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Abstract
In bending of a purely elastic beam or plate, it is well established that the cross-sectional shape
changes character with decreasing bending radius-of-curvature and that the transition can be
characterized by the Searle parameter. In a piezoelectric structure, the cross-sectional
deformation is affected by the opposite anticlastic and electromechanical bending curvatures.
The behavior is consequently more complicated and it is an open question how the
cross-sectional shape develops with increasing bending. In this paper, analytical solutions are
used to study the cross-sectional deformation of piezoelectric cantilever-actuators taking both
anticlastic and electromechanical bending effects into account. We consider unimorph and
bimorph actuators. In the case of electrical actuation, as for the purely mechanical case, we find
that the Searle parameter is an important parameter characterizing the shape of the
cross-section. A load scaling rule gives a criterion for fixed cross-section-deflection for different
actuator widths. Using this scaling rule, the Searle parameter is kept unchanged. The analytical
results are verified by non-linear finite element analysis using electric potential and mechanical
moment as applied loads.

Keywords: piezoelectricity, anticlastic curvature, Searle parameter, actuator, beam, bender,
large deflections

1. Introduction

Anticlastic deformation is the phenomenon that for a beam or
plate, curvature along the width direction is induced by bend-
ing along the length direction due to the existence of Pois-
son’s ratio [1]. Increasing the width or decreasing the bend-
ing radius-of-curvature leads to neutralization of the anticlastic
curvature of the cross section except at the edges [2–4]. This
transition corresponds to increasing the Searle parameter b2/Rt
which combines radius of curvature R, width b and thick-
ness t. Since this is a change in behavior arising for large
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deformations it is an example of a non-linear effect in bending.
The anticlastic deformation of the cross-section of an elastic
structure and its neutralization formulated by Ashwell [3] was
experimentally observed in a beam by Bellow et al [5]. After
that, the anticlastic deformation in the presence of mechanical
loading was studied using analytical, numerical and experi-
mental methods [6–11].

While the limiting cases of narrow andwide beams both can
be treated by one-dimensional Euler–Bernoulli theory differ-
ing only in flexural rigidity, intermediate cases require some
elements of plate theory and authors differ in naming these
structures plates or beams [4, 10, 12]. We will simply refer all
these cases as structures in the remainder of this paper.

For structures including piezoelectric layers for sens-
ing or actuation, the plane strain and plane stress assump-
tions are typically made to find the bending deformation
of wide and narrow beams, respectively [13–17]. However,
the cross-sectional deformation is more complex than the
extreme plane stress and strain assumptions predict. While
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Figure 1. Opposite effects of the anticlastic curvature and the
piezoelectric bending moment in the cross section.

applying an electric field, the structure is bent longitudinally
and the anticlastic deformation is induced because of the
Poisson effect. In addition, the same electromechanical bend-
ing moment is normally present along the width due to the
symmetry of piezoelectric material. This effect is oppos-
ite to the anticlastic deformation. Therefore, the total cross-
sectional deformation is a result of two opposing deforma-
tions. Figure 1 shows how the piezoelectric bending moment
acts against the tendency of anticlastic curvature in a bimorph
actuator.

Using the effective material coefficients, beam theory gives
accurate results for longitudinal deformation in the ideal plane
stress and plane strain cases where the Poisson’s effect is
included [17–19]. There is no analytical solution for actuators
in intermediate cases between these two extreme limits even
though it is needed. For example, in [20] it was found that the
plane stress or plane strain assumptions are not accurate if the
width to thickness ratio is between 10 and 1000.

The wider piezoelectric structures with high width/length
ratios are extensively used in microactuators [17, 18], micro-
sensors [15] and energy harvesting [21–24]. The transition
from narrow to wide orthotropic non-piezoelectric beam was
studied by Swanson [6] using the linear plate equations, where
the effect of width/length ratio on the cross-section deform-
ation was investigated. The deformation was affected by the
width/length ratio because of the boundary conditions at the
ends of the structure. This is to be expected from Saint-
Venant’s principle [25] and is a different effect from the anti-
clastic deformation studied by Ashwell [3] which is a non-
linear effect of a beam in pure bending.

Since there is no realistic estimation of the cross section
deformation of a piezoelectric cantilever actuator in the lit-
erature, an analytical solution is developed in this paper to
predict the deformation of the cross section. To this end, we
have generalized Ashwell’s results [3] to a piezoelectric actu-
ator. We use the energy method for deriving the more general
equations as we find it conceptually simpler and more suitable
for generalization than Ashwell’s force balance argument. We
consider bending due to a mechanical bending moment and

Figure 2. Longitudinal (R) and anticlastic (R ′) radius-of-curvature.

an electrical voltage across the electrodes. The effects on the
cross-section deformation are studied and verified by finite
element (FE) analysis. To this end we compare to the cross
section in themiddle of a long structure to secure that the result
is not affected by the boundary conditions. In the final section,
the effect of the Searle parameter is studied in a multi-layer
actuator. While the shape of the cross-section depends on the
combination of mechanical loading and electrical actuation we
show that it is possible to find a scaling relation between the
two which keeps the shape of the cross-section fixed when the
width is varied at constant Searl parameter.

