

www.usn.no

Faculty of Technology, Natural sciences and Maritime Sciences
Campus Porsgrunn

FMH606 Master's Thesis 2021

Industrial IT and Automation

Advanced model-based control of B36:45
LNG engines based on data driven models

using machine learning tools

Svein Roar Kvåle

www.usn.no

The University of South-Eastern Norway takes no responsibility for the results and

conclusions in this student report.

Course: FMH606 Master's Thesis, 2021

Title: Advanced model-based control of B36:45 LNG engines based on data driven models

using machine learning tools

Number of pages: 212

Keywords: MPC, Lagrange, DMPC, Fmincon, LNG, qpOASES

Student: Svein Roar Kvåle

Supervisor: Associate Professor Roshan Sharma

External partner: Bergen Engines AS

Summary:

This work is about developing a data driven MPC control for optimization of fuel

consumption by minimizing the heat rate of an LNG gas engine from Bergen Engines

AS.

The model is based on real life data from an installed B36:45 gas engine in a power

plant. The process data from the engine was used to develop a state space model of the

process consisting of 2 controllable inputs, 3 measure disturbances and 6 measured

outputs.

The goal was to use the global ignition timing and the charge air pressure set point as

controllable outputs to minimize the heat rate while considering constraints on the

measured outputs.

Several MPC concepts has been tested, including qpOASES; Quadprog, Fmincon and

DMPC with Laguerre functions; all of which has their pros and cons, and which

produced different results.

Mostly the Fmincon and the DMPC gave the most promising results, DMPC with speed

and ease of implantation but lacked successful results on output constraints. Fmincon

produced some usable results but often got into trouble handling the output constraints

and was computational heavy to use.

 Preface

3

Preface
This master’s thesis has been written for the completion of the Master’s degree in Industrial

Automation and Communication at the University of South-East Norway (USN) Porsgrunn,

Norway.

My work in this project presents Model Predictive Control for an optimization control set

points for charge air pressure and global ignition timing for an LNG in order to minimize heat

rate. MATLAB was mainly used for performing simulations using m-files scripts.

The work was initiated and supported by Bergen Engines AS and the Research and

Development department there. The work builds on the data driven models developed in the

Master project during the fall of 2020.

I would especially like to thank my supervisor, Associate Professor Roshan Sharma for his

guidance and supervision during the course of this project. His support, guidance and

encouragement has been vital for the research and testing done during this project.

I would also like to thank Bergen Engines for giving me the opportunity to do this project and

use valuable time to work on it. It has been a challenging year in many ways and time spent on

this project has impacted on other deliveries. I’m grateful for the support from my employer

and the trust that the time spent is valuable for the future development of Bergen Engines

control systems.

Lastly, and not least, I would like to thank my children, girlfriend and family for the support

throughout these 4 years of study. This project and master’s study would not have been possible

without them and the encouragement during the difficult times has been paramount. We’ll

make up for the lost weekends and vacations in the upcoming years.

Bergen, 18.05.2021

Svein Roar Kvåle

 Contents

4

Contents

Preface ... 3

Contents ... 4

Abbreviations .. 6

Symbols ... 7

1 Introduction ... 8

1.1 Main objective ... 8
1.2 Background ... 8
1.3 Operational philosophy .. 13

1.3.1 Lean burn gas engine - Otto cycle .. 13
1.3.2 Main control loops .. 15
1.3.3 Engine control system structure ... 25
1.3.4 Main engine controller .. 25

2 Model predictive control ... 28

2.1 Brief history ... 28
2.2 Main objective ... 29
2.3 Cost function ... 31
2.4 Receding horizon .. 32
2.5 Constraints .. 33
2.6 Grouping .. 34
2.7 System model .. 35
2.8 Integral action ... 36
2.9 Previous work ... 37
2.10 Set up .. 37

3 Modelling ... 38

3.1 Data collection .. 38
3.1.1 Sampling .. 38
3.1.2 Pre-processing and analysis ... 39

3.2 System identification .. 40
3.2.1 Controllability .. 42
3.2.2 Limitations ... 43
3.2.3 Open loop simulation ... 43

4 MPC .. 63

4.1 Controllable inputs ... 63
4.1.1 Charge air pressure .. 63
4.1.2 Global ignition timing ... 64

4.2 Measured disturbances .. 65
4.2.1 Suction air temperature .. 65
4.2.2 Charge air temperature ... 65
4.2.3 IMEP .. 65

4.3 Measured outputs ... 66
4.3.1 Heat rate ... 66
4.3.2 Knock level .. 66
4.3.3 Peak pressure .. 66
4.3.4 NOx ... 67

 Contents

5

4.3.5 O2 .. 67
4.3.6 Exhaust temperature .. 67

4.4 Constraints .. 69
4.5 qpOASES ... 70

4.5.1 Set point tracking with bounds on control value... 70
4.5.2 Code for qpOASES ... 74
4.5.3 Status of qpOASES ... 75

4.6 Quadprog ... 76
4.6.1 Set point tracking with bounds on control value... 77
4.6.2 Code for Quadprog ... 79
4.6.3 Status of Quadprog ... 79

4.7 Fmincon ... 80
4.7.1 Set point tracking – unconstrained ... 80
4.7.2 Set point tracking with constraints on ∆𝑢𝑚 ... 93
4.7.3 Set point tracking with constraint on outputs ... 101
4.7.4 Minimize heat rate with constraints .. 116
4.7.5 Grouping of control inputs ... 129
4.7.6 Prediction horizon ... 131

4.8 Laguerre based Discrete Model Predictive Control .. 134
4.8.1 Classical DMPC ... 134
4.8.2 DMPC with Laguerre functions .. 141

5 Discussion ... 163

5.1 Modelling ... 163
5.2 qpOASES and Quadprog ... 163
5.3 Fmincon ... 164
5.4 DMPC with Laguerre functions ... 165
5.5 Future work ... 165

6 Conclusion .. 167

References ... 168

Appendices .. 170

Appendix A .. 171
Appendix B .. 173
Appendix C .. 176
Appendix D .. 177
Appendix E .. 179
Appendix F .. 181
Appendix G .. 184
Appendix H .. 191
Appendix I ... 201

 Abbreviations

6

Abbreviations
𝑑𝑒𝑔𝐶𝐴: Degree crank angle

𝑇𝐷𝐶: Top dead centre

𝑃𝐼𝐷: Proportional Integral Differential

𝐷𝑀𝐶: Dynamic matrix control

𝐺𝑃𝐶: Generalized predictive control

𝐿𝑄𝑅: Linear quadratic regulators

𝑄𝑃: Quadratic programming

𝐿𝑄: Linear Quadratic

𝑀𝐴𝑇𝐿𝐴𝐵: Matrix Laboratory

𝑀𝐼𝑀𝑂: Multiple Input and Multiple Output

𝑆𝐼𝑆𝑂: Single Input and Single Output

𝐶𝑉: Control value

𝑀𝑃𝐶: Model Predictive Control

𝐿𝑁𝐺: Liquefied Natural Gas

𝐶𝑃𝑀: Cylinder Pressure Monitoring

𝐶𝐹𝐷: Computational fluid dynamics

𝑝𝑝𝑚: Parts per million

 Symbols

7

Symbols
𝐴: State matrix in state space model

𝐵: Input to state matrix in state space model

𝐶: State to output matrix in state space model

𝑁𝑝: Prediction horizon

𝑁𝑐: Control horizon

∆𝑈: Vector of control input signals

∆𝑢(𝑘𝑖) : incremental control signal at current time instance 𝑘𝑖

∆𝑢(𝑘𝑖 +𝑚): future incremental control signal at time instance 𝑚

∆𝑢𝑚𝑎𝑥: Max limit on control signal

∆𝑢𝑚𝑖𝑛: Minimum limit on control signal

∆𝑌: Vector of predicted output signals

𝑦: Output signal

∆𝑦𝑚𝑎𝑥: Max limit on output signal

∆𝑦𝑚𝑖𝑛: Minimum limit on output signal

𝑥(∙): State variable

𝑥(𝑘𝑖 +𝑚|𝑘𝑖): Predicted sate at sample time 𝑚 given current state 𝑥(𝑘𝑖)

𝐽: Optimization variable in cost function

𝑄: Weight matrices in cost function

𝑅: Weight matrices in cost function

Ω,Ψ: Matrices in cost function - 𝐽 = 𝜂𝑇Ω𝜂 + 2𝜂𝑇Ψ𝑥(∙)

𝑎: Scaling factor for discrete time Laguerre functions

𝑙𝑖: The 𝑖th discrete Laguerre function

𝐿(∙): Laguerre function as vector

𝜆: Lagrange multiplier

𝜂: Laguerre parameter vector

𝑀, 𝛾: Matrix and vector in inequality constraints (𝑀𝑥 ≤ 𝛾)

8

1 Introduction
This section contains an introduction to the problem domain and background information for

the objective of the project.

1.1 Main objective

This project is a continuation from the Master project FM4017 – “Data driven modelling using

Machine Learning tools for control and analysis of charge air pressure and global ignition

timing control on B36:45 LNG engines” from the fall 2020. In the FM4017 project a data

driven model of the combustion process was developed which will form the basis for the a

MPC driven optimizer developed in this project.

The purpose of this project is to develop a controller which will, trough optimization, find

optimal set points to give improved fuel efficiency of an LNG single fuel internal combustion

engine. This optimizer will mainly be used for land based power plants where fuel economy is

of outmost importance.

Based on measured input/output data the optimizer will adjust two controllable inputs such that

the fuel consumption is optimized while keeping other engine conditions within given

constraints.

The controllable inputs are the general engine global ignition timing point and the charge air

(boost air) pressure set points. Lower level standard PID controllers will use these inputs as set

point for local control.

The findings in the Master project showed that a data driven model with 2 controllable inputs,

3 measured disturbances and 6 measured outputs would represent the system to be controlled.

1.2 Background

Bergen Engines AS is a developer and producer of gas and diesel engines for the marine and

land-based power marked. The factory is located just north of Bergen on the west coast of

Norway and have been since it moved from the city centre of Bergen in 1965. Bergen Engines

was part to the Ulstein group from mid-eighties until 1999 from which it has been a part of

Rolls-Royce. Figure 1-1 shows an illustration of the factory area.

Currently there are approx. 1100 employees in Bergen Engines and about 650 of these are

situated in the factory outside Bergen.

9

Figure 1-1: Factory illustration

The latest LNG fuel engine type developed is the B36:45 engine family, and a graphical

representation of the engine is shown in Figure 1-2. This engine type has been in commercial

operation since late 2018 and now forms the most sales for the land-based power generation

marked. During the development of this engine type the overall engine control system has been

re-designed and new embedded controllers has replaced the traditional PLC’s. In addition, the

instrumentation and diagnostic capabilities has increased due to the feasibility to do in-cylinder

pressure monitoring for each cylinder on cycle-to-cycle basis. This gives large amount for

valuable data back to the control system to utilize for optimization.

Figure 1-2: 20 cylinder B36:45 LNG gas engine with generator

The B36:45 engine is often sold for single or multi engine installation for land-based power

plants. An example of such an installation is shown in Figure 1-3. For most of these installations

the engines run at steady conditions for long periods of time and often at maximum, or close

to maximum, power output. For these engines the efficiency and power output are what is sold

on the electrical grid. A slight increase in

10

Figure 1-3: Multi engine installation power plant

efficiency will hence generate a large amount of income increase for the owner. The engines

are therefore tuned to run as close as possible to its limits, but within the design margins.

Figure 1-4 shows how the energy input to a gas engine is distributed. A lot the energy can be

lost to the exhaust and the heat emission via the cooling fluids and lubrication fluid. The

exhaust gas temperature is often reused by extracting the heat via boiler systems or heat

exchangers and then used to drive other power trains. For greenhouses the exhaust if often

cleaned and then the CO2 is injected into the greenhouse as nutrition to the plants. The cooling

fluids are also used to heat water which is used to heat up the greenhouse.

11

Figure 1-4: Gas engine energy balance

These “optimal” operational set points are set during the commissioning phase such that the

engine can operate within specification, but with some safety margin to the design limitations

of the engine. These set points are mostly static maps which needs to be recalibrated at given

intervals to remain optimal as the engine condition changes both by time and ambient

conditions.

For an LNG gas engine the engine efficiency is in general given as in Figure 1-5 for a given

power output. We note that the efficiency is not very good below 20 [%] and rises slowly from

approx. 30 [%] power output to 100 [%] at which the efficiency is close to 50 [%]. The

distribution of the efficiency losses can be seen in Figure 1-6. As shown in Figure 1-4, most of

the losses are to the exhaust gas [1].

12

Figure 1-5: Fuel efficiency for and LNG engine

Figure 1-6: Distribution of losses for an LNG gas engine

In the search for higher efficiency, more complex logic, which takes into account more of the

information available, is constantly developed. This has resulted in a large increase in

parameters and maps that interact with each other, which makes the engine tuning phase a

complex and time-consuming job. This project will therefore be used to let a MPC search for

the optimal set points based on measured states of the engine and known disturbances.

This is set to be the first step towards more data driven, self-optimizing algorithms that can use

the large amount of data produced. The ultimate goal here is to use a reduced set of parameters

which can be used to prioritize the different possibilities such that a project optimal goal is

reached. For instance on a given project the most important goal is to reach a given NOx set

point and secondary fuel efficiency, while it for another project might be the fuel economy

which is the most important while keeping the NOx within given constraints.

0

10

20

30

40

50

0 20 40 60 80 100

F
u

e
l
e
ff

ic
ie

n
c
y
 [
%

]

Electrical power output [%]

380C 425C 455C 455C
0%

20%

40%

60%

80%

100%

%
 o

f
fu

e
l
e
n

e
rg

y
 i
n

p
u

t

Electrical power output [%]

LT heat (~50C)

Radiation

Lube oil heat (~75C)

HT heat (fixed 90C)

Exhaust heat

13

1.3 Operational philosophy

The B36:45 engine family is a medium speed lean-burn single fuel spark ignited internal

combustion engine. It mainly uses LNG as fuel source and a run at 720/750 [rpm] for 60- and

50 [Hz] applications respectively.

It is turbocharged and has a 2-stage water cooled charge air cooler.

In most land-based power plants it connected to a generator which is often connected to either

a small local grid or a large national grid. The engines nominal power output is 600 [kW] pr

cylinder mechanically and comes in both in inline and Vee configurations. The smallest is an

inline 6-cylinder engine and the largest is a Vee 20-cylinder engine.

1.3.1 Lean burn gas engine - Otto cycle

A lean-burn gas engine runs with a high air to fuel ratio compared to the required air for a

stochiometric combustion. This lowers the combustion temperature and hence reduces NOx

emissions. The B36:45 engine is a lambda 2 engine, indicating that it runs with twice the

required amount of air for a stochiometric combustion. This lean mixture is difficult to ignite

and hence a pre-combustion chamber is mounted in the cylinder head. A rich mixture is here

ignited by a spark plug and the resulting flames will propagate out and into the main chamber

where it will ignite the lean mixture. Figure 1-7 shows an illustration of the combustion

chamber with the spark plug, pre-chamber and main chamber.

Figure 1-7: Combustion chamber illustration

The engine is a 4-stroke (also known as the Otto cycle) which means that there are 4 distinct

phases for the combustion process. The different phases can be seen in the illustration in Figure

1-8.

14

During the first phase the air/fuel mixture is drawn into the combustion chamber during the

downward movement of the piston in the cylinder. This is the phase where the piston moves

from the top dead centre (TDC) to the bottom dead centre (BDC).

The second phase is the compression stroke. This is the upward motion of the piston at which

the air/fuel mixture is compressed. Here the piston moves from the bottom dead centre to the

top dead centre. During the last phase of the compression a spark plug is ignited in order to

ignite the air/fuel mixture.

The third phase is the expansion phase, also known as the power phase. After the ignition of

the air/fuel mixture the temperature rises rapidly and hence the pressure. This pushes the piston

downwards. This forced movement is used to rotate the crankshaft driving the generator.

Once the piston reaches the bottom the final phase starts. This phase is the exhaust phase at

which the exhaust from the combustion is pushed out of the combustion chamber as the piston

moves upward to the top dead centre again. Once back at the top the cycle starts over again

with the first phase.

Figure 1-8: Illustration of the 4-phases of the combustion process – illustration from

https://cartreatments.com/internal-combustion-engine-fundamental/

15

1.3.2 Main control loops

The following sections shortly describes the most common control loops for the combustion

process which are controlled by the engine control system today. There some other control

loops as well, but the major once are described here.

1.3.2.1 Speed control

The base function in the engine controller is the speed control loop which is a PID control loop

with measured speed as feedback. This engine controller is often called the speed governor as

for traditional marine applications with diesel engines its main purpose is to maintain engine

speed at a variable set point. But for engine used in power generation the speed setpoint is

usually fixed and hence the controller is more a power controller.

The PID controller controls the flow of fuel admission in order to keep the engine speed at set

point. When connected to a large grid with fixed frequency the speed control loop is used to

control engine power output according to a set point. Increasing the speed set point will result

in the speed controller to increase the fuel admission by increasing the fuel flow control which

will result in an increase of engine power output as the frequency cannot change.

The output from the speed control PID controller is a control signal to the main fuel actuator

on the engine. The fuel actuator transforms the control signal in a mechanical control

movement which is used to adjust the fuel flow control valves; one for each cylinder. The

controlled flow of fuel is then led to the fuel admission valve which is mechanically linked to

the inlet valves. The inlet valves are mechanically linked to the camshaft which controls the

valve opening timing. Once in the correct cycle the inlet valve will open and hence the fuel

admission valve will open. During the period the inlet valve is open the fuel is led into the air

flow and mixed through a mixing port. The inlet channel design allows for a given swirl which

will further dilute the air with the fuel which will lead to a close to perfect mixing in the

combustion chamber.

Some of the fuel gas is internally in the cylinder head guided to the prechamber valve and, once

open, fed into the pre-chamber where the spark plug is located.

The operational principle is simple and can for a diesel engine be controlled by a pure

mechanical governor. For a gas engine this is not the case as the fuel is both flow controlled as

well as pressure controlled; but the theory is the same. In case the measured engine speed (or

power output for the power generating engines) the fuel flow control valve is opened, and hence

more fuel is admitted into the combustion process allowing for an increase in speed (or power

output). If above the set point the fuel flow is reduced.

1.3.2.2 Air pressure control / AFR control

The AFR, or air pressure control, is a control loop which main purpose if to control the charge

air pressure in the air receiver to a given set point. The set point is based on a map with engine

power output and engine speed as inputs. The set point map is derived based on numerous of

test runs at the test bed by skilled engineers. Since this is a static map the set point must be

biased to a certain degree based on operational conditions. The most notable is the NOx control

which is an outer control loop in its own right which will adjust the set point for air pressure

control in order to get the NOx emissions to a given set point. Figure 1-9 shows an illustration

of the control loop structure.

16

Figure 1-9: Charge air pressure control loop illustration

In Figure 1-10 an indication of how the set point currently is set is shown. It indicates the values

in the map structure and shows some rate limitations on the set point changes and the biases to

the set point. The output from this structure is the set point to the PID controller.

Figure 1-10: Air pressure control – current set point design

The air pressure control is the most active and influents of all control loops. It dictates most of

the engine behaviour as it directly controls the air/fuel ratio under all operational conditions.

The output from the air pressure control is a position control signal to a waste gate actuator.

The waste gate actuator will control the amount of exhaust by-passing the turbine part of the

turbocharger(s) and hence the energy used to increase the air pressure.

The feedback to the air pressure control is the measured air pressure in the air receiver which

then forms a closed loop control system.

One of the goals of this project is to find the optimum charge air pressure to maximize engine

efficiency.

1.3.2.3 Air temperature control

In order to further control the air/fuel ratio the temperature of the combustion air should be

kept at given values. A lower air temperature will increase the density of the air, and hence

larger amounts of air and fuel can be added to the combustion process, increasing the power

output from the engine. But the air temperature must not be so cold that water is condensed

which can be potential damaging to the engine. The air temperature is often controlled by a

17

low level PID controller which will control the air temperature to a given set point based on

operational ambient conditions.

The control signal from the PID controller is used to control a 3-way valve which will direct,

or bypass, water to a 2-stage charge air cooler. By increasing the amount of water going through

cooler the temperature can be reduced, and vice-versa.

The air temperature after the turbocharger compressor is too high for the combustion process

and hence the charge air cooler is located between the outlet from turbocharger compressor

and the engine air receiver. The air receiver is a common volume from where the inlet channels

to each cylinder originate.

In Figure 1-11 the charge air cooler (1), the air bends (2,3) between the compressor outlet of

the turbochargers (4,5) are shown graphically for a Vee engine.

Figure 1-11: Graphical representation of upper front end of a Vee engine

An increase in temperature will lead to an increase in NOx due to lower air mass added to the

combustion process and due to increase in temperature. This will also result in the engine

operating closed to the ignition knocking limit.

1.3.2.4 NOx control

The engine is equipped with dual NOx sensors in the exhaust outlets. These sensors measure

both the amount of NOx in the exhaust [ppm] and the amount of Oxygen [%]. The NOx level

is fed back as process value to an outer PID controller which will control the NOx level such

18

that it is according to a given set point. Figure 1-12 shows a simplified illustration of NOx

control structure and Figure 1-13 shows how the implementation looks like today.

Figure 1-12: NOx control loop

Figure 1-13: NOx control loop implementation

The engines have traditionally been sold to run at TA Luft1 or ½ TA Luft which is equivalent

to 500 [mg/Nm3] NOx at 5 [%] O2 or 250 [mg/Nm3] NOx at 5 [%] O2.

The NOx control is a process which is not acting very fast and is only active during steady state

operations. The set point for the NOx control is given in ppm and hence the limit is calculated

from the dry 500/250 [mg/Nm3] value back to the approx. 143/108 [ppm] set point at nominal

power output.

The NOx controller will bias the air pressure base set point between +10 [%] and -5 [%] in

order to minimize the error between the measured NOx and the set point.

In Figure 1-14 we see the operational principle of the LNG gas engine and how the various

aspects of the combustion process influences each other. The main take from this is how the

1 TA Luft – is a term defined by the german air pollution control regulation titled “Technical Instructions on air

Quality Control” (Technische Anleitung zur Reinhaltung der Luft) [11]

19

air excess ratio operational window narrows as the power output increases and the risk of either

knocking or misfire increases. At the same time the increase in efficiency while still keeping

NOx within limits and the UHC low enough is important.

Figure 1-14: Engine performance trends as function of air excess ratio

1.3.2.5 Global ignition timing control

The ignition timing is the time in crank angle degrees at which the cylinder individual spark

plug is ignited in the pre combustion chamber. This location is firstly set to a base set point for

all cylinders. Then each individual cylinder can adjust its own ignition timing between ±3

[degCA] in order to balance the power output and peak pressure for each cylinder.

But firstly, the base timing is set in a map based on testing on the testbed by engineers. This

base timing is adjusted such that a good margin to ignition knocking while maintaining high

level of efficiency is achieved. The global timing is adjusted so that the maximum pressure in

the cylinder is occurring around 13-15 [degCA] after TDC. This will give rise to best

performance.

20

Figure 1-15: Global ignition timing control loop illustration

In order to achieve this the engine control system will measure the location for each cylinder

at which 50 [%] of the fuel has been burned (CoC2) by monitoring the pressure increase curve

during the combustion. The engine average value of this location is then used as feedback to

the engine control system such that this location is kept at a given set point. In addition, there

are multiple manipulators to this set point based on operational conditions. This makes the

control of the timing location complex and difficult to maintain. Figure 1-16 shows the naming

convention for the ignition timing of the crank angle degrees and some guidance to real world

numbers.

Figure 1-16: Naming convention for ignition timing

The CA10, CA50 and CA90 names indicate the locations at which 10 [%], 50 [%] and 90 [%]

fractions of the fuel have been burned. These values are found based on the measured pressure

curve and the gradient of it. Figure 1-17 shows an illustration of the pressure curve from a

combustion. The red curve is during a power stroke and the green curve is the motored3 curve.

2 CoC – Centre of Combustion, also known as CA50

3 Motored curve – This is the pressure curve as a result on compression only, that is a cycle where no

combustion takes place

21

Figure 1-17: Pressure curve and locations

In Figure 1-18 the heat release curve is shown with the locations for CA10, C50 and C90. The

accumulated heat release average over a number of combustion cycles are used together with

the measured engine load to calculate the heat rate of the engine which in turn are the property

we want to minimize. The goal is to have the relationship between the power output and the

accumulated heat release to be as small as possible, that is the least amount of fuel used pr

power unit output.

22

Figure 1-18: Heat release curve

This project will try to reduce this complexity by allowing the MPC to find the optimum timing

set points given a set of constraints to protect the engine from running in to dangerous

operational points.

In Figure 1-19 we see an indication of the relationship between global ignition timing and peak

pressure and efficiency. These curves are based on data from tests performed on the previous

version of the Bergen LNG gas engine, the B35:40. This engine operates at lower BMEP than

the B36:45 engine and with lower peak pressures. The indicated relationship however shows

similar behaviour. Earlier ignition timing, that is ignition before top dead centre (BTDC) will

increase the peak pressure in the cylinder, but it will also increase the efficiency of the engine.

There are however, as indicated, a mechanical limit in the construction of the engine how high

the peak pressure can become before there is a risk of mechanical breakdown. The engine

control system therefore monitors the peak pressure for all cylinders and in case of too high

pressure the engine will shut down. This pressure will also play a role in the MPC as it must

be used as a constraint to avoid too high pressure.

23

Figure 1-19: Global timing influence on efficiency and cylinder pressure

1.3.2.6 Cylinder individual timing control

The cylinder individual timing control is used to automatically balance the engine based on

peak pressure measurements. The peak pressure is dimensioning factor when constructing and

running the LNG engine. Too high pressure during the combustion process will damage the

crankshaft and cylinder liner. The pressures for each combustion cycle are monitored and the

average calculate for engine. The cylinders producing pressure above the engine average will

have their ignition timing retarded while those running below the average will ha the timing

advanced. This will keep the pressures and hence power output contribution from each cylinder

more equal and hence no cylinder will need to run in an overload condition.

Previously this was taken care of by monitoring the exhaust temperatures and manually control

the fuel amount to each cylinder mechanically. This manual process was error prone and the

was both time consuming and influenced by ambient conditions. There nor a guarantee that it

actually produced equal power output.

In Figure 1-20 an indication of how the cylinder peak pressures deviates during traditional

operation at the left hand side (CPM4 off) and how the distribution is once the controller

automatically adjust the ignition timing continuously to the right (CPM on). This automatic

balancing of the cylinders only became possible a few years ago when the cylinder pressure

sensors became affordable. Now all LNG gas engines are supplied with these sensors mounted.

4 CPM – Cylinder Pressure Monitoring

24

Figure 1-20: Cylinder individual timing biases on and off

1.3.2.7 Fuel gas pressure control

The fuel gas pressure has in recent years changed from a map set point based open loop control

to a simple open loop control.

The set point is now directly given by the measured charge air pressure including a speed

dependent bias with a separate pressure control during engine start up. This has simplified the

control greatly.

In the past there was also separate control structures for the main fuel gas pressure used for the

main combustion and the fuel gas which was used for the pre-chamber. The engine was then

started with only gas supplied to the main combustion chamber and only after the engine had

started firing and accelerated was the fuel to the prechamber enabled. This period was difficult

to control and the starting phase was sometimes troublesome.

The simplification done over the recent years based on more accurate knowledge from the

combustion process and CFD analysis resulting in optimalisation of the fuel control valve as

results in a more robust starting sequence. Today the pre-chamber and the main combustion

chamber are fuelled by the same pressure and at the same time. Separate internal routings of

the pre-chamber gas have also resulted in fewer components and less control structures in the

control system.

