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Summary:

Skagerak Energi AS uses the snow water equivalency (SWE) in models for predicting
inflow of water to hydroelectric power plant reservoirs. Today, snow depth and density
measurements are done manually and because of the remote locations this must be done
at, this is a slow and expensive process. In this thesis, data from a proposed remote node
system based on capacitance measurements of the snow designed in an earlier thesis at
USN, is used to evaluate if capacitance measurements is a suitable replacement for the
manual snow depth and density measurements. To evaluate this, data from the remote
node is analyzed and various machine learning (ML) methods is used to create data
driven models that estimate the snow depth and density. Based on the ML models
created, it seems the capacitance based remote node can be used to estimate snow depth
and density during winter, but in the spring when Skagerak Energi AS wants to measure
the SWE, the snow contracts because of the warmer temperatures and loses contact with
the capacitance sensors. To solve this challenge, a non-contact sensor could be
considered as an alternative.

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this student report.
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Preface

This thesis is written as the last part of my two year master program in Industrial IT and
Automation at the University of South-Eastern Norway (USN), and builds on the results from
a master project and master thesis from former students at USN in collaboration with Skagerak
Energi AS.

Skagerak Energi AS as the external partner for this thesis has requested a solution for a cheaper
and faster way of measuring SWE. In the earlier work at USN mentioned, a suggestion for
what type of sensor to use has been proposed, and a prototype of a remote node has been built.

To evaluate how well this proposed solution is, | have analyzed data from sensors in MATLAB
and created several ML models using different frameworks and methods. Originally, the plan
was to use C# and ML.NET for the machine learning, but making neural networks is not
available in ML.NET natively and the ML algorithms available gave inadequate results, so
most of the machine learning has been done in python using Keras.

This thesis was worked on January-May 2021, and measurements were done from November
to April 2021. In spring when the temperature starts to get warmer, it turns out that the proposed
model can’t be used because the snow contracts and looses contact with the capacitance
sensors, so even though the models seem to work during winter, the remote nodes are not a
solution to Skagerak Energi AS’ problem since they need the SWE estimates in spring.

| want to thank the supervisors of this thesis, Nils-Olav Skeie, Hakon Viumdal, and Magnus
Brastein for their guidance in the duration of this project, and especially Nils-Olav Skeie for
collecting the data from the sensors and doing manual measurements of snow depth and
density, and pictures of the prototypes for use in this thesis.

Porsgrunn, 18.05.21

Henrik Nikolai Vahl
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Nomenclature

Nomenclature
Abbreviations

Short form Meaning
Al Artificial Intelligence
API Application Programming Interface
Csv Comma Separated Values
EDGE Enhanced Data rates for GSM Evolution
GPR Gaussian Process Regression
GPRS General Packet Radio Service
GUI Graphical User Interface
LoRaWAN Long Range Wide Area Network
ML Machine Learning
MSc Master of Science
NIPALS Nonlinear Iterative Partial Least Squares
NN Neural Network
ONNX Open Neural Network Exchange
PCA Principal Component Analysis
PC Principal Component
PLS-R Partial Least Squares Regression
SWE Snow Water Equivalent
USB Universal Serial Bus
USN University of South-Eastern Norway



Nomenclature

Symbols
Symbol Description Unit
hy Snow depth cm
p Snow density g/lcm?
Pw Water density g/lcm®
Masssampie Mass of snow sample kg
Volumesgmpie Volume of snow sample m3
r Radius of measurement pipe m
h Snow depth in measurement pipe m



1 Introduction

1 Introduction

This introduction chapter provides information about the motivations for this thesis as well as
the work this thesis is a continuation of, the objectives this thesis sets out to solve, and an
overview of the report structure.

1.1 Background

This master thesis is a continuation of a MSc group project [1] and MSc master thesis [2] from
2019 and 2020 respectively, where a sensor for measuring snow depth and snow density was
designed.

The external partner for this project, Skagerak Energi AS, is a power producer in southern
Norway that delivers large amounts of clean renewable energy from hydroelectric power plants
[3]. In places like Norway with cold winters large amounts of water is stored as snow during
winter, and as the snow melts in the spring, it finds its way into the reservoirs of hydroelectric
power plants. The hydrologist group at Skagerak Energi AS develops models to predict the
inflow of water for energy production at hydroelectric power plants. Snow melt will highly
affect the inflow to the reservoirs and is an important input to these prediction models.

Presently, Skagerak Energi AS is making manual measurements of snow depth and snow
density at the end of winter. This is an expensive and time-consuming process as these
measurements often have to be done in remote locations not reachable by car.

