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Abstract—This paper presents a comparison of 
computational time required to build the admittance matrix of 
five test systems (ranging from 200 to 70,000 nodes) considering 
two formation approaches: element-by-element and matrix 
approach. The algorithms have been implemented in 
MATLABTM and tested in four multi-core platforms. 
Implementations include sparse and dense matrix 
representation and parallel/non-parallel computing. Results 
show the matrix approach considering sparse representation 
and parallel computing is the best approach in computing time. 

Keywords—admittance matrix, computing time, hardware, 
power systems analysis, software. 

I. INTRODUCTION

The analysis of even modest-sized power systems requires 
the use of appropriate tools to perform the calculation; it is 
where appropriate computer programs and well-designed 
software play a significant role [1]. Computational time spent 
in the power system study becomes a crucial element when 
the results are required in a very short time frame, especially 
if the application is desired to provide a response in real-time 
[2]. The availability of powerful computational hardware 
together with novel mathematical approaches used for 
network solution are two fundamental approaches in the 
development of real-time applications [3], [4]. 

The power system studies require the calculation of 
different types of matrices. The positive sequence admittance 
matrix is typically used in the calculation of the classical 
power flow calculations; also, the Jacobian matrix is needed 
when the load flow calculations are performed with the 
Newton-Raphson algorithm. The positive, negative, and zero 
sequence impedance matrices are calculated when the 
asymmetrical short circuit current calculations are required. 
However, many other matrices are used in power systems 
analysis; as a consequence, matrices formation and matrix 
algebra are two essential tools taken into consideration when 
developing real-time applications.  The power flow study is 
the most frequently used in power system analysis because it 
is an essential tool for system planning and operation [5], [6]. 
It is used to determine the voltage, current, active, and reactive 
power and power factor in a power system; however, the 

classical load flow is used as input to much other power 
system analysis, for instance, as the input of the power system 
stability analysis, providing the steady-state conditions prior 
to a disturbance [1], [7], [8].  

The power flow analysis finds its roots in the use of the 
mesh-current and node-voltage analysis methods described in
introductory electrical circuit theory texts. However, the terms 
loop and bus are frequently used in place of mesh and node.
Historically, the first computer attempts to solve the power 
flow problem was based in loop equations which did not 
exploit the capability of the computers. As a consequence, 
limited success was basically achieved due to the 
computational burden and limited computer memory 
available [9], [10], [11]. The node-voltage method or nodal 
analysis directly references bus quantities using the bus 
admittance matrix has been the most popularly used method 
by load flow analysis software. The nodal admittance matrix 

(or just admittance matrix) Ybus is a Nbus�Nbus matrix
describing the nodal admittances of a Nbus buses power system 
[9], [12]. The admittance matrix has several properties; one of 
them is that the matrix is heavily weighted in the main 
diagonal and highly sparse. This is a consequence of the 
typical topology of a power system which has a relative 
absence of certain problem interconnections [13], [14].  

Many scientific papers have focused on dealing with the 
problems of power system analysis of large-scale power 
systems. Over the years, many advances have dedicated their 
efforts on improvements in the load flow calculations in 
extensive networks [15], [16]; also, in the use of sparse matrix 
algebra to solving the problem of extensive power systems. 
Most recent advances include exploiting the value of the 
computational hardware [16]: multi-core CPU (central 
processing unit) [16] and many-core GPU (graphics 
processing unit ). Traditionally, the computational load related 
to solving a very large-scale power system has relied on the 
use of a mainframe computer or specially designed 
computation architecture located in a university or a research 
lab. However, the modern mainstream of computation 
architectures in current market technically fall into two 
categories: the multi-core CPU and the many-core GPU. 
Although some discussion related to both architectures is 
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presented in this paper, the main focus is the computational 
time assessment on a multi-core CPU. 