25

1.3.3 Engine control system structure

The engine control system consists of several main units with their own dedicated purpose.

The main components and the main tasks are listed below:

• Engine safety unit

o Separate PLC mounted on engine which monitors selected critical process

values and will shut down the engine in case of breach of associated operational

limits.

o The unit will independently mechanically force the fuel control valves to zero

fuel position and cut the fuel gas supply by tripping the main fuel gas valves.

• IPC PLC

o Separate off-engine mounted PLC which will interface supervisory systems and

handle active power control. Measures active power output of generator and

adjusts engine speed bias in order to maintain power output at set point.

o Handles most process value associated alarms

o Controls the engine in primary, secondary and tertiary control.

• Engine controller

o On-engine mounted embedded controller which controls engine control loops.

o Interfaces IPC PLC for speed bias signals

o Responsible for air/fuel ratio control, ignition timing, combustion process value

measurements and engine limitation handling.

o Encoder position control and cylinder pressure measurements and diagnostics

• Ignition controller

o Receives set points from engine controller and adjusts both engine wide base

ignition timing and cylinder individual timing accordingly

o Controls spark duration and spark intensity based on set points from the engine

controller.

1.3.4 Main engine controller

The main engine controller currently used is an embedded controller from Woodward Inc. The

LECM (Large Engine Control Module) is a purpose-built controller with suitable hardware for

interfacing large industrial engines. The software for the controller is developed and built in-

house at Bergen Engines and hence gives a large flexibility in custom made control algorithms.

The purpose of this project is to add the MPC control structure to this controller to optimize

engine fuel optimization.

Figure 1-21 shows a graphical representation of the engine controller.

26

Figure 1-21: Engine controller - LECM

The control software used in the LECM is developed in MATLAB Simulink with a proprietary

library for hardware access to the actual controller from MotoHawk. The MotoHawk library is

a rapid programming development tool which allows engineers to quickly develop control

software in Simulink to run on a MotoHawk enabled control module; like the LECM. It is

model based and allows for simulation and testing within the Simulink environment during the

development. This methodology also simplifies verification as already well-proven and tested

functionality blocks are available.

MotoHawk also allows for support of online parameter adjustments and calibration during

runtime; and includes ready-made commonly used control structures for engine control. The

calibration tool is also built and maintained in-house at Bergen Engines. It is via this tool the

user needs to control and adjust the control algorithms and set up the parameters. Figure 1-22

shows an example view of one of the pages on the calibration tool.

27

Figure 1-22: Parameter adjustment and calibration tool

Even though MotoHawk as many pre-made algorithms available, it does not have any available

MPC control structures and hence this must be developed using standard MATLAB and

Simulink functions. This will be one of the upcoming tasks later to implement the structure

into the existing control system.

The Simulink code is auto coded using the Embedded Coder into the compiled code which

runs on the controller.

28

2 Model predictive control
This chapter gives a short introduction to the model predictive control (MPC in short) and the

application areas it has been utilized and the general principles.

2.1 Brief history

Model predictive control was original developed for chemical processes to control transients

of dynamic systems with hundreds of inputs and outputs which was also under constraints [2].

It can be dated back to the 1960’s where Kalman worked on the optimal linear control system.

During the 1970’s various industrial applications using MPC was developed including MPHC

by Richalet; later renamed to Model Algorithm Control (MAC); and Dynamix Matrix Control

by Cutler and Ramaker [2]. Both of these where based on predicting future output of a system

based on a model of the system and knowledge of the control inputs. This was done by

minimizing the error between the predicted output and the measured output given some

constraints. Stability in these early versions of MPC was achieved with long prediction horizon.

In the 1980’s the 2nd generation of MPC was introduced, Quadratic Dynamic Matrix Control;

or QDMC in short which was described by Cutler in the 1983 AlChE conference. [3]. In QDMC

quadratic programming is used to solve an open loop problem with a linear system and

quadratic objective function including linear inequality constraints.

Later in the 80’s and early 90’s; Shell engineers are among those driving further the

development of MPC algorithms which also uses State Space models and Kalman filter for

state estimation to overcome the problem with infeasibility by using several layers of

constraints, not solved in the second generation. IDCOM-M, RMPC, PCT and SMOC were

among those algorithms that was developed. These where the 3rd generation of MPC’s [2].

Generalized Predictive Control (GPC) was also developed by Clarke et al. in 1987 [4] which

is still widely used.

In the 90’s the RMPC by Honeywell and PCT by Profimatics was merged to RMPCT, Robust

Model Predictive Control Technology; and together with DMC-Plus (development of DMC

and SMCA) was introduced as the 4th generation MPC.

MPC algorithms are still developed further today and the sought for stability for finite horizon

prediction. It has in recent years also gain a lot of interest and found applications in power

system balancing as these move more toward dynamic control of smaller grid systems with

large variety of power producer, including renewable sources [5].

29

2.2 Main objective

The main general objective of model predictive control is estimate future trajectory of a control

variable 𝑢 such as to optimize the future behaviour of a system output 𝑦. The optimal condition

is given as a cost function for which the MPC algorithm will try to minimize for each iteration.

The system here is the system or plant which are controlled by an application which implements

the MPC algorithm. The MPC optimization within a limited time window is known as the

prediction horizon based on previous states of the system. These states are the initial input to

the MPC.

The MPC uses a model of the system and the cost function to estimate the future values of 𝑢

which will give the best possible control outputs to achieve the goal.

In most practical applications there needs to be some limitations to this action as the optimizer

can usually not take any value. These limitations are given to the MPC controller in forms of

constraints which needs to be fulfilled. These constraints forms a specific region which is also

knows as the feasible region, for which the optimal solution needs to lie within [6].

Most common are constraints on the control values, that is the output from the optimizer. The

control signals used in an industrial application is usually limited by some physical constraints,

for instance the amplitude of the voltage on the control signals and/or how fast the output can

change. This can be a valve which cannot change instantaneously as this could potentially wear

out the valve. This is something the MPC needs to be aware of and take into considerations

when giving the optimal output.

𝐽𝑘 = ∑(𝑒𝑘+𝑖
𝑇

𝑁

𝑖=1

𝑄𝑖𝑒𝑘+𝑖 + 𝑢𝑘+𝑖−1
𝑇 𝑃𝑖𝑢𝑘+𝑖−1 + ∆𝑢𝑘+𝑖−1

𝑇 𝑅𝑖∆𝑢𝑘+𝑖−1)

𝑒𝑘+𝑖 = (𝑦𝑘+𝑖 − 𝑟𝑘+𝑖)

(2-1)

Equation (2-1) shows the general objective function; or cost function; for an MPC where 𝐽 is a

scalar value at time instance 𝑘. 𝑁 is defined as the prediction horizon, 𝑄𝑖 ∈ ℝ
𝑚×𝑚, 𝑃𝑖 ∈ ℝ

𝑟×𝑟

and 𝑅𝑖 ∈ ℝ
𝑟×𝑟 are symmetric positive semi-definite weighting matrices for the operator/user

to specify. P can often be set to zero in order to obtain offset free control [7]. The weighting

matrices are usually time invariant and hence do not change during the prediction horizon as

will be the case in this project.

The general quadratic programming representation of the equation in (2-1) is given in (2-2).

 𝐽𝑘 = 𝑒𝑘+1
𝑇 𝑄𝑒𝑘+1 + 𝑢𝑘

𝑇𝑃𝑢𝑘 + ∆𝑢𝑘
𝑇𝑅∆𝑢𝑘)

𝑒𝑘+1 = (𝑦𝑘+1 − 𝑟𝑘+1)
(2-2)

Note again that P can be set to zero to get offset free control, given that no constraints are

active.

30

Some of the advantages of the MPC over traditionally methods like PID control includes:

• No dynamic parameters that needs to be tuned

• Can be used from simple to complex systems for both SISO5 to MIMO6 systems

• Can control systems with long delay times

• It introduces feed forward control inherently

• Easy integration of constraints

On the other hand, there are also some drawbacks of using a MPC Vs the more traditionally

PID controller; some of these are listed below

• For more complex problems the computational effort can be too high to be done every

time step

• When constraints are considered the computational effort is even higher

• The availability of a system model and the results will depend on the discrepancies

between the model and the real process.

5 SISO – Single Input Single Output

6 MIMO – Multiple Input Multiple Output

31

2.3 Cost function

The cost function is a scalar used to determine when the optimal solution is found. For a set

point tracker this scalar will indicate the difference between the future output and a given

reference but at the same time take into account that a change of the output comes with a cost.

The cost is summed over the prediction horizon. The goal is to minimize this cost over this

prediction horizon with respect to future control outputs. The cost function is given as a general

equation in Equation (2-1). The cost function can be expanded to take in any number of

elements that we want to play a role in the minimization and the user uses the weight matrices

to determine which cost that would carry the highest impact to violate.

The weight matrix 𝑄 ∈ 𝑅𝑚×𝑚 where 𝑚 is the number of set point objectives to achieve.

The weight matrix 𝑃 ∈ 𝑅𝑟×𝑟 where 𝑟 is the number of control inputs.

The weight matrix 𝑅 ∈ 𝑅𝑟×𝑟 where 𝑟 is the number of control inputs.

The matrixes are symmetric and positive semi-definite.

32

2.4 Receding horizon

The output from the optimizer is a prediction of optimal future control movements for the

whole prediction horizon. In an industrial MPC we usually only utilize the first element of

these optimal control outputs and apply it to the system under control. We then measure the

response from the system and its states and feed that back to the optimizer and we do it all over

again. This is called the moving horizon or receding horizon control law. Figure 2-1 shows the

principle of the MPC operation where we for each sample time produces a new optimal control

output sequence for the next 𝑘 + 𝑖 time steps (the prediction horizon).

Figure 2-1: MPC principle [5]

One of the, possibly, disadvantages of this method is the computational effort involved in

predicting a larger number of future control moves for each iteration where only the first move

is used. Depending on the size of the problem and the number of constraints and number of

parameters to optimize this might take a substantial large finite time which in turn only allows

for slower update times. The sample time needs to be larger than the time it takes to do the

optimization.

For the problem at hand in this project the updates for process values are usually in the range

of 100 [ms] for slower algorithms and 10ms for the faster controls. This optimization might

however possibly run at slower rates as this is an optimization for long term fuel efficiency.

33

2.5 Constraints

One of the benefits of MPC is the handling of constraints and especially on the control signal.

Both the amplitude and rate of change of the control signal can be added to the problem

formulation and hence is taken into account when the optimal solution is calculated. Both

inequality and equality constraints can be added.

Constraints can be both hard and soft constraints where the difference is that the hard

constraints must be obeyed at all time instances while soft constraints can be exceeded in case

infeasibility occurs. Hard constraints are typically on the control output (both amplitude and

rate of change) which cannot result in infeasibility. Soft constraints can for instance be on both

measured outputs of the system and on internal states. Here the slack variables can be used to

control how each constraint that can be violated the most and to what expense [6]. The slack

variables are therefore added to the cost function so that the amount of violation is reduced.

The constraints on the control variable can be written as inequality constraints such that

 𝐴∆𝑢 ≤ 𝛾

𝐴𝑢 ≤ 𝛾
(2-3)

where 𝐴 is a matrix and 𝛾 is a vector.

The constraint on the amplitude of the control signal can be written as

𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥

Which can be rearranged to

𝑢 ≤ 𝑢𝑚𝑎𝑥
−𝑢 ≤ −𝑢𝑚𝑖𝑛

Most linear MPC controllers are in the form of a QP problem with inequality constraints as

given in (2-3). These are then solved iteratively by the optimizer. The number of iterations is

however limited and there is no guarantee that a feasible solution can be found within a finite

number of iterations.

The QP problem is usually always solved by an active set method [7]. The method is further

explained in section 4.8.1.2.

34

2.6 Grouping

One way of reducing the size of the optimal control problem is by introducing grouping of

control signals [6]. The idea here is that the prediction horizon can be divided into several

blocks in which the control signal is kept constant. The groups can be both equal in size or with

different sizes. By keeping the control signals constant within each group, we will only need

to consider that signal once within that group instead of for each sample. The size of unknows

which the optimizer than need to estimate is then reduced to the number of groups times the

number of control signals.

For example, if the prediction horizon is 100 samples and it is split into 5 groups and the

number of control signals is 2; then the number of unknowns prior to grouping is 200 while

after the grouping it is only 10.

Depending on the number of control signals and prediction horizon, this reduction method

could drastically reduce computational effort.

35

2.7 System model

The system model used for prediction can be considered as the biggest drawback for an MPC.

The model and how it predicts the outputs based on inputs can be difficult to develop for highly

dynamic systems, at least if these are to be based on conservation laws. Usually these models

are data driven linear models based on measured input/output data. As for this project, the data

is used in system identification to get a linear model representation of the system given as a

state space model.

The system model in an MPC is used as a prediction model, that is a model that will predict

future outputs and states based on known inputs over the prediction horizon.

The type of model can vary depending on the application and area of use. One popular model

type is the Truncated Impulse Response Model which is based on passed impulse responses to

the system. It does however need a large number of parameters for estimation and are not

feasible for open loop or unstable systems [8].

Another popular choice is the Step response model which is very much the same as the impulse

response model, and only differ in the excitation signal used on the system.

The state space model is perhaps one of the most widely used in the academic/research

community. The derivation can be very simple from measured input/output data and even for

the multivariable systems. The state space version allows for the use of well know thermos and

theory and applies to both linear and non-linear cases. Well proven system identification

techniques exist based on measured data already included in the MATLAB toolboxes. Tools

for analysis of stability and other properties can be utilized based on the state space model.

A transfer function model is also very popular in by researcher and academic alike. It is

somewhat more difficult to derive but it often required few parameters. It handles dead time

inherently and is commonly used in by industry engineers to explain and model systems. This

very much applies to the Bergen Engines as well where the engine simulators are based on

numerous of transfer functions.

36

2.8 Integral action

The MPC algorithms are based on the accuracy of the system model to represent the actual

system under control. There exist errors between the model and the real system in all

applications. One of the results from this mismatch is the probability of offset error during

steady state. That is there exist an error between the predicted output from the model and the

measured output from system under control.

In order to counteract this offset error, there are several methods that can be used to achieve

offset free control by adding integral action to the MPC. According to Åkesson [9] a

disturbance observer can be used to obtain offset free control by adding integral action to an

output feedback controller. This solution was generalized for the cases where the number of

outputs exceeds the number of control inputs.

One approach discussed by Rawling [10] is the addition of integrating disturbance to the

process model which shows that offset free steady state can be achieved with open loop stable,

integrating and unstable systems. This is done by adding a number of integrator disturbance

terms equal to the number of measured variables.

The method used in [11] by Wang is to used embedded integrators by using the augmented

state space model of the system which includes the ∆𝑢 in the state space formulation and the

∆𝑥 in the state variable vector.

37

2.9 Previous work

MPC’s has been successfully used in a range of different areas and applications. Mostly

interesting for this project is use in the industry as this control problems carries some synergies.

MPC’s has proven in use for instance in steam generators and servos as illustrated in [12]. In

later years, as the era of autonomy evolves, the MPC is (and can be) used in a large area of

applications within systems for auto pilot for both the automobile and marine areas.

In the Marine area the auto pilot for ships and DP7 operation use the benefits from MPC

controller. Withing Rolls-Royce the use of MPC has been introduced in the engine control

system for high speed MTU engines where the newly developed Hyperspace controller uses

MPC controllers to find the optimal set points for the operation, based a given goal for the

engine. That goal could be optimal fuel efficiency, minimum NOx emissions or disturbance

rejection, all individual application dependent.

In the automotive industry the MPC principle is widely used in adaptive cruise control, obstacle

avoidance, lane keeping assist etc. [13]. Separate toolboxes for MATLAB have been developed

to serve the automotive industry with tailer made solutions for MPC control within this area.

2.10 Set up

The simulation results and testing has been done using MATLAB 2019b together with

SIMULINK. The host computer on which this project has been done is a HP ZBook 15 G5

with an Intel Core i7-8850H CPU with 16GB or RAM. The host computer runs Windows 10

Enterprise build 17763.

7 DP - Dynamic positioning

38

3 Modelling
The models for this project was developed using the System Identification toolbox in

MATLAB. During the master project several models based on different realization techniques

was developed. Based on the conclusion in the report the selected model structure was the

polynomial model from the System Identification toolbox.

3.1 Data collection

The dataset used as basis for the development of the MPC model is measured input/output data

from a commercial operational engine. The engine is operated on power plant in the city of

Tabor in the Czech Republic connected to the national grid. The engine primarily works on a

base load operation, but often operate in Secondary regulation. It is these data sets which are

used to modelling as these contains the most dynamic behaviour end exits the system the most.

Figure 3-1 shows an image of a part of the C-Energy power plant.

Figure 3-1: C-Energy power plant

3.1.1 Sampling

The data is sampled at 10 [Hz] by the engine controller and transmitted to an edge computer

located on the power plant premises. Most process values available as well as internal engine

controller states and statuses are collected and transmitted to this edge device. The currently

used edge computer is shown in Figure 3-2 and is a Siemens IOT 2040. On this unit it runs

several Docker containers which handles various aspects of the data collection and

transmission to the cloud service.

On the edge computer the data is stored in a local Influx time series database for local access

by the service engineers and customers through Grafana. The data is then stored in .csv files

which each contains 30 minutes of process data. The .csv files are transmitted to an Azure

cloud storage location at regular intervals. In the cloud there are several process running which

utilizes these data for both machine learning, abnormally detection and for historic time series

39

visualization. An Influx database in the cloud stores the time series data at different resolutions

for different length. For instance, the 10 [Hz] data is stored for some months while 1 [Hz] and

0,5 [Hz] variants are stored for longer.

Figure 3-2: Edge computer - Siemens IOT2040

From this storage several datasets were retrieved and analysed during the Master project.

3.1.2 Pre-processing and analysis

The datasets which was retrieved from the cloud storage was first “washed” by engineers by

reducing the number of useful variables from several hundred down to about 20 which would

be of interest. The dataset was then processed further by removing data where the engine was

not running and not producing power. A soft sensor was added as the heat rate is not directly

given by the dataset, but as a direct calculation by others.

The engine control system calculates the engine heat release cumulation based on the pressure

rise rate during the combustion. This heat release is given in J/cycle. To get to the heat rate

which is the one we would like to minimize we divide the heat release with the IMEP.

ℎ𝑒𝑎𝑡 𝑟𝑎𝑡𝑒 =
ℎ𝑒𝑎𝑡 𝑟𝑒𝑙𝑒𝑎𝑠𝑒

𝐼𝑀𝐸𝑃

PCA analysis was performed to find co-linear variables and which variables that had the most

contribution to the dynamics of interest. During the analysis and discussion afterwards, a

decision was taken on the number of inputs, outputs and disturbances. The model structure was

then given by on 5 inputs variables, whereas 2 are the controllable variables and 3 are measured

disturbances, and 6 measured outputs.

40

3.2 System identification

During the modelling part of the Master project several different models based on different

principles was developed. Models was developed using Neural Networks, DMDc, the DSR

toolbox and the System Identification Toolbox.

Based on the findings and conclusions it was decided to go on with a simple polynomial model

from the System Identification Toolbox. This model has a simple input/output structure where

there is a simple relation between the model and the physical world.

The polynomial model found with the System Identification toolbox is transferred to a state

space model during the initial phase of the MPC development as the Simulink testing did not

allow for the polynomial model to be used. The state space model derived from the polynomial

model was used for a substantial amount of time during the testing of different MPC structures.

This model initial gave promising results but when adding constraints to the output it did not

behave as expected.

During the simulation is was then decided to re-do the testing with a new model based on the

same data set as the original polynomial model, but this time the model was developed as a

State Space model from the start. The same training data set and validation data set was used

to develop the new model.

The results presented in this paper are mostly from the State Space model. Most of the already

performed simulations had to be redone but the results looked more promising with the new

model.

The discrete state space model is given by the general form

 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝐵𝑑𝑢𝑑(𝑘)

𝑦(𝑘) = 𝐶𝑥(𝑘)
(3-1)

where 𝑥 is the state vector, 𝑢 is the control signal vector, 𝑢𝑑 is the measured disturbances and

𝑦 are the measured outputs. The sampling interval is denoted by 𝑘.

From the model we find that the state matrix 𝐴 is 25𝑥25; The input matrix 𝐵 is a 25𝑥2 and the

disturbance matrix 𝐵𝑑 is 25𝑥3. The output matrix 𝐶 is 6𝑥25.

There are no direct feed trough terms in the model and hence no 𝐷 matrix.

Contrary to the polynomial model which had a identity matrix in the 𝐶 matrix of the state space

formulation, this state space model has elements in the output matrix. For the polynomial that

meant that the measured outputs where available as the first 6 elements of the state vector. This

is not the case for the new state space model and hence the physical “meaning” of the states is

lost.

The model order for the polynomial was 𝑛 = 30 while the order is chosen as 𝑛 = 25 for the

state space model. The model order is based on an inspection of the residual error plot of the

system identification toolbox where the logarithmic error flattens out.

In Figure 3-3 we note the tracking of the simulated heat rate from the model and the measured

heat rate from the validation data set. The fit here is about 79 [%].

41

Figure 3-3: Output from System Identification - Measure heat rate Vs simulated

Another example is shown in Figure 3-4 where the 𝑂2 from the validation data set is

compared to the simulated.

42

Figure 3-4: Output from System Identification - Measure O2 percentage Vs simulated

The code from the MATLAB for the model estimation

% State space model estimation

 Options = n4sidOptions;

 Options.Display = 'on';

 Options.EstimateCovariance = false;

 Options.Focus = 'simulation';

 Options.EnforceStability = 1;

 Options.N4Weight = 'CVA';

 Options.N4Horizon = [75 0 87];

 ss1 = n4sid(TrainingMean20200902Red, 25, 'DisturbanceModel', 'none', Options)

3.2.1 Controllability

After the development of the state space model a simple check was done to test the

controllability of the model. In the MATLAB the function ‘ctrb(sys.A, sys.B)’ was used to get

the controllability matrix and then checking the rank of this matrix has full rank 𝑛.

Since the state space model has rank 𝑛 = 25 we check if the controllability matrix has the same

rank.

43

The rank of the controllability matrix is also 𝑛 = 25 and hence there are possibility that the

system is controllable since there are not direct uncontrollable states. Howere there are

limitations to this method of detecting controllability and the function is sensitive to round off

errors and errors in the data.

Testing also with the MATLAB function ‘[Abar,Bbar,Cbar,T,k] = ctrbf (sys.A, sys.B, sys.C)’

and looking at the length of sum(k) which is the number of controllable states we also end up

with 25 which is the same as the rank of the A matrix.

3.2.2 Limitations

The model used for the development of the MPC is, as described in the previous sections, based

on real life operational data for an installation. It is known and well understood that this model

has limitations. Even though the data availability is large the data is based on a real installation

running with control structures which are kept withing operational limits. These control

structure keeps the engine at the operational point to the best of their capability.

This results in the data not being exited with control signals to its maximum and minimum and

hence the representation of the data is within these limitations.

When the data series was selected it was from areas where the dynamics where present as much

as possible, so some excitation is experienced.

In order to improve on the data quality the control software of the engine controller was updated

with additional logic which will be used to exited the control outputs to such an extent that a

larger operational area of the measured data can be captured. A test program for testing on a

real engine has been defined and a production engine was selected for the experiment. The test

program was approved by the Bergen Engines management. Unfortunate due to circumstances

and delay in the production line resulted in the selected engine testing being delayed into the

easter holyday. This resulted in reduced availability of test engineers and due to delivery

obligations, the test was postponed and needs to be done on another engine at a later stage.

The test is still scheduled to be done at the next available time slot.

The limitations in the model do however not interfere with the proof of concept as the basic

idea and testing would still go on with the model at hand. This model would still give a good

understanding of the various implementations of the MPC algorithms and the overall structure

could be tested.

3.2.3 Open loop simulation

This section shows some of the initial test of open loop simulation of the model.

The purpose of the open loop simulations was to check the model was stable if all inputs was

kept at constant values and how the model reacted to changes in either of the two controllable

inputs.

From the definition of the original problem the controllable inputs were defined as the “charge

air pressure” and “global timing”. There are three measured input disturbances: the “IMEP”,

“Charge air temperature” and “Suction air temperature”.

44

Before any of the tests were performed the initial state was found using MATLAB built in

function for “findstate”. The model was also run for several iterations with real life data to have

the states updated with real life data before starting.

The code for the open loop simulation is found in

3.2.3.1 Open loop simulation with no change on controllable inputs

The first test is open loop simulation with steady state input data with an initial state. The test

is performed to verify that the model is stable over time. The test was run with several

simulation times and the results for testing with 15000 samples (1500 seconds) are shown in

Figure 3-5, Figure 3-6, Figure 3-7 and Figure 3-8.

As we can see from Figure 3-7 and Figure 3-8 the output stabilizes to a steady state value as

expected with no changes to the inputs.

Figure 3-5: Open loop simulation with fixed input values – controllable inputs

45

Figure 3-6: Open loop simulation with fixed input values – measured disturbances

Figure 3-7: Open loop simulation with fixed input values - measured outputs from the model

46

Figure 3-8: Open loop simulation with fixed input values - measured outputs from model

3.2.3.2 Open loop simulations with positive step change on charge air pressure

This test is done by manually adding a step change to the charge air pressure control in the

positive direction. That is to add extra air to the combustion process. As for the test in 3.2.3.1

the measured disturbances are kept constant and are not shown in the following figures.

It should be noted that a step change is a not possible in real life as the pressure needs to build

up over time nor is it possible to build up high pressure at lower engine power outputs as the

turbocharger is not able to produce higher pressure due to lower energy in the exhaust.

There is also an upper limit to the boost pressure as it must not become too high as this could

lead to too lean mixture and misfire as well as turbocharger stall.

The step input is shown in Figure 3-9 and the output responses are shown in Figure 3-10 and

Figure 3-11.

As expected, the increase in air pressure to the combustion process reduces the exhaust gas

temperature due to the increase in air excess, the O2 level increases as expected and the NOx

decrease. The increase in peak pressure mostly indicate that the charge air pressure is closely

related to IMEP (engine load) during closed loop real life running and hence the model

interprets this as a potential load increase and rises the pressure reading.

The heat rate shows a sudden initial drop before stabilizing at a slightly lower value than before

the step change.

47

With the step change added here the model outputs do not exceed any “normal” operating

values.

Figure 3-9: Open loop simulation with step change in positive direction on charge air pressure

48

Figure 3-10: Open loop simulation with step change on charge air pressure - model outputs

Figure 3-11: Open loop simulation with step change on charge air pressure - model outputs

3.2.3.3 Open loop simulations with negative step change on charge air pressure

This test is done by manually adding a step change to the charge air pressure control in the

negative direction. That is to reduce the air to the combustion process. As for the test in 3.2.3.1

the measured disturbances are kept constant and are not shown in the following figures.

It should be noted that a step change is a not possible in real life as some time will pass before

the pressure is effectively removed.

The step input is shown in Figure 3-12 and the output responses are shown in Figure 3-13 and

Figure 3-14.

Here the results are expected to be the opposite of the test in 3.2.3.2 for most of the outputs of

the model. Indeed, the exhaust temperature is increased as expected and the O2 percentage is

reduced. The NOx level increases slightly as expected.

49

Figure 3-12: Open loop simulation with a negative step change in charge air pressure

Figure 3-13: Open loop simulation with negative step change on charge air pressure – model outputs

50

Figure 3-14: Open loop simulation with negative step change on charge air pressure – model outputs

3.2.3.4 Open loop simulation with step change in global timing - advanced timing

This test is performed by keeping the charge air pressure control input fixed and add a step

change on global timing. The step change is in the advance direction which means earlier

ignition timing. The timing location is given as a negative number indicating before TDC8.

The step change in the control signal is shown in Figure 3-15 and the model outputs is shown

in Figure 3-16 and Figure 3-17.