USN has worked on finding a small, low cost, and energy efficient alternative through a MSc
project and MSc master thesis already. In the 2019 group project, several solutions were
considered and tested to find a good solution [1]. The proposed solution from the project was
a system based on capacitance measurements. This proposed system was further developed in
a 2020 master thesis. In the 2020 thesis, a prototype of the system was designed and built.
Some measurements were done to test that the measurements worked and partial least squares
regression (PLS-R) models for snow depth, snow density, and SWE were created [2].

1.2 Objectives

Skagerak Energi AS is looking for a measurement system that can be deployed remotely to
measure snow depth and snow density and transmit information to their data center to be used
for inflow prediction. A measurement system based on capacitance was developed in 2020 [2]
and in this thesis, data from this system will be analyzed and used to create models based on
machine learning to evaluate how well this system works. In the 2020 master thesis, PLS-R
models were created, but the models were unsatisfactory. There was limited snow in 2020 to
take measurements, so the data set used was quite small and this may have had an effect [2].

In this thesis, new data will be used together with machine learning methods will be created to
evaluate if the system proposed and designed earlier at USN is a suitable replacement for the
manual measurements Skagerak Energi AS is currently doing.



1 Introduction

The snow water equivalent (SWE) that is used in Skagerak Energi AS’ prediction models, is
calculated from the snow depth and snow density. Therefore, with models based on the new
measurement system that can estimate both snow depth and snow density, the SWE can also
be estimated using equation (1.1).

SWE = hspi (1.1)

Where hs is the snow depth, p is the snow density, and pw is the density of water, measured as
1 g/cm®. SWE is measured in centimeters of water.

1.3 Report Structure

This report consists of a short overview of some of the methods that are used today, when
measuring SWE, as well as a description of the system that the models in this project is based
on. Then a theory chapter introduces different machine learning frameworks and concepts
before data is analyzed and presented in chapter 4. Here the data that is used to train the
machine learning models is analyzed, to see if there are any correlations that a machine learning
model could take advantage of. Finally, the model creation and results are described in chapter
5, before we are discussing the results of the models and the viability of a continued
development of the system.
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The data used in this thesis to evaluate the usage of capacitance sensors for snow depth and
snow density, comes from primarily two prototypes built the autumn of 2020, based on the
prototype created in the spring of 2020 MSc thesis [2]. This chapter describes the prototypes
that were used to collect the data, and used to create the machine learning models for snow
depth and snow density. Furthermore, we give a short overview of other ways of measuring
SWE used today.

2.1 Snow Water Equivalent Sensors

The system used in this thesis is based on capacitance measurements, but there are other ways
to measure SWE available today. This section gives a short overview of some of these
Sensors.

2.1.1 Snow Pillow

Snow pillows are pillows filled with an antifreeze liquid that is placed on the ground before
the first snow fall. As snow accumulates on the pillow, the pressure in the pillow increases,
and the SWE can be calculated. Snow pillows are one of the cheaper options when it comes
to monitoring SWE, but it comes with some challenges.

The ground where the pillow is placed must be prepared before installation as it has to be
levelled and well drained. There is also a possibility that the pillow may puncture, for
instance because of damages due to animals. Effects like bridging causes some of the weight
of snow on top of the snow pillow to be transferred to the surroundings, and can make the
measurements uncertain. When installed in remote locations, there is also the challenge of
transporting several 100s liters of anti-freeze liquid to fill the pillow in difficult and remote
terrain [4].

2.1.2 Snow Scale

Snow scales are large platforms with sensors to measure the weight of the snow on top of
them. Like snow pillows, it is necessary to prepare the ground as the snow scale should be
levelled and well drained. The groundwork for installing a snow scale is often more
comprehensive than a snow pillow and may be a challenge in remote locations if an
excavator is needed. They are more expensive than snow pillows, but since there is no anti-
freeze liquid used, there is nothing that can leak and cause any environmental damage. Also,
animals will not be able to cause any damage. Furthermore, the size of snow scales can be
changed easier than a snow pillow, when a larger area needs to be covered. In addition, the
latter also reduces the risk of bridging [4].

10



2 System Description
2.1.3 Gamma Attenuation Sensor

The CS725 gamma attenuation sensor by Campbell Scientific is designed to directly measure
SWE in a snowpack. The basis of the technique used, is that the ground underneath the snow
contains some natural radioactive elements. This implies that, there is a certain amount of
electromagnetic energy that always radiates. The CS725 sensor measures the electromagnetic
energy from the ground, and when there is water between the ground and the sensor, the
gamma rays from the ground are attenuated. Based on the attenuation level, the SWE can be
calculated [5].

The major advantage of this approach is that the sensor can be connected to a datalogging
device, so when placed in a remote location, the data could be transmitted digitally, and
reduce the need for visiting the site. The attenuation isn’t affected by what type of snow it is,
and hence, the sensor works for any snow or ice. When mounted at a height of 3 meters, the
sensors measurements cover a quite large area; 50-100m?. The sensor is dependent on enough
potassium and thallium present in the ground, and performance can thus be site specific [4].
In addition it is more expensive than snow pillows and snow scales and has an upper limit of
600mm of snow, though this restriction is dependent on the ground radiation [4].

