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Abstract: In a microgrid connected with both intermittent and dispatchable sources, intermittency
caused by sources such as solar and wind power plants can be balanced by dispatching hydro power
into the grid. Both intermittent generation and consumption are stochastic in nature, not known
perfectly, and require future prediction. The stochastic generation and consumption will cause the
grid frequency to drift away from a required range. To improve performance, operation should be
optimized over some horizon, with the added problem that intermittent power varies randomly
into the future. Optimal management of dynamic system over a future horizon with disturbances
is often posed as a Model Predictive Control (MPC) problem. In this paper, we have employed an
MPC scheme for generating a hydro-turbine valve signal for dispatching necessary hydro power to
the intermittent grid and maintaining grid frequency. Parameter sensitivity analysis shows that grid
frequency is mostly sensitive to the turbine valve signal. We have found that controller discretization
time, grid frequency, and power injection into the grid are interrelated, and play an important role in
maintaining the grid frequency within the thresholds. Results also indicate that the fluctuations in
grid frequency are insignificant on the turbine valve position during power injection into the grid.

Keywords: microgrid; load and generation balance; intermittent injection; dispatchable hydro power;
frequency stability; MPC

1. Introduction
1.1. Background

Electricity generation from renewable energy has increased because of the rise in coal
prices, oil insecurity, climatic concern, and the nuclear power debate. There is a demand
for a renewable-sources economy over the coal-fired economy. Renewable energy sources
are a combination of intermittent and dispatchable energy sources. Intermittent sources
such as solar, wind, and tidal power plants exhibit fluctuating power production that
creates an imbalance between generation and load. Renewable dispatchable sources such
as hydro power plants play a significant role in balancing out the variability caused by
intermittent sources. In a microgrid consisting of solar power and wind power supplied
with a dispatchable hydro power plant, injection of intermittent solar and wind power
creates a fluctuation in grid frequency. The grid frequency must be maintained at the range
of (314± 5%) rad/s. Furthermore, grid voltage at all levels of generation, transmission,
and distribution should also be maintained within the required range. In this regard, it is
of interest to dispatch the required hydro power into the grid for balancing intermittent
generation and load to maintain grid frequency and voltage level in a microgrid supplied
by solar and wind power within the required ranges.

Prospective scenarios on balancing large-scale grid integrated intermittent generations
from Northern Europe are outlined with key findings in [1] using Norwegian hydro
powers. Reservoirs in Norway are considered to be rechargeable batteries with integration
with intermittent generations supplying excess power for pumping water into an upper
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reservoir from a lower reservoir [2]. The finding indicates that reservoir productions
in Norway should be doubled to address the variability of intermittent generations in
Northern Europe. The concept of flexible hydro power is coined in [3] indicating cascaded
hydro power plants as an example. Current state-of-the-art regarding use of Norwegian
hydro power for balancing solar and wind power variability in Continental Europe is
reviewed in [4] indicating extensive research on modeling future variability. These studies
in the variability of solar and wind power indicate the need for flexible hydro power that
can dispatch necessary power by running the synchronous machine in either generator
mode or motor mode, where motor mode involves using the machine to pump water back
into the reservoir. However, there exist major technical challenges regarding the integration
of intermittent energy sources into the grid. One of the major issues is grid frequency
stability. A brief technical review of challenges of grid integration of solar and wind power
is explored in [5]. A more comprehensive review regarding the challenges in wind power
integration into the grid is given in [6]. From the outcomes of preliminary research surveys
and discussions, grid frequency fluctuation is the major challenge of grid integration of
intermittent generation.

A perfect balance between intermittent generation and consumption can only be
achieved if intermittent production is known perfectly, consumption is known perfectly,
and hydro power production can be changed infinitely fast. In reality, changes in hydro
power production are constrained by inertia in water and rotating mass, and the need
to avoid wear and tear in actuators and other equipment. Unknown consumption leads
to power imbalance which eventually is observed in a drift in grid frequency. Improved
performance requires the operation of the system optimized over some horizon with
the added problem that intermittent power varies randomly into the future. Optimal
management of dynamic systems over a future horizon with disturbances is often posed
as an MPC problem. In this regard, it is of interest to use MPC to balance intermittent
generation and consumption by controlling the hydro-turbine valve signal. The problem
of grid frequency fluctuation motivates for studying dynamic models of components in an
interconnected grid which requires a multiphysics simulation environment. To address
more realistic grid fluctuations in a real-time interconnected grid requires a dynamic model
of hydro power systems, dynamic model solar power systems, dynamic model of wind
energy conversion systems, electrical systems, generation, transmission, and distribution
systems including end-users of electricity. This adheres to the choice of the multiphysics
simulation environment.

1.2. Previous Studies

A non-linear MPC for controlling hydro-turbine valve signal is presented in [7].
Similarly, a coordinated and robust distributed MPC strategy is studied in [8,9], respectively,
for load frequency control. A basic strategy on using MPC for hydro power systems is
presented in [10] with emphasis on mathematical models of hydro power systems. A clearer
understanding of MPC controllers for large-scale hydro power production is presented
formulating a linear dynamical system in [11]. A similar approach for grid frequency
control in an interconnected Egyptian grid with renewable powers is explained and studied
in [12] using MATLAB. The simulation results with different operating conditions and
disturbances from the paper emphasize the use of an MPC-based approach over the
optimal Proportional and Integral (PI) controllers. Furthermore, the choice of MPCs over
PI controllers with robust handling of disturbances are explained in [13–15]. Overall
speculations on previous studies emphasize the use of an MPC for controlling hydro-
turbine valve signal over a conventional controlling scheme.