From the results we get some of the expected results based on system knowledge. The earlier

ignition timing increased the peak pressure and increases the NOx level. We also see a slight

change in O2 level, but this might be due to the model expecting higher NOx to influence the

O2 level. The exhaust temperature is reduced as is normal with earlier ignition timing resulting

in faster combustion. The heat rate is reduced to indicate higher efficiency.

8 TDC – Top dead center. The absolute crank angle is given as 0-degree crank angle when a cylinder is at TDC

in the compression stroke. The total number of degrees during a combustion process is 720 degrees, i.e. 2

revolutions of the crankshaft.

51

Figure 3-15: Open loop simulation with step change on global timing – earlier timing

Figure 3-16: Open loop simulation with step change on global timing - earlier timing - model output

52

Figure 3-17: Open loop simulation with step change on global timing - earlier timing - model output

3.2.3.5 Open loop simulation with step change on global timing – retard direction

This test is performed by keeping the charge air pressure control input fixed and add a step

change on global timing. The step change is in the retard direction which means later ignition

timing. The timing location is given as a negative number indicating before TDC.

The step change in the control signal is shown in Figure 3-18 and the model outputs is shown

in Figure 3-19 and Figure 3-20.

From the results we get some of the expected results based on system knowledge. The later

ignition timing decreases the peak pressure and lowers the NOx level. We also see a slight

change in O2 level as for the output from the test in 3.2.3.4. The exhaust temperature is

increased as expected. The heat rate increases also slightly to indicate less efficiency.

53

Figure 3-18: Open loop simulation with step change on global timing – earlier timing

Figure 3-19: Open loop simulation with step change on global timing - later timing - model output

54

Figure 3-20: Open loop simulation with step change on global timing - later timing - model output

3.2.3.6 Open loop simulation with gradually increase in charge air pressure

This test is performed to show the resultant output of the model in case of a gradually increasing

control signal with constant disturbances. The change is kept within the max/min limits of the

control signal but given the disturbances the control signal end up outside normal operating

range.

In this first test the charge air pressure is increased gradually from the initial value upwards

with 1,5 [barg]. The control signal change can be seen in Figure 3-21.

The model outputs is shown in Figure 3-22 and Figure 3-23. The same applies here as for the

step change, the expected O2 percentage increases by adding air to the process and the exhaust

temperature drops. Here it drops to the nonphysical value close to 0 [C] but the control signal

reaches here nonphysical values compared to the input disturbances. The NOx value drops

negative.

The model however does not go off to extreme values in any case as long as the charge air

pressure control signal remains within expected working value.

The heat rate increases indicating poorer fuel efficiency when increasing the air excess and

hence a leaner mixture is given.

55

Figure 3-21: Open loop simulation with gradually increasing charge air pressure control signal

Figure 3-22: Open loop simulation with gradually increasing charge air pressure - model output

56

Figure 3-23: Open loop simulation with gradually increasing charge air pressure - model output

3.2.3.7 Open loop simulation with gradually decrease in charge air pressure

This test is performed to verify that the model does not converge to extreme values for any

outputs given a gradual reduction in the charge air control signal. To keep things within

physical meaning the charge air pressure is not allowed to go to a negative value.

The control signal is seen in Figure 3-24. The model outputs can be viewed Figure 3-25 and

Figure 3-26.

The exhaust temperature increases as expected and the O2 level is reduced. The NOx is

increases as expected with less lean mixture.

The effect on the heat rate is noted as it is reduced compared to the initial value – hence a less

lean mixture improves the fuel efficiency.

57

Figure 3-24: Open loop simulation with gradually decreasing charge air pressure control signal

Figure 3-25: Open loop simulation with gradually decreasing charge air pressure - model output

58

Figure 3-26: Open loop simulation with gradually decreasing charge air pressure - model output

3.2.3.8 Open loop simulation with gradually changing global timing – advance

Basically, the same test as done in section 3.2.3.4 but now with gradually earlier timing until

18 [degCA] before TDC. This time the timing is advanced further than during the step change

and hence larger changes is seen on the outputs. The NOx increases and the peak pressure

increases. The exhaust temperature is reduced as for the step response. The heat rate is also

reduced indicating better efficiency.

The gradually changed control values is show in Figure 3-27 and the model output in Figure

3-28 and Figure 3-29.

59

Figure 3-27: Open loop simulation with gradually changing the ignition timing to earlier timing

Figure 3-28: Open loop simulation with gradually changing ignition timing – earlier timing – model output

60

Figure 3-29: Open loop simulation with gradually changing ignition timing – earlier timing – model output

3.2.3.9 Open loop simulation with gradually changing global timing – retard

Test related to the test done in 3.2.3.5 but this time there is no step change in the control signal

but rather a gradually changing signal. The change is here kept withing normal operating ranges

and hence later timing than 8 [degCA] before TDC is not performed.

The control signal change is shown in Figure 3-30. The outputs from the model is shown in

Figure 3-31 and in Figure 3-32.

We here notice the same results as with the step change. Heat rate is increased, and the exhaust

temperature increases. The NOx level is decreased. The results here are opposite to the results

from the test in section 3.2.3.8 as expected.

61

Figure 3-30: Open loop simulation with gradually changing the ignition timing to later timing

Figure 3-31: Open loop simulation with gradually changing ignition timing – later timing – model output

62

Figure 3-32: Open loop simulation with gradually changing ignition timing – later timing – model output

63

4 MPC
This section describes the development phase of the MPC controller, and the steps taken and

results from several tests and analysis.

Firstly, a section describing the variables involved and their physical meaning are given. Then

a section regarding the measurements and the various constraints are discussed.

4.1 Controllable inputs

There are defined two controllable signals in the project based on the project definition and the

results from the system identification part done during the Mater Project. These signals will be

used to adjust the process in order to achieve the optimization. The signals are defined to be

𝑐ℎ𝑎𝑟𝑔𝑒 𝑎𝑖𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 and 𝑔𝑙𝑜𝑏𝑎𝑙 𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑖𝑛𝑔. These signals will not directly control the

process values but be the optimal set points for the lower level PID controllers which in turn

will adjust accordingly to achieve the optimal operation.

Since these two signals do have physical meaning there are some limitations that needs to be

fulfilled for the system to have physical meaning.

The overall purpose of this controller is to optimize fuel efficiency over time and hence it is

not the short-term benefit that is the most importance here. There is no optimal set point defined

for the heat rate. The goal is to minimize the heat rate as much as possible by still staying within

the constraints defined.

4.1.1 Charge air pressure

The charge air pressure is the pressure of the combustion air entering the combustion chamber

from the air receiver. This pressure is controlled by adjusting the waste gate bypass valve such

that the pressure is according to set point. Traditionally these set points are found based on

testing on a real engine where the emissions are measured and the distance to the knocking

limit is observed. In addition, the pressure is mapped towards the turbocharger to prevent any

stalling or crossing the surge limit.

The charge air pressure set point is usually a map where the set point is based on the engine

speed and the power output but biased from several sources to make it adaptable to ambient

conditions and ageing. This charge air pressure set point is traditionally highly driven by the

engine power output in an almost linear relation. Nominal charge air pressure at 100 [%] power

output is approximately 4,2 [barg].

The physical constraints for this pressure will be imposed as bounds to the optimizer. By a

defined upper limit for what is physical possible and at the same time set a lower bound close

to 0 [barg]. Since the optimizer will not be working on 0 [barg] air pressure the lower bound

will be set to 0,3 [barg] and the upper bound to 4.5 [barg] to give some regulation margin.

The charge air pressure cannot instantly change from one pressure to the next and hence the

optimizer is limited based on rate of change of the control value such that it cannot change

instantly. Nor can the waste gate valve change instantly and hence such limitations makes

sense.

64

4.1.2 Global ignition timing

The global ignition timing command is used to set the base ignition timing for the engine. Each

individual cylinder will adjust this base timing withing a window of +/-3 [degCA] to balance

the peak pressure off the cylinders.

The global base timing will influence the efficiency of the engine but also has an impact on the

peak pressures, NOx generation, knocking and exhaust temperature.

By advancing the global timing the peak pressure increases and this needs to be within the

design limit of the engine to prevent mechanical damage to the it. If the ignition is retarded the

exhaust temperature increases and the NOx emissions decreases as the combustion air

temperature increases due to longer burn duration. By retarding the ignition timing the heat

rate increases to indicate less efficiency.

Find the optimal balance for the global timing is not straight forward as one would like to

advance timing as far as possible, but not risking knocking to take place. The ignition timing

is also depended on the charge air pressure and the charge air temperature as these will

influence the combustion air temperature.

The ignition base timing is traditionally found during testing and running the engine close to

the knocking limit during controlled environments. It is however not given that the same

conditions will be applicable on every project and hence margin must be added on the set point

to take into account different fuel compositions and ambient conditions. Ageing is also a factor

here.

To counter act these changing conditions several set point modifiers are in place which will

bias the set point if a change in ignition knocking is detected or if exhaust temperature is

increased. In addition, the location of the centre of combustion is measured based on the heat

release curve from the combustion process. This location is used as a set point on a second

level PID controller which biases the base set point so that this location is kept on set point as

well. But none of these measures are there to optimize the fuel consumption over time and to

take into account all these constraints as an MPC controller can do.

There are some physical known limitations that should be obeyed. The global ignition timing

is seldom, if at all, below -8.5 [degCA] for a power plant running connected to the grid and

producing power at nominal speed. It will also not be possible to advance the timing more than

to -20 [degCA]. Nominal global ignition timing is usually in range of -12 [degCA] to -16

[degCA].

65

4.2 Measured disturbances

There are defined 3 main disturbances which are considered to have an impact on the system

to such an extent that they need to be included. All 3 disturbances are measured directly by the

control system. The most dominant are the engine power output. The measured value here is

the IMEP which is the measured cylinder work done over the combustion cycle utilizing

cylinder pressure sensors.

These disturbances are set as inputs to the model of the system under consideration.

4.2.1 Suction air temperature

This is slow varying input to the system which has the least impact. The suction air temperature

is the air temperature measured at the inlet of the compressor part of the turbocharger. This

disturbance will inform the system about the ambient conditions under which the engine is

currently operating. The ambient temperature, and hence the suction air temperature will wary

over a year for a given installation location. This varies might be small or large depending on

the location. It might therefor have an impact in some cases and hence it is added here.

4.2.2 Charge air temperature

The charge air temperature is measured in the air receiver and is the temperature of the

combustion air fed into the combustion chamber during the opening time of the inlet valve.

This temperature is in some projects actively regulated by a PID controller, while it in some

installations are mechanically adjusted at max power output to give a certain temperature.

Normal operational temperature here is around 50-55 [C]. This might however change if the

humid conditions are such that condensation might occur at this temperature.

The temperature of the charge air influences the air mass which is available to the combustion

process and hence any change here will impact both NOx emissions and the resilience towards

knocking.

4.2.3 IMEP

IMEP (Indicated Mean Effective Pressure) is measured directly by the cylinder pressure

sensors. The highest and lowest values are removed and the average over the number of

cylinders is taken and fed into a moving average filter over 100 cycles. This final value

indicates the current loading (power output) of the engine. This value is used by the model as

the major measured disturbance. Most engine dynamics can be explained by this single signal.

66

4.3 Measured outputs

The following list summarizes and shortly explains the measured outputs which are used by

optimizer as constraints.

4.3.1 Heat rate

This is the value that is to be minimized. It is indicative of the relation between the power

output and the fuel consumption estimation. The heat rate is given as the relation between the

IMEP and the total heat release. The IMEP is measured by the cylinder pressure sensors as

well as the total cumulative heat release. The heat release is given as [kJ/cycle] and is estimated

based on the pressure rise curve measured by the cylinder pressure sensors.

During the set point tracking testing this value is used as the feedback from the process.

4.3.2 Knock level

Knock level is also known as engine detonation and is when the combustion takes place

prematurely in part of the compressed air fuel mixture in the cylinder. This knocking can cause

severe damage to the engine if not responded to early because of high frequency pressure waves

causing very high cylinder pressures potentially above the design limit of the engine.

The engines are constantly pushed towards the knocking limit as this area produces better fuel

efficiency at higher power outputs. Knocking might occur if the air fuel mixture is not correct

or substances such as oil leaks into the combustion chamber causing changes to the burn rate

of the air/fuel mixture.

Each cylinder is monitored for knock level and any increase in knocking results in that cylinder

ignition timing being retarded for some time. If several cylinders experience knocking the

global timing point is usually retarded to avoid any further increase into non-operational areas.

The knock value is measured by looking at the ripples on the cylinder pressure curve after the

ignition location. This value indicates the level of knocking for each cylinder but is averaged

for all cylinders here. This will in general only pickup up globally severe knocking. Knocking

can also be reduced by lowering engine power output or increasing the amount of air in the

air/fuel mixture resulting in a leaner mixture. That will however impact efficiency.

The value here is included as constraint at it is a limiting factor for advancing the timing too

much or reducing the charge air pressure too much. Typically, the engine is shutdown with a

value over 30 [%]. This will be initially kept as constraint in this application.

4.3.3 Peak pressure

The peak pressures are measured from cycle to cycle and is the highest measured pressure in

the combustion chamber of the combustion cycle. The peak pressure is a value which must be

limited as there are design limitations on the engine for how high pressures the internal

components can withstand without damage.

The nominal peak pressures during 100 [%] power output at nominal speed is usually around

175 [bar]. The control system has alarming and shutdown conditions if sustain operation

67

around 200 [bar] is experienced and hence the optimizer should avoid operation above 200

[bar], and preferably limit operation to 180 [bar] but with some slack.

4.3.4 NOx

The NOx emissions are measured in the exhaust outlet after the turbocharger. The emissions

are measured with sensor from Continental most commonly used on trucks and cars. This

sensor gives the wet NOx values in ppm directly and is used in a closed loop regulation for

controlling the level of NOx to a given set point.

All power plant engines are sold with a given NOx emission set point at MCR9. More

information about the NOx values are given in section 1.3.2.4.

The NOx values are good indications of how rich or lean the fuel mixture in the combustion is.

A high NOx value indicates a rich mixture and vice versa. The NOx value is very sensitive to

these variations and will rapidly increase in case of the charge air pressure is reduced.

It should however be noted that the NOx values should rarely be seen drifting high during

steady operation. During transients a change in NOx value is expected as the engine increases

the air pressure during the transient to get better margins to the knock limit.

The NOx value would be used as a constraint during the optimization phase such that it can

stabilize below at least 150 [ppm].

4.3.5 O2

The same sensors that measures the NOx level in exhaust will also measure the O2 level. In

the traditional engine controller, the O2 percentage is used actively for engine limitation. That

is if the O2 level becomes too low, which indicates a too rich mixture, the engine will limit the

fuel admittance and hence reduce power output.

This value is rather critical and hence strict constraints on the low level is too be used.

On the higher level the engine risk misfire in case the value becomes too high indicating lean

mixture. A softer constraint here should be imposed preventing the optimizer from going into

too lean conditions.

During normal operational conditions the O2 percentage is somewhere between 8,5 [%] and

12,5 [%], with nominal condition a approx. 9.5 [%]. This lower limit is also handled externally

to the MPC as it is a critical condition. The optimization should be rather strict on the lower

limit while the upper limit can be broken during given condition. The aim should however be

to stay within the limits of 8,5 [%] and 12,5 [%].

4.3.6 Exhaust temperature

Traditionally the exhaust temperature outlet from each cylinder has been used to balance the

engine power output from each cylinder. Before the cylinder pressure sensor era the only

9 MCR is Maximum continues rating of the engine, that is the max power output.

68

possibility to check how much each cylinder contributed to the power output was be looking

at the deviation in exhaust temperature between the cylinders.

The exhaust temperature used here is the temperature measured in the collecting pipe just prior

to the turbine part of the turbocharger. This exhaust will therefore be an indicative of the all

cylinders on that pipe collectively.

There are limitations from the turbocharger supplier on the max inlet temperature of turbine

and hence these needs to be obeyed. The temperature will increase in case the power output

increases and mixture becomes too rich. It is therefore very dependent on the charge air

pressure, but also the ignition timing. In case the ignition timing is retarded the temperature

will increase and hence this needs to be handled.

The constraints can here be set based on normal operational conditions where the exhaust

temperature before the turbocharger turbine should not exceed 600 [C].

69

4.4 Constraints

This section looks into the definition of the constraints what we want to impose on the MPC

controller based on the engineering knowledge of the valid operational window. These are here

given in a table format. They are more discussed in section 0.

In Table 1 the constraints on the measured outputs are given. For “Heat rate” no limits are

given as this the signal to optimize.

Table 1: Output constraints

SIGNAL UNIT LOWER LIMIT UPPER LIMIT

Peak pressure bar 0 180

Knock level % 0 30

Heat rate -

Exhaust temperature before turbine C 0 600

NOx ppm 0 150

O2 % 8,5 12,5

In Table 2 the constraints for the controllable input signals are shown. There are constraints

both on the absolute value and the rate of change.

Table 2: Input constraints

SIGNAL UNIT LOWER LIMIT UPPER LIMIT

Charge air pressure barg 1 4.5

Global timing degCA -20 -8.5

Charge air pressure barg/s -0.2 0.2

Global timing degCA/s -0.3 0.5

70

4.5 qpOASES

The first optimizer that is tested is the qpOASES. The qpOASES is an open source

implementation of the online active set strategy [14]. It is inspired by parametric quadratic

programming and is based on the assumption that the optimal active set does not change much

from one quadratic program to the next. The qpOASES solves the QP of the following form,

Objective function

Linear inequality/equality constraints

Bounds

min
𝑥
 𝐽 =

1

2
𝑥𝑇𝐻𝑥 + 𝑐𝑇𝑥

𝑠. 𝑡.

𝑏𝐿 ≤ 𝐴𝑒𝑥 ≤ 𝑏𝑈

𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈

(4-1)

where the Hessian matrix is symmetric and positive semi-definite. Both the linear equality and

inequality constraints uses the same notation. For inequality constraints the 𝑏𝑈 and 𝑏𝐿 is

different while for equality constraints they are equal. So for equality constraints we have that

 𝑏𝐿 = 𝑏𝑈 = 𝑏𝑒

𝐴𝑒𝑥 = 𝑏𝑒

(4-2)

4.5.1 Set point tracking with bounds on control value

For the set point tracking with fixed disturbances and upper and lower bounds on the control

value the decision variable is defined as

𝑧 = [

𝑢
𝑥
𝑒
𝑦

] (4-3)

Based on a prediction horizon of 𝑁𝑝the total number unknows are given as

 𝑛𝑧 = 𝑁𝑝(𝑛𝑢 + 𝑛𝑥 + 𝑛𝑦+ 𝑛𝑦) (4-4)

The standard QP objective function can be set up as:

𝐽 =
1

2
[

𝑢
𝑥
𝑒
𝑦

]

𝑇

[

𝐻11 0 0 0
0 𝐻22 0 0
0 0 𝐻33 0
0 0 0 𝐻44

] [

𝑢
𝑥
𝑒
𝑦

] + [

𝑐1
𝑐2
𝑐3
𝑐4

]

𝑇

[

𝑢
𝑥
𝑒
𝑦

] (4-5)

We note that each element in the decision variable is in itself a vector of elements equal to the

prediction horizon 𝑁𝑝 such that for example for 𝑢 the vector looks like

71

𝑢 = [

𝑢0
𝑢1
⋮

𝑢𝑁𝑝−1

] (4-6)

Each block in the Hessian matrix is now the weighting matrix for each variable in the decision

vector where we set the element for each step of the prediction horizon equal to each other such

that for the decision variable 𝑢 we have that

𝐻11 =

[

𝑃0 0 … 0
0 𝑃1 … 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑃𝑁𝑝−1]

 (4-7)

where 𝑃0 = 𝑃1⋯⋯ = 𝑃𝑁𝑝−1

In this project there are 2 controllable outputs and 1 set point to track and there are 3 measured

disturbances and 5 additional outputs to be used as constraints. So, in this case the decision

variable 𝑢 contains to values for each time step in the prediction horizon as

𝑢 =

[

𝑢0
1

𝑢0
2

𝑢1
1

𝑢1
2

⋮
𝑢𝑁𝑝−1
1

𝑢𝑁𝑝−1
2

]

 (4-8)

and

𝐻11 = 𝐼𝑁𝑝 ⊗𝑃𝑛𝑢×𝑛𝑢

where ⊗ is the Kronecker product.

A simple test is performed with a set point tracking case. In this test the set point is firstly

changed in a step, then there is a step change in the disturbance 𝐼𝑀𝐸𝑃.

The control output response is shown in Figure 4-1. This time the 𝐶ℎ𝑎𝑟𝑔𝑒 𝑎𝑖𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 stay

well below the upper bound of 4,5 [barg] while the 𝐺𝑙𝑜𝑏𝑎𝑙 𝑡𝑖𝑚𝑖𝑛𝑔 goes straight to the upper

bound of -8.5 [degCA].

72

Figure 4-1: Set point tracking - qpOASES - control outputs

Figure 4-2: Set point tracking - qpOASES - disturbances

73

Figure 4-2 shows the disturbances which are kept constant except for the step in 𝐼𝑀𝐸𝑃 at 300

seconds. The response in the 𝐶ℎ𝑎𝑟𝑔𝑒 𝑎𝑖𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 is clearly visible at this point from Figure

4-1.

Figure 4-3: Set point tracking - qpOASES - heat rate and set point

In Figure 4-3 the heat rate and the step change in the set point at 100 seconds is shown. The

heat rate tracks the set point well and returns quickly to the set point after the disturbance to

the 𝐼𝑀𝐸𝑃.

74

4.5.2 Code for qpOASES

The SIMULINK model used for qpOASES testing is shown in Figure 4-4. The logic in the

qpOASES QP formulation function is given in Appendix F

. The first control move for each input is extracted in the “selectFirst_u” function. The code is

mostly based on the structure as defined in the lecture notes for IIA 4117 [6].

The SIMULINK model has a step change in the disturbance and a step change in the set point.

A Kalman filter is added for state estimation based on the control inputs and the measured

outputs from the model. Note that the model in the Kalman filter, the “plant model” and the

model supplied to the qpOASES are the same and hence the same outcome is expected.

Figure 4-4: qpOASES - Simulink model

75

4.5.3 Status of qpOASES

The qpOASES was tested with a set up in SIMULINK with MATLAB functions for declaring

and incorporating the functions. Running the simulations is a time-consuming task and

internally in the project it was suggested quickly to try the Quadprog and FMINCON

approaches. Quadprog might be a quicker optimizer and hence should be tested. On the other

hand, if non-linear model could be the outcome it was suggested to start to test with FMINCON

as it is much more versatile in the structure it accepts, and it also accepts non-linear models

and constraints.

The qpOASES was therefore quickly discontinued for further development at this stage and

the focus was shifted to the FMINCON for further development.

76

4.6 Quadprog

During the initial phases of this project the Quadprog in MATLAB was also tested to solve the

QP problem. This is a built-in function in MATLAB from the optimization toolbox which can

use different routines to solve a QP problem. The Quadprog accepts the standard form of QP

problem as used for the qpOASES in section 4.5.

Objective function

Linear equality constraints

Linear inequality constraints

Bounds

min
𝑥
 𝐽 =

1

2
𝑥𝑇𝐻𝑥 + 𝑐𝑇𝑥

𝑠. 𝑡.

𝐴𝑒𝑥 = 𝑏𝑒

𝐴𝑖𝑥 ≤ 𝑏𝑖

𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈

(4-9)

During the testing the set point tracking problem was used to test the model. Bounds on the

upper and lower limit of the control signal was in place. Much of the same code as was used

for the qpOASES was re-used for this testing as the structure is basically the same. It was also

initially tested in SIMULINK, but this was quickly revoked to be done internally in MATLAB

to try to speed up the simulation a bit and not needing to declare the function as extrinsic.

77

4.6.1 Set point tracking with bounds on control value

A short set point tracking test with the Quadprog is shown in Figure 4-5 - Figure 4-7. The

control outputs in Figure 4-5 shows that the optimization in not as “clean” as it was for the

qpOASES and the control outputs goes to its outer constraints rather quickly. Just before the

70 second mark it fails completely.

Figure 4-5: Set point tracking with Quadprog - Control inputs

The measurements and the set point is shown in Figure 4-6 and Figure 4-7. These shows that

the set point is tracked but there are some sudden changes to the outputs at sporadic times.

The set point tracking here was tested with the “interior point” method as it contained both

bounds and inequality constraints.

The solving of the optimization problem was not timed, but it took 6+ hours to solve for 500

samples which it far more than the qpOASES used for the a much larger problem.

78

Figure 4-6: Set point tracking with Quadprog – Measured outputs

Figure 4-7: Set point tracking with Quadprog – Measured outputs

79

4.6.2 Code for Quadprog

The code used with the Quadprog is very much the same as used for the qpOASES in section

4.5, but this time all the simulation is done outside of the SIMULINK environment any only

MATLAB scripts is used. Some minor changes to the setup of the matrices as the Quadprog

accepts for instance the Hessian as a matrix and not only in vector form as the qpOASES.

The code can be viewed the Appendix G

4.6.3 Status of Quadprog

The testing with the Quadprog became very limited as the shift in focus towards the Fmincon

was established at the same time as the Quadprog was tested. During the first testing phases

infeasibility was often the case during simulation. The first set of testing was done using the

polynomial model converted to a state space model, but even with the updated state space

model the results were not always feasible even with only constraints on the control inputs

signals.

The simulation time running the Quadprog was even for short simulation time (500 samples)

and prediction horizon of 100 samples a very time-consuming task. This could have been

improved by minimizing the decision variables for example by grouping. This was not

prioritized at the current stage and the Quadprog solution was not explored further.

80

4.7 Fmincon

The Fmincon is a function from the MATLAB Optimization Toolbox which can be used to

solve nonlinear constrained multivariable optimization problems. This function has been used

for testing as it can handle both non-linear and linear functions. Most of the work in this project

is done using the Fmincon and substantial time has been spent testing various variations of

settings and set ups. Most of the results are presented in the following sections. It should be

noted that many more simulations have been tested which has failed during testing as parameter

extremes has been tested. The simulation part with Fmincon is also a time consuming task, but

not the same extent as qpOASES and Quadprog, but still hours and hours has been spent

tweaking the set up.

4.7.1 Set point tracking – unconstrained

These tests are to verify the MPC based on Fmincon to work as a set point tracker without any

constraints on any outputs. The control inputs have their upper and lower bounds set so that

large changes are possible and hence the physical limitations are not imposed on the control

signals. The set point is set on the heat rate as this is the value of interest for the project. The

disturbances used are based on measured real-life data in some of the tests and on fixed values

during some tests. This is specified for each test.

The objective function is set to minimize the error on between the set point and the measured

value and to minimize the control output. The general formula is given in equation (4-10).

 𝐽(𝑢)
𝑚𝑖𝑛 =

1

2
∑(𝑒𝑘

𝑇

𝑁

𝑘=1

𝑄𝑘𝑒𝑘 + ∆𝑢𝑘
𝑇𝑃𝑘∆𝑢𝑘) (4-10)

In this example 𝑒 is the error between the set point and the reference and value and the

minimization is also in the rate of change of the control values.

4.7.1.1 Set point tracking with step change in set point

The first tests are to check the response to step change in set point. Firstly, the initial set point

is set to 11000 as this is slightly above the initial value of the heat rate. We can than see if the

controller stabilizes before doing the actual set point change after 300 seconds. This will be a

step change which is nonphysical operation but will still show if the set point tracking feature

of the MPC works in theory.

We see in Figure 4-8 the two control values from the set point tracking. These shows that he

global timing control value quickly goes to its maximum constraint value while the charge air

pressure stays close to its minimum constraint until the step change at 300 seconds.