2.2 System description

There are three different prototypes used to collect data for this thesis. They are all based on
the same sensors but vary slightly and are placed at different locations.

2.2.1 Prototypes

The prototypes measure snow depth and snow density based on capacitive soil measurement
sensors. Five of these sensors are mounted on each prototype, at different heights to be able to
measure the capacitance at different snow depths. Variations of snow density should change
the output of the sensors, and if the variations are consistent enough, a model estimating snow
density can be created using machine learning. To find the SWE, the snow depth is also
required. We will develop a model estimating the snow depth, based on the same
measurements, although this might prove challenging, at least outside of just being able to
estimate the depth based on just the height of the highest moisture sensor covered with snow
and setting the snow depth equal to the sensor height from the ground.

The three prototypes used are:

1. This prototype is located at Sjusjgen and was installed before the first snow fall winter
of 2020. The location is well suited for measuring, as the temperatures are reliably sub-
zero during the whole winter, making it a good place to get realistic density
measurements, as snow accumulates naturally on the sensors. The location is a much
more snow safe are than Porsgrunn where USN in located. The prototype is built using
a light gray plastic pipe with a height of 2 meters and a diameter of 68 mm. The soil
moisture sensors are mounted on the same side of the pipe at heights of 10, 30, 50, 80,
and 110 cm. In addition to the soil moisture sensors, there is a temperature sensor

11
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mounted at the top of the prototype. Finally, there are two pressure sensors. One located
at the base measuring snow pressure, but possibly due to the membrane being too small
the measurements do not vary much. In addition, the small size might face challenges
with bridging. The second pressure sensor is inside the pipe and measures atmospheric
pressure [6]. Figure 2.1 shows what the prototype looks like. The picture is from
December 2020 and shows what it looks like when the first three moisture sensors are
covered.

Prototype #2 is built differently than the two others in that instead of a pole, it is a
plastic box with dimensions 20x15x7.5 cm. This prototype has been used in both
Sjusjgen and Porsgrunn. This prototype has four capacitance sensors as well as a
temperature sensor and an ultrasonic sensor which data is not considered in this thesis.
The capacitance sensors on this prototype varies from the others. One of the sensors
has a Veroboard as a capacitance plate with a bigger area, 16x6¢cm. One has two
standard plates of 6x2cm. The remaining two has standard 6x2cm plates. The
capacitance sensors are mounted on different the sides of the box [6].

Prototype #3 is similar to prototype #1, but the pipe is black, and the height is somewhat
lower, 1.8 m and the diameter is 110 mm. It is located in Porsgrunn. The soil moisture
sensors are mounted at heights of 23, 36, 64, 92, and 122 cm [6].

12
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Figure 2.1: Prototype #1 in Sjusjgen December 2020

2.2.2 Data acquisition

The prototypes have an Arduino in it that is connected to all the sensors, taking measurements
every minute, transmitting them to a Windows PC every minute via USB where the data is
logged. The sensor values along with an ID for each prototype is stored in a .csv file every
thirty minutes. The log file also contains manual measurements of snow depth and snow
density. These manual measurements were done by Nils-Olav Skeie by inserting a pipe into
the snow taking a sample and using equation (2.1). The snow depth is measured using the
measuring tape-scale on the prototype.

MaSSSample — 1000 MaSSSample [g]

Volumeggmpie nr?h [cm3]

(2.1)

Snow Density =

13
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Where MasSsample 1S the mass from the sample taken with the measurement pipe, r is the
diameter of the measurement pipe, and h is the snow depth where the sample is taken.

The manual measurements are added to the .csv file along with a flag, marking whether the
measurements are valid for supervised learning in a machine learning model. After a manual
measurement is added, it is assumed that the snow depth and density is relatively consistent
over the next five hours, ten samples, and automatic measurements in this period is marked for
supervised learning. Figure 2.2 shows an example of a .csv file with the header showing the
contents of the different fields.

TimeSample;NodeAdr;CapSens#1(Bot) (mV);CapSens#2(mV);CapSens#3(mV);CapSens#4(mV) ;CapSens#5(mv);
PressSens#l(mBar);PressSens#2(Atm:mBar) ; TempSens#1(degC) ;ManSnowHeight (cm) ;ManSnowDensity (kg/m3);
ManLogIm‘o,'SupervisedLear‘ningFlag;

