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Abstract: Accompanying the advancement on the Internet of Things (IoT), the concept of remote
monitoring and control using IoT devices is becoming popular. Digital smart meters hold many
advantages over traditional analog meters, and smart metering is one of application of IoT technology.
It supports the conventional power system in adopting modern concepts like smart grids, block-
chains, automation, etc. due to their remote load monitoring and control capabilities. However,
in many applications, the traditional analog meters still are preferred over digital smart meters
due to the high deployment and operating costs, and the unreliability of the smart meters. The
primary reasons behind these issues are a lack of a reliable and affordable communication system,
which can be addressed by the deployment of a dedicated network formed with a Low Power Wide
Area (LPWA) platform like wireless radio standards (i.e., LoRa devices). This paper discusses LoRa
technology and its implementation to solve the problems associated with smart metering, especially
considering the rural energy system. A simulation-based study has been done to analyse the LoRa
technology’s applicability in different architecture for smart metering purposes and to identify a
cost-effective and reliable way to implement smart metering, especially in a rural microgrid (MG).

Keywords: smart metering; rural electrification; wireless communication

1. Introduction

The traditional electro-mechanical energy meters have to be read manually by visiting
the individual meters, which require separate time and labour to collect data from each
consumer. Accompanying the advancement of digital technologies, digital energy meters
are taking over the traditional electro-mechanical ones and provide significant advantages
over traditional meters. They enable remote, real-time monitoring, for example, and also
assist in more accurate reading than in traditional meters [1]. However, there are not any
global standards defined yet for smart meter functionality. According to the European
Smart Meters Industry Group (ESMIG), the modern digital meters should have remote
metering, bidirectional communication, support of advanced tariff and billing applications,
and remote energy supply control [2]. Smartly enabling the concept of the smart grid by
implementing real-time monitoring is one of the best examples and applications in the
current scenario. The main advantage of a smart grid is that it enables the bidirectional
flow of energy between the customer and the grid utility [3]. It also enables the consumers
to track and/or control their energy usage more effectively [4]. To enable the concept
of the smart grid in rural microgrids there is a need for a robust communication system
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between the grid and the consumer, for which the smart energy meters are essential on the
consumer side.

A smart metering architecture consists of four major parts: (a) smart meter, (b) data
concentrator, (c) communication system, and (d) centralized management and control
system. The function of a smart meter is to read the load consumption data and send
it to the data concentrator. The data concentrator collects data from all of the meters
connected to it. The data gathered by the data concentrator is sent to the central controller
with the communication system’s help. The function of the central management and
control unit is to manage and store the received data and coordinate between the data
concentrator and smart meters [2]. Smart meters suffer from many issues in different areas,
from installation to operation. The main problem related to smart meter reading is the
communication system [5]. The communication methods used in smart metering in the
past can be divided into different categories like Local Area Network (LAN) and Wireless
LAN (WLAN) -based smart metering. Technologies like Bluetooth and ZigBee are some of
the examples of WLAN. The ZigBee is a Radio Frequency (RF) communications standard
based on IEEE 802.15.4, and it is the new wireless communication technology, representing
a wireless sensor network. It is highly reliable and secure, having a low data rate, low
power consumption, low cost, and fast reaction. However, its application area is limited
due to its small range [1]. Ethernet LAN and Wi-Fi also suffer from limited range problems,
limiting their application area [6]. The Global System for Mobiles (GSM) based on smart
metering is a second-generation digital cellular system, which has a long-range and reliable
data transmission capabilities. It has been used widely for smart metering purposes, but
the GSM-based hardware is expensive to deploy and has high running costs [1,6]. The GSM
has better speed than Long Range (LoRa) and is more reliable. However, the GSM is more
expensive than LoRa to deploy and cannot be used in the places where the infrastructure is
not previously available. The GSM has a continuous operation cost whereas LoRa does not.
Here, the authors choose LoRa due to its non-licensed operating frequency, long-range, and
low power consumption capability. The Low Power Wide Area Networks (LPWAN)-based
smart metering are a new form of wireless communication networks that have emerged,
which are promising and reliable long-range communication systems at low cost with only
the expense of data throughput. It has a communication range greater than one kilometer,
and its gateway could communicate with thousands of end-devices. This category includes
Long Range Wide Area Network (LoRaWAN), Sigfox, NB-IoT, etc. [7].

