
Multi-Core Platform of Admittance Matrix Formation of
Power Systems: Computational Time Assessment

1Gonzalez-Longatt, Francisco; 1Montalvo, Martha Nohemi; 2Andrade, Manuel A.;
2Vazquez, Ernesto; 3Chamorro, Harold R.; 4Sood, Vijay K.

1Information Technology and Cybernetics - University of South-Eastern Norway, Norway
2School of Mechanical and Electrical Engineering - Universidad Autonoma de Nuevo Leon, Mexico

3KU Leuven, Katholieke Universiteit Leuven, Belgium
4University of Ontario, Canada

Gonzalez-Longatt, F., Acosta, M. N., Andrade, M., Vazquez, E., Chamorro,
H. R., & Sood, V. K. (2020). Multi-Core Platform of Admittance Matrix

Formation of Power Systems: Computational Time Assessment. In 2020
IEEE Electric Power and Energy Conference (EPEC), pp. 1-6.

https://doi.org/10.1109/EPEC48502.2020.9320060

Publisher’s version: DOI: 10.1109/EPEC48502.2020.9320060

 © 2020 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component

of this work in other works.

https://doi.org/10.1109/HLM49214.2020.9307905
https://doi.org/10.1109/HLM49214.2020.9307905
https://doi.org/10.1109/EPEC48502.2020.9320060
https://doi.org/10.1109/EPEC48502.2020.9320060

 Multi-Core Platform of Admittance Matrix

Formation of Power Systems: Computational Time

Assessment

Francisco Gonzalez-Longatt

Department of Electrical Engineering,
InformationTechnology and

Cybernetics
University of South-Eastern Norway

Porsgrunn, Norway

fglongatt@fglongatt.org

Ernesto Vazquez

School of Mechanical and Electrical
Engineering

Universidad Autonoma de Nuevo Leon
Nuevo Leon, Mexico

evazquezmtz@gmail.com

Martha N. Acosta

Department of Electrical Engineering,
InformationTechnology and

Cybernetics
University of South-Eastern Norway

Porsgrunn, Norway

Martha.Acosta@usn.no

Harold R. Chamorro

KU Leuven
Katholieke Universiteit Leuven

Leuven, Belgium

hr.chamo@ieee.org

Manuel Andrade

School of Mechanical and Electrical
Engineering

Universidad Autonoma de Nuevo Leon
Nuevo Leon, Mexico

manuel.andradest@uanl.edu.mx

Vijay K. Sood

Department of Electrical and Computer
Engineering

University of Ontario
Ontario, Canada

vijay.sood@ontariotechu.ca

Abstract—This paper presents a comparison of
computational time required to build the admittance matrix of
five test systems (ranging from 200 to 70,000 nodes) considering
two formation approaches: element-by-element and matrix
approach. The algorithms have been implemented in
MATLABTM and tested in four multi-core platforms.
Implementations include sparse and dense matrix
representation and parallel/non-parallel computing. Results
show the matrix approach considering sparse representation
and parallel computing is the best approach in computing time.

Keywords—admittance matrix, computing time, hardware,
power systems analysis, software.

I. INTRODUCTION

The analysis of even modest-sized power systems requires
the use of appropriate tools to perform the calculation; it is
where appropriate computer programs and well-designed
software play a significant role [1]. Computational time spent
in the power system study becomes a crucial element when
the results are required in a very short time frame, especially
if the application is desired to provide a response in real-time
[2]. The availability of powerful computational hardware
together with novel mathematical approaches used for
network solution are two fundamental approaches in the
development of real-time applications [3], [4].

The power system studies require the calculation of
different types of matrices. The positive sequence admittance
matrix is typically used in the calculation of the classical
power flow calculations; also, the Jacobian matrix is needed
when the load flow calculations are performed with the
Newton-Raphson algorithm. The positive, negative, and zero
sequence impedance matrices are calculated when the
asymmetrical short circuit current calculations are required.
However, many other matrices are used in power systems
analysis; as a consequence, matrices formation and matrix
algebra are two essential tools taken into consideration when
developing real-time applications. The power flow study is
the most frequently used in power system analysis because it
is an essential tool for system planning and operation [5], [6].
It is used to determine the voltage, current, active, and reactive
power and power factor in a power system; however, the

classical load flow is used as input to much other power
system analysis, for instance, as the input of the power system
stability analysis, providing the steady-state conditions prior
to a disturbance [1], [7], [8].

The power flow analysis finds its roots in the use of the
mesh-current and node-voltage analysis methods described in
introductory electrical circuit theory texts. However, the terms
loop and bus are frequently used in place of mesh and node.
Historically, the first computer attempts to solve the power
flow problem was based in loop equations which did not
exploit the capability of the computers. As a consequence,
limited success was basically achieved due to the
computational burden and limited computer memory
available [9], [10], [11]. The node-voltage method or nodal
analysis directly references bus quantities using the bus
admittance matrix has been the most popularly used method
by load flow analysis software. The nodal admittance matrix

(or just admittance matrix) Ybus is a Nbus�Nbus matrix
describing the nodal admittances of a Nbus buses power system
[9], [12]. The admittance matrix has several properties; one of
them is that the matrix is heavily weighted in the main
diagonal and highly sparse. This is a consequence of the
typical topology of a power system which has a relative
absence of certain problem interconnections [13], [14].

