn Fa l se
132

133

134 def getShortPathWidth (pt , dst , pathDir , width) :
135 ’ ’ ’
136 i f the width remaining from the fence i s l e s s than width , take

width to 1/2 from the
137 fence s ide .
138 ’ ’ ’
139 remainWidth = width
140 i f pathDir == EAST_COMPASS_ANGLE or pathDir == WEST_COMPASS_ANGLE:
141 remainWidth = LatLon (0 , pt . lon) . distanceTo (LatLon (0 , dst . lon))
142 e l s e :
143 remainWidth = LatLon (pt . l a t , 0) . distanceTo (LatLon (dst . l a t , 0))
144 i f remainWidth < width :
145 # p r i n t (f " remaining width = { remainWidth } ")
146 re turn (remainWidth − (remainWidth − width /2))

Appendix B. Coverage Path Planning Code 58

147 e l s e :
148 re turn width
149

150 def g e t P a t h A t t r i b u t e s (currPt , eas tPt , northPt) :
151 ’ ’ ’
152 This funct ion re turns l i s t of the shor t and long s ide d i r e c t i o n

in a r e c t a n g l e .
153 ’ ’ ’
154 longEdgeCompass = EAST_COMPASS_ANGLE
155 shortEdgeCompass = NORTH_COMPASS_ANGLE
156 i f currPt . distanceTo (e a s t P t) > currPt . distanceTo (northPt) :
157 i f currPt . lon < e a s t P t . lon :
158 longEdgeCompass = EAST_COMPASS_ANGLE
159 e l s e :
160 longEdgeCompass = WEST_COMPASS_ANGLE
161

162 i f currPt . l a t < northPt . l a t :
163 shortEdgeCompass = NORTH_COMPASS_ANGLE
164 e l s e :
165 shortEdgeCompass = SOUTH_COMPASS_ANGLE
166 e l s e :
167 i f currPt . l a t < northPt . l a t :
168 longEdgeCompass = NORTH_COMPASS_ANGLE
169 e l s e :
170 longEdgeCompass = SOUTH_COMPASS_ANGLE
171

172 i f currPt . lon < e a s t P t . lon :
173 shortEdgeCompass = EAST_COMPASS_ANGLE
174 e l s e :
175 shortEdgeCompass = WEST_COMPASS_ANGLE
176 re turn [longEdgeCompass , shortEdgeCompass]
177

178 def ge t P a ra l l e l L i n eM i s s io n I te m (covAreaPts , sweepWidth =10 .0 , height = 25 ,
speed = 10) :

179 currPt = covAreaPts [0]
180 mission_items = []
181 covAreaBounds = boundsOf (covAreaPts)
182 length = currPt . distanceTo (covAreaPts [1])
183 longEdge = 0
184 shortEdge = sweepWidth ;
185 breadth = currPt . distanceTo (covAreaPts [− 1])
186 i f length > breadth :
187 longEdge = length − (shortEdge) ;
188 e l s e :
189 longEdge = breadth − (shortEdge) ;
190 longEdgeCompass , shortEdgeCompass = g e t P a t h A t t r i b u t e s (covAreaPts [0] ,

covAreaPts [1] , covAreaPts [− 1]) # points A and C w i l l determine the
d i r e c t i o n

191 # p r i n t (longEdgeCompass , shortEdgeCompass)
192 iCnt = 0
193 currCompass = longEdgeCompass
194 currPt = currPt . d e s t i n a t i o n (sweepWidth/2 , shortEdgeCompass)
195 currPt = currPt . d e s t i n a t i o n (sweepWidth/2 , longEdgeCompass)
196 mission_items . append (MissionItem (currPt . l a t ,
197 currPt . lon ,
198 height ,
199 speed ,
200 True ,

Appendix B. Coverage Path Planning Code 59

201 f l o a t (’ nan ’) ,
202 f l o a t (’ nan ’) ,
203 MissionItem . CameraAction .NONE,
204 f l o a t (’ nan ’) ,
205 f l o a t (’ nan ’)))
206 while checkLimitToDest inat ion (currPt , [covAreaPts [2] , covAreaPts

[3]] , currCompass , longEdgeCompass , sweepWidth) == Fa lse :
207 i f iCnt % 4 == 0 :
208 # long edge
209 currCompass = longEdgeCompass
210 currPt = currPt . d e s t i n a t i o n (longEdge , currCompass)
211 e l i f iCnt %4 == 2 :
212 # long edge
213 currCompass = getOppositeCompass (longEdgeCompass)
214 currPt = currPt . d e s t i n a t i o n (longEdge , currCompass)
215 e l s e :
216 # shor t edge
217 currCompass = shortEdgeCompass
218 currPt = currPt . d e s t i n a t i o n (getShortPathWidth (currPt ,

covAreaPts [2] , currCompass , shortEdge) , currCompass)
219

220 mission_items . append (MissionItem (currPt . l a t ,
221 currPt . lon ,
222 height ,
223 speed ,
224 True ,
225 f l o a t (’ nan ’) ,
226 f l o a t (’ nan ’) ,
227 MissionItem . CameraAction .NONE,
228 f l o a t (’ nan ’) ,
229 f l o a t (’ nan ’)))
230 iCnt = iCnt + 1
231 # p r i n t (iCnt , currCompass , currPt , LatLon (0 , currPt . lon) . distanceTo (

LatLon (0 , covAreaPts [2] . lon)))
232

233 re turn mission_items
234

235 def getCreepingLineMissionItem (covAreaPts , sweepWidth =10 .0 , height = 25 ,
speed = 10) :

236 currPt = covAreaPts [0]
237 mission_items = []
238 covAreaBounds = boundsOf (covAreaPts)
239 length = currPt . distanceTo (covAreaPts [1])
240 longEdge = 0
241 shortEdge = sweepWidth ;
242 breadth = currPt . distanceTo (covAreaPts [− 1])
243 i f length > breadth :
244 longEdge = breadth − (shortEdge) ;
245 e l s e :
246 longEdge = length − (shortEdge) ;
247 shortEdgeCompass , longEdgeCompass = g e t P a t h A t t r i b u t e s (covAreaPts [0] ,

covAreaPts [1] , covAreaPts [− 1]) # points A and C w i l l determine the
d i r e c t i o n

248 # p r i n t (longEdgeCompass , shortEdgeCompass)
249 iCnt = 0
250 currCompass = longEdgeCompass
251 currPt = currPt . d e s t i n a t i o n (sweepWidth/2 , shortEdgeCompass)
252 currPt = currPt . d e s t i n a t i o n (sweepWidth/2 , longEdgeCompass)

Appendix B. Coverage Path Planning Code 60

253 mission_items . append (MissionItem (currPt . l a t ,
254 currPt . lon ,
255 height ,
256 speed ,
257 True ,
258 f l o a t (’ nan ’) ,
259 f l o a t (’ nan ’) ,
260 MissionItem . CameraAction .NONE,
261 f l o a t (’ nan ’) ,
262 f l o a t (’ nan ’)))
263 while checkLimitToDest inat ion (currPt , [covAreaPts [1] , covAreaPts

[2]] , currCompass , longEdgeCompass , sweepWidth) == Fa lse :
264 i f iCnt % 4 == 0 :
265 # long edge
266 currCompass = longEdgeCompass
267 currPt = currPt . d e s t i n a t i o n (longEdge , currCompass)
268 e l i f iCnt %4 == 2 :
269 # long edge
270 currCompass = getOppositeCompass (longEdgeCompass)
271 currPt = currPt . d e s t i n a t i o n (longEdge , currCompass)
272 e l s e :
273 # shor t edge
274 currCompass = shortEdgeCompass
275 currPt = currPt . d e s t i n a t i o n (getShortPathWidth (currPt ,

covAreaPts [2] , currCompass , shortEdge) , currCompass)
276

277 mission_items . append (MissionItem (currPt . l a t ,
278 currPt . lon ,
279 height ,
280 speed ,
281 True ,
282 f l o a t (’ nan ’) ,
283 f l o a t (’ nan ’) ,
284 MissionItem . CameraAction .NONE,
285 f l o a t (’ nan ’) ,
286 f l o a t (’ nan ’)))
287 iCnt = iCnt + 1
288 # p r i n t (iCnt , currCompass , currPt , LatLon (0 , currPt . lon) . distanceTo (

LatLon (0 , covAreaPts [2] . lon)))
289

290 re turn mission_items
291

292

293 def getLongEdgeSpiralMissionItem (covAreaPts , sweepWidth =10 .0 , height =
25 , speed = 10) :

