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The University of South-Eastern Norway takes no responsibility for the results and 

conclusions in this student report. 

Summary:  

Skagerak Energi AS uses the snow water equivalency (SWE) in models for predicting 

inflow of water to hydroelectric power plant reservoirs. Today, snow depth and density 

measurements are done manually and because of the remote locations this must be done 

at, this is a slow and expensive process. In this thesis, data from a proposed remote node 

system based on capacitance measurements of the snow designed in an earlier thesis at 

USN, is used to evaluate if capacitance measurements is a suitable replacement for the 

manual snow depth and density measurements. To evaluate this, data from the remote 

node is analyzed and various machine learning (ML) methods is used to create data 

driven models that estimate the snow depth and density. Based on the ML models 

created, it seems the capacitance based remote node can be used to estimate snow depth 

and density during winter, but in the spring when Skagerak Energi AS wants to measure 

the SWE, the snow contracts because of the warmer temperatures and loses contact with 

the capacitance sensors. To solve this challenge, a non-contact sensor could be 

considered as an alternative. 
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Preface 
This thesis is written as the last part of my two year master program in Industrial IT and 

Automation at the University of South-Eastern Norway (USN), and builds on the results from 

a master project and master thesis from former students at USN in collaboration with Skagerak 

Energi AS.  

Skagerak Energi AS as the external partner for this thesis has requested a solution for a cheaper 

and faster way of measuring SWE. In the earlier work at USN mentioned, a suggestion for 

what type of sensor to use has been proposed, and a prototype of a remote node has been built.  

To evaluate how well this proposed solution is, I have analyzed data from sensors in MATLAB 

and created several ML models using different frameworks and methods. Originally, the plan 

was to use C# and ML.NET for the machine learning, but making neural networks is not 

available in ML.NET natively and the ML algorithms available gave inadequate results, so 

most of the machine learning has been done in python using Keras.  

This thesis was worked on January-May 2021, and measurements were done from November 

to April 2021. In spring when the temperature starts to get warmer, it turns out that the proposed 

model can’t be used because the snow contracts and looses contact with the capacitance 

sensors, so even though the models seem to work during winter, the remote nodes are not a 

solution to Skagerak Energi AS’ problem since they need the SWE estimates in spring. 

I want to thank the supervisors of this thesis, Nils-Olav Skeie, Håkon Viumdal, and Magnus 

Brastein for their guidance in the duration of this project, and especially Nils-Olav Skeie for 

collecting the data from the sensors and doing manual measurements of snow depth and 

density, and pictures of the prototypes for use in this thesis. 

 

Porsgrunn, 18.05.21 

 

Henrik Nikolai Vahl 
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Nomenclature 
Abbreviations 

Short form Meaning 

AI Artificial Intelligence 

API Application Programming Interface 

Csv Comma Separated Values 

EDGE Enhanced Data rates for GSM Evolution 

GPR Gaussian Process Regression 

GPRS General Packet Radio Service 

GUI Graphical User Interface 

LoRaWAN Long Range Wide Area Network 

ML Machine Learning 

MSc Master of Science 

NIPALS Nonlinear Iterative Partial Least Squares 

NN Neural Network 

ONNX Open Neural Network Exchange 

PCA Principal Component Analysis 

PC Principal Component 

PLS-R Partial Least Squares Regression 

SWE Snow Water Equivalent 

USB Universal Serial Bus 

USN University of South-Eastern Norway 
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Symbols

Symbol Description Unit 

ℎ𝑠  Snow depth cm 

𝜌 Snow density g/cm3 

𝜌w Water density g/cm3 

𝑀𝑎𝑠𝑠𝑆𝑎𝑚𝑝𝑙𝑒 Mass of snow sample kg 

𝑉𝑜𝑙𝑢𝑚𝑒𝑆𝑎𝑚𝑝𝑙𝑒 Volume of snow sample m3 

𝑟 Radius of measurement pipe m 

ℎ Snow depth in measurement pipe m 
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1 Introduction 
This introduction chapter provides information about the motivations for this thesis as well as 

the work this thesis is a continuation of, the objectives this thesis sets out to solve, and an 

overview of the report structure. 

 

1.1 Background 

This master thesis is a continuation of a MSc group project [1] and MSc master thesis [2] from 

2019 and 2020 respectively, where a sensor for measuring snow depth and snow density was 

designed.  

The external partner for this project, Skagerak Energi AS, is a power producer in southern 

Norway that delivers large amounts of clean renewable energy from hydroelectric power plants 

[3]. In places like Norway with cold winters large amounts of water is stored as snow during 

winter, and as the snow melts in the spring, it finds its way into the reservoirs of hydroelectric 

power plants. The hydrologist group at Skagerak Energi AS develops models to predict the 

inflow of water for energy production at hydroelectric power plants. Snow melt will highly 

affect the inflow to the reservoirs and is an important input to these prediction models. 

Presently, Skagerak Energi AS is making manual measurements of snow depth and snow 

density at the end of winter. This is an expensive and time-consuming process as these 

measurements often have to be done in remote locations not reachable by car. 

USN has worked on finding a small, low cost, and energy efficient alternative through a MSc 

project and MSc master thesis already. In the 2019 group project, several solutions were 

considered and tested to find a good solution [1]. The proposed solution from the project was 

a system based on capacitance measurements. This proposed system was further developed in 

a 2020 master thesis. In the 2020 thesis, a prototype of the system was designed and built. 

Some measurements were done to test that the measurements worked and partial least squares 

regression (PLS-R) models for snow depth, snow density, and SWE were created [2]. 