Many scientific papers have focused on dealing with the
problems of power system analysis of large-scale power
systems. Over the years, many advances have dedicated their
efforts on improvements in the load flow calculations in
extensive networks [15], [16]; also, in the use of sparse matrix
algebra to solving the problem of extensive power systems.
Most recent advances include exploiting the value of the
computational hardware [16]: multi-core CPU (central
processing unit) [16] and many-core GPU (graphics
processing unit). Traditionally, the computational load related
to solving a very large-scale power system has relied on the
use of a mainframe computer or specially designed
computation architecture located in a university or a research
lab. However, the modern mainstream of computation
architectures in current market technically fall into two
categories: the multi-core CPU and the many-core GPU.
Although some discussion related to both architectures is

�������������	
��	�
������������������������	����
���

����������������� �� !"�#���$���������

20
20

 I
E

E
E

 E
le

ct
ri

c
Po

w
er

 a
nd

 E
ne

rg
y

C
on

fe
re

nc
e

(E
PE

C
)

| 9
78

-1
-7

28
1-

64
89

-2
/2

0/
$3

1.
00

 ©
20

20
 I

E
E

E
 |

D
O

I:
 1

0.
11

09
/E

PE
C

48
50

2.
20

20
.9

32
00

60

presented in this paper, the main focus is the computational
time assessment on a multi-core CPU.

This scientific paper presents a univariable assessment of
the performance of the multi-core platform in the processing
of the admittance matrix. The computational time is used as
the primary indicator to compare two algorithms of the
admittance matrix formulation. The primary motivation
behind investigating the mechanism of speeding up the
admittance matrix formulation is because some problems like
contingency analysis might require re-building or modifying
the admittance matrix. However, some methods are already in
the literature to modify the already created admittance matrix
to simulate contingency; the authors are exploring some
potential alternatives on the benefit of reformulating the whole
admittance matrix.

The rest of the paper is organised as follows; Section II
introduces the main features of the hardware and software
used in power system application with particular emphasis on
the admittance matrix implementation in this paper. Section
III briefly presents the two methodologies implemented for
the formation of the admittance matrix. One methodology is
based on using element by element formation, and the second
method uses an approach based on matrix manipulations, it is
called ‘Optimised code’, in this paper. Then Section IV is
dedicated to profusely test the two algorithms of admittance-
matrix formation in four different multi-core platforms.
Section V concludes and presents new research directions
found during the course of this research paper. The main
contribution of this paper is comparing two admittance matrix
formation approaches by considering the computational time
used by the algorithms to create the admittance matrix in four
multi-core platforms. The input data is pre-processed in an
isolated fashion and the computational time is not included in
this assessment, the data structure is the same for both
algorithms, and it consists of the connectivity of the power
system and the series admittance. The performed experiments
show that the Optimised code results much faster than the
element-by-element admittance matrix formation. Although
the latest is the most straightforward implementation of the
admittance matrix implementation (in terms of coding), the
computational time results very high when compared with the
optimised code, and the reason accessing element-by-element
the memory requires more CPU time that moving the data as
a whole memory location area.

II. COMPUTATIONAL SYSTEMS

This section defines the main features of the hardware and
software in use (or potential use) in power system analysis
calculations using a digital computer.

A. Hardware
Many computational resources are available for power

system analysis. Excluding dedicated mainframes and user-
specific computers, the computational resources available for
power system analysis includes central processing unit
(CPU), graphics processing unit (GPU), and Field-
programmable gate arrays (FPGAs). Another lesser-known
alternative is the Application Specific Integrated Circuit
(ASIC); this is an integrated circuit (IC) chip customised for a
particular use rather than a general-purpose use. As a
consequence of the specificity of the design, the efficiency in
the calculation is optimised. One specific example of an ASIC
is the tensor processing unit (TPU). The TPU concept was
introduced by Google in 2016; it is a custom-developed ASIC

used for the specific application of accelerating artificial
intelligence (AI) and machine learning (ML) workloads.
Other manufacturers of ML specific ASIC include Nervana,
Graphcore, Wave systems, etc.

