
 
www.usn.no  

 

Faculty of Technology, Natural sciences and Maritime Sciences 
Campus Porsgrunn 

 

 

FMH606 Master's Thesis 2021 

Industrial IT and Automation 

 

Advanced model-based control of B36:45 
LNG engines based on data driven models 

using machine learning tools 
 

 

 

 

 

  

 

 

 

 

 

Svein Roar Kvåle 

 

 



 
www.usn.no  

 

The University of South-Eastern Norway takes no responsibility for the results and 

conclusions in this student report. 

Course: FMH606 Master's Thesis, 2021 

Title: Advanced model-based control of B36:45 LNG engines based on data driven models 

using machine learning tools 

Number of pages: 212 

Keywords: MPC, Lagrange, DMPC, Fmincon, LNG, qpOASES 

 

Student: Svein Roar Kvåle 

Supervisor:   Associate Professor Roshan Sharma 

External partner:   Bergen Engines AS 

  

  

 

Summary:  

This work is about developing a data driven MPC control for optimization of fuel 

consumption by minimizing the heat rate of an LNG gas engine from Bergen Engines 

AS. 

The model is based on real life data from an installed B36:45 gas engine in a power 

plant. The process data from the engine was used to develop a state space model of the 

process consisting of 2 controllable inputs, 3 measure disturbances and 6 measured 

outputs. 

The goal was to use the global ignition timing and the charge air pressure set point as 

controllable outputs to minimize the heat rate while considering constraints on the 

measured outputs.  

Several MPC concepts has been tested, including qpOASES; Quadprog, Fmincon and 

DMPC with Laguerre functions; all of which has their pros and cons, and which 

produced different results.  

Mostly the Fmincon and the DMPC gave the most promising results, DMPC with speed 

and ease of implantation but lacked successful results on output constraints. Fmincon 

produced some usable results but often got into trouble handling the output constraints 

and was computational heavy to use.  
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Abbreviations 
𝑑𝑒𝑔𝐶𝐴:  Degree crank angle  

𝑇𝐷𝐶:  Top dead centre 

𝑃𝐼𝐷:  Proportional Integral Differential 

𝐷𝑀𝐶:  Dynamic matrix control 

𝐺𝑃𝐶:  Generalized predictive control 

𝐿𝑄𝑅:  Linear quadratic regulators 

𝑄𝑃:  Quadratic programming 

𝐿𝑄:  Linear Quadratic 

𝑀𝐴𝑇𝐿𝐴𝐵: Matrix Laboratory 

𝑀𝐼𝑀𝑂: Multiple Input and Multiple Output 

𝑆𝐼𝑆𝑂:  Single Input and Single Output 

𝐶𝑉:  Control value 

𝑀𝑃𝐶:  Model Predictive Control 

𝐿𝑁𝐺:  Liquefied Natural Gas 

𝐶𝑃𝑀:  Cylinder Pressure Monitoring 

𝐶𝐹𝐷:  Computational fluid dynamics 

𝑝𝑝𝑚:  Parts per million 
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Symbols 
𝐴:   State matrix in state space model 

𝐵:  Input to state matrix in state space model 

𝐶:  State to output matrix in state space model 

𝑁𝑝:  Prediction horizon 

𝑁𝑐:  Control horizon 

∆𝑈:  Vector of control input signals 

∆𝑢(𝑘𝑖) : incremental control signal at current time instance 𝑘𝑖 

∆𝑢(𝑘𝑖 +𝑚): future incremental control signal at time instance 𝑚 

∆𝑢𝑚𝑎𝑥: Max limit on control signal 

∆𝑢𝑚𝑖𝑛:  Minimum limit on control signal 

∆𝑌:  Vector of predicted output signals 

𝑦:  Output signal 

∆𝑦𝑚𝑎𝑥: Max limit on output signal 

∆𝑦𝑚𝑖𝑛:  Minimum limit on output signal 

𝑥(∙):  State variable 

𝑥(𝑘𝑖 +𝑚|𝑘𝑖): Predicted sate at sample time 𝑚 given current state 𝑥(𝑘𝑖) 

𝐽:  Optimization variable in cost function 

𝑄:  Weight matrices in cost function 

𝑅:  Weight matrices in cost function 

Ω,Ψ:  Matrices in cost function - 𝐽 = 𝜂𝑇Ω𝜂 + 2𝜂𝑇Ψ𝑥(∙) 

𝑎:  Scaling factor for discrete time Laguerre functions 

𝑙𝑖:  The 𝑖th discrete Laguerre function 

𝐿(∙):  Laguerre function as vector 

𝜆:  Lagrange multiplier 

𝜂:  Laguerre parameter vector 

𝑀, 𝛾:  Matrix and vector in inequality constraints (𝑀𝑥 ≤ 𝛾)   
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1 Introduction 
This section contains an introduction to the problem domain and background information for 

the objective of the project.  

1.1 Main objective 

This project is a continuation from the Master project FM4017 – “Data driven modelling using 

Machine Learning tools for control and analysis of charge air pressure and global ignition 

timing control on B36:45 LNG engines” from the fall 2020. In the FM4017 project a data 

driven model of the combustion process was developed which will form the basis for the a 

MPC driven optimizer developed in this project.  

The purpose of this project is to develop a controller which will, trough optimization, find 

optimal set points to give improved fuel efficiency of an LNG single fuel internal combustion 

engine. This optimizer will mainly be used for land based power plants where fuel economy is 

of outmost importance.  

Based on measured input/output data the optimizer will adjust two controllable inputs such that 

the fuel consumption is optimized while keeping other engine conditions within given 

constraints.  

The controllable inputs are the general engine global ignition timing point and the charge air 

(boost air) pressure set points. Lower level standard PID controllers will use these inputs as set 

point for local control.  

The findings in the Master project showed that a data driven model with 2 controllable inputs, 

3 measured disturbances and 6 measured outputs would represent the system to be controlled.  

1.2 Background 

Bergen Engines AS is a developer and producer of gas and diesel engines for the marine and 

land-based power marked. The factory is located just north of Bergen on the west coast of 

Norway and have been since it moved from the city centre of Bergen in 1965. Bergen Engines 

was part to the Ulstein group from mid-eighties until 1999 from which it has been a part of 

Rolls-Royce. Figure 1-1 shows an illustration of the factory area.  

Currently there are approx. 1100 employees in Bergen Engines and about 650 of these are 

situated in the factory outside Bergen.  
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Figure 1-1: Factory illustration 

The latest LNG fuel engine type developed is the B36:45 engine family, and a graphical 

representation of the engine is shown in Figure 1-2. This engine type has been in commercial 

operation since late 2018 and now forms the most sales for the land-based power generation 

marked. During the development of this engine type the overall engine control system has been 

re-designed and new embedded controllers has replaced the traditional PLC’s. In addition, the 

instrumentation and diagnostic capabilities has increased due to the feasibility to do in-cylinder 

pressure monitoring for each cylinder on cycle-to-cycle basis. This gives large amount for 

valuable data back to the control system to utilize for optimization.  

 

Figure 1-2: 20 cylinder B36:45 LNG gas engine with generator 

The B36:45 engine is often sold for single or multi engine installation for land-based power 

plants. An example of such an installation is shown in Figure 1-3. For most of these installations 

the engines run at steady conditions for long periods of time and often at maximum, or close 

to maximum, power output. For these engines the efficiency and power output are what is sold 

on the electrical grid. A slight increase in  
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Figure 1-3: Multi engine installation power plant 

efficiency will hence generate a large amount of income increase for the owner. The engines 

are therefore tuned to run as close as possible to its limits, but within the design margins.  

Figure 1-4 shows how the energy input to a gas engine is distributed. A lot the energy can be 

lost to the exhaust and the heat emission via the cooling fluids and lubrication fluid. The 

exhaust gas temperature is often reused by extracting the heat via boiler systems or heat 

exchangers and then used to drive other power trains. For greenhouses the exhaust if often 

cleaned and then the CO2 is injected into the greenhouse as nutrition to the plants. The cooling 

fluids are also used to heat water which is used to heat up the greenhouse.  
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Figure 1-4: Gas engine energy balance 

These “optimal” operational set points are set during the commissioning phase such that the 

engine can operate within specification, but with some safety margin to the design limitations 

of the engine. These set points are mostly static maps which needs to be recalibrated at given 

intervals to remain optimal as the engine condition changes both by time and ambient 

conditions.  

For an LNG gas engine the engine efficiency is in general given as in Figure 1-5 for a given 

power output. We note that the efficiency is not very good below 20 [%] and rises slowly from 

approx. 30 [%] power output to 100 [%] at which the efficiency is close to 50 [%]. The 

distribution of the efficiency losses can be seen in Figure 1-6. As shown in Figure 1-4, most of 

the losses are to the exhaust gas [1].  
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Figure 1-5: Fuel efficiency for and LNG engine 

 

 

 

Figure 1-6: Distribution of losses for an LNG gas engine 

In the search for higher efficiency, more complex logic, which takes into account more of the 

information available, is constantly developed. This has resulted in a large increase in 

parameters and maps that interact with each other, which makes the engine tuning phase a 

complex and time-consuming job. This project will therefore be used to let a MPC search for 

the optimal set points based on measured states of the engine and known disturbances.  

This is set to be the first step towards more data driven, self-optimizing algorithms that can use 

the large amount of data produced. The ultimate goal here is to use a reduced set of parameters 

which can be used to prioritize the different possibilities such that a project optimal goal is 

reached. For instance on a given project the most important goal is to reach a given NOx set 

point and secondary fuel efficiency, while it for another project might be the fuel economy 

which is the most important while keeping the NOx within given constraints.  

 

 

0

10

20

30

40

50

0 20 40 60 80 100

F
u

e
l 
e
ff

ic
ie

n
c
y
 [
%

]

Electrical power output [%]

380C 425C 455C 455C
0%

20%

40%

60%

80%

100%

%
 o

f 
fu

e
l 
e
n

e
rg

y
 i
n

p
u

t

Electrical power output [%]

LT heat (~50C)

Radiation

Lube oil heat (~75C)

HT heat (fixed 90C)

Exhaust heat



 

13 

1.3 Operational philosophy 

The B36:45 engine family is a medium speed lean-burn single fuel spark ignited internal 

combustion engine. It mainly uses LNG as fuel source and a run at 720/750 [rpm] for 60- and 

50 [Hz] applications respectively.  

It is turbocharged and has a 2-stage water cooled charge air cooler.  

In most land-based power plants it connected to a generator which is often connected to either 

a small local grid or a large national grid. The engines nominal power output is 600 [kW] pr 

cylinder mechanically and comes in both in inline and Vee configurations. The smallest is an 

inline 6-cylinder engine and the largest is a Vee 20-cylinder engine.  

1.3.1 Lean burn gas engine - Otto cycle 

A lean-burn gas engine runs with a high air to fuel ratio compared to the required air for a 

stochiometric combustion. This lowers the combustion temperature and hence reduces NOx 

emissions. The B36:45 engine is a lambda 2 engine, indicating that it runs with twice the 

required amount of air for a stochiometric combustion. This lean mixture is difficult to ignite 

and hence a pre-combustion chamber is mounted in the cylinder head. A rich mixture is here 

ignited by a spark plug and the resulting flames will propagate out and into the main chamber 

where it will ignite the lean mixture. Figure 1-7 shows an illustration of the combustion 

chamber with the spark plug, pre-chamber and main chamber. 

 

Figure 1-7: Combustion chamber illustration 

The engine is a 4-stroke (also known as the Otto cycle) which means that there are 4 distinct 

phases for the combustion process. The different phases can be seen in the illustration in Figure 

1-8. 



 

14 

During the first phase the air/fuel mixture is drawn into the combustion chamber during the 

downward movement of the piston in the cylinder. This is the phase where the piston moves 

from the top dead centre (TDC) to the bottom dead centre (BDC). 

The second phase is the compression stroke. This is the upward motion of the piston at which 

the air/fuel mixture is compressed. Here the piston moves from the bottom dead centre to the 

top dead centre. During the last phase of the compression a spark plug is ignited in order to 

ignite the air/fuel mixture.  

The third phase is the expansion phase, also known as the power phase. After the ignition of 

the air/fuel mixture the temperature rises rapidly and hence the pressure. This pushes the piston 

downwards. This forced movement is used to rotate the crankshaft driving the generator.  

Once the piston reaches the bottom the final phase starts. This phase is the exhaust phase at 

which the exhaust from the combustion is pushed out of the combustion chamber as the piston 

moves upward to the top dead centre again. Once back at the top the cycle starts over again 

with the first phase.  

 

 

Figure 1-8: Illustration of the 4-phases of the combustion process – illustration from 

https://cartreatments.com/internal-combustion-engine-fundamental/ 
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1.3.2 Main control loops 

The following sections shortly describes the most common control loops for the combustion 

process which are controlled by the engine control system today. There some other control 

loops as well, but the major once are described here.  

1.3.2.1 Speed control 

The base function in the engine controller is the speed control loop which is a PID control loop 

with measured speed as feedback. This engine controller is often called the speed governor as 

for traditional marine applications with diesel engines its main purpose is to maintain engine 

speed at a variable set point. But for engine used in power generation the speed setpoint is 

usually fixed and hence the controller is more a power controller. 

The PID controller controls the flow of fuel admission in order to keep the engine speed at set 

point. When connected to a large grid with fixed frequency the speed control loop is used to 

control engine power output according to a set point. Increasing the speed set point will result 

in the speed controller to increase the fuel admission by increasing the fuel flow control which 

will result in an increase of engine power output as the frequency cannot change.  

The output from the speed control PID controller is a control signal to the main fuel actuator 

on the engine. The fuel actuator transforms the control signal in a mechanical control 

movement which is used to adjust the fuel flow control valves; one for each cylinder. The 

controlled flow of fuel is then led to the fuel admission valve which is mechanically linked to 

the inlet valves. The inlet valves are mechanically linked to the camshaft which controls the 

valve opening timing. Once in the correct cycle the inlet valve will open and hence the fuel 

admission valve will open. During the period the inlet valve is open the fuel is led into the air 

flow and mixed through a mixing port. The inlet channel design allows for a given swirl which 

will further dilute the air with the fuel which will lead to a close to perfect mixing in the 

combustion chamber.  

Some of the fuel gas is internally in the cylinder head guided to the prechamber valve and, once 

open, fed into the pre-chamber where the spark plug is located.  

The operational principle is simple and can for a diesel engine be controlled by a pure 

mechanical governor. For a gas engine this is not the case as the fuel is both flow controlled as 

well as pressure controlled; but the theory is the same. In case the measured engine speed (or 

power output for the power generating engines) the fuel flow control valve is opened, and hence 

more fuel is admitted into the combustion process allowing for an increase in speed (or power 

output). If above the set point the fuel flow is reduced.  

1.3.2.2 Air pressure control / AFR control 

The AFR, or air pressure control, is a control loop which main purpose if to control the charge 

air pressure in the air receiver to a given set point. The set point is based on a map with engine 

power output and engine speed as inputs. The set point map is derived based on numerous of 

test runs at the test bed by skilled engineers. Since this is a static map the set point must be 

biased to a certain degree based on operational conditions. The most notable is the NOx control 

which is an outer control loop in its own right which will adjust the set point for air pressure 

control in order to get the NOx emissions to a given set point. Figure 1-9 shows an illustration 

of the control loop structure.  
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Figure 1-9: Charge air pressure control loop illustration 

In Figure 1-10 an indication of how the set point currently is set is shown. It indicates the values 

in the map structure and shows some rate limitations on the set point changes and the biases to 

the set point. The output from this structure is the set point to the PID controller.  

 

Figure 1-10: Air  pressure control – current set point design 

 

The air pressure control is the most active and influents of all control loops. It dictates most of 

the engine behaviour as it directly controls the air/fuel ratio under all operational conditions.  

The output from the air pressure control is a position control signal to a waste gate actuator. 

The waste gate actuator will control the amount of exhaust by-passing the turbine part of the 

turbocharger(s) and hence the energy used to increase the air pressure.  

The feedback to the air pressure control is the measured air pressure in the air receiver which 

then forms a closed loop control system.  

One of the goals of this project is to find the optimum charge air pressure to maximize engine 

efficiency.  

1.3.2.3 Air temperature control 

In order to further control the air/fuel ratio the temperature of the combustion air should be 

kept at given values. A lower air temperature will increase the density of the air, and hence 

larger amounts of air and fuel can be added to the combustion process, increasing the power 

output from the engine. But the air temperature must not be so cold that water is condensed 

which can be potential damaging to the engine. The air temperature is often controlled by a 
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low level PID controller which will control the air temperature to a given set point based on 

operational ambient conditions.  

The control signal from the PID controller is used to control a 3-way valve which will direct, 

or bypass, water to a 2-stage charge air cooler. By increasing the amount of water going through 

cooler the temperature can be reduced, and vice-versa. 

The air temperature after the turbocharger compressor is too high for the combustion process 

and hence the charge air cooler is located between the outlet from turbocharger compressor 

and the engine air receiver. The air receiver is a common volume from where the inlet channels 

to each cylinder originate.  

In Figure 1-11 the charge air cooler (1), the air bends (2,3) between the compressor outlet of 

the turbochargers (4,5) are shown graphically for a Vee engine.  

 

Figure 1-11: Graphical representation of upper front end of a Vee engine 

 

An increase in temperature will lead to an increase in NOx due to lower air mass added to the 

combustion process and due to increase in temperature. This will also result in the engine 

operating closed to the ignition knocking limit.  

1.3.2.4 NOx control 

The engine is equipped with dual NOx sensors in the exhaust outlets. These sensors measure 

both the amount of NOx in the exhaust [ppm] and the amount of Oxygen [%]. The NOx level 

is fed back as process value to an outer PID controller which will control the NOx level such 
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that it is according to a given set point. Figure 1-12 shows a simplified illustration of NOx 

control structure and Figure 1-13 shows how the implementation looks like today.  

 

Figure 1-12: NOx control loop 

 

 

Figure 1-13: NOx control loop implementation 

The engines have traditionally been sold to run at TA Luft1 or ½ TA Luft which is equivalent 

to 500 [mg/Nm3] NOx at 5 [%] O2 or 250 [mg/Nm3] NOx at 5 [%] O2.  

The NOx control is a process which is not acting very fast and is only active during steady state 

operations. The set point for the NOx control is given in ppm and hence the limit is calculated 

from the dry 500/250 [mg/Nm3] value back to the approx. 143/108 [ppm] set point at nominal 

power output. 

The NOx controller will bias the air pressure base set point between +10 [%] and -5 [%] in 

order to minimize the error between the measured NOx and the set point.  

In Figure 1-14 we see the operational principle of the LNG gas engine and how the various 

aspects of the combustion process influences each other. The main take from this is how the 

 

1 TA Luft – is a term defined by the german air pollution control regulation titled “Technical Instructions on air 

Quality Control” (Technische Anleitung zur Reinhaltung der Luft) [11] 
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air excess ratio operational window narrows as the power output increases and the risk of either 

knocking or misfire increases. At the same time the increase in efficiency while still keeping 

NOx within limits and the UHC low enough is important.  

 

 

Figure 1-14: Engine performance trends as function of air excess ratio 

1.3.2.5 Global ignition timing control 

The ignition timing is the time in crank angle degrees at which the cylinder individual spark 

plug is ignited in the pre combustion chamber. This location is firstly set to a base set point for 

all cylinders. Then each individual cylinder can adjust its own ignition timing between ±3 

[degCA] in order to balance the power output and peak pressure for each cylinder.  

But firstly, the base timing is set in a map based on testing on the testbed by engineers. This 

base timing is adjusted such that a good margin to ignition knocking while maintaining high 

level of efficiency is achieved. The global timing is adjusted so that the maximum pressure in 

the cylinder is occurring around 13-15 [degCA] after TDC. This will give rise to best 

performance.  
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Figure 1-15: Global ignition timing control loop illustration 

 

In order to achieve this the engine control system will measure the location for each cylinder 

at which 50 [%] of the fuel has been burned (CoC2) by monitoring the pressure increase curve 

during the combustion. The engine average value of this location is then used as feedback to 

the engine control system such that this location is kept at a given set point. In addition, there 

are multiple manipulators to this set point based on operational conditions. This makes the 

control of the timing location complex and difficult to maintain. Figure 1-16 shows the naming 

convention for the ignition timing of the crank angle degrees and some guidance to real world 

numbers.  

 

Figure 1-16: Naming convention for ignition timing 

The CA10, CA50 and CA90 names indicate the locations at which 10 [%], 50 [%] and 90 [%] 

fractions of the fuel have been burned. These values are found based on the measured pressure 

curve and the gradient of it. Figure 1-17 shows an illustration of the pressure curve from a 

combustion. The red curve is during a power stroke and the green curve is the motored3 curve. 

 

2 CoC – Centre of Combustion, also known as CA50 

3 Motored curve – This is the pressure curve as a result on compression only, that is a cycle where no 

combustion takes place 
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Figure 1-17: Pressure curve and locations 

 

In Figure 1-18 the heat release curve is shown with the locations for CA10, C50 and C90. The 

accumulated heat release average over a number of combustion cycles are used together with 

the measured engine load to calculate the heat rate of the engine which in turn are the property 

we want to minimize. The goal is to have the relationship between the power output and the 

accumulated heat release to be as small as possible, that is the least amount of fuel used pr 

power unit output.  
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Figure 1-18: Heat release curve 

 

This project will try to reduce this complexity by allowing the MPC to find the optimum timing 

set points given a set of constraints to protect the engine from running in to dangerous 

operational points.  

In Figure 1-19 we see an indication of the relationship between global ignition timing and peak 

pressure and efficiency. These curves are based on data from tests performed on the previous 

version of the Bergen LNG gas engine, the B35:40. This engine operates at lower BMEP than 

the B36:45 engine and with lower peak pressures. The indicated relationship however shows 

similar behaviour. Earlier ignition timing, that is ignition before top dead centre (BTDC) will 

increase the peak pressure in the cylinder, but it will also increase the efficiency of the engine. 

There are however, as indicated, a mechanical limit in the construction of the engine how high 

the peak pressure can become before there is a risk of mechanical breakdown. The engine 

control system therefore monitors the peak pressure for all cylinders and in case of too high 

pressure the engine will shut down. This pressure will also play a role in the MPC as it must 

be used as a constraint to avoid too high pressure.  
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Figure 1-19: Global timing influence on efficiency and cylinder pressure 

 

1.3.2.6 Cylinder individual timing control 

The cylinder individual timing control is used to automatically balance the engine based on 

peak pressure measurements. The peak pressure is dimensioning factor when constructing and 

running the LNG engine. Too high pressure during the combustion process will damage the 

crankshaft and cylinder liner. The pressures for each combustion cycle are monitored and the 

average calculate for engine. The cylinders producing pressure above the engine average will 

have their ignition timing retarded while those running below the average will ha the timing 

advanced. This will keep the pressures and hence power output contribution from each cylinder 

more equal and hence no cylinder will need to run in an overload condition.  

Previously this was taken care of by monitoring the exhaust temperatures and manually control 

the fuel amount to each cylinder mechanically. This manual process was error prone and the 

was both time consuming and influenced by ambient conditions. There nor a guarantee that it 

actually produced equal power output.  

In Figure 1-20 an indication of how the cylinder peak pressures deviates during traditional 

operation at the left hand side (CPM4 off) and how the distribution is once the controller 

automatically adjust the ignition timing continuously to the right (CPM on). This automatic 

balancing of the cylinders only became possible a few years ago when the cylinder pressure 

sensors became affordable. Now all LNG gas engines are supplied with these sensors mounted.  

 

4 CPM – Cylinder Pressure Monitoring 
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Figure 1-20: Cylinder individual timing biases on and off 

1.3.2.7 Fuel gas pressure control 

The fuel gas pressure has in recent years changed from a map set point based open loop control 

to a simple open loop control. 

The set point is now directly given by the measured charge air pressure including a speed 

dependent bias with a separate pressure control during engine start up. This has simplified the 

control greatly.  

In the past there was also separate control structures for the main fuel gas pressure used for the 

main combustion and the fuel gas which was used for the pre-chamber. The engine was then 

started with only gas supplied to the main combustion chamber and only after the engine had 

started firing and accelerated was the fuel to the prechamber enabled. This period was difficult 

to control and the starting phase was sometimes troublesome.  

The simplification done over the recent years based on more accurate knowledge from the 

combustion process and CFD analysis resulting in optimalisation of the fuel control valve as 

results in a more robust starting sequence. Today the pre-chamber and the main combustion 

chamber are fuelled by the same pressure and at the same time. Separate internal routings of 

the pre-chamber gas have also resulted in fewer components and less control structures in the 

control system.   
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1.3.3 Engine control system structure 

The engine control system consists of several main units with their own dedicated purpose.  

The main components and the main tasks are listed below: 

• Engine safety unit 

o Separate PLC mounted on engine which monitors selected critical process 

values and will shut down the engine in case of breach of associated operational 

limits.  

o The unit will independently mechanically force the fuel control valves to zero 

fuel position and cut the fuel gas supply by tripping the main fuel gas valves.  

• IPC PLC 

o Separate off-engine mounted PLC which will interface supervisory systems and 

handle active power control. Measures active power output of generator and 

adjusts engine speed bias in order to maintain power output at set point. 

o Handles most process value associated alarms 

o Controls the engine in primary, secondary and tertiary control.  

• Engine controller 

o On-engine mounted embedded controller which controls engine control loops. 

o Interfaces IPC PLC for speed bias signals 

o Responsible for air/fuel ratio control, ignition timing, combustion process value 

measurements and engine limitation handling.  

o Encoder position control and cylinder pressure measurements and diagnostics 

• Ignition controller 

o Receives set points from engine controller and adjusts both engine wide base 

ignition timing and cylinder individual timing accordingly 

o Controls spark duration and spark intensity based on set points from the engine 

controller.  

1.3.4 Main engine controller 

The main engine controller currently used is an embedded controller from Woodward Inc. The 

LECM (Large Engine Control Module) is a purpose-built controller with suitable hardware for 

interfacing large industrial engines. The software for the controller is developed and built in-

house at Bergen Engines and hence gives a large flexibility in custom made control algorithms. 

The purpose of this project is to add the MPC control structure to this controller to optimize 

engine fuel optimization.  

Figure 1-21 shows a graphical representation of the engine controller.  
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Figure 1-21: Engine controller - LECM 

The control software used in the LECM is developed in MATLAB Simulink with a proprietary 

library for hardware access to the actual controller from MotoHawk. The MotoHawk library is 

a rapid programming development tool which allows engineers to quickly develop control 

software in Simulink to run on a MotoHawk enabled control module; like the LECM. It is 

model based and allows for simulation and testing within the Simulink environment during the 

development. This methodology also simplifies verification as already well-proven and tested 

functionality blocks are available.  

MotoHawk also allows for support of online parameter adjustments and calibration during 

runtime; and includes ready-made commonly used control structures for engine control. The 

calibration tool is also built and maintained in-house at Bergen Engines. It is via this tool the 

user needs to control and adjust the control algorithms and set up the parameters. Figure 1-22 

shows an example view of one of the pages on the calibration tool. 
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Figure 1-22: Parameter adjustment and calibration tool 

Even though MotoHawk as many pre-made algorithms available, it does not have any available 

MPC control structures and hence this must be developed using standard MATLAB and 

Simulink functions. This will be one of the upcoming tasks later to implement the structure 

into the existing control system.  

The Simulink code is auto coded using the Embedded Coder into the compiled code which 

runs on the controller.  
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2 Model predictive control 
This chapter gives a short introduction to the model predictive control (MPC in short) and the 

application areas it has been utilized and the general principles.  

2.1 Brief history 

Model predictive control was original developed for chemical processes to control transients 

of dynamic systems with hundreds of inputs and outputs which was also under constraints  [2]. 

It can be dated back to the 1960’s where Kalman worked on the optimal linear control system.  