This study focuses on smart metering and communication modes, where conventional
communication systems are not accessible. Taking the current context, most rural com-
munities are forced to adopt the isolated energy system as the source of energy, due to
the complex geographical structure and the unfeasibility of extending the national electric
grid [8,9]. However, the adopted concept has numerous challenges like system reliability,
stability, high-cost, and a lack of proper monitoring and supervision for smooth operation
and maintenance [10,11]. The major reasons behind these issues are the poor architecture of
the current energy system and its operational mechanism [4]. Most of the energy systems
in rural areas are operating in manual mode, which needs to be changed by introducing
smart concepts for their sustainable operation. Taking an example of a real site, developing
countries like Nepal have initiated the concept of smart metering in microgrids (MGs). The
first remote monitoring system was initiated in Nepal by the Alternative Energy Promotion
Center (AEPC) [12]. The remote metering system was locally developed to monitor the
voltage, frequency, and energy use of micro-hydropower plants, where the GSM-based com-
munication systems were usually used to transmit the data [13,14]. These systems, however,
are not in operational condition due to their unreasonable operation costs. Similarly, Gham
Power, a solar company, also implemented a prepaid net metering system for a 35 kW solar
MG, installed in the small community of Harkapur at Okhaldhunga District. This system
was locally designed and then fabricated in China [12,15]. This metering system also uses
a GSM-based communication system for data transmission. Similarly, Renewable World,
an international non-governmental organization (INGO) working in Nepal, also is using
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the prepaid net metering system for monitoring water consumption. The smart meters face
many challenges in their deployment and operation due to high hardware deployment
and running costs as they use GSM-based technology to communicate, which needs to be
continuously recharged. Regarding Nepal, Internet Service Provider (ISPs) mainly provide
services in city areas whereas, in rural areas, internet service is rarely available. Although
GSM services are available in most areas, due to their high deployment and operating costs,
GSM-based smart meters are not economically feasible [16,17]. Regarding this case, LoRa
technology can be a suitable solution to be implemented in a rural area like in Nepal.

Here, the authors aim to solve the discussed challenges by using LoRa mesh technol-
ogy. To extend the range of the communication network in remote areas for smart metering,
the LoRa mesh network is proposed and studied. The authors propose algorithms that can
be implemented in node and gateway hardware for efficient communication within the
remote MGs. The LoRa devices in a mesh network are then simulated and verified, which
meets the required specifications for smart metering purposes. This article is organized
as follows: Introduction and practices in use for smart metering are discussed in the first
section. LoRa Technology, its current applications in smart metering, and its limitations
are discussed in the second section. How LoRa mesh technology can be implemented
in smart metering, and its advantages over current practices are discussed in the third
section. Outcomes of the study are discussed in the fourth section, and the conclusions
are discussed in the fifth section. Though described in detail, the following are the main
contributions of this paper:

(a) This paper discusses the implementation of the LoRa mesh concept in smart meter-
ing for efficient communication in the rural energy system (i.e., rural MGs), where
traditional communication techniques have numerous drawbacks. This study finds
that the LoRa mesh concept can address the issues efficiently, faced with existing
communication mechanisms.

(b) Efficient approaches are proposed to work with LoRa devices and technologies. This
study finds that the proposed approaches can be implemented in the smart meters
and in gateway hardware for network formulation and operation. The proposed
approaches have been verified via simulation and are presented in the results section.

2. LoRa Technology

LoRa is a wireless communication technology that uses frequency-shift-based-
modulation called LoRa modulation to transmit signals. It is designed to provide long-
range communication with low power and a slow data rate. It uses the free ISM band (the
Industrial, Scientific, and Medical radio band) to communicate, and uses the sub-gigahertz
radio frequency bands like 433 MHz, 868 MHz, and 915 MHz. The communication range
of LoRa can reach up to 10 km in line of sight, depending upon the Spreading Factor
(SF) used. Due to its unique modulation technique, it allows users to negotiate between
data rate and range by varying the SF. The relation between data rate and SF is given by
Equation (1) [18].

Rb =
BW × SF

2SF (1)

where, BW is the bandwidth, Rb is the data rate, and SF is the Spreading Factor. When the
range increases, then the data rate has to be decreased and vice versa. The LoRa devices
also can be changed to gaussian frequency shift keying (GFSK) mode to get a higher data
rate. However, GFSK cannot provide the long-range capabilities of LoRa modulation.
Accompanying the change in SF, the time on-air (TOA) also changes. Considering differ-
ent SFs with LoRa modulation and GFSK modulation, the TOA can be calculated using
Equations (4) and (5) Where NP number of permeable symbols, SW is length of synchro-
nization word, CR is coding rate, DE is data rate optimization, CRC is cyclic redundancy
check, IH is operation mode and PL is length of the physical layer payload [19]. The
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performance of LoRa devices for different modulation techniques, SFs, and bandwidth are
tabulated in Table 1.