12.02.2021 11.14;01,2729,5;2749,0;2724,6,;2710,0;2710,0,997,2;969,7;-21,7;000;000; ;OFF

12.02.2021 11.44;01;2735,6;2755,1;2725,8;2722,2;2719,7;996,8;973,4;-17,9;000;000; ;OFF

12.02.2021 12.15;01;2739,3;2756,4;2729,5;2728,3;2727,1,999,6;973,4;-15,3;000;000; ;OFF

12.82.2021 12.45;01,2739,3;2758,8;2728,3;2732,0;2734,4,998,4;974,0;-14,0;000;000; ;OFF

12.02.2021 13.15;01;2738,1;2756,4;2729,5;2732,0;2729,5;998,0;972,2;-14,3;000;000; ;OFF

12.02.2021 13.45;01,2739,3;2758,8;2729,5;2739,3;2739,3,999,2;974,6;-11,4;000;000; ;OFF

12.02.2021 14.16;01;2749,0;2767,4;2736,9;2756,4;2753,9;1000,8;977,7;1,9;000;000; ;OFF

12.82.2021 14.46;01;2745,3;2763,7;2734,4;2757,6,2753,9;1660,0;977,1;,4;81;233;terr og lett snp;oN
12.02.2021 15.16;01;2741,7;2761,3;2734,4;2753,9;2751,5;999,6;974,6;-2,5;81;233;terr og lett snp;ON
12.02.2021 15.46;01;2735,6;2756,4;2729,5;2739,3;2734,4;998,8;973,4;-168,1;81;233;t¢rr og lett sng;ON

Figure 2.2: Part of the contents of a data file from prototype #1

The .csv file contains information about the date and time of the measurement, along with the
node ID, sensor measurements, the manual snow depth and snow density measurements,
comments about the manual measurement, and the supervised learning flag.

2.2.3 Capacitive Soil Moisture Sensor

The capacitive soil moisture sensors are, as the name suggests, created to measure soil
moisture. For its intended use, the sensor is inserted into soil, and since capacitance varies with
the permittivity of the dielectric medium. And the permittivity of soil is dependent of, among
other things, moisture, the output of the sensor will depend on the soil moisture [7]. For the
nodes used in this thesis, the dielectric medium the soil moisture sensors are interacting with
is air and snow instead of soil with the variations in permittivity when the sensors are covered
in snow are large enough to measure changes in the density of the snow. Figure 2.3 shows the
type of capacitive soil moisture sensors used in the nodes. The probe consists of a coplanar
capacitance that is connected to the output of a 555 timer as part of a low pass filter. This
creates a sawtooth waveform where the peak to peak depends on the dielectric medium of the
probe [7]. A peak detector is then used to provide the output of the sensor.
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Figure 2.3: Capacitive soil moisture sensor [8]

2.2.4 Data communication

The measurements that are collected by the nodes must be transmitted to the data center to be
used with models estimating the SWE and further to be used in the models for the inflow of
water to the reservoir. Considering the remote locations these nodes will be placed in, some
form of wireless communication protocol is preferred. There are primarily two things to take
into consideration when it comes to choosing a protocol for this system, the first being range
and the second power consumption. To get the data to the data center, the nodes would need
internet access.

One option is to take advantage of the existing infrastructure of the mobile network. In Norway,
the coverage is quite extensive, but whether this is an option or not depends on the coverage in
at the node locations. It would be a good solution as no new infrastructure would be built, and
access to the internet would be available straight from the node. The mobile network protocols
GPRS, EDGE and newer ones have a high power consumption which could pose a challenge
[9].

Using a satellite internet service might work, but these solutions are generally made for
household use and are probably not energy effective.

Other options include long range protocols such as LoRaWAN that has a longer range than the
mobile network protocols and is more energy efficient [10], but unless there happens to be a
LoRaWAN network in the area, the infrastructure would have to be built. There is at least one
open LoRaWAN network available in Norway [11], but without knowledge of where the
remote nodes will be placed, it’s hard to tell if that specific network will be of use.

Assuming that there is GPRS or EDGE coverage at the node sites, one of those protocols would
probably be best to avoid having to set up extra infrastructure and having increased costs with
both building and maintaining it.

15
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This chapter gives a short overview of some of the machine learning platforms and methods
used to create data driven models with machine learning.

3.1 Machine Learning Frameworks

TensorFlow

TensorFlow is a free open source machine learning (ML) platform created by Google, that let
you build, train, and deploy machine learning models [12]. The platform is supporting several
languages through APIs, but the only language that is covered by the API stability promises is
python. The other languages with official APIs are JavaScript, C++, Java, Go, and Swift. In
addition, there is support for other languages like C#, Haskell, Julia, and MATLAB through
the community [13].

Keras

Keras is a commonly used deep learning API, the high-level API, of TensorFlow. Keras comes
with a lot of different layers, optimizers, and metrics that makes creating and training a ML
model quickly possible. But if the built-in layers don’t fit your network it’s possible to create
custom layers. There are also some data processing built in, like image, time-series, and text
data [14].

The available layers allow you create a wide selection of neural networks and there are several
core, convolution, recurrent, and pooling layers to choose from.