This scientific paper presents a univariable assessment of 
the performance of the multi-core platform in the processing 
of the admittance matrix. The computational time is used as 
the primary indicator to compare two algorithms of the 
admittance matrix formulation. The primary motivation 
behind investigating the mechanism of speeding up the 
admittance matrix formulation is because some problems like 
contingency analysis might require re-building or modifying 
the admittance matrix. However, some methods are already in 
the literature to modify the already created admittance matrix 
to simulate contingency; the authors are exploring some 
potential alternatives on the benefit of reformulating the whole 
admittance matrix.  

The rest of the paper is organised as follows; Section II 
introduces the main features of the hardware and software 
used in power system application with particular emphasis on 
the admittance matrix implementation in this paper. Section 
III briefly presents the two methodologies implemented for 
the formation of the admittance matrix. One methodology is 
based on using element by element formation, and the second 
method uses an approach based on matrix manipulations, it is 
called ‘Optimised code’, in this paper. Then Section IV is 
dedicated to profusely test the two algorithms of admittance-
matrix formation in four different multi-core platforms. 
Section V concludes and presents new research directions 
found during the course of this research paper. The main 
contribution of this paper is comparing two admittance matrix 
formation approaches by considering the computational time 
used by the algorithms to create the admittance matrix in four 
multi-core platforms. The input data is pre-processed in an 
isolated fashion and the computational time is not included in 
this assessment, the data structure is the same for both 
algorithms, and it consists of the connectivity of the power 
system and the series admittance. The performed experiments 
show that the Optimised code results much faster than the 
element-by-element admittance matrix formation. Although 
the latest is the most straightforward implementation of the 
admittance matrix implementation (in terms of coding), the 
computational time results very high when compared with the 
optimised code, and the reason accessing element-by-element 
the memory requires more CPU time that moving the data as 
a whole memory location area.  

II. COMPUTATIONAL SYSTEMS

This section defines the main features of the hardware and 
software in use (or potential use) in power system analysis 
calculations using a digital computer. 

A. Hardware
Many computational resources are available for power

system analysis. Excluding dedicated mainframes and user-
specific computers, the computational resources available for 
power system analysis includes central processing unit
(CPU), graphics processing unit (GPU), and Field-
programmable gate arrays (FPGAs). Another lesser-known
alternative is the Application Specific Integrated Circuit
(ASIC); this is an integrated circuit (IC) chip customised for a 
particular use rather than a general-purpose use. As a 
consequence of the specificity of the design, the efficiency in 
the calculation is optimised. One specific example of an ASIC 
is the tensor processing unit (TPU). The TPU concept was
introduced by Google in 2016; it is a custom-developed ASIC 

used for the specific application of accelerating artificial 
intelligence (AI) and machine learning (ML) workloads.
Other manufacturers of ML specific ASIC include Nervana, 
Graphcore, Wave systems, etc. 

A Field Programmable Gate Array (FPGA) is a
reconfigurable integrated circuit. The developer can configure 
the FPGA to become any circuit he/she wants to (as long as it 
fits on the FPGA). Therefore, the FPGA is a less common 
alternative to write a power system analysis software for an 
instruction-based architecture, such as a CPU or GPU. 
Although an FPGA can offer an increase in calculation speed, 
the developer is exposed to a very different workflow. A 
classical programmer uses instruction-based hardware most 
programmers are used to, i.e. like CPUs and GPUs, but 
FPGAs are instead configured by specifying a hardware 
circuit.  As a consequence, the engineering cost is typically 
much higher than for instruction-based architectures. Finally, 
even if the FPGA becomes slightly more energy-efficient than 
GPUs, the development of software for FPGAs is still a lot 
more complicated than for GPUs. Well-known manufacturers 
of FPGAs include Xilinx and Intel, but more manufacturers 
are offering options, e.g. Arduino MKR Vidor 4000.  A GPU 
is a programmable chip intended initially for graphics 
rendering. The modern GPU commenced in 1995; it was 
marked by the introduction of the first 3D add-in cards. Later, 
the GPU use expanded by the adoption of the 32-bit operating 
systems and affordable personal computers. However, 2007 
defined the beginning of the era of general-purpose GPUs. 
The big manufacturers of general-purpose GPUs, Nvidia and 
ATI (now acquired by AMD), have been packing their 
graphics cards with ever-more capabilities. By 2007, Nvidia 
released its CUDA® (Compute Unified Device Architecture) 
development environment, and by 2009 the called OpenCL 
(Open Computing Language) became widely supported.