2. Analytical solution

The bending and anticlastic curvatures of a rectangular cross
section structure are shown schematically in figure 2, where
R and R ′ are the bending and anticlastic radius-of-curvatures,
respectively. For an arbitrary layered structure including
piezoelectric layers, applying a voltage will result in longit-
udinal deformation u and bending radius-of-curvature R as
well as the cross section deformation v and w in the plane
of cross section. The cross section deformation is depicted in
figure 3.

In order to deal with the deflection along the transversal
direction, it is necessary to use plate theory. Assuming a con-
stant bending radius-of-curvature, small strain and allowing
large displacement of the axis, the normal strains are defined
by modifying the linear classical plate theory as follows:

S1 = u,x (x)−
(z− z0)+w(y)

R(x)
, (1)

S2 = v,y (y)− (z− z0)w,yy (y) . (2)

See the appendix A for details. The loading conditions, i.e. tip
bending moment and position independent voltage actuation,
dictate that u,x and R both are position independent.

To find the stresses T, the linear constitutive equations [26]

Tij = CEijklSkl− ekijEk

Di = eiklSkl+ εSikEk (3)

2



Smart Mater. Struct. 30 (2021) 035019 H Salmani et al

Figure 3. Cross section deformation by assuming small displacement within the cross section.

are used. In equation (3) the material parameters CEijkl, ekij and
εSik are mechanical stiffness, stress piezoelectric coefficient,
and permittivity at constant strain, respectively. Di and Ek are
the electric displacement and the electric field of the piezo-
electric material, respectively.

The material parameterization in equation (3) is reformu-
lated for a piezoelectric plate in terms of in-plane strains and
tractions on horizontal surfaces. Making thin-plate assump-
tions, we then neglect traction on horizontal surfaces, all shear
stresses and all shear strains. This is standard thin-plate the-
ory [14, 27]. It means that the thickness must be significantly
smaller than both the transversal and longitudinal dimensions.
How much depends on the need for accuracy, but a ratio of
1/20 has been practiced as a rule of the thumb [28]. We treat
in-plane electric fields as zero and will also neglect fringing
fields at the edges. This requires the lateral dimensions to
be significantly larger than the thickness of the piezoelec-
tric layer. In conclusion, we obtain the simplified constitutive
equations

{
T1

T2

}
=

[
C∗

11 C∗
12

C∗
12 C∗

11

]{
S1
S2

}
−
{

e∗31
e∗31

}
E3

D3 =
[
e∗31 e∗31

]{ S1
S2

}
+ ε∗S33E3. (4)

The asterisk denotes effective material properties [13, 14, 29].
We consider a structure of n layers where layer num-

ber k∈ {1, 2,…, n} extends from z= zk− 1 to z= zk. Further
assuming constant electric potential along the length, constant

D3, and using
´ zk
zk−1 Ek3dz= Vk for the voltage across the layer,

the electric field Ek3 and electric displacement Dk
3 of the kth

layer are rewritten as a function of voltage and strain as:

Dk
3 =−ε∗Sk33

Vk

hk +
[
e∗k31 e∗k31

][
1
hk
´ zk
zk−1

{
S1
S2

}
dz

]
(5)

Ek3 =−Vk

hk
−
[
e∗k31 e∗k31

]
ε∗Sk33

[{
S1
S2

}
− 1
hk

ˆ zk

zk−1

{
S1
S2

}
dz

]
(6)

where hk = zk− zk−1 is the the thickness of the kth layer. Sub-
stituting equations (5) and (6) into the equation (4), the mech-
anical stresses induced by the voltage at the corresponding
layer are given by

T k
1 = C∗k

11S1 +C∗k
12S2 + e∗k31

Vk

hk
+
e∗k31

2

ε∗Sk33

(
S1 −

1
hk

ˆ zk

zk−1

S1dz

)

+
e∗k31

2

ε∗Sk33

(
S2 −

1
hk

ˆ zk

zk−1

S2dz

)
(7)

and

T k
2 = C∗k

12S1 +C∗k
11S2 + e∗k31

Vk

hk
+
e∗k31

2

ε∗Sk33

(
S1 −

1
hk

ˆ zk

zk−1

S1dz

)

+
e∗k31

2

ε∗Sk33

(
S2 −

1
hk

ˆ zk

zk−1

S2dz

)
. (8)

Finding the governing differential equations considering
both curvatures due to the applied voltage and anticlastic
deformation is achieved by employing the energy method. For
this purpose, the electric enthalpy of a piezoelectric structure
[30] is simplified using thin-plate assumptions and integrated
over the undeformed configuration volume [31] as:

H=
1
2

ˆ
V
(T1S1 +T2S2 −D3E3)dV. (9)

Substituting the equations (5)–(8) into equation (9) gives
electric enthalpy in terms of strain as

3
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H=
n∑

k=1

ˆ L

0

ˆ b/2

−b/2

ˆ zk

zk−1

1
2

[
S1 S2 S̄1 S̄2

]