Keras is the most adopted deep learning solution and it is used at Netflix and Uber, as well as
scientific organizations like CERN and NASA [15].

MATLAB

MathWorks MATLAB deep learning toolbox lets you build, train, and deploy machine learning
models through MATLAB. There are apps that can be used to train models without having to
code anything as the code is generated for you. It is also possible to write your own code.
MATLAB is the only framework discussed here that isn’t free. The licence for MATLAB is
quite expensive [16] and few industry businesses use it, but MATLAB is used by a lot of
educational institutions as well as by research institutions.

The most popular classification, regression, and clustering algorithms are available. And code
for C or C++ can be generated for embedded and high-performance applications [17].
MATLAB also includes automated machine learning which automatically pre-processes the
data, extracts features, and identifies the best performing model [18].

16
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The MATLAB models can be exchanged with TensorFlow and TensorFlow models can be
imported into MATLAB.

ML.NET

ML.NET is Microsoft’s free machine learning framework for C# and F#. It supports both
supervised and unsupervised learning of different machine learning algorithms has algorithms
for different problems like binary classification, regression, anomaly detection, clustering, and
matrix factorization. ML.NET supports transfer learning where you can import a pre trained
neural network model created in TensorFlow or following the ONNX standard and use and
train them but does not support creating neural networks by itself [19]. Microsoft does have
another open source library called Microsoft Cognitive Toolkit, that supports creating neural
networks in C#, but development of this library was stopped in 2019 [20].

scikit learn

scikit learn is a free, open source machine learning library for python. It provides several
algorithms for supervised and unsupervised learning and for different problems. It also
provides tools for every step in the machine learning process, all the way from pre-processing
to a finished model [21]. Scikit learn is used by several companies, for instance Spotify, and
the development is financially supported by among others, Microsoft, Fujitsu, and Columbia
University [22].

Pytorch

Pythorch is a machine learning framework from Facebook that is open source and free. There
are two languages available, python and C++. It is a deep learning library, so it can be used to
create and train neural networks [23]. It supports creating and training neural networks, and
contains several libraries with tools for handling things like, audio, text, and computer vision
for use in neural networks [24].

ONNX

ONNX, or Open Neural Network Exchange, is an open standard for machine learning models
from The Linux Foundation created to enable models to easily be transferred from one
framework to another [25]. Indeed all the frameworks mentioned above support exporting and
importing ONNX models. ML.NET for instance does not support creating neural networks
natively, but a neural network model created with TensorFlow can be imported in the ONNX
format and be used with ML.NET.

3.2 Machine Learning Methods

There are several machine learning methods available depending on the problem that needs to
be solved. As shown above, there are several machine learning algorithms and neural

17
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networks available. When training these models there are primarily three different approaches
used, supervised learning, unsupervised learning, and reinforcement learning. In supervised
learning, both the inputs and outputs of the training data is known. The training of the model
is based on the error between the model output and the expected output based on the training
data for a given input. Regression and classification problems are usually done using
supervised learning. In unsupervised learning, only the input data is provided for training.
This is often used to find patterns in data like clustering and anomaly detection problems
[19]. Reinforcement learning, uses a reward/punishment system where the model interacts
with an environment and gets rewarded, based on the action taken and the model tries to
maximize the reward. One example of where this could be used, is in a Tic Tac Toe Al,
where the reward depends on how optimal the next move chosen by the model is.

In this thesis, supervised learning is the training method that will be used. In the models,
where manual measurements of snow depth and density will be used as expected outputs for
the models during training, this approach works well Reinforcement learning requires some
form of interaction with the environment and is thus not a viable method for creating models
for snow depth and snow density.

Models created using machine learning are data driven models. The models are trained using
one of several algorithms and methods based on data provided during the training. Data is
provided as the input in the model, and the model is modified based on the output according
to the algorithm used. To be able to produce a good model it is therefore necessary to have
enough, and diverse enough, data during training, as well as using the correct training
algorithm. For most algorithms, including neural networks, it is generally best to standardize
the input data in some way to avoid larger values from having a disproportionate effect on the
output. In some cases, other pre-processing is also done like principal component analysis or
removing outliers from a data set.

Artificial Neural Network

Artificial neural networks, or just neural networks (NN), is a machine learning method based
on the human brain. To give a short overview, they consist of several artificial neurons
connected to each other in layers, that produces one or more outputs based on one or more
inputs. The neurons can have several inputs and each input has a weight expressing the
strength of the connection between the neurons [26]. Each input for the neuron is multiplied
with its weight, and all are added together with a bias value. Usually this sum is used with an
activation function, depending on what the network is developed for. A neural network must
have inputs and an output layer, but between them there can be any number of hidden layers.
Figure 3.1 shows an illustration of a neural network with two inputs, two hidden layers with
four neurons, and one output neuron with the connections between them.
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Figure 3.1: Illustration of a simple neural network structure

During the training of a neural network, the weights and biases of the network is changed. In
the case of supervised learning, the change is based on the error between the output produced
by the network, and the expected output given by the training data. There are different types
of neural networks available, depending on the application at hand, like feedforward neural
networks, as shown in figure 3.1, or recurrent neural networks where the output of a neuron is

connected to its input.