1.2 Objectives 

Skagerak Energi AS is looking for a measurement system that can be deployed remotely to 

measure snow depth and snow density and transmit information to their data center to be used 

for inflow prediction. A measurement system based on capacitance was developed in 2020 [2] 

and in this thesis, data from this system will be analyzed and used to create models based on 

machine learning to evaluate how well this system works. In the 2020 master thesis, PLS-R 

models were created, but the models were unsatisfactory. There was limited snow in 2020 to 

take measurements, so the data set used was quite small and this may have had an effect [2]. 

In this thesis, new data will be used together with machine learning methods will be created to 

evaluate if the system proposed and designed earlier at USN is a suitable replacement for the 

manual measurements Skagerak Energi AS is currently doing. 
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The snow water equivalent (SWE) that is used in Skagerak Energi AS’ prediction models, is 

calculated from the snow depth and snow density. Therefore, with models based on the new 

measurement system that can estimate both snow depth and snow density, the SWE can also 

be estimated using equation (1.1). 

 

𝑆𝑊𝐸 = ℎ𝑠
𝜌

𝜌𝑤
                                                                         (1.1)  

 

Where hs is the snow depth, ρ is the snow density, and ρw is the density of water, measured as 

1 g/cm3. SWE is measured in centimeters of water. 

1.3 Report Structure 

This report consists of a short overview of some of the methods that are used today, when 

measuring SWE, as well as a description of the system that the models in this project is based 

on. Then a theory chapter introduces different machine learning frameworks and concepts 

before data is analyzed and presented in chapter 4. Here the data that is used to train the 

machine learning models is analyzed, to see if there are any correlations that a machine learning 

model could take advantage of. Finally, the model creation and results are described in chapter 

5, before we are discussing the results of the models and the viability of a continued 

development of the system. 
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2 System Description 
 

The data used in this thesis to evaluate the usage of capacitance sensors for snow depth and 

snow density, comes from primarily two prototypes built the autumn of 2020, based on the 

prototype created in the spring of 2020 MSc thesis [2]. This chapter describes the prototypes 

that were used to collect the data, and used to create the machine learning models for snow 

depth and snow density. Furthermore, we give a short overview of other ways of measuring 

SWE used today. 

2.1 Snow Water Equivalent Sensors 

The system used in this thesis is based on capacitance measurements, but there are other ways 

to measure SWE available today. This section gives a short overview of some of these 

sensors. 

 

2.1.1 Snow Pillow 

Snow pillows are pillows filled with an antifreeze liquid that is placed on the ground before 

the first snow fall. As snow accumulates on the pillow, the pressure in the pillow increases, 

and the SWE can be calculated. Snow pillows are one of the cheaper options when it comes 

to monitoring SWE, but it comes with some challenges.  

The ground where the pillow is placed must be prepared before installation as it has to be 

levelled and well drained. There is also a possibility that the pillow may puncture, for 

instance because of damages due to animals. Effects like bridging causes some of the weight 

of snow on top of the snow pillow to be transferred to the surroundings, and can make the 

measurements uncertain. When installed in remote locations, there is also the challenge of 

transporting several 100s liters of anti-freeze liquid to fill the pillow in difficult and remote 

terrain [4]. 

 

2.1.2 Snow Scale 

Snow scales are large platforms with sensors to measure the weight of the snow on top of 

them. Like snow pillows, it is necessary to prepare the ground as the snow scale should be 

levelled and well drained. The groundwork for installing a snow scale is often more 

comprehensive than a snow pillow and may be a challenge in remote locations if an 

excavator is needed. They are more expensive than snow pillows, but since there is no anti-

freeze liquid used, there is nothing that can leak and cause any environmental damage. Also, 

animals will not be able to cause any damage. Furthermore, the size of snow scales can be 

changed easier than a snow pillow, when a larger area needs to be covered. In addition, the 

latter also reduces the risk of bridging [4]. 
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2.1.3 Gamma Attenuation Sensor 

The CS725 gamma attenuation sensor by Campbell Scientific is designed to directly measure 

SWE in a snowpack. The basis of the technique used, is that the ground underneath the snow 

contains some natural radioactive elements. This implies that, there is a certain amount of 

electromagnetic energy that always radiates. The CS725 sensor measures the electromagnetic 

energy from the ground, and when there is water between the ground and the sensor, the 

gamma rays from the ground are attenuated. Based on the attenuation level, the SWE can be 

calculated [5].  

The major advantage of this approach is that the sensor can be connected to a datalogging 

device, so when placed in a remote location, the data could be transmitted digitally, and 

reduce the need for visiting the site. The attenuation isn’t affected by what type of snow it is, 

and hence, the sensor works for any snow or ice. When mounted at a height of 3 meters, the 

sensors measurements cover a quite large area; 50-100m2. The sensor is dependent on enough 

potassium and thallium present in the ground, and performance can thus be site specific [4]. 

In addition it is more expensive than snow pillows and snow scales and has an upper limit of 

600mm of snow, though this restriction is dependent on the ground radiation [4]. 

 

2.2 System description 

 There are three different prototypes used to collect data for this thesis. They are all based on 

the same sensors but vary slightly and are placed at different locations. 

 

2.2.1 Prototypes 

The prototypes measure snow depth and snow density based on capacitive soil measurement 

sensors. Five of these sensors are mounted on each prototype, at different heights to be able to 

measure the capacitance at different snow depths. Variations of snow density should change 

the output of the sensors, and if the variations are consistent enough, a model estimating snow 

density can be created using machine learning. To find the SWE, the snow depth is also 

required. We will develop a model estimating the snow depth, based on the same 

measurements, although this might prove challenging, at least outside of just being able to 

estimate the depth based on just the height of the highest moisture sensor covered with snow 

and setting the snow depth equal to the sensor height from the ground.  