The CPU is responsible for calculations in a computer, and 
for controlling or supervising other parts of the computer. The 
CPU is designed to perform logical and floating-point 
operations on data held in the computer memory. The CPU 
has been the most widely used instruction-based architecture, 
especially for power system applications. The speed of the 
processor clock defines how quickly the CPU functions. The 
CPU is designed to handle a wide range of tasks quickly but 
are limited in the concurrency of tasks that can be running. 
Manufacturers of CPU include Intel, AMD, ARM, CEVA. 
The GPU has a highly parallel structure that makes them more 
effective than general-purpose CPUs for algorithms where the 
processing of large blocks of data is done in parallel. 
However, high clock speed makes the CPU quite attractive 
when sequential programming is used. Although CPU and 
GPU share the concept of the core, they are not equivalent to 
each other; GPU cores perform specialised operations 
whereas CPU cores are designed for general-purpose 
programs. The design architecture of the CPU has only a few 
cores with lots of cache memory that can handle a few 
software threads at a time; for instance, an Inter® Core® i7 -
8850H has 8 cores and 16 threads. On the other hand, a 
modern GPU is composed of hundreds of cores that can 
handle thousands of threads simultaneously; for instance, 
RTX 2080Ti has a total of 4,352 CUDA Cores and 102 
threads.  

B. Software
The software complements the hardware in a

computational system, and it is a collection of data or 

�������������	
��	�
������������������������	����
���



computer instructions that tell the computational system how 
to work. Contrary to a mainframe computer, 70% of the 
desktop and laptop computers around the world use 
Microsoft® Windows®. As a consequence, this paper focused 
on computational systems using Windows® 10 as the 
operating system. However, as this paper is looking into the 
assessment of two different approaches of admittance matrix 
formation, the programming language, and the approach to 
use in the problem solution are crucial aspects to consider. In 
this paper, two approaches to programming are considered: (i) 
Parallel programming and (ii) Sequential programming. The 
first involves the concurrent computation or simultaneous 
execution of processes or threads at the same time. The latter 
involves a consecutively ordered execution of processes. As 
the sequential approach is widely explained in the literature, it 
is not explained here. 

C. Parallel Computing
The use of parallel computing is especially attractive when

solving computationally- and data-intensive problems and 
there is the availability of multi-core processors, GPUs, and 
computer clusters. Parallel computing is advantageous when 
the problem to solve requires many calculations 
simultaneously. However, the critical point here is that large 
problems must be able to be split into smaller problems, which 
are then solved at the same time. Parallel computing requires 
the combination of hardware and software able to perform the 
task in a parallel fashion. Regarding hardware, parallel 
computer architecture exists in a wide variety of parallel 
computers: (i) Multi-core computing (ii) Symmetric 
multiprocessing, (iii) Distributed computing and (iv) 
Massively parallel computing. In this paper, the interest is 
centred in the use of multi-core architecture. It allows 
executing program instructions in parallel. The cores are 
integrated onto multiple dies in a single chip package or onto 
a single integrated circuit die and may implement 
architectures such as multithreading, superscalar, vector, or 
very long instruction word (VLIW). The multi-core 
architectures are grouped depending on the characteristics the 
cores: homogeneous that includes only identical cores or 
heterogeneous that includes cores that are not identical.  There 
is a wide range of enabling parallel computing software 
available. The use of some programming tools like the Parallel 
Computing Toolbox™ of MATLAB®, allows users to 
parallelise the problem-solution process without the use of 
more complex elements like CUDA (Compute Unified Device 
Architecture) or MPI (Message Passing Interface)
programming. NVIDIA® originally introduced CUDA®; it is 
a technology that enables users to solve many complex 
problems on their GPU cards. It is a parallel computing 
platform and application programming interface (API). 
CUDA® consists of a parallel computing architecture and 
developer tools, libraries, and programming directives for 
GPU computing. The CUDA® platform is a software layer 
that gives direct access to the GPU’s virtual instruction set and 
parallel computational elements for the execution of compute 
kernels [17]. The Kernel is a code written for execution on the 
GPU. Kernels are functions that can run on a large number of 
threads. The parallelism arises from each thread 
independently running the same program on different data 
[17]. 