Machine Learning Training Algorithms

There are several popular machine learning algorithms available in the different frameworks
described earlier. Which algorithm to use depends on the problem the model needs to solve.
Most of the frameworks provide and allow you to use mostly the same algorithms, though some
have more than others. For instance, for regression problems ML.NET provides the following
training algorithms [19]:

-FastTreeRegressionTrainer
-FastTreeTweedieTrainer
-FastForestRegressionTrainer
-GamRegressionTrainer
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-LbfgsPoissonTrainer
-LightGbmRegressionTrainer
-OlsRegressionTrainer
-OnlineGradientDescentTrainer
-SdcaRegressionTrainer

In addition, algorithms for other problems like binary classification, multiclass classification,
ranking, clustering, and anomaly detection are available.
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4 Data analysis

4.1 The Data Set

The three remote node prototypes have gathered data at two different locations, Sjusjgen and
Porsgrunn. Prototype #1 is located at Sjusjgen, and is the prototype that received the most
natural snow and the largest amount of good measurements. Because of this, the
measurement data from prototype #1 is used for most of the data analysis and for the later
modelling. Table 4.1 gives an overview of the measurements that are available from the
different prototypes.

Table 4.1: Prototype sensor and measurement periods

Prototype # Sensors Period
1 5x soil moisture sensors | November 22-27, 2020
Temperature December 28-31, 2020

Atmospheric pressure February 12-13, 2021
March 30 — April 2, 2021

2 4x capacitance sensors February 12-13, 2021 (Sjusjeen)
Temperature sensor February 15-18, 2021 (Porsgrunn)

3 5x soil moisture sensor February 18-28, 2021
Temperature sensor March 1-27, 2021

There are some challenges with this data set that restricts the possibilities of creating a good
machine learning model. As temperatures rise above the freezing point, the snow around the
nodes recede, and contact between the soil moisture sensors and the snow is lost. This is
presumably because of the snow crystals shrinking in size as the temperature goes up. Figure
4.1 shows how the snow has receded from the moisture sensors on prototype #1 in March
2021. In the figure all the snow around one of the soil moisture sensors is melted so there is
no contact left. The same happened with prototype #3 in February and March. Prototype #3
also has a challenge because of the color of the pipe as the black plastic can warm up in the
sun an accelerate melting. Because of this, the measurements from prototype #1 in
November-February is the most reliable data to analyze and create a model from. Prototype
#2 was built to test an ultrasonic sensor as well as testing capacitive sensors with larger
capacitive plates. Unfortunately, in the measurements done to test the larger capacitive plates,
something must have gone wrong because the output voltages vary too little.
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Figure 4.1: Snow contracts and recedes from the moisture sensor when the temperature gets too high

The temperature at the location of prototype #1 was below zero from the end of November
and throughout the measurements performed in February, except for two measurements done
in this month. All measurements from November 2020 were without any snow, while the
December and February measurements all have snow at varying depths and densities.

There is also some uncertainty in the accuracy of some of the density measurements. In
December and February the assumption was that the density of the snow would be quite
similar and stable over time, but when more frequent measurements were done in March and
April the density varied quite a lot even during a period of a few hours. Possibly because of
temperature changes. But the temperatures were also higher at the time, the variations may
not be as frequent with sub-zero temperatures.

4.2 Data Analysis

The prototype #1 November-February data is the most promising data considering the
challenges with snow melting close to the sensors when the temperature gets above 0°C.
Figure 4.2 shows the variations of the soil moisture sensor outputs over time in this period.
The sensors are ordered from the bottom up, so moisture sensor #1 is at the bottom and #5 is
at the top.
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Figure 4.2: Variation of moisture sensor outputs over time

From the figure there are two sharp rises in output that happens with all five sensors at the
same time at sample points 76 and 318. Looking at the other variables as well, this turns out
to be some sort of error that also affects the two pressure sensors. In the same sample points
as these spikes, the atmospheric pressure sensor shows a value of -433 mBar for instance.
The cause of the error is unknown, but the temperature sensor seems to be unaffected. All the
sample points that contain erroneous measurements are removed for the rest of the analysis.