1.3. Assumptions and Limitation

The overall system consists of a dynamic model of hydropower system and a steady-
state model of a synchronous generator, solar power plant, wind power plant, and con-
sumer load. The dynamics of grid frequency is captured using the swing equation. The
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detailed assumptions are made throughout the paper when necessary. The angular grid
frequency ω is measured in rad/s, and grid frequency f is measured in Hz, and are related
as ω = 2π f . Since we considered a steady-state model of the synchronous generator and
a dynamical model of the hydro-turbine system, we adhere to represent the frequency of
rotational dynamical hydro-turbine with angular frequency. As the angular frequency of
the hydro-turbine is the same as the angular frequency of the grid for the system we are
studying, thus, throughout the paper grid frequency will particularly represent angular
grid frequency.

The problem of maintaining the voltage at all levels of generation, transmission, and
distribution is out of the scope of this paper.

1.4. Outline and Contributions

A system description of our microgrid is given in Section 2. Section 3 provides
mathematical model development. Section 4 address open-loop analysis for parameter
sensitivity analysis. The implementation of the MPC is explained in Section 5. Section 6
provides results and discussions with conclusions presented in Section 7. The paper ends
with providing suggestions for future work.

Readers are requested to follow figures while reading the results and discussions
section. This way, the readers find the information presented in the paper in a lucid way.

Following are the original research contributions from the paper:

1. finding controller discretization time constraining the grid frequency, maintained at
the required range, based on the rate of change of intermittent generation

2. a daily prediction of solar power, and consumer load using relaxation parameters for
the Weibull and normal distributions

3. a yearly average hydro scheduling for balancing load and generation using yearly
parameter spaces for Weibull and normal distributions.

A conceptual framework for finding discretization time for the controller is explained
in Section 4. Similarly, Section 5.2 provides a conceptual framework for the daily prediction
of solar power, daily prediction of consumer load, and yearly hydro schedule.

2. System Description

Figure 1a shows a microgrid supplying load power P` with intermittent generations
from solar and wind energy with power as Ppv and Pw, respectively, and a dispatch-
able hydropower Ph. When the intermittent generation is higher than the scheduled
load, the hydro power plant is operated in pumping = motoring mode while operated as
turbine = generating mode when intermittent generations are insufficient to supply the load.
Without considering a dynamical model of the microgrid the needed hydro power for
balancing intermittent generation and load is given as,

Ph = P` − Ppv − Pw. (1)

Equation (1) is naive and unrealistic; such an approach will not work in a real dy-
namical system for several reasons. In principle, a hydro-turbine valve cannot be changed
instantaneously because of the inertial effect of hydro power plant. Even if it were possible
to make instantaneous changes in the hydro-turbine valve, this would lead to excessive
water hammer effects, with resulting wear and tear of the equipment. In addition, inter-
mittent generation and scheduled load is not measured directly, and are uncertain. Hence,
the imbalance is inferred indirectly through a variation in the grid frequency ω. The grid
frequency is a response of the dynamic system given by the combined dynamics of power
production and the swing equation as described in Section 3.
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1. Hydro schedule
2. Pump-storage
operations analysis
3. Seasonal schedule
4. Operational limit
5. Water hammer
analysis
6. Grid management

Figure 1. System block diagram.



Energies 2021, 14, 874 5 of 28

Figure 1b shows a hydro-electric plant that can be operated as pump-storage plant. The
pump-turbine is coupled with a synchronous machine supplying power to the microgrid.
The electrical synchronous machine works as a synchronous motor when hydro power
is operated in motoring mode. The hydropower plant consists of a reservoir, intake,
surge tank, penstock, and the pump-turbine mechanically coupled with a rotating shaft
of the synchronous machine. The number of units of pump-turbine and its power rating
can be different based on solar irradiance, wind velocity, and consumer load at different
locations. A power system planning engineer should usually select the rating of each of the
pump-turbine unit based on the location. For simplicity, we choose a case study discussed
in Section 3.4 with 4 units of pump-turbines rated with 1.5 MW each. For simplicity,
procedures for calculating the ratings are considered to be out of the scope of this paper.
However, we will explain the choice of rating in Section 6.

Stochastic scenarios for the wind velocity, solar irradiance, and consumer load demand
can be generated from a state-space model as shown in Figure 1c. The solar irradiance
scenarios can be generated using confined space (The spaces of Weibull and normal distri-
butions are infinite. The infinite spaces are then converted into a day confined or limited
to 24 h. That way a daily solar irradiance is predicted.) for 24 h for Weibull and normal
distribution which is presented in Section 5. The future scenarios are generated using past
measurement data. Based on the future scenarios for wind velocity and solar irradiance,
we calculate solar and wind power. The generated scenarios for wind power, solar power,
and consumer load then feed into MPC for computing controlled states, algebraic variables,
inputs, and statistical moments. The computed variables from the scenarios are then
further analyzed for optimal scheduling of hydro power to be dispatched into the grid. The
computed variables also provide information about the operating range of hydro power,
pump-turbine operation cycles, seasonal hydro schedule, the operational limit of units,
water hammer analysis for hydro units, and information on the microgrid management
under stochastic solar and wind power input.

Figure 1d shows a block diagram of MPC with an estimator. We are using an Un-
scented Kalman filter (UKF) for estimation of states. v and w are process disturbance and
measurement noise, respectively. The best estimated states x̂ from the estimator is used for
initializing model constraints inside the MPC formulation. y and ŷ are measurement and
estimated outputs, respectively.

3. Mathematical Model
3.1. Hydro-Turbine System

The model of hydropower system is based on mass and momentum balance as given
by Equations (2) and (3) as,

dm
dt

= ṁ (2)

dM
dt

= Ṁ+ F, (3)

where m is the mass of water, ṁ = ṁi − ṁe is the difference between influent and efflu-
ent mass flow rates , M is the momentum, Ṁ = Ṁi − Ṁe is the difference between
influent and effluent momentum flow rates, and F is the total force acting on the system.
Furthermore, we consider in-compressible water and inelastic pipes. The effect of water
temperature is not considered while modeling the system.