C∗k
11 +

e∗k
2

31

ε∗Sk33
C∗k

12 +
e∗k

2

31

ε∗Sk33
0 0

C∗k
12 +

e∗k
2

31

ε∗Sk33
C∗k

11 +
e∗k

2

31

ε∗Sk33
0 0

0 0 − e∗k
2

31

hk2ε∗Sk33
− e∗k

2

31

hk2ε∗Sk33

0 0 − e∗k
2

31

hk2ε∗Sk33
− e∗k

2

31

hk2ε∗Sk33



+ 2
Vke∗k31
hk2

[
0 0 1 1

]

S1
S2
S̄1
S̄2

− e∗k31

(
Vk

hk

)2

dxdyz (10)

where b and L are respectively the width and length of the

structure, S1 =
´ zk
zk−1 S1dz and S2 =

´ zk
zk−1 S2dz. For the static

problem, the kinetic energy part of the Lagranian is zero and
Hamilton’s principle is reduced to

δ (H−We) = 0 (11)

where We is the external work done by the applied bending
moment Mn at the tip of the structure. Substituting equations
(1), (2) and (10) into the variation of equation (11) and equat-
ing the coefficients of variations δ 1

R , δu,x, δw(y) and δv,y (y)
to zero gives four coupled equations as:

K11bu,x−
1
R

(
bK11 +K11

ˆ +b/2

−b/2
w(y)dy

)

+K12

ˆ +b/2

−b/2
v,y (y)dy−K12

ˆ +b/2

−b/2
w,yy (y)dy+PEbV= 0,

(12)

Mn−

(
MEb+PE

ˆ b/2

−b/2
w(y)dy

)
V

−

(
bK11 +K11

ˆ b/2

−b/2
w(y)dy

)
u,x

− 1
R

(
bKξ − bK11 −2K11

ˆ b/2

−b/2
w(y)dy−K11

ˆ b/2

−b/2
w2 (y)dy

)

−
(
Kξ −K12

)ˆ b/2

−b/2
w,yy (y)dy−K12

ˆ b/2

−b/2
v,y (y)dy

−K12

ˆ b/2

−b/2
w(y)v,y (y)dy+K12

ˆ b/2

−b/2
w(y)w,yy (y)dy= 0,

(13)(
K11 −K2,ξ

)
R2 d

4w(y)
dy4

+ 2RK12
d2w(y)
dy2

+K11w(y)

−K11R
2 d

2v,y (y)
dy2

−RK12v,y (y)−VRPE+P11,M = 0,

(14)

−K11R
d2w(y)
dy2

−K12w(y)

+K11Rv,y (y)+VRPE−P12,M = 0. (15)

The coefficients of equations (12)–(15) are given by:

K11 =
n∑

k=1

C∗k
11h

k (16)

K12 =
n∑

k=1

C∗k
12h

k (17)

K11 =
n∑

k=1

C∗k
11h

k
1 (18)

K12 =
n∑

k=1

C∗k
12h

k
1 (19)

K11 =
n∑

k=1

C∗k
11h

k
2 (20)

K12 =
n∑

k=1

C∗k
12h

k
2 (21)

Kξ =
n∑

k=1

e∗k31
2

ε∗Sk33

(
hk1

2

hk
− hk2

)
(22)

PE =
n∑

k=1

e∗k31V̂
k (23)

ME =
n∑

k=1

e∗k31
hk1
hk
V̂k (24)

P11,M = K11 −K11Ru,x (25)

and

P12,M = K12 −K12Ru,x. (26)

4
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where hk1 =
´ zk
zk−1 (z− z0)dz and hk2 =

´ zk
zk−1 (z− z0)

2dz are geo-

metric parameters. In equations (23) and (24), V̂k = Vk/V and
V is the applied voltage at a reference piezoelectric layer. Kξ

in equation (22) represents the electromechanical coupling.
Equation (11) provides us with two boundary conditions

corresponding to the shear force and bending moment at the
edge. These are[(

K11 −Kξ

)
R
d2w(y)
dy2

+K12w(y)−K11Rv,y (y)

−Kξ +P12,M−VRME

]∣∣∣∣
y=± b

2

= 0 (27)

and[(
K11 −Kξ

)
R
d3w(y)
dy3

+K12
dw(y)
dy

−K11R
dv,y (y)
dy

]∣∣∣∣
y=± b

2

= 0 (28)

where the mechanical moment P12,M is

P12,M = K12 −K12Ru,x. (29)

By solving equation (15) for v,y (y) to obtain

v,y (y) =
K11

K11

d2w(y)
dy2

+
K12

K11R
w(y)− V

K11
PE+

1
K11R

P12,M

(30)
and substituting it in equation (14), the coupled differen-
tial equations are converted to a single ordinary differential
equation for the function w(y):

D11R
2 d

4w(y)
dy4

+ 2D12R
d2w(y)
dy2

+D22w(y)+PT = 0 (31)

in which the coefficients are given by

D11 =

(
K11 −Kξ −

K11
2

K11

)
, (32)

D12 =

(
K12 −

K11K12

K11

)
, (33)

D22 =

(
K11 −

K12
2

K11

)
, (34)

and

PT = VR

(
K12

K11
− 1

)
PE−

K12

K11
P12,M+P11,M. (35)

Using the same procedure, the coupled boundary condi-
tions of equations (27) and (28) are converted to the equations