For a machine learning model to be able to estimate the density and depth of the snow, some
sort of correlation between them must be present. Figure 4.3 compares the output of the
bottom soil moisture sensor to the other parameters measured, including the manual
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Figure 4.3: Comparison of moisture sensor #1 output over time with temperature, atmospheric pressure, snow

density, and snow depth
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The background in the figure is coloured red when the sensor is not covered by snow, and
green when it is. The vertical lines indicate the start of a new period, so the first line is the
start of the December samples and the second the February samples. In terms of numbers
samples 1-172 are November, 173-312 is December, and 313-372 is February. The output
varies by about 100 mV even when not covered and seems to be loosely correlated with both
temperature and atmospheric pressure. Comparing this with figure 4.4 where sensor #5 is
shown it look like the temperature is strongly correlated at least in February where sensor #5
that never gets covered in snow follows the change in temperature.

Moisture Sensor #5

B
8

Moistura Sensor 5

Valtage [mV]

_ Moisture Sensor #5

Voit

Figure 4.4: Comparison of moisture sensor #5 output over time with temperature, atmospheric pressure, snow
density, and snow depth

Looking at the same data for sensors #2, #3, and #4, that can be seen in appendix D, the
correlation between temperature and sensor output seems to be affecting the sensors higher
up on the pole more, than the lower ones. Probably due to the temperature changes being
lower further down in the snow.

Another observation from figure 4.3 and 4.4 is that there seems to be little correlation
between snow depth, snow density, and sensor output.

4.2.1 Principal Component Analysis

Just plotting different features of the data against each other can give an indication of the
correlation between the different features, but there are seven variables and by using principal
component analysis (PCA) the correlations become more clear and easy to spot. PCA is a
method for decomposing the data based on the variance in the data set by substituting the
original variables with principal components [27]. In this thesis, the software ‘The
Unscrambler X’ is used for the PCA, and the NIPALS algorithm to calculate the principal
components. The moisture sensor variables all have values in the thousands, so if the raw
data is used in the PCA, those are almost guaranteed to have the biggest variance. Usually
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when the variance varies a lot between variables, it is common practice to scale all variables,
to prevent that a variable doesn’t have the largest, or smallest variance simply because all the
measurements are a factor of 100+ compared to the other variables. In this case the difference
in variance between the different variables is quite large, from about 3000 to 80. Hence, the
data will be scaled. The principal components are found by finding the direction of maximum
variance in the data matrix, and that are orthogonal to each other. The first PC1 is along the
largest variance, PC2 is orthogonal to PC1 and along the second largest variance, PC3 is
orthogonal to PC1 and PC2 and along the third largest variance and so on [27].

By aligning the PCs in order of variance, the variance in the data set can be explained using
fewer variables. Figure 4.5 shows the explained variance of the principal components. From
the original seven variables, only four principal components are needed to explain 96% of the
variance in the data. PC1 explains 72% and together with PC2, 83% of the variance is
explained.
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Figure 4.5: Explained variance of the principal components

In figures 4.6 and 4.7 the scores and loading plots, respectively, for PC1 and PC2 are shown.
In these plots, PC1 is along the x-axis and PC2 along the y-axis. From the scorings-plot in
figure 4.6 three or four groupings can be seen. The samples are coloured based on which
month they are from, and for the most part, the groupings seem to be based on when the
samples are from. The exceptions are some samples from February, that could be grouped
with the one of the November groups. A closer look at the samples in question, shows that
these are the samples that can be seen in figure 4.3 and 4.4 where the temperature spikes up at
sample 319 and 367 so it makes sense that they would be similar to the November
measurements based on the plots from figure 4.3 and 4.4. The two groupings from the
November samples stems from the samples that were removed because of bad measurements.
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The group in the lower left in figure 4.6 are the first 80 samples, all the samples before the
faulty measurements.
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Figure 4.6: Score plot of principal component 1 and principal component 2

In the loading plot in figure 4.7, the correlation between the different variables can be seen.
All the moisture sensors, S1, S2, S3, S4, and S5, S1 being the lowest sensor and S5 being the
highest, are strongly correlated with the atmospheric pressure. PC1 is explained by these five
variables, but S4 and S5 are most important in PC1. The temperature is contributing most of
PC2, the other variables have quite low loadings there.
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Figure 4.7: Loading plot of principal component 1 and principal component 2

Based on the PCA analysis of the November, December, and February data, the moisture
sensors are correlated with the atmospheric pressure. By looking at only the December and
February data, when there actually is snow present, the PCA looks very different. Figure 4.8
shows the loadings for PC1 and PC2. In this case, temperature is negatively correlated with
most of the other variables. With this data, S1 and atmospheric pressure contributes most and
are very strongly correlated. PC2 is mainly S3 and in figure 4.9 that shows PC1 and PC3, S4
is the main contributor to PC3.
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Figure 4.8: Loading plot for principal component 1 and principal component 2 using December and February
data
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Figure 4.9: Loading plot for principal component 1 and principal component 3 using December and February
data

Hence, it seems that when it’s colder, or when there is snow covering the sensors,
temperature is more correlated with the moisture sensors. Texas Instruments is one of the
companies that produce the 555 timers, among others the TLC555 that seems to be used in
the soil moisture sensors. According to a response from a Texas Instruments engineer, the
TLCB555 circuits can be affected by temperature [28].