TOA = Tpreamble + TPacket (2)

TOA = Tsymb

(
Lpreamble + LPHDR + LPHDRCRC + L PHYpayload + LPHYCRC

)
(3)

TOA =
2SF

BW

(
(NP + 4.25) +

(
SW + max

(
ceil

[
8PL − 4SF + 28 + 16CRC − 20IH

4(SF − 2DE)

]
(CR + 4), 0

)))
(4)

Table 1. The capacity of LoRaWAN [19].

Modulation Spreading Factor Bandwidth (kHz) Throughput (bps)

LoRa 7 125 5469
LoRa 8 125 3125
LoRa 9 125 1758
LoRa 10 125 977
LoRa 11 125 537
LoRa 12 125 293
GFSK - 150 45,660.4

Regarding GFSK:

TOA =
8

DR
(NP + SW + PL + 2CRC) (5)

Concerning the LoRa modulation technique, changing the SF changes the data rate
capacity as well as the range of the network. The data rate and the range of the network
are inversely proportional to each other, which can be seen in Figure 1. The maximum
size of a packet that can be successfully transmitted by a node to another node depends
upon the distance between the two nodes. The distance that a user is going to put between
two nodes depends upon the range supported by them. Therefore, for different SFs, the
maximum supported packet sizes are also different; the maximum packet size supported
by different SFs can be seen in Figure 2 [20].
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The smart meters require a long-range and low communication rate, making LoRa a
perfect choice for this application. There are some communication modules, like Libelium
SX1272, which uses LoRa modulation and provides optional frequency bands, coding rates,
and transmission rates [19,22]. Nowadays, LoRa technology is widely used for Internet
of Things (IoT) purposes [23]. The IoT devices represent a network of interconnected
devices. It is estimated that, by the next decade, the number of these devices will reach
about 125 billion. Currently, IoT devices use LoRa technology widely, especially in sectors
like electricity and agriculture, and in automation purposes, due to their long-range
communication capabilities [1,24]. Due to its numerous features like low power-usage,
long-range, and adaptive data rate capability, LoRa has a wide range of applications.
Figure 3 shows the different areas of application of LoRa with specific applications [25,26].
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Regarding these applications, a LoRa end device directly communicates with the
gateway to transfer the data to the cloud. Each end device should be placed within the
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range of the gateway for a successful transfer of data. Taking a higher layer perspective,
the current application of LoRa uses stars-of-stars topology that permits the end nodes
to connect to the gateways through direct links, as shown in Figure 4 [27,28]. The most
common architecture of the LoRaWAN used nowadays can be seen in Figure 4.

Electronics 2021, 10, x FOR PEER REVIEW 6 of 16 
 

 

 

Figure 4. Stars-of-stars topology. 

A LoRa network is typically setup in a stars-of-stars topology where gateways pick 
up the message broadcasted by the end-devices or nodes and forward them over an inter-
net protocol-based network to a network server. A network server is a software applica-
tion running over one or more servers. The network servers have the knowledge of nodes 
and their owners. The messages are encrypted and can only be decrypted by the destina-
tion node or the network server [7]. LoRaWAN devices are mainly used in three operation 
modes depending upon the energy consumption and download speed. The Class A de-
vices offer greater energy saving, since they stay in sleep mode most of the time and are 
just able to receive transmissions after each uplink connection by opening a listening win-
dow. Class B devices have default reception windows within the gateway, and the Class 
C devices are continuously listening to the channel so they can receive a downlink con-
nection at any time [25,27,28]. 