294 currPt = covAreaPts [0]
295 mission_items = []
296 covAreaBounds = boundsOf (covAreaPts)
297 length = currPt . distanceTo (covAreaPts [1])
298 longEdge = 0
299 breadth = currPt . distanceTo (covAreaPts [− 1])
300 breadthToCover = breadth
301 coveredBreadth = 0
302

303 i f length > breadth :
304 longEdge = length − (sweepWidth)
305 shortEdge = breadth − (sweepWidth)
306 e l s e :

Appendix B. Coverage Path Planning Code 61

307 breadthToCover = length
308 longEdge = breadth − (sweepWidth)
309 shortEdge = length − (sweepWidth)
310 longEdgeCompass , shortEdgeCompass = g e t P a t h A t t r i b u t e s (covAreaPts [0] ,

covAreaPts [1] , covAreaPts [− 1]) # points A and C w i l l determine the
d i r e c t i o n

311 # p r i n t (longEdgeCompass , shortEdgeCompass)
312 iCnt = 0
313 currCompass = longEdgeCompass
314 currPt = currPt . d e s t i n a t i o n (sweepWidth/2 , shortEdgeCompass)
315 currPt = currPt . d e s t i n a t i o n (sweepWidth/2 , longEdgeCompass)
316 mission_items . append (MissionItem (currPt . l a t ,
317 currPt . lon ,
318 height ,
319 speed ,
320 True ,
321 f l o a t (’ nan ’) ,
322 f l o a t (’ nan ’) ,
323 MissionItem . CameraAction .NONE,
324 f l o a t (’ nan ’) ,
325 f l o a t (’ nan ’)))
326

327 shortEdgeEpsilon = sweepWidth/70
328 while True :
329 i f iCnt % 4 == 0 :
330 # long edge
331 currCompass = longEdgeCompass
332 currPt = currPt . d e s t i n a t i o n (longEdge , currCompass)
333 i f iCnt != 0 :
334 longEdge −= (sweepWidth)
335 e l i f iCnt %4 == 1 :
336 # shor t edge
337 # p r i n t (f " shor t edge = { shortEdge } ")
338 i f shortEdge <= shortEdgeEpsilon :
339 break
340 e l s e :
341 currCompass = shortEdgeCompass
342 currPt = currPt . d e s t i n a t i o n (shortEdge , currCompass)
343 shortEdge −= (sweepWidth)
344 e l i f iCnt %4 == 2 :
345 # long edge
346 currCompass = getOppositeCompass (longEdgeCompass)
347 currPt = currPt . d e s t i n a t i o n (longEdge , currCompass)
348 longEdge −= (sweepWidth)
349 e l s e :
350 # shor t edge
351 # p r i n t (f " shor t edge = { shortEdge } ")
352 i f shortEdge <= shortEdgeEpsilon :
353 break
354 e l s e :
355 currCompass = getOppositeCompass (shortEdgeCompass)
356 currPt = currPt . d e s t i n a t i o n (shortEdge , currCompass)
357 shortEdge −= (sweepWidth)
358

359 mission_items . append (MissionItem (currPt . l a t ,
360 currPt . lon ,
361 height ,
362 speed ,

Appendix B. Coverage Path Planning Code 62

363 True ,
364 f l o a t (’ nan ’) ,
365 f l o a t (’ nan ’) ,
366 MissionItem . CameraAction .NONE,
367 f l o a t (’ nan ’) ,
368 f l o a t (’ nan ’)))
369

370 iCnt = iCnt + 1
371 # p r i n t (iCnt , currCompass , currPt , LatLon (0 , currPt . lon) . distanceTo (

LatLon (0 , covAreaPts [2] . lon)))
372

373 re turn mission_items
374

375 def getShortEdgeSpiralMiss ionItem (covAreaPts , sweepWidth =10 .0 , height =
25 , speed = 10) :

376 currPt = covAreaPts [0]
377 mission_items = []
378 covAreaBounds = boundsOf (covAreaPts)
379 length = currPt . distanceTo (covAreaPts [1])
380 longEdge = 0
381 breadth = currPt . distanceTo (covAreaPts [− 1])
382

383 i f length > breadth :
384 longEdge = length − (sweepWidth)
385 shortEdge = breadth − (sweepWidth)
386 e l s e :
387 longEdge = breadth − (sweepWidth)
388 shortEdge = length − (sweepWidth)
389 longEdgeCompass , shortEdgeCompass = g e t P a t h A t t r i b u t e s (covAreaPts [0] ,

covAreaPts [1] , covAreaPts [− 1]) # points A and C w i l l determine the
d i r e c t i o n

390 # p r i n t (longEdgeCompass , shortEdgeCompass)
391 iCnt = 0
392 currCompass = shortEdgeCompass
393 currPt = currPt . d e s t i n a t i o n (sweepWidth/2 , longEdgeCompass)
394 currPt = currPt . d e s t i n a t i o n (sweepWidth/2 , shortEdgeCompass)
395 mission_items . append (MissionItem (currPt . l a t ,
396 currPt . lon ,
397 height ,
398 speed ,
399 True ,
400 f l o a t (’ nan ’) ,
401 f l o a t (’ nan ’) ,
402 MissionItem . CameraAction .NONE,
403 f l o a t (’ nan ’) ,
404 f l o a t (’ nan ’)))
405 shortEdgeEpsilon = sweepWidth/70
406 while True :
407 i f iCnt % 4 == 0 :
408 # shor t edge
409 # p r i n t (f " shor t edge = { shortEdge } ")
410 i f shortEdge <= shortEdgeEpsilon :
411 break
412 e l s e :
413 currCompass = shortEdgeCompass
414 currPt = currPt . d e s t i n a t i o n (shortEdge , currCompass)
415 i f iCnt != 0 :
416 shortEdge −= (sweepWidth)

Appendix B. Coverage Path Planning Code 63

417 e l i f iCnt %4 == 1 :
418 # long edge
419 currCompass = longEdgeCompass
420 currPt = currPt . d e s t i n a t i o n (longEdge , currCompass)
421 longEdge −= (sweepWidth)
422 e l i f iCnt %4 == 2 :
423 # shor t edge
424 # p r i n t (f " shor t edge = { shortEdge } ")
425 i f shortEdge <= shortEdgeEpsilon :
426 break
427 e l s e :
428 currCompass = getOppositeCompass (shortEdgeCompass)
429 currPt = currPt . d e s t i n a t i o n (shortEdge , currCompass)
430 shortEdge −= (sweepWidth)
431 e l s e :
432 # long edge
433 currCompass = getOppositeCompass (longEdgeCompass)
434 currPt = currPt . d e s t i n a t i o n (longEdge , currCompass)
435 longEdge −= (sweepWidth)
436

437 mission_items . append (MissionItem (currPt . l a t ,
438 currPt . lon ,
439 height ,
440 speed ,
441 True ,
442 f l o a t (’ nan ’) ,
443 f l o a t (’ nan ’) ,
444 MissionItem . CameraAction .NONE,
445 f l o a t (’ nan ’) ,
446 f l o a t (’ nan ’)))
447

448 iCnt = iCnt + 1
449 # p r i n t (iCnt , currCompass , currPt , LatLon (0 , currPt . lon) . distanceTo (

LatLon (0 , covAreaPts [2] . lon)))
450

451 re turn mission_items
452

453

454

455

456

457 def getSquareSearchMissionItem (covAreaPts , sweepWidth =10 .0 , height = 25 ,
speed = 10) :

458 c e n t r e P t = centroidOf (covAreaPts)
459 currPt = LatLon (c e n t r e P t [0] , c e n t r e P t [1])
460 mission_items = []
461 covAreaBounds = boundsOf (covAreaPts)
462 mission_items . append (MissionItem (currPt . l a t ,
463 currPt . lon ,
464 height ,
465 speed ,
466 True ,
467 f l o a t (’ nan ’) ,
468 f l o a t (’ nan ’) ,
469 MissionItem . CameraAction .NONE,
470 f l o a t (’ nan ’) ,
471 f l o a t (’ nan ’)))
472 nextDir = NORTH_COMPASS_ANGLE

