SDPS-2021
Printed in US, December 2021
©2021 Society for Design and Process Science

SOFTWARE ARCHITECTURE FOR SITUATION AWARENESS IN HUMAN-
MACHINE INTERACTIONS FOR APPLICATIONS IN HUMANITARIAN
EMERGENCIES

Sirajuddin Asjad, Kristian Alfheim*, Bjgrn-lvar Bekkevold,
Karoline Moholth McClenaghan and Radmila Juric
University of South-Eastern Norway, * Kongsberg Gruppen
216988@usn.no kristian.alfheim@kongsberg.com 146164@usn.no

karolinem@usn.no rju@usn.no

ABSTRACT

Since the early 2000 there has been repeated interest in
developing context aware software applications, which can
react to and understand the environment, and sometimes
become self-tuned and situation aware. The idea of context
awareness is now speeding towards mobile and wireless
computing and have applications from Internet of Things and
Wearable Healthcare to Pervasive Cyber Physical Spaces.
This paper looks at possibilities of applying the same
paradigm in situations of machine-human interactions and
focuses on cases where teamwork between humans and
devices, which collectively operate in risky and dangerous
real-life environments, is essential for accomplishing a given
task. It is important to address the issue of moving towards
the edges of computational networks, utilizing possible
fog/cloudlets solution and move away from cloud computing.
The example used for the illustration of the proposal is in the
field of the robotic explosive hazard detonation in war
thorned countries.

INTRODUCTION

This paper proposes a software architecture (SA) model
(Cervantes, 2016) which defines a building block of software
applications suitable for managing cyber physical spaces
created for explosive hazard detonations in war affected
countries. Considering that the semantic of situations, in
which such applications would run, include expected and
unexpected moments, it is important that the SA captures all
possible data and defines which types of computations we
may run, on a selection of devices and computational servers.
This research is a step forward for debating what would this
move, moving towards the edges of computational networks
(Lopez et al., 2015; Seal & Mukherjee, 2018; Shi & Dustdar,
2016) and away from cloud computing solutions, bring in
creating such software applications. Software technologies
needed for deploying the SA model range from traditional
transactional processing, applicable in mobile environments
such as Android, to learning and predictive technologies,
which can be used for image/speech recognition and
potential predictions for assisting in decision making. The
design of a conceptual solution, which adheres to the
proposed SA, must underline the impact of an ad-hoc and
sensor generated data and human involvement in decision
making, on the successful deployment of this type of
software.

64

The paper is organized as follows. In the Scenario, we
illustrate a real-life situation within which we would wish to
place our software application. In the section which follows
we model the functionality of the application through Use
Case models, which clearly specify the main functionality of
the application: defining the content in which application
runs and making sure that decision making is based on this
context. The building blocks of software architectures are
derived from sequence diagrams, and they are essential for
proposing component based and layered SA style. The
outcome of the research in debated in Conclusions.

THE SCENARIO

A situation in which we place the software application is
in explosive hazard detonation in war affected urban and
rural locations. It is assumed that (a) a potential explosive
has been detected (b) it must be detonated (c) there is a team
of humans available for managing software application
which assists in the detonation and (d) there are numerous
devices with variable computational power within the
environment where detonation takes place. This situation is
a typical example of a risk averse environment in which
humans play important role from both side: running and
making decisions using software applications and,6,7
detonating explosive hazard. The environment is data rich,
equipped with devices and could resemble instances of
internet of things (R. Juric, 2019; R. Juric, Madland, O.,,
2020; Sheth, 2016) Consequently. The semantic of
data/computations typical of this situation could require
contextualization (Barrett & Power, 2003; Bettini et al.,
2010; Dey, 2001), in terms of understanding “what is
happening” within the environment and which decisions are
to be made. Decision making, such as “shall we detonate the
object and how” could be ecither solely supported by
automated decision making through software application or
supported by human involvements in terms of adding more
semantic to the detected context and putting risk averse
aspect of the situation into human’s hands. It is expected that
the software application would react on the context and had
impact on decision making according to the semantic stored
on the context.