For a general pipe unit with influent and effluent pressures as pi and pe, cross-sectional
area A, length L and height difference H, Equations (2) and (3) can be further developed
with series of algebraic equations as, ṁ = 0, M = mv = ρAL V̇

A = ρLV̇, Ṁ = ṁv = 0,

F = Fp − Fr − Fg where Fp = (pi − pe)A, Fg = mg H
L and Fr = ρL πDV̇|V̇|

8A2 fD, where v is
the velocity of water inside the pipe, ρ is the density of water, Fp is the force due to
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water pressure, Fr is the fluid frictional force, and Fg is the force under acceleration due to
gravity g.

The dynamic equation for volumetric flow rate V̇ is then written as,

dV̇
dt

=
A
ρL

(pi − pe)− gA
H
L
− πDV̇ | V̇ |

8A2 fD,

where Darcy friction factor fD is calculated based on Reynolds number NRe = ρ|v|D
µ =

4ρ|V̇|
µπD as,

fD =


64

NRe
NRe < 2100

1(
2 log10

(
ε

3.7D + 5.7
N0.9

Re

))2 NRe > 2300 .

Here, µ is the kinematic viscosity of water and ε is the pipe roughness height. For
the region with 2100 ≤ NRe ≤ 2300, fD is calculated by using cubic interpolation, with
coefficients differentiable at the boundaries.

For the system shown in Figure 1b, the dynamic equations of hydropower with intake,
surge tank and penstock, subscripted with i, s and p for e.g., V̇s , can be written as,

dh
dt

=
V̇s

As
(4)

dV̇s

dt
=

As

ρh
(pn − pa)−

πDsV̇s | V̇s |
8A2

s
fD,s − gAs (5)

dV̇p

dt
=

Ap

ρLp
(pn − pt)−

πDpV̇p | V̇p |
8A2

p
fD,p + gAp

Hp

Lp
, (6)

with algebraic equations given by,

pt = pa

1 +

(
V̇p

Cvuv

)2


dV̇i

dt
=

Ai

ρLi
(pa + ρgHr − pn)−

πDiV̇i | V̇i |
8A2

i
fD,i + gAi

Hi

Li

V̇i = V̇s + V̇p

Pm = ηh(pt − pa)V̇p,

where h is the height of oscillating water mass inside the surge tank, pt is the turbine
inlet pressure, uv is the valve signal controlling water flow through the turbine, ηh is
the hydraulic efficiency of turbine, pn is the intake-penstock manifold pressure simply
represented by bottom pressure of the surge tank and pa is the atmospheric pressure.

Furthermore, the turbine unit is modeled as a simple mechanical valve as,

Pm = ηh(pt − pa)V̇p

V̇p = Cvuv

√
pt − pa

pa
,

where turbine valve capacity Cv is given by nominal information of the hydro-turbine system.

3.2. Turbine-Synchronous Machine Aggregate System

The models of the solar and wind power plants are simply considered with steady-
state power production for a given solar irradiance and wind velocity, respectively. Fur-
thermore, we considered an aggregate system consisting of the hydro-turbine rotor, electric-
generator rotor for the hydro-generator system, wind-turbine rotor, and electric-generator
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for the wind-generator system. The aggregate system dynamics is considering only the
swing equation given by,

J
dω

dt
= Pm − Pe, (7)

where ω is the angular frequency of the microgrid and J is the total angular momentum
of the aggregate system. For simplicity we are not considering load damping factor and
friction losses.

Pm is the mechanical power of the aggregate system expressed as,

Pm = Ph + Ppv + Pw.

Similarly, Pe is the electrical power output to the microgrid which should be balanced
with the schedule load power P`.

The aggregate angular momentum J is the sum of angular momentum of rotational
systems, hydro power and wind plants, connected to the grid given as,

J = Jh + Jw.

3.3. Solar and Wind Power Plant

Solar and wind power are calculated based on the solar irradiance and wind velocity,
respectively. We consider simple algebraic equations for calculating solar and wind power.

Solar power from the solar irradiance is calculated as,

Ppv = ηpv AkI, (8)

where ηpv is the efficiency of a solar panel, A is the effective area of panels in a solar farm,
and kI is the solar irradiance on the solar panel.

Similarly, wind power is calculated as,

Pw =
π

2
ρηwR2v3

w, (9)

where ρ is the air density, ηw is efficiency of a wind turbine, R is the radius of the turbine,
and vw is the wind velocity.

3.4. Case Study

As a case study, we investigate how 6 MW hydro power with 4 units of pump-turbines
each with a rated capacity of 1.5 MW can be used for balancing 4 MW rated consumer load
throughout the day.

Table 1 list specifications for power plants containing rated information, geometrical
dimensions and efficiencies.
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Table 1. Specification of case study power plants.

Parameters Symbols Values

Hydro power plant:

Rated power Pr
h 6 MW

Number of pump-turbine units - 4
Rating of each pump-turbine - 1.5 MW
Nominal head, discharge, valve signal, Hn, V̇n, un

v 120 m, 4 m3/s, 0.95
Height difference of reservoir, intake, surge
tank, and penstock

Hr, Hi, Hs, Hp 20 m, 20 m, 50 m, 70 m

Length of intake, surge tank, and penstock Li, Ls, Lp 1000 m, 50 m, 80 m
Diameter of intake, surge tank, and penstock Di, Ds, Dp 4 m, 3 m, 3 m
Hydraulic efficiency of hydro-turbine ηh 0.96
Inertia of turbine-rotor Jh 1× 103 kgm2

Solar power plant:
Rated power and irradiance Pr

pv, kr
I 2.5 MW, 600 W/m2

Effective area of total panels A 25× 103 m2

Solar panel efficiency ηpv 0.14
Wind power plant:
Rated power and velocity Pr

w, vr
w 1.5 MW, 5 m/s

Radius of the turbine R 10 m
Wind-turbine efficiency ηw 0.4
Inertia of turbine-rotor Jw 0.1× 103 kgm2

4. Open-Loop Simulation
4.1. Initial Considerations

When generation from the solar power plants is injected into the microgrid, the grid
frequency fluctuates. The unwanted fluctuations in grid frequency will cause generators
and the grid to be out of synchronism. For an open-loop simulation, we will be considering
generation from solar and wind power as step generation and see the effect of step power
injection. The task of a controller is to limit the deviation and track the grid frequency
within the limit that preserves synchronism with electrical generators connected to the
microgrid. A typical rule is to limit frequency within a tolerance of ±5%. The operating
range of frequency can be defined with lower and upper bound as, ω = (310− 330) rad/s.