Appendix B. Coverage Path Planning Code 64

473 path Mul t ip l i e r = 1
474 count = 0
475 r o t a t i o n D i r = 0
476 while True :
477 currPt = currPt . d e s t i n a t i o n (sweepWidth * path Mul t ip l i e r ,

nextDir)
478 count += 1
479 mission_items . append (MissionItem (currPt . l a t ,
480 currPt . lon ,
481 height ,
482 speed ,
483 True ,
484 f l o a t (’ nan ’) ,
485 f l o a t (’ nan ’) ,
486 MissionItem . CameraAction .NONE,
487 f l o a t (’ nan ’) ,
488 f l o a t (’ nan ’)))
489 i f r o t a t i o n D i r == 0 :
490 nextDir += 90
491 e l s e :
492 nextDir −= 90
493 i f count % 2 == 0 :
494 path Mul t ip l i e r += 1
495 i f not isenclosedBy (currPt , covAreaPts) :
496 break
497 re turn mission_items

65

Appendix C

RRT Code

1 # !/ usr/bin/env python
2 # coding : utf −8
3

4 import Geometry3D as g3d
5 import random
6 import copy
7 from m a t p l o t l i b import pyplot as p l t
8 from mpl_ too lk i t s . mplot3d import Axes3D
9 #%m a t p l o t l i b

10 # get_ipython () . run_line_magic (’ m a t p l o t l i b ’ , ’ widget ’)
11

12

13

14

15 # f u n c t i o n s createArrow and graphPLotter are taken from Geometry3D .
renderer

16 # and modified to have updates in same graph while progress ing
17

18 def createArrow (s t a r t _ p t , end_pt) :
19 vec = g3d . Vector (s t a r t _ p t , end_pt)
20 d i s t a n c e = g3d . d i s t a n c e (s t a r t _ p t , end_pt)
21 # seg = g3d . Segment (r r t . uavMotionPath [idx] , r r t . uavMotionPath [idx + 1])
22 u = vec . normalized () * g3d . x_uni t_vec tor ()
23 v = vec . normalized () * g3d . y_uni t_vec tor ()
24 w = vec . normalized () * g3d . z_uni t_vec tor ()
25 arw = g3d . render . arrow . Arrow (s t a r t _ p t . x , s t a r t _ p t . y , s t a r t _ p t . z , u , v ,w,

d i s t a n c e)
26 re turn arw
27

28 c l a s s graphPlo t te r () :
29 def _ _ i n i t _ _ (s e l f , i n s t a n t P l o t =True) :
30 s e l f . rendObj = g3d . Renderer ()
31 s e l f . f i g = p l t . f i g u r e ()
32 s e l f . ax = Axes3D (s e l f . f i g)
33 s e l f . i n s t a n t P l o t = i n s t a n t P l o t
34

35 def show (s e l f) :
36 s e l f . plotFromRenderer ()
37 p l t . show ()
38

39 def p l o t P o i n t (s e l f , po int_ tuple) :
40 point = point_ tuple [0]
41 c o l o r = point_ tuple [1]
42 s i z e = point_ tuple [2]
43 s e l f . ax . s c a t t e r (point . x , point . y , point . z , c=color , s= s i z e)

Appendix C. RRT Code 66

44

45 def plotSegment (s e l f , segment_tuple) :
46 segment = segment_tuple [0]
47 c o l o r = segment_tuple [1]
48 s i z e = segment_tuple [2]
49 x = [segment . s t a r t _ p o i n t . x , segment . end_point . x]
50 y = [segment . s t a r t _ p o i n t . y , segment . end_point . y]
51 z = [segment . s t a r t _ p o i n t . z , segment . end_point . z]
52 s e l f . p l o t P o i n t ((segment . s t a r t _ p o i n t , color , s i z e +1))
53 s e l f . p l o t P o i n t ((segment . end_point , color , s i z e +1))
54 s e l f . ax . p l o t (x , y , z , c o l o r =color , l inewidth= s i z e)
55

56 def plotArrow (s e l f , arrow_tuple) :
57 x , y , z , u , v ,w, length = arrow_tuple [0] . ge t_ tuple ()
58 c o l o r = arrow_tuple [1]
59 s i z e = arrow_tuple [1]
60 s e l f . ax . quiver (x , y , z , u , v ,w, c o l o r = color , length = length)
61

62 def plotConvexPloygon (s e l f , obj , normal_length =0) :
63 f o r point in ob j [0] . points :
64 s e l f . p l o t P o i n t ((point , ob j [1] , ob j [2]))
65 f o r segment in ob j [0] . segments () :
66 s e l f . plotSegment ((segment , ob j [1] , ob j [2]))
67 i f normal_length > 0 :
68 cpg = obj [0]
69 plane = cpg . plane
70 normal = plane . n . normalized ()
71 array = g3d . render . arrow . Arrow (cpg . c e n t e r _ p o i n t . x , cpg .

c e n t e r _ p o i n t . y , cpg . c e n t e r _ p o i n t . z , normal [0] , normal [1] , normal [2] ,
normal_length)

72 s e l f . plotArrow ((array , ob j [1] , ob j [2]))
73

74 def add (s e l f , obj , normal_len =0) :
75 i f s e l f . i n s t a n t P l o t :
76 i f i s i n s t a n c e (ob j [0] , g3d . Point) :
77 s e l f . p l o t P o i n t (ob j)
78 e l i f i s i n s t a n c e (ob j [0] , g3d . Segment) :
79 s e l f . plotSegment (ob j)
80 e l i f i s i n s t a n c e (ob j [0] , g3d . render . arrow . Arrow) :
81 s e l f . plotArrow (ob j)
82 e l i f i s i n s t a n c e (ob j [0] , g3d . ConvexPolygon) :
83 s e l f . plotConvexPloygon (obj , normal_length = normal_len)
84 e l i f i s i n s t a n c e (ob j [0] , g3d . ConvexPolyhedron) :
85 f o r cpg in ob j [0] . convex_polygons :
86 s e l f . plotConvexPloygon ((cpg , ob j [1] , ob j [2]) ,

normal_length = normal_len)
87 e l s e :
88 r a i s e ValueError (’ Cannot add o b j e c t with type : { } ’ . format

(type (ob j [0])))
89 e l s e :
90 s e l f . rendObj . add (obj , normal_len)
91

92 def plotFromRenderer (s e l f) :
93 f o r point_ tuple in s e l f . rendObj . p o i n t _ s e t :
94 s e l f . p l o t P o i n t (point_ tuple)
95

96 f o r segment_tuple in s e l f . rendObj . segment_set :
97 s e l f . plotSegment (segment_tuple)

Appendix C. RRT Code 67

98

99 f o r arrow_tuple in s e l f . rendObj . arrow_set :
100 s e l f . plotArrow (arrow_tuple)
101

102

103

104

105 c l a s s UavWorld :
106 ’ ’ ’ c r e a t e a cube/ p a r a l l e l p e i o d as ground with height −1
107 add many o b s t a c l e s , l i k e sphere/ c y c l i n d e r / P a r a l l e l e p i p e d on

the ground
108 or above the ground .
109 re turn [ground , l i s t [o b s t a c l e s] , l i s t [xmin , xmax] , l i s t [ymin , ymax] ,

l i s t [zmin , zmax]]
110 ’ ’ ’
111 def _ _ i n i t _ _ (s e l f) :
112 s e l f . xLimits = [0 , 1 0 0]
113 s e l f . yLimits = [0 , 1 0 0]
114 s e l f . zLimits = [0 , 1 0 0]
115 s e l f . nVal = 10
116 s e l f . ground = g3d . P a r a l l e l e p i p e d (g3d . Point (s e l f . xLimits [0] , s e l f .

yLimits [0] , 0) , s e l f . xLimits [1] * g3d . x_uni t_vec tor () , s e l f . yLimits
[1] * g3d . y_uni t_vec tor () ,1 * g3d . z_uni t_vec tor ())

117 s e l f . Obstac les = []
118 s e l f . Obstac les . append (g3d . Cylinder (g3d . Point (4 , 4 , 0) , 3 , 10* g3d .

z_uni t_vec tor () , n= s e l f . nVal))
119 s e l f . Obstac les . append (g3d . Cylinder (g3d . Point (1 5 , 1 0 . 6 , 0) , 3 , 15*

g3d . z_uni t_vec tor () , n= s e l f . nVal))
120 s e l f . Obstac les . append (g3d . Cylinder (g3d . Point (3 0 , 4 0 , 0) , 3 , 25* g3d

. z_uni t_vec tor () , n= s e l f . nVal))
121 s e l f . Obstac les . append (g3d . Cylinder (g3d . Point (1 2 , 3 0 , 0) , 5 , 20* g3d

. z_uni t_vec tor () , n= s e l f . nVal))
122 s e l f . Obstac les . append (g3d . Cylinder (g3d . Point (7 0 , 7 0 , 0) , 8 , 12* g3d