It is important that software modelling, for such
applications, start with generic solutions of the SA and
proceed further, towards the deployment of SA and the
implementation of the application following the most
suitable framework for computing. It will not be prudent to
speculate on possibilities of using clouds, cloudlets, fog and

edge computing, before there is a clear picture on the nature
of computing programs (to be develop) and the size, type and
structure of data we need to run them.

MODELLING SOFTWARE FUNCTIONALITY

Figure 1 is a typical model of pervasive software
application functionalities, and it can fit into many cyber
physical spaces for decision making, where (i) enormous
amount of sensor generated data exists, (ii) the same data is
being collected and used in decision making across the
application (iii) the powerful data may affect physical
devices which might not be able to compute locally and (iv)
we must address constant changes in the environment
through contextualization. Therefore, the reusability of the
diagram in Figure 1 is striking. It allows for refinement in
further exploration of use cases and the use case diagrams by
using UML stereotyped dependencies. An example is in
Figure 2 where Configure Context use case has been
itemized. It is important to note that Figure 2 is one of many
decisions on “what constitutes a context” and it mirrors a
design decision for this configuration. Figure 2 should
change if we place Figure 1 in a different context.

Sender

A

Receiver

A

Configure Context

Collect Data

Make Decision

System

Authorize Action Server
Archive Data ; ;
Operator

Figure 1 Use Case model

Figure 1 also shows that it would be prudent not to
overload safety critical computations with a heavy
programming code which would need constant attention due
to contextual changes and constant need for decision making.
Therefore, it is expected that the most complex computation
would be Created Context and the lightest should be
Authorize Actions. The former would be based on the
extensive semantic of data collected though Collect Data and
Configure Context and as such would not need heavy
programming code. The most complex computations and
coding would appear for Creating Context because it would
depend on the nature and type of data which define context.

65

Therefore, this use case would be crucial in determining
which data we need for the core of computing: Make
Decisions and Authorize Action.

The complexity of Use Case diagrams in further
itemization of functionalities, as depicted in Figure 2 may
have impact on the further software development, through
modeling with abstractions. This will affect the generation
of UML sequence diagram and therefore there should be a
clear balance between the excessive use of stereotyped
dependencies in the use case model and the role sequence
diagrams play in creating software architectures. This is
difficult to judge. It is hard to keep the balance between the
two, but at least SA might be able to highlight if we have
unnecessary over-itemized the generic functionality of the
proposed software solution.

Figure 2 also signals something else as a part of SA
design. Despite having “Configure Context” as a base use
case in Figure 1, Figure 2 actually explains what “Configure
Context” exactly means. It is self-explanatory from Figure 2
that each context definition must include “Planning
Mission”, “Creating Team” and “Setting Access” to devices
and computations. From this perspective, it is obvious that
functionality behind all these three use cases in Figure 2
depends on the data which has been collected through some
other use cases (such as from “Collect Data”) and the data
which has been recorded as a result of decision making (such
as from “Make Decision”). Consequently, the data which
resulted from computations from Figure 2 are also allowed to
be shared and thus would create semantically rich
computational space for defining and manipulating context.

Create team

‘4 Plan mission
Operator

Set access

il

Figure 2 Configure Context Use Case Model

Building Blocks of Software Architectures

Figure 3 is one of numerous sequence diagrams
developed from the use case model in Figure 1. It shows one
aspect of contextualization where “the team for detonation
has been created”, as outline din Figure 2. It shows “Create
Team” and defines if the data is involved in either update or
retrievals. The top row of such sequence diagrams is the first
glimpse of SA building blocks, which guarantee the
existence of user interfaces (UI), computational software
component, as CT.C and followed by a set of data of any
length, type and generated by any use case from the itemized
base uses cases from Figure 1.