The functional diagram for open-loop simulation is shown in Figure 2. We use open
simulation of the model in Equations (4) to (7). We want to see the effect of inertia changes
and the injection of solar and wind power into the microgrid. Figure 3 shows deviations
in grid frequency due to inertia, solar power, wind power, and hydro power loading
conditions, respectively. The figure shows that grid frequency deviations are proportional
to the grid inertia and reciprocal to the power injected into the grid.

Figure 2. Functional diagram for model analysis.
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Figure 3 also shows that for wind power injected into the grid with Pw = 1 MW,
the upper bound for frequency is reached at t = 7.5 s and for Pw = 4 MW the upper
bound is reached at t = 2 s. The time at which the low or the high bound is reached by the
angular frequency is the maximum allowed time for controller ∆tm to limit angular velocity
within the range 314± 5% rad/s. This provides quantitative information regarding the
discretization time used in the control algorithms. For example, for injection of Pw = 4 MW
into the grid, it would require discretization time of controller, to be less than 2 s. The rate
at which power is injected into the grid is inversely related to the maximum discretization
time for the controller.

Figure 3. Deviations in ω due to J, Ppv, Pw and uv. The deviations in the grid frequency are proportional to the static power
injected in the microgrid and the loading of hydro-turbine. ∆tm is the maximum allowed discretization time for a controller
to maintain the grid frequency.

4.2. Parameter Sensitivity Analysis

Parameter sensitivity analysis can be very useful for seeing variations of the rate of
change in states due to the rate of change in parameters over the time-series. From Figure 2,
we will consider inputs Ppv , Pw, Pe, uv with constant values around operating conditions,
and parameter J for sensitivity analysis. Hence, inputs Ppv , Pw, Pe, and uv are also consider
as parameters for parameter sensitivity analysis.

The sensitivity ODE for a system with dx
dt = f (x, u; θ) is formulated as,

d
dt

(
∂x
∂θj

)
=

(
∂ f
∂x

)(
∂x
∂θj

)
+

∂ f
∂θj

,

and is further simplified with sensitivity ODEs as,

dSj

dt
= Jx · Sj + Fj,
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where Jx is the matrix of Jacobians in states, Sj is the sensitivity ODEs of jth parameter and
Fj is the parameter derivatives.

We formulate our local sensitivity analysis from parameters Ppv , Pw, Pe, J and uv, and
want to see their sensitivities in states h, V̇s, V̇p, and ω.

Figure 4 shows sensitivity analysis where the solutions for Sj are plotted over 500 s
are plotted over 500 s. The figure shows h, V̇s and V̇p are less sensitive to uv as compared to
sensitivity in ω, and are periodic overtime with time period 50 s. The sensitivity in flow
rate through the penstock due to turbine valve signal is exponentially decaying towards
the solutions indicating regaining of the state’s stability exponentially oscillating over the
solutions. The grid frequency ω is more sensitive to parameter uv.

Figure 4. Local parameter sensitivity analysis.
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4.3. Power Injection into the Grid

Real measurements for solar irradiance and wind velocity (The measurement data
is for Kjølnes Ring 56, Campus Porsgrunn, University of South-Eastern Norway, 9.6714
longitudes and 59.13814 latitudes.) solar power and wind power, respectively, are taken
from www.solarcast.com. The measurement data for consumer load is taken for monthly
hourly averaged load for Norway from ENTOS-E. The magnitude of measurement data for
electrical demand is modified as per our case study with a microgrid with a power capacity
of 6 MW keeping the load dynamics preserved in hourly data.

We consider the injection of solar power, wind power, and their combination into the
grid. The static wind power comes from grid-based inverters. Figure 5a,e shows solar
and wind power, respectively, for a particular day. Similarly, Figure 5b shows solar power
sampled at 5 min where the value is shown for midday only from 10 a.m. to 2 p.m. A full
day consists of 288 data points.

Our interest is to find the maximum discretization time for controller, ∆tm, as shown
in Figure 3 where grid frequency is satisfied with (300 < ω < 330) rad/s. ∆tm is based on
the rate of power injection into the grid and the time at which grid frequency is within the
allowed range.

4.3.1. Static Power Injection

Figure 5c shows the rate of change of solar power which is injected into the grid.
Figure 5d shows ∆tm versus the rate of solar power injection into the grid for different
valve positions. In particular, the turbine valve positions during solar power injection do
not alter the grid frequency. However, the lower valve positions alter grid frequency and
are insignificant in a microgrid with the same scaling of hydro power and solar power
plants. The figure shows the discretization time of controllers for higher valve position is
around 8 s and for lower valve positions is around 5 s.

Figure 5f shows the discretization time of controllers for different valve positions for
a different rate of wind power injection into the grid. We consider wind power sources
without inertial impact into the grid. Similarly, Figure 5g shows both solar and wind power
injected into the grid, and Figure 5h shows the discretization time of the controllers for
different valve positions for a different rate of both solar and wind power injected into
the grid.

4.3.2. Inertial Power Injection

We now consider Jw and Jh as the moment of inertia for wind power plant and
hydro power plant, respectively. Figure 6a shows the discretization time of controllers for
different valve positions for different rates of both inertial wind power injected into the
grid. Figure 6b shows discretization time for both solar and inertial wind power injections
into the grid.

Figures 5f,h and 6 shows that inertial power injection into the grid has insignificant
effect on ∆tm.