. z_uni t_vec tor () , n= s e l f . nVal))
123 s e l f . Obstac les . append (g3d . Cylinder (g3d . Point (9 0 , 2 0 , 0) , 6 , 15* g3d

. z_uni t_vec tor () , n= s e l f . nVal))
124 s e l f . Obstac les . append (g3d . Cone (g3d . Point (7 0 , 3 0 , 0) , 5 , 20* g3d .

z_uni t_vec tor () , n= s e l f . nVal))
125 s e l f . Obstac les . append (g3d . Sphere (g3d . Point (5 0 , 5 0 , 3 0) , 2 0 , n1= s e l f .

nVal , n2= s e l f . nVal))
126

127 def c o l l i s i o n W i t h O b s t a c l e (s e l f , s t a r t P t , endPt , radius , l i n e C o l l i s i o n
=True) :

128 i f l i n e C o l l i s i o n :
129 re turn s e l f . col l i s ionWithObstac leSegment (s t a r t P t , endPt)
130 cyl inderAxisVec = g3d . Vector (s t a r t P t , endPt)
131 newPathCylinder = g3d . Cylinder (s t a r t P t , radius , cylinderAxisVec , n=

s e l f . nVal)
132 f o r idx in range (len (s e l f . Obstac les)) :
133 c o l l i s i o n A r e a = g3d . i n t e r s e c t i o n (newPathCylinder , s e l f .

Obstac les [idx])
134 # i f c o l l i s i o n A r e a var i s not null , there are some points

i n t e r s e c t e d
135 # so return c o l l i d e d and index of c o l l i d e d o b s t a c l e
136 i f bool (c o l l i s i o n A r e a) :
137 re turn [True , idx]
138 re turn [False , −1]
139

Appendix C. RRT Code 68

140 def col l i s ionWithObstac leSegment (s e l f , s t a r t P t , endPt) :
141 seg = g3d . Segment (s t a r t P t , endPt)
142 f o r idx in range (len (s e l f . Obstac les)) :
143 c o l l i s i o n A r e a = g3d . i n t e r s e c t i o n (seg , s e l f . Obstac les [idx])
144 # i f c o l l i s i o n A r e a var i s not null , there are some points

i n t e r s e c t e d
145 # so return c o l l i d e d and index of c o l l i d e d o b s t a c l e
146 i f bool (c o l l i s i o n A r e a) :
147 re turn [True , idx]
148 re turn [False , −1]
149

150 def p o i n t I n s i d e O b s t a c l e (s e l f , pt) :
151 f o r idx in range (len (s e l f . Obstac les)) :
152 c o l l i s i o n A r e a = g3d . i n t e r s e c t i o n (pt , s e l f . Obstac les [idx])
153 # i f c o l l i s i o n A r e a var i s not null , there are some points

i n t e r s e c t e d
154 # so return c o l l i d e d and index of c o l l i d e d o b s t a c l e
155 i f bool (c o l l i s i o n A r e a) :
156 re turn [True , idx]
157 re turn [False , −1]
158

159 def addObstacle (s e l f , newObj) :
160 s e l f . Obstac les . append (newObj)
161

162

163 def addToRenderer (s e l f , rendObj) :
164 rendObj . add ((s e l f . ground , ’ y ’ , 2))
165 f o r idx in range (len (s e l f . Obstac les)) :
166 rendObj . add ((s e l f . Obstac les [idx] , ’ r ’ , 1))
167

168

169

170

171

172 c l a s s Uav :
173 ’ ’ ’
174 This c l a s s i s c r e a t e s a model of UAV with d e f a u l t radius , movement

vectors , s a f e height ,
175 s a f e dis tance , d e l t a Travel Distance
176 ’ ’ ’
177 def _ _ i n i t _ _ (s e l f) :
178 s e l f . radius = 1 # max dimension of UAV
179 s e l f . s a f e D i s t a n c e = 1 # s a f e d i s t a n c e from o b s t a c l e
180 s e l f . safeHeight = 3 # s a f e d i s t a n c e from ground
181 s e l f . d e l t a T r a v e l D i s t a n c e = 5 # d i s t a n c e Uav look forward to

t r a v e l
182 s e l f . moveVectorList = [] # add a l l the v e c t o r s of d i r e c t i o n i t

can move
183 # c r e a t e a sphere with 10 points on longitude and 2 points on

h a l f l a t t i t u d e
184 # the normal v e c t o r s of the sphere w i l l be d i r e c t i o n of the

motion
185 # add −z and +z v e c t o r s f o r top and down
186 s1 = g3d . Sphere (g3d . Point (0 , 0 , 0) , 1 , n1 =10 , n2 =2)
187 f o r ob j in s1 . convex_polygons :
188 s e l f . moveVectorList . append (ob j . plane . n . normalized ())
189 xyzVectorLis t = [g3d . Vector (1 , 0 , 0) , g3d . Vector (− 1 , 0 , 0) , g3d . Vector

(0 , 1 , 0) , g3d . Vector (0 , − 1 , 0) , g3d . Vector (0 , 0 , 1) , g3d . Vector (0 , 0 , − 1)]

Appendix C. RRT Code 69

190 f o r val in xyzVectorLis t :
191 i f not val in s e l f . moveVectorList :
192 s e l f . moveVectorList . append (val)
193

194

195

196

197 c l a s s PathNode :
198 ’ ’ ’
199 This c l a s s c r e a t e s a node with edges connect ions and edge weight
200 ’ ’ ’
201 def _ _ i n i t _ _ (s e l f , nodePoint=None , parentNode=None , nodeIdx = 0 ,

nodeCost=None) :
202 s e l f . parent = parentNode
203 s e l f . s e l f Idx = nodeIdx
204 s e l f . point = nodePoint
205 s e l f . c o s t = nodeCost
206 s e l f . ch i ldren = []
207

208

209

210

211 c l a s s RrtPlannerUAV :
212 def _ _ i n i t _ _ (s e l f , maxIterCnt , de l taDis tance , s t a r t P t , goalPt , xLims

, yLims , zLims , moveVectors) :
213 s e l f . graph = []
214 s e l f . uavMotionPath = []
215 s e l f . uavObstaclePath = []
216 s e l f . maxIter = maxIterCnt
217 s e l f . deltaEdge = d e l t a D i s t a n c e
218 s e l f . uavMotionPath . append (s t a r t P t)
219 s e l f . startNode = PathNode (s t a r t P t)
220 s e l f . startNode . parent = s e l f . startNode
221 s e l f . graph . append (s e l f . startNode)
222 s e l f . goalNode = PathNode (goalPt)
223 s e l f . rendObj = None
224 s e l f . moveVectorList = []
225 s e l f . xLimits = xLims
226 s e l f . yLimits = yLims
227 s e l f . zLimits = zLims
228 s e l f . currentNodeIdx = 0
229 s e l f . treeRendFlag = True
230 s e l f . treeRendColor = ’ b ’
231 s e l f . treeRendBrush = 1
232 s e l f . fa i ledRendFlag = Fa lse
233 s e l f . fai ledRendColor = ’ k ’
234 s e l f . failedRendBrush = 1
235 s e l f . pathRendFlag = Fa lse
236 s e l f . pathRendColor = ’ g ’
237 s e l f . pathRendBrush = 1
238 s e l f . errorAllowed = 3
239 s e l f . moveVectorList = moveVectors
240 #below w i l l be used to save l a s t s t a t e s of g e t t i n g va l id new

random node
241 s e l f . lastFai ledMoves = []
242 s e l f . lastMove = None
243 s e l f . v e c t o r s = []
244 s e l f . t r a n s l a t i o n V e c t o r = []

Appendix C. RRT Code 70

245 s e l f . randNodeCount = 0
246

247 def addRendObj (s e l f , rendObj) :
248 s e l f . rendObj = rendObj
249

250 def getRandNode (s e l f) :
251 s e l f . randNodeCount += 1
252 re turn s e l f . noBiasRandNode ()
253 i f s e l f . randNodeCount % 10 == 0 :
254 re turn s e l f . t rans la t ionToGoal ()
255 e l s e :
256 re turn s e l f . noBiasRandNode ()
257