A Field Programmable Gate Array (FPGA) is a
reconfigurable integrated circuit. The developer can configure
the FPGA to become any circuit he/she wants to (as long as it
fits on the FPGA). Therefore, the FPGA is a less common
alternative to write a power system analysis software for an
instruction-based architecture, such as a CPU or GPU.
Although an FPGA can offer an increase in calculation speed,
the developer is exposed to a very different workflow. A
classical programmer uses instruction-based hardware most
programmers are used to, i.e. like CPUs and GPUs, but
FPGAs are instead configured by specifying a hardware
circuit. As a consequence, the engineering cost is typically
much higher than for instruction-based architectures. Finally,
even if the FPGA becomes slightly more energy-efficient than
GPUs, the development of software for FPGAs is still a lot
more complicated than for GPUs. Well-known manufacturers
of FPGAs include Xilinx and Intel, but more manufacturers
are offering options, e.g. Arduino MKR Vidor 4000. A GPU
is a programmable chip intended initially for graphics
rendering. The modern GPU commenced in 1995; it was
marked by the introduction of the first 3D add-in cards. Later,
the GPU use expanded by the adoption of the 32-bit operating
systems and affordable personal computers. However, 2007
defined the beginning of the era of general-purpose GPUs.
The big manufacturers of general-purpose GPUs, Nvidia and
ATI (now acquired by AMD), have been packing their
graphics cards with ever-more capabilities. By 2007, Nvidia
released its CUDA® (Compute Unified Device Architecture)
development environment, and by 2009 the called OpenCL
(Open Computing Language) became widely supported.

The CPU is responsible for calculations in a computer, and
for controlling or supervising other parts of the computer. The
CPU is designed to perform logical and floating-point
operations on data held in the computer memory. The CPU
has been the most widely used instruction-based architecture,
especially for power system applications. The speed of the
processor clock defines how quickly the CPU functions. The
CPU is designed to handle a wide range of tasks quickly but
are limited in the concurrency of tasks that can be running.
Manufacturers of CPU include Intel, AMD, ARM, CEVA.
The GPU has a highly parallel structure that makes them more
effective than general-purpose CPUs for algorithms where the
processing of large blocks of data is done in parallel.
However, high clock speed makes the CPU quite attractive
when sequential programming is used. Although CPU and
GPU share the concept of the core, they are not equivalent to
each other; GPU cores perform specialised operations
whereas CPU cores are designed for general-purpose
programs. The design architecture of the CPU has only a few
cores with lots of cache memory that can handle a few
software threads at a time; for instance, an Inter® Core® i7 -
8850H has 8 cores and 16 threads. On the other hand, a
modern GPU is composed of hundreds of cores that can
handle thousands of threads simultaneously; for instance,
RTX 2080Ti has a total of 4,352 CUDA Cores and 102
threads.

B. Software
The software complements the hardware in a

computational system, and it is a collection of data or

�������������	
��	�
������������������������	����
���

computer instructions that tell the computational system how
to work. Contrary to a mainframe computer, 70% of the
desktop and laptop computers around the world use
Microsoft® Windows®. As a consequence, this paper focused
on computational systems using Windows® 10 as the
operating system. However, as this paper is looking into the
assessment of two different approaches of admittance matrix
formation, the programming language, and the approach to
use in the problem solution are crucial aspects to consider. In
this paper, two approaches to programming are considered: (i)
Parallel programming and (ii) Sequential programming. The
first involves the concurrent computation or simultaneous
execution of processes or threads at the same time. The latter
involves a consecutively ordered execution of processes. As
the sequential approach is widely explained in the literature, it
is not explained here.

C. Parallel Computing
The use of parallel computing is especially attractive when

solving computationally- and data-intensive problems and
there is the availability of multi-core processors, GPUs, and
computer clusters. Parallel computing is advantageous when
the problem to solve requires many calculations
simultaneously. However, the critical point here is that large
problems must be able to be split into smaller problems, which
are then solved at the same time. Parallel computing requires
the combination of hardware and software able to perform the
task in a parallel fashion. Regarding hardware, parallel
computer architecture exists in a wide variety of parallel
computers: (i) Multi-core computing (ii) Symmetric
multiprocessing, (iii) Distributed computing and (iv)
Massively parallel computing. In this paper, the interest is
centred in the use of multi-core architecture. It allows
executing program instructions in parallel. The cores are
integrated onto multiple dies in a single chip package or onto
a single integrated circuit die and may implement
architectures such as multithreading, superscalar, vector, or
very long instruction word (VLIW). The multi-core
architectures are grouped depending on the characteristics the
cores: homogeneous that includes only identical cores or
heterogeneous that includes cores that are not identical. There
is a wide range of enabling parallel computing software
available. The use of some programming tools like the Parallel
Computing Toolbox™ of MATLAB®, allows users to
parallelise the problem-solution process without the use of
more complex elements like CUDA (Compute Unified Device
Architecture) or MPI (Message Passing Interface)
programming. NVIDIA® originally introduced CUDA®; it is
a technology that enables users to solve many complex
problems on their GPU cards. It is a parallel computing
platform and application programming interface (API).
CUDA® consists of a parallel computing architecture and
developer tools, libraries, and programming directives for
GPU computing. The CUDA® platform is a software layer
that gives direct access to the GPU’s virtual instruction set and
parallel computational elements for the execution of compute
kernels [17]. The Kernel is a code written for execution on the
GPU. Kernels are functions that can run on a large number of
threads. The parallelism arises from each thread
independently running the same program on different data
[17].