Energies 2021, 14, 874 12 of 28

Figure 5. Intermittent power injection into the grid to study limits on ∆tm.
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Figure 6. Inertial wind power injection into the grid. ∆tm is the maximum controller discretization time calculated for
power injected at an interval of 5 min.

5. MPC in a Microgrid

A chosen cost function is given as in Equation (10),

min
uk

Jc =
1
2

Np

∑
k=1

(yk − rk)
2 + p∆u2

k−1

s.t.
dx
dt

= f (x, u, w; θ),

y = g(x, u, v; θ),

u` ≤ u ≤ uh,

∆u` ≤ ∆u ≤ ∆uh,

x` ≤ x ≤ xh,

(10)

where subscript ` and h are low and high bounds for inputs, rate of change of inputs,
and states. Furthermore, Np gives the prediction horizon in the optimal control problem
(OCP) which is solved for each iteration. p is a scalar weight for tuning the controller. k
is the iteration for each sample drawn for solar power, wind power, and consumer load
at discretization time of the controller ∆tc. y is system output/controlled variable, r is
reference value, u is control input, θ is parameter. w and v are process disturbance and
measurement noise, respectively.

For our hydropower system connected in microgrid with solar and wind power plant,

x =
(
h, V̇s, V̇p, ω

)
y = Pe

u = uv

r = P`.

5.1. Deterministic MPC
5.1.1. Without Process Disturbance and Measurement Noise

For prediction analysis, first, we consider both the model and the plant with the same
mathematical equations and without the inclusion of process disturbance and measurement
noise. Table 2 shows parameters and initial conditions for an MPC controller with UKF
as an estimator. The controller discretization time ∆tc is chosen based on parameter
sensitivity analysis and rate of power injection into the grid satisfying grid frequency for
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(314± 5%) rad/s. For a controller maintaining grid frequency within the limits holds true
for ∆tc ≤ ∆tm.

Figure 7 shows step generation input from solar power, wind power, schedule load
setpoints, controlled input, and states.

Figure 7b shows grid frequency for different ∆tc. As the discretization time for MPC
increased grid frequency fluctuates out of the range. For a typical value of ∆tc = 20 s,
the grid frequency is not maintained within the range. The controller performs better
when ∆tc = 0.1 s. Similarly, Figure 7c shows the valve signal of the turbine for different
discretization time. Thus, a very low value of ∆tc would require the turbine’s valve with a
fast response time.

Figure 7. Setpoint tracking of scheduled load using step input from solar and wind power. Both the plant and model are
represented by mathematical equations. The control input uv from the OCP is generated for grid frequency to be exactly at
314 rad/s for ∆tc = 0.1 s. However, the actual plant is now out of control for the next 0.1 s at which period grid frequency
fluctuates. Figure 7 shows the instantaneous (interpolated) dynamics of turbine valve signal which maintain frequency
within the required limit as shown in Figure 8a with the blue color.



Energies 2021, 14, 874 15 of 28
(r
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/s

)

(s) (s)

Figure 8. Grid frequency and turbine valve signal for different controller discretization time. The actual continuous solution
of the turbine valve signal for specific discretization time is found using time = k

∆tc
for k ∈ [1, 1000]. Hence, readers should

not compare results based on amplitude only.

Table 2. Controller specifications.

Parameters and Initial
Conditions

Symbols Values

Prediction horizon Np 5
Normalized tuning parameter
for input

p 0.1

Controller discretization time ∆tc 10 s
Initial conditions for states h(0), V̇s(0), V̇p(0), ω(0) 20 m, 2 m3/s, 4 m3/s, 314 rad/s
Bounds for water mass
oscillations inside surge tank

h` ≤ h ≤ hh 0 < h ≤ 40 m

Bounds for flow rate through
surge tank

V̇s,` ≤ V̇s ≤ V̇s,h −4 m3/s < h ≤ 4 m3/s

Bounds for discharge through
penstock

V̇p,` ≤ h ≤ V̇p ≤ V̇p,h 0 < h ≤ 4 m3/s

Bounds for grid frequency ω` ≤ ω ≤ ωh 300 rad/s < ω ≤ 330 rad/s
Bound for valve signal uv,` < uv ≤ uv,h 0 < uv ≤ 1
Rate of change of valve signal u̇v,` ≤ ∆u̇v ≤ u̇v,h −0.8 s−1 < u̇v ≤ 0.8 s−1

Process distrubances with mean
w̄ and co-variance W

w ∼ N (w̄, W) w̄ = 0 and W = diag(0.01, 0.04, 0.04, 0.01)

Measurement noises with mean
v̄ and co-variance V

v ∼ N (v̄, V) v̄ = 0 and V = diag(0.1)

States co-variance for UKF X X = 100 ·W

5.1.2. With Process Disturbance and Measurement Noise

We now consider white noise added to the process and measurement equations. For
emulation of the real plant, we consider a model developed in OpenModelica [16] using
Modelica [17] libraries. The Modelica language is chosen based on the current state-of-
the-art for simulation of multiphysical systems. The choice of language is based on an
open-source platform, equation-based modeling possibilities, extensive contributors in
the development of the language and its libraries, ease-of-use, interfaces to high-level
languages such as Julia and Python [18]. We are using Modelica libraries—OpenHPL [19]
for modeling hydro power and pump operations, OpenIPSL [20] for electrical generation,
transmission, and distribution, PhotoVoltaics [21] for solar power plants, and WindPower-
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Plants [22] for wind power plants. In the Modelica language, models can be developed
using Differential Algebraic Equations (DAEs) which are solved with high order, efficient
solvers. Because of the DAEs representation, the solutions of the algebraic variables are
readily accessible. The simulated output is considered to be the real plant measurements
by adding white noise as measurement noise. For state estimation and updating states for
the control horizon, we use the model developed in OpenModelica as shown in Figure 9.