[
D11R

d2w(y)
dy2

+D12w(y)+MT

]∣∣∣∣
y=± b

2

= 0 (36)

and [
D11R

d3w(y)
dy3

+D12
dw(y)
dy

]∣∣∣∣
y=± b

2

= 0 (37)

where

MT = VR

(
K11

K11
PE−ME

)
− K11

K11
P12,M+P12,M−Kξ. (38)

Based on the coefficients of the ordinary differential
equation (31), the roots of the characteristic equation are
given by

βj =

√
−D12 ±

√
D12

2 −D11D22

RD11
, j= 1..4. (39)

The βjs can be real, imaginary or complex values but phys-
ically only one of them is feasible. In order to find the physic-
ally possible values of βj, the enthalpy equation (10) is rewrit-
ten in quadratic form by substituting v,y from equation (30) as

H=
1
2

[
d2w(y)
dy2

w(y)

]T [
D11R2 D12R
D12R D22

]
︸ ︷︷ ︸

D

[
d2w(y)
dy2

w(y)

]

+

[ (
K11
K11
Pe−Me

)
VR2 − K11

K11
P12,M+R

(
M̂M−Kξ

)
PT

]T

×

[
d2w(y)
dy2

w(y)

]
+ Ĥo, (40)

where Ĥo is an inconsequential constant term. Based on
the equation (40), the stability of the system is achieved if the
matrix [D] is positive definite. Therefore D11R2, D22, and the
determinant of the [D] matrix R2

(
D11D22 −D2

12

)
must be pos-

itive values. The bending radius-of-curvature R is a real value,
therefore the stability requires the condition D11D22 > D2

12

which means
√
D2

12 −D11D22 is an imaginary number. Con-
sequently, βj, j= 1..4, is simplified to the complex values
±α1 ± iα2 with manifest real and imaginary parts. Therefore,
the possible solutions of the differential equation (31) are on
the form

w(y) = C1 sinh(α1y)sin(α2y)+C2 cosh(α1y)cos(α2y)

+C3 sinh(α1y)cos(α2y)+C4 cosh(α1y)sin(α2y)

− PT
D22

. (41)

By applying the boundary conditions (36) and (37), the
coefficients can be calculated as

C1 =−M0
CU1
CL

(42)

and

C2 =M0
CU2
CL

(43)

5
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where

M0 =
D12

D22
PT−MT, (44)

CU1 = A2 cosh

(
α1
b
2

)
sin

(
α2
b
2

)
+A1 sinh

(
α1
b
2

)
cos

(
α2
b
2

)
, (45)

CU2 = A1 cosh

(
α1
b
2

)
sin

(
α2
b
2

)
−A2 sinh

(
α1
b
2

)
cos

(
α2
b
2

)
, (46)

CL =
1
2
(A1A3 +A2A4)cosh(α1b)sin(α2b)

+
1
2
(A1A4 −A2A3)sinh(α1b)cos(α2b) (47)

and C3 = C4 = 0. In equations (45)–(47) the coefficients Ai,
i= 1..4 are

A1 = α1
[
RD11

(
α1

2 − 3α2
2
)
+D12

]
, (48)

A2 = α2
[
RD11

(
α2

2 − 3α1
2
)
−D12

]
, (49)

A3 = RD11
(
α1

2 −α2
2
)
+D12 (50)

and

A4 = 2RD11α1α2. (51)

The solution given by equation (41) is a generalization
of Ashwell’s result [3] to a piezoelectric including all elec-
tromechanical parameters. Only in the special case of an
elastic single-layered structure with a mechanical loading, the
current and Ashwell’s [3] solution are identical.

For a given tip bending moment and actuation voltage, the
structure axis is bent into an arc with radius-of-curvature R
along the longitudinal direction. The radius-of-curvature can
not be calculated directly, as it is coupled to the other para-
meters w(y), v,y (y) and u,x. In order to find the solution for
the radius of curvature R and the cross section deformation
w(y), the system of non-linear equations (12), (13), (30), and
(41), including w(y), v,y (y), u,x and R should be solved.
For this purpose, an iterative solution is employed, in which
equations (12) and (13) are solved neglecting w(y) and v,y (y)
firstly. Then w(y) and v,y (y) are calculated using the solu-
tion found for u,x and R. After that, the solutions of w(y) and
v,y (y) are substituted in equations (12) and (13). The iteration
is repeated until the value for bending radius-of-curvature is
converged. This is sufficient because for a given R and Vk,
w(y) and v,y (y) are determined. The iterative solution process
is shown in figure 4 in more details.

Figure 4. Flow chart for iterative solution of the coupled non-linear
equations (12) , (13), (30) and (41) for given voltage and tip bending
moment.

3. Results and discussion

In this paper a bimorph and a unimorph configuration are
studied, where the bimorph is composed of two layers of 5
µm PZT-5A and the unimorph is made up of the layers of
5 µm glass and 5 µm PZT-5A. We have chosen PZT, because
it is a piezoelectric material commonly used inMEMS devices
and in commercially available macro-scale devices [32]. The
material parameters for PZT5-A were chosen because they are
readily available. We considered glass as the structural mater-
ial because it is widely used in optical structures and has the
additional benefit of being isotropic. Hence, we avoid the com-
plications of anisotropy of other relevant materials such as sil-
icon. The material properties are given in table 1.