The set point is firstly set to 11000 and then changed to 12000 after 300 seconds. During this

test the prediction horizon was set to 50 samples and the simulation time to 500 seconds. The

optimizer algorithm used was the “interior point” with max 1000 iterations and max 1000

function calls.

The bounds on the control signals are set wide such that

81

0,3 ≤ 𝑐ℎ𝑎𝑟𝑔𝑒 𝑎𝑖𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 ≤ 8
−20 ≤ 𝑔𝑙𝑜𝑏𝑎𝑙 𝑡𝑖𝑚𝑖𝑛𝑔 ≤ 0

Figure 4-8: Set point tracking - control values

82

Figure 4-9: Set point tracking – disturbances

In Figure 4-9 we see the 3 disturbances over the 500 second period. Based on the physical

nature these are only slightly varying over this period. For the suction air temperature, the

change is about 0,2 [C], the IMEP is varying with about 2 bar and the charge air temperature

about 1 [C].

83

Figure 4-10: Set point tracking - heat rate output

We can see from the output plot in Figure 4-10 that the heat rate quickly gets to the set point

of 11000 and quickly changes towards 12000 when the set point changes at 300 second. We

observe that the control value 𝑔𝑙𝑜𝑏𝑎𝑙 𝑡𝑖𝑚𝑖𝑛𝑔 goes to upper bound quickly and stay there in

Figure 4-8. This value is now abnormally high and only allowed to go to this point in order to

show the set point tracking feature. But even with these outer limitations we did not get

completely to the set point for 12000 for the heat rate. We also note that the heat rate signal is

not clean. To exclude the disturbances as the cause of this “noise” the simulation is repeated

with only the set point changing.

84

With fixed disturbances and only a set point change the model produces the results shown in

Figure 4-12 and Figure 4-11. Here we see that now the set point tracking is completely stable

until 300 seconds and tracks well during the step change.

Figure 4-11: Set point tracking with fixed disturbances and set point change – heat rate and set point

85

Figure 4-12: Set point tracking with fixed disturbances and set point change – control inputs

During this test we reach the limit on the charge air control signal after the step change resulting

in the dip in heat rate. Here we see that the global timing is then used to get the heat rate back

to set point. These values are not outside what we consider normal operating window and hence

the choice of set point might not have been ideal in this case.

86

4.7.1.2 Set point tracking with fixed set point and disturbance rejection

If we look at the impact of a major disturbance on the engine power output, but keep the set

point stable and the other two disturbances stable we get the results as in Figure 4-13, Figure

4-14 and Figure 4-15. Here we see that a step change is added to the IMEP at 300 seconds. The

heat rate has a quick error before it stabilizes back to set point. Both control outputs adjust

rapidly to compensate. The control outputs do however not physically have the possibility to

adjust at such speed and hence limitations on the control value rate of change will need to be

added.

Figure 4-13: Set point tracking with disturbance rejection - control inputs

We note from Figure 4-13 that the control signal of global timing quickly reaches it the

maximum value while the charge air pressure stays within bounds.

87

Figure 4-14: Set point tracking with disturbance rejection - measured output

We note that once again we are not able to keep the set point after the step change with current

values even though the charge air pressure control signal doesn’t reach its maximum value.

88

Figure 4-15: Set point tracking with disturbance rejection - disturbances

During this test the disturbances are kept fixed to avoid any added noise, except for the step

change in IMEP.

89

4.7.1.3 Set point tracking with ramp in set point

In this section the set point is gradually increased from an initial value of 10500 and up to

12000 over a period of 1 unit per 100 [ms]. The change in set point starts at 150 seconds.

Note that the set point is not known to the controller before the change and is kept constant for

the whole prediction horizon.

The prediction horizon is still set to 50 samples and the upper and lower bounds on the control

signals amplitude is given as:

0,3 ≤ 𝑐ℎ𝑎𝑟𝑔𝑒 𝑎𝑖𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 ≤ 8
−20 ≤ 𝑔𝑙𝑜𝑏𝑎𝑙 𝑡𝑖𝑚𝑖𝑛𝑔 ≤ 0

Figure 4-16: Set point tracking with gradually increasing set point – Heat rate

From Figure 4-16 that the set point tracks very well until just before the max set point is

reached. It is noted that this period is the period in which the charge air pressure reaches its

maximum allowed value and hence the global timing is used to reduce the error and get the

heat rate back on set point.

90

Figure 4-17: Set point tracking with gradually increasing set point – control inputs

From Figure 4-17 we can see that the charge air pressure is saturated at 8 [barg] while the

global timing is still within its constraints.

By increasing the prediction horizon from 50 samples to 150 samples the response is as

indicated in Figure 4-18 on the heat rate. We still get an error when the set point gets close to

12000 but this time it has a different shape.

91

Figure 4-18: Set point tracking with gradually increasing set point – Heat rate and prediction horizon of 150

samples

Looking at the control outputs again in Figure 4-19 it is noted that the charge air pressure this

time is limited to just below the max limit and the gradient of the ignition timing is less steep

and predicts higher global timing value earlier than with the prediction horizon on 50 samples.

92

Figure 4-19: Set point tracking with gradually increasing set point – control outputs and prediction horizon of

150 samples

93

4.7.2 Set point tracking with constraints on ∆𝑢𝑚

By adding constraints on the rate of change of the control variable we get the results as in

Figure 4-20 and Figure 4-21. This time we see a different result as the MPC takes into account

the rate of change limitations of the control values. In this example the disturbance is identical

to the one in Figure 4-15, that is a step change of 2,5 [bar].

The constraints are

−0,2 ≤ ∆𝑢1 ≤ 0,2
−0,3 ≤ ∆𝑢2 ≤ 0,5
0,3 ≤ 𝑢1 ≤ 4
−20 ≤ 𝑢2 ≤ −8

where 𝑢1 is charge air pressure and 𝑢2 is global ignition timing. The ∆𝑢𝑚 is given as unit per

seconds. Note that the amplitude of the control signals is added as bounds as in the earlier

sections and hence are interpreted as hard constraints. The rate of change constraints are added

as nonlinear constraints even though they are not nonlinear. The reason is the rate of change is

calculated withing the cost function and also is one element in the cost function to minimize.

4.7.2.1 Set point tracking with load rejection

The set point is set to 10300 for the heat rate. There are no constraints on the outputs.

Figure 4-20: Set point tracking with disturbance rejection - control values with rate of change constraint

From Figure 4-20 it can be seen that the charge air pressure control output slightly touches the

upper bound on the control output, but for the most parts stay within bounds. The global timing

control output is within the operational window at all times.

94

Figure 4-21: Set point tracking with disturbance rejection - measured outputs with constraint on rate of change

of control values

The heat rate output tracks the set point rather well before the step disturbance as can be seen

in Figure 4-21. After the disturbance it never gets back to the set point and a constant offset

error is seen. Adding either internal integral terms of external should remove the constant error

term.

95

Figure 4-22: Set point tracking with disturbance rejection – rate of change on control values with constraints

The ∆𝑢 control signals can be seen in Figure 4-22. Just after the disturbance at 300 seconds,

we can some constraints being broken by the charge air pressure but overall the constraints are

honoured well. We have some issues after about 100 seconds where the charge air pressure

control signals go from a positive direction to a negative direction and the ignition timing is

increased to keep the set point. It should be noted that at this point we are physically outside

normal operating window as an IMEP of 7,8 [bar] does not produce a charge air pressure of

3,5 [barg] during normal physical operation.

96

4.7.2.2 Set point tracking with ramp in set point

Figure 4-23: Set point tracking with ramp in set point - control values with rate of change constraint

In Figure 4-23 we observe the control output during a ramp change in set point while keeping

the disturbances fixed. The set point is ramped between 9800 to 10500 as seen in Figure 4-24.

We note that neither the global timing nor the charge air pressure reaches any bounds during

this simulation.

97

Figure 4-24: Set point tracking with ramp in set point - heat rate output with constraint on rate of change of

control values

The set point is here in Figure 4-24 clearly not kept after the change in set point. After a

successful ramp up of set point and ok tracking for the first few seconds after the final point is

reach the heart rate drops below set point for the rest of the simulation.

The rate of change on the control outputs can be seen in Figure 4-25 as is clear the control

output is not at all stable after the 250 seconds mark.

98

Figure 4-25: Set point tracking with ramp in set point – rate of change on control outputs

By increasing the weighting matrix on the error term 𝑄 = 10 and adding the 𝑢 variable to the

cost function the results change. The control outputs have the same shape but the absolute

values changes. The updated control values is seen in Figure 4-26 and can be compared to

those in Figure 4-23.

99

Figure 4-26: Set point tracking with ramp in set point - control values with rate of change constraint and

increased weight on error

From Figure 4-27 it can be clearly seen that the set point is now tracked but the signal looks

very noisy compared to the previous simulations. This comes after added weight on the error

term in the cost function compared to the weight on the ∆𝑢 and 𝑢.

100

.

Figure 4-27: Set point tracking with ramp in set point - heat rate output with constraint on rate of change of

control values and increased weight on error

101

4.7.3 Set point tracking with constraint on outputs

This section will impose constraints on the measured outputs in addition to the control signals

amplitude and rate of change. The constraints are added as inequality constraints to the

Fmincon algorithm. The constrains are internally by the Fmincon handled as soft constraints.

The amplitude of the control signals is still imposed as upper and lower bounds and hence are

treated as hard constraints.

In the following test there is added constraint on exhaust temperature at 600 [C], that is the

temperature needs to be below this level. At the same time there is added constraint on the

measured 𝑂2 percentage to keep it within 8,5 [%] (lower constraint) and 12,5 [%] (upper

constraint).

The test is done by running with fixed set point and adding a step change in the 𝐼𝑀𝐸𝑃 (engine

power output) of 2 [bar]. Set point is set to 10 300.

The results can be seen in Figure 4-28, Figure 4-29, Figure 4-30 and Figure 4-31.

The constraints in the measured outputs shown in Figure 4-31 is throughout the simulation.

The constraints on the 𝑂2 percentage is indicated with a yellow and red line and for the exhaust

temperature with a red line.

Figure 4-28: Set point tracking with constraints and disturbance rejection - step change in IMEP

From Figure 4-28 it noted that the disturbances other than the step change in the IMEP is kept

constant. Looking at the control signals in Figure 4-29 it is clear that the system is unstable.

The control value of charge air pressure is kept withing the upper and lower bounds while the

global timing goes in and out of the lower bound after about 150 seconds.

102

Figure 4-29: Set point tracking with constraints and disturbance rejection – control outputs

Figure 4-30: Set point tracking with constraints and disturbance rejection – heat rate

103

Figure 4-31: Set point tracking with constraints and disturbance rejection – measured values with constraints

By increasing the weight on the error term in the optimization the results as show in Figure

4-32, Figure 4-33, Figure 4-34 and Figure 4-35 are produced. No other parameters where

changed. We see here a much “nosier” signal than previously, but still the overall trends are

the same and the constraint on the 𝑂2 is kept. We still get a between the set point and the heat

rate.

104

Figure 4-32: Set point tracking with constraints and disturbance rejection - control values – increased weight on

error

Figure 4-33: Set point tracking with constraints and disturbance rejection - disturbances - increased weight on

error

105

Figure 4-34: Set point tracking with constraints and disturbance rejection – heat rate – increased weight on error

Figure 4-35: Set point tracking with constraints and disturbance rejection - measured values with constraints –

increased weight on error

106

By increasing the prediction horizon from 70 to 150 we get the results in Figure 4-36, Figure

4-37 and Figure 4-38. The disturbance change remains the same as in the previous attempts.

We now get a slight larger initial break of the constraint on the 𝑂2 and a slightly higher charge

air pressure set point around 100 seconds. The heat rate is now less noisy.

Figure 4-36: Set point tracking with constraints and disturbance rejection - control values – 150 steps in

prediction horizon

107

Figure 4-37: Set point tracking with constraints and disturbance rejection – heat rate – 150 steps in prediction

horizon

Figure 4-38: Set point tracking with constraints and disturbance rejection - measured values with constraints –

150 steps in prediction horizon

108

Looking more into the “noise” on the signals a test is done where the disturbances is kept

constant and ramp on the set point is added. Prior to the test the starting set point and the

finishing set point is tested such that the no limit is broken while at steady state.

Figure 4-39: Set point tracking with constraint on output – control output

From Figure 4-39 it is seen that the control values are well within our well established upper

and lower bounds even though a steep gradient on the global timing is seen. From Figure 4-40

it we note that the set point and process output tracks as it should between the original set point

and the final set point, but after some time at the upper set point the Heat rate looks unstable

and this is at the same time as the global timing reduces quickly.

109

Figure 4-40: Set point tracking with constraint on output – Heat rate and set point

From Figure 4-41 it is clear that it is the 𝑂2 limit breach which is causing the unstable control.

The Fmincon is not able to keep the 𝑂2 within the constraint and is resulting in unstable control

once the constraint is broken.

110

Figure 4-41: Set point tracking with constraint on output – Outputs

Moving the set point down slightly makes the control signals stay closer to their initial value.

Still having the same absolute increase in set point of 500, but this time from 9600 to 10100

the set point tracking is ok with no noise.

111

Figure 4-42: Set point tracking - ramp in set point - control values

The control value outputs are shown in Figure 4-42 and they stay well within their bounds.

This time there is no sudden drop in the global timing as we note from Figure 4-44 that the

outputs do not get close the constraint limits. The heat rate tracks therefor the set point as

indicated in Figure 4-49 without any problems.

112

Figure 4-43: Set point tracking - ramp in set point - heat rate and set point

Figure 4-44: Set point tracking - ramp in set point - outputs

113

It is clear from several tests that getting into the constraints with the Fmincon will result in the

a more noise results. Several attempts are done on moving the set point and the constraints to

see if there are particular constraints that are more of a problem than others.

One important aspect here is that the modification of the set point and the addition of the

disturbance might not be within the boundaries of the model at all. The heat rate is usually a

result of the disturbance and keeping it to a given set point is not a physical thing to do. The

heat rate will reduce as the 𝐼𝑀𝐸𝑃 disturbance increases as the engine become more efficient.

The final optimizer here will also not have a set point and hence it will try to minimize the heat

rate as much as possible but still stay within the constraints; and hence the constraints will most

likely be active at all times.

In a test the weight on the change on control signal was increased from 0,01 to 1 in order to

reduce the change in control signal more Vs the error.

Figure 4-45: Set point tracking with ramp in disturbance - constraint on Exhaust - control outputs

In Figure 4-45 we see that the control signal momentarily hits the upper bound of 4,5 [barg] at

70 seconds causing. At the same time from Figure 4-48 it is noted that the heat rate drops during

this period before recovering. At the same time, in Figure 4-46, the disturbance reaches its

maximum value around 65 seconds.

114

Figure 4-46: Set point tracking with ramp in disturbance - constraint on Exhaust – disturbances

Only the IMEP disturbance is changed and the other two kept constant.

Figure 4-47: Set point tracking with ramp in disturbance - constraint on Exhaust – outputs

115

During the set point tracking of the first stable phase – no change in either set point nor

disturbance there is a lot of noise on the signal as the set point is not reached. This comes from

the optimizer and the fact that the weight matrix of the error term was reduced from 100 to 1.

This is definitely causing problems. During the change of set point on the heat rate and the

disturbance change there are some noise, see Figure 4-47, until it stabilizes after the changes

stopes. From Figure 4-47 it is noted that the 𝐸𝑥ℎ𝑎𝑢𝑠𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 is close to its constraint

of 540 [C] just before 60 seconds as well as the 𝑂2 getting close into its constraint.

Figure 4-48: Set point tracking with ramp in disturbance - constraint on Exhaust – Heat rate

116

4.7.4 Minimize heat rate with constraints

In the following test the heat rate is minimized separately. That is; there is no set point tracking,

but the heat rate is to be minimized while still honouring the constraints. Since the value for

the heat rate is so large, i.e. not normalized, care must be taken as the Fmincon uses the

constraint weight and the objective function weight to decide which to follow in case of not

both being fully achievable. In our real-life case we want to minimize the heat rate but stay

within the limits.

In the test below the IMEP is ramped from initial condition and up to ~18 bar with constraints

on O2 percentage and exhaust temperature.

The results can be viewed in Figure 4-49, Figure 4-50, Figure 4-51 and Figure 4-52. We see

that the control value for Global timing reaches its upper bounds which gives a non-practical

condition, but the Fmincon manages to keep the 𝑂2 percentage above the 8,5 [%] orange line

in Figure 4-52 and still keep the 𝑒𝑥ℎ𝑎𝑢𝑠𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 below 600 [C].

Figure 4-49: Minimized heat rate with constraints and disturbance rejection – disturbances

117

Figure 4-50: Minimized heat rate with constraints and disturbance rejection - control inputs

Figure 4-51: Minimized heat rate with constraints and disturbance rejection – heat rate

118

Figure 4-52: Minimized heat rate with constraints and disturbance rejection – process measurements

A second attempt is done by reducing the weight on the heat rate minimization and increase

the weight on the rate of change of the output to see if it would stabilize. All other conditions

remain the same. We see in Figure 4-53, Figure 4-54 and Figure 4-55 that the trajectory is the

same as before but this time it stabilises and the noise is largely reduced. At least this applies

to the period after 150 seconds point. The heat rate settles at the about same location as in the

previous attempt.

119

Figure 4-53: Minimized heat rate with constraints and disturbance rejection - control inputs – increased weight

on control signal change

Figure 4-54: Minimized heat rate with constraints and disturbance rejection – heat rate – increased weight on

control signal change

120

Figure 4-55: Minimized heat rate with constraints and disturbance rejection - outputs – increased weight on

control signal change

Several simulations are performed to improve the behaviour of the controller with a fixed

ramped disturbance. The results in Figure 4-56, Figure 4-57, Figure 4-58 and Figure 4-67

shows some of the results with a slightly modified set up of the inequality constraints. This

time the constraints are estimated based on the initial state estimation for each iteration over

the whole prediction horizon given as

 𝑌 = 𝐹𝑥(𝑘𝑖) + 𝜙𝑢𝑈 + 𝜙𝑢𝑑𝑈𝑑 (4-11)

where 𝑌 is the estimated outputs over the whole prediction horizon and 𝑥(𝑘𝑖) is states at the

current initial time of the iteration and 𝑈 and 𝑈𝑑is the control inputs signal and disturbances

over the prediction horizon respectively.

𝐹 =

[

𝐶𝐴
𝐶𝐴2

𝐶𝐴3

⋮
𝐶𝐴𝑁𝑝]

 (4-12)

121

𝜙𝑢 =

[

𝐶𝐵 0 0 ⋯ 0
𝐶𝐴𝐵 𝐶𝐵 0 ⋯ 0
𝐶𝐴2𝐵 𝐶𝐴𝐵 𝐶𝐵 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

𝐶𝐴𝑁𝑝−1𝐵 𝐶𝐴𝑁𝑝−2𝐵 𝐶𝐴𝑁𝑝−3𝐵 ⋯ 𝐶𝐴𝑁𝑝−𝑁𝑐𝐵]

 (4-13)

𝜙𝑢𝑑 =

[

𝐶𝐵𝑑 0 0 ⋯ 0
𝐶𝐴𝐵𝑑 𝐶𝐵𝑑 0 ⋯ 0

𝐶𝐴2𝐵𝑑 𝐶𝐴𝐵𝑑 𝐶𝐵𝑑 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

𝐶𝐴𝑁𝑝−1𝐵𝑑 𝐶𝐴𝑁𝑝−2𝐵𝑑 𝐶𝐴𝑁𝑝−3𝐵𝑑 ⋯ 𝐶𝐴𝑁𝑝−𝑁𝑐𝐵𝑑]

(4-14)

The source code for these tests are given in Appendix I

The control output signals in Figure 4-56 now shows very little noise on the control signals

during this simulation.

Figure 4-56: Minimized heat rate with constraints and disturbance rejection - control inputs

122

Figure 4-57: Minimized heat rate with constraints and disturbance rejection - disturbance

The disturbance signal is still the same with a ramp to about 18 [bar] on the 𝐼𝑀𝐸𝑃 disturbance.

Figure 4-58: Minimized heat rate with constraints and disturbance rejection – heat rate

123

The shape of the heat rate is similar to the previous simulations but this time the oscillations

are no longer present.

The outputs here stay well within the constraint limits even though the limit on the exhaust

temperature has been lowered to 540 [C] to have closer to the limit.

By adding real-life disturbances on the other two, 𝐶ℎ𝑎𝑟𝑔𝑒 𝑎𝑖𝑟 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 and

𝑆𝑢𝑐𝑡𝑖𝑜𝑛 𝑎𝑖𝑟 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 we will see the effects of the non-fixed values on the optimization

output. From the simulation results presented in Figure 4-59 to Figure 4-62 there differences

are small as the variations in the disturbances are limited. There are however some subtle

differences in the response.

124

Figure 4-59: Minimize heat rate with constraint on outputs and real life disturbance - control inputs

Figure 4-60: Minimize heat rate with constraint on outputs and real life disturbance - disturbances

125

Figure 4-61: Minimize heat rate with constraint on outputs and real life disturbance - outputs

Figure 4-62: Minimize heat rate with constraint on outputs and real life disturbance – heat rate

126

As a test about 37000 samples of real process data with some large variation in the disturbance

input was sent through the optimizer to view the outcome.

From Figure 4-63 we note the variation in the control variables as the disturbance’s changes.

The disturbances are given in Figure 4-64 and in particular the IMEP covers a range of

operational windows from lower values to a peak at full nominal power at 1200-1500 seconds

before reducing back down to low level again.

In addition to the blue curves in Figure 4-63 which shows the output from the optimizer the

added red curves shows the control output from the real engine controller from period. We note

the separation and differences in particular related to the engine global timing which the

optimizer advances more than the current controller which should improve the fuel efficiency

in theory. The charge air pressure is also slightly increased to compensate for the increase in

burn rate due to the advanced timing.

It should be noted, as indicated in pervious sections, that an unlimited possibility of I increasing

the charge air pressure might not be feasible due to capacity of the turbocharger and a variable

upper bound in this value should be established to avoid unrealistic optimistic behavior of the

optimizer.

Figure 4-63: : Minimize heat rate with constraint on outputs and real life disturbance – control outputs from

optimizer (blue) and real life control inputs (blue)

127

Figure 4-64: : Minimize heat rate with constraint on outputs and real life disturbance – disturbances

Figure 4-65: Minimize heat rate with constraint on outputs and real life disturbance – measurements

128

Through the simulation the outputs O2 and Exhaust temperature are kept within the constraints

and hence not problem for the optimizer in that regard as are illustrated in Figure 4-65.

Figure 4-66: : Minimize heat rate with constraint on outputs and real life disturbance – heat rate (blue) versus

measured real heat rate (red) from the same period

The heat rate output is here minimized by the optimizer and the result is shown in “blue” in

Figure 4-66. In addition, the measure heat rate from the field is shown in red for the same

disturbances. We note that values are closely related and share the same form. For the major

part of the simulation the optimized heat rate is also lower than the measured from the installed

engine running traditional control. There is a period around 2250 second mark where the

estimated optimize is slightly higher than the measured.

129

4.7.5 Grouping of control inputs

This section will look into the possibilities for grouping the control inputs into groups in order

to reduce the computational efforts by reducing the number of decision variables.

The theory behind grouping is explained in section 2.6. This section will only look at the results

on reducing the computational effort by reducing the number of decision variables. In the first

optimization shown below the time for the simulation of 5000 steps with a prediction horizon

of 150 samples has been shown. The number of control signals are the same as before,

𝐶ℎ𝑎𝑟𝑔𝑒 𝑎𝑖𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 and 𝑔𝑙𝑜𝑏𝑎𝑙 𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑖𝑛𝑔.

The number of decision variables are then 150 × 2 = 300

The optimization is the same as the results shown in Figure 4-53 - Figure 4-55 are from.

The output from the MATLAB prompt over the simulation time of 500 seconds is given as:

Elapsed time is 2159.803144 seconds.

It is clear for this result that the MPC controller is not able to optimize the problem within the

physical time of the system on the computer hardware available for the “interior point”

algorithm.

In the second attempt the control signals are grouped into 5 groups of unequal length.

The first group is 5 samples, the second group is 10 samples, the third group is 20 samples, the

fourth is 40 samples and the last is 75 samples. The number of decision variables then becomes

5 × 2 = 10.

This time the output from MATLAB prompt over the 5000 samples is given as:

Elapsed time is 1187.139346 seconds.

We see that the time it takes to do the simulation is greatly reduced while still being very high.

But what we also note is that the optimization fails completely in staying within the constraints.

Figure 4-67 shows that both the 𝑂2 and the 𝑒𝑥ℎ𝑎𝑢𝑠𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 constraints are broken.

Several simulations where tested with grouping of control inputs, but all suffer from worse

handling of constraints due to the grouping. Most of them also tended to become unstable. It

might be that the implementation is not done correctly on how the problem is structured when

using grouping with Fmincon. More testing needs to be performed here, but due to the limit

time on the project, more testing at this stage was not possible.

130

Figure 4-67: Minimized heat rate with constraints and disturbance rejection - outputs – grouping active

131

4.7.6 Prediction horizon

This section shows the effect of different prediction horizons on the optimization. The objective

is to minimize the heat rate with constraints on the amplitude of the control signal and the

measurements 𝑂2 and 𝐸𝑥ℎ𝑎𝑢𝑠𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒. The disturbances are real life data and the

simulation is for 15 000 steps which is equal to 1500 [s] of process data with a resolution of

0.1 [s]. The simulation time is given in Table 3 and visualized in Figure 4-68.

Table 3: Simulation time for various prediction horizons

PREDICTION HORIZON TIME [S]

50 2950

75 3951,9

100 4808,4

125 5613

150 7359,8

175 7716,4

200 9748,5

Figure 4-68: Simulation time with 15 000 steps for different prediction horizons

We note that the simulation time increases gradually until 125 where there is a steeper section

until 150 steps. There might have been other processes active on the computer during the test

of 150 prediction horizon so not too much should be put into. The general trend is that the

prediction horizon has a big influence on the simulation time

In Figure 4-69 the two control values are given for the different prediction horizons. It is noted

that from a prediction horizon of 125 the values are very much the same.

132

Figure 4-69: Control value outputs for different prediction horizons

Figure 4-70: Heat rate for different prediction horizons

From Figure 4-70 it is difficult to tell if there is any big difference in the heat rate depending

on the prediction horizon. If anything, it appears that the lower prediction horizon gives a lower

133

heart rate but in general it is difficult to tell. The average value for a prediction horizon of 50

is 9696 and for a prediction horizon of 200 the average is 9770, so basically the same value.

Figure 4-71: Measurements for different prediction horizons

For the two measurements mostly looked at throughout the testing, the 𝑂2 and

𝐸𝑥ℎ𝑎𝑢𝑠𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 Figure 4-71 shows that these differs in the same way as the control

values in Figure 4-69. From a prediction horizon of 125 and upwards they are basically the

same, while for the lower prediction horizons there are larger variations.

134

4.8 Laguerre based Discrete Model Predictive Control

This section will look into the attempt to produce a Laguerre based DMPC. This version is

based on the traditionally DMPC but where the Laguerre multipliers are used to simplify the

structure.

During the study of previously MPC controllers this version emerged as a practical

implementation of an industrial MPC where computational effort is reduced by reformulating

the MPC state space model using Laguerre functions.

The practical implementation presented by Wang [11] looked instating and substantial amount

of time was spent looking into this approach. The theory and testing are presented in the

following sections.

The theory presented here also applies the traditional MPC as used in the previous chapters but

are here presented in the context of the Laguerre based DMPC.

4.8.1 Classical DMPC

The classical DMPC can by formulated using a standard state space model given as in equation

(4-15) where 𝐴, 𝐵, 𝐶, 𝐷 represents the state space matrices, 𝑢 is the control input, 𝑦 is the

measured output and 𝑥 is the state variable vector.