258 def setToLimits (s e l f , newPoint) :
259 i f newPoint . x < s e l f . xLimits [0] :
260 newPoint . x = s e l f . xLimits [0]
261 i f newPoint . x > s e l f . xLimits [1] :
262 newPoint . x = s e l f . xLimits [1]
263 i f newPoint . y < s e l f . yLimits [0] :
264 newPoint . y = s e l f . yLimits [0]
265 i f newPoint . y > s e l f . yLimits [1] :
266 newPoint . y = s e l f . yLimits [1]
267 i f newPoint . z < s e l f . zLimits [0] :
268 newPoint . z = s e l f . zLimits [0]
269 i f newPoint . z > s e l f . zLimits [1] :
270 newPoint . z = s e l f . zLimits [1]
271

272 def uniformRandNode (s e l f) :
273 xVal = random . uniform (s e l f . xLimits [0] , s e l f . xLimits [1])
274 yVal = random . uniform (s e l f . yLimits [0] , s e l f . yLimits [1])
275 zVal = random . uniform (s e l f . zLimits [0] , s e l f . zLimits [1])
276 newPt = g3d . Point (xVal , yVal , xVal)
277 node = PathNode (newPt)
278 re turn node
279

280 def resetLastMoveData (s e l f) :
281 s e l f . lastFai ledMoves . c l e a r ()
282 s e l f . lastMove = None
283 s e l f . v e c t o r s . c l e a r ()
284 s e l f . t r a n s l a t i o n V e c t o r . c l e a r ()
285 s e l f . v e c t o r s = copy . deepcopy (s e l f . moveVectorList)
286

287 def nodeToGoalAlongVector (s e l f) :
288 vecToGoal = g3d . Vector (s e l f . graph [s e l f . currentNodeIdx] . point ,

s e l f . goalNode . point)
289 #vecToGoal = vecToGoal . normalized ()
290 # f o r val in s e l f . las tFai ledMoves :
291 # i f val in v e c t o r s :
292 # v e c t o r s . remove (val)
293 newPointNotFound = True
294 pi = 3.14159265
295 angleVecDict = d i c t ()
296 f o r idx in range (len (s e l f . moveVectorList)) :
297 vecAngle = vecToGoal . angle (s e l f . moveVectorList [idx])
298 angleVecDict [vecAngle]= s e l f . moveVectorList [idx]
299 d i c t I t e m s = angleVecDict . i tems ()
300 sor tedI tems = sorted (d i c t I t e m s)
301 f o r val in sortedI tems :

Appendix C. RRT Code 71

302 newPoint = copy . deepcopy (s e l f . graph [s e l f . currentNodeIdx] .
point) . move(s e l f . deltaEdge * val [1])

303 s e l f . se tToLimits (newPoint)
304 i f newPoint == s e l f . graph [s e l f . currentNodeIdx] . point :
305 continue
306 e l s e :
307 break
308 i f s e l f . goalLiesInLineSegment (newPoint , s e l f . graph [s e l f .

currentNodeIdx] . point) :
309 node = PathNode (s e l f . goalNode . point)
310 re turn node
311 e l s e :
312 node = PathNode (newPoint)
313 re turn node
314

315 def nodeTowardsGoal (s e l f) :
316 vecToGoal = g3d . Vector (s e l f . graph [s e l f . currentNodeIdx] . point ,

s e l f . goalNode . point)
317 vecToGoal = vecToGoal . normalized ()
318 newPoint = copy . deepcopy (s e l f . graph [s e l f . currentNodeIdx] . point) .

move(s e l f . deltaEdge * vecToGoal)
319 s e l f . se tToLimits (newPoint)
320 node = PathNode (newPoint)
321 i f s e l f . goalLiesInLineSegment (newPoint , s e l f . graph [s e l f .

currentNodeIdx] . point) :
322 # p r i n t (" got the goal in l i n e segment ")
323 node = PathNode (s e l f . goalNode . point)
324 # p r i n t (node . point)
325 re turn node
326

327

328 def noBiasRandNode (s e l f) :
329 v e c t o r s = copy . deepcopy (s e l f . moveVectorList)
330 # f o r val in s e l f . las tFai ledMoves :
331 # i f val in v e c t o r s :
332 # v e c t o r s . remove (val)
333 newPointNotFound = True
334 while newPointNotFound :
335 vec = random . choice (v e c t o r s)
336 newPoint = copy . deepcopy (s e l f . graph [s e l f . currentNodeIdx] .

point) . move(s e l f . deltaEdge * vec)
337 s e l f . se tToLimits (newPoint)
338

339 i f newPoint == s e l f . graph [s e l f . currentNodeIdx] . point :
340 newPointNotFound = True
341 v e c t o r s . remove (vec)
342 e l s e :
343 newPointNotFound = Fa lse
344 i f s e l f . goalLiesInLineSegment (newPoint , s e l f . graph [s e l f .

currentNodeIdx] . point) :
345 node = PathNode (s e l f . goalNode . point)
346 re turn node
347 e l s e :
348 node = PathNode (newPoint)
349 re turn node
350

351 def goalLiesInLineSegment (s e l f , ptA , ptB) :
352 ’ ’ ’

Appendix C. RRT Code 72

353 (x − x1) / (x2 − x1) = (y − y1) / (y2 − y1) = (z − z1) / (z2
− z1)

354 x1 < x < x2 , assuming x1 < x2 , or
355 y1 < y < y2 , assuming y1 < y2 , or
356 z1 < z < z2 , assuming z1 < z2
357 ’ ’ ’
358 i f ptB . x == ptA . x or ptB . y == ptA . y or ptB . z == ptA . z :
359 re turn Fa l se
360 xSlope = (s e l f . goalNode . point . x − ptA . x) /(ptB . x − ptA . x)
361 ySlope = (s e l f . goalNode . point . y − ptA . y) /(ptB . y − ptA . y)
362 zSlope = (s e l f . goalNode . point . z − ptA . z) /(ptB . z − ptA . z)
363 i f xSlope == ySlope and ySlope == zSlope :
364 # point l i n e s in the l i n e
365 # check i f point l i e s in the l i n e segment
366 i f ptA . x > ptB . x and s e l f . goalNode . point . x >= ptB . x and s e l f

. goalNode . point . x <= ptA . x :
367 re turn True
368 i f ptA . x < ptB . x and s e l f . goalNode . point . x >= ptA . x and s e l f

. goalNode . point . x <= ptB . x :
369 re turn True
370 re turn Fa l se
371

372 def goalReached (s e l f , node=None) :
373 i f g3d . d i s t a n c e (s e l f . graph [s e l f . currentNodeIdx] . point , s e l f .

goalNode . point) < s e l f . errorAllowed :
374 re turn True
375 re turn Fa l se
376

377 def addFailedNode (s e l f , node) :
378 s e l f . uavObstaclePath . append (createArrow (s e l f . graph [s e l f .

currentNodeIdx] . point , node . point))
379 i f s e l f . fa i ledRendFlag and bool (s e l f . rendObj) :
380 seg = g3d . Segment (s e l f . graph [s e l f . currentNodeIdx] . point ,

node . point)
381 s e l f . rendObj . add ((seg , s e l f . fai ledRendColor , s e l f .

failedRendBrush))
382

383 def addNodeToParent (s e l f , newNode , parentNode) :
384 newNode . Parent = parentNode
385 newNode . s e l f Idx = len (s e l f . graph)
386 s e l f . graph . append (newNode)
387 parentNode . ch i ldren . append (newNode . s e l f Idx)
388 i f s e l f . treeRendFlag and bool (s e l f . rendObj) :
389 i f parentNode . point != newNode . point :
390 seg = g3d . Segment (parentNode . point , newNode . point)
391 s e l f . rendObj . add ((seg , s e l f . treeRendColor , s e l f .

treeRendBrush))
392 e l s e :
393 p r i n t (f " {newNode . point } i s same as parent and c h i l d ")
394

395

396 def setCurrentNode (s e l f , node) :
397 i f s e l f . pathRendFlag and bool (rendObj) :
398 seg = g3d . Segment (s e l f . graph [s e l f . currentNodeIdx] . point ,

node . point)
399 s e l f . rendObj . add ((seg , s e l f . pathRendColor , s e l f . pathRendBrush)

)
400 s e l f . uavMotionPath . append (node . point)

Appendix C. RRT Code 73

401 s e l f . currentNodeIdx = node . s e l f Idx
402

403 def findNearestNode (s e l f ,newNode) :
404 d i s t = g3d . d i s t a n c e (s e l f . graph [0] . point , newNode . point)
405 neares t Idx = 0
406 newNode . c o s t = d i s t
407 f o r idx in range (1 , len (s e l f . graph)) :
408 d i s t = g3d . d i s t a n c e (s e l f . graph [idx] . point , newNode . point)
409 i f d i s t < newNode . c o s t :
410 newNode . c o s t = d i s t
411 neares t Idx = idx
412 re turn s e l f . graph [neares t Idx]
413