The convergence of the bending radius-of-curvature is
shown in figure 5. In this example the bimorph case is stud-
ied, where the width/thickness ratio is taken as 10 and 10 000
for narrow and wide structures, respectively. It is seen that
the bending radius-of-curvature converges very fast for both

6
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Figure 5. Convergence of the bending radius-of-curvature and comparison of the converged solution with the narrow and wide beam
solutions [17].

Table 1. Material properties.

Parameter Value

PZT-5A
C11 (GPa) 120.34
C12 (GPa) 75.18
C13 (GPa) 75.09
C33 (GPa) 110.87
e31
(
C m−2) −5.35

εs33/ε0 1900
Glass
E(GPa) 70
ν 0.27

narrow and wide structures. For the wide structure, the con-
vergence is faster than for the narrow structure because the ini-
tial cross-section is closer to the final solution. For the extreme
narrow andwide structure cases, results of the current formula-
tion converges to the narrow and wide beam solutions of [17].
However, the current formulation applies to a wide range of
widths and provides us with the cross-section deformation.

3.1. Comparison with numerical solution

We use COMSOL Multiphysics® [33] to verify the proposed
formulation. Due to the large deformation of the structure
along the length, the geometrically non-linear solver option
is chosen. The 3D solid element is employed to model the
plate structures of 200, 600, 800, and 1500 µm width. The
total thickness/width ratio is low enough to satisfy the thin
plate assumptions in section 2. The length of all structures are

taken at least twice the width to minimize the effects of the
support and tip boundary conditions at the mid span [34]. To
apply the mechanical moment to the plate, it is extended at
the tip by a shell structure and the Solid-Shell connection of
Comsol is employed. The deformation of the cross section loc-
ated at the mid length of the structure from the finite-element
solution is compared with the current analytical solution. In
order to reduce the finite element method (FEM) computation
time, symmetry of the problem is exploited tomodel half of the
structure. Therefore, the comparison of the analytical and FE
results is made for half the cross section. We also performed
mesh convergence study, and tested against Ashwell’s solu-
tion [3] for an elastic structure as a benchmark. The FE model
is sketched in figure 6.

In the following we will consider different cases. When we
have a nonzero voltage across the piezoelectric, wewill refer to
the situation as electrical actuation. When we have an external
bending moment, we will refer to it as mechanical loading.
When we have mechanical loading under short-circuit condi-
tions, we will refer to it as pure mechanical loading. The latter
is a choice, we could as an alternative have considered mech-
anical loading under open-circuit conditions.

3.1.1. Electrical actuation only. The first set of verifications
is performed on the case of pure electrical actuation by apply-
ing voltage on both bimorph and unimorph actuators. The
cross-sectional shape of a piezoelectric actuator is affected by
two opposite deformations while applying an electric field.
First is the result of Poisson’s effect because of longitud-
inal bending, and on the other side there exist bending due
to the application of the electric field. The cross-sectional

7
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Figure 6. The half symmetric FE model for calculating the cross-section deformation in bending.

deformation of the bimorph actuator is shown in figure 7, in
which the voltage of all cases are varied among 3, 15 and 30V.
The consistency of the current analytical solution and the non-
linear FE solution results shows that this method is capable of
calculating the cross section deformation including anticlastic
deformation.

In all cases, the cross sections are deformed in the oppos-
ite direction of the anticlastic deformation due to the existence
of the moment applied by the electric field. As the width and
the voltage of the actuator is increased, the bending radius-
of-curvature is decreased for the same electric field, and as
the result the Searle parameter is increased. For higher Searle
parameters, it is seen that deformation is neutralized at the
center of the cross section. Despite higher actuating moment
with higher voltage, it is observed that the neutralization force
for higher Searle parameter is dominant and in wider struc-
tures, the cross section deformation is close to flat, except at
the edges.

A comparison of the bending radius-of-curvatures calcu-
lated by using the current method, the narrow beam assump-
tion [17] and FEM shows that the current method gives results
closer to FEM than the narrow beam solution for the case of
bimorph actuator with the width 200 µm. The bending radius-
of-curvature of the current formulation and the narrow beam
assumptions are calculated as 3.504 and 3.350 mm, respect-
ively.The bending radius-of-curvature from the FE solution is
3.718 mm which is 9.9% and 5.7% higher than the narrow
beam assumption and the current method, respectively.

In the case of unimorph actuator, the same behavior as the
bimorph actuator is observed. As shown in figure 8, the results
of the analytical method well agrees with the results of the FE
ones, which verifies the current formulations for the unimorph
configuration, as well.

3.1.2. Electrical actuation andmechanical loading. Asmen-
tioned in section 1, the cross-section deformation due to pure
mechanical loading has been widely studied and verified by
the researchers. In the previous section, it was shown that
applying an electric field on the piezoelectric layer leads

to an electromechanical deformation that is larger than the
deformation due to Poisson’s effect. In this section, the cross-
section deformation is studied by applying both mechanical
tip moment and electric field to investigate these two opposite
curvatures.