III. ADMITTANCE MATRIX FORMATION

Building the network matrices is a burdensome
computational procedure as obtaining impedance or

admittance matrices involves inversions and multiplications.
The admittance matrix is formed from the electrical
parameters of the power system components (e.g.
transmission lines, transformers, etc.). Several approaches are
available for the formation of the admittance matrix; it
includes using the element-by-element approach (as described
in many power systems analysis textbooks [18], [19], etc.),
more computer-oriented approaches take advantages of using
the incidence [20] and connectivity matrix [21], [22]. In this
section, a brief introduction to the admittance matrix
formation is presented. The element-by-element method is
initially presented, and then a full matrix method using the
connection matrix is presented.

A. Nodal Admittance Matrix (Ybus)
The nodal admittance matrix termed the admittance

matrix, Ybus, is a square Nbus�Nbus matrix describing the nodal
admittances of a Nbus buses power system [9]. The Ybus is a
heavily weighted matrix in the main diagonal and is highly
sparse; this is caused by the topological properties of the
power system, as it is not fully meshed (complete graph) [13].
Also, the Ybus is symmetric in terms of the principal diagonal
element is negated admittance, unless mutual coupling
elements are included. Considering a symmetrical and
balanced power system with Nbus buses, the positive sequence
network model, including all constant impedance elements
can be represented by the complex admittance matrix (Ybus).

The Nbus�Nbus admittance matrix (Ybus) relates the complex
current injections (Ibus) and the complex voltages (Vbus) at the
buses :

bus bus busI = Y V (1)

B. Formation of Ybus Element by Element
Assuming the admittance of each branch element of the

power system is known in the form: yik = gik + jbik. where yik
represents the actual admittance of the power device
connecting the busbar ‘i’ and ‘k’, gik and bik are the real
(conductance) and imaginary (susceptance) components of yik
respectively. The individual elements of the matrix (Ybus) are
formulated using straightforward rules. The elements of the
main diagonal (Yii), also known as self-admittances, are
calculated by the sum of the admittance physically connected
to the bus [18], [20]:

1

ˆ

�

� �
N

ii ii
i

Y Y (2)

The off-diagonal elements (Yij), also known as mutual-
admittances, are calculated by the negative branch
admittances connected directly between the corresponding
busses.

ˆ� �ij ijY Y (3)

Note that the Ybus matrix is symmetric unless there are
branches whose admittance is direction-dependent.

C. Formation of Ybus Matrix, Matrix approach
Considering a symmetrical and balanced power system

with Nbus buses, the network model, including all constant
impedance elements, can be represented by the complex

admittance matrix (Ybus). The Nbus�Nbus admittance matrix
related the complex current injections at the buses (Ibus) and
the complex voltages (Vbus):

�������������	
��	�
������������������������	����
���

bus bus busI = Y V (4)

the admittance matrix is expressed in terms of the connection

matrixes:

� � � �T T
bus from from to to shuntY = C Y + C Y + Y (5)

where:

�	

	�

from from,from from from,to to

to to,from from to,to to

Y = Y C + Y C
Y = Y C + Y C

(6)

�
�
 �

� � �� � � �

� � � �� �

from,from from,tofrom from

to,from to,toto to

Y YY C
Y YY C

where Cfrom and Cto are the connection matrices providing the

connectivity of the network elements. The (i,j)th element of

of Cfrom and the (i,k) element of Cto are equal to 1 for each

branch i, where the branch i connects from bus j to bus k, any

other element in Cfrom and Cto are zero. The vector Yshunt

represents the shunt admittance of all buses Yshunt =

Gshunt+jBshunt.

D. Sparsity in Electrical Power Systems
Electrical power systems are particular in terms of

topology; the transmission system is often highly
interconnected, creating a mesh system, but the distribution
system is mainly a radial connection. The lack of massive
connectivity between nodes makes the admittance matrix
populated with many zeros; in other words, it is a sparse
matrix which contains very few non-zero elements compared
to the zero elements. Therefore, the use of dense matrix
representation (2-dimensional array) in power system
calculation when the admittance matrix is involved becomes
inefficient, as memory is used to store many zeros. An
efficient alternative to treat the admittance matrix of real
power systems (especially huge ones) is the use of sparse
matrix representation. The sparse matrix representation allows
saving memory used by storing only the non-zero entries.
There are several mechanisms to represents sparse matrixes,
and they depend on the number and distribution of the non-
zero entries. Depending on the sparse matrix representation
(data structures), it can yield considerable savings in memory
when compared to the dense matrix representation (2-

dimensional array). For instance, a 10,000�10,000 identity
matrix might require 800 MB memory if the matrix is stored
considering the full array; but considering sparse
representation in the memory storage, only approximately
0.25 MB of memory is needed. The advantages of memory
management are apparent. The data structure used in the
sparse matrix can be divided into two groups depending on the
purpose: (i) Support efficient modification: DOK (Dictionary
of keys), LIL (List of lists), or COO (Coordinate list). (ii)
Support efficient access and matrix operations, such as CSR
(Compressed Sparse Row) or CSC (Compressed Sparse
Column) [23].