 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑢(𝑘)
(4-15)

Since we are using receding horizon control, we can assume that the input 𝑢(𝑘) cannot directly

affect the 𝑦(𝑘) at the same time and hence 𝐷 = 0.

If we redefine the system to the augmented state space model, including the integrator term for

offset free operation have.

 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵∆𝑢(𝑘)

𝑦(𝑘) = 𝐶𝑥(𝑘)
(4-16)

Where the terms are defines as

[
∆𝑥(𝑘 + 1)

𝑦(𝑘 + 1)
]

⏞
𝑥(𝑘+1)

= [
𝐴 0
𝐶𝐴 𝐼

]
⏞

𝐴𝑒

[
∆𝑥(𝑘)

𝑦(𝑘)
]

⏞
𝑥(𝑘)

+ [
𝐵
𝐶𝐵
]

⏞
𝐵𝑒

∆𝑢(𝑘)

𝑦(𝑘) = [0 𝐼]⏞
𝐶𝑒

[
∆𝑥(𝑘)

𝑦(𝑘)
]

⏞
𝑥(𝑘)

(4-17)

135

If we define the current sampling instant as 𝑘𝑖, the prediction horizon as 𝑁𝑝 and the control

horizon as 𝑁𝑐 , the future state variables are given in equation (4-18). For simplicity the

subscript 𝑒 on the matrices for the augmented version has been omitted.

 𝑥(𝑘𝑖 + 1|𝑘𝑖) = 𝐴𝑥(𝑘𝑖) + 𝐵∆𝑢(𝑘𝑖)

𝑥(𝑘𝑖 + 2|𝑘𝑖) = 𝐴𝑥(𝑘𝑖 + 1|𝑘𝑖) + 𝐵∆𝑢(𝑘𝑖 + 1)

 = 𝐴2𝑥(𝑘𝑖) + 𝐴𝐵∆𝑢(𝑘𝑖) + 𝐵∆𝑢(𝑘𝑖 + 1)

⋮

𝑥(𝑘𝑖 + 𝑁𝑝|𝑘𝑖) = 𝐴
𝑁𝑝𝑥(𝑘𝑖) + 𝐴

𝑁𝑝−1𝐵∆𝑢(𝑘𝑖) + 𝐴
𝑁𝑝−2𝐵∆𝑢(𝑘𝑖 + 1) +⋯

+ 𝐴𝑁𝑝−𝑁𝑐𝐵∆𝑢(𝑘𝑖 +𝑁𝑐 − 1)

(4-18)

The predicted outputs are given as in equation (4-19).

 𝑦(𝑘𝑖 + 1|𝑘𝑖) = 𝐶𝐴𝑥(𝑘𝑖) + 𝐶𝐵∆𝑢(𝑘𝑖)

𝑦(𝑘𝑖 + 2|𝑘𝑖) = 𝐶𝐴
2𝑥(𝑘𝑖) + 𝐶𝐴𝐵∆𝑢(𝑘𝑖) + 𝐶𝐵∆𝑢(𝑘𝑖 + 1)

𝑦(𝑘𝑖 + 3|𝑘𝑖) = 𝐶𝐴
3𝑥(𝑘𝑖) + 𝐶𝐴

2𝐵∆𝑢(𝑘𝑖) + 𝐶𝐴𝐵∆𝑢(𝑘𝑖 + 1)

+ 𝐶𝐵∆𝑢(𝑘𝑖 + 2)

⋮

𝑦(𝑘𝑖 + 𝑁𝑝|𝑘𝑖) = 𝐶𝐴
𝑁𝑝𝑥(𝑘𝑖) + 𝐶𝐴

𝑁𝑝−1𝐵∆𝑢(𝑘𝑖) + 𝐶𝐴
𝑁𝑝−2𝐵∆𝑢(𝑘𝑖 + 1) +⋯

+ 𝐶𝐴𝑁𝑝−𝑁𝑐𝐵∆𝑢(𝑘𝑖 + 𝑁𝑐 − 1)

(4-19)

The output prediction is now dependent on current state information and future control

movement.

Defining the output vector 𝑌 and future control vector ∆𝑈 as:

 𝑌 = [𝑦(𝑘𝑖 + 1|𝑘𝑖) 𝑦(𝑘𝑖 + 2|𝑘𝑖) 𝑦(𝑘𝑖 + 3|𝑘𝑖)…𝑦(𝑘𝑖 + 𝑁𝑝|𝑘𝑖)]
𝑇

∆𝑈 = [∆𝑢(𝑘𝑖) ∆𝑢(𝑘𝑖 + 1) ∆𝑢(𝑘𝑖 + 2)… ∆𝑢(𝑘𝑖 + 𝑁𝑐 − 1)]
𝑇

(4-20)

Given in the compact form we have:

136

 𝑌 = 𝐹𝑥(𝑘𝑖) + 𝜙∆𝑈

𝐹 =

[

𝐶𝐴
𝐶𝐴2

𝐶𝐴3

⋮
𝐶𝐴𝑁𝑝]

𝜙 =

[

𝐶𝐵
𝐶𝐴𝐵
𝐶𝐴2𝐵
⋮

𝐶𝐴𝑁𝑝−1𝐵

0
𝐶𝐵
𝐶𝐴𝐵
⋮

𝐶𝐴𝑁𝑝−2𝐵

0
0
𝐶𝐵
⋮

𝐶𝐴𝑁𝑝−3𝐵

⋯
⋯
⋯
⋮
 ⋯

0
0
0
⋮

𝐶𝐴𝑁𝑝−𝑁𝑐𝐵]

(4-21)

Looking at the classical set point tracking use of the MPC, the goal of the optimizer is to

minimize the error between the set point and the predictive output. Withing the optimization

window we keep the set point constant and let the optimizer find the ‘best’ control signals ∆𝑈

such that the error is minimized.

Defining the set point vector as constant over the prediction horizon 𝑁𝑝

𝑅𝑠
𝑇 = [1 1 1 . . . 1]⏞

𝑁𝑝

 𝑟(𝑘𝑖)
(4-22)

we get the following cost function

 𝐽 = (𝑅𝑠 − 𝑌)
𝑇(𝑅𝑠 − 𝑌) + ∆𝑈

𝑇�̅� ∆𝑈 (4-23)

This cost function will in the first term minimize the error between the set point and the

estimated output and in the second term reduce the effort on the control signal needed to

achieve the goal. �̅� is diagonal matrix with the dimension equal to the number of control

signals. The elements on the diagonal is ≥ 0 and is used as tuning parameters of how much

“weight” the cost function should put on minimizing the control signal in order to minimize

the error between the set point and the predictive output. Setting the weighting to zero means

that it does not considered the change in control signal at all. Using a large value will let the

optimizer carefully change the control signal in order to reduce the error.

Substituting from (4-21) into (4-23) we get

 𝐽 = (𝑅𝑠 − 𝐹𝑥(𝑘𝑖))
𝑇(𝑅𝑠 − 𝐹𝑥(𝑘𝑖)) − 2∆𝑈

𝑇𝜙𝑇(𝑅𝑠 − 𝐹𝑥(𝑘𝑖)) +

∆𝑈𝑇(𝜙𝑇𝜙 + �̅�)∆𝑈
(4-24)

137

Taking the first derivative of 𝐽 with respect to ∆𝑈 gives the optimal solution ∆𝑈 when the

partial derivative is zero.

This results in the optimal solution equation

 ∆𝑈 = (𝜙𝑇𝜙 + �̅�)−1𝜙𝑇(𝑅𝑠 − 𝐹𝑥(𝑘𝑖)) (4-25)

The first term (𝜙𝑇𝜙 + �̅�)−1 is also known as the Hessian matrix and 𝑅𝑠 is set point vector.

The ∆𝑈 vector now contains all the optimal control signals over the prediction horizon. In the

receding horizon control we only use the fist element of the control vector before doing the

optimization again using the most up to date measurements of the state and outputs.

4.8.1.1 Constraints

In many practical implementations of MPC there will be some constraints present. These

constraints can be physical limitations that the system under control needs to operate within.

Constraints can be on the control value; both on amplitude and rate of change; as well as on

the measured outputs.

We make distinction between hard and soft constraints. Hard constraints are those that needs

to be obeyed at all times. These are usually on the control signal in the form of max/min

amplitude and rate of change.

The soft constraints are constraints that should not be broken if a feasible solution can be found

within the constraints. If a situation occurs where a solution is not found the soft constraints

can be broken; but it should be as gentle as possible. In these cases, a slack variable is often

added to constraint. This slack variable is then used as part of the cost function so that the

amount of slack on the soft constraint is minimized.

The constraint on the amplitude of the control signal can be formulated as

 𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑘) ≤ 𝑢𝑚𝑎𝑥 (4-26)

and constraint on the rate of change

 ∆𝑢𝑚𝑖𝑛 ≤ ∆𝑢(𝑘) ≤ ∆𝑢𝑚𝑎𝑥 (4-27)

Sometime there is also output constraints as

 𝑦𝑚𝑖𝑛 ≤ 𝑦(𝑘) ≤ 𝑦𝑚𝑎𝑥 (4-28)

and with the slack variable 𝑠 this becomes

 𝑦𝑚𝑖𝑛 − 𝑠 ≤ 𝑦(𝑘) ≤ 𝑦𝑚𝑎𝑥 + 𝑠 (4-29)

In MIMO10 systems the constraints are defined for each control signal and output signal

individually.

10 MIMO – Multiple Input Multiple Output

138

To add the constraints to the optimal control problem they are formulated into inequalities with

respect to the parameter vector ∆𝑈; also knows as the decision variable vector.

The constraints are formulated for the entire prediction horizon and applied at each sample

interval in the receding horizon strategy. They can be changed and updated between each

optimization.

If the computational load is high, they could be imposed only on a subset of the prediction

horizon as it is only the first element of the control vector that is use.

To formulate the rate of change on the control signals as part of the control problem we get

 ∆𝑈𝑚𝑖𝑛 ≤ ∆𝑈 ≤ ∆𝑈𝑚𝑎𝑥

=

−∆𝑈 ≤ −∆𝑈𝑚𝑖𝑛

∆𝑈 ≤ ∆𝑈𝑚𝑎𝑥

(4-30)

and in matrix form

[
−𝐼
𝐼
] ∆𝑈 = [−∆𝑈

𝑚𝑖𝑛

∆𝑈𝑚𝑎𝑥
] (4-31)

The same applies to all amplitude of the control signal. From (4-26)

 𝑈𝑚𝑖𝑛 ≤ 𝑈 ≤ 𝑈𝑚𝑎𝑥 (4-32)

If we defined the vector 𝑈 as a function of ∆𝑈

𝑢(𝑘 + 𝑙) = 𝑢(𝑘 − 1) + ∑∆𝑢(𝑘 + 𝑖)

𝑙

𝑖=0

 (4-33)

We get

[

𝑈(𝑘)

𝑈(𝑘 + 1)

𝑈(𝑘 + 2)
⋮

𝑈(𝑘 + 𝑁𝑐 − 1)]

=

[

𝐼𝑁𝑐
𝐼𝑁𝑐
𝐼𝑁𝑐
⋮
𝐼𝑁𝑐]

 𝑈(𝑘 − 1) +

[

𝐼𝑁𝑐
𝐼𝑁𝑐
𝐼𝑁𝑐
⋮
𝐼𝑁𝑐

0
𝐼𝑁𝑐
𝐼𝑁𝑐
⋮
𝐼𝑁𝑐

⋯
⋯
⋯
⋱
⋯

0
0
0
⋮
𝐼𝑁𝑐]

[

∆𝑈(𝑘)

∆𝑈(𝑘 + 1)

∆𝑈(𝑘 + 2)
⋮

∆𝑈(𝑘 + 𝑁𝑐 − 1)]

 (4-34)

We can rewrite (4-34) in compact form as where 𝐶1 and 𝐶2 corresponding to the appropriate

matrices

[
−𝐶2
𝐶2
] ∆𝑈 ≤ [

−𝑈𝑚𝑖𝑛 +−𝐶1𝑢(𝑘𝑖 − 1)

𝑈𝑚𝑎𝑥 − 𝐶1𝑢(𝑘𝑖 − 1)
] (4-35)

The output constraints are given here following from (4-28) and (4-24)

139

 𝑌𝑚𝑖𝑛 ≤ 𝐹𝑥(𝑘) + 𝜙∆𝑈 ≤ 𝑌𝑚𝑎𝑥 (4-36)

Reformulating into matrix form

[
−𝜙
𝜙
] ∆𝑈 ≤ [

−𝑌𝑚𝑖𝑛 + 𝐹𝑥(𝑘)

𝑌𝑚𝑎𝑥 − 𝐹𝑥(𝑘)
] (4-37)

Adding all the inequality constraints together

[

−𝐼
𝐼
−𝐶2
𝐶2
−𝜙
𝜙]

 ∆𝑈 ≤

[

−∆𝑈𝑚𝑖𝑛

∆𝑈𝑚𝑎𝑥

−𝑈𝑚𝑖𝑛 +−𝐶1𝑢(𝑘𝑖 − 1)

𝑈𝑚𝑎𝑥 − 𝐶1𝑢(𝑘𝑖 − 1)

−𝑌𝑚𝑖𝑛 + 𝐹𝑥(𝑘)

𝑌𝑚𝑎𝑥 − 𝐹𝑥(𝑘)]

 (4-38)

In short, we can write this as

 𝑀∆𝑈 ≤ 𝛾 (4-39)

In quadratic programming the optimization problem is given as

𝐽 =

1

2
𝑥𝑇𝐸𝑥 + 𝑥𝑇𝐹

𝑀𝑥 ≤ 𝛾

(4-40)

Where the decision variable is given as 𝑥 and not ∆𝑈.

We say that an inequality constraint becomes active if 𝑀𝑥 = 𝛾. The constraint is inactive if

𝑀𝑥 < 𝛾. Often the number of inequality constraints can be larger than the number of decision

variables; 𝑀 is then a matrix with rows equal to number of constraints and 𝛾 is then a column

vector with length equal to the number of inequality constraints.

4.8.1.2 Lagrange multipliers

The Lagrange multipliers is a strategy in optimization theory to find the local maxima or

minima of a function subject to equality constraints. It is widely used to solve complicated

constrained problems and by using the Kuhn-Tucker conditions it is extended to the inequality

cases [15].

In general, for the equality constraint case (𝑀𝑥 − 𝛾 = 0) the following objective function is

given with the Lagrange expression

𝐽 =

1

2
𝑥𝑇𝐸𝑥 + 𝑥𝑇𝐹 + 𝜆𝑇(𝑀𝑥 − 𝛾) (4-41)

To minimize this function using partial derivative we get

140

 𝜕𝐽

𝜕𝑥
= 𝐸𝑥 + 𝐹 +𝑀𝑇𝜆 = 0

𝜕𝐽

𝜕𝜆
= 𝑀𝑥 − 𝛾 = 0

(4-42)

The optimal 𝜆 and 𝑥 are then found as

 𝜆 = −(𝑀𝐸−1𝑀𝑇)−1(𝛾 + 𝑀𝐸−1𝐹)

𝑥 = −𝐸−1(𝑀𝑇𝜆 + 𝐹)
(4-43)

Here 𝜆 are the Lagrange multipliers.

For the inequality constraints using the Kuhn-Tucker conditions

 𝐸𝑥 + 𝐹 +𝑀𝑇 𝜆 = 0

𝑀𝑥 − 𝛾 ≤ 0

𝜆𝑇(𝑀𝑥 − 𝛾) = 0

𝜆 ≥ 0

(4-44)

Using the definition of inactive and active constraints we can define (4-44) with the help of the

Lagrange multipliers. Here 𝑖 denotes the inequality number in a multiple constraint problem

 𝐸𝑥 + 𝐹 + ∑ 𝜆𝑖
𝑖∈𝑆𝑎𝑐𝑡

𝑀𝑖
𝑇 = 0

𝑀𝑖𝑥 − 𝛾𝑖 = 0 Active constraint

𝑀𝑖𝑥 − 𝛾𝑖 < 0 Constraint satisfied

𝜆𝑖 ≥ 0 Active constraint

𝜆𝑖 = 0 Inactive constraint

(4-45)

If the active constraints are given, then the optimal solution is also given

 𝜆 = −(𝑀𝐸−1𝑀𝑇)−1(𝛾 + 𝑀𝐸−1𝐹)

𝑥 = −𝐸−1(𝐹 + 𝑀𝑇𝜆)
(4-46)

The active set method used in the QP problem defines a subset of the constraints for each step

in the algorithm that is active at the current step. This set is also known as the working set. The

solution is started off with a subset that is feasible. The algorithm then moves on the surface

defined by the working set to an improved point. At each step an equality constraint is solved.

If all the Lagrange multipliers are greater or equal to zero (𝜆𝑖 ≥ 0) then the point is a local

solution. If the Lagrange multiplier is less than zero, then the objective function can be

decreased by relaxing the constraint 𝑖, i.e. removing it from the constraint equation.

141

During the optimization all constraints must be monitored in order not to break any of them. If

a new constraint is detected it needs to be added to the working set.

In the active set methods, the active constraints need to be identified as well as the optimal

decision variables. It is clear that if there are many constraints the computational load increases.

The Langrage multipliers are here used to detect the constraints which are not active and hence

can be removed from the solution. The Lagrange multipliers are called the dual variables [11].

4.8.2 DMPC with Laguerre functions

From (4-20) we had that

 ∆𝑈 = [∆𝑢(𝑘𝑖) ∆𝑢(𝑘𝑖 + 1) ∆𝑢(𝑘𝑖 + 2)… ∆𝑢(𝑘𝑖 + 𝑁𝑐 − 1)]
𝑇

(4-47)

where 𝑁𝑐 is the control horizon. At any discrete time 𝑘𝑖 we can define an element in ∆𝑈 as a

function of ∆𝑈 using the pulse operator such that

 ∆𝑢(𝑘𝑖 + 𝑖) = [𝛿(𝑖) 𝛿(𝑖 − 1)…𝛿(𝑖 − 𝑁𝑐 + 1]∆𝑈 (4-48)

What is proposed in [11] is to use a set of Laguerre functions to approximate the sequence

∆𝑢(𝑘𝑖) ∆𝑢(𝑘𝑖 + 1) ∆𝑢(𝑘𝑖 + 2)… ∆𝑢(𝑘𝑖 + 𝑁𝑐 − 1). The reason for this is given as the number

of parameters required to approximate the control signal ∆𝑢 is far less then the number

traditionally used in MPC design for instance using the pulse operator. Using Laguerre

polynomial reduces the number of parameters and hence the computational load which might

be critical for processes with complicated dynamics and/or high demand on closed loop

performance.

The discrete Laguerre functions are given as

 𝐿(𝑘 + 1) = 𝐴𝑙𝐿(𝑘) (4-49)

Here 𝐴𝑙 is a matrix consisting of the parameters 𝑎 and 𝛽 for the case of 𝑁 = 4

𝐴𝑙 = [

𝑎 0 0 0
𝛽 𝑎 0 0
−𝑎𝛽 𝛽 𝑎 0

𝑎2𝛽 −𝑎𝛽 𝛽 𝑎

] (4-50)

The initial condition 𝐿(0) is given as

𝐿(0) = √𝛽 [

1
−𝑎
𝑎2

−𝑎3

] (4-51)

At a sample instance 𝑘 with initial time 𝑘𝑖

142

∆𝑢(𝑘𝑖 + 𝑘) =∑𝑐𝑗(𝑘𝑖)𝑙𝑗(𝑘)

𝑁

𝑗=1

 (4-52)

where 𝑁 is the number of terms in the expansion and 𝑐𝑗 is the coefficients which are function

of the initial time of the moving horizon window, 𝑘𝑖. 𝑙𝑗 are here the Laguerre functions.

Equation (4-52) can also be written in vector form as:

 ∆𝑢(𝑘𝑖 + 𝑘) = 𝐿(𝑘)
𝑇𝜂 (4-53)

where 𝜂 = [𝑐1 𝑐2…𝑐𝑁]
𝑇, the Laguerre functions, and 𝐿(𝑘)𝑇 is the transpose Laguerre function

vector in (4-49). The control horizon, 𝑁𝑐, is no longer used and replaced by 𝑁 and 𝑎. Here a

large value on 𝑎 will give a long control horizon. If we set 𝑎 = 0 then 𝑁 = 𝑁𝑐 as traditionally.

We can now add the Laguerre functions to the augmented state space formulation where the

initial state is 𝑘𝑖 as:

𝑥(𝑘𝑖 +𝑚|𝑘𝑖) = 𝐴
𝑚𝑥(𝑘𝑖) + ∑ 𝐴𝑚−𝑖−1𝐵

𝑚−1

𝑖=0

𝐿(𝑖)𝑇𝜂

𝑦(𝑘𝑖 +𝑚|𝑘𝑖) = 𝐶𝐴
𝑚𝑥(𝑘𝑖) + ∑ 𝐶𝐴𝑚−𝑖−1𝐵

𝑚−1

𝑖=0

𝐿(𝑖)𝑇𝜂

(4-54)

Here the ∆𝑢 is now longer present and hence it is the coefficient vector 𝜂 that needs to be

optimized. We therefor rewrite the cost function accordingly

𝐽 = ∑(𝑟(

𝑁𝑝

𝑚=1

𝑘𝑖) − 𝑦(𝑘𝑖 +𝑚|𝑘𝑖))
𝑇(𝑟(𝑘𝑖) − 𝑦(𝑘𝑖 +𝑚|𝑘𝑖)) + 𝜂

𝑇𝑅𝐿𝜂 (4-55)

𝑅𝐿 is the weighting matrix which is a diagonal matrix of size 𝑁 × 𝑁 and with diagonal elements

which is ≥ 0. 𝑟(𝑘𝑖) is the set point at time instance 𝑘𝑖.

In [11] this traditional cost function is reformulated in order to form at link to DLQR11 where

the objective is to find the optimal coefficient vector 𝜂 that minimizes the cost. The reason

behind this reformulation is explained as numerous DLQR classical results can be utilized for

analysis, tuning and design of the MPC.

The new cost function is then given as:

𝐽 = ∑ 𝑥(𝑘𝑖 +𝑚|𝑘𝑖)
𝑇𝑄

𝑁𝑝

𝑚=1

𝑥(𝑘𝑖 +𝑚|𝑘𝑖) + 𝜂
𝑇𝑅𝐿𝜂 (4-56)

11 DLQR – Discrete time Linear Quadratic regulators.

143

Now in order to include the set point in the cost function the state variable needs to be re-

defined.

In the augmented state space model given in (4-17) we defined the output matrix, 𝐶 as

[0 0…0 𝐼] and the state vector as [∆𝑥(𝑘)𝑇 𝑦(𝑘)𝑇]. If we now define a new vector with the

reference signal (which is unchanged over the prediction horizon) as 𝑥𝑟(𝑘𝑖) =
[0 0…0 𝑟(𝑘𝑖)]

𝑇. This vector has the number of zeroes equal to the dimensions of the state

vector which hence leads to 𝑟(𝑘𝑖) = 𝐶𝑥𝑟(𝑘𝑖). The new state vector is now:

 𝑥(𝑘𝑖 +𝑚|𝑘𝑖) = [∆𝑥𝑚(𝑘𝑖 +𝑚|𝑘𝑖)
𝑇 𝑦(𝑘𝑖 +𝑚|𝑘𝑖) − 𝑟(𝑘𝑖)]

𝑇 (4-57)

We can from (4-54) simplify the next state equation by letting

𝜙(𝑚)𝑇 = ∑ 𝐴𝑚−𝑖−1𝐵𝐿(𝑖)𝑇
𝑚−1

𝑖=0

 (4-58)

 We then have

 𝑥(𝑘𝑖 +𝑚|𝑘𝑖) = 𝐴
𝑚𝑥(𝑘𝑖) + 𝜙(𝑚)

𝑇𝜂 (4-59)

Since we now have the new state equation in the cost function we would also need to update

that accordingly

𝐽 = 𝜂𝑇 (∑ 𝜙(𝑚)𝑄

𝑁𝑝

𝑚=1

𝜙(𝑚)𝑇 + 𝑅𝐿)𝜂 + 2𝜂
𝑇 (∑ 𝜙(𝑚)𝑄

𝑁𝑝

𝑚=1

𝐴𝑚)𝑥(𝑘𝑖)

+ ∑ 𝑥(𝑘𝑖)
𝑇(𝐴𝑇)𝑚𝑄𝐴𝑚𝑥(𝑘𝑖)

𝑁𝑝

𝑚=1

(4-60)

We now define two new variables

Ω = (∑ 𝜙(𝑚)𝑄

𝑁𝑝

𝑚=1

𝜙(𝑚)𝑇 + 𝑅𝐿)

Ψ = (∑ 𝜙(𝑚)𝑄

𝑁𝑝

𝑚=1

𝐴𝑚)

(4-61)

Taking the partial derivative of (4-60) with respect to the optimal parameter vector 𝜂 we get

 𝜂 = −Ω−1Ψ𝑥(𝑘𝑖) (4-62)

Finding the minimum of the cost function 𝐽 based on (4-60) now gives us

144

 𝐽 = (𝜂 + Ω−1Ψ𝑥(𝑘𝑖))
𝑇
Ω(𝜂 + Ω−1Ψ𝑥(𝑘𝑖))−𝑥(𝑘𝑖)

𝑇Ψ𝑇Ω−1Ψ𝑥(𝑘𝑖)

+ ∑ 𝑥(𝑘𝑖)
𝑇(𝐴𝑇)𝑚𝑄𝐴𝑚𝑥(𝑘𝑖)

𝑁𝑝

𝑚=1

(4-63)

Since the optimal parameter vector is given when as in (4-62) we get

𝐽 = 𝑥(𝑘𝑖)
𝑇 (∑(𝐴𝑇)𝑚𝑄𝐴𝑚 −Ψ𝑇Ω−1Ψ)

𝑁𝑝

𝑚=1

)𝑥(𝑘𝑖)

= 𝑥(𝑘𝑖)
𝑇𝑃𝑑𝑚𝑝𝑐𝑥(𝑘𝑖)

(4-64)

Here 𝑃𝑑𝑚𝑝𝑐 is the content of the large brackets.

With the formulation in (4-54) we noted that the ∆𝑢 was replaced by the coefficient vector 𝜂

of the Laguerre network and in the following sections we showed how this was done by

adding it to the cost function. Now in order to predict the future 𝑥 we need to solve the

convolution sum of

𝑆𝑐(𝑚) = ∑ 𝐴𝑚−𝑖−1𝐵

𝑚−1

𝑖=0

𝐿(𝑖)𝑇 (4-65)

From (4-49) we had that 𝐿(𝑘 + 1) = 𝐴𝑙𝐿(𝑘)
Studying the convolution sum we finally get for 𝑚 = 2,3,4…𝑁𝑝

 𝑆𝑐(𝑚) = 𝐴𝑆𝑐(𝑚 − 1) + 𝑆𝑐(1)(𝐴𝑙
𝑚−1)𝑇 (4-66)

For 𝑚 = 1 we have 𝑆𝑐(1) = 𝐵𝐿(0)
𝑇

Now for the receding horizon strategy we end up with

 ∆𝑢(𝑘𝑖) = 𝐿(0)
𝑇𝜂 (4-67)

For the multiple input and multiple output case the Laguerre tuning parameters (𝑎 and 𝑁) are

given separately for each control signal. The input matrix 𝐵 is separated into 𝑚 columns; one

for each input.

The control signal increment is given as

 ∆𝑢𝑖(𝑘) = 𝐿𝑖(0)
𝑇𝜂𝑖 (4-68)

where 𝑚 denotes the 𝑖𝑡ℎ control input.