The results of bimorph and unimorph actuators are shown
in figures 9 and 10, respectively. The results of both cases
are consistent with those from FE, although a bit discrep-
ancy is observed in wider structures. Applying both mech-
anical loading and electrical actuation, the convergence time
of FE solution is dramatically increased in wider structures
which is the consequence of solving a highly non-linear prob-
lem. As an example, the computational time for the case of the
widest bimorph structure b= 1500 µm with maximum mech-
anical loading and electrical actuation voltage is 3 h and 58
min in Comsol, while it takes 2.65 s for our solution on the
same computer. Despite the fast solution of the current analyt-
ical method, it is possible to predict the behavior of the cross
section very well in narrow and wide structures, and even in
transition as shown in figures 7–10.

In all cases of pure mechanical loading, the anticlastic
curvature is observed. The anticlastic deformation is not neut-
ralized in these examples as the applied mechanical moment
is not high enough to increase the Searle parameter. As shown
in figures 9 and 10 the cross sections are deformed in differ-
ent directions by applying either the pure mechanical load-
ing or electrical actuation. Therefore, it is possible to observe
flat plate by applying appropriate values of moment and
voltage, even in narrow structures. Applying the mechanical
and electrical loads simultaneously will result in lower bend-
ing radius-of-curvature and higher Searle parameter accord-
ingly. Therefore, the neutralizing force is prominent in wider
structures and the deformation is flattened at the central zones
in the case of b = 1500 µm.

3.2. Cross section flattening

It is seen in the previous section that in a piezoelectric actuator,
in addition to the Searle parameter, the relative contributions
from mechanical loading and electrical actuation play an

8
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Figure 7. Cross section deformation of the bimorph actuator with
electrical actuation and comparison with the FEM: (a) b = 200 µm,
(b) b = 600 µm, (c) b= 800 µm, (d) b = 1500 µm.

important role in the cross-section deformation. When both
contribute to decreasing the bending radius-of-curvature, they
oppositely affect the cross-section curvature.

Figure 8. Cross section deformation of the unimorph actuator with
electrical actuation and comparison with the FEM: (a) b = 200 µm,
(b) b = 600 µm, (c) b= 800 µm, (d) b = 1500 µm.

The opposite effect of the electrical and mechanical load-
ings can help us to find the load values in order to neutral-
ize the cross section deformation. For this purpose an iterative

9
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Figure 9. Cross section deformation of the bimorph actuator with
electromechanical loading and comparison with the FEM: (a) b =
200 µm, (b) b = 600 µm, (c) b= 800 µm, (d) b = 1500 µm.

numerical solution scheme is implemented to find the the
bending moment in which w(0) approaches w(b/2) at a given
voltage. In this solution scheme, the voltage is kept constant,

Figure 10. Cross section deformation of unimorph actuator with
electromechanical loading and comparison with the FEM: (a) b =
200 µm, (b) b = 600 µm, (c) b = 800 µm, (d) b = 1500 µm.

and themethod of bisection is used to find the bendingmoment
that satisfies w(b/2)−w(0)≈ 0. The details of the solu-
tion procedure are shown in the flow chart of the figure 11.

10
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Figure 11. The method of bisection flow chart for finding the
neutralization bending moment at a specified actuation voltage.

Figures 12 and 13 show that the cross section deformation can
be neutralized by applying both voltage and moment in the
bimorph and unimorph actuators, respectively.

In the case of pure mechanical model, any bending moment
results in anticlastic deformation, and in a wider structures the
anticlastic deformation near the center of the cross section is
much smaller than the edges. A piezoelectric actuator behaves
in a different way, because it is possible to reduce the deform-
ation in the whole cross section for specific values of applied
voltage and mechanical moment. Although it is not possible to
make the cross section completely flat as shown in the insets
of figures 12 and 13, it can be neglected in comparison with
the pure mechanical loading or electrical actuation.

3.3. Searle parameter in piezoelectric actuators

Investigating the moment, voltage and the combination of both
loadings indicated that the Searle parameter is an important
parameter in cross-section deformation also of piezoelectric
actuators. In this section this parameter is studied in more

Figure 12. Competing effects of the electrical and mechanical
loading on the cross section deformation and cross section
neutralization by combining both loadings in bimorph actuators:
(a) b = 200 µm (b) b = 1500 µm.

details in actuators of widths b = 200 and b = 1500 µm rep-
resenting narrow and wide structures.

The cross section deformation of structures are shown
in figure 14, where the bending radius-of-curvature is kept
constant by tuning the voltage and moments for each width.
In each case of the narrow and wide structure, the Searle
parameter is constant as the radius-of-curvature, width and
thickness are the same. In addition to the Searle parameter,
the type of loading is an important parameter affecting the
cross section deformation as shown in figures 14(a) and (b).
As expected, for higher values of Searle parameter the cross
section deformation is neutralized near the center of the cross
section. We can keep radius-of-curvature of the case b =
1500 µm equal to b = 200 µm by tuning the applied load-
ing. In figure 15 the radius-of-curvature of the wide structure
is 3550 µm, which is the same as the R of the narrow structure
in figure 14(a). Comparing both figures, shows the effect of the
Searle parameter in neutralization of the wider structure, even
with the same radius-of-curvatures. Therefore, the same lon-
gitudinal deformation (radius of curvature) might be achieved
by applying different combination of loadings, but the cross
section deformation is dependent on the Searle parameter and
the type of loading.