During the 1970’s various industrial applications using MPC was developed including MPHC 

by Richalet; later renamed to Model Algorithm Control (MAC); and Dynamix Matrix Control 

by Cutler and Ramaker [2]. Both of these where based on predicting future output of a system 

based on a model of the system and knowledge of the control inputs. This was done by 

minimizing the error between the predicted output and the measured output given some 

constraints. Stability in these early versions of MPC was achieved with long prediction horizon. 

In the 1980’s the 2nd generation of MPC was introduced, Quadratic Dynamic Matrix Control; 

or QDMC in short which was described by Cutler in the 1983 AlChE conference. [3]. In QDMC 

quadratic programming is used to solve an open loop problem with a linear system and 

quadratic objective function including linear inequality constraints. 

Later in the 80’s and early 90’s; Shell engineers are among those driving further the 

development of MPC algorithms which also uses State Space models and Kalman filter for 

state estimation to overcome the problem with infeasibility by using several layers of 

constraints, not solved in the second generation. IDCOM-M, RMPC, PCT and SMOC were 

among those algorithms that was developed. These where the 3rd generation of MPC’s [2]. 

Generalized Predictive Control (GPC) was also developed by Clarke et al. in 1987 [4] which 

is still widely used.  

In the 90’s the RMPC by Honeywell and PCT by Profimatics was merged to RMPCT, Robust 

Model Predictive Control Technology; and together with DMC-Plus (development of DMC 

and SMCA) was introduced as the 4th generation MPC.  

MPC algorithms are still developed further today and the sought for stability for finite horizon 

prediction. It has in recent years also gain a lot of interest and found applications in power 

system balancing as these move more toward dynamic control of smaller grid systems with 

large variety of power producer, including renewable sources [5]. 
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2.2 Main objective 

The main general objective of model predictive control is estimate future trajectory of a control 

variable 𝑢 such as to optimize the future behaviour of a system output 𝑦. The optimal condition 

is given as a cost function for which the MPC algorithm will try to minimize for each iteration. 

The system here is the system or plant which are controlled by an application which implements 

the MPC algorithm. The MPC optimization within a limited time window is known as the 

prediction horizon based on previous states of the system. These states are the initial input to 

the MPC.  

The MPC uses a model of the system and the cost function to estimate the future values of 𝑢 

which will give the best possible control outputs to achieve the goal.  

In most practical applications there needs to be some limitations to this action as the optimizer 

can usually not take any value. These limitations are given to the MPC controller in forms of 

constraints which needs to be fulfilled. These constraints forms a specific region which is also 

knows as the feasible region, for which the optimal solution needs to lie within [6]. 

Most common are constraints on the control values, that is the output from the optimizer. The 

control signals used in an industrial application is usually limited by some physical constraints, 

for instance the amplitude of the voltage on the control signals and/or how fast the output can 

change. This can be a valve which cannot change instantaneously as this could potentially wear 

out the valve. This is something the MPC needs to be aware of and take into considerations 

when giving the optimal output. 

 

 

𝐽𝑘 = ∑(𝑒𝑘+𝑖
𝑇

𝑁

𝑖=1

𝑄𝑖𝑒𝑘+𝑖 + 𝑢𝑘+𝑖−1
𝑇 𝑃𝑖𝑢𝑘+𝑖−1 + ∆𝑢𝑘+𝑖−1

𝑇 𝑅𝑖∆𝑢𝑘+𝑖−1) 

𝑒𝑘+𝑖 = (𝑦𝑘+𝑖 − 𝑟𝑘+𝑖) 

(2-1) 

 

Equation (2-1) shows the general objective function; or cost function; for an MPC where 𝐽 is a 

scalar value at time instance 𝑘. 𝑁 is defined as the prediction horizon, 𝑄𝑖 ∈ ℝ
𝑚×𝑚, 𝑃𝑖 ∈ ℝ

𝑟×𝑟 

and  𝑅𝑖 ∈ ℝ
𝑟×𝑟 are symmetric positive semi-definite weighting matrices for the operator/user 

to specify. P can often be set to zero in order to obtain offset free control [7]. The weighting 

matrices are usually time invariant and hence do not change during the prediction horizon as 

will be the case in this project.  

The general quadratic programming representation of the equation in (2-1) is given in (2-2). 

 

 𝐽𝑘 = 𝑒𝑘+1
𝑇 𝑄𝑒𝑘+1 + 𝑢𝑘

𝑇𝑃𝑢𝑘 + ∆𝑢𝑘
𝑇𝑅∆𝑢𝑘) 

𝑒𝑘+1 = (𝑦𝑘+1 − 𝑟𝑘+1) 
(2-2) 

Note again that P can be set to zero to get offset free control, given that no constraints are 

active.  
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Some of the advantages of the MPC over traditionally methods like PID control includes: 

• No dynamic parameters that needs to be tuned 

• Can be used from simple to complex systems for both SISO5 to MIMO6 systems 

• Can control systems with long delay times 

• It introduces feed forward control inherently 

• Easy integration of constraints 

On the other hand, there are also some drawbacks of using a MPC Vs the more traditionally 

PID controller; some of these are listed below 

• For more complex problems the computational effort can be too high to be done every 

time step 

• When constraints are considered the computational effort is even higher 

• The availability of a system model and the results will depend on the discrepancies 

between the model and the real process.  

  

 

5 SISO – Single Input Single Output 

6 MIMO – Multiple Input Multiple Output 
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2.3 Cost function 

The cost function is a scalar used to determine when the optimal solution is found. For a set 

point tracker this scalar will indicate the difference between the future output and a given 

reference but at the same time take into account that a change of the output comes with a cost. 

The cost is summed over the prediction horizon. The goal is to minimize this cost over this 

prediction horizon with respect to future control outputs. The cost function is given as a general 

equation in Equation (2-1). The cost function can be expanded to take in any number of 

elements that we want to play a role in the minimization and the user uses the weight matrices 

to determine which cost that would carry the highest impact to violate.  

The weight matrix 𝑄 ∈ 𝑅𝑚×𝑚 where 𝑚 is the number of set point objectives to achieve.  

The weight matrix 𝑃 ∈ 𝑅𝑟×𝑟 where 𝑟 is the number of control inputs. 

The weight matrix 𝑅 ∈ 𝑅𝑟×𝑟 where 𝑟 is the number of control inputs.  

The matrixes are symmetric and positive semi-definite.  
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2.4 Receding horizon 

The output from the optimizer is a prediction of optimal future control movements for the 

whole prediction horizon. In an industrial MPC we usually only utilize the first element of 

these optimal control outputs and apply it to the system under control. We then measure the 

response from the system and its states and feed that back to the optimizer and we do it all over 

again. This is called the moving horizon or receding horizon control law. Figure 2-1 shows the 

principle of the MPC operation where we for each sample time produces a new optimal control 

output sequence for the next 𝑘 + 𝑖 time steps (the prediction horizon). 

 

 

Figure 2-1: MPC principle [5] 

One of the, possibly, disadvantages of this method is the computational effort involved in 

predicting a larger number of future control moves for each iteration where only the first move 

is used. Depending on the size of the problem and the number of constraints and number of 

parameters to optimize this might take a substantial large finite time which in turn only allows 

for slower update times. The sample time needs to be larger than the time it takes to do the 

optimization.  

For the problem at hand in this project the updates for process values are usually in the range 

of 100 [ms] for slower algorithms and 10ms for the faster controls. This optimization might 

however possibly run at slower rates as this is an optimization for long term fuel efficiency.   
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2.5 Constraints 

One of the benefits of MPC is the handling of constraints and especially on the control signal. 

Both the amplitude and rate of change of the control signal can be added to the problem 

formulation and hence is taken into account when the optimal solution is calculated. Both 

inequality and equality constraints can be added.  

Constraints can be both hard and soft constraints where the difference is that the hard 

constraints must be obeyed at all time instances while soft constraints can be exceeded in case 

infeasibility occurs. Hard constraints are typically on the control output (both amplitude and 

rate of change) which cannot result in infeasibility. Soft constraints can for instance be on both 

measured outputs of the system and on internal states. Here the slack variables can be used to 

control how each constraint that can be violated the most and to what expense [6]. The slack 

variables are therefore added to the cost function so that the amount of violation is reduced.  

The constraints on the control variable can be written as inequality constraints such that 

 𝐴∆𝑢 ≤ 𝛾 

𝐴𝑢 ≤ 𝛾 
(2-3) 

where 𝐴 is a matrix and 𝛾 is a vector.  

The constraint on the amplitude of the control signal can be written as 

𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥 

Which can be rearranged to 

𝑢 ≤ 𝑢𝑚𝑎𝑥  
−𝑢 ≤ −𝑢𝑚𝑖𝑛 

 

Most linear MPC controllers are in the form of a QP problem with inequality constraints as 

given in (2-3). These are then solved iteratively by the optimizer. The number of iterations is 

however limited and there is no guarantee that a feasible solution can be found within a finite 

number of iterations.  

The QP problem is usually always solved by an active set method [7]. The method is further 

explained in section 4.8.1.2. 
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2.6 Grouping 

One way of reducing the size of the optimal control problem is by introducing grouping of 

control signals [6]. The idea here is that the prediction horizon can be divided into several 

blocks in which the control signal is kept constant. The groups can be both equal in size or with 

different sizes. By keeping the control signals constant within each group, we will only need 

to consider that signal once within that group instead of for each sample. The size of unknows 

which the optimizer than need to estimate is then reduced to the number of groups times the 

number of control signals.  

For example, if the prediction horizon is 100 samples and it is split into 5 groups and the 

number of control signals is 2; then the number of unknowns prior to grouping is 200 while 

after the grouping it is only 10.  

Depending on the number of control signals and prediction horizon, this reduction method 

could drastically reduce computational effort.  
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2.7 System model 

The system model used for prediction can be considered as the biggest drawback for an MPC. 

The model and how it predicts the outputs based on inputs can be difficult to develop for highly 

dynamic systems, at least if these are to be based on conservation laws. Usually these models 

are data driven linear models based on measured input/output data. As for this project, the data 

is used in system identification to get a linear model representation of the system given as a 

state space model.  

The system model in an MPC is used as a prediction model, that is a model that will predict 

future outputs and states based on known inputs over the prediction horizon.  

The type of model can vary depending on the application and area of use. One popular model 

type is the Truncated Impulse Response Model which is based on passed impulse responses to 

the system. It does however need a large number of parameters for estimation and are not 

feasible for open loop or unstable systems [8]. 

Another popular choice is the Step response model which is very much the same as the impulse 

response model, and only differ in the excitation signal used on the system.  

The state space model is perhaps one of the most widely used in the academic/research 

community. The derivation can be very simple from measured input/output data and even for 

the multivariable systems. The state space version allows for the use of well know thermos and 

theory and applies to both linear and non-linear cases. Well proven system identification 

techniques exist based on measured data already included in the MATLAB toolboxes. Tools 

for analysis of stability and other properties can be utilized based on the state space model.  

A transfer function model is also very popular in by researcher and academic alike. It is 

somewhat more difficult to derive but it often required few parameters. It handles dead time 

inherently and is commonly used in by industry engineers to explain and model systems. This 

very much applies to the Bergen Engines as well where the engine simulators are based on 

numerous of transfer functions.  
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2.8 Integral action 

The MPC algorithms are based on the accuracy of the system model to represent the actual 

system under control. There exist errors between the model and the real system in all 

applications. One of the results from this mismatch is the probability of offset error during 

steady state. That is there exist an error between the predicted output from the model and the 

measured output from system under control.  

In order to counteract this offset error, there are several methods that can be used to achieve 

offset free control by adding integral action to the MPC. According to Åkesson [9] a 

disturbance observer can be used to obtain offset free control by adding integral action to an 

output feedback controller. This solution was generalized for the cases where the number of 

outputs exceeds the number of control inputs.  

One approach discussed by Rawling [10] is the addition of integrating disturbance to the 

process model which shows that offset free steady state can be achieved with open loop stable, 

integrating and unstable systems. This is done by adding a number of integrator disturbance 

terms equal to the number of measured variables.  

The method used in [11] by Wang is to used embedded integrators by using the augmented 

state space model of the system which includes the ∆𝑢 in the state space formulation and the 

∆𝑥 in the state variable vector. 
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2.9 Previous work 

MPC’s has been successfully used in a range of different areas and applications. Mostly 

interesting for this project is use in the industry as this control problems carries some synergies. 

MPC’s has proven in use for instance in steam generators and servos as illustrated in [12]. In 

later years, as the era of autonomy evolves, the MPC is (and can be) used in a large area of 

applications within systems for auto pilot for both the automobile and marine areas.  

In the Marine area the auto pilot for ships and DP7 operation use the benefits from MPC 

controller. Withing Rolls-Royce the use of MPC has been introduced in the engine control 

system for high speed MTU engines where the newly developed Hyperspace controller uses 

MPC controllers to find the optimal set points for the operation, based a given goal for the 

engine. That goal could be optimal fuel efficiency, minimum NOx emissions or disturbance 

rejection, all individual application dependent.  

In the automotive industry the MPC principle is widely used in adaptive cruise control, obstacle 

avoidance, lane keeping assist etc. [13]. Separate toolboxes for MATLAB have been developed 

to serve the automotive industry with tailer made solutions for MPC control within this area.  

 

2.10  Set up 

The simulation results and testing has been done using MATLAB 2019b together with 

SIMULINK. The host computer on which this project has been done is a HP ZBook 15 G5 

with an Intel Core i7-8850H CPU with 16GB or RAM. The host computer runs Windows 10 

Enterprise build 17763. 

 

 

 

 

7 DP - Dynamic positioning 
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3 Modelling 
The models for this project was developed using the System Identification toolbox in 

MATLAB. During the master project several models based on different realization techniques 

was developed. Based on the conclusion in the report the selected model structure was the 

polynomial model from the System Identification toolbox.  

3.1 Data collection 

The dataset used as basis for the development of the MPC model is measured input/output data 

from a commercial operational engine. The engine is operated on power plant in the city of 

Tabor in the Czech Republic connected to the national grid. The engine primarily works on a 

base load operation, but often operate in Secondary regulation. It is these data sets which are 

used to modelling as these contains the most dynamic behaviour end exits the system the most.  

Figure 3-1 shows an image of a part of the C-Energy power plant. 

 

Figure 3-1: C-Energy power plant 

3.1.1 Sampling 

The data is sampled at 10 [Hz] by the engine controller and transmitted to an edge computer 

located on the power plant premises. Most process values available as well as internal engine 

controller states and statuses are collected and transmitted to this edge device. The currently 

used edge computer is shown in Figure 3-2 and is a Siemens IOT 2040. On this unit it runs 

several Docker containers which handles various aspects of the data collection and 

transmission to the cloud service.  

On the edge computer the data is stored in a local Influx time series database for local access 

by the service engineers and customers through Grafana. The data is then stored in .csv files 

which each contains 30 minutes of process data. The .csv files are transmitted to an Azure 

cloud storage location at regular intervals. In the cloud there are several process running which 

utilizes these data for both machine learning, abnormally detection and for historic time series 
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visualization. An Influx database in the cloud stores the time series data at different resolutions 

for different length. For instance, the 10 [Hz] data is stored for some months while 1 [Hz] and 

0,5 [Hz] variants are stored for longer.  

 

 

Figure 3-2: Edge computer - Siemens IOT2040 

 

From this storage several datasets were retrieved and analysed during the Master project.  

3.1.2 Pre-processing and analysis 

The datasets which was retrieved from the cloud storage was first “washed” by engineers by 

reducing the number of useful variables from several hundred down to about 20 which would 

be of interest. The dataset was then processed further by removing data where the engine was 

not running and not producing power. A soft sensor was added as the heat rate is not directly 

given by the dataset, but as a direct calculation by others.  

The engine control system calculates the engine heat release cumulation based on the pressure 

rise rate during the combustion. This heat release is given in J/cycle. To get to the heat rate 

which is the one we would like to minimize we divide the heat release with the IMEP.  

ℎ𝑒𝑎𝑡 𝑟𝑎𝑡𝑒 =  
ℎ𝑒𝑎𝑡 𝑟𝑒𝑙𝑒𝑎𝑠𝑒

𝐼𝑀𝐸𝑃
 

PCA analysis was performed to find co-linear variables and which variables that had the most 

contribution to the dynamics of interest. During the analysis and discussion afterwards, a 

decision was taken on the number of inputs, outputs and disturbances. The model structure was 

then given by on 5 inputs variables, whereas 2 are the controllable variables and 3 are measured 

disturbances, and 6 measured outputs.  
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3.2 System identification 

During the modelling part of the Master project several different models based on different 

principles was developed. Models was developed using Neural Networks, DMDc, the DSR 

toolbox and the System Identification Toolbox.  

Based on the findings and conclusions it was decided to go on with a simple polynomial model 

from the System Identification Toolbox. This model has a simple input/output structure where 

there is a simple relation between the model and the physical world.   

The polynomial model found with the System Identification toolbox is transferred to a state 

space model during the initial phase of the MPC development as the Simulink testing did not 

allow for the polynomial model to be used. The state space model derived from the polynomial 

model was used for a substantial amount of time during the testing of different MPC structures. 

This model initial gave promising results but when adding constraints to the output it did not 

behave as expected. 

During the simulation is was then decided to re-do the testing with a new model based on the 

same data set as the original polynomial model, but this time the model was developed as a 

State Space model from the start. The same training data set and validation data set was used 

to develop the new model.  

The results presented in this paper are mostly from the State Space model. Most of the already 

performed simulations had to be redone but the results looked more promising with the new 

model.  

The discrete state space model is given by the general form 

 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝐵𝑑𝑢𝑑(𝑘) 

𝑦(𝑘) = 𝐶𝑥(𝑘) 
(3-1) 

where 𝑥 is the state vector, 𝑢 is the control signal vector, 𝑢𝑑 is the measured disturbances and 

𝑦 are the measured outputs. The sampling interval is denoted by 𝑘. 

From the model we find that the state matrix 𝐴 is 25𝑥25; The input matrix 𝐵 is a 25𝑥2 and the 

disturbance matrix 𝐵𝑑 is 25𝑥3. The output matrix 𝐶 is 6𝑥25. 

There are no direct feed trough terms in the model and hence no 𝐷 matrix.  

Contrary to the polynomial model which had a identity matrix in the 𝐶 matrix of the state space 

formulation, this state space model has elements in the output matrix. For the polynomial that 

meant that the measured outputs where available as the first 6 elements of the state vector. This 

is not the case for the new state space model and hence the physical “meaning” of the states is 

lost.  

The model order for the polynomial was 𝑛 = 30 while the order is chosen as 𝑛 = 25 for the 

state space model. The model order is based on an inspection of the residual error plot of the 

system identification toolbox where the logarithmic error flattens out.  

In Figure 3-3 we note the tracking of the simulated heat rate from the model and the measured 

heat rate from the validation data set. The fit here is about 79 [%].  
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Figure 3-3: Output from System Identification - Measure heat rate Vs simulated 

Another example is shown in Figure 3-4 where the 𝑂2 from the validation data set is 

compared to the simulated.  
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Figure 3-4: Output from System Identification - Measure O2 percentage Vs simulated 

The code from the MATLAB for the model estimation 

% State space model estimation                                                 

 Options = n4sidOptions;                                                       

 Options.Display = 'on';                                                       

 Options.EstimateCovariance = false;                                           

 Options.Focus = 'simulation';                                                 

 Options.EnforceStability = 1;                                                 

 Options.N4Weight = 'CVA';                                                     

 Options.N4Horizon = [75 0 87];                          

 ss1 = n4sid(TrainingMean20200902Red, 25, 'DisturbanceModel', 'none', Options) 

3.2.1 Controllability 

After the development of the state space model a simple check was done to test the 

controllability of the model. In the MATLAB the function ‘ctrb(sys.A, sys.B)’ was used to get 

the controllability matrix and then checking the rank of this matrix has full rank 𝑛.  

Since the state space model has rank 𝑛 = 25 we check if the controllability matrix has the same 

rank.   
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The rank of the controllability matrix is also 𝑛 = 25 and hence there are possibility that the 

system is controllable since there are not direct uncontrollable states. Howere there are 

limitations to this method of detecting controllability and the function is sensitive to round off 

errors and errors in the data. 

Testing also with the MATLAB function ‘[Abar,Bbar,Cbar,T,k] = ctrbf (sys.A, sys.B, sys.C)’ 

and looking at the length of sum(k) which is the number of controllable states we also end up 

with 25 which is the same as the rank of the A matrix. 

3.2.2 Limitations 

The model used for the development of the MPC is, as described in the previous sections, based 

on real life operational data for an installation. It is known and well understood that this model 

has limitations. Even though the data availability is large the data is based on a real installation 

running with control structures which are kept withing operational limits. These control 

structure keeps the engine at the operational point to the best of their capability.  

This results in the data not being exited with control signals to its maximum and minimum and 

hence the representation of the data is within these limitations. 

When the data series was selected it was from areas where the dynamics where present as much 

as possible, so some excitation is experienced. 

In order to improve on the data quality the control software of the engine controller was updated 

with additional logic which will be used to exited the control outputs to such an extent that a 

larger operational area of the measured data can be captured. A test program for testing on a 

real engine has been defined and a production engine was selected for the experiment. The test 

program was approved by the Bergen Engines management. Unfortunate due to circumstances 

and delay in the production line resulted in the selected engine testing being delayed into the 

easter holyday. This resulted in reduced availability of test engineers and due to delivery 

obligations, the test was postponed and needs to be done on another engine at a later stage.  

The test is still scheduled to be done at the next available time slot.  

The limitations in the model do however not interfere with the proof of concept as the basic 

idea and testing would still go on with the model at hand. This model would still give a good 

understanding of the various implementations of the MPC algorithms and the overall structure 

could be tested. 

3.2.3 Open loop simulation 

This section shows some of the initial test of open loop simulation of the model.  

The purpose of the open loop simulations was to check the model was stable if all inputs was 

kept at constant values and how the model reacted to changes in either of the two controllable 

inputs.  

From the definition of the original problem the controllable inputs were defined as the “charge 

air pressure” and “global timing”. There are three measured input disturbances: the “IMEP”, 

“Charge air temperature” and “Suction air temperature”. 
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Before any of the tests were performed the initial state was found using MATLAB built in 

function for “findstate”. The model was also run for several iterations with real life data to have 

the states updated with real life data before starting.  

The code for the open loop simulation is found in  

3.2.3.1 Open loop simulation with no change on controllable inputs 

The first test is open loop simulation with steady state input data with an initial state. The test 

is performed to verify that the model is stable over time. The test was run with several 

simulation times and the results for testing with 15000 samples (1500 seconds) are shown in 

Figure 3-5, Figure 3-6, Figure 3-7 and Figure 3-8. 

As we can see from Figure 3-7 and Figure 3-8 the output stabilizes to a steady state value as 

expected with no changes to the inputs.  

 

 

Figure 3-5: Open loop simulation with fixed input values – controllable inputs 
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Figure 3-6: Open loop simulation with fixed input values – measured disturbances 

 

Figure 3-7: Open loop simulation with fixed input values - measured outputs from the model 
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Figure 3-8: Open loop simulation with fixed input values - measured outputs from model 

 

3.2.3.2 Open loop simulations with positive step change on charge air pressure 

This test is done by manually adding a step change to the charge air pressure control in the 

positive direction. That is to add extra air to the combustion process. As for the test in 3.2.3.1 

the measured disturbances are kept constant and are not shown in the following figures.  

It should be noted that a step change is a not possible in real life as the pressure needs to build 

up over time nor is it possible to build up high pressure at lower engine power outputs as the 

turbocharger is not able to produce higher pressure due to lower energy in the exhaust. 

There is also an upper limit to the boost pressure as it must not become too high as this could 

lead to too lean mixture and misfire as well as turbocharger stall.  

The step input is shown in Figure 3-9 and the output responses are shown in Figure 3-10 and 

Figure 3-11. 

As expected, the increase in air pressure to the combustion process reduces the exhaust gas 

temperature due to the increase in air excess, the O2 level increases as expected and the NOx 

decrease. The increase in peak pressure mostly indicate that the charge air pressure is closely 

related to IMEP (engine load) during closed loop real life running and hence the model 

interprets this as a potential load increase and rises the pressure reading.  

The heat rate shows a sudden initial drop before stabilizing at a slightly lower value than before 

the step change. 
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With the step change added here the model outputs do not exceed any “normal” operating 

values.  

 

Figure 3-9: Open loop simulation with step change in positive direction on charge air pressure 
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Figure 3-10: Open loop simulation with step change on charge air pressure - model outputs 

 

 

Figure 3-11: Open loop simulation with step change on charge air pressure - model outputs 

 

3.2.3.3 Open loop simulations with negative step change on charge air pressure 

This test is done by manually adding a step change to the charge air pressure control in the 

negative direction. That is to reduce the air to the combustion process. As for the test in 3.2.3.1 

the measured disturbances are kept constant and are not shown in the following figures.  

It should be noted that a step change is a not possible in real life as some time will pass before 

the pressure is effectively removed.  

The step input is shown in Figure 3-12 and the output responses are shown in Figure 3-13 and 

Figure 3-14. 

Here the results are expected to be the opposite of the test in 3.2.3.2 for most of the outputs of 

the model. Indeed, the exhaust temperature is increased as expected and the O2 percentage is 

reduced. The NOx level increases slightly as expected.  
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Figure 3-12: Open loop simulation with a negative step change in charge air pressure 

 

 

Figure 3-13: Open loop simulation with negative step change on charge air pressure – model outputs 
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Figure 3-14: Open loop simulation with negative step change on charge air pressure – model outputs 

 

3.2.3.4 Open loop simulation with step change in global timing  - advanced timing 

This test is performed by keeping the charge air pressure control input fixed and add a step 

change on global timing. The step change is in the advance direction which means earlier 

ignition timing. The timing location is given as a negative number indicating before TDC8.  

The step change in the control signal is shown in Figure 3-15 and the model outputs is shown 

in Figure 3-16 and Figure 3-17. 

From the results we get some of the expected results based on system knowledge. The earlier 

ignition timing increased the peak pressure and increases the NOx level. We also see a slight 

change in O2 level, but this might be due to the model expecting higher NOx to influence the 

O2 level. The exhaust temperature is reduced as is normal with earlier ignition timing resulting 

in faster combustion. The heat rate is reduced to indicate higher efficiency.  

 

8 TDC – Top dead center. The absolute crank angle is given as 0-degree crank angle when a cylinder is at TDC 

in the compression stroke. The total number of degrees during a combustion process is 720 degrees, i.e. 2 

revolutions of the crankshaft.  
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Figure 3-15: Open loop simulation with step change on global timing – earlier timing 

 

 

Figure 3-16: Open loop simulation with step change on global timing - earlier timing - model output 
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Figure 3-17: Open loop simulation with step change on global timing - earlier timing - model output 

3.2.3.5 Open loop simulation with step change on global timing – retard direction 

This test is performed by keeping the charge air pressure control input fixed and add a step 

change on global timing. The step change is in the retard direction which means later ignition 

timing. The timing location is given as a negative number indicating before TDC.  

The step change in the control signal is shown in Figure 3-18 and the model outputs is shown 

in Figure 3-19 and Figure 3-20. 

From the results we get some of the expected results based on system knowledge. The later 

ignition timing decreases the peak pressure and lowers the NOx level. We also see a slight 

change in O2 level as for the output from the test in 3.2.3.4. The exhaust temperature is 

increased as expected. The heat rate increases also slightly to indicate less efficiency.  

 



 

53 

 

Figure 3-18: Open loop simulation with step change on global timing – earlier timing 

 

 

Figure 3-19: Open loop simulation with step change on global timing - later timing - model output 
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Figure 3-20: Open loop simulation with step change on global timing - later timing - model output 

3.2.3.6 Open loop simulation with gradually increase in charge air pressure 

This test is performed to show the resultant output of the model in case of a gradually increasing 

control signal with constant disturbances. The change is kept within the max/min limits of the 

control signal but given the disturbances the control signal end up outside normal operating 

range.  

In this first test the charge air pressure is increased gradually from the initial value upwards 

with 1,5 [barg]. The control signal change can be seen in Figure 3-21.  