IV. EXPERIMENTAL RESULTS

This paper focuses on a multi-core CPU implementation
of two methods of forming the admittance matrix presented in
Sections IIIb and IIIc (i.e. multi-core GPU is not considered).
The algorithms are implemented by the authors using
MATLABTM R2020a and taking advantage of Parallel
Computing Toolbox. The performance of implementations in
each multi-core platform is based on the total calculation time.
In this paper, we are not interested in measuring the first-time

cost; as a consequence, the time of running the code a second
time is taken into consideration. The authors are aware of the
influence on the computational time of other processes in the
computation in and operating system like Microsoft Windows,
as a consequence, the authors have minimised (in a practical
fashion) the number of processes running during the
simulations (e.g. reducing the number of start-up processes,
background running processes, third-party software service)
at the time of ensuring the stability of the system. Also, the
authors are running a set of experiments to present a
probabilistic analysis of multiple runs, but such results will be
included in a future publication.

A. Multi-Core Plattforms
Four target platforms consisting of a multi-core CPU are

used for testing purposes in this paper; details are presented in
Table I. The selected platforms include CPU with 6 and 12
independent central processing units, including a wide range
of fast memory located in the processor, CPU cache. The
processors considered in this assessment are equipped with 12
and 24 threads.

B. Test Systems
In this paper, the main interest is to evaluate the

performance of several software/hardware approaches to
solve the problem of creating the admittance matrix,
considering massive power systems. As a result, the research
team decided to use very well-recognised and used synthetic
electric grid models. The research team at the Smart Grid
Centre within the Texas A&M Engineering Experiment
Station (TEES) has created an excellent repository of electric
grid test cases [24], [25]; those test cases are synthetically
created with a fictitious representation of the power system,
but they were designed and created to statistically and
functionally be similar to actual electric power systems and
employed confidential critical energy infrastructure
information (CEII).

TABLE I. SUMMARY OF THE MAIN CHARACTERISTICS OF THE HARDWARE

USED FOR THE EXPERIMENTS

Platform 1 2 3 4
Code name Black Strix Super Mega

Processor

Inter®

Core®

i7 -8850H

Intel® Core®

i7-10750H

AMD
Ryzen™
9 3900X

Intel®

Xeon®

W-3235

Processor

Base

Frequency

2.60 GHz 2.60 GHz 3.80 GHz 3.30 GHz

CPU Cache 9 MB 12 MB 6 MB 19.25 MB

#Cores 6 6 12 12

of Threads 12 12 24 24

TABLE II. SUMMARY OF THE MAIN CHARACTERISTICS OF THE TEST

SYSTEMS USED FOR THE EXPERIMENTS

Test System Name Nbus Representative
ACTIVSg200 200 Central Illinois

ACTIVSg500 500 South Carolina

ACTIVSg2000 2000 Texas

ACTIVSg10k 10,000 Western USA

ACTIVSg25k 25,000 North-eastern USA

ACTIVSg70k 70,000 Eastern USA

The sparsity is an intrinsic feature of the admittance matrix
(Ybus). The sparsity is present in the admittance matrix
because of the absence of certain interconnections; the normal
power system is not a fully connected graph. Mathematically
speaking, the sparsity of the admittance matrix is defined as:

�������������	
��	�
������������������������	����
���

� �2
100%Z

bus

N
Sparcity

N
� � (7)

where Nz represents the total number of zero elements in the

admittance Nbus�Nbus matrix. Typical power systems have a
highly sparse admittance matrix with sparsity as high as 97%.
For instance, the test system ACTIVSg70k, Nbus = 70,000

buses, a total of 4.9�109 elements, Nz = 236,636 are not zero,
as a consequence, the sparsity of the admittance matrix results:
99.99517%.

C. Experiments and results
The multi-core cross-platform assessment includes two

main experiments: (i) Ybus formation element by element
(section IIIb), and (ii) Matrix formation (section IIIc) called
from here onward ‘Optimised Code’. The input data is the
same in both cases; it uses a data structure having the
connectivity and individual series impedances, as a
consequence, the assessment of simulation time is based on
the same input data and the total time of simulation measures
the time used by the admittance matrix algorithm. Space and
dense matrix representation are considered for each
experiment, and parallel/non-parallel computing are
considered.