III. ADMITTANCE MATRIX FORMATION

Building the network matrices is a burdensome 
computational procedure as obtaining impedance or 

admittance matrices involves inversions and multiplications. 
The admittance matrix is formed from the electrical 
parameters of the power system components (e.g. 
transmission lines, transformers, etc.). Several approaches are 
available for the formation of the admittance matrix; it 
includes using the element-by-element approach (as described 
in many power systems analysis textbooks [18], [19], etc.), 
more computer-oriented approaches take advantages of using 
the incidence [20] and connectivity matrix [21], [22]. In this 
section, a brief introduction to the admittance matrix 
formation is presented. The element-by-element method is 
initially presented, and then a full matrix method using the 
connection matrix is presented. 

A. Nodal Admittance Matrix (Ybus)
The nodal admittance matrix termed the admittance

matrix, Ybus, is a square Nbus�Nbus matrix describing the nodal
admittances of a Nbus buses power system [9]. The Ybus is a
heavily weighted matrix in the main diagonal and is highly 
sparse; this is caused by the topological properties of the 
power system, as it is not fully meshed (complete graph) [13]. 
Also, the Ybus is symmetric in terms of the principal diagonal
element is negated admittance, unless mutual coupling 
elements are included. Considering a symmetrical and 
balanced power system with Nbus buses, the positive sequence
network model, including all constant impedance elements 
can be represented by the complex admittance matrix (Ybus).

The Nbus�Nbus admittance matrix (Ybus) relates the complex
current injections (Ibus) and the complex voltages (Vbus) at the
buses : 

bus bus busI = Y V (1)

B. Formation of  Ybus Element by Element
Assuming the admittance of each branch element of the

power system is known in the form: yik = gik + jbik. where yik
represents the actual admittance of the power device 
connecting the busbar ‘i’ and ‘k’, gik and bik are the real
(conductance) and imaginary (susceptance) components of yik
respectively. The individual elements of the matrix (Ybus)  are
formulated using straightforward rules. The elements of the 
main diagonal (Yii), also known as self-admittances, are
calculated by the sum of the admittance physically connected 
to the bus [18], [20]: 

1

ˆ

�

� �
N

ii ii
i

Y Y (2)

The off-diagonal elements (Yij), also known as mutual-
admittances, are calculated by the negative branch 
admittances connected directly between the corresponding 
busses. 

ˆ� �ij ijY Y (3)

Note that the Ybus matrix is symmetric unless there are
branches whose admittance is direction-dependent. 