The internal structure of OCP is formulated in the Julia language [23] using JuMP.jl,
a Julia package for modeling optimization problem [24], as shown in Figure 10. JuMP
provides an easy way of describing optimization problems containing linear and non-
linear constraints. JuMP also supports automatic differentiation (AD) using package
ForwardDiff.jl [25] which is a most useful property rarely supported by other modeling
languages. Several open-source solvers are available for solving models described in JuMP.
Our choice of JuMP solver is Ipopt.We have used models developed in Modelica for both
model and plant. OMJulia [26] is an OpenModelica-Julia interface providing application
programming interfaces (APIs) for advance model analysis in Julia. The difference in
measurements from plant and simulated outputs from the model is fed into UKF to
estimate the next states and outputs for OCP.

Table 3 describes model use for real plant and mathematical model for solving control
optimization.

Figure 11 shows control input and output when process disturbance and measurement
noise are included. The scheduled load is considered to be measurement output used for
estimation of states h, V̇s, V̇p and ω using UKF. The effect in the control inputs and outputs
are almost the same in the case of models with and without process disturbances and
measurement noises.

Figure 9. Simulation model developed in OpenModelica using Modelica libraries, OpenHPL, OpenIPSL, PhotoVoltaics, and
WindPowerPlants.
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Figure 10. Internal structure of optimal control problem (OCP) formulated in JuMP.jl.
(

x∗(1), u∗(1), y∗(1)
)

represents first
optimal values of states, inputs and outputs.

Figure 11. Setpoint tracking of scheduled load with process disturbance and measurement noise, and step change in solar
and wind power.
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Table 3. Models used for real plant and control.

Real Plant Control Model

1. Developed in Modelica

dx
dt

= f (x, z, u; θ)

0 = g(x, z, u, w; θ)

y = h(x, z, u, v; θ),

where differential variables, algebraic
variables, inputs, white noise, parameters
and outputs, respectively. The model
consists of DAEs.

1. Developed in Julia

dx
dt

= f (x, u, w; θ)

y = h(x, u, v; θ),

where x is a state obtained by reducing
conservation equations using algebraic
variables. The model consists of ODEs.

2. Use for emulating measurements, states
estimation and updating states.

2. Use for formulating model constraints
for cost function used in MPC

3. Modelica libraries: OpenHPL,
OpenIPSL, Photovoltaics and
WindPowerConversionSystems for
modeling hydro powers, electrical
systems, solar and wind power plants,
respectively.

3. Only hydro power and aggregate model
is considered

4. Higher order model with automatic
discretization for solving model equations.

4. Euler discretization

Furthermore, we will consider the model without process disturbance and control
noise for further analysis throughout the paper. Similarly, we assume ∆tc = 1 s.

5.1.3. With Real Measurements

Figure 12a,b shows solar irradiance and wind velocity with their respective power
productions. When the wind velocity vw > 7 m/s, wind turbines are shut down and power
production from wind is zero. Similarly, Figure 12c shows the control inputs for setpoint
tracking of the scheduled load as shown in Figure 12d. The dispatched hydro power for
balancing load and generation is shown in Figure 12d.

5.1.4. Pump-Turbine Operations

The motoring and generating operation of the 4-units of the hydro-turbine is shown
in Figure 13. We consider pumping and turbine as mirror dynamics for pump-storage
hydropower.

5.2. Stochastic Analysis

Section 5.1 explored deterministic MPC. In practice, solar power, wind power, and
consumer load are stochastic. Thus, we want to study how deterministic MPC handles
stochastic inputs from solar power, wind power, and consumer load. For future prediction,
stochastic behavior can be studied using different random scenarios. These scenarios are
based on the future prediction of solar power, wind power, and scheduled load, using the
state-space model and/or confined Weibull and normal distributions.
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5.2.1. State-Space Model

A basic structure of state-space model for stochastic processes is represented by three
components, trend µ, slope ν, and seasonality γ as,

yt = µt + γt + εt (11)

µt+1 = µt + νt + ξt (12)

νt+1 = νt + ζt (13)

γt+1 =
s−1

∑
j=1

γt+1−j + ωt, (14)

where εt ∼ N
(
0, σ2

ε

)
, ξt ∼ N

(
0, σ2

ξ

)
, ζt ∼ N

(
0, σ2

ζ

)
, and ωt ∼ N

(
0, σ2

ω

)
. s is the seasonality

period. For s = 2 we can represent Equations (11)–(14) by a state-space model as,

yt =
[

1 0 1
]
αt + εt, εt ∼ N

(
0, σ2

ε

)
(15)

αt+1 =

 1 1 0
0 1 0
0 0 1

αt +

 1 1 0
0 1 0
0 0 1

ηt, ηt ∼ N


 0

0
0

,

 σ2
ξ 0 0

0 σ2
ζ 0

0 0 σ2
ω


, (16)

where y is the measurement output modeled with white noise characterized by variance
σ2

ε . Here, α = (µ, v, γ) is the state vector, and η = (ξ, ζ, ω) is the disturbance vector. The
respective variances for disturbances are σ2

ξ , σ2
ζ and σ2

ω. Based on the seasonality factor s,
the state-space matrices change sizes. Equations (15) and (16) are used for future prediction
and scenarios generation.

We are using StateSpaceModels.jl [27] for stochastic prediction and scenarios genera-
tion.
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Figure 12. Setpoint tracking of scheduled load using real measurements for solar power, wind power, and consumer load.
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Figure 13. Pump-turbine operations of hydro power. uv ∈ (0, 1) for each of the pump-turbines. Unit 1 gets first priority to
run either in generating or motoring mode. If unit 1 operates in generating mode near full load, then after it reaches full
load unit 2 starts to operate and balance the generation and load. And so on. The same applies to motoring mode.

5.2.2. Weibull and Normal Distribution

A parameterized Weibull distribution function is represented by Equation (17).

f (x) =

{
k
λ

( x
λ

)k−1e−(
x
λ )

k
x ≥ 0

0 x < 0
, (17)
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where k ∈ (0,+∞) and λ ∈ (0,+∞) are denoted as shape and scale parameters, respec-
tively. Similarly, x ∈ [0,+∞) is the positive infinite space. However, we want to predict
the solar irradiance for a day. Thus, an infinite space is converted into 24 h confined space.
This can be done with the help of space-relaxation parameters as x ∈ (α, β] where β > α and
α, β ∈ [0,+∞).