 𝐿𝑖(𝑘)
𝑇 = [𝑙1

𝑖 (𝑘)𝑙𝑛
𝑖 (𝑘)… 𝑙𝑁𝑖

𝑖 (𝑘)] (4-69)

For the simplified state equation in (4-59) we now have

𝜙(𝑚)𝑇 = ∑ 𝐴𝑚−𝑖−1[𝐵1𝐿1(𝑖)
𝑇 𝐵2𝐿2(𝑖)

𝑇… 𝐵𝑚𝐿𝑚(𝑖)
𝑇]

𝑚−1

𝑖=0

 (4-70)

145

For each “block” in the 𝜙(𝑚)𝑇 matrix the structure is identical to the SISO case for the

convolution sum in (4-66) and the cost function in (4-60) remains the same.

In Matrix form this is given as:

∆𝑢(𝑘𝑖) =

[

𝐿1(0)

𝑇 02
𝑇 ⋯ 0𝑚

𝑇

01
𝑇 𝐿2(0)

𝑇 ⋯ 0𝑚
𝑇

⋮ ⋮ ⋱ ⋮
01
𝑇 02

𝑇 ⋯ 𝐿𝑚(0)
𝑇]

𝜂

(4-71)

In Appendix B

 the MATLAB function for calculating the Ω and Ψ is given. These are used in the cost

function 𝐽 = 𝜂𝑇Ω𝜂 + 2𝜂𝑇Ψ𝑥(𝑘𝑖); based on (4-60). The code here is based on the code given

in [11].

The inputs to the function are:

• 𝐴 – State matrix – extended if augmented state space is used

• 𝐵 – Input matrix – externed if augmented state space is used

• 𝑎 – vector of Laguerre pole location for each input

• 𝑁 – The number of terms in the Laguerre function for each input

• 𝑁𝑝 – Prediction horizon

• 𝑄 – Weighting matrix for the states

• 𝑅 – Weighting matrix for the input signals

146

4.8.2.1 Set point tracking without constraints

A test function is written in order to test function. The model is based on the State Space

model used throughout this report.

Firstly, the augmented state space model is formulated

%State matrix

A = ss1.A;

%Inputs

B = ss1.B;

%outputs

C = ss1.C;

%Extract the sizes of the matrices

[y_n,n_n] = size(C);

[n_n,u_n] = size(B);

Create the augmented matrices with integrator terms

The new matrices then becomes 𝐴_𝑒 = [
𝐴 0
𝐶𝐴 𝐼

] , 𝐵_𝑒 = [
𝐴 0
𝐶𝐴 𝐼

], and 𝐶_𝑒 = [0 𝐼]

A_e=eye(n_n+y_n,n_n+y_n);

A_e(1:n_n,1:n_n) = A;

A_e(n_n+1:n_n+y_n,1:n_n) = C*A;

B_e=zeros(n_n+y_n,u_n);

B_e(1:n_n,:)=B;

B_e(n_n+1:n_n+y_n,:)=C*B;

C_e(:,n_n+1:n_n+y_n)=eye(y_n,y_n);

We then set up the control variables, 𝑄 and 𝑅 weighting matrices and find the Ω and Ψ with

the dmpc function. The source code for this function is found in

In this section we also set up the Laguerre vector and number of terms in the Laguerre function.

Q = C_e'*C_e;

R = 0.1*eye(u_n,u_n);

a = [0.5 0.5 0.5 0.5 0.5];

N = [15 15 15 15 15];

Np = 100; %Preciction horizon

[Omega,Psi] = dmpc(A_e,B_e,a,N,Np,Q,R);

147

We set the prediction horizon to 200.

The next part of the function is to find the 𝐴𝑙 matrix and 𝐿𝑚 for the Laguerre functions.

[Al,L0] = lagd(a(1),N(1));

L_m=zeros(u_n,sum(N));

L_m(1,1:N(1)) = L0';

In_s = 1;

for jj =2:u_n

 [Al,L0] = lagd(a(jj),N(jj));

 In_s = N(jj-1)+In_s;

 In_e = In_s+N(jj)-1;

 L_m(jj,In_s:In_e) = L0';

end

We then defined the initial condition based on real life data so that we use valid operational

data as a starting point. Firstly, we let MATLAB find the initial value from a dataset based on

30 samples. Then we take known 10 control inputs and run through the model with the firstly

know initial state so that we are sure that the starting point is a hot starting point.

We define the first state vector on deviation form since we are using the augmented state space

model. We also add the error for the first output as this is what we want to track and minimize.

The other outputs are added as pure measurements.

X0_SS1 =

findstates(ss1,iddata(TrainingMean20200903Red.OutputData(161:190,1:6),Trainin

gMean20200903Red.InputData(161:190,1:5),0.1));

state_ini_values = X0_SS1;

y = zeros(y_n,1);

y = TrainingMean20200903Red.OutputData(201,1:6);

y = y';

u = zeros(u_n,1);

u = [TrainingMean20200903Red.InputData(201,1); ...

 TrainingMean20200903Red.InputData(201,2); ...

 TrainingMean20200903Red.InputData(201,3); ...

 TrainingMean20200903Red.InputData(201,4); ...

 TrainingMean20200903Red.InputData(201,5)];

N_sim = 1000;

148

sp = 10000*ones(1,N_sim+10);

for ii = 1:10

 state_ini_values_old = state_ini_values;

 state_ini_values =

ss1.A*state_ini_values+ss1.B*TrainingMean20200903Red.InputData(190+ii,1:5)';

end

xm = [state_ini_values-state_ini_values_old;y(1,1)-

sp(1,1);y(2,1);y(3,1);y(4,1);y(5,1);y(6,1)];

The simulation part of the unconstrained test is shown below

for kk = 1:N_sim

 u = [TrainingMean20200903Red.InputData(200+kk,1); ...
 TrainingMean20200903Red.InputData(200+kk,2); ...
 u(3); ...
 TrainingMean20200903Red.InputData(200+kk,4); ...
 u(5)];

 eta = -(Omega\Psi)*xm;
 deltau = L_m*eta;

 u(3) = u(3)+deltau(3);
 u(5) = u(5)+deltau(5);

 %save values
 deltau1(:,kk) = deltau;
 sp1(1,kk) = sp(1,1);
 u1(1:u_n,kk) = u;
 y1(1:y_n,kk) = y;
 state_ini_values1(1:n_n,kk) = state_ini_values;

 %Plant simulation
 yp = y;
 state_ini_values_old = state_ini_values;
 state_ini_values = ss1.A*state_ini_values+ss1.B*u;
 y = ss1.C*state_ini_values_old;

 xm = [state_ini_values-state_ini_values_old;y(1,1)-
sp(1,1);y(2,1);y(3,1);y(4,1);y(5,1);y(6,1)];
end

In Figure 4-72, Figure 4-73 and Figure 4-74 we see the output from the test function for

unconstrained set point tracking. We see that it tracks set point good after some initial

oscillations on the heat rate

149

Figure 4-72: Unconstrained set point tracking with DMPC and Laguerre functions – Heat rate and set point

Figure 4-73: Unconstrained set point tracking with DMPC and Laguerre functions - charge air control output

150

Figure 4-74: Unconstrained set point tracking with DMPC and Laguerre functions - global timing control signal

By adding a step change on the heat rate set point we get the results as shown in Figure 4-75.

Still we see that the set point tracks good with some initial oscillations after set point change.

151

Figure 4-75: Unconstrained set point tracking with step change in set point - Heat rate

To test disturbance rejection, we change the IMEP values as we did in test in section 4.7.1.

During this test we keep the disturbances fixed during the simulation except for the step change

on IMEP at 100 seconds. We see from Figure 4-76, Figure 4-77, Figure 4-78 and Figure 4-79

that the sudden change results in a short time change in heat rate output before quickly settle

down on set point again. The outputs adjust immediately and keeps the value on set point.

152

Figure 4-76: Unconstrained set point tracking with disturbance rejection - heat rate

Figure 4-77: Unconstrained set point tracking with disturbance rejection - IMEP with step change

153

Figure 4-78: Unconstrained set point tracking with disturbance rejection - Charge air control signal

Figure 4-79: Unconstrained set point tracking with disturbance rejection - Global timing control signal

154

One last test is done on the unconstrained control by adjusting the IMEP gradually from

initial value to initial value + 10 bar over the course of 100 seconds.

From Figure 4-80, Figure 4-81, Figure 4-82 and Figure 4-83 we see that during the change in

disturbance we note a slight error between the set point and the measured output. After the

change in disturbance is done the output settles back to set point.

We note that it is not physical possible to keep heat rate at 10000 while increasing the IMEP

to 18 bar and hence the charge air pressure increases to abnormal high values.

Figure 4-80: Unconstrained set point tracking with disturbance rejection – ramp in disturbance - Heat rate

155

Figure 4-81: Unconstrained set point tracking with disturbance rejection – ramp in disturbance – IMEP

disturbance

Figure 4-82: Unconstrained set point tracking with disturbance rejection – ramp in disturbance – charge air

control output

156

Figure 4-83: Unconstrained set point tracking with disturbance rejection – ramp in disturbance – global timing

control output

4.8.2.2 DMPC with constraints on control signal

This section looks into how we can add constraints to the DMPC algorithm. Adding constraints

on the control signal difference we define:

 ∆𝑢𝑚𝑖𝑛 ≤ ∆𝑢(𝑘𝑖 +𝑚) ≤ ∆𝑢
𝑚𝑎𝑥 (4-72)

We know from (4-53) that

 ∆𝑢(𝑘𝑖 + 𝑘) = 𝐿(𝑘)
𝑇𝜂 (4-73)

For MIMO system we have ∆𝑢 are vectors with limits for each input.

We can arrange this in matrix form as

∆𝑢𝑚𝑖𝑛 ≤

[

𝐿1(𝑚)

𝑇 02
𝑇 ⋯ 0𝑚

𝑇

01
𝑇 𝐿2(𝑚)

𝑇 ⋯ 0𝑚
𝑇

⋮ ⋮ ⋱ ⋮
01
𝑇 02

𝑇 … 𝐿𝑚(𝑚)
𝑇]

𝜂 ≤ ∆𝑢𝑚𝑎𝑥 (4-74)

In Appendix D

 the MATLAB code for the function which returns matrix 𝑀 is given.

157

The inequality constraints can then be formulated as:

 𝑀𝜂 ≤ ∆𝑈𝑚𝑎𝑥

−𝑀𝜂 ≤ −∆𝑈𝑚𝑖𝑛

(4-75)

For constraint on amplitude of control signal we have the following conditions:

𝑢(𝑘) = ∑∆𝑢(𝑖)

𝑘−1

𝑖=0

 (4-76)

We can then construct this in matrix form

𝑢𝑚𝑖𝑛 ≤

[

∑𝐿1(𝑖)

𝑇

𝑘−1

𝑖=0

02
𝑇 ⋯ 0𝑚

𝑇

01
𝑇 ∑𝐿2(𝑖)

𝑇

𝑘−1

𝑖=0

⋯ 0𝑚
𝑇

⋮ ⋮ ⋱ ⋮

01
𝑇 02

𝑇 … ∑𝐿𝑚(𝑖)
𝑇

𝑘−1

𝑖=0]

𝜂 + 𝑢(𝑘𝑖 − 1) ≤ 𝑢
𝑚𝑎𝑥 (4-77)

The inequality constrain then becomes

 𝑀𝜂 ≤ 𝑈𝑚𝑎𝑥 − 𝑢(𝑘𝑖 − 1)

−𝑀𝜂 ≤ −𝑈𝑚𝑖𝑛 + 𝑢(𝑘𝑖 − 1)
(4-78)

In Appendix E

 the MATLAB code for the function which returns matrix M is given.

By adding limits to the control outputs and rate of change of the control signal as:

 0.3 𝑏𝑎𝑟𝑔 ≤ 𝐶ℎ𝑎𝑟𝑔𝑒𝐴𝑖𝑟𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 ≤ 4.5 𝑏𝑎𝑟𝑔

−20 𝑑𝑒𝑔𝐶𝐴 ≤ 𝐺𝑙𝑜𝑏𝑎𝑙𝑇𝑖𝑚𝑖𝑛𝑔 ≤ −8.5 𝑑𝑒𝑔𝐶𝐴

−0.1 𝑏𝑎𝑟𝑔/𝑠 ≤ ∆𝐶ℎ𝑎𝑟𝑔𝑒𝐴𝑖𝑟𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 ≤ 0.1 𝑏𝑎𝑟𝑔/𝑠

−0.3 𝑑𝑒𝑔𝐶𝐴/𝑠 ≤ ∆𝐺𝑙𝑜𝑏𝑎𝑙𝑇𝑖𝑚𝑖𝑛𝑔 ≤ 0.3 𝑑𝑒𝑔𝐶𝐴/𝑠

(4-79)

By trial and error the prediction horizon is set to 200 and the constraint horizon to 15.

For the ℎ𝑒𝑎𝑡 𝑟𝑎𝑡𝑒 the set point is set artificially low so that it will continuously minimize the

error.

158

We see from Figure 4-84, Figure 4-85, Figure 4-86 and Figure 4-87 that the heat rate is

minimized while keeping the control values within the constraints. We can see the lower

constraints in read and the upper constraints in yellow. There are some oscillations on the heat

rate and charge air pressure control signal until the disturbance starts. It is difficult to control

the constrains as these are not imposed as hard constraints on the optimization. They will be

broken if in conflict with the objective and hence an outer protection loop will need to be in

place in order to guarantee that the control signals do not go out of bounds if the objective is

not met. In this case there are now such outer limitations and it can be seen that the constraint

on the global timing is broken for some time after the disturbance has reach its maximum. In

order to control it the weight on the minimization of the heat rate has been reduced to 0,0001.

Since the weight is over a prediction horizon of 200 and with an error in the range around 3500

this still adds up to substantial amount.

Figure 4-84: Constrained minimization of heat rate with disturbance - Heat rate

159

Figure 4-85: Constrained minimization of heat rate with disturbance – IMEP disturbance

Figure 4-86: Constrained minimization of heat rate with disturbance – control output for charge air pressure

160

Figure 4-87: Constrained minimization of heat rate with disturbance – control output for global timing

By changing the constraint on global ignition timing to max −9.5 [degCA] we get the result as

in Figure 4-88. We see that the constraint is still maintained with the same amount of overshoot

initially.

161

Figure 4-88: Constrained minimization of heat rate with disturbance – control output for global timing with

reduced max limit

162

4.8.2.3 DMPC with constraints on output signals

We can look into how constraints on the outputs might be introduced. The theory here is from

the work of Wang [11].

For constraints on the output we define:

 𝑦𝑚𝑖𝑛 ≤ 𝑦(𝑘) ≤ 𝑦𝑚𝑎𝑥 (4-80)

We know from (4-54) that the following equation applies

 𝑥(𝑘𝑖 + 1|𝑘𝑖) = 𝐴𝑥(𝑘𝑖) + 𝐵𝐿(0)
𝑇𝜂

𝑦(𝑘𝑖 + 1|𝑘𝑖) = 𝐶𝐴𝑥(𝑘𝑖) + 𝐶𝐵𝐿(0)
𝑇𝜂

(4-81)

We know that if 𝑦𝑚𝑖𝑛 ≤ 𝑦(𝑘𝑖 + 1|𝑘𝑖) ≤ 𝑦
𝑚𝑎𝑥 the optimal solution is where 𝜂 =

 −Ω−1Ψ𝑥(𝑘𝑖)

If the lower limit constraint is broken, then we need to find a solution where the cost function

is minimized while still satisfy the constraint. Here we defined

 −𝐶𝐵𝐿(0)𝑇𝜂 ≤ −𝑦𝑚𝑖𝑛 + 𝐶𝐴𝑥(𝑘𝑖) (4-82)

Denoting 𝑀𝑎𝑐𝑡 = −𝐶𝐵𝐿(0)
𝑇 the Lagrange multiplier 𝜆𝑎𝑐𝑡 is given as

 𝜆𝑎𝑐𝑡 = −(𝑀𝑎𝑐𝑡Ω
−1𝑀𝑎𝑐𝑡

𝑇)
−1
(−𝑦𝑚𝑖𝑛 + 𝐶𝐴𝑥(𝑘𝑖) + 𝑀𝑎𝑐𝑡Ω

−1Ψ𝑥(𝑘𝑖)) (4-83)

The optimal solution is now given as

 𝜂 = −Ω−1(Ψ𝑥(𝑘𝑖)+𝑀𝑎𝑐𝑡
𝑇𝜆𝑎𝑐𝑡) (4-84)

Looking at the upper constraint limit this is almost the same as for the lower limit

 𝐶𝐵𝐿(0)𝑇𝜂 ≤ 𝑦𝑚𝑎𝑥 − 𝐶𝐴𝑥(𝑘𝑖) (4-85)

 𝜆𝑎𝑐𝑡 = −(𝑀𝑎𝑐𝑡Ω
−1𝑀𝑎𝑐𝑡

𝑇)
−1
(𝑦𝑚𝑎𝑥 − 𝐶𝐴𝑥(𝑘𝑖) + 𝑀𝑎𝑐𝑡Ω

−1Ψ𝑥(𝑘𝑖))
(4-86)

The optimal solution is the same as in (4-84).

Several attempts on getting the output constraint to work in the MIMO system with several

outputs imposing constraints on the augmented state space model has been made. It within the

available time frame not succeeded in making both the output constraints and the constraints

on the control signal to work simultaneously. Additional work in order to modify the logic to

work with this particular case would need to be tested.

The DMPC with Laguerre functions has so far worked well and works good for the constraints

on the control signal and with substantial less computational effort than the Fmincon from

MATLAB.

163

5 Discussion
The following sections will discuss the project results and the situations which arose during the

project as well as suggest some future work. The chapter is divided into separate sections, each

dealing with separate parts of the project.

5.1 Modelling

During the development of the MPC controller for this project various aspects has been looked

upon. During the initial phase of the development a lot of time was spent using the polynomial

model developed in the Masters project during the fall of 2020, but after several failed attempts

in getting a reliable model to work, it was decided to swap the model with an new state space

model. There are several reasons for the update of model, but it was mostly driven by the lack

of results when using the qpOASES and the Quadprog optimizers. Even though the step

response of the open loop simulation gave indications that the model had a good representation

of the system, which was also backed up by good simulation fit with the validation data set

during the system identification. The initial problem with the qpOASES and the Quadprog was

also related to problem of infeasibility and challenges in adding constraints on outputs into the

structure resulting in a very large optimization problem.

Another aspect was that the polynomial model needed to be transferred into a state space model

representation to work with the set up in SIMULINK where the initial benefits of having all

parts in the polynomial model with a physical meaning got lost anyway.

The model development based on measured input/outputs from a real engine in the field has

some limitations which are potential critical to problems observed throughout the testing. The

model has a good representation of the system at which the data has been collected but lacks

the dimensions outside the normal operating range as the control signals was not exhausted in

either direction as it was running in closed loop control. Updated control software for the engine

controller has been developed and prepared for further testing, but due to lack of testing

possibilities at the production test bed in Bergen the tests has been postponed for now.

The next goal is therefor to get a better model representation of the system by running the

control signals outside the normal operating range.

5.2 qpOASES and Quadprog

The results from the qpOASES and the Quadprog was limited and the possibilities was not

explored to their full potential as the decision within the project to focus on Fmincon was taken

after a few weeks. These potentials could have shown that there where underlying problems in

the implementation which was not discovered during the code walkthrough and the study of

the results. However, some testing was still performed, mainly related to set point tracking.

The results are briefly presented. The simulation time however was clearly a limiting factor.

Even short simulation times required several hours of running on the development computer.

The results from Quadprog was the least promising as these as pr usual run in to feasibility

issues at an early stage.

164

5.3 Fmincon

The focus has largely been on the Fmincon during most of the time in this project. The pre-

knowledge of Fmincon was limited to references to it in the lecture notes of IIA 4117 and the

examples presented there. The possibilities are large with the use of Fmincon, and a large

portion of the time has been spent exploring various settings and numerous of simulations in

MATLAB. Some of those simulations results are presented in this paper, but most them are

trial and error and failed attempts.

The basic structure of setting up the problem is clearly understood and the setup of the cost

function is straight forward as the goal here is to minimize the 𝐻𝑒𝑎𝑡 𝑟𝑎𝑡𝑒 will keeping the

outputs within boundaries. Several weeks was spent on testing various ways of adding

constraints and bounds and look at how the Fmincon handles this.

During the first test all constraints was added as non-linear constraints, which according to the

MATLAB forum was not very efficient given that the constraints are not non-linear adding

unnecessary computational load. The bounds were also added as non-linear constraints during

the first tests. Later the amplitude constraints on the control signal was added as bounds which

are treated as hard constraints by the Fmincon. The constraints on the measurements were

added as inequality constraints. The constraint on the ∆𝑢 remained as non-linear constraints

during the final testing as these are calculated and updated for each iteration in with the cost

function.

The results from the testing shown in section 4.7 shows that several problems related to how

the Fmincon handles constraints causing “noisy” measurements if activated, particular when

testing set point tracking. This is however not how the MPC problem will be set up as the cost

function is based on minimizing the heat rate and not error minimization.

The Fmincon balances the integer number from the cost function versus the output from the

constraint function and will weigh the absolute value the highest if in conflict. The output from

the cost function must therefore not be of an amplitude higher than the breach of the constraints

will produce. The 𝐻𝑒𝑎𝑡 𝑟𝑎𝑡𝑒 which has a high absolute value where therefor scaled in the cost

function and the weight is reduced compared the ∆𝑢 weight so that the control signals is

carefully adjusted.

One problem that appeared during some of the test was that the optimal, or minimal value of

the 𝐻𝑒𝑎𝑡 𝑟𝑎𝑡𝑒, was found (local optimum) while the constraints still where broken. The

Fmincon then aborted before trying to adjust the measurements within the constraints resulting

in an escalating breach of the constraints. This problem arises during some of the testing but

was not easy to reproduce afterwards.

There are still needed more verification on how the Fmincon activates the constraints on the

measurements as this seems to be an issue which could potentially cause problems.

Also for the Fmincon there are long simulation times, and more effort needs to be added look

into the different methods of reducing the computational load. Here grouping was briefly tested

but caused problems. Using Lagrange multipliers could be used or QR factorization.

165

5.4 DMPC with Laguerre functions

During the theory study for the project one of the theories that seem to be well documented

was the DMPC with Laguerre function as explained by Wang [11]. The theory and approach

were appealing, and an attempt was made to apply the concepts and theory of this approach to

the problem at hand.

A lot of time was spent trying to get the implementation to work with the state space model

identified for this problem with measured disturbances. The unconstrained problem worked

well and as a set point tracking it produced results which were promising.

The implantation of constraint handling on the control output worked well but when adding

constraint to the measurements some the results was not as expected. Numerous attempts with

various setups with how to handle the constraints in combination with the control signal

constraints was tested without success. The use of augmented state space model was primarily

used but also variants without the augmented version was tested without getting around the

MIMO case with multiple constraints on the outputs.

The structure and theory are promising and with some more work it might work well, and for

a simpler set point tracking without constraints on the measured outputs it would most likely

work very well. It might be a good test to using on the cooling water control which currently

is using a standard PID controller with set point biasing to handle measured disturbances and

gain scheduling.

5.5 Future work

Based on the findings so far there is still a lot of work that needs to be done to find a working

version of the MPC. It is suggested to look into other industrial implementations of the MPC

controller other than the Fmincon and possibly the CasADi might be a way forward. This

already proved well in various industrial applications [16] for MIMO systems and using

multiple shooting.

The testing on lab engines do get more dynamic data is however first on the list of next steps

to be performed. This is expected to be done in the near future and will give rise to a better

model which can be tested on the implantation already at hand.

The development of alternative fuels for the Bergen B36:45 is already ongoing where MPC is

expected to play a vital role when implementing Hydrogen mixing into the LNG during

operation such as to optimize the mixing process.

A step in between might be to test a simpler structure as for example to replace our current

cooling water temperature PID controller with an MPC controller. The PID controller used

today could be optimized to some extent by adding future control moves based on already

known measure disturbances. Today this is a simple feedback loop which do not utilize this

information and has a poor set point scheduling algorithm to handle known disturbances. This

could be a good proof of concept for an easier set point tracking function implementation in

our current controller where the computational effort is far less as there will not be any

constraints on several measured outputs. The implementation in the SIMULINK code already

utilized by Bergen is still an open topic and hence this test could help in discovering any

limitations in the software structure as well as the resources on the hardware platform.

166

167

6 Conclusion
The project has proven to be more challenging than expected when it first was defined in

cooperation with Bergen Engines. The model on which the MPC is based does not contain all

the dynamics one would have liked and the extended testing that was planned but not done due

to the delays in the production line has affected the work to some degree. The lack of access to

the factory and the resources during the ongoing pandemic has limited the progress to some

extent but the access to data has still be good.

During the earlier phases of the project the contact person at Bergen Engines, who defined the

problem in the first place, also left the company. The results of this was the loss of a highly

competent person to discuss the results and step further with. The discussions during the project

has therefor relied on the weekly meetings with the supervisor. Without those this project

would have become even more challenging and progress would have been far less.

Some results are found and numerous of hours has been spent in testing and simulations. This

is a time-consuming task and has at times caused a lot frustration when it fails after several

hours of testing.

The project was first thought to be completed with an implementation in Simulink the

environment of which the engine controller resides and finally with testing on a real engine.

The current status is that we are not there yet and substantial more exploration of alternative

implementations are needed as discussed in section 5.5.

The learning curve has been steep due limited prior knowledge in the field of model predictive

control. Even though the field of MPC is not new it is still very much still being developed as

more powerful computers and controllers can handle more complex and large optimization

problems. The optimization theory subject is large, and one is not expected to learn it all during

such a project. Future study is required before the theory can be put into practise. The CasADi

framework looks promising will be studied further so see if there is a fit with the future projects

at Bergen Engines.

Based on the testing done so far it is the Fmincon which has the most promising results as it is

able to minimize the heat rate with a wide range of 𝐼𝑀𝐸𝑃 input values, ranging from low values

of 4-5 bar and up to full power output at around 21-22 bar. Testing on the qpOASES and

Quadprog is not likely to be continued in the near future, while the DMPC with Laguerre

functions is definitely on the list for testing on the cooling water set point tracking MPC.

It is clear that the MPC currently being looked at are a computational demanding task and with

the Fmincon implementation there are still open issues regarding the feasibility of being

implemented on the current hardware structure.

168

References

[1] Bergen Engines AS, Master presentation, Bergen Engines AS, 2020.

[2] N. R. Ruchika, “Model Predictive Control: History and Development,” International

Journal of Engineering Trends and Technology (IJETT) - Volume 4 Issue 6, pp. 2600-

01, 2013.

[3] C. M. A. &. H. J. Cutler, “An industrial perspective on advanced control,” in AICHE

annual meeting, Washington DC, 1983.

[4] C. M. P. T. D.W. Clarke, “Generalized predictive control—Part I. The basic algorithm,”

Automatica Volume 23, Issue 2, pp. 137-148, 1987.

[5] Wikipedia contributors, “Model predictive control,” 09 04 2021. [Online]. Available:

https://en.wikipedia.org/wiki/Model_predictive_control.

[6] R. Sharma, Lecture notes for the course IIA 4117: Model Predictive Control,

Porsgrunn: University of South-Eastern Norway, 2019.

[7] D. D. Ruscio, Model predictive control and optimization, Lecture notes Model

Predictive Control, Porsgrunn: University of South-Eastern Norway, 2019.

[8] N. Shah, “Simulation of model predictive control using dynamic matrix control

algorithm,” ProQuest LLC, Ann Arbor, 2015.

[9] P. H. Johan Åkesson, “Integral action - A disturbance observer approach,” in European

Control Conference, Cambridge, 2003.

[10] G. P. James B. Rawlings, “Disturbance Models for Offset-Free Model-Predictive

Control,” AIChE Journal, vol. 49, no. 2, pp. 426-437, 2003.