LoRaWAN is one of the examples of a Low Power Wide Area Network (LPWAN) 
technology that appears to be very suitable for smart metering thus, the LoRaWAN can 
be used to create a mesh network for smart metering. It is a novel modulation technique 
that enables it to communicate over long distances and it has over 50 communication 
channels. The LoRa architecture consists of LoRa devices, gateways, and an application 
server, as shown in Figure 5 [29]. The function of a LoRa device is to read the sensor data 
and transmit it to the gateway for further operation. The LoRa device also is able to read 
the commands from the gateway and respond accordingly. A gateway is connected to 
multiple devices, whose function is to establish the communication between the LoRa de-
vices and the application server. The application server manages the collected data from 
all the devices [13,29]. Figure 6 shows the star topology of the LoRaWAN, in which each 
node is connected to the network with the help of gateways. A gateway is placed at an 
appropriate location where all of the required nodes can connect to it. All the nodes send 
their data to the gateway, and the gateway uploads the data to the cloud [7]. The star 
topology is useful when it is feasible to place multiple gateways at required locations. 
Concerning the case of rural areas where the internet is not available, the proposed sys-
tems may fail to operate successfully. Hence, to solve this problem, the LoRa-based mesh 

Figure 4. Stars-of-stars topology.

A LoRa network is typically setup in a stars-of-stars topology where gateways pick up
the message broadcasted by the end-devices or nodes and forward them over an internet
protocol-based network to a network server. A network server is a software application
running over one or more servers. The network servers have the knowledge of nodes and
their owners. The messages are encrypted and can only be decrypted by the destination
node or the network server [7]. LoRaWAN devices are mainly used in three operation
modes depending upon the energy consumption and download speed. The Class A devices
offer greater energy saving, since they stay in sleep mode most of the time and are just able
to receive transmissions after each uplink connection by opening a listening window. Class
B devices have default reception windows within the gateway, and the Class C devices are
continuously listening to the channel so they can receive a downlink connection at any
time [25,27,28].

LoRaWAN is one of the examples of a Low Power Wide Area Network (LPWAN)
technology that appears to be very suitable for smart metering thus, the LoRaWAN can be
used to create a mesh network for smart metering. It is a novel modulation technique that
enables it to communicate over long distances and it has over 50 communication channels.
The LoRa architecture consists of LoRa devices, gateways, and an application server, as
shown in Figure 5 [29]. The function of a LoRa device is to read the sensor data and
transmit it to the gateway for further operation. The LoRa device also is able to read the
commands from the gateway and respond accordingly. A gateway is connected to multiple
devices, whose function is to establish the communication between the LoRa devices and
the application server. The application server manages the collected data from all the
devices [13,29]. Figure 6 shows the star topology of the LoRaWAN, in which each node is
connected to the network with the help of gateways. A gateway is placed at an appropriate
location where all of the required nodes can connect to it. All the nodes send their data to
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the gateway, and the gateway uploads the data to the cloud [7]. The star topology is useful
when it is feasible to place multiple gateways at required locations. Concerning the case of
rural areas where the internet is not available, the proposed systems may fail to operate
successfully. Hence, to solve this problem, the LoRa-based mesh network is suitable for
the case of remote areas. Regarding a mesh network, each node can act as a repeater to
relay information to the neighboring node, so in the case of the meters where gateway
signals cannot reach, the meters in between them act as a bridge to fill the communication
gap [5,24].
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3. Method