The three prototypes used are:  

1. This prototype is located at Sjusjøen and was installed before the first snow fall winter 

of 2020. The location is well suited for measuring, as the temperatures are reliably sub-

zero during the whole winter, making it a good place to get realistic density 

measurements, as snow accumulates naturally on the sensors. The location is a much 

more snow safe are than Porsgrunn where USN in located. The prototype is built using 

a light gray plastic pipe with a height of 2 meters and a diameter of 68 mm. The soil 

moisture sensors are mounted on the same side of the pipe at heights of 10, 30, 50, 80, 

and 110 cm. In addition to the soil moisture sensors, there is a temperature sensor 
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mounted at the top of the prototype. Finally, there are two pressure sensors. One located 

at the base measuring snow pressure, but possibly due to the membrane being too small 

the measurements do not vary much. In addition, the small size might face challenges 

with bridging. The second pressure sensor is inside the pipe and measures atmospheric 

pressure [6]. Figure 2.1 shows what the prototype looks like. The picture is from 

December 2020 and shows what it looks like when the first three moisture sensors are 

covered.  

2. Prototype #2 is built differently than the two others in that instead of a pole, it is a 

plastic box with dimensions 20x15x7.5 cm. This prototype has been used in both 

Sjusjøen and Porsgrunn. This prototype has four capacitance sensors as well as a 

temperature sensor and an ultrasonic sensor which data is not considered in this thesis. 

The capacitance sensors on this prototype varies from the others. One of the sensors 

has a Veroboard as a capacitance plate with a bigger area, 16x6cm. One has two 

standard plates of 6x2cm. The remaining two has standard 6x2cm plates. The 

capacitance sensors are mounted on different the sides of the box [6].  

3. Prototype #3 is similar to prototype #1, but the pipe is black, and the height is somewhat 

lower, 1.8 m and the diameter is 110 mm. It is located in Porsgrunn. The soil moisture 

sensors are mounted at heights of 23, 36, 64, 92, and 122 cm [6].  
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Figure 2.1: Prototype #1 in Sjusjøen December 2020 

2.2.2 Data acquisition 

The prototypes have an Arduino in it that is connected to all the sensors, taking measurements 

every minute, transmitting them to a Windows PC every minute via USB where the data is 

logged. The sensor values along with an ID for each prototype is stored in a .csv file every 

thirty minutes. The log file also contains manual measurements of snow depth and snow 

density. These manual measurements were done by Nils-Olav Skeie by inserting a pipe into 

the snow taking a sample and using equation (2.1). The snow depth is measured using the 

measuring tape-scale on the prototype.  

𝑆𝑛𝑜𝑤 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =  
𝑀𝑎𝑠𝑠𝑆𝑎𝑚𝑝𝑙𝑒

𝑉𝑜𝑙𝑢𝑚𝑒𝑆𝑎𝑚𝑝𝑙𝑒
=  1000

𝑀𝑎𝑠𝑠𝑆𝑎𝑚𝑝𝑙𝑒 [𝑔]

𝜋𝑟2ℎ [𝑐𝑚3]
                           (2.1) 
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Where MassSample is the mass from the sample taken with the measurement pipe, r is the 

diameter of the measurement pipe, and h is the snow depth where the sample is taken. 

 

The manual measurements are added to the .csv file along with a flag, marking whether the 

measurements are valid for supervised learning in a machine learning model. After a manual 

measurement is added, it is assumed that the snow depth and density is relatively consistent 

over the next five hours, ten samples, and automatic measurements in this period is marked for 

supervised learning. Figure 2.2 shows an example of a .csv file with the header showing the 

contents of the different fields.   

 

 

Figure 2.2: Part of the contents of a data file from prototype #1 

 

The .csv file contains information about the date and time of the measurement, along with the 

node ID, sensor measurements, the manual snow depth and snow density measurements, 

comments about the manual measurement, and the supervised learning flag. 

2.2.3 Capacitive Soil Moisture Sensor 

The capacitive soil moisture sensors are, as the name suggests, created to measure soil 

moisture. For its intended use, the sensor is inserted into soil, and since capacitance varies with 

the permittivity of the dielectric medium. And the permittivity of soil is dependent of, among 

other things, moisture, the output of the sensor will depend on the soil moisture [7]. For the 

nodes used in this thesis, the dielectric medium the soil moisture sensors are interacting with 

is air and snow instead of soil with the variations in permittivity when the sensors are covered 

in snow are large enough to measure changes in the density of the snow. Figure 2.3 shows the 

type of capacitive soil moisture sensors used in the nodes. The probe consists of a coplanar 

capacitance that is connected to the output of a 555 timer as part of a low pass filter. This 

creates a sawtooth waveform where the peak to peak depends on the dielectric medium of the 

probe [7]. A peak detector is then used to provide the output of the sensor.  
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Figure 2.3: Capacitive soil moisture sensor [8] 

2.2.4 Data communication 

The measurements that are collected by the nodes must be transmitted to the data center to be 

used with models estimating the SWE and further to be used in the models for the inflow of 

water to the reservoir. Considering the remote locations these nodes will be placed in, some 

form of wireless communication protocol is preferred. There are primarily two things to take 

into consideration when it comes to choosing a protocol for this system, the first being range 

and the second power consumption. To get the data to the data center, the nodes would need 

internet access. 

One option is to take advantage of the existing infrastructure of the mobile network. In Norway, 

the coverage is quite extensive, but whether this is an option or not depends on the coverage in 

at the node locations. It would be a good solution as no new infrastructure would be built, and 

access to the internet would be available straight from the node. The mobile network protocols 

GPRS, EDGE and newer ones have a high power consumption which could pose a challenge 

[9]. 

Using a satellite internet service might work, but these solutions are generally made for 

household use and are probably not energy effective. 