Due to space restrictions, we cannot show numerous
variations of the sequence diagram from Figure 3, but it is

obvious that this use case generates or updates the data for
creating teams, operator data and the data for securing access
in decision making (and add data for securing safe
detonations!). The data which is needed before these updates
are being made are simple “readings” of relevant data which
could create a “context” in a moment when decision on
detonation is being made. The sources of the data are
numerous and should be shown in the proposed SA model.
The abstractions of such data should be revealed in any
component based and layered SA style within its bottom
layer.

SD: Create Team
i CTul CTC Team Data Operator Data Access Data
H
Creale team
Initiate process
Setleam inormation
| el operato nformation
: ﬂ Set team and
T operator a0cess
Successiulask Relun OK :

Figure 3 Illustration of Sequence Diagram
“Creating Team”

PROPOSING THE SOFTWARE ARCHITECTURE

The SA from Figure 4 has been created from 20+ sequence
diagrams. It shows three distinctive aspects of the software
application it will generate.

Firstly, it is extremely data intensive and as such it
should affect the choice of computational framework for its
deployment. However, this is the first signal that we need to
rethink where the computations of this software application
will take place. We must determine how close we should go
when deciding to move computations near the places where
data originate, i.e., do we wish to compute locally, at the
edge of computational networks. Figure 4 is also supposed
to show a generic model of a pervasive computing software
application, which has computational power clearly defined
in the middle layer. However, due to constant data

A

amc

Situational

Connection
ore! | pairing Data

State

Authorization

Operator o Swusfrom Battery
Access Data| | O Team Data e " Faulis) Data| _ Firing Data B

o
Sender(s) Status

Waypoint | Componenti(s)
Data Bonavior

Name

Receiver

generation and the use of existing and persistent data
storages, as visible in the data layer, it sways towards heavy
data management application as opposed to be centered
around computation algorithms which manage controlled
detonation of explosive objects in a particular situation.
Second, three’s a high reusability of data and which a
double edge sward. It is welcome because it shows that the
SA model maximizes the presence of data, does not create
separation of data according to their role in computing
programs and keeps an eye on “separation of concerns”
which is essential in the deployment of SA across clouds
edges. On the other side, it triggers numerous questions:
(a) Have we “found well defined functionalities through use
cases”?
Are the functionalities from Figure 4 generic enough to
allow changes during the life of the software
application?
What does the data layer “say”?
Could we plug and play with all these software
components from Figure 4.
Does the data layer allow the freedom in determining
which data would become persistent data storage, which
data will be archived for further analysis, possibly with
learning and predictive technologies and which data we
will simply discard after computations?
Thirdly, the contextualization is essential in pervasive
software application and our SA clearly shows that the data
created for a particular instance of the “context” feeds
decision making and influences authorization of actions.
This is one of the most precious parts of the SA and overall
design. However, storing contextual data in persistence and
archiving it, in constantly changing environment, which can
differ from one moment to another, puts enormous burden on
software applications. We need to balance such decisions.
The SA form Figure 4 shows a clear picture of the level of
efficiency we may have when running it. We see the re-use
of data, and the amount of data needed for running each of
these functionalities depicted on Figure 1. Considering that
the software application should run in restrictive, risk averse
and possibly dangerous environments, then we must pay
attention to its flexibility when running it and efficiency in
terms of decision making. There is no silver-bullet answer in
this case.

(b)
(c)
(d)
(©)

L] cou

Appiication | | 0Pt

" | interaction

Toreat Vibraion Sound Moton. Intertorirg Loeation Temperature.
it SensorData SensorData Sensor Data Signal o Oata o] | s Data

Figure 4 The Software Architecture

66

CONCLUSIONS

This paper is written by computer scientists and placed
directly in the environment, typical of cyber physical spaces,
where decision making, potentially supported by human
involvement, manages risk averse situations, in which
hazardous explosive objects were detected and detonated.