The model outputs is shown in Figure 3-22 and Figure 3-23. The same applies here as for the 

step change, the expected O2 percentage increases by adding air to the process and the exhaust 

temperature drops. Here it drops to the nonphysical value close to 0 [C] but the control signal 

reaches here nonphysical values compared to the input disturbances. The NOx value drops 

negative.  

The model however does not go off to extreme values in any case as long as the charge air 

pressure control signal remains within expected working value.  

The heat rate increases indicating poorer fuel efficiency when increasing the air excess and 

hence a leaner mixture is given.  
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Figure 3-21: Open loop simulation with gradually increasing charge air pressure control signal 

 

 

Figure 3-22: Open loop simulation with gradually increasing charge air pressure - model output 
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Figure 3-23: Open loop simulation with gradually increasing charge air pressure - model output 

 

3.2.3.7 Open loop simulation with gradually decrease in charge air pressure 

This test is performed to verify that the model does not converge to extreme values for any 

outputs given a gradual reduction in the charge air control signal. To keep things within 

physical meaning the charge air pressure is not allowed to go to a negative value. 

The control signal is seen in Figure 3-24. The model outputs can be viewed Figure 3-25 and 

Figure 3-26. 

The exhaust temperature increases as expected and the O2 level is reduced. The NOx is 

increases as expected with less lean mixture.  

The effect on the heat rate is noted as it is reduced compared to the initial value – hence a less 

lean mixture improves the fuel efficiency.  
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Figure 3-24: Open loop simulation with gradually decreasing charge air pressure control signal 

 

 

Figure 3-25: Open loop simulation with gradually decreasing charge air pressure - model output 
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Figure 3-26: Open loop simulation with gradually decreasing charge air pressure - model output 

 

3.2.3.8 Open loop simulation with gradually changing global timing – advance 

Basically, the same test as done in section 3.2.3.4 but now with gradually earlier timing until 

18 [degCA] before TDC. This time the timing is advanced further than during the step change 

and hence larger changes is seen on the outputs. The NOx increases and the peak pressure 

increases. The exhaust temperature is reduced as for the step response. The heat rate is also 

reduced indicating better efficiency.  

The gradually changed control values is show in Figure 3-27 and the model output in Figure 

3-28 and Figure 3-29. 
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Figure 3-27: Open loop simulation with gradually changing the ignition timing to earlier timing 

 

 

Figure 3-28: Open loop simulation with gradually changing ignition timing – earlier timing – model output 
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Figure 3-29: Open loop simulation with gradually changing ignition timing – earlier timing – model output 

3.2.3.9 Open loop simulation with gradually changing global timing – retard 

Test related to the test done in 3.2.3.5 but this time there is no step change in the control signal 

but rather a gradually changing signal. The change is here kept withing normal operating ranges 

and hence later timing than 8 [degCA] before TDC is not performed.  

The control signal change is shown in Figure 3-30. The outputs from the model is shown in 

Figure 3-31 and in Figure 3-32.  

We here notice the same results as with the step change. Heat rate is increased, and the exhaust 

temperature increases. The NOx level is decreased. The results here are opposite to the results 

from the test in section 3.2.3.8 as expected.  

 



 

61 

 

Figure 3-30: Open loop simulation with gradually changing the ignition timing to later timing 

 

 

Figure 3-31: Open loop simulation with gradually changing ignition timing – later timing – model output 
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Figure 3-32: Open loop simulation with gradually changing ignition timing – later timing – model output 
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4 MPC 
This section describes the development phase of the MPC controller, and the steps taken and 

results from several tests and analysis.  

Firstly, a section describing the variables involved and their physical meaning are given. Then 

a section regarding the measurements and the various constraints are discussed.  

4.1 Controllable inputs 

There are defined two controllable signals in the project based on the project definition and the 

results from the system identification part done during the Mater Project. These signals will be 

used to adjust the process in order to achieve the optimization. The signals are defined to be 

𝑐ℎ𝑎𝑟𝑔𝑒 𝑎𝑖𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 and 𝑔𝑙𝑜𝑏𝑎𝑙 𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑖𝑛𝑔. These signals will not directly control the 

process values but be the optimal set points for the lower level PID controllers which in turn 

will adjust accordingly to achieve the optimal operation.  

Since these two signals do have physical meaning there are some limitations that needs to be 

fulfilled for the system to have physical meaning.  

The overall purpose of this controller is to optimize fuel efficiency over time and hence it is 

not the short-term benefit that is the most importance here. There is no optimal set point defined 

for the heat rate. The goal is to minimize the heat rate as much as possible by still staying within 

the constraints defined.  

4.1.1 Charge air pressure 

The charge air pressure is the pressure of the combustion air entering the combustion chamber 

from the air receiver. This pressure is controlled by adjusting the waste gate bypass valve such 

that the pressure is according to set point. Traditionally these set points are found based on 

testing on a real engine where the emissions are measured and the distance to the knocking 

limit is observed. In addition, the pressure is mapped towards the turbocharger to prevent any 

stalling or crossing the surge limit.  

The charge air pressure set point is usually a map where the set point is based on the engine 

speed and the power output but biased from several sources to make it adaptable to ambient 

conditions and ageing. This charge air pressure set point is traditionally highly driven by the 

engine power output in an almost linear relation. Nominal charge air pressure at 100 [%] power 

output is approximately 4,2 [barg].  

The physical constraints for this pressure will be imposed as bounds to the optimizer. By a 

defined upper limit for what is physical possible and at the same time set a lower bound close 

to 0 [barg]. Since the optimizer will not be working on 0 [barg] air pressure the lower bound 

will be set to 0,3 [barg] and the upper bound to 4.5 [barg] to give some regulation margin.  

The charge air pressure cannot instantly change from one pressure to the next and hence the 

optimizer is limited based on rate of change of the control value such that it cannot change 

instantly. Nor can the waste gate valve change instantly and hence such limitations makes 

sense.  
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4.1.2 Global ignition timing 

The global ignition timing command is used to set the base ignition timing for the engine. Each 

individual cylinder will adjust this base timing withing a window of +/-3 [degCA] to balance 

the peak pressure off the cylinders.  

The global base timing will influence the efficiency of the engine but also has an impact on the 

peak pressures, NOx generation, knocking and exhaust temperature.  

By advancing the global timing the peak pressure increases and this needs to be within the 

design limit of the engine to prevent mechanical damage to the it. If the ignition is retarded the 

exhaust temperature increases and the NOx emissions decreases as the combustion air 

temperature increases due to longer burn duration. By retarding the ignition timing the heat 

rate increases to indicate less efficiency.  

Find the optimal balance for the global timing is not straight forward as one would like to 

advance timing as far as possible, but not risking knocking to take place. The ignition timing 

is also depended on the charge air pressure and the charge air temperature as these will 

influence the combustion air temperature.  

The ignition base timing is traditionally found during testing and running the engine close to 

the knocking limit during controlled environments. It is however not given that the same 

conditions will be applicable on every project and hence margin must be added on the set point 

to take into account different fuel compositions and ambient conditions. Ageing is also a factor 

here.  

To counter act these changing conditions several set point modifiers are in place which will 

bias the set point if a change in ignition knocking is detected or if exhaust temperature is 

increased. In addition, the location of the centre of combustion is measured based on the heat 

release curve from the combustion process. This location is used as a set point on a second 

level PID controller which biases the base set point so that this location is kept on set point as 

well. But none of these measures are there to optimize the fuel consumption over time and to 

take into account all these constraints as an MPC controller can do.  

There are some physical known limitations that should be obeyed. The global ignition timing 

is seldom, if at all, below -8.5 [degCA] for a power plant running connected to the grid and 

producing power at nominal speed. It will also not be possible to advance the timing more than 

to -20 [degCA]. Nominal global ignition timing is usually in range of -12 [degCA] to -16 

[degCA]. 
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4.2 Measured disturbances 

There are defined 3 main disturbances which are considered to have an impact on the system 

to such an extent that they need to be included. All 3 disturbances are measured directly by the 

control system. The most dominant are the engine power output. The measured value here is 

the IMEP which is the measured cylinder work done over the combustion cycle utilizing 

cylinder pressure sensors. 

These disturbances are set as inputs to the model of the system under consideration.  

4.2.1 Suction air temperature 

This is slow varying input to the system which has the least impact. The suction air temperature 

is the air temperature measured at the inlet of the compressor part of the turbocharger. This 

disturbance will inform the system about the ambient conditions under which the engine is 

currently operating. The ambient temperature, and hence the suction air temperature will wary 

over a year for a given installation location. This varies might be small or large depending on 

the location. It might therefor have an impact in some cases and hence it is added here.  

4.2.2 Charge air temperature 

The charge air temperature is measured in the air receiver and is the temperature of the 

combustion air fed into the combustion chamber during the opening time of the inlet valve. 

This temperature is in some projects actively regulated by a PID controller, while it in some 

installations are mechanically adjusted at max power output to give a certain temperature. 

Normal operational temperature here is around 50-55 [C]. This might however change if the 

humid conditions are such that condensation might occur at this temperature.  

The temperature of the charge air influences the air mass which is available to the combustion 

process and hence any change here will impact both NOx emissions and the resilience towards 

knocking.  

4.2.3 IMEP 

IMEP (Indicated Mean Effective Pressure) is measured directly by the cylinder pressure 

sensors. The highest and lowest values are removed and the average over the number of 

cylinders is taken and fed into a moving average filter over 100 cycles. This final value 

indicates the current loading (power output) of the engine. This value is used by the model as 

the major measured disturbance. Most engine dynamics can be explained by this single signal.  
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4.3 Measured outputs 

The following list summarizes and shortly explains the measured outputs which are used by 

optimizer as constraints.  

4.3.1 Heat rate 

This is the value that is to be minimized. It is indicative of the relation between the power 

output and the fuel consumption estimation. The heat rate is given as the relation between the 

IMEP and the total heat release. The IMEP is measured by the cylinder pressure sensors as 

well as the total cumulative heat release. The heat release is given as [kJ/cycle] and is estimated 

based on the pressure rise curve measured by the cylinder pressure sensors.  

During the set point tracking testing this value is used as the feedback from the process.  

4.3.2 Knock level 

Knock level is also known as engine detonation and is when the combustion takes place 

prematurely in part of the compressed air fuel mixture in the cylinder. This knocking can cause 

severe damage to the engine if not responded to early because of high frequency pressure waves 

causing very high cylinder pressures potentially above the design limit of the engine.  

The engines are constantly pushed towards the knocking limit as this area produces better fuel 

efficiency at higher power outputs. Knocking might occur if the air fuel mixture is not correct 

or substances such as oil leaks into the combustion chamber causing changes to the burn rate 

of the air/fuel mixture. 

Each cylinder is monitored for knock level and any increase in knocking results in that cylinder 

ignition timing being retarded for some time. If several cylinders experience knocking the 

global timing point is usually retarded to avoid any further increase into non-operational areas.   

The knock value is measured by looking at the ripples on the cylinder pressure curve after the 

ignition location. This value indicates the level of knocking for each cylinder but is averaged 

for all cylinders here. This will in general only pickup up globally severe knocking. Knocking 

can also be reduced by lowering engine power output or increasing the amount of air in the 

air/fuel mixture resulting in a leaner mixture. That will however impact efficiency.  

The value here is included as constraint at it is a limiting factor for advancing the timing too 

much or reducing the charge air pressure too much. Typically, the engine is shutdown with a 

value over 30 [%]. This will be initially kept as constraint in this application.  

4.3.3 Peak pressure 

The peak pressures are measured from cycle to cycle and is the highest measured pressure in 

the combustion chamber of the combustion cycle. The peak pressure is a value which must be 

limited as there are design limitations on the engine for how high pressures the internal 

components can withstand without damage.  

The nominal peak pressures during 100 [%] power output at nominal speed is usually around 

175 [bar]. The control system has alarming and shutdown conditions if sustain operation 
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around 200 [bar] is experienced and hence the optimizer should avoid operation above 200 

[bar], and preferably limit operation to 180 [bar] but with some slack.  

4.3.4 NOx 

The NOx emissions are measured in the exhaust outlet after the turbocharger. The emissions 

are measured with sensor from Continental most commonly used on trucks and cars. This 

sensor gives the wet NOx values in ppm directly and is used in a closed loop regulation for 

controlling the level of NOx to a given set point.  

All power plant engines are sold with a given NOx emission set point at MCR9. More 

information about the NOx values are given in section 1.3.2.4. 

The NOx values are good indications of how rich or lean the fuel mixture in the combustion is. 

A high NOx value indicates a rich mixture and vice versa. The NOx value is very sensitive to 

these variations and will rapidly increase in case of the charge air pressure is reduced.  

It should however be noted that the NOx values should rarely be seen drifting high during 

steady operation. During transients a change in NOx value is expected as the engine increases 

the air pressure during the transient to get better margins to the knock limit.  

The NOx value would be used as a constraint during the optimization phase such that it can 

stabilize below at least 150 [ppm].  

4.3.5 O2   

The same sensors that measures the NOx level in exhaust will also measure the O2 level. In 

the traditional engine controller, the O2 percentage is used actively for engine limitation. That 

is if the O2 level becomes too low, which indicates a too rich mixture, the engine will limit the 

fuel admittance and hence reduce power output.  

This value is rather critical and hence strict constraints on the low level is too be used.  

On the higher level the engine risk misfire in case the value becomes too high indicating lean 

mixture. A softer constraint here should be imposed preventing the optimizer from going into 

too lean conditions.  

During normal operational conditions the O2 percentage is somewhere between 8,5 [%] and 

12,5 [%], with nominal condition a approx. 9.5 [%]. This lower limit is also handled externally 

to the MPC as it is a critical condition. The optimization should be rather strict on the lower 

limit while the upper limit can be broken during given condition. The aim should however be 

to stay within the limits of 8,5 [%] and 12,5 [%]. 

4.3.6 Exhaust temperature 

Traditionally the exhaust temperature outlet from each cylinder has been used to balance the 

engine power output from each cylinder. Before the cylinder pressure sensor era the only 

 

9 MCR is Maximum continues rating of the engine, that is the max power output. 
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possibility to check how much each cylinder contributed to the power output was be looking 

at the deviation in exhaust temperature between the cylinders.  

The exhaust temperature used here is the temperature measured in the collecting pipe just prior 

to the turbine part of the turbocharger. This exhaust will therefore be an indicative of the all 

cylinders on that pipe collectively.  

There are limitations from the turbocharger supplier on the max inlet temperature of turbine 

and hence these needs to be obeyed. The temperature will increase in case the power output 

increases and mixture becomes too rich. It is therefore very dependent on the charge air 

pressure, but also the ignition timing. In case the ignition timing is retarded the temperature 

will increase and hence this needs to be handled.  

The constraints can here be set based on normal operational conditions where the exhaust 

temperature before the turbocharger turbine should not exceed 600 [C]. 
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4.4 Constraints 

This section looks into the definition of the constraints what we want to impose on the MPC 

controller based on the engineering knowledge of the valid operational window. These are here 

given in a table format. They are more discussed in section 0.  

In Table 1 the constraints on the measured outputs are given. For “Heat rate” no limits are 

given as this the signal to optimize.  

 

Table 1: Output constraints 

SIGNAL UNIT LOWER LIMIT UPPER LIMIT 

Peak pressure bar 0 180 

Knock level % 0 30 

Heat rate - 
  

Exhaust temperature before turbine C 0 600 

NOx  ppm 0 150 

O2 % 8,5 12,5 

 

In Table 2 the constraints for the controllable input signals are shown. There are constraints 

both on the absolute value and the rate of change. 

Table 2: Input constraints 

SIGNAL UNIT LOWER LIMIT UPPER LIMIT 

Charge air pressure barg 1 4.5 

Global timing degCA -20 -8.5 

Charge air pressure  barg/s -0.2 0.2 

Global timing degCA/s -0.3 0.5 
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4.5 qpOASES 

The first optimizer that is tested is the qpOASES. The qpOASES is an open source 

implementation of the online active set strategy [14]. It is inspired by parametric quadratic 

programming and is based on the assumption that the optimal active set does not change much 

from one quadratic program to the next. The qpOASES solves the QP of the following form,  

Objective function 

 

Linear inequality/equality constraints 

Bounds 

min
𝑥
    𝐽 =

1

2
𝑥𝑇𝐻𝑥 + 𝑐𝑇𝑥  

𝑠. 𝑡. 

𝑏𝐿 ≤ 𝐴𝑒𝑥 ≤ 𝑏𝑈 

𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈 

(4-1) 

where the Hessian matrix is symmetric and positive semi-definite. Both the linear equality and 

inequality constraints uses the same notation. For inequality constraints the 𝑏𝑈 and 𝑏𝐿 is 

different while for equality constraints they are equal. So for equality constraints we have that 

 𝑏𝐿 = 𝑏𝑈 = 𝑏𝑒 

𝐴𝑒𝑥 =  𝑏𝑒 

(4-2) 

4.5.1 Set point tracking with bounds on control value 

For the set point tracking with fixed disturbances and upper and lower bounds on the control 

value the decision variable is defined as 

 

𝑧 =  [

𝑢
𝑥
𝑒
𝑦

] (4-3) 

Based on a prediction horizon of 𝑁𝑝the total number unknows are given as 

 𝑛𝑧 =  𝑁𝑝(𝑛𝑢 + 𝑛𝑥 + 𝑛𝑦+ 𝑛𝑦) (4-4) 

The standard QP objective function can be set up as: 

 

𝐽 =  
1

2
[

𝑢
𝑥
𝑒
𝑦

]

𝑇

[

𝐻11 0 0 0
0 𝐻22 0 0
0 0 𝐻33 0
0 0 0 𝐻44

] [

𝑢
𝑥
𝑒
𝑦

] + [

𝑐1
𝑐2
𝑐3
𝑐4

]

𝑇

[

𝑢
𝑥
𝑒
𝑦

] (4-5) 

We note that each element in the decision variable is in itself a vector of elements equal to the 

prediction horizon 𝑁𝑝 such that for example for 𝑢 the vector looks like 
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𝑢 =  [

𝑢0
𝑢1
⋮

𝑢𝑁𝑝−1

] (4-6) 

Each block in the Hessian matrix is now the weighting matrix for each variable in the decision 

vector where we set the element for each step of the prediction horizon equal to each other such 

that for the decision variable 𝑢 we have that 

 

𝐻11 = 

[
 
 
 
𝑃0 0 … 0
0 𝑃1 … 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑃𝑁𝑝−1]

 
 
 
 (4-7) 

where 𝑃0 = 𝑃1⋯⋯ = 𝑃𝑁𝑝−1 

In this project there are 2 controllable outputs and 1 set point to track and there are 3 measured 

disturbances and 5 additional outputs to be used as constraints. So, in this case the decision 

variable 𝑢 contains to values for each time step in the prediction horizon as 

𝑢 =  

[
 
 
 
 
 
 
 
𝑢0
1

𝑢0
2

𝑢1
1

𝑢1
2

⋮
𝑢𝑁𝑝−1
1

𝑢𝑁𝑝−1
2

]
 
 
 
 
 
 
 

 (4-8) 

and  

𝐻11 = 𝐼𝑁𝑝 ⊗𝑃𝑛𝑢×𝑛𝑢 

where ⊗ is the Kronecker product. 

A simple test is performed with a set point tracking case. In this test the set point is firstly 

changed in a step, then there is a step change in the disturbance 𝐼𝑀𝐸𝑃. 

The control output response is shown in Figure 4-1. This time the 𝐶ℎ𝑎𝑟𝑔𝑒 𝑎𝑖𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 stay 

well below the upper bound of 4,5 [barg] while the 𝐺𝑙𝑜𝑏𝑎𝑙 𝑡𝑖𝑚𝑖𝑛𝑔 goes straight to the upper 

bound of -8.5 [degCA]. 
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Figure 4-1: Set point tracking - qpOASES - control outputs 

 

 

Figure 4-2: Set point tracking - qpOASES - disturbances 
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Figure 4-2 shows the disturbances which are kept constant except for the step in 𝐼𝑀𝐸𝑃  at 300 

seconds. The response in the 𝐶ℎ𝑎𝑟𝑔𝑒 𝑎𝑖𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 is clearly visible at this point from Figure 

4-1. 

 

 

Figure 4-3: Set point tracking - qpOASES - heat rate and set point 

In Figure 4-3 the heat rate and the step change in the set point at 100 seconds is shown. The 

heat rate tracks the set point well and returns quickly to the set point after the disturbance to 

the 𝐼𝑀𝐸𝑃. 
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4.5.2 Code for qpOASES 

The SIMULINK model used for qpOASES testing is shown in Figure 4-4. The logic in the 

qpOASES QP formulation function is given in Appendix F 

. The first control move for each input is extracted in the “selectFirst_u” function. The code is 

mostly based on the structure as defined in the lecture notes for IIA 4117 [6].  

The SIMULINK model has a step change in the disturbance and a step change in the set point. 

A Kalman filter is added for state estimation based on the control inputs and the measured 

outputs from the model. Note that the model in the Kalman filter, the “plant model” and the 

model supplied to the qpOASES are the same and hence the same outcome is expected.  

 

 

Figure 4-4: qpOASES - Simulink model 
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4.5.3 Status of qpOASES 

The qpOASES was tested with a set up in SIMULINK with MATLAB functions for declaring 

and incorporating the functions. Running the simulations is a time-consuming task and 

internally in the project it was suggested quickly to try the Quadprog and FMINCON 

approaches. Quadprog might be a quicker optimizer and hence should be tested. On the other 

hand, if non-linear model could be the outcome it was suggested to start to test with FMINCON 

as it is much more versatile in the structure it accepts, and it also accepts non-linear models 

and constraints.  

The qpOASES was therefore quickly discontinued for further development at this stage and 

the focus was shifted to the FMINCON for further development. 
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4.6 Quadprog 

During the initial phases of this project the Quadprog in MATLAB was also tested to solve the 

QP problem. This is a built-in function in MATLAB from the optimization toolbox which can 

use different routines to solve a QP problem. The Quadprog accepts the standard form of QP 

problem as used for the qpOASES in section 4.5. 

Objective function 

 

Linear equality constraints 

Linear inequality constraints 

Bounds 

min
𝑥
    𝐽 =

1

2
𝑥𝑇𝐻𝑥 + 𝑐𝑇𝑥  

𝑠. 𝑡. 

𝐴𝑒𝑥 =  𝑏𝑒 

𝐴𝑖𝑥 ≤  𝑏𝑖 

𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈 

(4-9) 

During the testing the set point tracking problem was used to test the model. Bounds on the 

upper and lower limit of the control signal was in place. Much of the same code as was used 

for the qpOASES was re-used for this testing as the structure is basically the same. It was also 

initially tested in SIMULINK, but this was quickly revoked to be done internally in MATLAB 

to try to speed up the simulation a bit and not needing to declare the function as extrinsic.  
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4.6.1 Set point tracking with bounds on control value 

A short set point tracking test with the Quadprog is shown in Figure 4-5 - Figure 4-7. The 

control outputs in Figure 4-5 shows that the optimization in not as “clean” as it was for the 

qpOASES and the control outputs goes to its outer constraints rather quickly. Just before the 

70 second mark it fails completely.   

 

Figure 4-5: Set point tracking with Quadprog - Control inputs 

 

The measurements and the set point is shown in Figure 4-6 and Figure 4-7. These shows that 

the set point is tracked but there are some sudden changes to the outputs at sporadic times.  

The set point tracking here was tested with the “interior point” method as it contained both 

bounds and inequality constraints.  

The solving of the optimization problem was not timed, but it took 6+ hours to solve for 500 

samples which it far more than the qpOASES used for the a much larger problem.  
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Figure 4-6: Set point tracking with Quadprog – Measured outputs 

 

Figure 4-7: Set point tracking with Quadprog – Measured outputs 
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4.6.2 Code for Quadprog 

The code used with the Quadprog is very much the same as used for the qpOASES in section 

4.5, but this time all the simulation is done outside of the SIMULINK environment any only 

MATLAB scripts is used. Some minor changes to the setup of the matrices as the Quadprog 

accepts for instance the Hessian as a matrix and not only in vector form as the qpOASES. 

The code can be viewed the Appendix G 

 

4.6.3 Status of Quadprog 

The testing with the Quadprog became very limited as the shift in focus towards the Fmincon 

was established at the same time as the Quadprog was tested. During the first testing phases 

infeasibility was often the case during simulation. The first set of testing was done using the 

polynomial model converted to a state space model, but even with the updated state space 

model the results were not always feasible even with only constraints on the control inputs 

signals. 

The simulation time running the Quadprog was even for short simulation time (500 samples) 

and prediction horizon of 100 samples a very time-consuming task. This could have been 

improved by minimizing the decision variables for example by grouping. This was not 

prioritized at the current stage and the Quadprog solution was not explored further.  
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4.7 Fmincon 

The Fmincon is a function from the MATLAB Optimization Toolbox which can be used to 

solve nonlinear constrained multivariable optimization problems. This function has been used 

for testing as it can handle both non-linear and linear functions. Most of the work in this project 

is done using the Fmincon and substantial time has been spent testing various variations of 

settings and set ups. Most of the results are presented in the following sections. It should be 

noted that many more simulations have been tested which has failed during testing as parameter 

extremes has been tested. The simulation part with Fmincon is also a time consuming task, but 

not the same extent as qpOASES and Quadprog, but still hours and hours has been spent 

tweaking the set up.  

4.7.1 Set point tracking – unconstrained 

These tests are to verify the MPC based on Fmincon to work as a set point tracker without any 

constraints on any outputs. The control inputs have their upper and lower bounds set so that 

large changes are possible and hence the physical limitations are not imposed on the control 

signals. The set point is set on the heat rate as this is the value of interest for the project. The 

disturbances used are based on measured real-life data in some of the tests and on fixed values 

during some tests. This is specified for each test.  

The objective function is set to minimize the error on between the set point and the measured 

value and to minimize the control output. The general formula is given in equation (4-10).  

 

 

  𝐽(𝑢)
𝑚𝑖𝑛 = 

1

2
∑(𝑒𝑘

𝑇

𝑁

𝑘=1

𝑄𝑘𝑒𝑘 + ∆𝑢𝑘
𝑇𝑃𝑘∆𝑢𝑘) (4-10) 

In this example 𝑒 is the error between the set point and the reference and value and the 

minimization is also in the rate of change of the control values.   

4.7.1.1 Set point tracking with step change in set point 

The first tests are to check the response to step change in set point. Firstly, the initial set point 

is set to 11000 as this is slightly above the initial value of the heat rate. We can than see if the 

controller stabilizes before doing the actual set point change after 300 seconds. This will be a 

step change which is nonphysical operation but will still show if the set point tracking feature 

of the MPC works in theory.  

We see in Figure 4-8 the two control values from the set point tracking. These shows that he 

global timing control value quickly goes to its maximum constraint value while the charge air 

pressure stays close to its minimum constraint until the step change at 300 seconds.  

The set point is firstly set to 11000 and then changed to 12000 after 300 seconds. During this 

test the prediction horizon was set to 50 samples and the simulation time to 500 seconds. The 

optimizer algorithm used was the “interior point” with max 1000 iterations and max 1000 

function calls.  