Other options include long range protocols such as LoRaWAN that has a longer range than the 

mobile network protocols and is more energy efficient [10], but unless there happens to be a 

LoRaWAN network in the area, the infrastructure would have to be built. There is at least one 

open LoRaWAN network available in Norway [11], but without knowledge of where the 

remote nodes will be placed, it’s hard to tell if that specific network will be of use. 

Assuming that there is GPRS or EDGE coverage at the node sites, one of those protocols would 

probably be best to avoid having to set up extra infrastructure and having increased costs with 

both building and maintaining it.  
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3 Theory 
This chapter gives a short overview of some of the machine learning platforms and methods 

used to create data driven models with machine learning. 

 

3.1 Machine Learning Frameworks 

 

TensorFlow 

TensorFlow is a free open source machine learning (ML) platform created by Google, that let 

you build, train, and deploy machine learning models [12]. The platform is supporting several 

languages through APIs, but the only language that is covered by the API stability promises is 

python. The other languages with official APIs are JavaScript, C++, Java, Go, and Swift. In 

addition, there is support for other languages like C#, Haskell, Julia, and MATLAB through 

the community [13]. 

 

Keras 

Keras is a commonly used deep learning API, the high-level API, of TensorFlow. Keras comes 

with a lot of different layers, optimizers, and metrics that makes creating and training a ML 

model quickly possible. But if the built-in layers don’t fit your network it’s possible to create 

custom layers. There are also some data processing built in, like image, time-series, and text 

data [14]. 

The available layers allow you create a wide selection of neural networks and there are several 

core, convolution, recurrent, and pooling layers to choose from. 

 Keras is the most adopted deep learning solution and it is used at Netflix and Uber, as well as 

scientific organizations like CERN and NASA [15]. 

 

MATLAB 

MathWorks MATLAB deep learning toolbox lets you build, train, and deploy machine learning 

models through MATLAB. There are apps that can be used to train models without having to 

code anything as the code is generated for you. It is also possible to write your own code. 

MATLAB is the only framework discussed here that isn’t free. The licence for MATLAB is 

quite expensive [16] and few industry businesses use it, but MATLAB is used by a lot of 

educational institutions as well as by research institutions.  

The most popular classification, regression, and clustering algorithms are available. And code 

for C or C++ can be generated for embedded and high-performance applications [17]. 

MATLAB also includes automated machine learning which automatically pre-processes the 

data, extracts features, and identifies the best performing model [18]. 
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The MATLAB models can be exchanged with TensorFlow and TensorFlow models can be 

imported into MATLAB. 

 

ML.NET 

ML.NET is Microsoft’s free machine learning framework for C# and F#. It supports both 

supervised and unsupervised learning of different machine learning algorithms has algorithms 

for different problems like binary classification, regression, anomaly detection, clustering, and 

matrix factorization. ML.NET supports transfer learning where you can import a pre trained 

neural network model created in TensorFlow or following the ONNX standard and use and 

train them but does not support creating neural networks by itself [19]. Microsoft does have 

another open source library called Microsoft Cognitive Toolkit, that supports creating neural 

networks in C#, but development of this library was stopped in 2019  [20]. 

 

scikit learn 

scikit learn is a free, open source machine learning library for python. It provides several 

algorithms for supervised and unsupervised learning and for different problems. It also 

provides tools for every step in the machine learning process, all the way from pre-processing 

to a finished model [21]. Scikit learn is used by several companies, for instance Spotify, and 

the development is financially supported by among others, Microsoft, Fujitsu, and Columbia 

University [22].  

 

Pytorch 

Pythorch is a machine learning framework from Facebook that is open source and free. There 

are two languages available, python and C++. It is a deep learning library, so it can be used to 

create and train neural networks [23]. It supports creating and training neural networks, and 

contains several libraries with tools for handling things like, audio, text, and computer vision 

for use in neural networks [24]. 

 

ONNX 

ONNX, or Open Neural Network Exchange, is an open standard for machine learning models 

from The Linux Foundation created to enable models to easily be transferred from one 

framework to another [25]. Indeed all the frameworks mentioned above support exporting and 

importing ONNX models. ML.NET for instance does not support creating neural networks 

natively, but a neural network model created with TensorFlow can be imported in the ONNX 

format and be used with ML.NET.  

 

3.2 Machine Learning Methods 

There are several machine learning methods available depending on the problem that needs to 

be solved. As shown above, there are several machine learning algorithms and neural 
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networks available. When training these models there are primarily three different approaches 

used, supervised learning, unsupervised learning, and reinforcement learning. In supervised 

learning, both the inputs and outputs of the training data is known. The training of the model 

is based on the error between the model output and the expected output based on the training 

data for a given input. Regression and classification problems are usually done using 

supervised learning. In unsupervised learning, only the input data is provided for training. 

This is often used to find patterns in data like clustering and anomaly detection problems 

[19]. Reinforcement learning, uses a reward/punishment system where the model interacts 

with an environment and gets rewarded, based on the action taken and the model tries to 

maximize the reward. One example of where this could be used, is in a Tic Tac Toe AI, 

where the reward depends on how optimal the next move chosen by the model is. 

 

In this thesis, supervised learning is the training method that will be used. In the models, 

where manual measurements of snow depth and density will be used as expected outputs for 

the models during training, this approach works well Reinforcement learning requires some 

form of interaction with the environment and is thus not a viable method for creating models 

for snow depth and snow density. 

 

Models created using machine learning are data driven models. The models are trained using 

one of several algorithms and methods based on data provided during the training. Data is 

provided as the input in the model, and the model is modified based on the output according 

to the algorithm used. To be able to produce a good model it is therefore necessary to have 

enough, and diverse enough, data during training, as well as using the correct training 

algorithm. For most algorithms, including neural networks, it is generally best to standardize 

the input data in some way to avoid larger values from having a disproportionate effect on the 

output. In some cases, other pre-processing is also done like principal component analysis or 

removing outliers from a data set. 