[11] L. Wang, Model Predictive System Design and Implementation Using MATLAB,

Melbourne: Springer, 2009.

[12] J. Richalet, “Industrial applications of model based predictive control,” Automatica,

vol.29, no. 5, pp. 1251-1274, 1993.

[13] MathWorks, “Automated driving using model predictive control,” 10 04 2021.

[Online]. Available: https://www.mathworks.com/help/mpc/ug/automated-driving-

using-model-predictive-control.html.

[14] H. J. Ferreau, A. Potschka and C. Kirches, “qpOASES User's Manual,” April 2007-

2017. [Online]. Available: https://github.com/coin-or/qpOASES. [Accessed 12 05

2021].

[15] Wikipedia contributors, “Lagrange multiplier,” 17 04 2021. [Online]. Available:

https://en.wikipedia.org/wiki/Lagrange_multiplier.

169

[16] J. A. Andersson, J. Gillis, G. Horn, B. J. Rawlings and M. Diehl, “CasADi - A software

framework for nonlinear optimization,” Mathematical Programming Computation, vol.

11, no. 1, pp. 1-36, 2019.

[17] DieselNet, “Emission Standards,” 30 03 2021. [Online]. Available:

https://dieselnet.com/standards/de/taluft.php.

170

Appendices

Appendix A – Master thesis task description

Appendix B – DMPC.mlx code

Appendix C – lagd.mlx code

Appendix D – Mdu.mlx code

Appendix E – Mu.mlx code

Appendix F – QP_formulation_SPTracking2.mlx

Appendix G – SetPointTracking_SS1_Quadprog_1.mlx

Appendix H – OpenLoopTesting.mlx

Appendix I – Minimise_HeatRate_SS1_OutputConstraint.mlx

171

Appendix A

172

173

Appendix B

DMPC.mlx code
This function is based on the code given by Liuping Wang in the book Model Predictive control

system design and implementation using MATLAB.

Svein Roar Kvåle, USN, 2021

This function will calculate the Omega and Psi variables given the state matrix, input matrix and

the Laguerre functions. This function will handle the MIMO case

The inputs to the function are:

• – State matrix – extended if augmented state space is used

• – Input matrix – externed if augmented state space is used

• – vector of Laguerre pole location for each input

• – The number of terms in the Laguerre function for each input

• – Prediction horizon

• – Weighting matrix for the states

• – Weighting matrix for the inputs

The outputs are:

• –

• –

function [Omega,Psi] = dmpc(A_e,B_e,a,N,Np,Q,R)

First we get in the number of inputs control signals based on the size of the matrix

[n,n_in] = size(B_e);

Then we find the dimension of and set up the sizes of the , and

N_pa = sum(N);

Omega = zeros(N_pa,N_pa);

Psi = zeros(N_pa,n);

R_para = zeros(N_pa,N_pa);

Now take the number of terms for each input in and put the weights from the input matrix on

the diagonal for each term

174

n0=1;

ne=N(1);

for i=1:n_in-1

 R_para(n0:ne,n0:ne)=R(i,i)*eye(N(i),N(i));

 n0 = n0+N(i);

 ne=ne+N(i+1);

end

R_para(n0:N_pa,n0:N_pa) = R(n_in,n_in)*eye(N(n_in),N(n_in));

Initialise the convolution sum and calculate the case for

With

Here the lagd.m function is used to calculate the initial condition and the state space matrix

 and

S_in = zeros(n,N_pa);

[Al,L0] = lagd(a(1),N(1));

S_in(:,1:N(1)) = B_e(:,1)*L0';

In_s = 1;

for jj=2:n_in

 [Al,L0] = lagd(a(jj),N(jj));

 In_s = N(jj-1)+In_s;

 In_e = In_s+N(jj)-1;

 S_in(:,In_s:In_e) = B_e(:,jj)*L0';

end

S_sum = S_in;

phi = S_in;

Omega = (phi)'*Q*(phi);

Psi = phi'*Q*A_e;

In the section below we iterate through the prediction horizon for each of the inputs

For each iteration of the prediction horizon we calculate the and

175

for i=2:Np

 Eae=A_e^i;

 [Al,L0] = lagd(a(1),N(1));

 S_sum(:,1:N(1)) = A_e*S_sum(:,1:N(1))+S_in(:,1:N(1))*(Al^(i-1))';

 In_s = 1;

 for kk=2:n_in

 [Al,L0] = lagd(a(kk),N(kk));

 In_s = N(kk-1)+In_s;

 In_e = In_s+N(kk)-1;

 S_sum(:,In_s:In_e) = A_e*S_sum(:,In_s:In_e) + ...

 S_in(:,In_s:In_e)*(Al^(i-1))';

 end

 phi = S_sum;

 Omega=Omega+phi'*Q*phi;

 Psi=Psi+phi'*Q*Eae;

end

Omega = Omega+R_para;

end

176

Appendix C

lagd.mlx
This function will return the initial condition of the Laguerre function and the state space

system matrix

, where

function [A,L0] = lagd(a,N)

v(1,1) = a;

L0(1,1) = 1;

for k = 2:N

 v(k,1) = (-a).^(k-2)*(1-a*a);

 L0(k,1) = (-a).^(k-1);

end

L0=sqrt((1-a*a))*L0;

A(:,1)=v;

for i = 2:N

 A(:,i) = [zeros(i-1,1);v(1:N-i+1,1)];

end

end

177

Appendix D

Mdu.mlx
This function will limit the difference constraint of the control signals

This funciton generates the maxtrix M.

 denotes future time instants to which the constraint is imposed on

We remember that

, where

and that

function [M,Lzerot] = Mdu(a,N,n_in,Nc)

%Lzerot is used for creating the control signal

N_pa=sum(N);

M=zeros(n_in,N_pa);

M_du1=zeros(n_in,N_pa);

178

k0=1;

[Al,L0] = lagd(a(k0),N(k0));

M_du1(1,1:N(1))=L0';

cc=N(1);

for k0=2:n_in

 [Al,L0] = lagd(a(k0),N(k0));

 M_du1(k0,cc+1:cc+N(k0))=L0';

 cc=cc+N(k0);

end

Lzerot=M_du1;

M=M_du1;

for kk=2:Nc

 k0=1;

 [Al,L0] = lagd(a(k0),N(k0));

 L=Al^(kk-1)*L0;

 M_du1(1,1:N(1))=L';

 cc=N(1);

 for k0=2:n_in

 [Al,L0] = lagd(a(k0),N(k0));

 L=Al^(kk-1)*L0;

 M_du1(k0,cc+1:cc+N(k0))=L';

 cc=cc+N(k0);

 end

 M=[M;M_du1];

end

end

179

Appendix E

Mu.mlx
This function will limit the amplitude constraint of the control signals

This function generates the matrix M

 is a vector of past u values

function M = Mu(a,N,n_in,Nc)

%a = Languerre scaling factor

%N = Number of Languerre coeficients

%n_in = Number of inputs

%Nc = Number of future samples to impose4 constraints on

N_pa=sum(N);

M=zeros(n_in,N_pa);

M_du1=zeros(n_in,N_pa);

k0=1;

[A1,L0]=lagd(a(k0),N(k0));

M_du1(1,1:N(1))=L0';

cc=N(1);

for k0=2:n_in

 [A1,L0] = lagd(a(k0),N(k0));

 M_du1(k0,cc+1:cc+N(k0))=L0';

 cc=cc+N(k0);

end

180

M = M_du1;

Ms = M_du1;

for kk=2:Nc

 k0=1;

 [A1,L0] = lagd(a(k0),N(k0));

 L = A1^(kk-1)*L0;

 M_du1(1,1:N(1))=L';

 cc=N(1);

 for k0=2:n_in

 [A1,L0] = lagd(a(k0),N(k0));

 L = A1^(kk-1)*L0;

 M_du1(k0,cc+1:cc+N(k0))=L';

 cc=cc+N(k0);

 end

 Ms = Ms+M_du1;

 M=[M;Ms];

end

end

181

Appendix F

QP_formulation_SPTracking2.mlx
This code presented below gives the qpOASES QP formulation for set point tracking.

function [H,c, Ae,zL,zU,be] = QP_formulation_SPTracking2(dx0, ud, dr,

u_prev, A, B, Bd, C1)

%==============

%Svein Roar Kvåle

%USN - spring 2021

%Set point tracking -> using qpOASES

N=20; %Prediction horizon

nx = 25; %number of states

nu = 2; %number of controlable outputs

nd = 3; %number of known disturbances

ny = 1; %feedback signal for setpoint tracking

%number of decision variables

nz = N * (nu+nx+ny+ny+nu);

dr = (ones(1,N).*dr(1)); %Keep set point fixed throught the prediction

horizon

Q=diag(0.8); %error weighting matrix for set point tracking

P=diag([0.01, 0.01]); %Weighting matrix for control signals

S=diag([0.1, 0.1]);%Weighting matrix for delta u

H11 = kron(eye(N),P); %Inputs

H22 = zeros(N*nx,N*nx); %states

H33 = kron(eye(N),Q); %error

H44 = zeros(N*ny,N*ny); %Output

H55 = kron(eye(N),S); %Delta u

H_mat = blkdiag(H11,H22,H33,H44,H55);

H = H_mat(:);

c = zeros(nz,1);

%===============

%Equality constratints

%Xk+1 = A*Xk + B*Uk + Bd*Udk

Ae1u = -kron(eye(N),B);

Ae1x = eye(N*nx)-kron(diag(ones(N-abs(-1),1),-1),A);

182

Ae1e = zeros(N*nx,N*ny);

Ae1y = zeros(N*nx,N*ny);

Ae1du = zeros(N*nx,N*nu);

be1 = [A*dx0 + Bd*ud; kron(ones(N-1,1),Bd*ud)];

%Y measured signal used for set point tracking

%Yk = C1*Xk

Ae2u = zeros(N*ny,N*nu);

Ae2x = -kron(eye(N),C1);

Ae2e = zeros(N*ny, N*ny);

Ae2y = eye(N*ny,N*ny);

Ae2du = zeros(N*ny,N*nu);

be2 = zeros(N*ny,1);

%Error signal used fot set point tracking

%Ek = Rk-Yk

Ae4u = zeros(N*ny, N*nu);

Ae4x = zeros(N*ny,N*nx);

Ae4e = eye(N*ny);

Ae4y = eye(N*ny,N*ny);

Ae4du = zeros(N*ny,N*nu);

be4 = reshape(dr,N*ny,1);

%Delta u on control signals -

%Used to limit rate of change of control outputs

%dUk = Uk-Uk-1

Ae5u = -eye(N*nu)+kron(diag(ones(N-abs(-1),1),-1),eye(nu));

Ae5x = zeros(N*nu,N*nx);

Ae5e = zeros(N*nu,N*ny);

Ae5y = zeros(N*nu,N*ny);

Ae5du = eye(N*nu);

be5 = [-u_prev;zeros((N-1)*nu,1)];

Ae_mat = [Ae1u, Ae1x, Ae1e, Ae1y, Ae1du;...

 Ae2u, Ae2x, Ae2e, Ae2y, Ae2du;...

 Ae4u, Ae4x, Ae4e, Ae4y, Ae4du;...

 Ae5u, Ae5x, Ae5e, Ae5y, Ae5du];

Ae = Ae_mat(:);

be = [be1;be2;be4;be5];

%===================

%Bounds

%Charge air pressure = 0-4.5barg

%Global timing = -20 - -8.5degCA

uMin = [ones(1,N).*0;... %10CA control output minimum value

 ones(1,N).*-20]; %Global timing minimum value (degCA

before TDC)

183

%Delta charge air pressure = -0,1 - 0,1 barg/s

%Delta global timing = -0,1 - 0,1 degCA/s

deltaUMin = [ones(1,N).*-0.02;... %10CA set point minimum rate of

change

 ones(1,N).*-0.03]; %Global timing minimum rate of

change

zL = [reshape(uMin,N*nu,1);... %[u]

 -Inf*ones(N*(nx+ny+ny),1);... %[x + e + y]

 reshape(deltaUMin,N*nu,1)]; %[u]

%Charge air pressure = 0-4.5barg

%Global timing = -20 - -8.5degCA

uMax = [ones(1,N).*4.5;... %10Ca control output max value

 ones(1,N).*-8.5]; %Global timing maximum value

%Delta charge air pressure = -0,1 - 0,1 barg/s

%Delta global timing = -0,1 - 0,1 degCA/s

deltaUMax = [ones(1,N).*0.02;... %10CA set point maximum rate of change

 ones(1,N).*0.05]; %Global timing maximum rate of change

zU = [reshape(uMax,N*nu,1);...

 Inf*ones(N*(nx+ny+ny),1);...

 reshape(deltaUMax,N*nu,1)];

184

Appendix G

SetPointTracking_SS1_Quadprog_1.mlx
The code presented below is the Quadprog code used during the initial testing phase.

Set point tracking with Quadprog

Svein Roar Kvåle

Master thesis spring 2021 @ USN

Table of Contents

Load in simulation data

clear;

load ss1.mat

load TrainingMean20200903Red.mat

Set up initial values by reading in data from real life training data

Find the initial states by using the "findstates" function. Then run the model for 30 samples with

the real-life data to get updated initial states. Use this initial states further and use the next real-

life controllable inputs and measured disturbances as initial values for the testing next

u_ini_s = TrainingMean20200903Red.InputData(201,:)';

X0 =

findstates(ss1,iddata(TrainingMean20200903Red.OutputData(140:170,1:6),Trainin

gMean20200903Red.InputData(140:170,1:5),TrainingMean20200903Red.Ts));

for jj=1:30

 u_ini_s = TrainingMean20200903Red.InputData(170+jj,:)';

 X_n = ss1.A*X0 + ss1.B*u_ini_s;

 X0 = X_n;

end

u1 = TrainingMean20200903Red.InputData(201,1) %SuctionAirTemp

u2 = TrainingMean20200903Red.InputData(201,2) %IMEP

u3 = TrainingMean20200903Red.InputData(201,3) %ChargeAirPressure

u4 = TrainingMean20200903Red.InputData(201,4) %ChargeAirTemperature

u5 = TrainingMean20200903Red.InputData(201,5) %GlobalTiming

%Receive u_previsous measurements

u_k_prev(1) = TrainingMean20200903Red.InputData(200,3);

u_k_prev(2) = TrainingMean20200903Red.InputData(200,5);

185

%State matrix

A = ss1.A;

%Controllable inputs B matrix

B(:,1) = ss1.B(:,3);

B(:,2) = ss1.B(:,5);

%Measured input disturbance Bd Matrix

Bd(:,1) = ss1.B(:,1);

Bd(:,2) = ss1.B(:,2);

Bd(:,3) = ss1.B(:,4);

C1 = ss1.C(1,:);

C2 = ss1.C(2:end,:);

D = ss1.D;

Sim = 500;

Set up system for simulation

This part sets up the constants prior to running the actual simulation

N=100; %Prediction horizon

[nx,~] = size(A); %number of states

[~,nu] = size(B); %number of controlable outputs

[~,nd] = size(Bd); %number of known disturbances

[ny,~] = size(C1); %feedback signal for setpoint tracking

%number of decision variables

nz = N * (nu+nx+ny+ny+nu);

dr = (ones(1,N).*10000); %Keep set point fixed throught the prediction

horizon

%Set up disturbances

ud = [u1;u2;u4];

Q=diag(0.8); %error weighting matrix for set point tracking

P=diag([0.01, 0.01]); %Weighting matrix for control signals

S=diag([0.1, 0.1]);%Weighting matrix for delta u

H11 = kron(eye(N),P); %Inputs

H22 = zeros(N*nx,N*nx); %states

H33 = kron(eye(N),Q); %error

H44 = zeros(N*ny,N*ny); %Output

H55 = kron(eye(N),S); %Delta u

H = blkdiag(H11,H22,H33,H44,H55);

186

%Set up of linear term

c = zeros(nz,1);

%===================

%Bounds

%Charge air pressure = 0-4.5barg

%Global timing = -20 - -8.5degCA

uMin = [ones(1,N).*0; ... %10CA control output minimum value

 ones(1,N).*-20]; %Global timing minimum value (degCA

before TDC)

%Delta charge air pressure = -0,1 - 0,1 barg/s

%Delta global timing = -0,1 - 0,1 degCA/s

deltaUMin = [ones(1,N).*-10.02;... %10CA set point minimum rate of

change

 ones(1,N).*-10.03]; %Global timing minimum rate of

change

zL = [reshape(uMin,N*nu,1);... %[u]

 -Inf*ones(N*(nx+ny+ny),1);... %[x + e + y]

 reshape(deltaUMin,N*nu,1)]; %[u]

%Charge air pressure = 0-4.5barg

%Global timing = -20 - -8.5degCA

uMax = [ones(1,N).*4.5;... %10Ca control output max value

 ones(1,N).*-8.5]; %Global timing maximum value

%Delta charge air pressure = -0,1 - 0,1 barg/s

%Delta global timing = -0,1 - 0,1 degCA/s

deltaUMax = [ones(1,N).*10.02;... %10CA set point maximum rate of change

 ones(1,N).*10.05]; %Global timing maximum rate of change

zU = [reshape(uMax,N*nu,1);...

 Inf*ones(N*(nx+ny+ny),1);...

 reshape(deltaUMax,N*nu,1)];

Simulation

Run the simulation for the defined time and prediction horizon

for i=1:Sim

%Stat vector update

dx0 = X0;

187

%Transpose the

u_prev = u_k_prev';

%===============

%Equality constratints

%Xk+1 = A*Xk + B*Uk + Bd*Udk

Ae1u = -kron(eye(N),B);

Ae1x = eye(N*nx)-kron(diag(ones(N-abs(-1),1),-1),A);

Ae1e = zeros(N*nx,N*ny);

Ae1y = zeros(N*nx,N*ny);

Ae1du = zeros(N*nx,N*nu);

be1 = [A*dx0 + Bd*ud; kron(ones(N-1,1),Bd*ud)];

%Y measured signal used for set point tracking

%Yk = C1*Xk

Ae2u = zeros(N*ny,N*nu);

Ae2x = -kron(eye(N),C1);

Ae2e = zeros(N*ny, N*ny);

Ae2y = eye(N*ny,N*ny);

Ae2du = zeros(N*ny,N*nu);

be2 = zeros(N*ny,1);

%Error signal used fot set point tracking

%Ek = Rk-Yk

Ae4u = zeros(N*ny, N*nu);

Ae4x = zeros(N*ny,N*nx);

Ae4e = eye(N*ny);

Ae4y = eye(N*ny,N*ny);

Ae4du = zeros(N*ny,N*nu);

be4 = reshape(dr,N*ny,1);

%Delta u on control signals -

%Used to limit rate of change of control outputs

%dUk = Uk-Uk-1

Ae5u = -eye(N*nu)+kron(diag(ones(N-abs(-1),1),-1),eye(nu));

Ae5x = zeros(N*nu,N*nx);

Ae5e = zeros(N*nu,N*ny);

Ae5y = zeros(N*nu,N*ny);

Ae5du = eye(N*nu);

be5 = [-u_prev;zeros((N-1)*nu,1)];

Ae = [Ae1u, Ae1x, Ae1e, Ae1y, Ae1du;...

 Ae2u, Ae2x, Ae2e, Ae2y, Ae2du;...

 Ae4u, Ae4x, Ae4e, Ae4y, Ae4du;...

 Ae5u, Ae5x, Ae5e, Ae5y, Ae5du];

be = [be1;be2;be4;be5];

188

f = [];

Aq = [];

b = [];

x0 = dx0;

Aeq = Ae;

beq = be;

lb = zL;

ub = zU;

%Call the optimiser quadprog

x_opt = quadprog(H,f,Aq,b,Aeq,beq,lb,ub,x0);

%Retrieve the two firt control moves

du_opt = x_opt(1:2);

%Update the state variable

X0 = A*dx0+B*du_opt+Bd*ud;

%Store the outputs from the plant model

Y(i,:) = ss1.C*dx0;

%Store the control moves

U(i,:) = du_opt';

%Update previsous control moves to the latest

u_k_prev = du_opt';

end

Plot function

fig_1 = figure("Name",'Control variables');

x = linspace(1,Sim/10,Sim);

y1 = U(:,1);

y2 = U(:,2);

tiledlayout(2,1);

ax1 = nexttile;

plot(ax1,x,y1);

title(ax1,'Charge air pressure');

ylabel(ax1,'barg');

xlabel('Simulation time [s]')

ax2 = nexttile;

plot(ax2,x,y2);

title(ax2,'Global timing');

189

ylabel(ax2,"degCA");

xlabel('Simulation time [s]')

The figure below shows the model outputs over the simulation time

fig_1 = figure("Name",'Measurements');

y1 = Y(:,1);

y2 = Y(:,2);

y3 = Y(:,3);

y4 = Y(:,4);

y5 = Y(:,5);

y6 = Y(:,6);

y7 = Y(:,1);

t = tiledlayout(3,1,'TileSpacing',"normal");

title(t,'Measurements')

ref = dr(1,1)*ones(Sim,1);

ax1 = nexttile;

plot(ax1,x,y1,x,ref);

title(ax1,'Heat rate');

ylabel(ax1,'-');

xlabel('Simulation time [s]')

ax2 = nexttile;

plot(ax2,x,y2);

title(ax2,'Knock');

ylabel(ax2,'%');

xlabel('Simulation time [s]')

ax3 = nexttile;

plot(ax3,x,y3);

title(ax3,'Peak pressure');

ylabel(ax3,'bar');

xlabel('Simulation time [s]')

fig_1 = figure("Name",'Measurements');

tt = tiledlayout(3,1,'TileSpacing',"normal");

ax4 = nexttile;

plot(ax4,x,y4);

title(ax4,'NOx');

ylabel(ax4,'ppm');

xlabel('Simulation time [s]')

ax5 = nexttile;

plot(ax5,x,y5);

title(ax5,'O2');

ylabel(ax5,'%');

xlabel('Simulation time [s]')

190

ax6 = nexttile;

plot(ax6,x,y6);

title(ax6,'Exhaust temperature');

ylabel(ax6,'degC');

xlabel('Simulation time [s]')

fig_1 = figure("Name",'Measurements');

y1 = Y(:,1);

t = tiledlayout(1,1,'TileSpacing',"normal");

title(t,'Measurements')

ax1 = nexttile;

plot(ax1,x,y1,x,ref);

title(ax1,'Heat rate');

ylabel(ax1,'-');

xlabel('Simulation time [s]')

191

Appendix H

OpenLoopTesting.mlx
Svein Roar Kvåle

Master thesis spring 2021 @ USN

This file contains the testing done on the open loop of the state space model.

Load in simulation data

clear;

load ss1.mat

load TrainingMean20200903Red.mat

Set up initial values by reading in data from real life training data

Find the initial states by using the "findstates" function. Then run the model for 30 samples with

the real life data to get updated initial states. Use this initial states further and use the next real

life controllable inputs and measured disturnances as initial values for the testing next

u1 = TrainingMean20200903Red.InputData(201,1); %SuctionAirTemp

u2 = TrainingMean20200903Red.InputData(201,2); %IMEP

u3 = TrainingMean20200903Red.InputData(201,3); %ChargeAirPressure

u4 = TrainingMean20200903Red.InputData(201,4); %ChargeAirTemperature

u5 = TrainingMean20200903Red.InputData(201,5); %GlobalTiming

u_ini = [u1;u2;u3;u4;u5];

X0 =

findstates(ss1,iddata(TrainingMean20200903Red.OutputData(140:170,1:6),Trainin

gMean20200903Red.InputData(140:170,1:5),0.1));

for jj=1:30

 u1 = TrainingMean20200903Red.InputData(170+jj,1); %SuctionAirTemp

 u2 = TrainingMean20200903Red.InputData(170+jj,2); %IMEP

 u3 = TrainingMean20200903Red.InputData(170+jj,3); %ChargeAirPressure

 u4 = TrainingMean20200903Red.InputData(170+jj,4); %ChargeAirTemperature

 u5 = TrainingMean20200903Red.InputData(170+jj,5); %GlobalTiming

 u_ini = [u1;u2;u3;u4;u5];

 X_n = ss1.A*X0 + ss1.B*u_ini;

 X0 = X_n;

end

192

u1 = TrainingMean20200903Red.InputData(201,1) %SuctionAirTemp

u2 = TrainingMean20200903Red.InputData(201,2) %IMEP

u3 = TrainingMean20200903Red.InputData(201,3) %ChargeAirPressure

u4 = TrainingMean20200903Red.InputData(201,4) %ChargeAirTemperature

u5 = TrainingMean20200903Red.InputData(201,5) %GlobalTiming

u_ini = [u1;u2;u3;u4;u5];

Simulate with fixed values

The following results is found by not changing the controlable values nor the disturbances but

keeping them constant based on the initial conditions

Sim = 15000;

Py = zeros(Sim,6);

Pu = zeros(Sim,5);

xm = X0;

u = u_ini;

for i=1:Sim

 X_next = ss1.A*xm + ss1.B*u;

 y = ss1.C*xm;

 Pu(i,:) = u(:);

 Py(i,:) = y(:);

 xm = X_next;

end

Plotting(Pu,Py,Sim)

Set state values to steady state

Run model such that it is in steady state before changes to controlable inputs

Sim = 500;

xm = X0;

u = u_ini;

for i=1:Sim

 X_next = ss1.A*xm + ss1.B*u;

 y = ss1.C*xm;

 xm = X_next;

end

X0 = xm;

193

Simulate with positive step change on charge air pressure

The following shows the resultant output of the model based on a step change on the charge air

pressure controlable input

Sim = 15000;

Step = 0.5

InitialValue = u(3,1)

StepTime = Sim/2

Py = zeros(Sim,6);

Pu = zeros(Sim,5);

xm = X0;

u = u_ini;

for i=1:Sim

 X_next = ss1.A*xm + ss1.B*u;

 y = ss1.C*xm;

 Pu(i,:) = u(:);

 Py(i,:) = y(:);

 xm = X_next;

 if i==(StepTime)

 u(3,1) = u(3,1)+Step;

 end

end

Plotting(Pu,Py,Sim)

Simulation with negative step change on charge air pressure

Sim = 15000;

Step = 0.5

InitialValue = u(3,1)

StepTime = Sim/2

Py = zeros(Sim,6);

Pu = zeros(Sim,5);

xm = X0;

u = u_ini;

for i=1:Sim

 X_next = ss1.A*xm + ss1.B*u;

 y = ss1.C*xm;

 Pu(i,:) = u(:);

 Py(i,:) = y(:);

194

 xm = X_next;

 if i==(StepTime)

 u(3,1) = u(3,1)-Step;

 end

end

Plotting(Pu,Py,Sim)

Simulation with negative step change on ignition timing

Sim = 15000;

Step = 1.5

InitialValue = u(5,1)

StepTime = Sim/2

Py = zeros(Sim,6);

Pu = zeros(Sim,5);

xm = X0;

u = u_ini;

for i=1:Sim

 X_next = ss1.A*xm + ss1.B*u;

 y = ss1.C*xm;

 Pu(i,:) = u(:);

 Py(i,:) = y(:);

 xm = X_next;

 if i==(StepTime/2)

 u(5,1) = u(5,1)-Step;

 end

end

Plotting(Pu,Py,Sim)

Simulation with negative step change on ignition timing

Sim = 15000;

Step = 1.5

InitialValue = u(5,1)

StepTime = 2500

Py = zeros(Sim,6);

Pu = zeros(Sim,5);

xm = X0;

u = u_ini;

195

for i=1:Sim

 X_next = ss1.A*xm + ss1.B*u;

 y = ss1.C*xm;

 Pu(i,:) = u(:);

 Py(i,:) = y(:);

 xm = X_next;

 if i==(StepTime)

 u(5,1) = u(5,1)+Step;

 end

end

Plotting(Pu,Py,Sim)

Simulation with gradually increase on charger air pressure -
up 2,5 barg
Sim = 15000;