414 def run (s e l f , world , uavRadius = 1 , moveParams = [1 0 , 2]) :
415 ’ ’ ’
416 This funct ion w i l l s e l e c t next node along the vector of

movements randomly without any b i a s
417 ’ ’ ’
418 f o r i t r in range (s e l f . maxIter) :
419 newNode = s e l f . getRandNode ()
420 [i s C o l l i s i o n , _] = world . c o l l i s i o n W i t h O b s t a c l e (s e l f . graph [

s e l f . currentNodeIdx] . point , newNode . point , uavRadius)
421 i f i s C o l l i s i o n :
422 i f bool (s e l f . lastMove) :
423 s e l f . las tFai ledMoves . append (s e l f . lastMove)
424 s e l f . addFailedNode (newNode)
425 continue
426 s e l f . lastFai ledMoves . c l e a r ()
427 nearNode = s e l f . findNearestNode (newNode)
428 i f newNode . point == nearNode . point :
429 # got same random point , ignore i t
430 # p r i n t (f " g e t t i n g same point {newNode . point } , { nearNode .

point } , idx = { nearNode . s e l f Idx } ")
431 s e l f . setCurrentNode (nearNode)
432 pass
433 e l s e :
434 s e l f . addNodeToParent (newNode , nearNode)
435 s e l f . setCurrentNode (newNode)
436 i f s e l f . goalReached () :
437 break
438

439 def runToGoal (s e l f , world , uavRadius = 1 , moveParams = [1 0 , 2]) :
440 ’ ’ ’
441 This funct ion w i l l s e l e c t next node along the vector j o i n i n g

current point
442 and goal point . I t w i l l converge quickly
443 ’ ’ ’
444 randNodeCnt = −1
445 randNodeMax = 10
446 f o r i t r in range (s e l f . maxIter) :
447 i f randNodeCnt < 0 or randNodeCnt >= randNodeMax :
448 newNode = s e l f . nodeTowardsGoal ()
449 randNodeCnt = −1
450 e l s e :
451 newNode = s e l f . getRandNode ()
452 randNodeCnt += 1
453 [i s C o l l i s i o n , _] = world . c o l l i s i o n W i t h O b s t a c l e (s e l f . graph [

s e l f . currentNodeIdx] . point , newNode . point , uavRadius)

Appendix C. RRT Code 74

454 i f i s C o l l i s i o n :
455 i f randNodeCnt < 0 :
456 randNodeCnt = 0
457 i f bool (s e l f . lastMove) :
458 s e l f . las tFai ledMoves . append (s e l f . lastMove)
459 s e l f . addFailedNode (newNode)
460 continue
461 s e l f . lastFai ledMoves . c l e a r ()
462 nearNode = s e l f . findNearestNode (newNode)
463 i f newNode . point == nearNode . point :
464 # got same random point , ignore i t
465 # p r i n t (f " g e t t i n g same point {newNode . point } , { nearNode .

point } , idx = { nearNode . s e l f Idx } ")
466 s e l f . setCurrentNode (nearNode)
467 pass
468 e l s e :
469 s e l f . addNodeToParent (newNode , nearNode)
470 s e l f . setCurrentNode (newNode)
471 i f s e l f . goalReached () :
472 break
473

474 def runToGoalAlongVector (s e l f , world , uavRadius = 1 , moveParams =
[1 0 , 2]) :

475 ’ ’ ’
476 This funct ion w i l l s e l e c t next node the movement vec tor

which makes l e a s t
477 angle with vec tor j o i n i n g current point and goal point . In

case of o b s t a c l e
478 encounter , 10 random points w i l l be t r i e d t i l l i t f i n d s a

f r e e space .
479 I t converges quickly .
480 ’ ’ ’
481 randNodeCnt = −1
482 randNodeMax = 10
483 f o r i t r in range (s e l f . maxIter) :
484 i f randNodeCnt < 0 or randNodeCnt >= randNodeMax :
485 newNode = s e l f . nodeToGoalAlongVector ()
486 randNodeCnt = −1
487 e l s e :
488 newNode = s e l f . getRandNode ()
489 randNodeCnt += 1
490 [i s C o l l i s i o n , _] = world . c o l l i s i o n W i t h O b s t a c l e (s e l f . graph [

s e l f . currentNodeIdx] . point , newNode . point , uavRadius)
491 i f i s C o l l i s i o n :
492 i f randNodeCnt < 0 :
493 randNodeCnt = 0
494 i f bool (s e l f . lastMove) :
495 s e l f . las tFai ledMoves . append (s e l f . lastMove)
496 s e l f . addFailedNode (newNode)
497 continue
498 s e l f . lastFai ledMoves . c l e a r ()
499 nearNode = s e l f . findNearestNode (newNode)
500 i f newNode . point == nearNode . point :
501 # got same random point , ignore i t
502 # p r i n t (f " g e t t i n g same point {newNode . point } , { nearNode .

point } , idx = { nearNode . s e l f Idx } ")
503 s e l f . setCurrentNode (nearNode)
504 pass

Appendix C. RRT Code 75

505 e l s e :
506 s e l f . addNodeToParent (newNode , nearNode)
507 s e l f . setCurrentNode (newNode)
508 i f s e l f . goalReached () :
509 break
510

511

512

513 i f __name__ == " __main__ " :
514 world = UavWorld ()
515 uav = Uav ()
516 # s t a r t P o i n t = g3d . Point (7 0 , 5 0 , 2 0)
517 s t a r t P o i n t = g3d . Point (8 0 , 7 8 , 5)
518 goalPoint = g3d . Point (7 , 5 0 , 20)
519 # goalPoint = g3d . Point (7 , 8 , 10)
520

521 #RRT with no Bias
522 rendObjNoBias = graphPlo t te r ()
523 rendObjNoBias . ax . s e t _ x l a b e l (’X a x i s ’)
524 rendObjNoBias . ax . s e t _ y l a b e l (’Y a x i s ’)
525 rendObjNoBias . ax . s e t _ z l a b e l (’Z a x i s ’)
526 rendObjNoBias . add ((s t a r t P o i n t , ’ c ’ , 1 0))
527 rendObjNoBias . add ((goalPoint , ’m’ , 1 0))
528 world . addToRenderer (rendObjNoBias)
529 rrtNoBias = RrtPlannerUAV (maxIterCnt =200 , d e l t a D i s t a n c e=uav .

de l taTrave lDis tance , s t a r t P t = s t a r t P o i n t , goalPt= goalPoint , xLims
=[0 , 1 0 0] , yLims = [0 , 1 0 0] , zLims = [0 , 1 0 0] , moveVectors=uav .
moveVectorList)

530 rrtNoBias . addRendObj (rendObjNoBias)
531 rrtNoBias . run (world)
532 p l t . show ()
533

534 # render the a c t u a l path travered by UAV
535 rendObjNoBias1 = graphPlo t te r ()
536 rendObjNoBias1 . ax . s e t _ x l a b e l (’X a x i s ’)
537 rendObjNoBias1 . ax . s e t _ y l a b e l (’Y a x i s ’)
538 rendObjNoBias1 . ax . s e t _ z l a b e l (’Z a x i s ’)
539 rendObjNoBias1 . add ((s t a r t P o i n t , ’ c ’ , 1 0))
540 rendObjNoBias1 . add ((goalPoint , ’m’ , 1 0))
541 world . addToRenderer (rendObjNoBias1)
542 f o r idx in range (len (rrtNoBias . uavMotionPath) −1) :
543 seg = createArrow (rrtNoBias . uavMotionPath [idx] , rr tNoBias .

uavMotionPath [idx +1])
544 rendObjNoBias1 . add ((seg , ’ g ’ , 1))
545 p l t . show ()
546

547 # render the paths encounterd with o b s t a c l e
548 rendObjNoBias2 = graphPlo t te r ()
549 rendObjNoBias2 . ax . s e t _ x l a b e l (’X a x i s ’)
550 rendObjNoBias2 . ax . s e t _ y l a b e l (’Y a x i s ’)
551 rendObjNoBias2 . ax . s e t _ z l a b e l (’Z a x i s ’)
552 rendObjNoBias2 . add ((s t a r t P o i n t , ’ c ’ , 1 0))
553 rendObjNoBias2 . add ((goalPoint , ’m’ , 1 0))
554 world . addToRenderer (rendObjNoBias2)
555 f o r arrw in rrtNoBias . uavObstaclePath :
556 rendObjNoBias2 . add ((arrw , ’ k ’ , 1))
557 p l t . show ()
558