The bounds on the control signals are set wide such that 
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0,3 ≤ 𝑐ℎ𝑎𝑟𝑔𝑒 𝑎𝑖𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 ≤ 8 
−20 ≤ 𝑔𝑙𝑜𝑏𝑎𝑙 𝑡𝑖𝑚𝑖𝑛𝑔 ≤ 0 

 

Figure 4-8: Set point tracking - control values 
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Figure 4-9: Set point tracking – disturbances 

In Figure 4-9 we see the 3 disturbances over the 500 second period. Based on the physical 

nature these are only slightly varying over this period. For the suction air temperature, the 

change is about 0,2 [C], the IMEP is varying with about 2 bar and the charge air temperature 

about 1 [C].  
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Figure 4-10: Set point tracking - heat rate output 

We can see from the output plot in Figure 4-10 that the heat rate quickly gets to the set point 

of 11000 and quickly changes towards 12000 when the set point changes at 300 second. We 

observe that the control value 𝑔𝑙𝑜𝑏𝑎𝑙 𝑡𝑖𝑚𝑖𝑛𝑔 goes to upper bound quickly and stay there in 

Figure 4-8. This value is now abnormally high and only allowed to go to this point in order to 

show the set point tracking feature. But even with these outer limitations we did not get 

completely to the set point for 12000 for the heat rate. We also note that the heat rate signal is 

not clean. To exclude the disturbances as the cause of this “noise” the simulation is repeated 

with only the set point changing.  
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With fixed disturbances and only a set point change the model produces the results shown in 

Figure 4-12 and Figure 4-11. Here we see that now the set point tracking is completely stable 

until 300 seconds and tracks well during the step change. 

 

Figure 4-11: Set point tracking with fixed disturbances and set point change – heat rate and set point 
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Figure 4-12: Set point tracking with fixed disturbances and set point change – control inputs 

During this test we reach the limit on the charge air control signal after the step change resulting 

in the dip in heat rate. Here we see that the global timing is then used to get the heat rate back 

to set point. These values are not outside what we consider normal operating window and hence 

the choice of set point might not have been ideal in this case.  
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4.7.1.2 Set point tracking with fixed set point and disturbance rejection 

If we look at the impact of a major disturbance on the engine power output, but keep the set 

point stable and the other two disturbances stable we get the results as in Figure 4-13, Figure 

4-14 and Figure 4-15. Here we see that a step change is added to the IMEP at 300 seconds. The 

heat rate has a quick error before it stabilizes back to set point. Both control outputs adjust 

rapidly to compensate. The control outputs do however not physically have the possibility to 

adjust at such speed and hence limitations on the control value rate of change will need to be 

added.  

 

 

Figure 4-13: Set point tracking with disturbance rejection - control inputs 

We note from Figure 4-13 that the control signal of global timing quickly reaches it the 

maximum value while the charge air pressure stays within bounds. 
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Figure 4-14: Set point tracking with disturbance rejection - measured output 

We note that once again we are not able to keep the set point after the step change with current 

values even though the charge air pressure control signal doesn’t reach its maximum value.  
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Figure 4-15: Set point tracking with disturbance rejection - disturbances 

During this test the disturbances are kept fixed to avoid any added noise, except for the step 

change in IMEP.  
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4.7.1.3 Set point tracking with ramp in set point 

In this section the set point is gradually increased from an initial value of 10500 and up to 

12000 over a period of 1 unit per 100 [ms]. The change in set point starts at 150 seconds. 

Note that the set point is not known to the controller before the change and is kept constant for 

the whole prediction horizon. 

The prediction horizon is still set to 50 samples and the upper and lower bounds on the control 

signals amplitude is given as: 

0,3 ≤ 𝑐ℎ𝑎𝑟𝑔𝑒 𝑎𝑖𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 ≤ 8 
−20 ≤ 𝑔𝑙𝑜𝑏𝑎𝑙 𝑡𝑖𝑚𝑖𝑛𝑔 ≤ 0 

 

Figure 4-16: Set point tracking with gradually increasing set point – Heat rate 

 

From Figure 4-16 that the set point tracks very well until just before the max set point is 

reached. It is noted that this period is the period in which the charge air pressure reaches its 

maximum allowed value and hence the global timing is used to reduce the error and get the 

heat rate back on set point. 
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Figure 4-17: Set point tracking with gradually increasing set point – control inputs 

From Figure 4-17 we can see that the charge air pressure is saturated at 8 [barg] while the 

global timing is still within its constraints.  

 

By increasing the prediction horizon from 50 samples to 150 samples the response is as 

indicated in Figure 4-18 on the heat rate. We still get an error when the set point gets close to 

12000 but this time it has a different shape.  
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Figure 4-18: Set point tracking with gradually increasing set point – Heat rate and prediction horizon of 150 

samples 

Looking at the control outputs again in Figure 4-19 it is noted that the charge air pressure this 

time is limited to just below the max limit and the gradient of the ignition timing is less steep 

and predicts higher global timing value earlier than with the prediction horizon on 50 samples. 
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Figure 4-19: Set point tracking with gradually increasing set point – control outputs and prediction horizon of 

150 samples 
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4.7.2 Set point tracking with constraints on ∆𝑢𝑚 

By adding constraints on the rate of change of the control variable we get the results as in 

Figure 4-20 and Figure 4-21. This time we see a different result as the MPC takes into account 

the rate of change limitations of the control values. In this example the disturbance is identical 

to the one in Figure 4-15, that is a step change of 2,5 [bar].  

The constraints are 

−0,2 ≤ ∆𝑢1 ≤ 0,2 
−0,3 ≤ ∆𝑢2 ≤ 0,5 
0,3 ≤ 𝑢1 ≤ 4 
−20 ≤ 𝑢2 ≤ −8 

where 𝑢1 is charge air pressure and 𝑢2 is global ignition timing. The ∆𝑢𝑚 is given as unit per 

seconds. Note that the amplitude of the control signals is added as bounds as in the earlier 

sections and hence are interpreted as hard constraints. The rate of change constraints are added 

as nonlinear constraints even though they are not nonlinear. The reason is the rate of change is 

calculated withing the cost function and also is one element in the cost function to minimize.  

4.7.2.1 Set point tracking with load rejection 

The set point is set to 10300 for the heat rate. There are no constraints on the outputs.  

 

Figure 4-20: Set point tracking with disturbance rejection - control values with rate of change constraint 

From Figure 4-20 it can be seen that the charge air pressure control output slightly touches the 

upper bound on the control output, but for the most parts stay within bounds. The global timing 

control output is within the operational window at all times. 
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Figure 4-21: Set point tracking with disturbance rejection - measured outputs with constraint on rate of change 

of control values 

The heat rate output tracks the set point rather well before the step disturbance as can be seen 

in Figure 4-21. After the disturbance it never gets back to the set point and a constant offset 

error is seen. Adding either internal integral terms of external should remove the constant error 

term.  
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Figure 4-22: Set point tracking with disturbance rejection – rate of change on control values with constraints 

The ∆𝑢 control signals can be seen in Figure 4-22. Just after the disturbance at 300 seconds, 

we can some constraints being broken by the charge air pressure but overall the constraints are 

honoured well. We have some issues after about 100 seconds where the charge air pressure 

control signals go from a positive direction to a negative direction and the ignition timing is 

increased to keep the set point. It should be noted that at this point we are physically outside 

normal operating window as an IMEP of 7,8 [bar] does not produce a charge air pressure of 

3,5 [barg] during normal physical operation. 
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4.7.2.2 Set point tracking with ramp in set point 

 

Figure 4-23: Set point tracking with ramp in set point - control values with rate of change constraint 

In Figure 4-23 we observe the control output during a ramp change in set point while keeping 

the disturbances fixed. The set point is ramped between 9800 to 10500 as seen in Figure 4-24. 

We note that neither the global timing nor the charge air pressure reaches any bounds during 

this simulation.  



 

97 

 

Figure 4-24: Set point tracking with ramp in set point - heat rate output with constraint on rate of change of 

control values 

The set point is here in Figure 4-24 clearly not kept after the change in set point. After a 

successful ramp up of set point and ok tracking for the first few seconds after the final point is 

reach the heart rate drops below set point for the rest of the simulation.  

The rate of change on the control outputs can be seen in Figure 4-25 as is clear the control 

output is not at all stable after the 250 seconds mark.  
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Figure 4-25: Set point tracking with ramp in set point – rate of change on control outputs 

By increasing the weighting matrix on the error term 𝑄 = 10 and adding the 𝑢 variable to the 

cost function the results change. The control outputs have the same shape but the absolute 

values changes. The updated control values is seen in Figure 4-26 and can be compared to 

those in Figure 4-23. 
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Figure 4-26: Set point tracking with ramp in set point - control values with rate of change constraint and 

increased weight on error 

From Figure 4-27 it can be clearly seen that the set point is now tracked but the signal looks 

very noisy compared to the previous simulations. This comes after added weight on the error 

term in the cost function compared to the weight on the ∆𝑢 and 𝑢. 
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.  

Figure 4-27: Set point tracking with ramp in set point - heat rate output with constraint on rate of change of 

control values and increased weight on error 
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4.7.3 Set point tracking with constraint on outputs 

This section will impose constraints on the measured outputs in addition to the control signals 

amplitude and rate of change. The constraints are added as inequality constraints to the 

Fmincon algorithm. The constrains are internally by the Fmincon handled as soft constraints. 

The amplitude of the control signals is still imposed as upper and lower bounds and hence are 

treated as hard constraints.  

In the following test there is added constraint on exhaust temperature at 600 [C], that is the 

temperature needs to be below this level. At the same time there is added constraint on the 

measured 𝑂2 percentage to keep it within 8,5 [%] (lower constraint) and 12,5 [%] (upper 

constraint).  

The test is done by running with fixed set point and adding a step change in the 𝐼𝑀𝐸𝑃 (engine 

power output) of 2 [bar]. Set point is set to 10 300. 

The results can be seen in Figure 4-28, Figure 4-29, Figure 4-30 and Figure 4-31. 

The constraints in the measured outputs shown in Figure 4-31 is throughout the simulation. 

The constraints on the 𝑂2 percentage is indicated with a yellow and red line and for the exhaust 

temperature with a red line.  

 

Figure 4-28: Set point tracking with constraints and disturbance rejection - step change in IMEP 

From Figure 4-28 it noted that the disturbances other than the step change in the IMEP is kept 

constant. Looking at the control signals in Figure 4-29 it is clear that the system is unstable. 

The control value of charge air pressure is kept withing the upper and lower bounds while the 

global timing goes in and out of the lower bound after about 150 seconds.  
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Figure 4-29: Set point tracking with constraints and disturbance rejection – control outputs 

 

 

Figure 4-30: Set point tracking with constraints and disturbance rejection – heat rate 
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Figure 4-31: Set point tracking with constraints and disturbance rejection – measured values with constraints 

By increasing the weight on the error term in the optimization the results as show in Figure 

4-32, Figure 4-33, Figure 4-34 and Figure 4-35 are produced. No other parameters where 

changed. We see here a much “nosier” signal than previously, but still the overall trends are 

the same and the constraint on the 𝑂2 is kept. We still get a between the set point and the heat 

rate.  
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Figure 4-32: Set point tracking with constraints and disturbance rejection - control values – increased weight on 

error 

 

Figure 4-33: Set point tracking with constraints and disturbance rejection - disturbances - increased weight on 

error 
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Figure 4-34: Set point tracking with constraints and disturbance rejection – heat rate – increased weight on error 

 

Figure 4-35: Set point tracking with constraints and disturbance rejection - measured values with constraints – 

increased weight on error 
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By increasing the prediction horizon from 70 to 150 we get the results in Figure 4-36, Figure 

4-37 and Figure 4-38. The disturbance change remains the same as in the previous attempts.  

We now get a slight larger initial break of the constraint on the 𝑂2 and a slightly higher charge 

air pressure set point around 100 seconds. The heat rate is now less noisy.  

 

 

Figure 4-36: Set point tracking with constraints and disturbance rejection - control values – 150 steps in 

prediction horizon 
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Figure 4-37: Set point tracking with constraints and disturbance rejection – heat rate – 150 steps in prediction 

horizon 

 

Figure 4-38: Set point tracking with constraints and disturbance rejection - measured values with constraints – 

150 steps in prediction horizon 
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Looking more into the “noise” on the signals a test is done where the disturbances is kept 

constant and ramp on the set point is added. Prior to the test the starting set point and the 

finishing set point is tested such that the no limit is broken while at steady state.  

  

 

Figure 4-39: Set point tracking with constraint on output – control output 

From Figure 4-39 it is seen that the control values are well within our well established upper 

and lower bounds even though a steep gradient on the global timing is seen. From Figure 4-40 

it we note that the set point and process output tracks as it should between the original set point 

and the final set point, but after some time at the upper set point the Heat rate looks unstable 

and this is at the same time as the global timing reduces quickly.  
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Figure 4-40: Set point tracking with constraint on output – Heat rate and set point 

From Figure 4-41 it is clear that it is the 𝑂2 limit breach which is causing the unstable control. 

The Fmincon is not able to keep the 𝑂2 within the constraint and is resulting in unstable control 

once the constraint is broken.  
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Figure 4-41: Set point tracking with constraint on output – Outputs 

 
Moving the set point down slightly makes the control signals stay closer to their initial value. 

Still having the same absolute increase in set point of 500, but this time from 9600 to 10100 

the set point tracking is ok with no noise.  



 

111 

 

Figure 4-42: Set point tracking - ramp in set point - control values 

The control value outputs are shown in Figure 4-42 and they stay well within their bounds. 

This time there is no sudden drop in the global timing as we note from Figure 4-44 that the 

outputs do not get close the constraint limits. The heat rate tracks therefor the set point as 

indicated in Figure 4-49 without any problems.  



 

112 

 

Figure 4-43: Set point tracking - ramp in set point - heat rate and set point 

 

Figure 4-44: Set point tracking - ramp in set point - outputs 
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It is clear from several tests that getting into the constraints with the Fmincon will result in the 

a more noise results. Several attempts are done on moving the set point and the constraints to 

see if there are particular constraints that are more of a problem than others.  

 

One important aspect here is that the modification of the set point and the addition of the 

disturbance might not be within the boundaries of the model at all. The heat rate is usually a 

result of the disturbance and keeping it to a given set point is not a physical thing to do. The 

heat rate will reduce as the 𝐼𝑀𝐸𝑃 disturbance increases as the engine become more efficient. 

The final optimizer here will also not have a set point and hence it will try to minimize the heat 

rate as much as possible but still stay within the constraints; and hence the constraints will most 

likely be active at all times. 

 

In a test the weight on the change on control signal was increased from 0,01 to 1 in order to 

reduce the change in control signal more Vs the error.   

 

 

Figure 4-45: Set point tracking with ramp in disturbance  - constraint on Exhaust - control outputs 

In Figure 4-45 we see that the control signal momentarily hits the upper bound of 4,5 [barg] at  

70 seconds causing. At the same time from Figure 4-48 it is noted that the heat rate drops during 

this period before recovering. At the same time, in Figure 4-46, the disturbance reaches its 

maximum value around 65 seconds. 



 

114 

 

Figure 4-46: Set point tracking with ramp in disturbance  - constraint on Exhaust – disturbances 

Only the IMEP disturbance is changed and the other two kept constant.  

 

Figure 4-47: Set point tracking with ramp in disturbance  - constraint on Exhaust – outputs 
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During the set point tracking of the first stable phase – no change in either set point nor 

disturbance there is a lot of noise on the signal as the set point is not reached. This comes from 

the optimizer and the fact that the weight matrix of the error term was reduced from 100 to 1. 

This is definitely causing problems. During the change of set point on the heat rate and the 

disturbance change there are some noise, see Figure 4-47, until it stabilizes after the changes 

stopes. From Figure 4-47 it is noted that the 𝐸𝑥ℎ𝑎𝑢𝑠𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 is close to its constraint 

of 540 [C] just before 60 seconds as well as the 𝑂2 getting close into its constraint. 

 

Figure 4-48: Set point tracking with ramp in disturbance  - constraint on Exhaust – Heat rate 
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4.7.4 Minimize heat rate with constraints 

In the following test the heat rate is minimized separately. That is; there is no set point tracking, 

but the heat rate is to be minimized while still honouring the constraints. Since the value for 

the heat rate is so large, i.e. not normalized, care must be taken as the Fmincon uses the 

constraint weight and the objective function weight to decide which to follow in case of not 

both being fully achievable. In our real-life case we want to minimize the heat rate but stay 

within the limits.  

In the test below the IMEP is ramped from initial condition and up to ~18 bar with constraints 

on O2 percentage and exhaust temperature.  

The results can be viewed in Figure 4-49, Figure 4-50, Figure 4-51 and Figure 4-52. We see 

that the control value for Global timing reaches its upper bounds which gives a non-practical 

condition, but the Fmincon manages to keep the 𝑂2 percentage above the 8,5 [%] orange line 

in Figure 4-52 and still keep the 𝑒𝑥ℎ𝑎𝑢𝑠𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 below 600 [C]. 

 

 

Figure 4-49: Minimized heat rate with constraints and disturbance rejection – disturbances 
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Figure 4-50: Minimized heat rate with constraints and disturbance rejection - control inputs 

 

 

Figure 4-51: Minimized heat rate with constraints and disturbance rejection – heat rate 
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Figure 4-52: Minimized heat rate with constraints and disturbance rejection – process measurements 

A second attempt is done by reducing the weight on the heat rate minimization and increase 

the weight on the rate of change of the output to see if it would stabilize. All other conditions 

remain the same. We see in Figure 4-53, Figure 4-54 and Figure 4-55 that the trajectory is the 

same as before but this time it stabilises and the noise is largely reduced. At least this applies 

to the period after 150 seconds point. The heat rate settles at the about same location as in the 

previous attempt.  
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Figure 4-53: Minimized heat rate with constraints and disturbance rejection - control inputs – increased weight 

on control signal change 

 

Figure 4-54: Minimized heat rate with constraints and disturbance rejection – heat rate – increased weight on 

control signal change 
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Figure 4-55: Minimized heat rate with constraints and disturbance rejection - outputs – increased weight on 

control signal change 

 

Several simulations are performed to improve the behaviour of the controller with a fixed 

ramped disturbance. The results in Figure 4-56, Figure 4-57, Figure 4-58 and Figure 4-67 

shows some of the results with a slightly modified set up of the inequality constraints. This 

time the constraints are estimated based on the initial state estimation for each iteration over 

the whole prediction horizon given as 

 𝑌 = 𝐹𝑥(𝑘𝑖) + 𝜙𝑢𝑈 + 𝜙𝑢𝑑𝑈𝑑 (4-11) 

where 𝑌 is the estimated outputs over the whole prediction horizon and 𝑥(𝑘𝑖) is states at the 

current initial time of the iteration and 𝑈 and 𝑈𝑑is the control inputs signal and disturbances 

over the prediction horizon respectively.  

 

𝐹 =

[
 
 
 
 
𝐶𝐴
𝐶𝐴2

𝐶𝐴3

⋮
𝐶𝐴𝑁𝑝]

 
 
 
 

 (4-12) 
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𝜙𝑢 =

[
 
 
 
 

𝐶𝐵 0 0 ⋯ 0
𝐶𝐴𝐵 𝐶𝐵 0 ⋯ 0
𝐶𝐴2𝐵 𝐶𝐴𝐵 𝐶𝐵 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

𝐶𝐴𝑁𝑝−1𝐵 𝐶𝐴𝑁𝑝−2𝐵 𝐶𝐴𝑁𝑝−3𝐵 ⋯ 𝐶𝐴𝑁𝑝−𝑁𝑐𝐵]
 
 
 
 

 (4-13) 

 

𝜙𝑢𝑑 =

[
 
 
 
 

𝐶𝐵𝑑 0 0 ⋯ 0
𝐶𝐴𝐵𝑑 𝐶𝐵𝑑 0 ⋯ 0

𝐶𝐴2𝐵𝑑 𝐶𝐴𝐵𝑑 𝐶𝐵𝑑 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

𝐶𝐴𝑁𝑝−1𝐵𝑑 𝐶𝐴𝑁𝑝−2𝐵𝑑 𝐶𝐴𝑁𝑝−3𝐵𝑑 ⋯ 𝐶𝐴𝑁𝑝−𝑁𝑐𝐵𝑑]
 
 
 
 

 

(4-14) 

 

The source code for these tests are given in Appendix I 

 

 

The control output signals in Figure 4-56 now shows very little noise on the control signals 

during this simulation.  

 

Figure 4-56: Minimized heat rate with constraints and disturbance rejection - control inputs 
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Figure 4-57: Minimized heat rate with constraints and disturbance rejection - disturbance 

The disturbance signal is still the same with a ramp to about 18 [bar] on the 𝐼𝑀𝐸𝑃 disturbance. 

 

Figure 4-58: Minimized heat rate with constraints and disturbance rejection – heat rate 
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The shape of the heat rate is similar to the previous simulations but this time the oscillations 

are no longer present.  

 

 
The outputs here stay well within the constraint limits even though the limit on the exhaust 

temperature has been lowered to 540 [C] to have closer to the limit. 

 

By adding real-life disturbances on the other two, 𝐶ℎ𝑎𝑟𝑔𝑒 𝑎𝑖𝑟 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 and 

𝑆𝑢𝑐𝑡𝑖𝑜𝑛 𝑎𝑖𝑟 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 we will see the effects of the non-fixed values on the optimization 

output. From the simulation results presented in Figure 4-59 to Figure 4-62 there differences 

are small as the variations in the disturbances are limited. There are however some subtle 

differences in the response.   
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Figure 4-59: Minimize heat rate with constraint on outputs and real life disturbance - control inputs 

 

 

Figure 4-60: Minimize heat rate with constraint on outputs and real life disturbance - disturbances 
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Figure 4-61: Minimize heat rate with constraint on outputs and real life disturbance - outputs 

 

 

Figure 4-62: Minimize heat rate with constraint on outputs and real life disturbance – heat rate 
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As a test about 37000 samples of real process data with some large variation in the disturbance 

input was sent through the optimizer to view the outcome.  

From Figure 4-63 we note the variation in the control variables as the disturbance’s changes. 

The disturbances are given in Figure 4-64 and in particular the IMEP covers a range of 

operational windows from lower values to a peak at full nominal power at 1200-1500 seconds 

before reducing back down to low level again.  

In addition to the blue curves in Figure 4-63 which shows the output from the optimizer the 

added red curves shows the control output from the real engine controller from period. We note 

the separation and differences in particular related to the engine global timing which the 

optimizer advances more than the current controller which should improve the fuel efficiency 

in theory. The charge air pressure is also slightly increased to compensate for the increase in 

burn rate due to the advanced timing.  

It should be noted, as indicated in pervious sections, that an unlimited possibility of I increasing 

the charge air pressure might not be feasible due to capacity of the turbocharger and a variable 

upper bound in this value should be established to avoid unrealistic optimistic behavior of the 

optimizer.  

 

 

Figure 4-63: : Minimize heat rate with constraint on outputs and real life disturbance – control outputs from 

optimizer (blue) and real life control inputs (blue) 
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Figure 4-64: : Minimize heat rate with constraint on outputs and real life disturbance – disturbances 

 

 

Figure 4-65: Minimize heat rate with constraint on outputs and real life disturbance – measurements 
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Through the simulation the outputs O2 and Exhaust temperature are kept within the constraints 

and hence not problem for the optimizer in that regard as are illustrated in Figure 4-65. 

 

Figure 4-66: : Minimize heat rate with constraint on outputs and real life disturbance – heat rate (blue) versus 

measured real heat rate (red) from the same period 

The heat rate output is here minimized by the optimizer and the result is shown in “blue” in 

Figure 4-66. In addition, the measure heat rate from the field is shown in red for the same 

disturbances. We note that values are closely related and share the same form. For the major 

part of the simulation the optimized heat rate is also lower than the measured from the installed 

engine running traditional control. There is a period around 2250 second mark where the 

estimated optimize is slightly higher than the measured.  
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4.7.5 Grouping of control inputs 

This section will look into the possibilities for grouping the control inputs into groups in order 

to reduce the computational efforts by reducing the number of decision variables.  

The theory behind grouping is explained in section 2.6. This section will only look at the results 

on reducing the computational effort by reducing the number of decision variables. In the first 

optimization shown below the time for the simulation of 5000 steps with a prediction horizon 

of 150 samples has been shown. The number of control signals are the same as before, 

𝐶ℎ𝑎𝑟𝑔𝑒 𝑎𝑖𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 and 𝑔𝑙𝑜𝑏𝑎𝑙 𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑖𝑛𝑔.  

The number of decision variables are then 150 × 2 = 300 

The optimization is the same as the results shown in Figure 4-53 - Figure 4-55 are from.  

The output from the MATLAB prompt over the simulation time of 500 seconds is given as: 

 

Elapsed time is 2159.803144 seconds. 

It is clear for this result that the MPC controller is not able to optimize the problem within the 

physical time of the system on the computer hardware available for the “interior point” 

algorithm.  

In the second attempt the control signals are grouped into 5 groups of unequal length.  

The first group is 5 samples, the second group is 10 samples, the third group is 20 samples, the 

fourth is 40 samples and the last is 75 samples. The number of decision variables then becomes 

5 × 2 = 10.   

This time the output from MATLAB prompt over the 5000 samples is given as: 

 

Elapsed time is 1187.139346 seconds. 

We see that the time it takes to do the simulation is greatly reduced while still being very high.  

But what we also note is that the optimization fails completely in staying within the constraints. 

Figure 4-67 shows that both the 𝑂2 and the 𝑒𝑥ℎ𝑎𝑢𝑠𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 constraints are broken.  

 

Several simulations where tested with grouping of control inputs, but all suffer from worse 

handling of constraints due to the grouping. Most of them also tended to become unstable. It 

might be that the implementation is not done correctly on how the problem is structured when 

using grouping with Fmincon. More testing needs to be performed here, but due to the limit 

time on the project, more testing at this stage was not possible. 
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Figure 4-67: Minimized heat rate with constraints and disturbance rejection - outputs – grouping active 
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4.7.6 Prediction horizon 

This section shows the effect of different prediction horizons on the optimization. The objective 

is to minimize the heat rate with constraints on the amplitude of the control signal and the 

measurements 𝑂2 and 𝐸𝑥ℎ𝑎𝑢𝑠𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒. The disturbances are real life data and the 

simulation is for 15 000 steps which is equal to 1500 [s] of process data with a resolution of 

0.1 [s]. The simulation time is given in Table 3 and visualized in Figure 4-68. 

Table 3: Simulation time for various prediction horizons 

PREDICTION HORIZON TIME [S] 

50 2950 

75 3951,9 

100 4808,4 

125 5613 

150 7359,8 

175 7716,4 

200 9748,5 

 

Figure 4-68: Simulation time with 15 000 steps for different prediction horizons 

We note that the simulation time increases gradually until 125 where there is a steeper section 

until 150 steps. There might have been other processes active on the computer during the test 

of 150 prediction horizon so not too much should be put into. The general trend is that the 

prediction horizon has a big influence on the simulation time 

In Figure 4-69 the two control values are given for the different prediction horizons. It is noted 

that from a prediction horizon of 125 the values are very much the same.  
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Figure 4-69: Control value outputs for different prediction horizons 

 

Figure 4-70: Heat rate for different prediction horizons 

From Figure 4-70 it is difficult to tell if there is any big difference in the heat rate depending 

on the prediction horizon. If anything, it appears that the lower prediction horizon gives a lower 
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heart rate but in general it is difficult to tell. The average value for a prediction horizon of 50 

is 9696 and for a prediction horizon of 200 the average is 9770, so basically the same value.  

 

Figure 4-71: Measurements for different prediction horizons 

For the two measurements mostly looked at throughout the testing, the 𝑂2 and 

𝐸𝑥ℎ𝑎𝑢𝑠𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 Figure 4-71 shows that these differs in the same way  as the control 

values in Figure 4-69. From a prediction horizon of 125 and upwards they are basically the 

same, while for the lower prediction horizons there are larger variations.  
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4.8 Laguerre based Discrete Model Predictive Control 

This section will look into the attempt to produce a Laguerre based DMPC. This version is 

based on the traditionally DMPC but where the Laguerre multipliers are used to simplify the 

structure.  

During the study of previously MPC controllers this version emerged as a practical 

implementation of an industrial MPC where computational effort is reduced by reformulating 

the MPC state space model using Laguerre functions.  

The practical implementation presented by Wang [11] looked instating and substantial amount 

of time was spent looking into this approach. The theory and testing are presented in the 

following sections.  

The theory presented here also applies the traditional MPC as used in the previous chapters but 

are here presented in the context of the Laguerre based DMPC.  