TABLE III. ADMITTANCE MATRIX (YBUS) ELEMENT BY ELEMENT

COMPUTATIONAL TIME RESULTS ON PLATFORM 1- CODENAME “BLACK”

Test
System

No parallel
CPU only

Sparse

Parallel
CPU only

Sparse

No parallel
CPU only

Dense

Parallel
CPU
Dense

200 0.03401 0.02456 0.01505 0.01388

500 0.14337 0.14180 0.09782 0.08635

2k 2.84872 3.14546 1.83264 1.78103

10k 54.11942 57.37445 35.82635 35.37565

25k 341.13466 383.26233 240.27718 NO

70k 2649.34057 2821.18607 NO NO

TABLE IV. ADMITTANCE MATRIX (YBUS) ELEMENT BY ELEMENT

COMPUTATIONAL TIME RESULTS ON PLATFORM 2- CODENAME “STRIX”

Test
System

No parallel
CPU only

Sparse

Parallel
CPU only

Sparse

No parallel
CPU only

Dense

Parallel
CPU
Dense

200 0.0318 0.02131 0.01161 0.01193

500 0.1257 0.12382 0.07042 0.07002

2k 2.5741 2.50483 1.44564 1.44805

10k 50.8096 49.82783 31.96384 31.81366

25k 323.1769 319.76153 213.93833 206.58091

70k 2443.8004154 2760.64439 NO NO

A total of 384 simulations were performed in this paper
(two simulations per case, the second one was recorded to
avoid tendencies caused by the first-time cost). Numerical
results of all experiments are shown in Tables III to X. Overall
results show the Ybus formation element by element results in
the worst algorithm when compared with the matrix approach;
it is right for all multi-core platforms and implementations:
parallel or not and sparse/dense. Dense matrix approach
shows better performance for a smaller system; however, the
memory requirements of the ACTIVSg70k makes it
impossible to run dense matrix calculation across all
platforms. Finally, parallel computing makes the calculations
faster for all the platforms. Codename ‘Super’ and ‘Mega’
were the fastest multi-core platforms, the higher CPU clock
and number of threads makes this configuration to run fast
calculation considering the element by element approach.

TABLE V. ADMITTANCE MATRIX (YBUS) ELEMENT BY ELEMENT

COMPUTATIONAL TIME RESULTS ON PLATFORM 4- CODENAME “SUPER”

Test
System

No parallel
CPU only

Sparse

Parallel
CPU only

Sparse

No parallel
CPU only

Dense

Parallel
CPU
Dense

200 0.02653 0.02264 0.01053 0.01073

500 0.13090 0.13032 0.06877 0.06803

2k 2.81127 2.77271 1.48254 1.49980

10k 53.39978 51.16918 31.66811 31.41345

25k 329.74340 336.42700 203.42113 211.42329

70k 2566.97005 2548.96518 NO NO

TABLE VI. ADMITTANCE MATRIX (YBUS) ELEMENT BY ELEMENT

COMPUTATIONAL TIME RESULTS ON PLATFORM 4- CODENAME “MEGA”

Test
System

No parallel
CPU only

Sparse

Parallel
CPU only

Sparse

No parallel
CPU only

Dense

Parallel
CPU

No Dense
200 0.02214 0.02218 0.01248 0.01180

500 0.12492 0.12393 0.07336 0.07313

2k 2.5723 2.59147 1.54307 1.56215

10k 50.43169 51.06726 33.31061 33.87128

25k 319.33035 326.55104 214.01856 217.42571

70k 2456.43942 2486.31923 NO NO

TABLE VII. ADMITTANCE MATRIX (YBUS) OPTIMIZED CODE

COMPUTATIONAL TIME RESULTS ON PLATFORM 1- CODENAME “BLACK”

Test
System

No parallel
CPU only

Sparse

Parallel
CPU only

Sparse

No parallel
CPU only

Dense

Parallel
CPU
Dense

200 0.00022 0.00024 0.00377 0.00440

500 0.00049 0.00055 0.05489 0.05771

2k 0.00158 0.00147 2.93238 3.08360

10k 0.00499 0.00556 300.08864 287.90158

25k 0.01493 0.01518 NO NO

70k 0.04864 0.05230 NO NO

TABLE VIII. ADMITTANCE MATRIX (YBUS) OPTIMIZED CODE

COMPUTATIONAL TIME RESULTS ON PLATFORM 2- CODENAME “STRIX”

Test
System

No parallel
CPU only

Sparse

Parallel
CPU only

Sparse

No parallel
CPU only

Dense

Parallel
CPU
Dense

200 0.00029 0.00050 0.00376 0.00378

500 0.00050 0.00041 0.03890 0.04507

2k 0.00168 0.00122 2.84101 2.78176

10k 0.00570 0.00441 254.28606 251.90239

25k 0.01507 0.01158 NO NO

70k 0.04987 0.03769 NO NO

TABLE IX. ADMITTANCE MATRIX (YBUS) OPTIMIZED CODE

COMPUTATIONAL TIME RESULTS ON PLATFORM 3- CODENAME “SUPER”