Appendix C. RRT Code 76

559

560

561 p r i n t ("Number of i t e r a t i o n s = " , len (rr tNoBias . uavMotionPath) +
len (rrtNoBias . uavObstaclePath))

562

563

564

565 # r r t with b i a s
566 rendObjBias = graphPlo t te r ()
567 rendObjBias . ax . s e t _ x l a b e l (’X a x i s ’)
568 rendObjBias . ax . s e t _ y l a b e l (’Y a x i s ’)
569 rendObjBias . ax . s e t _ z l a b e l (’Z a x i s ’)
570 rendObjBias . add ((s t a r t P o i n t , ’ c ’ , 5))
571 rendObjBias . add ((goalPoint , ’m’ , 5))
572 world . addToRenderer (rendObjBias)
573 r r t B i a s = RrtPlannerUAV (maxIterCnt =200 , d e l t a D i s t a n c e=uav .

de l taTrave lDis tance , s t a r t P t = s t a r t P o i n t , goalPt= goalPoint , xLims
=[0 , 1 0 0] , yLims = [0 , 1 0 0] , zLims = [0 , 1 0 0] , moveVectors=uav .
moveVectorList)

574 r r t B i a s . addRendObj (rendObjBias)
575 r r t B i a s . runToGoalAlongVector (world)
576 p l t . show ()
577

578

579 # render the a c t u a l path travered by UAV
580 rendObjBias1 = graphPlo t te r ()
581 rendObjBias1 . ax . s e t _ x l a b e l (’X a x i s ’)
582 rendObjBias1 . ax . s e t _ y l a b e l (’Y a x i s ’)
583 rendObjBias1 . ax . s e t _ z l a b e l (’Z a x i s ’)
584 rendObjBias1 . add ((s t a r t P o i n t , ’ c ’ , 1 0))
585 rendObjBias1 . add ((goalPoint , ’m’ , 1 0))
586 world . addToRenderer (rendObjBias1)
587 f o r idx in range (len (r r t B i a s . uavMotionPath) −1) :
588 seg = createArrow (r r t B i a s . uavMotionPath [idx] , r r t B i a s .

uavMotionPath [idx +1])
589 rendObjBias1 . add ((seg , ’ g ’ , 1))
590 p l t . show ()
591

592 # render the paths encounterd with o b s t a c l e
593 rendObjBias2 = graphPlo t te r ()
594 rendObjBias2 . ax . s e t _ x l a b e l (’X a x i s ’)
595 rendObjBias2 . ax . s e t _ y l a b e l (’Y a x i s ’)
596 rendObjBias2 . ax . s e t _ z l a b e l (’Z a x i s ’)
597 rendObjBias2 . add ((s t a r t P o i n t , ’ c ’ , 1 0))
598 rendObjBias2 . add ((goalPoint , ’m’ , 1 0))
599 world . addToRenderer (rendObjBias2)
600 f o r arrw in r r t B i a s . uavObstaclePath :
601 rendObjBias2 . add ((arrw , ’ k ’ , 1))
602 p l t . show ()
603

604 p r i n t ("Number of i t e r a t i o n s = " , len (r r t B i a s . uavMotionPath) + len
(r r t B i a s . uavObstaclePath))

77

References

[1] Kimon P. Valavanis and George J. Vachtsevanos. Handbook of Unmanned Aerial
Vehicles. Springer Publishing Company, Incorporated, 2014. ISBN 9048197066.

[2] O. Souissi, R. Benatitallah, D. Duvivier, A. Artiba, N. Belanger, and P. Feyzeau.
Path planning: A 2013 survey. In Proceedings of 2013 International Conference on
Industrial Engineering and Systems Management (IESM), pages 1–8, 2013.

[3] J. Van Sickle. GPS for land surveyors. Taylor and Francis, 2001.

[4] Dronecode. Px4 autopilot, . URL https://px4.io/.

[5] Dronecode. Px4 user guide, . URL http://docs.px4.io/master/.

[6] Tom D. Crouch. Lighter Than Air. Johns Hopkins University Press, 2009.

[7] Brett Holman. The first air bomb: Venice, 15 July 1849. URL https://

airminded.org/2009/08/22/the-first-air-bomb-venice-15-july-1849/.

[8] David Daly. A not-so-short history of unmanned aerial vehicles (uav).
URL https://consortiq.com/short-history-unmanned-aerial-vehicles-

uavs/.

[9] Bas Vergouw, Huub Nagel, Geert Bondt, and Bart Custers. Drone Technology:
Types, Payloads, Applications, Frequency Spectrum Issues and Future Developments,
pages 21–45. T.M.C. Asser Press, The Hague, 2016. ISBN 978-94-6265-132-6. doi:
10.1007/978-94-6265-132-6_2. URL https://doi.org/10.1007/978-94-6265-

132-6_2.

[10] R. H. Major, editor. Early Voyages to Terra Australis. The Hakluyt Society, London.

[11] Luke Shimanuki and Brian Axelrod. Hardness of 3d motion planning under ob-
stacle uncertainty.

[12] J. Canny and J. Reif. New lower bound techniques for robot motion planning
problems. In 28th Annual Symposium on Foundations of Computer Science (sfcs 1987),
pages 49–60, 1987. doi: 10.1109/SFCS.1987.42.

[13] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and
J. J. Leonard. Past, present, and future of simultaneous localization and mapping:
Toward the robust-perception age. IEEE Transactions on Robotics, 32(6):1309–1332,
2016. doi: 10.1109/TRO.2016.2624754.

[14] Tauã M. Cabreira, Lisane B. Brisolara, and Paulo R. Ferreira Jr. Survey on coverage
path planning with unmanned aerial vehicles. Drones, 3(1), 2019. ISSN 2504-446X.
doi: 10.3390/drones3010004. URL https://www.mdpi.com/2504-446X/3/1/4.

https://px4.io/
http://docs.px4.io/master/
https://airminded.org/2009/08/22/the-first-air-bomb-venice-15-july-1849/
https://airminded.org/2009/08/22/the-first-air-bomb-venice-15-july-1849/
https://consortiq.com/short-history-unmanned-aerial-vehicles-uavs/
https://consortiq.com/short-history-unmanned-aerial-vehicles-uavs/
https://doi.org/10.1007/978-94-6265-132-6_2
https://doi.org/10.1007/978-94-6265-132-6_2
https://www.mdpi.com/2504-446X/3/1/4

REFERENCES 78

[15] H.L. Andersen. Path planning for search and rescue mission using multicopters.
Master’s thesis, Institutt for Teknisk Kybernetikk, Trondheim, Norway, 2014.

[16] M. M. Trujillo, M. Darrah, K. Speransky, B. DeRoos, and M. Wathen. Optimized
flight path for 3d mapping of an area with structures using a multirotor. In 2016 In-
ternational Conference on Unmanned Aircraft Systems (ICUAS), pages 905–910, 2016.
doi: 10.1109/ICUAS.2016.7502538.

[17] Martin Rosalie, Grégoire Danoy, Serge Chaumette, and Pascal Bouvry. From ran-
dom process to chaotic behavior in swarms of uavs. 11 2016. doi: 10.1145/
2989275.2989281.

[18] M. Rosalie, J. E. Dentler, G. Danoy, P. Bouvry, S. Kannan, M. A. Olivares-Mendez,
and H. Voos. Area exploration with a swarm of uavs combining deterministic
chaotic ant colony mobility with position mpc. In 2017 International Conference
on Unmanned Aircraft Systems (ICUAS), pages 1392–1397, 2017. doi: 10.1109/
ICUAS.2017.7991418.

[19] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959.

[20] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determi-
nation of minimum cost paths. IEEE Transactions on Systems Science and Cybernet-
ics, 4(2):100–107, 1968. doi: 10.1109/TSSC.1968.300136.

[21] Steven M. Lavalle. Rapidly-exploring random trees: A new tool for path planning.
Technical report, 1998.

[22] Davison. Real-time simultaneous localisation and mapping with a single camera.
In Proceedings Ninth IEEE International Conference on Computer Vision, pages 1403–
1410 vol.2, 2003. doi: 10.1109/ICCV.2003.1238654.

[23] G. Klein and D. Murray. Parallel tracking and mapping for small ar workspaces.
In 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality,
pages 225–234, 2007. doi: 10.1109/ISMAR.2007.4538852.