 

Artificial Neural Network 

Artificial neural networks, or just neural networks (NN), is a machine learning method based 

on the human brain. To give a short overview, they consist of several artificial neurons 

connected to each other in layers, that produces one or more outputs based on one or more 

inputs. The neurons can have several inputs and each input has a weight expressing the 

strength of the connection between the neurons [26]. Each input for the neuron is multiplied 

with its weight, and all are added together with a bias value. Usually this sum is used with an 

activation function, depending on what the network is developed for. A neural network must 

have inputs and an output layer, but between them there can be any number of hidden layers. 

Figure 3.1 shows an illustration of a neural network with two inputs, two hidden layers with 

four neurons, and one output neuron with the connections between them. 
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Figure 3.1: Illustration of a simple neural network structure 

 

During the training of a neural network, the weights and biases of the network is changed. In 

the case of supervised learning, the change is based on the error between the output produced 

by the network, and the expected output given by the training data. There are different types 

of neural networks available, depending on the application at hand, like feedforward neural 

networks, as shown in figure 3.1, or recurrent neural networks where the output of a neuron is 

connected to its input. 

 

Machine Learning Training Algorithms 

There are several popular machine learning algorithms available in the different frameworks 

described earlier. Which algorithm to use depends on the problem the model needs to solve. 

Most of the frameworks provide and allow you to use mostly the same algorithms, though some 

have more than others. For instance, for regression problems ML.NET provides the following 

training algorithms [19]: 

• -FastTreeRegressionTrainer 

• -FastTreeTweedieTrainer 

• -FastForestRegressionTrainer 

• -GamRegressionTrainer 
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• -LbfgsPoissonTrainer 

• -LightGbmRegressionTrainer 

• -OlsRegressionTrainer 

• -OnlineGradientDescentTrainer 

• -SdcaRegressionTrainer 

 

In addition, algorithms for other problems like binary classification, multiclass classification, 

ranking, clustering, and anomaly detection are available. 
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4 Data analysis 

4.1 The Data Set 

The three remote node prototypes have gathered data at two different locations, Sjusjøen and 

Porsgrunn. Prototype #1 is located at Sjusjøen, and is the prototype that received the most 

natural snow and the largest amount of good measurements. Because of this, the 

measurement data from prototype #1 is used for most of the data analysis and for the later 

modelling. Table 4.1 gives an overview of the measurements that are available from the 

different prototypes. 

 

Table 4.1: Prototype sensor and measurement periods 

Prototype # Sensors Period 

1 5x soil moisture sensors 

Temperature 

Atmospheric pressure 

November 22-27, 2020 

December 28-31, 2020 

February 12-13, 2021 

March 30 – April 2, 2021  

2 4x capacitance sensors 

Temperature sensor 

February 12-13, 2021 (Sjusjøen) 

February 15-18, 2021 (Porsgrunn) 

3 5x soil moisture sensor 

Temperature sensor 

February 18-28, 2021 

March 1-27, 2021 

 

There are some challenges with this data set that restricts the possibilities of creating a good 

machine learning model. As temperatures rise above the freezing point, the snow around the 

nodes recede, and contact between the soil moisture sensors and the snow is lost. This is 

presumably because of the snow crystals shrinking in size as the temperature goes up. Figure 

4.1 shows how the snow has receded from the moisture sensors on prototype #1 in March 

2021. In the figure all the snow around one of the soil moisture sensors is melted so there is 

no contact left. The same happened with prototype #3 in February and March. Prototype #3 

also has a challenge because of the color of the pipe as the black plastic can warm up in the 

sun an accelerate melting. Because of this, the measurements from prototype #1 in 

November-February is the most reliable data to analyze and create a model from. Prototype 

#2 was built to test an ultrasonic sensor as well as testing capacitive sensors with larger 

capacitive plates. Unfortunately, in the measurements done to test the larger capacitive plates, 

something must have gone wrong because the output voltages vary too little. 
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Figure 4.1: Snow contracts and recedes from the moisture sensor when the temperature gets too high 

 

The temperature at the location of prototype #1 was below zero from the end of November 

and throughout the measurements performed in February, except for two measurements done 

in this month. All measurements from November 2020 were without any snow, while the 

December and February measurements all have snow at varying depths and densities. 

There is also some uncertainty in the accuracy of some of the density measurements. In 

December and February the assumption was that the density of the snow would be quite 

similar and stable over time, but when more frequent measurements were done in March and 

April the density varied quite a lot even during a period of a few hours. Possibly because of 

temperature changes. But the temperatures were also higher at the time, the variations may 

not be as frequent with sub-zero temperatures. 

 

4.2 Data Analysis 

The prototype #1 November-February data is the most promising data considering the 

challenges with snow melting close to the sensors when the temperature gets above 0℃. 

Figure 4.2 shows the variations of the soil moisture sensor outputs over time in this period. 

The sensors are ordered from the bottom up, so moisture sensor #1 is at the bottom and #5 is 

at the top.  
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Figure 4.2: Variation of moisture sensor outputs over time 

From the figure there are two sharp rises in output that happens with all five sensors at the 

same time at sample points 76 and 318. Looking at the other variables as well, this turns out 

to be some sort of error that also affects the two pressure sensors. In the same sample points 

as these spikes, the atmospheric pressure sensor shows a value of -433 mBar for instance. 

The cause of the error is unknown, but the temperature sensor seems to be unaffected. All the 

sample points that contain erroneous measurements are removed for the rest of the analysis.  

For a machine learning model to be able to estimate the density and depth of the snow, some 

sort of correlation between them must be present. Figure 4.3 compares the output of the 

bottom soil moisture sensor to the other parameters measured, including the manual 

measurements. 