Test
System

No parallel
CPU only

Sparse

Parallel
CPU only

Sparse

No parallel
CPU only

Dense

Parallel
CPU
Dense

200 0.00022 0.00021 0.00020 0.0021
500 0.00042 0.00044 0.0038 0.0035
2k 0.00145 0.00141 0.0143 0.0163
10k 0.00453 0.00447 0.00495 0.00489
25k 0.01162 0.01144 0.01290 0.01270
70k 0.03936 0.03925 0.04301 0.04330

TABLE X. ADMITTANCE MATRIX (YBUS) OPTIMIZED CODE COMPUTATIONAL

TIME RESULTS ON PLATFORM 3- CODENAME “MEGA”

Test
System

No parallel
CPU only

Sparse

Parallel
CPU only

Sparse

No parallel
CPU only

Dense

Parallel
CPU
Dense

200 0.00026 0.00026 0.00025 0.00026

500 0.00078 0.00074 0.00046 0.00046

2k 0.00147 0.00167 0.00142 0.00161

10k 0.00477 0.00490 0.00488 0.00478

25k 0.01247 0.01869 0.01279 0.01251

70k 0.04419 0.04316 0.04291 0.04317

The numerical results show the use of parallel computing
is marginally better than using the non-parallel solution.
However, the marginal difference is present in almost all the
assessed cases as a consequence, the parallel computing looks
like a better option (if possible). The matrix formation
approach to building the Ybus makes the calculation less
demanding when comparing computing times. The use of a

�������������	
��	�
������������������������	����
���

dense matrix representation was not possible in codenames
“Black” and “Strix” as these approaches put the burden on the
RAM requirements. The use of sparse matrix (parallel and
non-parallel calculations) resulted in the fastest method, and it
is basically attributable to two elements: (1) MATLAB is a
numerical computing environment which uses a proprietary
programming language with particular emphasis on
mathematical calculations, and matrix approach, (2) the
matrix approach is already a more efficient way of using and
accessing memory that speeds up calculations with using
sparse representation.

V. CONCLUSIONS

This paper presents the fundamentals of two approaches to
calculate the admittance matrix of electrical power systems.
The computational time is used to compare the performance
of multi-core platforms, and four different computing systems
are used to calculate the admittance matrix of six tests system,
algorithm implementation has included sparse/dense matrix
representation of Ybus and parallel/non-parallel computing.
The input data for both algorithms was the same; it is based
on the standard connectivity and series admittance description
used in many power system analysis software and the data
formation time is not part of the computational time. The
element by element exhibit the worst computational time
performance, the nature of the approach requires searching
and element inside the power system structure to be added into
the admittance matrix. Finding an individual admittance
element inside a data structure of the power system requires is
a computational consuming process, the admittance matrix
program instruct the CPU a request for a specific element
inside the memory, but searching the memory location of that
piece of information requires more time than the time required
to move a whole allocated data in the memory, the lasted
approach is used by the matrix approach and makes it more
efficient in computational time. Overall results show that the
Ybus formation with the element-by-element approach results
in the worst algorithm when compared with the matrix
approach. Parallel computing implementation tends to
produce slightly faster results when compared within selected
multi-core platforms.

REFERENCES

[1] A. Perilla, J. L. Rueda Torres, S. Papadakis, E. Rakhshani, M. van der

Meijden, and F. Gonzalez-Longatt, “Power-Angle Modulation

Controller to Support Transient Stability of Power Systems Dominated

by Power Electronic Interfaced Wind Generation,” Energies, vol. 13, no.

12, p. 3178, Jun. 2020, doi: 10.3390/en13123178.

[2] F. S. Gorostiza and F. Gonzalez-Longatt, “Deep Reinforcement

Learning-Based Controller for SOC Management of Multi-Electrical

Energy Storage System,” IEEE Trans. Smart Grid, pp. 1–1, 2020, doi:

10.1109/TSG.2020.2996274.

[3] C. Adiyabazar, M. N. Acosta, F. Gonzalez-Longatt, J. L. Rueda, and P.

Palensky, “Assessment of Under-Frequency Load Shedding in

Mongolia Considering Inertia Scenarios,” in 2020 IEEE PES Innovative
Smart Grid Technologies Europe (ISGT-Europe), Jun. 2020, pp. 1256–

1261, doi: 10.1109/ISIE45063.2020.9152584.

[4] M. N. Acosta, D. Pettersen, F. Gonzalez-Longatt, J. Peredo Argos, and

M. A. Andrade, “Optimal Frequency Support of Variable-Speed

Hydropower Plants at Telemark and Vestfold, Norway: Future

Scenarios of Nordic Power System,” Energies, vol. 13, no. 13, p. 3377,

Jul. 2020, doi: 10.3390/en13133377.

[5] IEEE, IEEE Std 399. Recommended Practice for Industrial and
Commercial Power Systems Analysis (Brown Book), vol. 1995, no. Lcc.

1998.