Software modelling illustrated in the paper adheres to
the main principles for creating dynamic and constantly
changeable software solutions which would react to the
environment where the application is run. Also, using
component based and layering SA style we adhere to the
main principle of sound software engineering, and keep
“separation of concerns” alive through layering. Therefore,
it would be difficult to depart from these principles without
affecting the deployment, implementation and efficiency and
safety of the software application we need.

However, there is something else more important as an
outcome of the research. In the introduction we promised to
debate strategies of moving computations in these
applications away from the cloud and inspect possibilities of
pushing forward localized and edge computing. It appears
that this is not as straightforward tasks as one could hope for.

Considering that physical items cannot be modeled when
designing software applications which will create instances
of cyber physical spaces (we use abstractions instead), we
have discovered strong level of data sharing (including the
data generated by devices in real time) which in turn have
direct impact on the choice of technologies we can use in
implementation and the choice of computer/communication
frameworks we must have to safely run the application.

Figure 4 shows that there is no way that we can
determine whether we will run the application at the either
edges (locally on the small devices) or on the cloud or on
both or fog frameworks, or on all. The deployment of the
model is as critical as running computer program which
impalements “Authorize Action”. This is because we need to
act according to the “context” (i.e., data values stored in the
software application) which we find in the moment when we
have to “detonate a hazardous object”. Deciding in advance
on the exact configuration of the implemented model would
be extremely risky.

Where do we go from here?

Modern pervasive spaces are our reality, but software
applications which create them and make these spaces
“useful” are very specific. If we do not address the special
characteristics of pervasive spaces, then we will not be able
to create them. The solution in which we always look at
“instances of either IoT or Internet of Everything (Barrett &

67

Power, 2003; Bettini et al., 2010)” are promising. If we
consider that any software component available in the
layered SA style in Figure 4 can be on any node, any server,
any cloud and on any device, including wearables, robots,
vehicle, drone, and cyborg, then it is obvious that we need
careful thinking before we deploy the solution. The
deployment should not be commercially dictated.

At the time of writing this paper, no publications have
been found which would comprise related work.

REFERENCES

Barrett, K., & Power, R. (2003). State of the Art: Context
Management. Paper presented at the Ambient
Intelligence: European Conference, Aml, Germany.

Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J.,
Nicklas, D., Ranganathan, A., & Riboni, D. (2010).
A survey of context modelling and reasoning
techniques. Pervasive Mob. Comput., 6, 161-180.

Cervantes, H., Kazman, R.,. (2016). Designing Software
Architectures: A Practical Approach (SEI Software
Engineering) (1 ed.): Addison-Wesley Professional.

Dey, A. K. (2001). Understanding and Using Context.
Personal and Ubiquitous Computing, 5(1), 4-7.
doi:10.1007/s007790170019

Juric, R. (2019) Semantic Model for Creating an Instance of
the IoT, in Proceedings of the IEEE CyberScieTech
conference, Fukuoka, Japan August 2019.

Juric, R., Madland, O.,. (2020). Semantic Framework for
Creating instance of IoE in Urban Transport: A
Study of Traffic Management with Driverless
Vehicles. Paper presented at the under review for
HICSS 52, Hawaii, USA.

Lopez, P. G., Montresor, A., Epema, D. H. J., Datta, A.,
Higashino, T., lamnitchi, A., . . . Riviere, E. (2015).
Edge-centric Computing: Vision and Challenges.
Comput. Commun. Rev., 45, 37-42.

Seal, A., & Mukherjee, A. (2018, 2018). On the Emerging
Coexistence of Edge, Fog and Cloud Computing
paradigms in Real-Time Internets-of-EveryThings
which operate in the Big-Squared Data space.

Sheth, A. (2016). Internet of Things to Smart [oT Through
Semantic, Cognitive, and Perceptual Computing.
IEEE Intelligent Systems, 31(2), 108-112.
doi:10.1109/mis.2016.34

Shi, W., & Dustdar, S. (2016). The Promise of Edge
Computing. Computer, 49(5), 78-81.
doi:10.1109/mc.2016.145