C. Formation of  Ybus Matrix, Matrix approach
Considering a symmetrical and balanced power system

with Nbus buses, the network model, including all constant
impedance elements, can be represented by the complex 

admittance matrix (Ybus). The Nbus�Nbus admittance matrix
related the complex current injections at the buses (Ibus) and
the complex voltages (Vbus):
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bus bus busI = Y V (4) 

the admittance matrix is expressed in terms of the connection 

matrixes:  

� � � �T T
bus from from to to shuntY = C Y + C Y + Y (5) 

where: 

�	


	�

from from,from from from,to to

to to,from from to,to to

Y = Y C + Y C
Y = Y C + Y C

(6) 

� 
� 
 � 

� � �� � � �

� � � �� �

from,from from,tofrom from

to,from to,toto to

Y YY C
Y YY C

where Cfrom and Cto are the connection matrices providing the 

connectivity of the network elements. The (i,j)th element of

of Cfrom and the (i,k) element of Cto are equal to 1 for each

branch i, where the branch i connects from bus j to bus k, any

other element in Cfrom and Cto are zero. The vector Yshunt

represents the shunt admittance of all buses Yshunt =

Gshunt+jBshunt.

D. Sparsity in Electrical Power Systems
Electrical power systems are particular in terms of

topology; the transmission system is often highly 
interconnected, creating a mesh system, but the distribution 
system is mainly a radial connection. The lack of massive 
connectivity between nodes makes the admittance matrix 
populated with many zeros; in other words, it is a sparse 
matrix which contains very few non-zero elements compared 
to the zero elements. Therefore, the use of dense matrix 
representation (2-dimensional array) in power system 
calculation when the admittance matrix is involved becomes 
inefficient, as memory is used to store many zeros. An 
efficient alternative to treat the admittance matrix of real 
power systems (especially huge ones) is the use of sparse 
matrix representation. The sparse matrix representation allows 
saving memory used by storing only the non-zero entries. 
There are several mechanisms to represents sparse matrixes, 
and they depend on the number and distribution of the non-
zero entries. Depending on the sparse matrix representation 
(data structures), it can yield considerable savings in memory 
when compared to the dense matrix representation (2-

dimensional array). For instance, a 10,000�10,000 identity
matrix might require 800 MB memory if the matrix is stored 
considering the full array; but considering sparse 
representation in the memory storage, only approximately 
0.25 MB of memory is needed.  The advantages of memory 
management are apparent. The data structure used in the 
sparse matrix can be divided into two groups depending on the 
purpose: (i) Support efficient modification: DOK (Dictionary 
of keys), LIL (List of lists), or COO (Coordinate list). (ii) 
Support efficient access and matrix operations, such as CSR 
(Compressed Sparse Row) or CSC (Compressed Sparse 
Column) [23].  

IV. EXPERIMENTAL RESULTS

This paper focuses on a multi-core CPU implementation 
of two methods of forming the admittance matrix presented in 
Sections IIIb and IIIc (i.e. multi-core GPU is not considered). 
The algorithms are implemented by the authors using 
MATLABTM R2020a and taking advantage of Parallel 
Computing Toolbox. The performance of implementations in 
each multi-core platform is based on the total calculation time. 
In this paper, we are not interested in measuring the first-time 

cost; as a consequence, the time of running the code a second 
time is taken into consideration. The authors are aware of the 
influence on the computational time of other processes in the 
computation in and operating system like Microsoft Windows, 
as a consequence, the authors have minimised (in a practical 
fashion) the number of processes running during the 
simulations (e.g. reducing the number of start-up processes, 
background running processes, third-party software service) 
at the time of ensuring the stability of the system. Also, the 
authors are running a set of experiments to present a 
probabilistic analysis of multiple runs, but such results will be 
included in a future publication. 

A. Multi-Core Plattforms
Four target platforms consisting of a multi-core CPU are

used for testing purposes in this paper; details are presented in 
Table I. The selected platforms include CPU with 6 and 12 
independent central processing units, including a wide range 
of fast memory located in the processor, CPU cache. The 
processors considered in this assessment are equipped with 12 
and 24 threads.  