4.8.1 Classical DMPC 

The classical DMPC can by formulated using a standard state space model given as in equation 

(4-15) where 𝐴, 𝐵, 𝐶, 𝐷 represents the state space matrices, 𝑢 is the control input, 𝑦 is the 

measured output and 𝑥 is the state variable vector.  

 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) 

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑢(𝑘) 
(4-15) 

Since we are using receding horizon control, we can assume that the input 𝑢(𝑘) cannot directly 

affect the 𝑦(𝑘) at the same time and hence 𝐷 =  0. 

If we redefine the system to the augmented state space model, including the integrator term for 

offset free operation have. 

 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵∆𝑢(𝑘) 

𝑦(𝑘) = 𝐶𝑥(𝑘) 
(4-16) 

Where the terms are defines as 

 

[
∆𝑥(𝑘 + 1)

𝑦(𝑘 + 1)
]

⏞        
𝑥(𝑘+1)

= [
𝐴 0
𝐶𝐴 𝐼

]
⏞    

𝐴𝑒

[
∆𝑥(𝑘)

𝑦(𝑘)
]

⏞    
𝑥(𝑘)

+ [
𝐵
𝐶𝐵
]

⏞
𝐵𝑒

∆𝑢(𝑘) 

𝑦(𝑘) = [0 𝐼]⏞  
𝐶𝑒

[
∆𝑥(𝑘)

𝑦(𝑘)
]

⏞    
𝑥(𝑘)

 

(4-17) 
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If we define the current sampling instant as 𝑘𝑖, the prediction horizon as 𝑁𝑝 and the control 

horizon as 𝑁𝑐 , the future state variables are given in equation (4-18). For simplicity the 

subscript 𝑒 on the matrices for the augmented version has been omitted.  

 𝑥(𝑘𝑖 + 1|𝑘𝑖) = 𝐴𝑥(𝑘𝑖) + 𝐵∆𝑢(𝑘𝑖) 

𝑥(𝑘𝑖 + 2|𝑘𝑖) = 𝐴𝑥(𝑘𝑖 + 1|𝑘𝑖) + 𝐵∆𝑢(𝑘𝑖 + 1) 

                         = 𝐴2𝑥(𝑘𝑖) + 𝐴𝐵∆𝑢(𝑘𝑖) + 𝐵∆𝑢(𝑘𝑖 + 1) 

⋮ 

𝑥(𝑘𝑖 + 𝑁𝑝|𝑘𝑖) = 𝐴
𝑁𝑝𝑥(𝑘𝑖) + 𝐴

𝑁𝑝−1𝐵∆𝑢(𝑘𝑖) + 𝐴
𝑁𝑝−2𝐵∆𝑢(𝑘𝑖 + 1) +⋯

+ 𝐴𝑁𝑝−𝑁𝑐𝐵∆𝑢(𝑘𝑖 +𝑁𝑐 − 1) 

  

(4-18) 

The predicted outputs are given as in equation (4-19). 

 

 𝑦(𝑘𝑖 + 1|𝑘𝑖) = 𝐶𝐴𝑥(𝑘𝑖) + 𝐶𝐵∆𝑢(𝑘𝑖) 

𝑦(𝑘𝑖 + 2|𝑘𝑖) = 𝐶𝐴
2𝑥(𝑘𝑖) + 𝐶𝐴𝐵∆𝑢(𝑘𝑖) + 𝐶𝐵∆𝑢(𝑘𝑖 + 1) 

𝑦(𝑘𝑖 + 3|𝑘𝑖) = 𝐶𝐴
3𝑥(𝑘𝑖) + 𝐶𝐴

2𝐵∆𝑢(𝑘𝑖) + 𝐶𝐴𝐵∆𝑢(𝑘𝑖 + 1)  

+ 𝐶𝐵∆𝑢(𝑘𝑖 + 2)   

⋮ 

𝑦(𝑘𝑖 + 𝑁𝑝|𝑘𝑖) = 𝐶𝐴
𝑁𝑝𝑥(𝑘𝑖) + 𝐶𝐴

𝑁𝑝−1𝐵∆𝑢(𝑘𝑖) + 𝐶𝐴
𝑁𝑝−2𝐵∆𝑢(𝑘𝑖 + 1) +⋯

+ 𝐶𝐴𝑁𝑝−𝑁𝑐𝐵∆𝑢(𝑘𝑖 + 𝑁𝑐 − 1) 

  

(4-19) 

The output prediction is now dependent on current state information and future control 

movement.  

Defining the output vector 𝑌 and future control vector ∆𝑈 as: 

 𝑌 = [𝑦(𝑘𝑖 + 1|𝑘𝑖) 𝑦(𝑘𝑖 + 2|𝑘𝑖) 𝑦(𝑘𝑖 + 3|𝑘𝑖)…𝑦(𝑘𝑖 + 𝑁𝑝|𝑘𝑖)]
𝑇
 

∆𝑈 = [∆𝑢(𝑘𝑖) ∆𝑢(𝑘𝑖 + 1) ∆𝑢(𝑘𝑖 + 2)… ∆𝑢(𝑘𝑖 + 𝑁𝑐 − 1)]
𝑇 

  

(4-20) 

Given in the compact form we have: 
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 𝑌 = 𝐹𝑥(𝑘𝑖) +  𝜙∆𝑈 

𝐹 =  

[
 
 
 
 
𝐶𝐴
𝐶𝐴2

𝐶𝐴3

⋮
𝐶𝐴𝑁𝑝]

 
 
 
 

 

𝜙 = 

[
 
 
 
 

𝐶𝐵
𝐶𝐴𝐵
𝐶𝐴2𝐵
⋮

𝐶𝐴𝑁𝑝−1𝐵 

0
𝐶𝐵
𝐶𝐴𝐵
⋮

𝐶𝐴𝑁𝑝−2𝐵

 

0
0
𝐶𝐵
⋮

𝐶𝐴𝑁𝑝−3𝐵

⋯
⋯
⋯
⋮
  ⋯

  

0
0
0
⋮

𝐶𝐴𝑁𝑝−𝑁𝑐𝐵]
 
 
 
 

 

 

  

(4-21) 

 

Looking at the classical set point tracking use of the MPC, the goal of the optimizer is to 

minimize the error between the set point and the predictive output. Withing the optimization 

window we keep the set point constant and let the optimizer find the ‘best’ control signals ∆𝑈 

such that the error is minimized.  

Defining the set point vector as constant over the prediction horizon 𝑁𝑝 

 

𝑅𝑠
𝑇 = [1 1 1 . . . 1]⏞      

𝑁𝑝

 𝑟(𝑘𝑖) 
(4-22) 

we get the following cost function 

 𝐽 = (𝑅𝑠 − 𝑌)
𝑇(𝑅𝑠 − 𝑌) + ∆𝑈

𝑇�̅� ∆𝑈 (4-23) 

This cost function will in the first term minimize the error between the set point and the 

estimated output and in the second term reduce the effort on the control signal needed to 

achieve the goal. �̅� is diagonal matrix with the dimension equal to the number of control 

signals. The elements on the diagonal is ≥ 0 and is used as tuning parameters of how much 

“weight” the cost function should put on minimizing the control signal in order to minimize 

the error between the set point and the predictive output. Setting the weighting to zero means 

that it does not considered the change in control signal at all. Using a large value will let the 

optimizer carefully change the control signal in order to reduce the error.  

 

Substituting from (4-21) into (4-23) we get 

 𝐽 = (𝑅𝑠 − 𝐹𝑥(𝑘𝑖))
𝑇(𝑅𝑠 − 𝐹𝑥(𝑘𝑖)) −  2∆𝑈

𝑇𝜙𝑇(𝑅𝑠 − 𝐹𝑥(𝑘𝑖)) +  

∆𝑈𝑇(𝜙𝑇𝜙 + �̅� )∆𝑈 
(4-24) 
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Taking the first derivative of 𝐽 with respect to ∆𝑈 gives the optimal solution ∆𝑈 when the 

partial derivative is zero. 

This results in the optimal solution equation 

 ∆𝑈 = (𝜙𝑇𝜙 + �̅�)−1𝜙𝑇(𝑅𝑠 − 𝐹𝑥(𝑘𝑖)) (4-25) 

The first term (𝜙𝑇𝜙 + �̅�)−1 is also known as the Hessian matrix and 𝑅𝑠 is set point vector. 

The ∆𝑈 vector now contains all the optimal control signals over the prediction horizon. In the 

receding horizon control we only use the fist element of the control vector before doing the 

optimization again using the most up to date measurements of the state and outputs.  

4.8.1.1 Constraints 

In many practical implementations of MPC there will be some constraints present. These 

constraints can be physical limitations that the system under control needs to operate within. 

Constraints can be on the control value; both on amplitude and rate of change; as well as on 

the measured outputs.  

We make distinction between hard and soft constraints. Hard constraints are those that needs 

to be obeyed at all times. These are usually on the control signal in the form of max/min 

amplitude and rate of change. 

The soft constraints are constraints that should not be broken if a feasible solution can be found 

within the constraints. If a situation occurs where a solution is not found the soft constraints 

can be broken; but it should be as gentle as possible. In these cases, a slack variable is often 

added to constraint. This slack variable is then used as part of the cost function so that the 

amount of slack on the soft constraint is minimized.  

The constraint on the amplitude of the control signal can be formulated as 

 𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑘) ≤ 𝑢𝑚𝑎𝑥 (4-26) 

and constraint on the rate of change 

 ∆𝑢𝑚𝑖𝑛 ≤ ∆𝑢(𝑘) ≤ ∆𝑢𝑚𝑎𝑥 (4-27) 

Sometime there is also output constraints as 

 𝑦𝑚𝑖𝑛 ≤ 𝑦(𝑘) ≤ 𝑦𝑚𝑎𝑥 (4-28) 

and with the slack variable 𝑠 this becomes 

 𝑦𝑚𝑖𝑛 − 𝑠 ≤ 𝑦(𝑘) ≤ 𝑦𝑚𝑎𝑥 + 𝑠  (4-29) 

In MIMO10 systems the constraints are defined for each control signal and output signal 

individually. 

 

10 MIMO – Multiple Input Multiple Output 
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To add the constraints to the optimal control problem they are formulated into inequalities with 

respect to the parameter vector ∆𝑈; also knows as the decision variable vector.  

The constraints are formulated for the entire prediction horizon and applied at each sample 

interval in the receding horizon strategy. They can be changed and updated between each 

optimization.  

If the computational load is high, they could be imposed only on a subset of the prediction 

horizon as it is only the first element of the control vector that is use.  

To formulate the rate of change on the control signals as part of the control problem we get 

 ∆𝑈𝑚𝑖𝑛 ≤ ∆𝑈 ≤ ∆𝑈𝑚𝑎𝑥 

= 

−∆𝑈 ≤ −∆𝑈𝑚𝑖𝑛 

∆𝑈 ≤ ∆𝑈𝑚𝑎𝑥 

(4-30) 

and in matrix form 

 
[
−𝐼
𝐼
] ∆𝑈 = [−∆𝑈

𝑚𝑖𝑛

∆𝑈𝑚𝑎𝑥
]  (4-31) 

The same applies to all amplitude of the control signal. From (4-26) 

 𝑈𝑚𝑖𝑛 ≤ 𝑈 ≤ 𝑈𝑚𝑎𝑥  (4-32) 

If we defined the vector 𝑈 as a function of ∆𝑈 

 

𝑢(𝑘 + 𝑙) = 𝑢(𝑘 − 1) + ∑∆𝑢(𝑘 + 𝑖)

𝑙

𝑖=0

 (4-33) 

We get 

 

[
 
 
 
 

𝑈(𝑘)

𝑈(𝑘 + 1)

𝑈(𝑘 + 2)
⋮

𝑈(𝑘 + 𝑁𝑐 − 1)]
 
 
 
 

=  

[
 
 
 
 
 
𝐼𝑁𝑐
𝐼𝑁𝑐
𝐼𝑁𝑐
⋮
𝐼𝑁𝑐]
 
 
 
 
 

 𝑈(𝑘 − 1) +

[
 
 
 
 
 
𝐼𝑁𝑐
𝐼𝑁𝑐
𝐼𝑁𝑐
⋮
𝐼𝑁𝑐

0
𝐼𝑁𝑐
𝐼𝑁𝑐
⋮
𝐼𝑁𝑐

⋯
⋯
⋯
⋱
⋯

  

0
0
0
⋮
𝐼𝑁𝑐]
 
 
 
 
 

[
 
 
 
 

∆𝑈(𝑘)

∆𝑈(𝑘 + 1)

∆𝑈(𝑘 + 2)
⋮

∆𝑈(𝑘 + 𝑁𝑐 − 1)]
 
 
 
 

  (4-34) 

We can rewrite (4-34) in compact form as where 𝐶1 and 𝐶2 corresponding to the appropriate 

matrices 

 
[
−𝐶2
𝐶2
] ∆𝑈 ≤ [

−𝑈𝑚𝑖𝑛 +−𝐶1𝑢(𝑘𝑖 − 1)

𝑈𝑚𝑎𝑥 − 𝐶1𝑢(𝑘𝑖 − 1)
]  (4-35) 

 

The output constraints are given here following from (4-28) and (4-24) 
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 𝑌𝑚𝑖𝑛 ≤ 𝐹𝑥(𝑘) + 𝜙∆𝑈 ≤ 𝑌𝑚𝑎𝑥   (4-36) 

Reformulating into matrix form 

 
[
−𝜙
𝜙
] ∆𝑈 ≤ [

−𝑌𝑚𝑖𝑛 + 𝐹𝑥(𝑘)

𝑌𝑚𝑎𝑥 −  𝐹𝑥(𝑘)
]  (4-37) 

Adding all the inequality constraints together 

 

[
 
 
 
 
 
−𝐼
𝐼
−𝐶2
𝐶2
−𝜙
𝜙 ]
 
 
 
 
 

 ∆𝑈 ≤

[
 
 
 
 
 
 

−∆𝑈𝑚𝑖𝑛

∆𝑈𝑚𝑎𝑥

−𝑈𝑚𝑖𝑛 +−𝐶1𝑢(𝑘𝑖 − 1)

𝑈𝑚𝑎𝑥 − 𝐶1𝑢(𝑘𝑖 − 1)

−𝑌𝑚𝑖𝑛 + 𝐹𝑥(𝑘)

𝑌𝑚𝑎𝑥 −  𝐹𝑥(𝑘) ]
 
 
 
 
 
 

  (4-38) 

In short, we can write this as 

 𝑀∆𝑈 ≤ 𝛾  (4-39) 

In quadratic programming the optimization problem is given as 

 
𝐽 =  

1

2
𝑥𝑇𝐸𝑥 + 𝑥𝑇𝐹 

𝑀𝑥 ≤ 𝛾 

(4-40) 

Where the decision variable is given as 𝑥 and not ∆𝑈. 

We say that an inequality constraint becomes active if 𝑀𝑥 =  𝛾. The constraint is inactive if 

𝑀𝑥 < 𝛾. Often the number of inequality constraints can be larger than the number of decision 

variables; 𝑀 is then a matrix with rows equal to number of constraints and 𝛾 is then a column 

vector with length equal to the number of inequality constraints.  

4.8.1.2 Lagrange multipliers 

The Lagrange multipliers is a strategy in optimization theory to find the local maxima or 

minima of a function subject to equality constraints. It is widely used to solve complicated 

constrained problems and by using the Kuhn-Tucker conditions it is extended to the inequality 

cases [15].  

In general, for the equality constraint case (𝑀𝑥 − 𝛾 = 0) the following objective function is 

given with the Lagrange expression 

 
𝐽 =  

1

2
𝑥𝑇𝐸𝑥 + 𝑥𝑇𝐹 + 𝜆𝑇(𝑀𝑥 − 𝛾) (4-41) 

To minimize this function using partial derivative we get 
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 𝜕𝐽

𝜕𝑥
= 𝐸𝑥 + 𝐹 +𝑀𝑇𝜆 = 0 

𝜕𝐽

𝜕𝜆
= 𝑀𝑥 − 𝛾 = 0 

(4-42) 

The optimal 𝜆 and 𝑥 are then found as 

 𝜆 = −(𝑀𝐸−1𝑀𝑇)−1(𝛾 + 𝑀𝐸−1𝐹) 

𝑥 =  −𝐸−1(𝑀𝑇𝜆 + 𝐹) 
(4-43) 

Here 𝜆 are the Lagrange multipliers.  

For the inequality constraints using the Kuhn-Tucker conditions 

 𝐸𝑥 + 𝐹 +𝑀𝑇 𝜆 = 0 

𝑀𝑥 − 𝛾 ≤ 0 

𝜆𝑇(𝑀𝑥 − 𝛾) = 0 

𝜆 ≥ 0 

(4-44) 

Using the definition of inactive and active constraints we can define (4-44) with the help of the 

Lagrange multipliers. Here 𝑖 denotes the inequality number in a multiple constraint problem 

 𝐸𝑥 + 𝐹 + ∑ 𝜆𝑖
𝑖∈𝑆𝑎𝑐𝑡

𝑀𝑖
𝑇 = 0 

𝑀𝑖𝑥 − 𝛾𝑖 = 0 Active constraint 

𝑀𝑖𝑥 − 𝛾𝑖 < 0 Constraint satisfied 

𝜆𝑖  ≥ 0 Active constraint 

𝜆𝑖 = 0 Inactive constraint 

(4-45) 

If the active constraints are given, then the optimal solution is also given 

 𝜆 =  −(𝑀𝐸−1𝑀𝑇)−1(𝛾 + 𝑀𝐸−1𝐹) 

𝑥 = −𝐸−1(𝐹 + 𝑀𝑇𝜆) 
(4-46) 

The active set method used in the QP problem defines a subset of the constraints for each step 

in the algorithm that is active at the current step. This set is also known as the working set. The 

solution is started off with a subset that is feasible. The algorithm then moves on the surface 

defined by the working set to an improved point. At each step an equality constraint is solved. 

If all the Lagrange multipliers are greater or equal to zero (𝜆𝑖  ≥ 0) then the point is a local 

solution. If the Lagrange multiplier is less than zero, then the objective function can be 

decreased by relaxing the constraint 𝑖, i.e. removing it from the constraint equation. 
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During the optimization all constraints must be monitored in order not to break any of them. If 

a new constraint is detected it needs to be added to the working set.  

In the active set methods, the active constraints need to be identified as well as the optimal 

decision variables. It is clear that if there are many constraints the computational load increases. 

The Langrage multipliers are here used to detect the constraints which are not active and hence 

can be removed from the solution. The Lagrange multipliers are called the dual variables [11]. 

4.8.2 DMPC with Laguerre functions 

From (4-20) we had that  

 ∆𝑈 = [∆𝑢(𝑘𝑖) ∆𝑢(𝑘𝑖 + 1) ∆𝑢(𝑘𝑖 + 2)… ∆𝑢(𝑘𝑖 + 𝑁𝑐 − 1)]
𝑇 

  
(4-47) 

where 𝑁𝑐 is the control horizon. At any discrete time 𝑘𝑖 we can define an element in ∆𝑈 as a 

function of ∆𝑈 using the pulse operator such that  

 ∆𝑢(𝑘𝑖 + 𝑖) = [𝛿(𝑖) 𝛿(𝑖 − 1)…𝛿(𝑖 − 𝑁𝑐 + 1]∆𝑈  (4-48) 

What is proposed in [11] is to use a set of Laguerre functions to approximate the sequence 

∆𝑢(𝑘𝑖) ∆𝑢(𝑘𝑖 + 1) ∆𝑢(𝑘𝑖 + 2)… ∆𝑢(𝑘𝑖 + 𝑁𝑐 − 1). The reason for this is given as the number 

of parameters required to approximate the control signal ∆𝑢 is far less then the number 

traditionally used in MPC design for instance using the pulse operator. Using Laguerre 

polynomial reduces the number of parameters and hence the computational load which might 

be critical for processes with complicated dynamics and/or high demand on closed loop 

performance.  

The discrete Laguerre functions are given as 

 𝐿(𝑘 + 1) = 𝐴𝑙𝐿(𝑘) (4-49) 

Here 𝐴𝑙 is a matrix consisting of the parameters 𝑎 and 𝛽 for the case of 𝑁 = 4 

 

𝐴𝑙 = [

𝑎 0 0 0
𝛽 𝑎 0 0
−𝑎𝛽 𝛽 𝑎 0

𝑎2𝛽 −𝑎𝛽 𝛽 𝑎

] (4-50) 

The initial condition 𝐿(0) is given as 

 

𝐿(0) = √𝛽 [

1
−𝑎
𝑎2

−𝑎3

] (4-51) 

 

At a sample instance 𝑘 with initial time 𝑘𝑖  
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∆𝑢(𝑘𝑖 + 𝑘) =∑𝑐𝑗(𝑘𝑖)𝑙𝑗(𝑘)

𝑁

𝑗=1

 (4-52) 

where 𝑁 is the number of terms in the expansion and 𝑐𝑗 is the coefficients which are function 

of the initial time of the moving horizon window, 𝑘𝑖. 𝑙𝑗 are here the Laguerre functions. 

Equation (4-52) can also be written in vector form as: 

 ∆𝑢(𝑘𝑖 + 𝑘) = 𝐿(𝑘)
𝑇𝜂 (4-53) 

where 𝜂 = [𝑐1 𝑐2…𝑐𝑁 ]
𝑇, the Laguerre functions, and 𝐿(𝑘)𝑇 is the transpose Laguerre function 

vector in (4-49). The control horizon, 𝑁𝑐, is no longer used and replaced by 𝑁 and 𝑎. Here a 

large value on 𝑎 will give a long control horizon. If we set 𝑎 = 0 then 𝑁 = 𝑁𝑐 as traditionally.  

 

We can now add the Laguerre functions to the augmented state space formulation where the 

initial state is 𝑘𝑖 as: 

 

𝑥(𝑘𝑖 +𝑚|𝑘𝑖) = 𝐴
𝑚𝑥(𝑘𝑖) + ∑ 𝐴𝑚−𝑖−1𝐵

𝑚−1

𝑖=0

𝐿(𝑖)𝑇𝜂 

𝑦(𝑘𝑖 +𝑚|𝑘𝑖) = 𝐶𝐴
𝑚𝑥(𝑘𝑖) + ∑ 𝐶𝐴𝑚−𝑖−1𝐵

𝑚−1

𝑖=0

𝐿(𝑖)𝑇𝜂 

(4-54) 

 

Here the ∆𝑢 is now longer present and hence it is the coefficient vector 𝜂 that needs to be 

optimized. We therefor rewrite the cost function accordingly 

 

𝐽 = ∑(𝑟(

𝑁𝑝

𝑚=1

𝑘𝑖) − 𝑦(𝑘𝑖 +𝑚|𝑘𝑖))
𝑇(𝑟(𝑘𝑖) − 𝑦(𝑘𝑖 +𝑚|𝑘𝑖)) + 𝜂

𝑇𝑅𝐿𝜂 (4-55) 

 

𝑅𝐿 is the weighting matrix which is a diagonal matrix of size 𝑁 × 𝑁 and with diagonal elements 

which is ≥ 0. 𝑟(𝑘𝑖) is the set point at time instance 𝑘𝑖. 
 

In [11] this traditional cost function is reformulated in order to form at link to DLQR11 where 

the objective is to find the optimal coefficient vector 𝜂 that minimizes the cost. The reason 

behind this reformulation is explained as numerous DLQR classical results can be utilized for 

analysis, tuning and design of the MPC.  

 

The new cost function is then given as: 

 

𝐽 = ∑ 𝑥(𝑘𝑖 +𝑚|𝑘𝑖)
𝑇𝑄

𝑁𝑝

𝑚=1

𝑥(𝑘𝑖 +𝑚|𝑘𝑖) + 𝜂
𝑇𝑅𝐿𝜂 (4-56) 

 

11 DLQR – Discrete time Linear Quadratic regulators.  
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Now in order to include the set point in the cost function the state variable needs to be re-

defined.  

In the augmented state space model given in (4-17) we defined the output matrix, 𝐶 as 

[0 0…0 𝐼] and the state vector as [∆𝑥(𝑘)𝑇 𝑦(𝑘)𝑇]. If we now define a new vector with the 

reference signal (which is unchanged over the prediction horizon) as 𝑥𝑟(𝑘𝑖) =
[0 0…0 𝑟(𝑘𝑖)]

𝑇. This vector has the number of zeroes equal to the dimensions of the state 

vector which hence leads to  𝑟(𝑘𝑖) = 𝐶𝑥𝑟(𝑘𝑖). The new state vector is now: 

 𝑥(𝑘𝑖 +𝑚|𝑘𝑖) = [∆𝑥𝑚(𝑘𝑖 +𝑚|𝑘𝑖)
𝑇 𝑦(𝑘𝑖 +𝑚|𝑘𝑖) − 𝑟(𝑘𝑖) ]

𝑇 (4-57) 

 

We can from (4-54) simplify the next state equation by letting 

  

 

𝜙(𝑚)𝑇 = ∑ 𝐴𝑚−𝑖−1𝐵𝐿(𝑖)𝑇
𝑚−1

𝑖=0

 (4-58) 

 

 We then have   

 𝑥(𝑘𝑖 +𝑚|𝑘𝑖) = 𝐴
𝑚𝑥(𝑘𝑖) + 𝜙(𝑚)

𝑇𝜂 (4-59) 

Since we now have the new state equation in the cost function we would also need to update 

that accordingly 

 

𝐽 = 𝜂𝑇 (∑ 𝜙(𝑚)𝑄

𝑁𝑝

𝑚=1

𝜙(𝑚)𝑇 + 𝑅𝐿)𝜂 + 2𝜂
𝑇 (∑ 𝜙(𝑚)𝑄

𝑁𝑝

𝑚=1

𝐴𝑚)𝑥(𝑘𝑖)

+ ∑ 𝑥(𝑘𝑖)
𝑇(𝐴𝑇)𝑚𝑄𝐴𝑚𝑥(𝑘𝑖)

𝑁𝑝

𝑚=1

 

(4-60) 

 

We now define two new variables 

 

Ω = (∑ 𝜙(𝑚)𝑄

𝑁𝑝

𝑚=1

𝜙(𝑚)𝑇 + 𝑅𝐿) 

Ψ = (∑ 𝜙(𝑚)𝑄

𝑁𝑝

𝑚=1

𝐴𝑚) 

(4-61) 

 

Taking the partial derivative of (4-60) with respect to the optimal parameter vector 𝜂 we get 

 𝜂 = −Ω−1Ψ𝑥(𝑘𝑖) (4-62) 

 

Finding the minimum of the cost function 𝐽 based on (4-60) now gives us 
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 𝐽 = (𝜂 + Ω−1Ψ𝑥(𝑘𝑖))
𝑇
Ω(𝜂 + Ω−1Ψ𝑥(𝑘𝑖))−𝑥(𝑘𝑖)

𝑇Ψ𝑇Ω−1Ψ𝑥(𝑘𝑖)

+ ∑ 𝑥(𝑘𝑖)
𝑇(𝐴𝑇)𝑚𝑄𝐴𝑚𝑥(𝑘𝑖)

𝑁𝑝

𝑚=1

 

(4-63) 

Since the optimal parameter vector is given when as in (4-62) we get 

 

𝐽 = 𝑥(𝑘𝑖)
𝑇 (∑(𝐴𝑇)𝑚𝑄𝐴𝑚 −Ψ𝑇Ω−1Ψ)

𝑁𝑝

𝑚=1

)𝑥(𝑘𝑖) 

= 𝑥(𝑘𝑖)
𝑇𝑃𝑑𝑚𝑝𝑐𝑥(𝑘𝑖) 

(4-64) 

Here 𝑃𝑑𝑚𝑝𝑐 is the content of the large brackets.  