[6] A. Peña Asensio, F. Gonzalez-Longatt, S. Arnaltes, and J. L. Rodríguez-

Amenedo, “Analysis of the Converter Synchronizing Method for the

Contribution of Battery Energy Storage Systems to Inertia Emulation,”

Energies, vol. 13, no. 6, p. 1478, Mar. 2020, doi: 10.3390/en13061478.

[7] A. Perilla, S. Papadakis, J. L. Rueda Torres, M. van der Meijden, P.

Palensky, and F. Gonzalez-Longatt, “Transient Stability Performance of

Power Systems with High Share of Wind Generators Equipped with

Power-Angle Modulation Controllers or Fast Local Voltage

Controllers,” Energies, vol. 13, no. 16, p. 4205, Aug. 2020, doi:

10.3390/en13164205.

[8] H. Chamorro, F. Gonzalez, K. Rouzbehi, R. Sevilla, H. Chavez, and V.

Sood, “Innovative Primary Frequency Control in Low-Inertia Power

Systems Based on Wide-Area RoCoF Sharing,” IET Energy Syst.
Integr., Feb. 2020, doi: 10.1049/iet-esi.2020.0001.

[9] G. W. Stagg and A. H. El-Abiad, Computer methods in power system
analysis. New York: McGraw-Hill, 1968.

[10] T. Krechel, F. Sanchez, F. Gonzalez-Longatt, H. Chamorro, and J. L.

Rueda, “A Transmission System Friendly Micro-grid: Optimising

Active Power Losses,” 2019.

[11] M. N. Acosta, F. Gonzalez-Longatt, S.Denysiuk, and H. Strelkova,

“Optimal settings of Fast Active Power Controllers: Nordic Case,” 2020.

[12] E. Rakhshani, A. Perilla, J. R. Torres, F. G. Longatt, T. B. Soeiro, and

M. Van Der Meijden, “FAPI Controller for Frequency Support in Low-

Inertia Power Systems,” IEEE Open Access J. Power Energy, pp. 1–1,

2020, doi: 10.1109/OAJPE.2020.3010224.

[13] W. F. Tinney and W. S. Meyer, “Solution of Large Sparse Systems by

Ordered Triangular Factorisation,” IEEE Trans. Automat. Contr., vol.

18, no. 4, pp. 333–346, 1973, doi: 10.1109/TAC.1973.1100352.

[14] F. Gonzalez-Longatt, J. L. Rueda, and D. Bogdanov, “Assessment of the

Critical Clearing Time in Low Rotational Inertia Power Systems,” in

2018 20th International Symposium on Electrical Apparatus and
Technologies (SIELA), Jun. 2018, pp. 1–4, doi:

10.1109/SIELA.2018.8447128.

[15] R. Idema, D. J. P. Lahaye, C. Vuik, and L. Van Der Sluis, “Scalable

Newton-Krylov solver for very large power flow problems,” IEEE
Trans. Power Syst., vol. 27, no. 1, pp. 390–396, Feb. 2012, doi:

10.1109/TPWRS.2011.2165860.

[16] Z. Li, V. D. Donde, J. C. Tournier, and F. Yang, “On limitations of

traditional multi-core and potential of many-core processing

architectures for sparse linear solvers used in large-scale power system

applications,” 2011, doi: 10.1109/PES.2011.6039675.

[17] “What is GPGPU? Definition and FAQs | OmniSci.”

https://www.omnisci.com/technical-glossary/gpgpu (accessed Aug. 30,

2020).

[18] J. J. Grainger and W. D. Stevenson, Power system analysis. New York ;

London: McGraw-Hill, 1994.

[19] H. Saadat, Power system analysis, 3rd ed. [United States]: PSA Pub.,

2010.

[20] H. E. Brown, Solution of large networks by matrix methods, 2nd ed. New

York ; Chichester: Wiley, 1985.

[21] J. Arrillaga and C. P. Arnold, Computer analysis of power systems.

Chichester, England ; New York: Wiley, 1990.

[22] F. Milano, Power system modelling and scripting, 1st ed. New York:

Springer, 2010.

[23] “Sparse matrices (scipy.sparse) — SciPy v1.5.2 Reference Guide.”

https://docs.scipy.org/doc/scipy/reference/sparse.html (accessed Aug.

30, 2020).

[24] “Electric Grid Test Cases.” https://electricgrids.engr.tamu.edu/electric-

grid-test-cases/ (accessed Jul. 23, 2020).

[25] A. B. Birchfield, T. Xu, K. M. Gegner, K. S. Shetye, and T. J. Overbye,

“Grid Structural Characteristics as Validation Criteria for Synthetic

Networks,” IEEE Trans. Power Syst., vol. 32, no. 4, pp. 3258–3265, Jul.

2017, doi: 10.1109/TPWRS.2016.2616385.

�������������	
��	�
������������������������	����
���

	2020Gonzalez-LongattMulti_POSTPRINT (IEEE)
	09320060