[24] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. Dtam: Dense tracking and
mapping in real-time. In 2011 International Conference on Computer Vision, pages
2320–2327, 2011. doi: 10.1109/ICCV.2011.6126513.

[25] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-slam: Large-scale direct
monocular slam. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuyte-
laars, editors, Computer Vision – ECCV 2014, pages 834–849, Cham, 2014. Springer
International Publishing. ISBN 978-3-319-10605-2.

[26] María de Miguel Molina and Virginia Santamarina Campos, editors. The Drone
Sector in Europe, pages 16–42. Springer Nature, 2018. ISBN 978-3-319-71087-7.

[27] DJI. DJI Agras T 16, . URL https://www.dji.com/no/t16.

[28] DJI. DJI Agras MG 1, . URL https://www.dji.com/no/mg-1.

https://www.dji.com/no/t16
https://www.dji.com/no/mg-1

REFERENCES 79

[29] Amazon Inc. Amazon Prime Air. URL https://www.amazon.com/Amazon-

Prime-Air/b?ie=UTF8&node=8037720011.

[30] Mark Zuckerberg. The technology behind Aquila. URL
https://m.facebook.com/nt/screen/?params=%7B%22note_id%22%

3A670584150260175%7D&path=%2Fnotes%2Fnote%2F&_rdr.

[31] General Atomics Aeronautical. MQ-9A "Reaper". URL https://www.ga-

asi.com/remotely-piloted-aircraft/mq-9a.

[32] Baykar. Bayraktar TB2. URL https://baykardefence.com/uav-15.html.

[33] European Union Aviation Safety Agency. Easy Access Rules for Unmanned Aircraft
Systems(Regulations (EU) 2019/947 and (EU) 2019/945), 2021.

[34] Canadian Forces1. NATIONAL SAR MANUAL B–GA–209–001/FP–001 DFO 5449,
1998.

[35] International Maritime Organisation. IAMSAR Manual - International Aeronautical
and Maritime Search and Rescue Manual Volume II - Mission Co-ordination, 2016.

[36] Joshua Fried, Eugene Davydov, and Weilyn Pa. Robotics and motion planning.
URL https://cs.stanford.edu/people/eroberts/courses/soco/projects/

1998-99/robotics/basicmotion.html.

[37] Hanan Samet. The quadtree and related hierarchical data structures. ACM Com-
put. Surv., 16(2):187–260, June 1984. ISSN 0360-0300. doi: 10.1145/356924.356930.
URL https://doi.org/10.1145/356924.356930.

[38] Aaron Knoll. A survey of octree volume rendering methods.

[39] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determi-
nation of minimum cost paths. IEEE Transactions on Systems Science and Cybernet-
ics, 4(2):100–107, 1968. doi: 10.1109/TSSC.1968.300136.

[40] Franz Aurenhammer. Voronoi diagrams—a survey of a fundamental geomet-
ric data structure. ACM Comput. Surv., 23(3):345–405, September 1991. ISSN
0360-0300. doi: 10.1145/116873.116880. URL https://doi.org/10.1145/

116873.116880.

[41] Stevens BL and Lewis FL. Aircraft control and simulation. Wiley, 2003.

[42] Guowei Cai, Ben M. Chen, and Tong Heng Lee. Coordinate Systems and Transfor-
mations, pages 23–34. Springer London, London, 2011. ISBN 978-0-85729-635-
1. doi: 10.1007/978-0-85729-635-1_2. URL https://doi.org/10.1007/978-0-

85729-635-1_2.

[43] Kiam Heong Ang, G. Chong, and Yun Li. Pid control system analysis, design, and
technology. IEEE Transactions on Control Systems Technology, 13(4):559–576, 2005.
doi: 10.1109/TCST.2005.847331.

[44] DJI. DJI Phantom 4 Pro V2, . URL https://www.dji.com/no/phantom-4-pro-v2.

https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011
https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011
https://m.facebook.com/nt/screen/?params=%7B%22note_id%22%3A670584150260175%7D&path=%2Fnotes%2Fnote%2F&_rdr
https://m.facebook.com/nt/screen/?params=%7B%22note_id%22%3A670584150260175%7D&path=%2Fnotes%2Fnote%2F&_rdr
https://www.ga-asi.com/remotely-piloted-aircraft/mq-9a
https://www.ga-asi.com/remotely-piloted-aircraft/mq-9a
https://baykardefence.com/uav-15.html
https://cs.stanford.edu/people/eroberts/courses/soco/projects/1998-99/robotics/basicmotion.html
https://cs.stanford.edu/people/eroberts/courses/soco/projects/1998-99/robotics/basicmotion.html
https://doi.org/10.1145/356924.356930
https://doi.org/10.1145/116873.116880
https://doi.org/10.1145/116873.116880
https://doi.org/10.1007/978-0-85729-635-1_2
https://doi.org/10.1007/978-0-85729-635-1_2
https://www.dji.com/no/phantom-4-pro-v2

REFERENCES 80

[45] Emad Samuel Malki Ebeid, Martin Skriver, Kristian Terkildsen, Kjeld Jensen, and
Ulrik Schultz. A survey of open-source uav flight controllers and flight simulators.
Microprocessors and Microsystems, 61, 05 2018. doi: 10.1016/j.micpro.2018.05.002.

[46] E. Ebeid, M. Skriver, and J. Jin. A survey on open-source flight control platforms
of unmanned aerial vehicle. In 2017 Euromicro Conference on Digital System Design
(DSD), pages 396–402, 2017. doi: 10.1109/DSD.2017.30.

[47] Open Source Robotics Foundation. Gazebo Sim. URL http://gazebosim.org/.

[48] Dronecode. Pixhawk, . URL https://pixhawk.org/.

[49] Dronecode. Mavlink, . URL https://mavlink.io/.

[50] Flightgear. Flightgear flight simulator. URL https://www.flightgear.org/.

[51] JSBSim. Jsb flight simulator. URL http://jsbsim.sourceforge.net/

index.html.

[52] jMavSim. jmavsim simulator. URL https://github.com/PX4/jMAVSim.

[53] Airsim. Airsim simulator. URL https://microsoft.github.io/AirSim/.

[54] Dronecode. Qgroundcontrol, . URL http://qgroundcontrol.com/.

http://gazebosim.org/
https://pixhawk.org/
https://mavlink.io/
https://www.flightgear.org/
http://jsbsim.sourceforge.net/index.html
http://jsbsim.sourceforge.net/index.html
https://github.com/PX4/jMAVSim
https://microsoft.github.io/AirSim/
http://qgroundcontrol.com/

	Abstract
	Acknowledgements
	Introduction
	Background and Motivation
	Current State of the Art
	Objective
	Contributions
	Outline

	Background
	Unmanned Aerial Vehicle
	UAV Classification
	Guidance, Navigation and Control
	Regulation and Safety

	Search and Rescue Missions
	Path Planning
	Strategies

	UAV Navigation and Path Planning
	Frame of Reference
	Geodetic Co-ordinate System
	Earth Centered Earth Fixed (ECEF) Co-ordinate System
	Local East, North, Up (ENU) Co-ordinate System
	Local North, East, Down (NED) Co-ordinate System
	Vehicle Carried North East Down (NED) Co-ordinate System
	Body Co-ordinate System

	UAV Maneuverability
	PID Control
	Quadcopter Maneuverability

	Path Planning
	Graph Theory
	Graph Theory and Path Planning

	Path Planning Algorithms
	Coverage Path Planning
	Parallel Line Search
	Creeping Line Search
	 Spiral Search

	Target Reaching Path Planning
	Rapidly exploring Random Trees (RRT)

	Tools and Software
	Gazebo
	Px4
	Px4 Architecture
	Px4 Simulation

	QGround Control
	MAVLink and MAVSDK
	Flight Review

	Implementation and Results
	System Description
	Coverage Area Implementation
	Setup
	uav Modeling
	Environment Modeling
	Region of Interest and Height
	Parallel Line Search
	Creeping Line Search
	Spiral Search (Long Edge First)
	Spiral Search (Short Edge First)
	Comparison of the Algorithms

	Target Reaching Path Planning
	UAV Modeling
	Environment Modeling
	Obstacle Detection
	Unbiased RRT
	Biased RRT
	Comparison of Biased and Unbiased RRT

	Conclusion and Future Work
	Conclusion
	Future Work

	MAVSDK Main Code
	Coverage Path Planning Code
	RRT Code