 

With the formulation in (4-54) we noted that the ∆𝑢 was replaced by the coefficient vector 𝜂 

of the Laguerre network and in the following sections we showed how this was done by 

adding it to the cost function. Now in order to predict the future 𝑥 we need to solve the 

convolution sum of 

 

𝑆𝑐(𝑚) = ∑ 𝐴𝑚−𝑖−1𝐵

𝑚−1

𝑖=0

𝐿(𝑖)𝑇 (4-65) 

From (4-49) we had that 𝐿(𝑘 + 1) = 𝐴𝑙𝐿(𝑘) 
Studying the convolution sum we finally get for 𝑚 = 2,3,4…𝑁𝑝 

 𝑆𝑐(𝑚) = 𝐴𝑆𝑐(𝑚 − 1) + 𝑆𝑐(1)(𝐴𝑙
𝑚−1)𝑇 (4-66) 

For 𝑚 = 1 we have 𝑆𝑐(1) = 𝐵𝐿(0)
𝑇 

 

Now for the receding horizon strategy we end up with 

 ∆𝑢(𝑘𝑖) = 𝐿(0)
𝑇𝜂 (4-67) 

 

For the multiple input and multiple output case the Laguerre tuning parameters (𝑎 and 𝑁) are 

given separately for each control signal. The input matrix 𝐵 is separated into 𝑚 columns; one 

for each input.  

The control signal increment is given as 

 ∆𝑢𝑖(𝑘) = 𝐿𝑖(0)
𝑇𝜂𝑖 (4-68) 

where 𝑚 denotes the 𝑖𝑡ℎ control input. 

 𝐿𝑖(𝑘)
𝑇 = [𝑙1

𝑖 (𝑘)𝑙𝑛
𝑖 (𝑘)… 𝑙𝑁𝑖

𝑖 (𝑘)] (4-69) 

For the simplified state equation in (4-59) we now have 

 

𝜙(𝑚)𝑇 = ∑ 𝐴𝑚−𝑖−1[𝐵1𝐿1(𝑖)
𝑇 𝐵2𝐿2(𝑖)

𝑇… 𝐵𝑚𝐿𝑚(𝑖)
𝑇]

𝑚−1

𝑖=0

 (4-70) 
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For each “block” in the 𝜙(𝑚)𝑇 matrix the structure is identical to the SISO case for the 

convolution sum in (4-66) and the cost function in (4-60) remains the same.  

In Matrix form this is given as: 

 

∆𝑢(𝑘𝑖) =

[
 
 
 
𝐿1(0)

𝑇 02
𝑇 ⋯ 0𝑚

𝑇

01
𝑇 𝐿2(0)

𝑇 ⋯ 0𝑚
𝑇

⋮ ⋮ ⋱ ⋮
01
𝑇 02

𝑇 ⋯ 𝐿𝑚(0)
𝑇]
 
 
 
𝜂 

  

(4-71) 

 

In Appendix B 

 the MATLAB function for calculating the Ω and Ψ is given. These are used in the cost 

function 𝐽 = 𝜂𝑇Ω𝜂 + 2𝜂𝑇Ψ𝑥(𝑘𝑖); based on (4-60). The code here is based on the code given 

in [11].  

 

The inputs to the function are: 

• 𝐴 – State matrix – extended if augmented state space is used 

• 𝐵 – Input matrix – externed if augmented state space is used 

• 𝑎 – vector of Laguerre pole location for each input 

• 𝑁 – The number of terms in the Laguerre function for each input 

• 𝑁𝑝 – Prediction horizon 

• 𝑄 – Weighting matrix for the states 

• 𝑅 – Weighting matrix for the input signals 
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4.8.2.1 Set point tracking without constraints 

A test function is written in order to test function. The model is based on the State Space 

model used throughout this report.  

Firstly, the augmented state space model is formulated 

%State matrix 

A = ss1.A; 

 

%Inputs 

B = ss1.B; 

 

%outputs 

C = ss1.C; 

 

%Extract the sizes of the matrices 

[y_n,n_n] = size(C); 

[n_n,u_n] = size(B); 

Create the augmented matrices with integrator terms 

The new matrices then becomes 𝐴_𝑒 = [
𝐴 0
𝐶𝐴 𝐼

] , 𝐵_𝑒 = [
𝐴 0
𝐶𝐴 𝐼

], and 𝐶_𝑒 = [0 𝐼] 

A_e=eye(n_n+y_n,n_n+y_n); 

A_e(1:n_n,1:n_n) = A; 

A_e(n_n+1:n_n+y_n,1:n_n) = C*A; 

 

B_e=zeros(n_n+y_n,u_n); 

B_e(1:n_n,:)=B; 

B_e(n_n+1:n_n+y_n,:)=C*B; 

 

C_e(:,n_n+1:n_n+y_n)=eye(y_n,y_n); 

We then set up the control variables, 𝑄 and 𝑅 weighting matrices and find the Ω and Ψ with 

the dmpc function. The source code for this function is found in  

In this section we also set up the Laguerre vector and number of terms in the Laguerre function. 

Q = C_e'*C_e; 

 

R = 0.1*eye(u_n,u_n); 

 

a = [0.5 0.5 0.5 0.5 0.5]; 

N = [15 15 15 15 15]; 

 

Np = 100; %Preciction horizon 

[Omega,Psi] = dmpc(A_e,B_e,a,N,Np,Q,R); 
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We set the prediction horizon to 200.  

 

The next part of the function is to find the 𝐴𝑙 matrix and 𝐿𝑚 for the Laguerre functions. 

[Al,L0] = lagd(a(1),N(1)); 

 

L_m=zeros(u_n,sum(N)); 

L_m(1,1:N(1)) = L0'; 

 

In_s = 1; 

 

for jj =2:u_n 

    [Al,L0] = lagd(a(jj),N(jj)); 

    In_s = N(jj-1)+In_s; 

    In_e = In_s+N(jj)-1; 

    L_m(jj,In_s:In_e) = L0';     

end 

We then defined the initial condition based on real life data so that we use valid operational 

data as a starting point. Firstly, we let MATLAB find the initial value from a dataset based on 

30 samples. Then we take known 10 control inputs and run through the model with the firstly 

know initial state so that we are sure that the starting point is a hot starting point.  

We define the first state vector on deviation form since we are using the augmented state space 

model. We also add the error for the first output as this is what we want to track and minimize. 

The other outputs are added as pure measurements.  

X0_SS1 = 

findstates(ss1,iddata(TrainingMean20200903Red.OutputData(161:190,1:6),Trainin

gMean20200903Red.InputData(161:190,1:5),0.1)); 

 

state_ini_values = X0_SS1; 

 

y = zeros(y_n,1); 

y = TrainingMean20200903Red.OutputData(201,1:6); 

y = y'; 

 

u = zeros(u_n,1); 

 

u = [TrainingMean20200903Red.InputData(201,1); ... 

    TrainingMean20200903Red.InputData(201,2); ... 

    TrainingMean20200903Red.InputData(201,3); ... 

    TrainingMean20200903Red.InputData(201,4); ... 

    TrainingMean20200903Red.InputData(201,5)]; 

    

N_sim = 1000; 
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sp = 10000*ones(1,N_sim+10); 

 

 

for ii = 1:10 

    state_ini_values_old = state_ini_values; 

    state_ini_values = 

ss1.A*state_ini_values+ss1.B*TrainingMean20200903Red.InputData(190+ii,1:5)'; 

end 

 

xm = [state_ini_values-state_ini_values_old;y(1,1)-

sp(1,1);y(2,1);y(3,1);y(4,1);y(5,1);y(6,1)]; 

The simulation part of the unconstrained test is shown below 

for kk = 1:N_sim 
     
   u = [TrainingMean20200903Red.InputData(200+kk,1); ... 
     TrainingMean20200903Red.InputData(200+kk,2); ... 
     u(3); ... 
     TrainingMean20200903Red.InputData(200+kk,4); ... 
     u(5)]; 
 
   eta = -(Omega\Psi)*xm;  
   deltau = L_m*eta; 
        
    u(3) = u(3)+deltau(3); 
    u(5) = u(5)+deltau(5);   
   
    %save values 
    deltau1(:,kk) = deltau; 
    sp1(1,kk) = sp(1,1); 
    u1(1:u_n,kk) = u; 
    y1(1:y_n,kk) = y;     
    state_ini_values1(1:n_n,kk) = state_ini_values; 
    
  
    %Plant simulation 
    yp = y; 
    state_ini_values_old = state_ini_values;     
    state_ini_values = ss1.A*state_ini_values+ss1.B*u; 
    y = ss1.C*state_ini_values_old; 
      
    xm = [state_ini_values-state_ini_values_old;y(1,1)-
sp(1,1);y(2,1);y(3,1);y(4,1);y(5,1);y(6,1)]; 
end 

In Figure 4-72, Figure 4-73 and Figure 4-74 we see the output from the test function for 

unconstrained set point tracking. We see that it tracks set point good after some initial 

oscillations on the heat rate 
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Figure 4-72: Unconstrained set point tracking with DMPC and Laguerre functions – Heat rate and set point 

 

 

 

Figure 4-73: Unconstrained set point tracking with DMPC and Laguerre functions - charge air control output 
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Figure 4-74: Unconstrained set point tracking with DMPC and Laguerre functions - global timing control signal 

By adding a step change on the heat rate set point we get the results as shown in Figure 4-75. 

Still we see that the set point tracks good with some initial oscillations after set point change.  
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Figure 4-75: Unconstrained set point tracking with step change in set point - Heat rate 

 

To test disturbance rejection, we change the IMEP values as we did in test in section 4.7.1. 

During this test we keep the disturbances fixed during the simulation except for the step change 

on IMEP at 100 seconds. We see from Figure 4-76, Figure 4-77, Figure 4-78 and Figure 4-79 

that the sudden change results in a short time change in heat rate output before quickly settle 

down on set point again. The outputs adjust immediately and keeps the value on set point.  
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Figure 4-76: Unconstrained set point tracking with disturbance rejection - heat rate 

 

 

Figure 4-77: Unconstrained set point tracking with disturbance rejection - IMEP with step change 
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Figure 4-78: Unconstrained set point tracking with disturbance rejection - Charge air control signal 

 

 

Figure 4-79: Unconstrained set point tracking with disturbance rejection - Global timing control signal 
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One last test is done on the unconstrained control by adjusting the IMEP gradually from 

initial value to initial value + 10 bar over the course of 100 seconds. 

From Figure 4-80, Figure 4-81, Figure 4-82 and Figure 4-83 we see that during the change in 

disturbance we note a slight error between the set point and the measured output. After the 

change in disturbance is done the output settles back to set point. 

We note that it is not physical possible to keep heat rate at 10000 while increasing the IMEP 

to 18 bar and hence the charge air pressure increases to abnormal high values.  

 

 

Figure 4-80: Unconstrained set point tracking with disturbance rejection – ramp in disturbance - Heat rate 
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Figure 4-81: Unconstrained set point tracking with disturbance rejection – ramp in disturbance – IMEP 

disturbance 

 

Figure 4-82: Unconstrained set point tracking with disturbance rejection – ramp in disturbance – charge air 

control output 
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Figure 4-83: Unconstrained set point tracking with disturbance rejection – ramp in disturbance – global timing 

control output 

 

4.8.2.2 DMPC with constraints on control signal 

This section looks into how we can add constraints to the DMPC algorithm. Adding constraints 

on the control signal difference we define: 

 ∆𝑢𝑚𝑖𝑛 ≤ ∆𝑢(𝑘𝑖 +𝑚) ≤ ∆𝑢
𝑚𝑎𝑥 (4-72) 

We know from (4-53) that 

 ∆𝑢(𝑘𝑖 + 𝑘) = 𝐿(𝑘)
𝑇𝜂 (4-73) 

For MIMO system we have ∆𝑢 are vectors with limits for each input.  

We can arrange this in matrix form as 

 

∆𝑢𝑚𝑖𝑛 ≤

[
 
 
 
𝐿1(𝑚)

𝑇 02
𝑇 ⋯ 0𝑚

𝑇

01
𝑇 𝐿2(𝑚)

𝑇 ⋯ 0𝑚
𝑇

⋮ ⋮ ⋱ ⋮
01
𝑇 02

𝑇 … 𝐿𝑚(𝑚)
𝑇]
 
 
 
𝜂 ≤ ∆𝑢𝑚𝑎𝑥 (4-74) 

In Appendix D 

 the MATLAB code for the function which returns matrix 𝑀 is given.  
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The inequality constraints can then be formulated as: 

 𝑀𝜂 ≤ ∆𝑈𝑚𝑎𝑥 

−𝑀𝜂 ≤ −∆𝑈𝑚𝑖𝑛 

(4-75) 

 

For constraint on amplitude of control signal we have the following conditions: 

 

𝑢(𝑘) = ∑∆𝑢(𝑖)

𝑘−1

𝑖=0

 (4-76) 

 

We can then construct this in matrix form 

 

𝑢𝑚𝑖𝑛 ≤

[
 
 
 
 
 
 
 
 
 
∑𝐿1(𝑖)

𝑇

𝑘−1

𝑖=0

02
𝑇 ⋯ 0𝑚

𝑇

01
𝑇 ∑𝐿2(𝑖)

𝑇

𝑘−1

𝑖=0

⋯ 0𝑚
𝑇

⋮ ⋮ ⋱ ⋮

01
𝑇 02

𝑇 … ∑𝐿𝑚(𝑖)
𝑇

𝑘−1

𝑖=0 ]
 
 
 
 
 
 
 
 
 

𝜂 + 𝑢(𝑘𝑖 − 1) ≤ 𝑢
𝑚𝑎𝑥 (4-77) 

The inequality constrain then becomes 

 𝑀𝜂 ≤ 𝑈𝑚𝑎𝑥 − 𝑢(𝑘𝑖 − 1) 

−𝑀𝜂 ≤ −𝑈𝑚𝑖𝑛 + 𝑢(𝑘𝑖 − 1) 
(4-78) 

In Appendix E 

 the MATLAB code for the function which returns matrix M is given.  

By adding limits to the control outputs and rate of change of the control signal as: 

 0.3 𝑏𝑎𝑟𝑔 ≤ 𝐶ℎ𝑎𝑟𝑔𝑒𝐴𝑖𝑟𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 ≤ 4.5 𝑏𝑎𝑟𝑔 

−20 𝑑𝑒𝑔𝐶𝐴 ≤ 𝐺𝑙𝑜𝑏𝑎𝑙𝑇𝑖𝑚𝑖𝑛𝑔 ≤ −8.5 𝑑𝑒𝑔𝐶𝐴 

−0.1 𝑏𝑎𝑟𝑔/𝑠 ≤ ∆𝐶ℎ𝑎𝑟𝑔𝑒𝐴𝑖𝑟𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 ≤ 0.1 𝑏𝑎𝑟𝑔/𝑠 

−0.3 𝑑𝑒𝑔𝐶𝐴/𝑠 ≤ ∆𝐺𝑙𝑜𝑏𝑎𝑙𝑇𝑖𝑚𝑖𝑛𝑔 ≤ 0.3 𝑑𝑒𝑔𝐶𝐴/𝑠 

(4-79) 

By trial and error the prediction horizon is set to 200 and the constraint horizon to 15. 

For the ℎ𝑒𝑎𝑡 𝑟𝑎𝑡𝑒 the set point is set artificially low so that it will continuously minimize the 

error.  
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We see from Figure 4-84, Figure 4-85, Figure 4-86 and Figure 4-87 that the heat rate is 

minimized while keeping the control values within the constraints. We can see the lower 

constraints in read and the upper constraints in yellow. There are some oscillations on the heat 

rate and charge air pressure control signal until the disturbance starts. It is difficult to control 

the constrains as these are not imposed as hard constraints on the optimization. They will be 

broken if in conflict with the objective and hence an outer protection loop will need to be in 

place in order to guarantee that the control signals do not go out of bounds if the objective is 

not met. In this case there are now such outer limitations and it can be seen that the constraint 

on the global timing is broken for some time after the disturbance has reach its maximum. In 

order to control it the weight on the minimization of the heat rate has been reduced to 0,0001. 

Since the weight is over a prediction horizon of 200 and with an error in the range around 3500 

this still adds up to substantial amount.  

 

Figure 4-84: Constrained minimization of heat rate with disturbance - Heat rate 
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Figure 4-85: Constrained minimization of heat rate with disturbance – IMEP disturbance 

 

 

Figure 4-86: Constrained minimization of heat rate with disturbance – control output for charge air pressure 
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Figure 4-87: Constrained minimization of heat rate with disturbance – control output for global timing 

By changing the constraint on global ignition timing to max −9.5 [degCA] we get the result as 

in Figure 4-88. We see that the constraint is still maintained with the same amount of overshoot 

initially.  
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Figure 4-88: Constrained minimization of heat rate with disturbance – control output for global timing with 

reduced max limit 
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4.8.2.3 DMPC with constraints on output signals 

We can look into how constraints on the outputs might be introduced. The theory here is from 

the work of Wang [11]. 

For constraints on the output we define: 

 𝑦𝑚𝑖𝑛 ≤ 𝑦(𝑘) ≤ 𝑦𝑚𝑎𝑥 (4-80) 

We know from (4-54) that the following equation applies 

 𝑥(𝑘𝑖 + 1|𝑘𝑖) = 𝐴𝑥(𝑘𝑖) + 𝐵𝐿(0)
𝑇𝜂 

𝑦(𝑘𝑖 + 1|𝑘𝑖) = 𝐶𝐴𝑥(𝑘𝑖) + 𝐶𝐵𝐿(0)
𝑇𝜂 

(4-81) 

We know that if 𝑦𝑚𝑖𝑛 ≤ 𝑦(𝑘𝑖 + 1|𝑘𝑖) ≤ 𝑦
𝑚𝑎𝑥 the optimal solution is where 𝜂 =

 −Ω−1Ψ𝑥(𝑘𝑖) 

If the lower limit constraint is broken, then we need to find a solution where the cost function 

is minimized while still satisfy the constraint. Here we defined  

 −𝐶𝐵𝐿(0)𝑇𝜂 ≤  −𝑦𝑚𝑖𝑛 + 𝐶𝐴𝑥(𝑘𝑖) (4-82) 

Denoting 𝑀𝑎𝑐𝑡 = −𝐶𝐵𝐿(0)
𝑇 the Lagrange multiplier 𝜆𝑎𝑐𝑡 is given as 

 𝜆𝑎𝑐𝑡 = −(𝑀𝑎𝑐𝑡Ω
−1𝑀𝑎𝑐𝑡

𝑇)
−1
(−𝑦𝑚𝑖𝑛 + 𝐶𝐴𝑥(𝑘𝑖) + 𝑀𝑎𝑐𝑡Ω

−1Ψ𝑥(𝑘𝑖)) (4-83) 

The optimal solution is now given as 

 𝜂 =  −Ω−1(Ψ𝑥(𝑘𝑖)+𝑀𝑎𝑐𝑡
𝑇𝜆𝑎𝑐𝑡) (4-84) 

Looking at the upper constraint limit this is almost the same as for the lower limit 

 𝐶𝐵𝐿(0)𝑇𝜂 ≤  𝑦𝑚𝑎𝑥 − 𝐶𝐴𝑥(𝑘𝑖) (4-85) 

 𝜆𝑎𝑐𝑡 = −(𝑀𝑎𝑐𝑡Ω
−1𝑀𝑎𝑐𝑡

𝑇)
−1
(𝑦𝑚𝑎𝑥 − 𝐶𝐴𝑥(𝑘𝑖) + 𝑀𝑎𝑐𝑡Ω

−1Ψ𝑥(𝑘𝑖)) 
(4-86) 

The optimal solution is the same as in (4-84). 

 

Several attempts on getting the output constraint to work in the MIMO system with several 

outputs imposing constraints on the augmented state space model has been made. It within the 

available time frame not succeeded in making both the output constraints and the constraints 

on the control signal to work simultaneously. Additional work in order to modify the logic to 

work with this particular case would need to be tested.  

The DMPC with Laguerre functions has so far worked well and works good for the constraints 

on the control signal and with substantial less computational effort than the Fmincon from 

MATLAB.  
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5 Discussion 
The following sections will discuss the project results and the situations which arose during the 

project as well as suggest some future work. The chapter is divided into separate sections, each 

dealing with separate parts of the project.  

5.1 Modelling 

During the development of the MPC controller for this project various aspects has been looked 

upon. During the initial phase of the development a lot of time was spent using the polynomial 

model developed in the Masters project during the fall of 2020, but after several failed attempts 

in getting a reliable model to work, it was decided to swap the model with an new state space 

model. There are several reasons for the update of model, but it was mostly driven by the lack 

of results when using the qpOASES and the Quadprog optimizers. Even though the step 

response of the open loop simulation gave indications that the model had a good representation 

of the system, which was also backed up by good simulation fit with the validation data set 

during the system identification. The initial problem with the qpOASES and the Quadprog was 

also related to problem of infeasibility and challenges in adding constraints on outputs into the 

structure resulting in a very large optimization problem.  

Another aspect was that the polynomial model needed to be transferred into a state space model 

representation to work with the set up in SIMULINK where the initial benefits of having all 

parts in the polynomial model with a physical meaning got lost anyway.  

The model development based on measured input/outputs from a real engine in the field has 

some limitations which are potential critical to problems observed throughout the testing. The 

model has a good representation of the system at which the data has been collected but lacks 

the dimensions outside the normal operating range as the control signals was not exhausted in 

either direction as it was running in closed loop control. Updated control software for the engine 

controller has been developed and prepared for further testing, but due to lack of testing 

possibilities at the production test bed in Bergen the tests has been postponed for now.  

The next goal is therefor to get a better model representation of the system by running the 

control signals outside the normal operating range.  

5.2 qpOASES and Quadprog 

The results from the qpOASES and the Quadprog was limited and the possibilities was not 

explored to their full potential as the decision within the project to focus on Fmincon was taken 

after a few weeks. These potentials could have shown that there where underlying problems in 

the implementation which was not discovered during the code walkthrough and the study of 

the results. However, some testing was still performed, mainly related to set point tracking. 

The results are briefly presented. The simulation time however was clearly a limiting factor. 

Even short simulation times required several hours of running on the development computer.  

The results from Quadprog was the least promising as these as pr usual run in to feasibility 

issues at an early stage.  
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5.3 Fmincon 

The focus has largely been on the Fmincon during most of the time in this project. The pre-

knowledge of Fmincon was limited to references to it in the lecture notes of IIA 4117 and the 

examples presented there. The possibilities are large with the use of Fmincon, and a large 

portion of the time has been spent exploring various settings and numerous of simulations in 

MATLAB. Some of those simulations results are presented in this paper, but most them are 

trial and error and failed attempts.  

The basic structure of setting up the problem is clearly understood and the setup of the cost 

function is straight forward as the goal here is to minimize the 𝐻𝑒𝑎𝑡 𝑟𝑎𝑡𝑒 will keeping the 

outputs within boundaries. Several weeks was spent on testing various ways of adding 

constraints and bounds and look at how the Fmincon handles this.  

During the first test all constraints was added as non-linear constraints, which according to the 

MATLAB forum was not very efficient given that the constraints are not non-linear adding 

unnecessary computational load. The bounds were also added as non-linear constraints during 

the first tests. Later the amplitude constraints on the control signal was added as bounds which 

are treated as hard constraints by the Fmincon. The constraints on the measurements were 

added as inequality constraints. The constraint on the ∆𝑢 remained as non-linear constraints 

during the final testing as these are calculated and updated for each iteration in with the cost 

function.  

The results from the testing shown in section 4.7 shows that several problems related to how 

the Fmincon handles constraints causing “noisy” measurements if activated, particular when 

testing set point tracking. This is however not how the MPC problem will be set up as the cost 

function is based on minimizing the heat rate and not error minimization.  

The Fmincon balances the integer number from the cost function versus the output from the 

constraint function and will weigh the absolute value the highest if in conflict. The output from 

the cost function must therefore not be of an amplitude higher than the breach of the constraints 

will produce. The 𝐻𝑒𝑎𝑡 𝑟𝑎𝑡𝑒 which has a high absolute value where therefor scaled in the cost 

function and the weight is reduced compared the ∆𝑢 weight so that the control signals is 

carefully adjusted.  

One problem that appeared during some of the test was that the optimal, or minimal value of 

the 𝐻𝑒𝑎𝑡 𝑟𝑎𝑡𝑒, was found (local optimum) while the constraints still where broken. The 

Fmincon then aborted before trying to adjust the measurements within the constraints resulting 

in an escalating breach of the constraints. This problem arises during some of the testing but 

was not easy to reproduce afterwards.  

There are still needed more verification on how the Fmincon activates the constraints on the 

measurements as this seems to be an issue which could potentially cause problems. 

Also for the Fmincon there are long simulation times, and more effort needs to be added look 

into the different methods of reducing the computational load. Here grouping was briefly tested 

but caused problems. Using Lagrange multipliers could be used or QR factorization.  
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5.4 DMPC with Laguerre functions 

During the theory study for the project one of the theories that seem to be well documented 

was the DMPC with Laguerre function as explained by Wang [11]. The theory and approach 

were appealing, and an attempt was made to apply the concepts and theory of this approach to 

the problem at hand.  

A lot of time was spent trying to get the implementation to work with the state space model 

identified for this problem with measured disturbances. The unconstrained problem worked 

well and as a set point tracking it produced results which were promising.  

The implantation of constraint handling on the control output worked well but when adding 

constraint to the measurements some the results was not as expected. Numerous attempts with 

various setups with how to handle the constraints in combination with the control signal 

constraints was tested without success. The use of augmented state space model was primarily 

used but also variants without the augmented version was tested without getting around the 

MIMO case with multiple constraints on the outputs.  

The structure and theory are promising and with some more work it might work well, and for 

a simpler set point tracking without constraints on the measured outputs it would most likely 

work very well. It might be a good test to using on the cooling water control which currently 

is using a standard PID controller with set point biasing to handle measured disturbances and 

gain scheduling.   

5.5 Future work 

Based on the findings so far there is still a lot of work that needs to be done to find a working 

version of the MPC. It is suggested to look into other industrial implementations of the MPC 

controller other than the Fmincon and possibly the CasADi might be a way forward. This 

already proved well in various industrial applications [16] for MIMO systems and using 

multiple shooting.  

The testing on lab engines do get more dynamic data is however first on the list of next steps 

to be performed. This is expected to be done in the near future and will give rise to a better 

model which can be tested on the implantation already at hand.  

The development of alternative fuels for the Bergen B36:45 is already ongoing where MPC is 

expected to play a vital role when implementing Hydrogen mixing into the LNG during 

operation such as to optimize the mixing process. 

A step in between might be to test a simpler structure as for example to replace our current 

cooling water temperature PID controller with an MPC controller. The PID controller used 

today could be optimized to some extent by adding future control moves based on already 

known measure disturbances. Today this is a simple feedback loop which do not utilize this 

information and has a poor set point scheduling algorithm to handle known disturbances. This 

could be a good proof of concept for an easier set point tracking function implementation in 

our current controller where the computational effort is far less as there will not be any 

constraints on several measured outputs. The implementation in the SIMULINK code already 

utilized by Bergen is still an open topic and hence this test could help in discovering any 

limitations in the software structure as well as the resources on the hardware platform. 
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6 Conclusion 
The project has proven to be more challenging than expected when it first was defined in 

cooperation with Bergen Engines. The model on which the MPC is based does not contain all 

the dynamics one would have liked and the extended testing that was planned but not done due 

to the delays in the production line has affected the work to some degree. The lack of access to 

the factory and the resources during the ongoing pandemic has limited the progress to some 

extent but the access to data has still be good.  

During the earlier phases of the project the contact person at Bergen Engines, who defined the 

problem in the first place, also left the company. The results of this was the loss of a highly 

competent person to discuss the results and step further with. The discussions during the project 

has therefor relied on the weekly meetings with the supervisor. Without those this project 

would have become even more challenging and progress would have been far less.  

Some results are found and numerous of hours has been spent in testing and simulations. This 

is a time-consuming task and has at times caused a lot frustration when it fails after several 

hours of testing.  

The project was first thought to be completed with an implementation in Simulink the 

environment of which the engine controller resides and finally with testing on a real engine. 

The current status is that we are not there yet and substantial more exploration of alternative 

implementations are needed as discussed in section 5.5.  