B. Test Systems
In this paper, the main interest is to evaluate the

performance of several software/hardware approaches to 
solve the problem of creating the admittance matrix, 
considering massive power systems. As a result, the research 
team decided to use very well-recognised and used synthetic 
electric grid models. The research team at the Smart Grid 
Centre within the Texas A&M Engineering Experiment 
Station (TEES) has created an excellent repository of electric 
grid test cases [24], [25]; those test cases are synthetically 
created with a fictitious representation of the power system, 
but they were designed and created to statistically and 
functionally be similar to actual electric power systems and 
employed confidential critical energy infrastructure 
information (CEII). 

TABLE I. SUMMARY OF THE MAIN CHARACTERISTICS OF THE HARDWARE 

USED FOR THE EXPERIMENTS  

Platform 1 2 3 4 
Code name Black Strix Super Mega 

Processor 

Inter® 

Core® 

i7 -8850H 

Intel® Core® 

i7-10750H 

AMD 
Ryzen™ 
9 3900X 

Intel® 

Xeon® 

W-3235 

Processor 

Base 

Frequency 

2.60 GHz 2.60 GHz 3.80 GHz 3.30 GHz 

CPU Cache 9 MB 12 MB 6 MB 19.25 MB 

#Cores 6 6 12 12 

# of Threads 12 12 24 24 

TABLE II. SUMMARY OF THE MAIN CHARACTERISTICS OF THE TEST 

SYSTEMS USED FOR THE EXPERIMENTS 

Test System Name Nbus Representative 
ACTIVSg200 200 Central  Illinois 

ACTIVSg500 500 South Carolina 

ACTIVSg2000 2000 Texas 

ACTIVSg10k 10,000 Western USA 

ACTIVSg25k 25,000 North-eastern USA 

ACTIVSg70k 70,000 Eastern USA 

The sparsity is an intrinsic feature of the admittance matrix 
(Ybus). The sparsity is present in the admittance matrix
because of the absence of certain interconnections; the normal 
power system is not a fully connected graph. Mathematically 
speaking, the sparsity of the admittance matrix is defined as: 
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� �2
100%Z

bus

N
Sparcity

N
� � (7) 

where Nz represents the total number of zero elements in the

admittance Nbus�Nbus matrix. Typical power systems have a
highly sparse admittance matrix with sparsity as high as 97%. 
For instance, the test system ACTIVSg70k, Nbus = 70,000

buses, a total of 4.9�109 elements, Nz = 236,636 are not zero,
as a consequence, the sparsity of the admittance matrix results: 
99.99517%. 

C. Experiments and results
The multi-core cross-platform assessment includes two

main experiments: (i) Ybus formation element by element
(section IIIb), and (ii) Matrix formation (section IIIc) called 
from here onward ‘Optimised Code’. The input data is the 
same in both cases; it uses a data structure having the 
connectivity and individual series impedances, as a 
consequence, the assessment of simulation time is based on 
the same input data and the total time of simulation measures 
the time used by the admittance matrix algorithm. Space and 
dense matrix representation are considered for each 
experiment, and parallel/non-parallel computing are 
considered.  

TABLE III. ADMITTANCE MATRIX (YBUS) ELEMENT BY ELEMENT 

COMPUTATIONAL TIME RESULTS ON PLATFORM 1- CODENAME “BLACK” 

Test 
System 

No parallel 
CPU only 

Sparse 

Parallel 
CPU only 

Sparse 

No parallel 
CPU only 

Dense 

Parallel 
CPU 
Dense 

200 0.03401 0.02456 0.01505 0.01388 

500 0.14337 0.14180 0.09782 0.08635 

2k 2.84872 3.14546 1.83264 1.78103 

10k 54.11942 57.37445 35.82635 35.37565 

25k 341.13466 383.26233 240.27718 NO 

70k 2649.34057 2821.18607 NO NO 

TABLE IV. ADMITTANCE MATRIX (YBUS) ELEMENT BY ELEMENT 

COMPUTATIONAL TIME RESULTS ON PLATFORM 2- CODENAME “STRIX” 