As the Searle parameter is playing an essential role in
the cross section deformation of piezoelectric actuators, we
dig into equations to find this parameter. First of all, from

11
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Figure 13. Competing effects of the electrical and mechanical
loading on the cross section deformation and cross section
neutralization by combining both loadings in unimorph actuators:
(a) b = 200 µm (b) b = 1500 µm.

equation (39) α1 and α2 are decomposed into the following
forms:

α1 = α̂1
(
C∗k
ij ,e

∗k
mn,ε

∗Sk
33 ,Hk

)
× 1√

Rt
(52)

α2 = α̂2
(
C∗k
ij ,e

∗k
mn,ε

∗Sk
33 ,Hk

)
× 1√

Rt
, (53)

where α̂1 and α̂2 are functions of the layer stack, material para-
meters and Hk which is defined as the ratio of each layer’s
thickness to the structure thickness t. Therefore, for the same
layer stack α1 and α2 are dependent on the bending radius-
of-curvature and the structure thickness. Based on this defin-
ition, the cross-section deformation of equation (41) can be
rewritten as

w(y) = C1 sinh

(
α̂1

b√
Rt

( y
b

))
sin

(
α̂2

b√
Rt

( y
b

))
+C2 cosh

(
α̂1

b√
Rt

( y
b

))
cos

(
α̂2

b√
Rt

( y
b

))
− PT
D22

.

(54)

It is seen in equation (54) that the Searle parameter appears
by normalizing the independent variable y by the width b. The
equation (54) is similar to that one derived by Ashwell [3].

If the width of an arbitrary actuator is multiplied by a pos-
itive value N, to keep the Searle parameter fixed, the bending

Figure 14. The effect of the type of loading on the cross section
deformation of the bimorph actuator with the same bending
radius-of-curvature R for the same widths: (a) b = 200 µm and
R = 3550 µm, (b) b = 1500 µm and R = 2700 µm.

Figure 15. The effect of the type of loading on the cross section
deformation of the bimorph actuator with the same radius-of-
curvature as figure 14(a), R = 3550 µm and b = 1500 µm but
different Searle parameter.

radius-of-curvature should bemultiplied byN2. Consequently,
if the coefficients C1 and C2 are unchanged, the cross-section
deformation of equation (54) for the width Nb should be the
same as the one of the width b. This condition requires PT and
MT to be unchanged. Regarding equation (12), if R is multi-
plied by N2, the axial strain u,x is divided by N2. Based on
equations (35) and (38), fixed values of PT and MT forces the
value of the voltage divided by N2. It means that in the case

12



Smart Mater. Struct. 30 (2021) 035019 H Salmani et al

Figure 16. Identical cross-section deformation of bimorph actuators
with different widths by applying the load scaling rule (a) Searle
parameter = 2.26, (b) Searle parameter = 166.69.

of pure electrical actuation, if the width is multiplied by N,
the electric potential must be divided by N2 to get the same
shape of cross-section deformation. Referring the equation
(13) gives the scaling of the mechanical moment loading 1/N
for a fixed cross-section deformation. Hence, it is concluded
that if the width is multiplied by N, the cross-section deforma-
tion of the actuator is unchanged if the mechanical momentMn

and the electric potential V is scaled by 1/N and 1/N2, respect-
ively. This conclusion is shown for small and large values of
Searle parameter in figures 16 and 17 for bimorph and unim-
orph actuators, respectively. It shows that the deformation of
the cross-section versus y/b is unchanged when changing the
width provided that the mentioned load scaling rule is obeyed.

4. Conclusion

The cross section deformation of a piezoelectric actuator is
affected by the Poisson effect and the electromechanical bend-
ing due to the applied voltage. While applying pure mech-
anical loading, the anticlastic deformation is observed. In
contrary, while applying pure electrical actuation, the elec-
tromechanical bending in the cross section is dominant and
the deformation is opposite the anticlastic deformation. Apply-
ing both mechanical and electrical loads, the cross section
deformation is induced by both anticlastic deformation and
the electromechanical bending simultaneously. Therefore the

Figure 17. Identical cross section deformation of unimorph
actuators with different widths by applying the load scaling rule
(a) Searle parameter = 1.95, (b) Searle parameter = 139.06.

cross section is affected by these two opposing deformations,
and it can be flattened by applying proper values of voltage
and mechanical moment.

The same as the mechanical loading, when electrical actu-
ation is applied to a piezoelectric actuator, the deformation
of the cross section is neutralized for larger values of Searle
parameter. Interestingly, the Searle parameter is an important
parameter dictating the cross section deformation in piezo-
electric actuators. For the case of combination of electrical
and mechanical loadings, a scaling rule is proposed to fix the
cross section deformation for different widths of the actuator.
If the width is multiplied by N, the voltage and the mechanical
moment must be divided by N2 and N, respectively to keep the
cross section deformation versus y/b unchanged. The Searle
parameter is also kept fixed by employing this scaling rule.