The learning curve has been steep due limited prior knowledge in the field of model predictive 

control. Even though the field of MPC is not new it is still very much still being developed as 

more powerful computers and controllers can handle more complex and large optimization 

problems. The optimization theory subject is large, and one is not expected to learn it all during 

such a project. Future study is required before the theory can be put into practise. The CasADi 

framework looks promising will be studied further so see if there is a fit with the future projects 

at Bergen Engines.  

Based on the testing done so far it is the Fmincon which has the most promising results as it is 

able to minimize the heat rate with a wide range of 𝐼𝑀𝐸𝑃 input values, ranging from low values 

of 4-5 bar and up to full power output at around 21-22 bar. Testing on the qpOASES and 

Quadprog is not likely to be continued in the near future, while the DMPC with Laguerre 

functions is definitely on the list for testing on the cooling water set point tracking MPC.  

It is clear that the MPC currently being looked at are a computational demanding task and with 

the Fmincon implementation there are still open issues regarding the feasibility of being 

implemented on the current hardware structure.  
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Appendix A 
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Appendix B 

DMPC.mlx code 
This function is based on the code given by Liuping Wang in the book Model Predictive control 

system design and implementation using MATLAB. 

Svein Roar Kvåle, USN, 2021 

This function will calculate the Omega and Psi variables given the state matrix, input matrix and 

the Laguerre functions. This function will handle the MIMO case 

 

The inputs to the function are: 

•  – State matrix – extended if augmented state space is used 

•  – Input matrix – externed if augmented state space is used 

•  – vector of Laguerre pole location for each input 

•  – The number of terms in the Laguerre function for each input 

•  – Prediction horizon 

•  – Weighting matrix for the states 

• – Weighting matrix for the inputs 

The outputs are: 

•  –  

•  –  

function [Omega,Psi] = dmpc(A_e,B_e,a,N,Np,Q,R) 

First we get in the number of inputs control signals based on the size of the  matrix 

[n,n_in] = size(B_e); 

Then we find the dimension of  and set up the sizes of the ,  and  

N_pa = sum(N); 

Omega = zeros(N_pa,N_pa); 

Psi = zeros(N_pa,n); 

R_para = zeros(N_pa,N_pa); 

Now take the number of terms for each input in and put the weights from the  input matrix on 

the diagonal for each term 
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n0=1; 

ne=N(1); 

 

for i=1:n_in-1 

    R_para(n0:ne,n0:ne)=R(i,i)*eye(N(i),N(i)); 

    n0 = n0+N(i); 

    ne=ne+N(i+1); 

end 

 

R_para(n0:N_pa,n0:N_pa) = R(n_in,n_in)*eye(N(n_in),N(n_in)); 

Initialise the convolution sum and calculate the case for  

 

With  

Here the lagd.m function is used to calculate the initial condition  and the state space matrix 

 

 and  

S_in = zeros(n,N_pa); 

[Al,L0] = lagd(a(1),N(1)); 

S_in(:,1:N(1)) = B_e(:,1)*L0'; 

 

In_s = 1; 

for jj=2:n_in 

    [Al,L0] = lagd(a(jj),N(jj)); 

    In_s = N(jj-1)+In_s; 

    In_e = In_s+N(jj)-1; 

    S_in(:,In_s:In_e) = B_e(:,jj)*L0'; 

end 

 

S_sum = S_in; 

phi = S_in; 

Omega = (phi)'*Q*(phi); 

Psi = phi'*Q*A_e; 

 

In the section below we iterate through the prediction horizon  for each of the inputs 

For each iteration of the prediction horizon we calculate the  and  
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for i=2:Np 

    Eae=A_e^i; 

     

    [Al,L0] = lagd(a(1),N(1));     

    S_sum(:,1:N(1)) = A_e*S_sum(:,1:N(1))+S_in(:,1:N(1))*(Al^(i-1))'; 

    In_s = 1; 

    for kk=2:n_in 

        [Al,L0] = lagd(a(kk),N(kk)); 

        In_s = N(kk-1)+In_s; 

        In_e = In_s+N(kk)-1; 

        S_sum(:,In_s:In_e) = A_e*S_sum(:,In_s:In_e) + ... 

            S_in(:,In_s:In_e)*(Al^(i-1))'; 

    end 

    phi = S_sum; 

    Omega=Omega+phi'*Q*phi; 

    Psi=Psi+phi'*Q*Eae; 

end 

Omega = Omega+R_para;   

end 
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Appendix C 

lagd.mlx 
This function will return the initial condition of the Laguerre function  and the state space 

system matrix  

, where    

function [A,L0] = lagd(a,N) 

v(1,1) = a; 

L0(1,1) = 1; 

 

for k = 2:N 

    v(k,1) = (-a).^(k-2)*(1-a*a); 

    L0(k,1) = (-a).^(k-1); 

end 

L0=sqrt((1-a*a))*L0; 

A(:,1)=v; 

 

for i = 2:N 

    A(:,i) = [zeros(i-1,1);v(1:N-i+1,1)]; 

end 

 

end 
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Appendix D 

Mdu.mlx 
This function will limit the difference constraint of the control signals 

 

 

This funciton generates the maxtrix M. 

 

 denotes future time instants to which the constraint is imposed on 

     

 

We remember that  

, where   

and that 

 

function [M,Lzerot] = Mdu(a,N,n_in,Nc) 

 

%Lzerot is used for creating the control signal 

 

N_pa=sum(N); 

M=zeros(n_in,N_pa); 

 

M_du1=zeros(n_in,N_pa); 
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k0=1; 

[Al,L0] = lagd(a(k0),N(k0)); 

 

M_du1(1,1:N(1))=L0'; 

cc=N(1); 

 

for k0=2:n_in 

    [Al,L0] = lagd(a(k0),N(k0)); 

    M_du1(k0,cc+1:cc+N(k0))=L0'; 

    cc=cc+N(k0); 

end 

Lzerot=M_du1; 

M=M_du1; 

 

for kk=2:Nc 

    k0=1; 

    [Al,L0] = lagd(a(k0),N(k0)); 

    L=Al^(kk-1)*L0; 

    M_du1(1,1:N(1))=L'; 

    cc=N(1); 

    for k0=2:n_in 

        [Al,L0] = lagd(a(k0),N(k0)); 

        L=Al^(kk-1)*L0; 

        M_du1(k0,cc+1:cc+N(k0))=L'; 

        cc=cc+N(k0); 

    end 

    M=[M;M_du1]; 

end 

 

end 
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Appendix E 

Mu.mlx 
This function will limit the amplitude constraint of the control signals 

This function generates the matrix M 

 

 

    is a vector of past u values 

function M = Mu(a,N,n_in,Nc) 

 

%a = Languerre scaling factor 

%N = Number of Languerre coeficients 

%n_in = Number of inputs 

%Nc = Number of future samples to impose4 constraints on 

 

N_pa=sum(N); 

M=zeros(n_in,N_pa); 

 

 

M_du1=zeros(n_in,N_pa); 

k0=1; 

[A1,L0]=lagd(a(k0),N(k0)); 

M_du1(1,1:N(1))=L0'; 

 

cc=N(1); 

 

for k0=2:n_in 

    [A1,L0] = lagd(a(k0),N(k0)); 

    M_du1(k0,cc+1:cc+N(k0))=L0'; 

    cc=cc+N(k0); 

end 
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M = M_du1; 

Ms = M_du1; 

 

for kk=2:Nc 

    k0=1; 

    [A1,L0] = lagd(a(k0),N(k0)); 

    L = A1^(kk-1)*L0; 

    M_du1(1,1:N(1))=L'; 

    cc=N(1); 

     

    for k0=2:n_in 

        [A1,L0] = lagd(a(k0),N(k0));   

        L = A1^(kk-1)*L0; 

        M_du1(k0,cc+1:cc+N(k0))=L'; 

        cc=cc+N(k0); 

    end 

    Ms = Ms+M_du1; 

    M=[M;Ms]; 

end 

end 
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Appendix F 

QP_formulation_SPTracking2.mlx 
This code presented below gives the qpOASES QP formulation for set point tracking.  

function [H,c, Ae,zL,zU,be]  = QP_formulation_SPTracking2(dx0, ud, dr, 

u_prev, A, B, Bd, C1) 

 

%============== 

%Svein Roar Kvåle 

%USN - spring 2021 

%Set point tracking -> using qpOASES 

 

N=20;       %Prediction horizon 

nx = 25;    %number of states 

nu = 2;     %number of controlable outputs 

nd = 3;     %number of known disturbances 

ny = 1;     %feedback signal for setpoint tracking 

 

%number of decision variables 

nz = N * (nu+nx+ny+ny+nu); 

 

dr = (ones(1,N).*dr(1));  %Keep set point fixed throught the prediction 

horizon 

 

Q=diag(0.8); %error weighting matrix for set point tracking 

P=diag([0.01, 0.01]); %Weighting matrix for control signals 

S=diag([0.1, 0.1]);%Weighting matrix for delta u 

 

H11 = kron(eye(N),P);   %Inputs 

H22 = zeros(N*nx,N*nx); %states 

H33 = kron(eye(N),Q);   %error 

H44 = zeros(N*ny,N*ny); %Output 

H55 = kron(eye(N),S);   %Delta u 

 

H_mat = blkdiag(H11,H22,H33,H44,H55); 

H = H_mat(:); 

 

c = zeros(nz,1); 

 

%=============== 

%Equality constratints 

 

%Xk+1 = A*Xk + B*Uk + Bd*Udk 

Ae1u = -kron(eye(N),B); 

Ae1x = eye(N*nx)-kron(diag(ones(N-abs(-1),1),-1),A); 
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Ae1e = zeros(N*nx,N*ny); 

Ae1y = zeros(N*nx,N*ny); 

Ae1du = zeros(N*nx,N*nu); 

be1 = [A*dx0 + Bd*ud; kron(ones(N-1,1),Bd*ud)]; 

 

%Y measured signal used for set point tracking 

%Yk = C1*Xk 

Ae2u = zeros(N*ny,N*nu); 

Ae2x = -kron(eye(N),C1); 

Ae2e = zeros(N*ny, N*ny); 

Ae2y = eye(N*ny,N*ny); 

Ae2du = zeros(N*ny,N*nu); 

be2 = zeros(N*ny,1); 

 

%Error signal used fot set point tracking 

%Ek = Rk-Yk 

Ae4u = zeros(N*ny, N*nu); 

Ae4x = zeros(N*ny,N*nx); 

Ae4e = eye(N*ny); 

Ae4y = eye(N*ny,N*ny); 

Ae4du = zeros(N*ny,N*nu); 

be4 = reshape(dr,N*ny,1); 

 

%Delta u on control signals -  

%Used to limit rate of change of control outputs 

%dUk = Uk-Uk-1 

Ae5u = -eye(N*nu)+kron(diag(ones(N-abs(-1),1),-1),eye(nu)); 

Ae5x = zeros(N*nu,N*nx); 

Ae5e = zeros(N*nu,N*ny); 

Ae5y = zeros(N*nu,N*ny); 

Ae5du = eye(N*nu); 

be5 = [-u_prev;zeros((N-1)*nu,1)]; 

 

Ae_mat = [Ae1u, Ae1x, Ae1e, Ae1y, Ae1du;... 

          Ae2u, Ae2x, Ae2e, Ae2y, Ae2du;...           

          Ae4u, Ae4x, Ae4e, Ae4y, Ae4du;... 

          Ae5u, Ae5x, Ae5e, Ae5y, Ae5du]; 

Ae = Ae_mat(:); 

be = [be1;be2;be4;be5]; 

 

%=================== 

%Bounds 

 

%Charge air pressure = 0-4.5barg 

%Global timing = -20 - -8.5degCA 

uMin =  [ones(1,N).*0;...            %10CA control output minimum value 

        ones(1,N).*-20];            %Global timing minimum value (degCA 

before TDC) 
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%Delta charge air pressure = -0,1 - 0,1 barg/s 

%Delta global timing = -0,1 - 0,1 degCA/s         

deltaUMin =     [ones(1,N).*-0.02;...    %10CA set point minimum rate of 

change 

                ones(1,N).*-0.03];       %Global timing minimum rate of 

change 

            

             

zL =    [reshape(uMin,N*nu,1);...                   %[u] 

        -Inf*ones(N*(nx+ny+ny),1);...               %[x + e + y] 

        reshape(deltaUMin,N*nu,1)];                 %[u] 

         

 

%Charge air pressure = 0-4.5barg 

%Global timing = -20 - -8.5degCA 

uMax =  [ones(1,N).*4.5;...            %10Ca control output max value 

        ones(1,N).*-8.5];              %Global timing maximum value 

  

%Delta charge air pressure = -0,1 - 0,1 barg/s 

%Delta global timing = -0,1 - 0,1 degCA/s      

deltaUMax =     [ones(1,N).*0.02;... %10CA set point maximum rate of change 

                ones(1,N).*0.05];    %Global timing maximum rate of change 

             

zU =    [reshape(uMax,N*nu,1);... 

        Inf*ones(N*(nx+ny+ny),1);...         

        reshape(deltaUMax,N*nu,1)]; 
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Appendix G 

SetPointTracking_SS1_Quadprog_1.mlx 
The code presented below is the Quadprog code used during the initial testing phase. 

 

Set point tracking with Quadprog 

Svein Roar Kvåle 

Master thesis spring 2021 @ USN 

Table of Contents 

Load in simulation data 

clear; 

load ss1.mat 

load TrainingMean20200903Red.mat 

Set up initial values by reading in data from real life training data 

Find the initial states by using the "findstates" function. Then run the model for 30 samples with 

the real-life data to get updated initial states. Use this initial states further and use the next real-

life controllable inputs and measured disturbances as initial values for the testing next 

u_ini_s = TrainingMean20200903Red.InputData(201,:)'; 

 

X0 = 

findstates(ss1,iddata(TrainingMean20200903Red.OutputData(140:170,1:6),Trainin

gMean20200903Red.InputData(140:170,1:5),TrainingMean20200903Red.Ts)); 

 

for jj=1:30 

    u_ini_s = TrainingMean20200903Red.InputData(170+jj,:)';     

    X_n = ss1.A*X0 + ss1.B*u_ini_s;  

    X0 = X_n; 

end 

  

u1 = TrainingMean20200903Red.InputData(201,1) %SuctionAirTemp 

u2 = TrainingMean20200903Red.InputData(201,2) %IMEP 

u3 = TrainingMean20200903Red.InputData(201,3) %ChargeAirPressure 

u4 = TrainingMean20200903Red.InputData(201,4) %ChargeAirTemperature 

u5 = TrainingMean20200903Red.InputData(201,5) %GlobalTiming 

 

%Receive u_previsous measurements 

u_k_prev(1) = TrainingMean20200903Red.InputData(200,3); 

u_k_prev(2) = TrainingMean20200903Red.InputData(200,5); 
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%State matrix 

A = ss1.A; 

 

%Controllable inputs B matrix 

B(:,1) = ss1.B(:,3); 

B(:,2) = ss1.B(:,5); 

 

%Measured input disturbance Bd Matrix 

Bd(:,1) = ss1.B(:,1); 

Bd(:,2) = ss1.B(:,2); 

Bd(:,3) = ss1.B(:,4); 

 

C1 = ss1.C(1,:); 

C2 = ss1.C(2:end,:); 

D = ss1.D; 

 

Sim = 500; 

Set up system for simulation 

This part sets up the constants prior to running the actual simulation 

N=100;       %Prediction horizon 

[nx,~] = size(A);    %number of states 

[~,nu] = size(B);     %number of controlable outputs 

[~,nd] = size(Bd);     %number of known disturbances 

[ny,~] = size(C1);     %feedback signal for setpoint tracking 

 

%number of decision variables 

nz = N * (nu+nx+ny+ny+nu); 

dr = (ones(1,N).*10000);  %Keep set point fixed throught the prediction 

horizon 

 

%Set up disturbances 

ud = [u1;u2;u4]; 

 

Q=diag(0.8); %error weighting matrix for set point tracking 

P=diag([0.01, 0.01]); %Weighting matrix for control signals 

S=diag([0.1, 0.1]);%Weighting matrix for delta u 

 

H11 = kron(eye(N),P);   %Inputs 

H22 = zeros(N*nx,N*nx); %states 

H33 = kron(eye(N),Q);   %error 

H44 = zeros(N*ny,N*ny); %Output 

H55 = kron(eye(N),S);   %Delta u 

 

H = blkdiag(H11,H22,H33,H44,H55); 
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%Set up of linear term 

c = zeros(nz,1); 

 

%=================== 

%Bounds 

 

%Charge air pressure = 0-4.5barg 

%Global timing = -20 - -8.5degCA 

uMin =  [ones(1,N).*0; ...            %10CA control output minimum value 

        ones(1,N).*-20];            %Global timing minimum value (degCA 

before TDC) 

 

 

%Delta charge air pressure = -0,1 - 0,1 barg/s 

%Delta global timing = -0,1 - 0,1 degCA/s         

deltaUMin =     [ones(1,N).*-10.02;...    %10CA set point minimum rate of 

change 

                ones(1,N).*-10.03];       %Global timing minimum rate of 

change 

            

             

zL =    [reshape(uMin,N*nu,1);...                   %[u] 

        -Inf*ones(N*(nx+ny+ny),1);...               %[x + e + y] 

        reshape(deltaUMin,N*nu,1)];                 %[u] 

         

 

%Charge air pressure = 0-4.5barg 

%Global timing = -20 - -8.5degCA 

uMax =  [ones(1,N).*4.5;...            %10Ca control output max value 

        ones(1,N).*-8.5];              %Global timing maximum value 

  

%Delta charge air pressure = -0,1 - 0,1 barg/s 

%Delta global timing = -0,1 - 0,1 degCA/s      

deltaUMax =     [ones(1,N).*10.02;... %10CA set point maximum rate of change 

                ones(1,N).*10.05];    %Global timing maximum rate of change 

             

zU =    [reshape(uMax,N*nu,1);... 

        Inf*ones(N*(nx+ny+ny),1);...         

        reshape(deltaUMax,N*nu,1)]; 

Simulation 

Run the simulation for the defined time and prediction horizon 

for i=1:Sim  

%Stat vector update 

dx0 = X0; 
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%Transpose the  

u_prev = u_k_prev'; 

 

%=============== 

%Equality constratints 

 

%Xk+1 = A*Xk + B*Uk + Bd*Udk 

Ae1u = -kron(eye(N),B); 

Ae1x = eye(N*nx)-kron(diag(ones(N-abs(-1),1),-1),A); 

Ae1e = zeros(N*nx,N*ny); 

Ae1y = zeros(N*nx,N*ny); 

Ae1du = zeros(N*nx,N*nu); 

be1 = [A*dx0 + Bd*ud; kron(ones(N-1,1),Bd*ud)]; 

 

%Y measured signal used for set point tracking 

%Yk = C1*Xk 

Ae2u = zeros(N*ny,N*nu); 

Ae2x = -kron(eye(N),C1); 

Ae2e = zeros(N*ny, N*ny); 

Ae2y = eye(N*ny,N*ny); 

Ae2du = zeros(N*ny,N*nu); 

be2 = zeros(N*ny,1); 

 

%Error signal used fot set point tracking 

%Ek = Rk-Yk 

Ae4u = zeros(N*ny, N*nu); 

Ae4x = zeros(N*ny,N*nx); 

Ae4e = eye(N*ny); 

Ae4y = eye(N*ny,N*ny); 

Ae4du = zeros(N*ny,N*nu); 

be4 = reshape(dr,N*ny,1); 

 

%Delta u on control signals -  

%Used to limit rate of change of control outputs 

%dUk = Uk-Uk-1 

Ae5u = -eye(N*nu)+kron(diag(ones(N-abs(-1),1),-1),eye(nu)); 

Ae5x = zeros(N*nu,N*nx); 

Ae5e = zeros(N*nu,N*ny); 

Ae5y = zeros(N*nu,N*ny); 

Ae5du = eye(N*nu); 

be5 = [-u_prev;zeros((N-1)*nu,1)]; 

 

Ae = [Ae1u, Ae1x, Ae1e, Ae1y, Ae1du;... 

          Ae2u, Ae2x, Ae2e, Ae2y, Ae2du;...           

          Ae4u, Ae4x, Ae4e, Ae4y, Ae4du;... 

          Ae5u, Ae5x, Ae5e, Ae5y, Ae5du]; 

 

be = [be1;be2;be4;be5]; 
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f = []; 

Aq = []; 

b = []; 

x0 = dx0; 

Aeq = Ae; 

beq = be; 

lb = zL; 

ub = zU; 

 

%Call the optimiser quadprog 

x_opt = quadprog(H,f,Aq,b,Aeq,beq,lb,ub,x0); 

 

%Retrieve the two firt control moves 

du_opt = x_opt(1:2); 

 

%Update the state variable 

X0 = A*dx0+B*du_opt+Bd*ud; 

 

%Store the outputs from the plant model 

Y(i,:) = ss1.C*dx0; 

 

%Store the control moves 

U(i,:) = du_opt'; 

 

%Update previsous control moves to the latest 

u_k_prev = du_opt'; 

 

end    

Plot function 

fig_1 = figure("Name",'Control variables'); 

x = linspace(1,Sim/10,Sim); 

y1 = U(:,1); 

y2 = U(:,2); 

tiledlayout(2,1); 

 

ax1 = nexttile; 

plot(ax1,x,y1); 

title(ax1,'Charge air pressure'); 

ylabel(ax1,'barg'); 

xlabel('Simulation time [s]') 

 

ax2 = nexttile; 

plot(ax2,x,y2); 

title(ax2,'Global timing'); 
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ylabel(ax2,"degCA"); 

xlabel('Simulation time [s]') 

The figure below shows the model outputs over the simulation time 

fig_1 = figure("Name",'Measurements'); 

y1 = Y(:,1); 

y2 = Y(:,2); 

y3 = Y(:,3); 

y4 = Y(:,4); 

y5 = Y(:,5); 

y6 = Y(:,6); 

y7 = Y(:,1); 

 

t = tiledlayout(3,1,'TileSpacing',"normal"); 

title(t,'Measurements') 

ref = dr(1,1)*ones(Sim,1); 

ax1 = nexttile; 

plot(ax1,x,y1,x,ref); 

title(ax1,'Heat rate'); 

ylabel(ax1,'-'); 

xlabel('Simulation time [s]') 

 

ax2 = nexttile; 

plot(ax2,x,y2); 

title(ax2,'Knock'); 

ylabel(ax2,'%'); 

xlabel('Simulation time [s]') 

 

ax3 = nexttile; 

plot(ax3,x,y3); 

title(ax3,'Peak pressure'); 

ylabel(ax3,'bar'); 

xlabel('Simulation time [s]') 

 

fig_1 = figure("Name",'Measurements'); 

tt = tiledlayout(3,1,'TileSpacing',"normal"); 

ax4 = nexttile; 

plot(ax4,x,y4); 

title(ax4,'NOx'); 

ylabel(ax4,'ppm'); 

xlabel('Simulation time [s]') 

 

ax5 = nexttile; 

plot(ax5,x,y5); 

title(ax5,'O2'); 

ylabel(ax5,'%'); 

xlabel('Simulation time [s]') 
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ax6 = nexttile; 

plot(ax6,x,y6); 

title(ax6,'Exhaust temperature'); 

ylabel(ax6,'degC'); 

xlabel('Simulation time [s]') 

fig_1 = figure("Name",'Measurements'); 

y1 = Y(:,1); 

t = tiledlayout(1,1,'TileSpacing',"normal"); 

title(t,'Measurements') 

 

ax1 = nexttile; 

plot(ax1,x,y1,x,ref); 

title(ax1,'Heat rate'); 

ylabel(ax1,'-'); 

xlabel('Simulation time [s]') 
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Appendix H 

 

OpenLoopTesting.mlx 
Svein Roar Kvåle 

Master thesis spring 2021 @ USN 

This file contains the testing done on the open loop of the state space model. 