Test 
System 

No parallel 
CPU only 

Sparse 

Parallel 
CPU only 

Sparse 

No parallel 
CPU only 

Dense 

Parallel 
CPU 
Dense 

200 0.0318 0.02131 0.01161 0.01193 

500 0.1257 0.12382 0.07042 0.07002 

2k 2.5741 2.50483 1.44564 1.44805 

10k 50.8096 49.82783 31.96384 31.81366 

25k 323.1769 319.76153 213.93833 206.58091 

70k 2443.8004154 2760.64439 NO NO 

A total of 384 simulations were performed in this paper 
(two simulations per case, the second one was recorded to 
avoid tendencies caused by the first-time cost). Numerical 
results of all experiments are shown in Tables III to X. Overall 
results show the Ybus formation element by element results in
the worst algorithm when compared with the matrix approach; 
it is right for all multi-core platforms and implementations: 
parallel or not and sparse/dense. Dense matrix approach 
shows better performance for a smaller system; however, the 
memory requirements of the ACTIVSg70k makes it 
impossible to run dense matrix calculation across all 
platforms. Finally, parallel computing makes the calculations 
faster for all the platforms. Codename ‘Super’ and ‘Mega’ 
were the fastest multi-core platforms, the higher CPU clock 
and number of threads makes this configuration to run fast 
calculation considering the element by element approach.  

TABLE V. ADMITTANCE MATRIX (YBUS) ELEMENT BY ELEMENT 

COMPUTATIONAL TIME RESULTS ON PLATFORM 4- CODENAME “SUPER” 

Test 
System 

No parallel 
CPU only 

Sparse 

Parallel 
CPU only 

Sparse 

No parallel 
CPU only 

Dense 

Parallel 
CPU 
Dense 

200 0.02653 0.02264 0.01053 0.01073 

500 0.13090 0.13032 0.06877 0.06803 

2k 2.81127 2.77271 1.48254 1.49980 

10k 53.39978 51.16918 31.66811 31.41345 

25k 329.74340 336.42700 203.42113 211.42329 

70k 2566.97005 2548.96518 NO NO 

TABLE VI. ADMITTANCE MATRIX (YBUS) ELEMENT BY ELEMENT 

COMPUTATIONAL TIME RESULTS ON PLATFORM 4- CODENAME “MEGA” 

Test 
System 

No parallel 
CPU only 

Sparse 

Parallel 
CPU only 

Sparse 

No parallel 
CPU only 

Dense 

Parallel 
CPU 

No Dense 
200 0.02214 0.02218 0.01248 0.01180 

500 0.12492 0.12393 0.07336 0.07313 

2k 2.5723 2.59147 1.54307 1.56215 

10k 50.43169 51.06726 33.31061 33.87128 

25k 319.33035 326.55104 214.01856 217.42571 

70k 2456.43942 2486.31923 NO NO 

TABLE VII. ADMITTANCE MATRIX (YBUS) OPTIMIZED CODE 

COMPUTATIONAL TIME RESULTS ON PLATFORM 1- CODENAME “BLACK” 

Test 
System 

No parallel 
CPU only 

Sparse 

Parallel 
CPU only 

Sparse 

No parallel 
CPU only 

Dense 

Parallel 
CPU 
Dense 

200 0.00022 0.00024 0.00377 0.00440 

500 0.00049 0.00055 0.05489 0.05771 

2k 0.00158 0.00147 2.93238 3.08360 

10k 0.00499 0.00556 300.08864 287.90158 

25k 0.01493 0.01518 NO NO 

70k 0.04864 0.05230 NO NO 

TABLE VIII. ADMITTANCE MATRIX (YBUS) OPTIMIZED CODE 

COMPUTATIONAL TIME RESULTS ON PLATFORM 2- CODENAME “STRIX” 