Similarly, a parameterized Normal distribution function is represented by Equation (18),

f (x) =
1

σ
√

2π
e−

1
2 (

x−µ
σ )

2

, (18)

where µ and σ are mean and standard deviation and µ, x ∈ R and σ2 > 0. The infinite real
space is converted to a confined space x ∈ [α, β] where β > α and α, β ∈ (−∞,+∞) where
normal distribution can be used for predicting solar irradiance for a complete day of 24 h.

5.2.3. Relaxation Parameters α, β

The relaxation parameters can be found using the least square errors approximation
between measurements and calculations from analytical distribution function in a confined
space of x ∈ [α, β] converted into a space of 24 h.

If kI is the solar irradiance and t is a confined time of a day in a year t ∈ (0, 24] then
expressions for solar irradiance using the Weibull distribution is given as,

kI =
k
λ

(
βt

24λ

)k−1
e−
(

βt
24λ

)k

,

and for the normal distribution is given as,

kI =
1

σ
√

2π
e
− 1

2

(
βt
24−µ

σ

)2

.

The yearly parameter space for predicting solar irradiance for a particular day using
both the Weibull and the normal distribution are given in Figure 14.

Figure 15 shows irradiance measured on 1 July 2018 fitted to the Weibull and the
normal distributions.

A similar strategic approach can be applied for the prediction of schedule load for a
particular day. A yearly parameter space can be generated for schedule load using past data.

However, the concept of using Weibull and normal distribution for the prediction of
wind velocity for a particular day is out of the scope of this paper.

5.3. Effect of Shadows

Figure 15 shows irradiance for a day with a clear sky. The effect of shadow cannot be
modeled using Weibull and normal distribution. A more rigorous prediction algorithm
can be developed to study the effect of shadowing throughout the day.
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Figure 14. Yearly parameters spaces for confined Weibull and normal distributions.

Figure 15. Solar irradiance prediction using Weibull and normal distributions for July-01-2018. Root mean
square errors (RMSE) shows that the normal distribution is better than Weibull distribution. For the Weibull
distribution, (k, λ, α, β) =

(
5.25, 2.7× 10−3, 8.7× 10−4, 4.7× 10−3), and for the normal distribution (µ, σ, α, β) =(

1.9× 10−4, 5.4× 10−4, 1.8× 10−3,−2× 10−3).
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Figure 16 shows solar irradiance on 2 July 2018. The solar irradiance for the day
consists of two shadow events, s1− s2 and s2− s3. For event s1− s2, s1 is starting time
and s2 is the ending time. The starting and the ending time of the shadow event should
be known prior to any particular day. In practice, an estimation engineer should predict
s1 and s2 based on the cloud information on that particular day a few hours before the
shadow event takes place. More importantly, for better prediction, the estimation engineer
should update local information about the clouds.

For a total time of 24 h in a day, solar irradiance for initial 8 h and from time s3 to
23 h can be fitted with Weibull or normal distribution choosing parameters from Figure 14
for 2 July 2018; this prediction is the solar irradiance on a clear sky for that particular day.
From time s1 = 8 h to s2 = 12 h and from time s2 = 12 h to s3 = 13.5 h, the solar irradiance
is fitted with a straight line. The prediction can be updated with higher order polynomials
with the updated information by the estimation engineer.

Figure 16. Solar irradiance fitted to normal distribution. Two shadow events (clouds) are considered
between s1 and s2, and s2 and s3. kI(M) is the measured irradiance, kI(N) is the irradiance fitted
with normal distribution, and kI(Ns) is the irradiance with considering two shadow events.

5.4. Generating Future Scenarios

For the stochastic analysis, we generate scenarios using Monte Carlo methods and 95%
confidence intervals. Scenarios are generated for a day head prediction from the state-space
model or Weibull distribution using past measurement data.

Figure 17a shows a monthly load demand. The load demands on the weekdays are
higher as compared to the weekend. Figure 17b shows forecasted load for a day ahead
using past weekly data using the state-space model. 50 scenarios are generated using Monte
Carlo simulation. Similarly, Figure 17d shows solar irradiance forecast using state-space
model and the scenarios are generated based on Monte Carlo simulation. Figure 17e,f show
scenarios generations using 95% confidence interval for solar irradiance and wind velocity.

Stochastic Analysis of Deterministic MPC

Figure 18a,b shows solar power and wind power based on solar irradiance and wind
velocity as stochastic input to the microgrid. Figure 18c shows the turbine valve signal for
the hydro-turbine.
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Figure 17. Forecasts for consumer load, solar irradiance, and wind velocity.

Figure 18. Analysis of deterministic MPC with stochastic disturbances. For each of the scenarios, optimal control input
solutions for uv is found. The optimal control input of every scenarios is then plotted together.
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6. Results and Discussion

From Figure 3 we saw that the grid frequency fluctuates with the injection of power
into the grid. In addition, from Figure 4 with parameter sensitivity analysis we found
that the grid frequency is the most sensitive state to the turbine valve signal rather than
intermittent injection. Hence, the idea regarding the balancing load and generation should
be primarily focused on increasing the rate of the turbine valve signal to cope up with
the large variation of intermittent injection. This also supports the idea of flexible hydro
power. Moreover, we also found that sensitivity in h and V̇s are periodic and oscillates
over the solution. The sensitivity solution for V̇p due to the turbine valve signal uv is
exponentially decaying. The sensitivity solutions show the system oscillates. However,
sensitivity in grid frequency ω due to uv is exponentially rising, and crossing beyond the
range of (330± 5%) rad/s. This indicates that controller discretization time ∆tc should be
chosen in such a way that grid frequency meets the constraints.