LoRaWAN has been purposed in many previous research works to be implemented
for smart metering in which a stars-of-stars topology was used [24,30,31]. Stars-of-stars
topology can be implemented in urban areas where gateways can be placed in convenient
places. However, in rural areas where gateways cannot be placed at required locations
due to the unavailability of a reliable communication infrastructure using mesh topology
in such situations allows for flexible placement locations for gateways, and also allows
for a larger coverage area. Mesh architecture helps to increase the range of the LoRa
network. LoRa based infrastructure can be deployed and operated at a lower cost than
previously discussed technologies, which addresses the limitation of previously discussed
communication methods regarding smart metering. Using mesh configuration, rather than
installing additional nodes for hard-to-reach places, allows intermediate nodes to be used
to relay information to the gateway. A LoRa mesh-based smart metering system will form
an interconnected mesh of smart meters. When there is a connection between a smart meter
and a gateway, it directly sends the data to the gateway, otherwise it uses intermediate
nodes to connect to the gateway.
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First, during the simulation, smart meters were installed in the respective locations
and, if any smart meter was not able to connect itself to the network after the installation, a
relay node was installed by manually selecting a suitable location. Regarding hard-to-reach
meters, the intermediate nodes were placed to connect the gateways. Figure 7 shows the
purposed architecture for smart metering, Figure 8 shows how the networks can be formed
depending upon the node density to reduce interference between the neighboring networks,
and Figure 9 shows the simulated sample network of 20 nodes. To verify the required
specifications of the LoRa mesh network for smart metering purposes, the simulation-
based analysis of LoRa mesh topology was performed in the network simulation 2 (NS2)
simulator. A simulation to determine the response of the network regarding the packet
delivery ratio (PDR) and the end–end delay with an increase in the number of nodes was
performed, and how the PDR was affected by the packet size was determined. The area
of the simulation environment was considered to be 20 × 20 km2. The LoRa has a data
transfer speed from 146.1 bps to 45,660 bps, depending upon the spreading factor (SF) and
modulation technique [18]. According to a study, it was found that an average smart meter
generates and receives traffic of 3185 and 272 bytes per day [32], respectively. Simulations
were done to determine whether the network could satisfy these conditions. Figures 10–13
show the flowcharts of the programs that were implemented in the nodes and gateways.
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Depending upon the location of the application, the node density and number of
nodes in the network are going to be different. When the application area is rural, the
density of houses is going to be low, so the distance between nodes will be large and a
higher SF needs to be used. Similarly, for an urban area, a lower SF needs to be used. When
a network size becomes too large, the network will not be able to meet the number of data
packets to be extracted per day. Considering such a case, the network either has to decrease
the SF to increase the network speed or split the network in two. When a network needs to
be split in two, the two neighboring networks will have to use different channels and SFs,
depending upon the size and density of the network, to avoid interference, as shown in
Figure 8. Regarding Figure 8, three networks with a different number of nodes are shown
where A1, A2, and A3 are the areas of the nodes and D1, D2 and D3 are the average distance
between the nodes in respective networks. (A1 < A2 < A3 and D1 < D1 < D3). It shows
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that the network in which nodes were closely packed could support a large number of
nodes because they used a low SF, which allowed them to use a higher speed. Concerning
a network in which nodes were far apart, they had to use a higher SF, which could support
fewer nodes.

The simulation was done for an area of 20 × 20 km2 for different SFs in different node
density conditions. The geographic nature of the application area was considered flat while
performing the simulation. Environmental conditions like clouds, mist, and humidity were
not taken into account due to their everchanging nature. The range and data rate of each
node in the simulation were defined according to the data in Figure 1. Figure 9 shows the
instance of simulation of 20 nodes in a mesh configuration in the NS2 network simulator.

The mesh network considered for the simulation contained a central gateway and
nodes. The function of the central gateway was to generate invitation beacons to register
new nodes to the network. The gateway used an algorithm to generate the beacon signals
periodically, as shown in Figure 10. Once it generated an invitation beacon, it waited and
listened to join the requests from the nodes. When it received join requests, it added the
node to the network and sent the confirmation signal to the corresponding node. It also
sent query requests to nodes for data packets.

Then, the gateway was used to connect the network to the internet. Shown in Figure 10,
the function of the gateway was to periodically broadcast invitation beacons that registered
the new nodes to the network and execute the data query function to extract data from
the respective nodes as required. Similarly, the query function sent query requests to the
target nodes turn-by-turn to extract data from the respective nodes, as shown in Figure 11.
When the target node did not respond to the query request within a time limit, then the
target node was considered offline and the algorithm moved on to the other nodes for
data extraction.

Conversely, the nodes were always listening to the beacons, data packets, and/or
join requests, as shown in Figure 12. When a node received a beacon: (a) if it was already
connected to the network, it executed the packet processing function; (b) if not, it connected
itself to the network by sending join requests to the gateway. The nodes were programmed
in such a way that, while retransmitting a beacon, they updated and included the path
through which the beacon arrived at that particular node. Therefore, when sending the
join request, it used the path included in the beacon to define the path of the join request
signal. Then it waited for the confirmation from the gateway, got the confirmation that
it was registered to the network and retransmitted the invitation beacon signal. While
retransmitting the beacon, it also included the path from which the beacon was received
so the receiving nodes knew the path through which to respond to the gateway. When
the node was already registered to the network, it executed the packet process function.
Shown in Figure 13, the task of the packet process function was to determine what type
of data packet was the received signal. When it was a beacon, it waited for the random
delay, included the updated path of the arrival of the beacon, waited for a random time,
and retransmitted the signal along with the updated path. When it was a join request
from a node then it read the path to the gateway from the received signal and relayed the
signal according to the path. Similarly, if it was a data request signal from the gateway
then it determined the target node; if it was the target node then it sent the requested
data packet to the gateway. When it was not the target node, then it retransmitted the
signal accordingly.