Load in simulation data 

clear; 

load ss1.mat 

load TrainingMean20200903Red.mat 

Set up initial values by reading in data from real life training data 

Find the initial states by using the "findstates" function. Then run the model for 30 samples with 

the real life data to get updated initial states. Use this initial states further and use the next real 

life controllable inputs and measured disturnances as initial values for the testing next 

u1 = TrainingMean20200903Red.InputData(201,1); %SuctionAirTemp 

u2 = TrainingMean20200903Red.InputData(201,2); %IMEP 

u3 = TrainingMean20200903Red.InputData(201,3); %ChargeAirPressure 

u4 = TrainingMean20200903Red.InputData(201,4); %ChargeAirTemperature 

u5 = TrainingMean20200903Red.InputData(201,5); %GlobalTiming 

 

u_ini = [u1;u2;u3;u4;u5]; 

 

X0 = 

findstates(ss1,iddata(TrainingMean20200903Red.OutputData(140:170,1:6),Trainin

gMean20200903Red.InputData(140:170,1:5),0.1)); 

 

for jj=1:30 

    u1 = TrainingMean20200903Red.InputData(170+jj,1); %SuctionAirTemp 

    u2 = TrainingMean20200903Red.InputData(170+jj,2); %IMEP 

    u3 = TrainingMean20200903Red.InputData(170+jj,3); %ChargeAirPressure 

    u4 = TrainingMean20200903Red.InputData(170+jj,4); %ChargeAirTemperature 

    u5 = TrainingMean20200903Red.InputData(170+jj,5); %GlobalTiming 

     

    u_ini = [u1;u2;u3;u4;u5]; 

     

    X_n = ss1.A*X0 + ss1.B*u_ini;  

    X0 = X_n; 

end 
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u1 = TrainingMean20200903Red.InputData(201,1) %SuctionAirTemp 

u2 = TrainingMean20200903Red.InputData(201,2) %IMEP 

u3 = TrainingMean20200903Red.InputData(201,3) %ChargeAirPressure 

u4 = TrainingMean20200903Red.InputData(201,4) %ChargeAirTemperature 

u5 = TrainingMean20200903Red.InputData(201,5) %GlobalTiming 

 

u_ini = [u1;u2;u3;u4;u5];     

 

Simulate with fixed values 

The following results is found by not changing the controlable values nor the disturbances but 

keeping them constant based on the initial conditions  

Sim = 15000; 

Py = zeros(Sim,6); 

Pu = zeros(Sim,5); 

xm = X0; 

u = u_ini; 

for i=1:Sim 

    X_next = ss1.A*xm + ss1.B*u;     

    y = ss1.C*xm; 

     

    Pu(i,:) = u(:); 

    Py(i,:) = y(:); 

     

    xm = X_next; 

end 

 

Plotting(Pu,Py,Sim) 

Set state values to steady state 

Run model such that it is in steady state before changes to controlable inputs 

Sim = 500; 

xm = X0; 

u = u_ini; 

for i=1:Sim 

    X_next = ss1.A*xm + ss1.B*u;     

    y = ss1.C*xm;  

      

    xm = X_next; 

end 

 

X0 = xm; 
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Simulate with positive step change on charge air pressure 

The following shows the resultant output of the model based on a step change on the charge air 

pressure controlable input 

Sim = 15000; 

Step = 0.5 

InitialValue = u(3,1) 

StepTime = Sim/2 

Py = zeros(Sim,6); 

Pu = zeros(Sim,5); 

xm = X0; 

u = u_ini; 

for i=1:Sim 

    X_next = ss1.A*xm + ss1.B*u; 

    y = ss1.C*xm; 

     

    Pu(i,:) = u(:); 

    Py(i,:) = y(:); 

     

    xm = X_next; 

     

    if i==(StepTime) 

        u(3,1) = u(3,1)+Step; 

    end 

     

end 

 

Plotting(Pu,Py,Sim) 

Simulation with negative step change on charge air pressure 

Sim = 15000; 

Step = 0.5 

InitialValue = u(3,1) 

StepTime = Sim/2 

Py = zeros(Sim,6); 

Pu = zeros(Sim,5); 

xm = X0; 

u = u_ini; 

for i=1:Sim 

    X_next = ss1.A*xm + ss1.B*u; 

    y = ss1.C*xm; 

     

    Pu(i,:) = u(:); 

    Py(i,:) = y(:); 
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    xm = X_next; 

     

    if i==(StepTime) 

        u(3,1) = u(3,1)-Step; 

    end 

     

end 

 

Plotting(Pu,Py,Sim) 

Simulation with negative step change on ignition timing 

Sim = 15000; 

Step = 1.5 

InitialValue = u(5,1) 

StepTime = Sim/2 

Py = zeros(Sim,6); 

Pu = zeros(Sim,5); 

xm = X0; 

u = u_ini; 

for i=1:Sim 

    X_next = ss1.A*xm + ss1.B*u; 

    y = ss1.C*xm; 

     

    Pu(i,:) = u(:); 

    Py(i,:) = y(:); 

     

    xm = X_next; 

     

    if i==(StepTime/2) 

        u(5,1) = u(5,1)-Step; 

    end 

     

end 

 

Plotting(Pu,Py,Sim) 

Simulation with negative step change on ignition timing 

Sim = 15000; 

Step = 1.5 

InitialValue = u(5,1) 

StepTime = 2500 

Py = zeros(Sim,6); 

Pu = zeros(Sim,5); 

xm = X0; 

u = u_ini; 
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for i=1:Sim 

    X_next = ss1.A*xm + ss1.B*u; 

    y = ss1.C*xm; 

     

    Pu(i,:) = u(:); 

    Py(i,:) = y(:); 

     

    xm = X_next; 

     

    if i==(StepTime) 

        u(5,1) = u(5,1)+Step; 

    end 

     

end 

 

Plotting(Pu,Py,Sim) 

Simulation with gradually increase on charger air pressure - 
up 2,5 barg 
Sim = 15000; 

Rate = 0.001; 

RatePrSec = 0.001/10 %pr second 

InitialValue = u(5,1) 

ChangeStartTime = 2500 

Py = zeros(Sim,6); 

Pu = zeros(Sim,5); 

xm = X0; 

u = u_ini; 

 

for i=1:Sim 

    X_next = ss1.A*xm + ss1.B*u; 

    y = ss1.C*xm; 

     

    Pu(i,:) = u(:); 

    Py(i,:) = y(:); 

     

    xm = X_next; 

     

    %After stable time - increase with 0,01barg pr 100ms until 2,5 barg 

    %increase is reached 

    if i>(ChangeStartTime) 

        if u(3,1) < (u_ini(3,1) + 2.5) 

            u(3,1) = u(3,1)+Rate; 

        end 

         

    end 
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end 

 

Plotting(Pu,Py,Sim) 

 

Simulation with gradually decrease on charger air pressure - 
down to 0,0 barg 
Sim = 15000; 

Py = zeros(Sim,6); 

Pu = zeros(Sim,5); 

xm = X0; 

u = u_ini; 

for i=1:Sim 

    X_next = ss1.A*xm + ss1.B*u; 

    y = ss1.C*xm; 

     

    Pu(i,:) = u(:); 

    Py(i,:) = y(:); 

     

    xm = X_next; 

     

    %After stable time - increase with 0,01barg pr 100ms until 2,5 barg 

    %increase is reached 

    if i>(2500) 

        if u(3,1) > 0 

            u(3,1) = u(3,1)-0.001; 

        end 

         

    end 

     

end 

 

Plotting(Pu,Py,Sim) 

Simulation with gradually increase on global timing - down to -
18degCA 
Sim = 15000; 

Py = zeros(Sim,6); 

Pu = zeros(Sim,5); 

xm = X0; 

u = u_ini; 

for i=1:Sim 

    X_next = ss1.A*xm + ss1.B*u; 
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    y = ss1.C*xm; 

     

    Pu(i,:) = u(:); 

    Py(i,:) = y(:); 

     

    xm = X_next; 

     

    %After stable time - increase with 0,01degCA pr 100ms until -18degCA 

    %increase is reached 

    if i>(2500) 

        if u(5,1) > -18 

            u(5,1) = u(5,1)-0.01; 

        end         

    end     

end 

 

Plotting(Pu,Py,Sim) 

Simulation with gradually decrease on global timing - up to -
8degCA 
Sim = 15000; 

Py = zeros(Sim,6); 

Pu = zeros(Sim,5); 

xm = X0; 

u = u_ini; 

for i=1:Sim 

    X_next = ss1.A*xm + ss1.B*u; 

    y = ss1.C*xm; 

     

    Pu(i,:) = u(:); 

    Py(i,:) = y(:); 

     

    xm = X_next; 

     

    %After stable time - increase with 0,01degCA pr 100ms until -8degCA 

    %increase is reached 

    if i>(2500) 

        if u(5,1) < -8 

            u(5,1) = u(5,1)+0.01; 

        end         

    end     

end 

 

Plotting(Pu,Py,Sim) 
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Plot function 

function  [] = Plotting(Pu,Py,Sim) 

fig_1 = figure("Name",'Control variables'); 

x = linspace(1,Sim/10,Sim); 

y1 = (Pu(:,3)); 

y2 = (Pu(:,5)); 

tiledlayout(2,1); 

 

ax1 = nexttile; 

plot(ax1,x,y1); 

title(ax1,'Charge air pressure'); 

ylabel(ax1,'barg'); 

xlabel('Simulation time [s]') 

 

ax2 = nexttile; 

plot(ax2,x,y2); 

title(ax2,'Global timing'); 

ylabel(ax2,"degCA"); 

xlabel('Simulation time [s]') 

 

The figure below shows the disturbances over the simulation time 

fig_2 = figure("Name",'Disturbances'); 

x = linspace(1,Sim/10,Sim); 

y1 = (Pu(:,1)); 

y2 = (Pu(:,2)); 

y3 = (Pu(:,4)); 

tiledlayout(3,1); 

 

ax1 = nexttile; 

plot(ax1,x,y1); 

title(ax1,'Suction air temperature'); 

ylabel(ax1,'degC'); 

xlabel('Simulation time [s]') 

 

ax2 = nexttile; 

plot(ax2,x,y2); 

title(ax2,'IMEP'); 

ylabel(ax2,"bar"); 

xlabel('Simulation time [s]') 

 

ax3 = nexttile; 

plot(ax3,x,y3); 

title(ax3,'Charge air temperature'); 

ylabel(ax3,"degC"); 
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xlabel('Simulation time [s]') 

The figure below shows the model outputs over the simulation time 

fig_1 = figure("Name",'Measurements'); 

x = linspace(1,Sim/10,Sim); 

y1 = (Py(:,1)); 

y2 = (Py(:,2)); 

y3 = (Py(:,3)); 

y4 = (Py(:,4)); 

y5 = (Py(:,5)); 

y6 = (Py(:,6)); 

t = tiledlayout(3,1,'TileSpacing',"normal"); 

title(t,'Measurements') 

 

ax1 = nexttile; 

plot(ax1,x,y1); 

title(ax1,'Heat rate'); 

ylabel(ax1,'-'); 

xlabel('Simulation time [s]') 

 

ax2 = nexttile; 

plot(ax2,x,y2); 

title(ax2,'Knock'); 

ylabel(ax2,'%'); 

xlabel('Simulation time [s]') 

 

ax3 = nexttile; 

plot(ax3,x,y3); 

title(ax3,'Peak pressure'); 

ylabel(ax3,'bar'); 

xlabel('Simulation time [s]') 

 

fig_1 = figure("Name",'Measurements'); 

tt = tiledlayout(3,1,'TileSpacing',"normal"); 

ax4 = nexttile; 

plot(ax4,x,y4); 

title(ax4,'NOx'); 

ylabel(ax4,'ppm'); 

xlabel('Simulation time [s]') 

 

ax5 = nexttile; 

plot(ax5,x,y5); 

title(ax5,'O2'); 

ylabel(ax5,'%'); 

xlabel('Simulation time [s]') 

 

ax6 = nexttile; 
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plot(ax6,x,y6); 

title(ax6,'Exhaust temperature'); 

ylabel(ax6,'degC'); 

xlabel('Simulation time [s]') 

end 

  



 

 

   

201 

Appendix I 

Minimise_HeatRate_SS1_OutputConstraint.mlx 
Svein Roar Kvåle 

Master thesis spring 2021 @ USN 

Software structure is based on the lecture notes in IIA 4117 [6] – Model predictive control - 2019 

This program will try to minimize the heat rate with bounds on control inputs and constraints on 

the measured outputs 

Disturbance is changed at various test 

Various modifications to the set point and the disturbances is added while constraints are active 

on the control input and the measured outputs. 

Load in simulation data and model 

clear; 

load ss1.mat 

load TrainingMean20200903Red.mat 

Set up initial values by reading in data from real life training data 

Find the initial states by using the "findstates" function. Then run the model for 30 samples with 

the real-life data to get updated initial states. Use this initial states further and use the next real 

life controllable inputs and measured disturbances as initial values for the testing next 

StartLoc = 100000; 

u_ini_s = TrainingMean20200903Red.InputData(StartLoc+201,:)'; 

 

X0 = 

findstates(ss1,iddata(TrainingMean20200903Red.OutputData(StartLoc+140:StartLo

c+170,1:6),TrainingMean20200903Red.InputData(StartLoc+140:StartLoc+170,1:5),T

rainingMean20200903Red.Ts)); 

 

for jj=1:30 

    u_ini_s = TrainingMean20200903Red.InputData(StartLoc+170+jj,:)';     

    X_n = ss1.A*X0 + ss1.B*u_ini_s;  

    X0 = X_n; 

end 

  

u1 = TrainingMean20200903Red.InputData(StartLoc+201,1) %SuctionAirTemp 

u2 = TrainingMean20200903Red.InputData(StartLoc+201,2) %IMEP 

u3 = TrainingMean20200903Red.InputData(StartLoc+201,3) %ChargeAirPressure 

u4 = TrainingMean20200903Red.InputData(StartLoc+201,4) %ChargeAirTemperature 

u5 = TrainingMean20200903Red.InputData(StartLoc+201,5) %GlobalTiming 
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%Receive u_previsous measurements 

u_k_prev(1) = TrainingMean20200903Red.InputData(StartLoc+200,3); 

u_k_prev(2) = TrainingMean20200903Red.InputData(StartLoc+200,5); 

 

%Controllable inputs B matrix 

B(:,1) = ss1.B(:,3); 

B(:,2) = ss1.B(:,5); 

 

%Measured input disturbance Bd Matrix 

Bd(:,1) = ss1.B(:,1); 

Bd(:,2) = ss1.B(:,2); 

Bd(:,3) = ss1.B(:,4); 

Simulate with constraints on inputs and outputs 

The following results is found by set point tracking with a gradient change in the IMEP 

disturbance with the other disturbances fixed. The set point is ramped also 

This time we limit the control values to max/min and add constraint to the outputs 

Sim =5000; 

dt = 0.1; 

Np = 150; 

 

[y_n, c_n] = size(ss1.C); 

[~, u_n] = size(B); 

[~, d_n] = size(Bd); 

[~, n_n] = size(ss1.A); 

 

Py = zeros(Sim,y_n); 

Pu = zeros(Sim,u_n); 

Pdu = zeros(Sim,u_n); 

Pud = zeros(Sim,d_n); 

Pc = zeros(Sim,n_n); 

 

state_ini_values = X0; 

 

u_ini = [u3*ones(Np,1); ... %Charge air pressure 

        u5*ones(Np,1)];     %Global timing 

     

ud_ini = [u1*ones(Np,1); ...%Suction air temperature 

         u2*ones(Np,1); ... %IMEP 

         u4*ones(Np,1)];    %Charge air temperature 

 

for i=1:Sim     

    %Save values  

    Pc(i,:) = state_ini_values;     
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    %Call the optimization 

    u_k_ast = 

optimization(u_ini,ud_ini,state_ini_values,Np,ss1.A,B,Bd,ss1.C,u_k_prev); 

     

    %Pick the firt two control moves 

    u_k(1,1) = u_k_ast(1,1); %First control input - charge air pressure 

    u_k(2,1) = u_k_ast(Np+1,1); %First control input - global timing 

     

    u_ini = u_k_ast; 

     

    %Save control inputs 

    Pu(i,:) = u_k'; 

    Pdu(i,1)= u_k(1)-u_k_prev(1); 

    Pdu(i,2)= u_k(2)-u_k_prev(2); 

    u_k_prev = u_k; 

         

    %Retrieve the disturbances 

    ud_k(1,1) = ud_ini(1);      %First disturbance - Suction air temperature 

    ud_k(2,1) = ud_ini(Np+1);   %First disturbance - IMEP 

    ud_k(3,1) = ud_ini(2*Np+1); %First disturbance - charge air temperatuer 

     

    %Save disturbance 

    Pud(i,:) = ud_k'; 

     

    %Simulate process 

    X_next = ss1.A*state_ini_values + B*u_k + Bd*ud_k;     

    Py(i,:) = ss1.C*state_ini_values;     

       

    state_ini_values = X_next; 

 

    %Update the disturbances with real life data for iteration, but keep it 

    %fixed for the duration of the prediction horizon 

    ud_ini(1:Np) = 

TrainingMean20200903Red.InputData(StartLoc+201+i,1)*ones(Np,1); ...%Suction 

air temperature 

    ud_ini(Np+1:2*Np) = 

TrainingMean20200903Red.InputData(StartLoc+201+i,2)*ones(Np,1); ...%Suction 

air temperature 

    ud_ini(2*Np+1:3*Np) = 

TrainingMean20200903Red.InputData(StartLoc+201+i,4)*ones(Np,1); ...%Suction 

air temperature 

   

     

end 

 

Plotting(Pu,Pud,Py,Pdu,Sim) 

%Plotting(Pu,Pud,Py,Pdu,Sim); 
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Pred function 

This function takes the matrices and prediction horizon and calculate the  and  matrices such 

that 

,  and 

 

 

 

 is the predicted outputs where is the control moves over the prediction horizon and  is 

the disturbance inputs over the prediction horizon (usually constant) 

function [F, Phi_u, Phi_ud] = Pred(A,B,Bd,C,Np) 

 

%Find the sizes of the matrices and set up ther dimensions 

[y_n,~] = size(C); 

[~,u_n] = size(B); 

[n_n,ud_n] = size(Bd); 

F = zeros(y_n*Np,n_n); 

Phi_u = zeros(y_n*Np,u_n*Np); 

Phi_u_temp = zeros(y_n*Np,u_n*Np); 

Phi_ud = zeros(y_n*Np,u_n*Np); 

Phi_ud_temp = zeros(y_n*Np,ud_n*Np); 

 

%%Find the F matrix 

for jj=1:Np 

    F((jj-1)*y_n+1:(jj-1)*y_n+y_n,1:n_n) = C*(A^jj); 

end 

 

%%Set up the Phi matrix for the controllable input 

Phi_u_temp(1:y_n,1:u_n) = C*B; 

 

for jj=1:Np-1 

    Phi_u_temp(y_n*jj+1:y_n*jj+y_n,1:u_n) = C*(A^jj)*B; 

end 
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%%Copy column 1 to the next and move down one row and so on  

for jj=1:Np-1 

    Phi_u_temp(y_n*jj+1:end,u_n*jj+1:u_n*jj+u_n) = Phi_u_temp(1:end-

jj*y_n,1:u_n);     

end 

%Rearrange the matrix as the predicted output is organized with all the 

%predicitons for a single control output first and then the second control 

%output 

for jj=1:Np 

    Phi_u(:,jj) = Phi_u_temp(:,(jj*u_n)-1); 

    Phi_u(:,Np+jj) = Phi_u_temp(:,(jj*u_n)); 

end 

 

%%Set up the Psi matrix for the measured disturbance 

 

Phi_ud_temp(1:y_n,1:ud_n) = C*Bd; %Set up the first row since that is 

without A matrix 

 

%Set up the rest of the rows in the first column 

for jj=1:Np-1 

    Phi_ud_temp(y_n*jj+1:y_n*jj+y_n,1:ud_n) = C*(A^jj)*Bd; 

end 

 

%%Copy column 1 to the next and move down one row and so on  

for jj=1:Np-1 

    Phi_ud_temp(y_n*jj+1:end,ud_n*jj+1:ud_n*jj+ud_n) = Phi_ud_temp(1:end-

jj*y_n,1:ud_n); 

     

end 

 

%Rearrange the matrix as the predicted output is organized with all the 

%predicitons for a single control output first and then the second control 

%output 

for jj=1:Np 

    Phi_ud(:,jj) = Phi_ud_temp(:,(jj*ud_n)-2); 

    Phi_ud(:,Np+jj) = Phi_ud_temp(:,(jj*ud_n)-1); 

    Phi_ud(:,Np*2+jj) = Phi_ud_temp(:,(jj*ud_n)); 

end 

end 

Compute both functions 

function [myJ,myG,myHeq] = 

compute_both(u_ini,ud_ini,state_ini_values,Np,A,B,Bd,C,u_k_prev) 

 

du_u1 = zeros(Np,1); %Charge air pressure rate of change place holder 
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du_u2 = zeros(Np,1); %Global timing rate of change place holder 

[y_n,~] = size(C); 

Pc = zeros(Np,y_n); 

 

u_ini = u_ini'; 

 

%Weight factor for heat rate 

Q = 0.0001; 

%Weight matrix for the controllable outputs and  

%rate of change 

%Pu = diag([0.01, 0.01]); 

Pdu = diag([10.00, 10.00]); 

 

 

%Set objective to zero before the for loop 

J = 0; 

 

%we need to calculate the outputs for the whole prediction horizon 

for i = 1:Np 

 %find out which control input to use for each time step within the 

 %prediction horizon 

 %Calculate the change between the previous outputs and the next inputs.   

 if i == 1 

    du_u1(i) = u_ini(i)-u_k_prev(1); 

    du_u2(i) = u_ini(Np+i)-u_k_prev(2); 

 else 

    du_u1(i) = u_ini(i)-u_ini(i-1); 

    du_u2(i) = u_ini(Np+i)-u_ini(Np+i-1); 

 end 

 

 u_k(1,1) = u_ini(i);       %Charge air pressure 

 u_k(2,1) = u_ini(Np+i);    %Global timing 

 

 du_k = [du_u1(i);du_u2(i)]; 

  

 %find out which disturbance input to use for each time step within the 

 %prediction horizon 

 ud_k(1,1) = ud_ini(i); 

 ud_k(2,1) = ud_ini(i+Np); 

 ud_k(3,1) = ud_ini(i+Np*2); 

  

% u_k_prev = u_k; 

  

 %Calculate the next states based on the current state, controlable inputs 

 %and measured disturbance 

 x_next = A*state_ini_values + B*u_k + Bd*ud_k; 

  

 %use the states to calculate the output  
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 Pc(i,:) = C*state_ini_values; 

  

 %Extract the output which is the once we want use as process value for our 

 %set point tracking 

 HeatRate = Pc(i,1); %Heat rate 

  

 %update the state 

 state_ini_values = x_next; 

  

 %now make the objective function 

 %J_temp = ((Pc_reg-Ref)/1000)'*Q*((Pc_reg-Ref)/1000) + du_k'*Pdu*du_k + 

u_k'*Pu*u_k; 

 J_temp = HeatRate*Q + du_k'*Pdu*du_k; 

 J = J+J_temp; %Increment the objective over the whole prediction horizon 

end 

 

myJ = J/2; 

 

%if there are equaltiy constraints, it should be listed as a column vector 

%here we don't have equality constraints so we use empty matrix 

myHeq = []; 

myG = [];  

% myG =[du_u1-0.02; ... 

%        -du_u1-0.02; ... 

%        du_u2-0.05; ... 

%        -du_u2-0.03]; 

end 

 

Optimization function 

function u = 

optimization(u_ini,ud_ini,state_ini_values,Np,A,B,Bd,C,u_k_prev)  

 

ops = optimset('Algorithm','interior-

point','Display','off','MaxIter',1000,'MaxFunEvals',1000,'AlwaysHonorConstrai

nts','bounds','TolX', 1e-14); 

 

uLast = [];% Last place compute_both was called 

myJ = [];% Use for objective at xLast 

myG = [];% Use for nonlinear inequality constraint 

myHeq = [];% Use for nonlinear equality constraint 

[~,u_n] = size(B); 

[y_n,~] = size(C); 

%Deine lower and upper bounds on control inputs 

lb = [ones(1,Np)*0.3, ... 

      ones(1,Np)*-20 ... 
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     ]; 

 

ub = [ones(1,Np)*4.5, ... 

      ones(1,Np)*-8.5 ... 

     ]; 

 

     

obj_func = @(u)objfun_engine(u,ud_ini,state_ini_values,Np); 

cons_func = @(u)confun_engine(u,ud_ini,state_ini_values,Np); 

 

 

%Calculate the matrices to be used in the inequality constraints 

[F, Phi_u, Phi_ud] = Pred(A,B,Bd,C,Np); 

 

%Set up the constraints and repeat for the horizon 

y_max = [Inf;50;200;200;12.5;600]; 

y_max = repmat(y_max,Np,1); 

      

y_min = [-Inf;0;0;0;8.5;0]; 

y_min = repmat(y_min,Np,1); 

 

%Calculat all the right hand side of the inequality constraint 

YYY = y_max-F*state_ini_values-Phi_ud*ud_ini; 

YY = -y_min+F*state_ini_values+Phi_ud*ud_ini; 

%Extract only the constraints we are interessted in 

Aneq = zeros(2*Np,u_n*Np); 

Bneq = zeros(2*Np,1); 

 

%Testing with only high limit on O2 and Exhaust and lower limit on O2 

%For more constraints - add them 

for ii=1:Np 

    Aneq(ii*3-2,:) = Phi_u(ii*y_n-1,:); 

    Aneq(ii*3-1,:) = Phi_u(ii*y_n,:); 

    Aneq(ii*3,:) = -(Phi_u(ii*y_n-1,:)); 

     

    Bneq(ii*3-2,:) = YYY(ii*y_n-1); 

    Bneq(ii*3-1,:) = YYY(ii*y_n); 

    Bneq(ii*3,:) = YY(ii*y_n-1); 

end 

 

[u,fval,exitflag,output,solutions] = 

fmincon(obj_func,u_ini,Aneq,Bneq,[],[],lb,ub,cons_func,ops); 

 

 

 function J = objfun_engine(u,ud_ini,state_ini_values,Np) 

     if ~isequal(u,uLast) %check if computation is necessary 

        [myJ,myG,myHeq] = 

compute_both(u,ud_ini,state_ini_values,Np,A,B,Bd,C,u_k_prev); 
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        uLast = u; 

     end 

    

    %now compute objective function 

    J = myJ; 

 end 

 

 function [G,Heq] = confun_engine(u,ud_ini,state_ini_values,Np) 

    if ~isequal(u,uLast) %check if computation is necessary 

        [myJ,myG,myHeq] = 

compute_both(u,ud_ini,state_ini_values,Np,A,B,Bd,C,u_k_prev); 

        uLast = u; 

    end 

   

    G = myG; 

    Heq = myHeq; 

 end 

end 

 

Plot function 

function  [] = Plotting(Pu,Pud,Py,Pdu,Sim) 

fig_1 = figure("Name",'Control variables'); 

x = linspace(1,Sim/10,Sim); 

y1 = (Pu(:,1)); 

y2 = (Pu(:,2)); 

tiledlayout(2,1); 

 

ax1 = nexttile; 

plot(ax1,x,y1); 

title(ax1,'Charge air pressure'); 

ylabel(ax1,'barg'); 

xlabel('Simulation time [s]') 

 

ax2 = nexttile; 

plot(ax2,x,y2); 

title(ax2,'Global timing'); 

ylabel(ax2,"degCA"); 

xlabel('Simulation time [s]') 

 

The figure below shows the disturbances over the simulation time 

fig_2 = figure("Name",'Disturbances'); 

x = linspace(1,Sim/10,Sim); 

y1 = (Pud(:,1)); 
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y2 = (Pud(:,2)); 

y3 = (Pud(:,3)); 

tiledlayout(3,1); 

 

ax1 = nexttile; 

plot(ax1,x,y1); 

title(ax1,'Suction air temperature'); 

ylabel(ax1,'degC'); 

xlabel('Simulation time [s]') 

 

ax2 = nexttile; 

plot(ax2,x,y2); 

title(ax2,'IMEP'); 

ylabel(ax2,"bar"); 

xlabel('Simulation time [s]') 

 

ax3 = nexttile; 

plot(ax3,x,y3); 

title(ax3,'Charge air temperature'); 

ylabel(ax3,"degC"); 

xlabel('Simulation time [s]') 

The figure below shows the model outputs over the simulation time 

fig_3a = figure("Name",'Measurements'); 

x = linspace(1,Sim/10,Sim); 

y1 = (Py(:,1)); 

y2 = (Py(:,2)); 

y3 = (Py(:,3)); 

y4 = (Py(:,4)); 

y5 = (Py(:,5)); 

y6 = (Py(:,6)); 

Lim_exh = 600*ones(Sim,1); 

Lim_O2_1 = 8.5*ones(Sim,1); 

Lim_O2_2 = 12.5*ones(Sim,1); 

t = tiledlayout(3,1,'TileSpacing',"normal"); 

title(t,'Measurements') 

 

ax1 = nexttile; 

plot(ax1,x,y1); 

title(ax1,'Heat rate'); 

ylabel(ax1,'-'); 

xlabel('Simulation time [s]') 

 

ax2 = nexttile; 

plot(ax2,x,y2); 

title(ax2,'Knock'); 

ylabel(ax2,'%'); 
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xlabel('Simulation time [s]') 

 

ax3 = nexttile; 

plot(ax3,x,y3); 

title(ax3,'Peak pressure'); 

ylabel(ax3,'bar'); 

xlabel('Simulation time [s]') 

 

fig_3b = figure("Name",'Measurements'); 

tt = tiledlayout(3,1,'TileSpacing',"normal"); 

ax4 = nexttile; 

plot(ax4,x,y4); 

title(ax4,'NOx'); 

ylabel(ax4,'ppm'); 

xlabel('Simulation time [s]') 

 

ax5 = nexttile; 

plot(ax5,x,y5,x,Lim_O2_1,x,Lim_O2_2); 

title(ax5,'O2'); 

ylabel(ax5,'%'); 

xlabel('Simulation time [s]') 

 

ax6 = nexttile; 

plot(ax6,x,y6,x,Lim_exh); 

title(ax6,'Exhaust temperature'); 

ylabel(ax6,'degC'); 

xlabel('Simulation time [s]') 

 

fig_3c = figure("Name",'Measurements'); 

x = linspace(1,Sim/10,Sim); 

y1 = (Py(:,1)); 

t = tiledlayout(1,1,'TileSpacing',"normal"); 

title(t,'Measurements') 

ax1 = nexttile; 

plot(ax1,x,y1); 

title(ax1,'Heat rate'); 

ylabel(ax1,'-'); 

xlabel('Simulation time [s]') 

 

fig_3d = figure("Name",'Measurements'); 

ax5 = nexttile; 

plot(ax5,x,y5,x,Lim_O2_1,x,Lim_O2_2); 

title(ax5,'O2'); 

ylabel(ax5,'%'); 

xlabel('Simulation time [s]') 

 

ax6 = nexttile; 

plot(ax6,x,y6,x,Lim_exh); 
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title(ax6,'Exhaust temperature'); 

ylabel(ax6,'degC'); 

xlabel('Simulation time [s]') 

Plot  for both control signals 

fig_4 = figure("Name",'delta u'); 

ax7 = nexttile; 

plot(ax7,x,(Pdu(:,1)),x,0.02*ones(Sim,1),x,-0.02*ones(Sim,1)); 

title(ax7,'Charge air pressure'); 

ylabel(ax7,'bar/ms'); 

xlabel('Simulation time [s]') 

 

ax8 = nexttile; 

plot(ax8,x,(Pdu(:,2)),x,0.05*ones(Sim,1),x,-0.03*ones(Sim,1)); 

title(ax8,'Global timing'); 

ylabel(ax8,'degCA/ms'); 

xlabel('Simulation time [s]') 

 

end 
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