 

Figure 4.3: Comparison of moisture sensor #1 output over time with temperature, atmospheric pressure, snow 

density, and snow depth 
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The background in the figure is coloured red when the sensor is not covered by snow, and 

green when it is. The vertical lines indicate the start of a new period, so the first line is the 

start of the December samples and the second the February samples. In terms of numbers 

samples 1-172 are November, 173-312 is December, and 313-372 is February. The output 

varies by about 100 mV even when not covered and seems to be loosely correlated with both 

temperature and atmospheric pressure. Comparing this with figure 4.4 where sensor #5 is 

shown it look like the temperature is strongly correlated at least in February where sensor #5 

that never gets covered in snow follows the change in temperature.  

 

Figure 4.4: Comparison of moisture sensor #5 output over time with temperature, atmospheric pressure, snow 

density, and snow depth 

Looking at the same data for sensors #2, #3, and #4, that can be seen in appendix D, the 

correlation between temperature and sensor output seems to be affecting the sensors higher 

up on the pole more, than the lower ones. Probably due to the temperature changes being 

lower further down in the snow. 

 

Another observation from figure 4.3 and 4.4 is that there seems to be little correlation 

between snow depth, snow density, and sensor output. 

 

4.2.1 Principal Component Analysis 

Just plotting different features of the data against each other can give an indication of the 

correlation between the different features, but there are seven variables and by using principal 

component analysis (PCA) the correlations become more clear and easy to spot. PCA is a 

method for decomposing the data based on the variance in the data set by substituting the 

original variables with principal components [27]. In this thesis, the software ‘The 

Unscrambler X’ is used for the PCA, and the NIPALS algorithm to calculate the principal 

components. The moisture sensor variables all have values in the thousands, so if the raw 

data is used in the PCA, those are almost guaranteed to have the biggest variance. Usually 
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when the variance varies a lot between variables, it is common practice to scale all variables, 

to prevent that a variable doesn’t have the largest, or smallest variance simply because all the 

measurements are a factor of 100+ compared to the other variables. In this case the difference 

in variance between the different variables is quite large, from about 3000 to 80. Hence, the 

data will be scaled. The principal components are found by finding the direction of maximum 

variance in the data matrix, and that are orthogonal to each other. The first PC1 is along the 

largest variance, PC2 is orthogonal to PC1 and along the second largest variance, PC3 is 

orthogonal to PC1 and PC2 and along the third largest variance and so on [27]. 

By aligning the PCs in order of variance, the variance in the data set can be explained using 

fewer variables. Figure 4.5 shows the explained variance of the principal components. From 

the original seven variables, only four principal components are needed to explain 96% of the 

variance in the data. PC1 explains 72% and together with PC2, 83% of the variance is 

explained.  

 

 

Figure 4.5: Explained variance of the principal components 

 

In figures 4.6 and 4.7 the scores and loading plots, respectively, for PC1 and PC2 are shown. 

In these plots, PC1 is along the x-axis and PC2 along the y-axis. From the scorings-plot in 

figure 4.6 three or four groupings can be seen. The samples are coloured based on which 

month they are from, and for the most part, the groupings seem to be based on when the 

samples are from. The exceptions are some samples from February, that could be grouped 

with the one of the November groups. A closer look at the samples in question, shows that 

these are the samples that can be seen in figure 4.3 and 4.4 where the temperature spikes up at 

sample 319 and 367 so it makes sense that they would be similar to the November 

measurements based on the plots from figure 4.3 and 4.4. The two groupings from the 

November samples stems from the samples that were removed because of bad measurements. 
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The group in the lower left in figure 4.6 are the first 80 samples, all the samples before the 

faulty measurements.  

 

Figure 4.6: Score plot of principal component 1 and principal component 2 

 

In the loading plot in figure 4.7, the correlation between the different variables can be seen. 

All the moisture sensors, S1, S2, S3, S4, and S5, S1 being the lowest sensor and S5 being the 

highest, are strongly correlated with the atmospheric pressure. PC1 is explained by these five 

variables, but S4 and S5 are most important in PC1. The temperature is contributing most of 

PC2, the other variables have quite low loadings there.  
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Figure 4.7: Loading plot of principal component 1 and principal component 2 

 

Based on the PCA analysis of the November, December, and February data, the moisture 

sensors are correlated with the atmospheric pressure. By looking at only the December and 

February data, when there actually is snow present, the PCA looks very different. Figure 4.8 

shows the loadings for PC1 and PC2. In this case, temperature is negatively correlated with 

most of the other variables. With this data, S1 and atmospheric pressure contributes most and 

are very strongly correlated. PC2 is mainly S3 and in figure 4.9 that shows PC1 and PC3, S4 

is the main contributor to PC3.  

 

 

Figure 4.8: Loading plot for principal component 1 and principal component 2 using December and February 

data 
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Figure 4.9: Loading plot for principal component 1 and principal component 3 using December and February 

data 

 

Hence, it seems that when it’s colder, or when there is snow covering the sensors, 

temperature is more correlated with the moisture sensors. Texas Instruments is one of the 

companies that produce the 555 timers, among others the TLC555 that seems to be used in 

the soil moisture sensors. According to a response from a Texas Instruments engineer, the 

TLC555 circuits can be affected by temperature [28]. 