Rate = 0.001;

RatePrSec = 0.001/10 %pr second

InitialValue = u(5,1)

ChangeStartTime = 2500

Py = zeros(Sim,6);

Pu = zeros(Sim,5);

xm = X0;

u = u_ini;

for i=1:Sim

 X_next = ss1.A*xm + ss1.B*u;

 y = ss1.C*xm;

 Pu(i,:) = u(:);

 Py(i,:) = y(:);

 xm = X_next;

 %After stable time - increase with 0,01barg pr 100ms until 2,5 barg

 %increase is reached

 if i>(ChangeStartTime)

 if u(3,1) < (u_ini(3,1) + 2.5)

 u(3,1) = u(3,1)+Rate;

 end

 end

196

end

Plotting(Pu,Py,Sim)

Simulation with gradually decrease on charger air pressure -
down to 0,0 barg
Sim = 15000;

Py = zeros(Sim,6);

Pu = zeros(Sim,5);

xm = X0;

u = u_ini;

for i=1:Sim

 X_next = ss1.A*xm + ss1.B*u;

 y = ss1.C*xm;

 Pu(i,:) = u(:);

 Py(i,:) = y(:);

 xm = X_next;

 %After stable time - increase with 0,01barg pr 100ms until 2,5 barg

 %increase is reached

 if i>(2500)

 if u(3,1) > 0

 u(3,1) = u(3,1)-0.001;

 end

 end

end

Plotting(Pu,Py,Sim)

Simulation with gradually increase on global timing - down to -
18degCA
Sim = 15000;

Py = zeros(Sim,6);

Pu = zeros(Sim,5);

xm = X0;

u = u_ini;

for i=1:Sim

 X_next = ss1.A*xm + ss1.B*u;

197

 y = ss1.C*xm;

 Pu(i,:) = u(:);

 Py(i,:) = y(:);

 xm = X_next;

 %After stable time - increase with 0,01degCA pr 100ms until -18degCA

 %increase is reached

 if i>(2500)

 if u(5,1) > -18

 u(5,1) = u(5,1)-0.01;

 end

 end

end

Plotting(Pu,Py,Sim)

Simulation with gradually decrease on global timing - up to -
8degCA
Sim = 15000;

Py = zeros(Sim,6);

Pu = zeros(Sim,5);

xm = X0;

u = u_ini;

for i=1:Sim

 X_next = ss1.A*xm + ss1.B*u;

 y = ss1.C*xm;

 Pu(i,:) = u(:);

 Py(i,:) = y(:);

 xm = X_next;

 %After stable time - increase with 0,01degCA pr 100ms until -8degCA

 %increase is reached

 if i>(2500)

 if u(5,1) < -8

 u(5,1) = u(5,1)+0.01;

 end

 end

end

Plotting(Pu,Py,Sim)

198

Plot function

function [] = Plotting(Pu,Py,Sim)

fig_1 = figure("Name",'Control variables');

x = linspace(1,Sim/10,Sim);

y1 = (Pu(:,3));

y2 = (Pu(:,5));

tiledlayout(2,1);

ax1 = nexttile;

plot(ax1,x,y1);

title(ax1,'Charge air pressure');

ylabel(ax1,'barg');

xlabel('Simulation time [s]')

ax2 = nexttile;

plot(ax2,x,y2);

title(ax2,'Global timing');

ylabel(ax2,"degCA");

xlabel('Simulation time [s]')

The figure below shows the disturbances over the simulation time

fig_2 = figure("Name",'Disturbances');

x = linspace(1,Sim/10,Sim);

y1 = (Pu(:,1));

y2 = (Pu(:,2));

y3 = (Pu(:,4));

tiledlayout(3,1);

ax1 = nexttile;

plot(ax1,x,y1);

title(ax1,'Suction air temperature');

ylabel(ax1,'degC');

xlabel('Simulation time [s]')

ax2 = nexttile;

plot(ax2,x,y2);

title(ax2,'IMEP');

ylabel(ax2,"bar");

xlabel('Simulation time [s]')

ax3 = nexttile;

plot(ax3,x,y3);

title(ax3,'Charge air temperature');

ylabel(ax3,"degC");

199

xlabel('Simulation time [s]')

The figure below shows the model outputs over the simulation time

fig_1 = figure("Name",'Measurements');

x = linspace(1,Sim/10,Sim);

y1 = (Py(:,1));

y2 = (Py(:,2));

y3 = (Py(:,3));

y4 = (Py(:,4));

y5 = (Py(:,5));

y6 = (Py(:,6));

t = tiledlayout(3,1,'TileSpacing',"normal");

title(t,'Measurements')

ax1 = nexttile;

plot(ax1,x,y1);

title(ax1,'Heat rate');

ylabel(ax1,'-');

xlabel('Simulation time [s]')

ax2 = nexttile;

plot(ax2,x,y2);

title(ax2,'Knock');

ylabel(ax2,'%');

xlabel('Simulation time [s]')

ax3 = nexttile;

plot(ax3,x,y3);

title(ax3,'Peak pressure');

ylabel(ax3,'bar');

xlabel('Simulation time [s]')

fig_1 = figure("Name",'Measurements');

tt = tiledlayout(3,1,'TileSpacing',"normal");

ax4 = nexttile;

plot(ax4,x,y4);

title(ax4,'NOx');

ylabel(ax4,'ppm');

xlabel('Simulation time [s]')

ax5 = nexttile;

plot(ax5,x,y5);

title(ax5,'O2');

ylabel(ax5,'%');

xlabel('Simulation time [s]')

ax6 = nexttile;

200

plot(ax6,x,y6);

title(ax6,'Exhaust temperature');

ylabel(ax6,'degC');

xlabel('Simulation time [s]')

end

201

Appendix I

Minimise_HeatRate_SS1_OutputConstraint.mlx
Svein Roar Kvåle

Master thesis spring 2021 @ USN

Software structure is based on the lecture notes in IIA 4117 [6] – Model predictive control - 2019

This program will try to minimize the heat rate with bounds on control inputs and constraints on

the measured outputs

Disturbance is changed at various test

Various modifications to the set point and the disturbances is added while constraints are active

on the control input and the measured outputs.

Load in simulation data and model

clear;

load ss1.mat

load TrainingMean20200903Red.mat

Set up initial values by reading in data from real life training data

Find the initial states by using the "findstates" function. Then run the model for 30 samples with

the real-life data to get updated initial states. Use this initial states further and use the next real

life controllable inputs and measured disturbances as initial values for the testing next

StartLoc = 100000;

u_ini_s = TrainingMean20200903Red.InputData(StartLoc+201,:)';

X0 =

findstates(ss1,iddata(TrainingMean20200903Red.OutputData(StartLoc+140:StartLo

c+170,1:6),TrainingMean20200903Red.InputData(StartLoc+140:StartLoc+170,1:5),T

rainingMean20200903Red.Ts));

for jj=1:30

 u_ini_s = TrainingMean20200903Red.InputData(StartLoc+170+jj,:)';

 X_n = ss1.A*X0 + ss1.B*u_ini_s;

 X0 = X_n;

end

u1 = TrainingMean20200903Red.InputData(StartLoc+201,1) %SuctionAirTemp

u2 = TrainingMean20200903Red.InputData(StartLoc+201,2) %IMEP

u3 = TrainingMean20200903Red.InputData(StartLoc+201,3) %ChargeAirPressure

u4 = TrainingMean20200903Red.InputData(StartLoc+201,4) %ChargeAirTemperature

u5 = TrainingMean20200903Red.InputData(StartLoc+201,5) %GlobalTiming

202

%Receive u_previsous measurements

u_k_prev(1) = TrainingMean20200903Red.InputData(StartLoc+200,3);

u_k_prev(2) = TrainingMean20200903Red.InputData(StartLoc+200,5);

%Controllable inputs B matrix

B(:,1) = ss1.B(:,3);

B(:,2) = ss1.B(:,5);

%Measured input disturbance Bd Matrix

Bd(:,1) = ss1.B(:,1);

Bd(:,2) = ss1.B(:,2);

Bd(:,3) = ss1.B(:,4);

Simulate with constraints on inputs and outputs

The following results is found by set point tracking with a gradient change in the IMEP

disturbance with the other disturbances fixed. The set point is ramped also

This time we limit the control values to max/min and add constraint to the outputs

Sim =5000;

dt = 0.1;

Np = 150;

[y_n, c_n] = size(ss1.C);

[~, u_n] = size(B);

[~, d_n] = size(Bd);

[~, n_n] = size(ss1.A);

Py = zeros(Sim,y_n);

Pu = zeros(Sim,u_n);

Pdu = zeros(Sim,u_n);

Pud = zeros(Sim,d_n);

Pc = zeros(Sim,n_n);

state_ini_values = X0;

u_ini = [u3*ones(Np,1); ... %Charge air pressure

 u5*ones(Np,1)]; %Global timing

ud_ini = [u1*ones(Np,1); ...%Suction air temperature

 u2*ones(Np,1); ... %IMEP

 u4*ones(Np,1)]; %Charge air temperature

for i=1:Sim

 %Save values

 Pc(i,:) = state_ini_values;

203

 %Call the optimization

 u_k_ast =

optimization(u_ini,ud_ini,state_ini_values,Np,ss1.A,B,Bd,ss1.C,u_k_prev);

 %Pick the firt two control moves

 u_k(1,1) = u_k_ast(1,1); %First control input - charge air pressure

 u_k(2,1) = u_k_ast(Np+1,1); %First control input - global timing

 u_ini = u_k_ast;

 %Save control inputs

 Pu(i,:) = u_k';

 Pdu(i,1)= u_k(1)-u_k_prev(1);

 Pdu(i,2)= u_k(2)-u_k_prev(2);

 u_k_prev = u_k;

 %Retrieve the disturbances

 ud_k(1,1) = ud_ini(1); %First disturbance - Suction air temperature

 ud_k(2,1) = ud_ini(Np+1); %First disturbance - IMEP

 ud_k(3,1) = ud_ini(2*Np+1); %First disturbance - charge air temperatuer

 %Save disturbance

 Pud(i,:) = ud_k';

 %Simulate process

 X_next = ss1.A*state_ini_values + B*u_k + Bd*ud_k;

 Py(i,:) = ss1.C*state_ini_values;

 state_ini_values = X_next;

 %Update the disturbances with real life data for iteration, but keep it

 %fixed for the duration of the prediction horizon

 ud_ini(1:Np) =

TrainingMean20200903Red.InputData(StartLoc+201+i,1)*ones(Np,1); ...%Suction

air temperature

 ud_ini(Np+1:2*Np) =

TrainingMean20200903Red.InputData(StartLoc+201+i,2)*ones(Np,1); ...%Suction

air temperature

 ud_ini(2*Np+1:3*Np) =

TrainingMean20200903Red.InputData(StartLoc+201+i,4)*ones(Np,1); ...%Suction

air temperature

end

Plotting(Pu,Pud,Py,Pdu,Sim)

%Plotting(Pu,Pud,Py,Pdu,Sim);

204

Pred function

This function takes the matrices and prediction horizon and calculate the and matrices such

that

, and

 is the predicted outputs where is the control moves over the prediction horizon and is

the disturbance inputs over the prediction horizon (usually constant)

function [F, Phi_u, Phi_ud] = Pred(A,B,Bd,C,Np)

%Find the sizes of the matrices and set up ther dimensions

[y_n,~] = size(C);

[~,u_n] = size(B);

[n_n,ud_n] = size(Bd);

F = zeros(y_n*Np,n_n);

Phi_u = zeros(y_n*Np,u_n*Np);

Phi_u_temp = zeros(y_n*Np,u_n*Np);

Phi_ud = zeros(y_n*Np,u_n*Np);

Phi_ud_temp = zeros(y_n*Np,ud_n*Np);

%%Find the F matrix

for jj=1:Np

 F((jj-1)*y_n+1:(jj-1)*y_n+y_n,1:n_n) = C*(A^jj);

end

%%Set up the Phi matrix for the controllable input

Phi_u_temp(1:y_n,1:u_n) = C*B;

for jj=1:Np-1

 Phi_u_temp(y_n*jj+1:y_n*jj+y_n,1:u_n) = C*(A^jj)*B;

end

205

%%Copy column 1 to the next and move down one row and so on

for jj=1:Np-1

 Phi_u_temp(y_n*jj+1:end,u_n*jj+1:u_n*jj+u_n) = Phi_u_temp(1:end-

jj*y_n,1:u_n);

end

%Rearrange the matrix as the predicted output is organized with all the

%predicitons for a single control output first and then the second control

%output

for jj=1:Np

 Phi_u(:,jj) = Phi_u_temp(:,(jj*u_n)-1);

 Phi_u(:,Np+jj) = Phi_u_temp(:,(jj*u_n));

end

%%Set up the Psi matrix for the measured disturbance

Phi_ud_temp(1:y_n,1:ud_n) = C*Bd; %Set up the first row since that is

without A matrix

%Set up the rest of the rows in the first column

for jj=1:Np-1

 Phi_ud_temp(y_n*jj+1:y_n*jj+y_n,1:ud_n) = C*(A^jj)*Bd;

end

%%Copy column 1 to the next and move down one row and so on

for jj=1:Np-1

 Phi_ud_temp(y_n*jj+1:end,ud_n*jj+1:ud_n*jj+ud_n) = Phi_ud_temp(1:end-

jj*y_n,1:ud_n);

end

%Rearrange the matrix as the predicted output is organized with all the

%predicitons for a single control output first and then the second control

%output

for jj=1:Np

 Phi_ud(:,jj) = Phi_ud_temp(:,(jj*ud_n)-2);

 Phi_ud(:,Np+jj) = Phi_ud_temp(:,(jj*ud_n)-1);

 Phi_ud(:,Np*2+jj) = Phi_ud_temp(:,(jj*ud_n));

end

end

Compute both functions

function [myJ,myG,myHeq] =

compute_both(u_ini,ud_ini,state_ini_values,Np,A,B,Bd,C,u_k_prev)

du_u1 = zeros(Np,1); %Charge air pressure rate of change place holder

206

du_u2 = zeros(Np,1); %Global timing rate of change place holder

[y_n,~] = size(C);

Pc = zeros(Np,y_n);

u_ini = u_ini';

%Weight factor for heat rate

Q = 0.0001;

%Weight matrix for the controllable outputs and

%rate of change

%Pu = diag([0.01, 0.01]);

Pdu = diag([10.00, 10.00]);

%Set objective to zero before the for loop

J = 0;

%we need to calculate the outputs for the whole prediction horizon

for i = 1:Np

 %find out which control input to use for each time step within the

 %prediction horizon

 %Calculate the change between the previous outputs and the next inputs.

 if i == 1

 du_u1(i) = u_ini(i)-u_k_prev(1);

 du_u2(i) = u_ini(Np+i)-u_k_prev(2);

 else

 du_u1(i) = u_ini(i)-u_ini(i-1);

 du_u2(i) = u_ini(Np+i)-u_ini(Np+i-1);

 end

 u_k(1,1) = u_ini(i); %Charge air pressure

 u_k(2,1) = u_ini(Np+i); %Global timing

 du_k = [du_u1(i);du_u2(i)];

 %find out which disturbance input to use for each time step within the

 %prediction horizon

 ud_k(1,1) = ud_ini(i);

 ud_k(2,1) = ud_ini(i+Np);

 ud_k(3,1) = ud_ini(i+Np*2);

% u_k_prev = u_k;

 %Calculate the next states based on the current state, controlable inputs

 %and measured disturbance

 x_next = A*state_ini_values + B*u_k + Bd*ud_k;

 %use the states to calculate the output

207

 Pc(i,:) = C*state_ini_values;

 %Extract the output which is the once we want use as process value for our

 %set point tracking

 HeatRate = Pc(i,1); %Heat rate

 %update the state

 state_ini_values = x_next;

 %now make the objective function

 %J_temp = ((Pc_reg-Ref)/1000)'*Q*((Pc_reg-Ref)/1000) + du_k'*Pdu*du_k +

u_k'*Pu*u_k;

 J_temp = HeatRate*Q + du_k'*Pdu*du_k;

 J = J+J_temp; %Increment the objective over the whole prediction horizon

end

myJ = J/2;

%if there are equaltiy constraints, it should be listed as a column vector

%here we don't have equality constraints so we use empty matrix

myHeq = [];

myG = [];

% myG =[du_u1-0.02; ...

% -du_u1-0.02; ...

% du_u2-0.05; ...

% -du_u2-0.03];

end

Optimization function

function u =

optimization(u_ini,ud_ini,state_ini_values,Np,A,B,Bd,C,u_k_prev)

ops = optimset('Algorithm','interior-

point','Display','off','MaxIter',1000,'MaxFunEvals',1000,'AlwaysHonorConstrai

nts','bounds','TolX', 1e-14);

uLast = [];% Last place compute_both was called

myJ = [];% Use for objective at xLast

myG = [];% Use for nonlinear inequality constraint

myHeq = [];% Use for nonlinear equality constraint

[~,u_n] = size(B);

[y_n,~] = size(C);

%Deine lower and upper bounds on control inputs

lb = [ones(1,Np)*0.3, ...

 ones(1,Np)*-20 ...

208

];

ub = [ones(1,Np)*4.5, ...

 ones(1,Np)*-8.5 ...

];

obj_func = @(u)objfun_engine(u,ud_ini,state_ini_values,Np);

cons_func = @(u)confun_engine(u,ud_ini,state_ini_values,Np);

%Calculate the matrices to be used in the inequality constraints

[F, Phi_u, Phi_ud] = Pred(A,B,Bd,C,Np);

%Set up the constraints and repeat for the horizon

y_max = [Inf;50;200;200;12.5;600];

y_max = repmat(y_max,Np,1);

y_min = [-Inf;0;0;0;8.5;0];

y_min = repmat(y_min,Np,1);

%Calculat all the right hand side of the inequality constraint

YYY = y_max-F*state_ini_values-Phi_ud*ud_ini;

YY = -y_min+F*state_ini_values+Phi_ud*ud_ini;

%Extract only the constraints we are interessted in

Aneq = zeros(2*Np,u_n*Np);

Bneq = zeros(2*Np,1);

%Testing with only high limit on O2 and Exhaust and lower limit on O2

%For more constraints - add them

for ii=1:Np

 Aneq(ii*3-2,:) = Phi_u(ii*y_n-1,:);

 Aneq(ii*3-1,:) = Phi_u(ii*y_n,:);

 Aneq(ii*3,:) = -(Phi_u(ii*y_n-1,:));

 Bneq(ii*3-2,:) = YYY(ii*y_n-1);

 Bneq(ii*3-1,:) = YYY(ii*y_n);

 Bneq(ii*3,:) = YY(ii*y_n-1);

end

[u,fval,exitflag,output,solutions] =

fmincon(obj_func,u_ini,Aneq,Bneq,[],[],lb,ub,cons_func,ops);

 function J = objfun_engine(u,ud_ini,state_ini_values,Np)

 if ~isequal(u,uLast) %check if computation is necessary

 [myJ,myG,myHeq] =

compute_both(u,ud_ini,state_ini_values,Np,A,B,Bd,C,u_k_prev);

209

 uLast = u;

 end

 %now compute objective function

 J = myJ;

 end

 function [G,Heq] = confun_engine(u,ud_ini,state_ini_values,Np)

 if ~isequal(u,uLast) %check if computation is necessary

 [myJ,myG,myHeq] =

compute_both(u,ud_ini,state_ini_values,Np,A,B,Bd,C,u_k_prev);

 uLast = u;

 end

 G = myG;

 Heq = myHeq;

 end

end

Plot function

function [] = Plotting(Pu,Pud,Py,Pdu,Sim)

fig_1 = figure("Name",'Control variables');

x = linspace(1,Sim/10,Sim);

y1 = (Pu(:,1));

y2 = (Pu(:,2));

tiledlayout(2,1);

ax1 = nexttile;

plot(ax1,x,y1);

title(ax1,'Charge air pressure');

ylabel(ax1,'barg');

xlabel('Simulation time [s]')

ax2 = nexttile;

plot(ax2,x,y2);

title(ax2,'Global timing');

ylabel(ax2,"degCA");

xlabel('Simulation time [s]')

The figure below shows the disturbances over the simulation time

fig_2 = figure("Name",'Disturbances');

x = linspace(1,Sim/10,Sim);

y1 = (Pud(:,1));

210

y2 = (Pud(:,2));

y3 = (Pud(:,3));

tiledlayout(3,1);

ax1 = nexttile;

plot(ax1,x,y1);

title(ax1,'Suction air temperature');

ylabel(ax1,'degC');

xlabel('Simulation time [s]')

ax2 = nexttile;

plot(ax2,x,y2);

title(ax2,'IMEP');

ylabel(ax2,"bar");

xlabel('Simulation time [s]')

ax3 = nexttile;

plot(ax3,x,y3);

title(ax3,'Charge air temperature');

ylabel(ax3,"degC");

xlabel('Simulation time [s]')

The figure below shows the model outputs over the simulation time

fig_3a = figure("Name",'Measurements');

x = linspace(1,Sim/10,Sim);

y1 = (Py(:,1));

y2 = (Py(:,2));

y3 = (Py(:,3));

y4 = (Py(:,4));

y5 = (Py(:,5));

y6 = (Py(:,6));

Lim_exh = 600*ones(Sim,1);

Lim_O2_1 = 8.5*ones(Sim,1);

Lim_O2_2 = 12.5*ones(Sim,1);

t = tiledlayout(3,1,'TileSpacing',"normal");

title(t,'Measurements')

ax1 = nexttile;

plot(ax1,x,y1);

title(ax1,'Heat rate');

ylabel(ax1,'-');

xlabel('Simulation time [s]')

ax2 = nexttile;

plot(ax2,x,y2);

title(ax2,'Knock');

ylabel(ax2,'%');

211

xlabel('Simulation time [s]')

ax3 = nexttile;

plot(ax3,x,y3);

title(ax3,'Peak pressure');

ylabel(ax3,'bar');

xlabel('Simulation time [s]')

fig_3b = figure("Name",'Measurements');

tt = tiledlayout(3,1,'TileSpacing',"normal");

ax4 = nexttile;

plot(ax4,x,y4);

title(ax4,'NOx');

ylabel(ax4,'ppm');

xlabel('Simulation time [s]')

ax5 = nexttile;

plot(ax5,x,y5,x,Lim_O2_1,x,Lim_O2_2);

title(ax5,'O2');

ylabel(ax5,'%');

xlabel('Simulation time [s]')

ax6 = nexttile;

plot(ax6,x,y6,x,Lim_exh);

title(ax6,'Exhaust temperature');

ylabel(ax6,'degC');

xlabel('Simulation time [s]')

fig_3c = figure("Name",'Measurements');

x = linspace(1,Sim/10,Sim);

y1 = (Py(:,1));

t = tiledlayout(1,1,'TileSpacing',"normal");

title(t,'Measurements')

ax1 = nexttile;

plot(ax1,x,y1);

title(ax1,'Heat rate');

ylabel(ax1,'-');

xlabel('Simulation time [s]')

fig_3d = figure("Name",'Measurements');

ax5 = nexttile;

plot(ax5,x,y5,x,Lim_O2_1,x,Lim_O2_2);

title(ax5,'O2');

ylabel(ax5,'%');

xlabel('Simulation time [s]')

ax6 = nexttile;

plot(ax6,x,y6,x,Lim_exh);

212

title(ax6,'Exhaust temperature');

ylabel(ax6,'degC');

xlabel('Simulation time [s]')

Plot for both control signals

fig_4 = figure("Name",'delta u');

ax7 = nexttile;

plot(ax7,x,(Pdu(:,1)),x,0.02*ones(Sim,1),x,-0.02*ones(Sim,1));

title(ax7,'Charge air pressure');

ylabel(ax7,'bar/ms');

xlabel('Simulation time [s]')

ax8 = nexttile;

plot(ax8,x,(Pdu(:,2)),x,0.05*ones(Sim,1),x,-0.03*ones(Sim,1));

title(ax8,'Global timing');

ylabel(ax8,'degCA/ms');

xlabel('Simulation time [s]')

end

	1 Introduction
	1.1 Main objective
	1.2 Background
	1.3 Operational philosophy
	1.3.1 Lean burn gas engine - Otto cycle
	1.3.2 Main control loops
	1.3.2.1 Speed control
	1.3.2.2 Air pressure control / AFR control
	1.3.2.3 Air temperature control
	1.3.2.4 NOx control
	1.3.2.5 Global ignition timing control
	1.3.2.6 Cylinder individual timing control
	1.3.2.7 Fuel gas pressure control

	1.3.3 Engine control system structure
	1.3.4 Main engine controller

	2 Model predictive control
	2.1 Brief history
	2.2 Main objective
	2.3 Cost function
	2.4 Receding horizon
	2.5 Constraints
	2.6 Grouping
	2.7 System model
	2.8 Integral action
	2.9 Previous work
	2.10 Set up

	3 Modelling
	3.1 Data collection
	3.1.1 Sampling
	3.1.2 Pre-processing and analysis

	3.2 System identification
	3.2.1 Controllability
	3.2.2 Limitations
	3.2.3 Open loop simulation
	3.2.3.1 Open loop simulation with no change on controllable inputs
	3.2.3.2 Open loop simulations with positive step change on charge air pressure
	3.2.3.3 Open loop simulations with negative step change on charge air pressure
	3.2.3.4 Open loop simulation with step change in global timing - advanced timing
	3.2.3.5 Open loop simulation with step change on global timing – retard direction
	3.2.3.6 Open loop simulation with gradually increase in charge air pressure
	3.2.3.7 Open loop simulation with gradually decrease in charge air pressure
	3.2.3.8 Open loop simulation with gradually changing global timing – advance
	3.2.3.9 Open loop simulation with gradually changing global timing – retard

	4 MPC
	4.1 Controllable inputs
	4.1.1 Charge air pressure
	4.1.2 Global ignition timing

	4.2 Measured disturbances
	4.2.1 Suction air temperature
	4.2.2 Charge air temperature
	4.2.3 IMEP

	4.3 Measured outputs
	4.3.1 Heat rate
	4.3.2 Knock level
	4.3.3 Peak pressure
	4.3.4 NOx
	4.3.5 O2
	4.3.6 Exhaust temperature

	4.4 Constraints
	4.5 qpOASES
	4.5.1 Set point tracking with bounds on control value
	4.5.2 Code for qpOASES
	4.5.3 Status of qpOASES

	4.6 Quadprog
	4.6.1 Set point tracking with bounds on control value
	4.6.2 Code for Quadprog
	4.6.3 Status of Quadprog

	4.7 Fmincon
	4.7.1 Set point tracking – unconstrained
	4.7.1.1 Set point tracking with step change in set point
	4.7.1.2 Set point tracking with fixed set point and disturbance rejection
	4.7.1.3 Set point tracking with ramp in set point

	4.7.2 Set point tracking with constraints on ∆,𝑢-𝑚.
	4.7.2.1 Set point tracking with load rejection
	4.7.2.2 Set point tracking with ramp in set point

	4.7.3 Set point tracking with constraint on outputs
	4.7.4 Minimize heat rate with constraints
	4.7.5 Grouping of control inputs
	4.7.6 Prediction horizon

	4.8 Laguerre based Discrete Model Predictive Control
	4.8.1 Classical DMPC
	4.8.1.1 Constraints
	4.8.1.2 Lagrange multipliers

	4.8.2 DMPC with Laguerre functions
	4.8.2.1 Set point tracking without constraints
	4.8.2.2 DMPC with constraints on control signal
	4.8.2.3 DMPC with constraints on output signals

	5 Discussion
	5.1 Modelling
	5.2 qpOASES and Quadprog
	5.3 Fmincon
	5.4 DMPC with Laguerre functions
	5.5 Future work

	6 Conclusion
	References
	Appendices
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G
	Appendix H
	Appendix I