4. Results and Discussion

Here, a mesh network of LoRa devices was simulated using an NS2 network simulator,
and the LoRa frequency used was 912 MHz at a 125 kHz bandwidth. The capacity of the
network was analyzed for different Spreading Factors (SFs). The analysis was done to
determine whether the network could be used for smart metering with standard smart
metering requirements. A network was simulated for different speeds from 146 bps to
5469 bps for an area of 20 × 20 km2 and a buffer size of 512 bytes for each node, where
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data extraction was done periodically. The range and speed of each node were defined
according to Table 1, and the nodes were positioned randomly in the simulated area.

Figure 14 presents the end-to-end delay of the transmitted signal for different SFs
with a different number of nodes. It shows how the average end-to-end delay of signal
transmission increased with an increase in several nodes in a network, and how the end-
to-end delay also varied with the different SFs. Each data in Figure 14 is an average of 25
transmissions while collecting data at a 20-s interval. Figure 15 shows how the package
delivery ratio (PDR) changed and Figure 14 shows how the end-to-end delay changed
with the change in SF and the number of nodes. Considering Figure 15, it can be seen that,
although at a lower SF and a low number of nodes, the PDR was high but, with the increase
in SF and the number of nodes, the PDR decreased rapidly. Due to the decrease in the
PDR with respect to the increase in SF and nodes in the network, the gateway had to send
multiple data requests to the respective node to get a single packet extracted successfully.
Even with the decrease in the PDR, regarding Figure 16 it can be seen that the minimum
successful data extraction period for a SF of 12 and a network of 250 nodes was 750 s,
which is more than enough for smart metering purposes [21,24]. Figure 16 shows how the
minimum possible data extraction period varied for a node if the master node extracted
the data from each node turn-by-turn. It can be seen in Figure 16 that, with the increase
in the number of nodes and SF, the minimum successful data extraction period increased
accordingly. Regarding a network consisting of 250 nodes and operating at a SF of seven,
the minimum successful data extraction period will be 230 s.
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Similarly, for a SF of 11, the data extraction period will be 435 s. When a network is not
meeting the minimum data extraction period requirement, then we either need to decrease
the SF or split the network into two separate networks. When there is a condition where
the network needs to be split into two, then it needs to be done in such a way that the
signals do not interfere with each other. Regarding signal interference reductions between
neighboring networks, they can be assigned different SFs, or they can be divided in terms
of geographical terrain for minimum signal interference. Considering the simulation, a
minimum time interval at which nodes can communicate with the gateway is calculated
and presented in Figure 16.

An average meter generates traffic of 3185 bytes per day and receives 227 bytes per
day [21]. According to the studies [21,24], an average meter can generate 3.185 Kbytes
of data per day. It will take a different number of transmissions to satisfy 3.185 Kbytes
of data per day per node based upon the SF of the node due to different packet size
capacities at different SFs, as shown in Figure 17. Taking these factors into consideration, a
minimum number of transmissions required per day for networks consisting of different
SFs is obtained and shown in Figure 18. It can be observed that the maximum number of
packet transmissions required at the lowest data rate was 62 bps. This condition is met
even by a network consisting of the lowest data rate. Regarding the simulated network
size, the network easily meets the required conditions for smart metering. The above data
suggests that the mesh network of LoRa devices can be used for smart metering purposes.
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5. Conclusions

This paper discussed how LoRa devices can be used for smart metering. The study
proposed a mesh configuration of LoRa devices be implemented in a smart metering
system. The study evaluated the algorithm to be used by gateways and nodes to rout and
manage data packets based on a simulation. The simulation results verified how the system
will perform when implemented for smart metering purposes under various conditions
like different Spreading Factors (SFs) and nodes. Based on the results, we found that the
LoRaWAN in a mesh configuration achieves the required specifications to be implemented
for smart metering in rural microgrids (MGs).

The simulation does not consider conditions like non-uniform geographical terrain and
external noise, however, so the system may behave a little differently in real implementation.
During this analysis, the maximum number of devices simulated in a mesh were 250, for
which the purposed system meets the required specifications from the simulation. Once
the system reaches a critical number of smart meters in a network, the system will not be
able to maintain the required specifications due to the limited bandwidth of LoRa devices.
Further studies need to be conducted to address these issues. However, the proposed
method can be implemented even in areas where no commercial communications systems
are available. It requires less deployment cost as it minimizes the number of gateways
by using mesh topology. Furthermore, the operational cost of the proposed concept is
significantly less compared to the traditional approaches as the traditional approaches
involve external communication service providers.
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