Data availability statement

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

Acknowledgment

This work was supported by the Research Council of Norway
through Grant No. 273248.

13



Smart Mater. Struct. 30 (2021) 035019 H Salmani et al

Figure A1. Cross section of the structure after deformation.

Appendix A. Kinematics of the structure

In this section, the kinematics of the structure is used to
derive the components of the strain tensor. Figure A1 shows
a deformed structure with an orthogonal coordinate system
(⃗n1, n⃗2, n⃗3) normal to the cross section at position s along the
deformed structure. If the cross section did not deform in bend-
ing, the position of an arbitrary point P on the cross section
would be

ξ⃗ ′ = r⃗+X2n⃗2 +X3n⃗3 (A1)

where r⃗ is the position of the origin of the local coordinate
system. To account for the deformation of the cross section,
we introduce local displacements (v,w) along (⃗n2, n⃗3) within
the cross-section. The position of the point P after deformation
is then given by

ξ⃗ = r⃗+(X2 + v) n⃗2 +(X3 +w) n⃗3. (A2)

We can use the vector ξ⃗ to derive the Green-Lagrange strain
tensor as [35]:

Sij =
1
2

(
∂ξ⃗

∂Xi
.
∂ξ⃗

∂Xj
− δij

)
, (A3)

in which

∂ξ⃗

∂X1
=

ds
dX1

[
d⃗r
ds

+(X2 + v)
d⃗n2
ds

+(X3 +w)
d⃗n3
ds

]
+

∂v
∂X1

n⃗2 +
∂w
∂X1

n⃗3, (A4)

∂ξ⃗

∂X2
=

(
1+

∂v
∂X2

)
n⃗2 +

∂w
∂X2

n⃗3, (A5)

∂ξ⃗

∂X3
=

∂v
∂X3

n⃗2 +

(
1+

∂w
∂X3

)
n⃗3. (A6)

The vector differentials to s is given as [36]:

d⃗r
ds

= n⃗1 (A7)

∂

∂s


n⃗1

n⃗2

n⃗3

=

 0 −ρ3 ρ2

ρ3 0 −ρ1

−ρ2 ρ1 0




n⃗1

n⃗2

n⃗3

 (A8)

where ρ1, ρ2 and ρ3 are the twisting curvature around n⃗1 and
the bending curvature around n⃗2 and n⃗3, respectively. Due to
the loading conditions, ρ3 and ρ1 are zero. The axial strain εa
is introduced as:

εa =
ds− dX1

dX1
, (A9)

which results in:

ds
dX1

= 1+ εa. (A10)
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Substituting equations (A7), (A8) and (A10) into equation
(A4) gives:

∂ξ⃗

∂X1
= (1+ εa) [(1− ρ2 (X3 +w)) n⃗1] +

∂v
∂X1

n⃗2 +
∂w
∂X1

n⃗3.

(A11)
Substituting equations (A5), (A6) and (A11) into equation

(A3) gives the components of the strain tensor as:

S11 = εa+
1
2
ε2a+

1
2
(1+ εa)

2 {−2ρ2 (X3 +w)

+ ρ2
2(X3 +w)2 +

(
∂v
∂X1

)2

+

(
∂w
∂X2

)2

, (A12)

S22 =
∂v
∂X2

+
1
2

(
∂v
∂X2

)2

+
1
2

(
∂w
∂X2

)2

, (A13)

S33 =
∂w
∂X3

+
1
2

(
∂v
∂X3

)2

+
1
2

(
∂w
∂X3

)2

, (A14)

S12 =
1
2
(1+ εa)

[
∂v
∂X1

+
∂v
∂X1

∂v
∂X2

+
∂w
∂X1

∂w
∂X2

]
, (A15)

S13 =
1
2
(1+ εa)

[
∂w
∂X1

+
∂v
∂X1

∂v
∂X3

+
∂w
∂X1

∂w
∂X3

]
, (A16)

S23 =
1
2

(
∂v
∂X3

+
∂w
∂X2

+
∂v
∂X2

∂v
∂X3

+
∂w
∂X2

∂w
∂X3

)
. (A17)

In this section, we have used (X1,X2,X3) to derive the
strain tensor, because it is more convenient to follow the
indicial notations. Now, we can relate the equations of this
section to those ones in section 2 by replacing X1,X2,X3 with
x,y,(z− z0). Assuming small displacement within the cross
section as:

w= w(x,y) , (A18)

v= v(x,y)− (z− z0)
∂w(x,y)

∂y
, (A19)

neglecting the higher order terms of ρ2 (X3 +w) and εa, and
in addition making small-strain assumptions, the strain tensor
elements become:

S11 = u,x−
1

R(x)
((z− z0)+w) , (A20)

S22 = v,y− (z− z0)
∂2w
∂y2

, (A21)

S33 = 0 (A22)

S12 =
1
2
∂v
∂x

, (A23)

S13 =
1
2
∂w
∂x

, (A24)

S23 = 0, (A25)

where u,x = εa and 1
R(x) = ρ2. The shear strains equations

(A23) and (A24) vanish, as v and w are not x-dependent.
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