4.3 Rain 

The snow sensor is designed to be deployed all year round, and though the measurement of 

snow is its main purpose, being able to detect rain would also be of interest. A dataset made 

with prototype #3 in Porsgrunn, accompanied with measurements of precipitation and 

humidity from November 2020 is available to see if that is possible. The measurements are 

available for the period 22.11.20-27.11.20. The precipitation and humidity measurements 

were done at a higher sampling rate than the capacitance measurements. To get an even 

amount of sampling points, the data from prototype #3 was padded using linear interpolation 

to fill in the missing samples. Some samples were removed due to the same issues as with 

prototype #1, where some measurements were much higher than the rest, and the atmospheric 

pressure was negative. There was little rain in the timeframe where the measurements were 

done, and in figure 4.10 the soil moisture sensors values are plotted against the precipitation.  
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Figure 4.10: Moisture sensor outputs compared to precipitation 

 

As seen in figure 4.10, there seems to be no significant change in the capacitance 

measurements in the period where there is precipitation measured. There were few samples 

with precipitation and in those that had, there were small amounts of it. In figure 4.11 the 

moisture sensors are plotted against the temperature. It shows that there is a much higher 

correlation between the temperature and moisture sensor output than precipitation.  

 

Figure 4.11: Moisture sensor outputs compared to temperature 

 

The relationship between humidity and the moisture sensor outputs can be seen in figure 

4.11. Between samples 150 and 250 it looks like there might be some inverse correlation, but 
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later between sample 1000 and 1200 where the humidity falls again, the moisture sensors 

seem unaffected. 

 

Figure 4.12: Moisture sensor outputs compared to humidity 

 

Even though the amount of data samples which registered some amount of precipitation is 

limited, the lack of correlation with the moisture sensors outputs suggest that detecting rain 

with this type of remote node is unfeasible. 
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5 Machine Learning Models 
In this chapter machine learning models are built and tested using different methods and 

algorithms. Since SWE is calculated based on the snow depth and snow density models for 

both snow depth and density are built. Three different machine learning platforms are used, 

each building and testing models independently of each other. Estimating the snow depth and 

snow density is a regression problem and different regression algorithms are tested to find the 

best model possible, as well as models built from neural networks. 

 

The data marked with the supervised learning flag is used for training and validating the 

models, and the rest is used to test the accuracy of the models. For all the model’s 

measurements from prototype #1 is used. There are seven inputs, the five soil moisture 

sensors, atmospheric pressure, and temperature.  

5.1 MATLAB 

MATLAB has many regression algorithms and the possibility to build shallow neural 

networks. It has a regression learner application that trains models with different algorithms. 

Which implies that you don’t have to undertake each algorithm individually. The application 

also performs normalization for you, as does the shallow NN regression application used 

later. The best model created in MATLAB was created using this application with 5-fold 

cross-validation, and an automatic PCA that removes dimensions after 95% of the variance is 

explained. In this case the two first principal components were used. The best training 

algorithm for both models ended up being Gaussian Process Regression. Figure 5.1 and 5.2 

show the density and depth, respectively, estimated by the models against the measured 

density and depth. The test data is as explained earlier the measurements without the 

supervised learning flag, so they are not entirely correct. The measured plot only shows the 

last manual measurement, implying that when the measured values change you would expect 

to see some change in the predicted plot before the jump takes place.  
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Figure 5.1: Snow density model estimations vs. measured density 

 

The density model seems to perform reasonably well when snow is present at the sensors. As 

seen at the start of figure 5.1, where there is no snow, the model estimates that there is a 

density. The peak of the incorrect density, at about sample 45, corresponds to the lowest 

temperature period in November. 

 

 

Figure 5.2: Snow depth estimated by model vs. measured depth 

 

The depth model seen in figure 5.2 seems to have a problem estimating the snow depth in 

November, where the measured depth is zero just like the density model did. The rest of the 

model follows the measured depth quite closely. The jump at sample point 175 looks like it 
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follows the measured value too closely but, this is where the data changes from December to 

February, implying that a smooth transition at that point would not be correct. 

 

MATLAB has the capability of creating deep and shallow neural network through 

applications as well as machine learning algorithms. Figure 5.3 shows the density estimates 

from a shallow neural network built in MATLAB.  

 

 

Figure 5.3: Snow density estimates vs. measured density 

 

The neural network has one hidden layer, with 50 neurons and the training algorithm used is 

Bayesian Regularization. Figure 5.3 shows that the NN model handles the lack of snow better 

than the GPR model however, it still estimates snow when there is none. For the rest of the 

estimates the NN model seems to follow the measured density slightly better although not to 

a large extent. 

 

Figure 5.4 shows the NN based snow depth model. This model also consists of one hidden 

layer with 50 neurons, and the best results were found using the Bayesian Regularization 

training algorithm. Like all models so far, November is a challenge. The GPR model follows 

the measured depth slightly worse that the NN model, except at the start, where the NN 

model both has a larger error in the period when there is no snow, and a slightly higher value 

at the start of December. 
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Figure 5.4: Snow depth estimated by model vs. measured depth 

 

5.2 ML.NET 

ML.NET has a handful of regression algorithms built in. It has an automatic trainer like 

MATLABs applications but, it is harder to test all the algorithms since only the algorithm 

with the best validation results are offered at the end of the process. In this case a tree 

algorithm might perform quite well, since the number of unique values in the output data is 

limited, but ideally the model should be able to estimate values other than what it was trained 

with. 

To train and test the models, a Windows forms application was used. The primary purpose of 

the form was to plot, the estimates and measurements in a graph. None of the built-in 

regression algorithms worked as well as the NN or GPR based models from MATLAB. The 

number of algorithms to choose from is also more limited. The best results came using a Fast 

Forrest algorithm. Figure 5.5 shows the results of the density model.  
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Figure 5.5: Snow density estimated by model vs. measured snow density 

 

This model struggles more than the others at the start when there is no snow, and looks like it 

estimates less accurately than the previous models, especially at the higher densities. 

  

The best performing algorithm for training the depth model, ended up being the Generalized 

Additive Models algorithm. The depth estimations from this model is shown in figure 5.6. 