In a similar way, Figures 5 and 6. show during power injection, the position of the
turbine valve has an insignificant effect on the grid frequency fluctuation. The suitable
discretization time for 6 MW reference load scheduling using solar power, wind power, and
hydro power is found to be in the range (1− 10) s. Similarly, considering the inertia from
hydro power plant as Jh = 1× 103 kgm2 and wind power plant as Jw = 0.1× 103 kgm2

we found that the maximum allowed controller discretization time is almost the same for
both inertial and static power injection.

The grid frequency fluctuation increased as controller discretization time is higher
as shown in Figure 8. The figure also shows that for a controller with a low ∆tc the
response time of turbine valve signal increases. For models with and without process
disturbance and measurement noise, Figure 12 shows that deviations in controlled signals
are insignificant.

Figure 13 shows the hydro power plants operated in both motoring and generating
mode. Turbine unit-1 is operated in generating mode, and throughout the day it is operated
with a valve signal near unity. However, both turbine units 2 and 3 are operated in both
generating and motoring mode, and the position of the valve signal is near unity. Turbine
unit-3 is operated mostly in motoring mode with valve signal near unity. The valve signal
uv = 0.5 for unit-3 operating in generating mode. A rotating unit increases its efficiency
based on loading. Hence, instead of considering a single unit, we tend to use four units of
pump-turbine mostly to operate near full load i.e., near unity. Furthermore, units 2 and 3
are intermittently dispatching hydro power into the grid as both generating and motoring
mode. Since we have considered 6 MW hydro power plant with four units each rated at
1.5 MW, the intermittency in power productions from unit 2 and 3 can be removed by
choosing units with different ratings. A particular choice for a rating of the unit depends
on solar irradiance, wind velocity, and schedule load at a particular location. The choice is
made mostly by analyzing the yearly hydro schedule dispatched into the grid for balancing
load and generations. Since both solar and wind power productions are stochastic we tend
to perform yearly scheduling based on the stochastic analysis.

The future prediction of solar power, wind power, and scheduled load are performed
formulating a state-space model. Similarly, we can also perform the future prediction of
solar and schedule load based on confined space for Weibull and normal distribution using
relaxation parameters. The confined space from Weibull and normal distributions provides
a continuously differentiable function for running a continuous-time model. Furthermore,
scenario analysis for the predicted solar power, wind power, and schedule load is done in
two ways, using Monte Carlo simulation and 95 % confidence interval.

Figure 14 shows yearly parameter space for solar irradiance prediction using both
a Weibull and normal distribution. The average yearly parameter space is generated
by analyzing past yearly parameter spaces. The account of shadowing throughout the
day is not considered while modeling with the Weibull and normal distribution. The
parameters are found in such a way that the effect of the shadow is averaged out using
least-squares data fit for a particular day. This implies that the prediction is based on
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the average solar irradiance on a sunny day throughout the year. Figure 15 shows the
solar irradiance prediction using both Weibull and normal distributions. Based on the
RMSE errors, the normal distribution is better for solar irradiance prediction rather than
the Weibull distribution. The relaxation parameter α for the Weibull distribution as in
Figure 14 shows that sliding over the negative space is not possible; however possible
for the normal distribution. Hence, the normal distribution is better for solar irradiance
prediction. A more rigorous prediction algorithm can be developed to study the effect
of shadowing in the parameter space of the Weibull or normal distribution. A simple
idea would be to inject the information of shadow in between the confined space, like
[α, β] = [α, s1) ∪ [s1, s2) ∪ [s2, β] where s1 and s2 are starting and ending of the shadowing
event, respectively.

The prediction of load demand as shown in Figure 17b using a state-space model is
performed based on different seasonality in a year, a month, and a day or an hour. The
hourly prediction can be improved based on a prediction from monthly to weekly to daily
rather than the prediction from only the past few days. The result shows that scenarios are
generated better with Monte Carlo methods than using the confidence intervals. However,
scenarios generated from confidence intervals are computationally cheap is used for hydro
scheduling analysis; this adheres to computationally cheap solutions for studying flexible
hydro powers. Figure 18c,d show mean and ensemble turbine valve signal and hydro
dispatched into the grid for different scenarios inputs from solar power, wind power, and
schedule load. From Figure 17b–d, the range of deviations in scenarios for control input
uv and hydro dispatched Ph increases when vw > 7 m/s because of shutdown of wind
turbine where Pw = 0. Figure 18 shows inputs and outputs result from the first 3 days in
the month of July 2018. The first two days results are from deterministic MPC while the
last day results are from the stochastic analysis of deterministic MPC.

7. Conclusions

This paper explores the possibility of using MPC to balance intermittent generations
from solar and wind power using dispatchable hydro powers. We found that grid frequency
can be controlled within a required range of limits using the best controller discretization
time. The controller discretization time for running an optimal control problem inside
MPC is found using maximum allowed discretization time to maintain the grid frequency.
The maximum allowed discretization time is found analyzing injection of intermittent
generation into the grid at a different sampling rate of solar power, wind power, and
consumer load. The discretization time for the controller of a microgrid with a consumer
load capacity of 6 MW with solar power, wind power, and hydro power in the range of
(2− 4) MW is found to be 10 s. We also found that the position of the valve during static
power injection into the grid has an insignificant effect on the grid frequency fluctuation
and the choice of discretization time for the controller. We could not conclude about the
relations between discretization time for controller and inertial power injection into the grid.

8. Future Work

Future work includes the study of a dynamical model of a microgrid with constraints
on both voltage level and grid frequency. The effect of inertial injection from the wind
power plant can be studied with dynamic equations of wind power plants. Wind turbines
are shut down when the velocity of wind is beyond the operational limit of wind turbines.
This will cause the wind turbines out of their rotational limit, and the inertial effect of the
wind turbines into the grid is detached from the overall grid inertia. The effect of inertial
injection into the grid can be studied with dynamic equations considering detaching of
wind turbines when the wind velocity crosses the permitted limit.
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