Test 
System 

No parallel 
CPU only 

Sparse 

Parallel 
CPU only 

Sparse 

No parallel 
CPU only 

Dense 

Parallel 
CPU 
Dense 

200 0.00029 0.00050 0.00376 0.00378 

500 0.00050 0.00041 0.03890 0.04507 

2k 0.00168 0.00122 2.84101 2.78176 

10k 0.00570 0.00441 254.28606 251.90239 

25k 0.01507 0.01158 NO NO 

70k 0.04987 0.03769 NO NO 

TABLE IX. ADMITTANCE MATRIX (YBUS) OPTIMIZED CODE 

COMPUTATIONAL TIME RESULTS ON PLATFORM 3- CODENAME “SUPER” 

Test 
System 

No parallel 
CPU only 

Sparse 

Parallel 
CPU only 

Sparse 

No parallel 
CPU only 

Dense 

Parallel 
CPU 
Dense 

200 0.00022 0.00021 0.00020 0.0021 
500 0.00042 0.00044 0.0038 0.0035 
2k 0.00145 0.00141 0.0143 0.0163 
10k 0.00453 0.00447 0.00495 0.00489 
25k 0.01162 0.01144 0.01290 0.01270 
70k 0.03936 0.03925 0.04301 0.04330 

TABLE X. ADMITTANCE MATRIX (YBUS) OPTIMIZED CODE COMPUTATIONAL 

TIME RESULTS ON PLATFORM 3- CODENAME “MEGA” 

Test 
System 

No parallel 
CPU only 

Sparse 

Parallel 
CPU only 

Sparse 

No parallel 
CPU only 

Dense 

Parallel 
CPU 
Dense 

200 0.00026 0.00026 0.00025 0.00026 

500 0.00078 0.00074 0.00046 0.00046 

2k 0.00147 0.00167 0.00142 0.00161 

10k 0.00477 0.00490 0.00488 0.00478 

25k 0.01247 0.01869 0.01279 0.01251 

70k 0.04419 0.04316 0.04291 0.04317 

The numerical results show the use of parallel computing 
is marginally better than using the non-parallel solution. 
However, the marginal difference is present in almost all the 
assessed cases as a consequence, the parallel computing looks 
like a better option (if possible).  The matrix formation 
approach to building the Ybus makes the calculation less
demanding when comparing computing times. The use of a 
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dense matrix representation was not possible in codenames 
“Black” and “Strix” as these approaches put the burden on the 
RAM requirements. The use of sparse matrix (parallel and 
non-parallel calculations) resulted in the fastest method, and it 
is basically attributable to two elements: (1) MATLAB is a 
numerical computing environment which uses a proprietary 
programming language with particular emphasis on 
mathematical calculations, and matrix approach, (2) the 
matrix approach is already a more efficient way of using and 
accessing memory that speeds up calculations with using 
sparse representation.  

V. CONCLUSIONS

This paper presents the fundamentals of two approaches to 
calculate the admittance matrix of electrical power systems. 
The computational time is used to compare the performance 
of multi-core platforms, and four different computing systems 
are used to calculate the admittance matrix of six tests system, 
algorithm implementation has included sparse/dense matrix 
representation of Ybus and parallel/non-parallel computing.
The input data for both algorithms was the same; it is based 
on the standard connectivity and series admittance description 
used in many power system analysis software and the data 
formation time is not part of the computational time. The 
element by element exhibit the worst computational time 
performance, the nature of the approach requires searching 
and element inside the power system structure to be added into 
the admittance matrix. Finding an individual admittance 
element inside a data structure of the power system requires is 
a computational consuming process, the admittance matrix 
program instruct the CPU a request for a specific element 
inside the memory, but searching the memory location of that 
piece of information requires more time than the time required 
to move a whole allocated data in the memory, the lasted 
approach is used by the matrix approach and makes it more 
efficient in computational time. Overall results show that the 
Ybus formation with the element-by-element approach results
in the worst algorithm when compared with the matrix 
approach. Parallel computing implementation tends to 
produce slightly faster results when compared within selected 
multi-core platforms.  
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