Like every other model so far, the model is unable to detect a snow depth of 0 cm. 
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Figure 5.6: Snow depth model estimations vs. measured depth 

 

5.3 Keras 

Keras is a python-based API for TensorFlow, and is used for deep learning neural networks.  

In this section neural network models are built, trained, and tested for both snow depth and 

snow density. Keras provides far more possibilities than the more shallow neural network in 

MATLAB, although there is no application with a GUI like MATLAB has, for neither deep, 

nor shallow neural networks.  

Both MATLAB and ML.NET normalizes the data for you, but Keras does not. Hence, before 

the data can be used in the neural network the data is normalized. One NN was created for 

each model and different combinations of hidden layers, neurons in those layers, and 

optimizers were tested. Finding the best parameters was acheived by trial and error. 

 

Density model 

The results for the best density model can be seen in figure 5.7. The shape of the neural 

network is explained in table 5.1. The adam optimizer was used during training, and 20% of 

the training data was used for validating the model during training, optimizing the mean 

squared error. When using the built in Keras training and validating split, the fraction of the 

data that will be used for validating is set between 0.0 and 1.0. The split is chosen to use the 

last part of the data set for validating. To ensure that there was enough variation in the 

validation set, the order of the samples in the training data set is randomized. 1000 epochs 

were used for training the model. 
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Table 5.1: Snow density neural network structure 

Layer Neurons Activation Function 

Input Layer 7  

Hidden Layer 1 150 Relu 

Hidden Layer 2 125 Tanh 

Hidden Layer 3 100 Relu 

Hidden Layer 4 75 Relu 

Hidden Layer 5 50 Relu 

Hidden Layer 6 25 Relu 

Output Layer 1 Relu 

 

 

Figure 5.7: Snow density estimated by model vs. measured density 

 

As seen in figure 5.7, this is the first model that handles the period with no snow quite well. 

There is a sample or two at the end where the model estimates a bit of snow, but it 
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putperforms all the other models trained so far. For December and February, it is on par with 

the models created in MATLAB.  

 

Depth model 

The preparation of the data for the snow depth model is similar to the density model. Several 

combinations of layers, activation functions, neurons, and optimizers were tested attempt to 

train the best model possible. Table 5.2 describes the neural network that achieved the best 

estimations based on the testing data.  

 

Table 5.2: Snow depth neural network structure 

Layer Neurons Activation Function 

Input Layer 7  

Hidden Layer 1 200 Tanh 

Hidden Layer 2 125 Tanh 

Hidden Layer 3 80 Relu 

Hidden Layer 4 100 Sigmoid 

Hidden Layer 5 75 Tanh 

Hidden Layer 6 75 Sigmoid 

Hidden Layer 7 50 Relu 

Hidden Layer 8 50 Relu 

Output Layer 1 Relu 

 

 

Like the rest of the depth models there are some issues when it comes to the November 

samples, but it still provides a better result than the other depth models. Figure 5.8 shows the 

model estimations in comparison to the measured snow depth. 
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Figure 5.8: Snow depth model estimations vs. measured depth 

 

SWE model 

Most of the focus in this thesis is on the snow depth and snow density, because the SWE that 

is of interest, is easily calculated from the depth and density. The best models that has been 

created in this thesis were found using Keras. In figure 5.9 those two models are used to 

estimate snow depth and density, and from these predictions the calculated SWE is compared 

to the measured SWE. The combined model works quite well applied on the test data. It 

doesn’t follow the measured SWE exactly everywhere, but this is because of the density 

measurements, where the model is expected to change value gradually. 
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Figure 5.9: SWE estimated by calculating estimated depth and density vs. SWE from measured depth and 

density 
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6 Conclusion 
The main objective of this thesis has been to evaluate whether the capacitance-based sensor 

approach to measure SWE is a feasible and good solution. Based on a set of models created 

and trained, it seems possible that this approach could be used to estimate both the snow depth 

and the snow density needed to calculate SWE. Unfortunately, due to there being little snow in 

Porsgrunn in the testing period and the black plastic heating in the sun on prototype #3 making 

the measurements done with that prototype a bit uncertain. This restricted the possibilities for 

training the ML models to prototype#1, that was placed in a snow safe location. There are some 

uncertainties if the manual measurements of the densities are correct in December, and there is 

a limited number of them and this led to the machine learning models being trained on 

somewhat limited data. A larger data set, typically possessing a larger variety in snow depth 

and snow density, would probably yield better models. 

The results show that all the models have a challenge when there is no snow present. This isn’t 

necessarily a problem, since the whole purpose installing these sensors is to measure when 

there is snow, not whether there is snow. Though obviously, being able to detect snow would 

be preferrable. During winter when there is snow present, and the temperature is below zero 

degrees centigrade, the estimates from the models perform well and the estimates are pretty 

close to the observed values.  

Unfortunately, as discovered in March and April, the snow retracts from the moisture sensors 

when the temperature increases. The planned use for this system is to help predict the inflow 

of water to reservoirs. This is mainly done during the spring when the temperatures are starting 

to rise, so even if the models work reasonably well during the winter, it is not very likely that 

they will work for their intended purpose.  

What we have seen from the test seems to be that a major issue is that retracting snow will 

likely be a challenge for any sensor system that depends on physical contact with the snow to 

make measurements unless one is able to prevent the snow from melting close to the sensors.  
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Appendix A – Thesis Description 
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Appendix B - Description of snow capacitance and density measurement prototypes 
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Appendix C – Code 

The figure below shows a flow-chart of different scripts and the files they produce and use, 

used to create the plots seen in this thesis. For the ML.NET the Visual Studio project is 

located in the MLRegression folder. The scripts can be found at https://github.com/Henrik-

V/ThesisScripts 
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Appendix D - Sensor measurement comparison plots 

 



 

 

Appendices 

52 

 