4.3 Rain

The snow sensor is designed to be deployed all year round, and though the measurement of
snow is its main purpose, being able to detect rain would also be of interest. A dataset made
with prototype #3 in Porsgrunn, accompanied with measurements of precipitation and
humidity from November 2020 is available to see if that is possible. The measurements are
available for the period 22.11.20-27.11.20. The precipitation and humidity measurements
were done at a higher sampling rate than the capacitance measurements. To get an even
amount of sampling points, the data from prototype #3 was padded using linear interpolation
to fill in the missing samples. Some samples were removed due to the same issues as with
prototype #1, where some measurements were much higher than the rest, and the atmospheric
pressure was negative. There was little rain in the timeframe where the measurements were
done, and in figure 4.10 the soil moisture sensors values are plotted against the precipitation.
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Figure 4.10: Moisture sensor outputs compared to precipitation
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As seen in figure 4.10, there seems to be no significant change in the capacitance

measurements in the period where there is precipitation measured. There were few samples
with precipitation and in those that had, there were small amounts of it. In figure 4.11 the
moisture sensors are plotted against the temperature. It shows that there is a much higher

correlation between the temperature and moisture sensor output than precipitation.
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The relationship between humidity and the moisture sensor outputs can be seen in figure

Figure 4.11: Moisture sensor outputs compared to temperature
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4.11. Between samples 150 and 250 it looks like there might be some inverse correlation, but
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later between sample 1000 and 1200 where the humidity falls again, the moisture sensors
seem unaffected.
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Figure 4.12: Moisture sensor outputs compared to humidity

Even though the amount of data samples which registered some amount of precipitation is
limited, the lack of correlation with the moisture sensors outputs suggest that detecting rain
with this type of remote node is unfeasible.
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5 Machine Learning Models

In this chapter machine learning models are built and tested using different methods and
algorithms. Since SWE is calculated based on the snow depth and snow density models for
both snow depth and density are built. Three different machine learning platforms are used,
each building and testing models independently of each other. Estimating the snow depth and
snow density is a regression problem and different regression algorithms are tested to find the
best model possible, as well as models built from neural networks.

The data marked with the supervised learning flag is used for training and validating the
models, and the rest is used to test the accuracy of the models. For all the model’s
measurements from prototype #1 is used. There are seven inputs, the five soil moisture
sensors, atmospheric pressure, and temperature.

5.1 MATLAB

MATLAB has many regression algorithms and the possibility to build shallow neural
networks. It has a regression learner application that trains models with different algorithms.
Which implies that you don’t have to undertake each algorithm individually. The application
also performs normalization for you, as does the shallow NN regression application used
later. The best model created in MATLAB was created using this application with 5-fold
cross-validation, and an automatic PCA that removes dimensions after 95% of the variance is
explained. In this case the two first principal components were used. The best training
algorithm for both models ended up being Gaussian Process Regression. Figure 5.1 and 5.2
show the density and depth, respectively, estimated by the models against the measured
density and depth. The test data is as explained earlier the measurements without the
supervised learning flag, so they are not entirely correct. The measured plot only shows the
last manual measurement, implying that when the measured values change you would expect
to see some change in the predicted plot before the jJump takes place.
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Figure 5.1: Snow density model estimations vs. measured density

The density model seems to perform reasonably well when snow is present at the sensors. As
seen at the start of figure 5.1, where there is no snow, the model estimates that there is a
density. The peak of the incorrect density, at about sample 45, corresponds to the lowest
temperature period in November.
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Figure 5.2: Snow depth estimated by model vs. measured depth

The depth model seen in figure 5.2 seems to have a problem estimating the snow depth in
November, where the measured depth is zero just like the density model did. The rest of the
model follows the measured depth quite closely. The jump at sample point 175 looks like it
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follows the measured value too closely but, this is where the data changes from December to
February, implying that a smooth transition at that point would not be correct.

MATLAB has the capability of creating deep and shallow neural network through
applications as well as machine learning algorithms. Figure 5.3 shows the density estimates
from a shallow neural network built in MATLAB.
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Figure 5.3: Snow density estimates vs. measured density

The neural network has one hidden layer, with 50 neurons and the training algorithm used is
Bayesian Regularization. Figure 5.3 shows that the NN model handles the lack of snow better
than the GPR model however, it still estimates snow when there is none. For the rest of the
estimates the NN model seems to follow the measured density slightly better although not to
a large extent.

Figure 5.4 shows the NN based snow depth model. This model also consists of one hidden
layer with 50 neurons, and the best results were found using the Bayesian Regularization
training algorithm. Like all models so far, November is a challenge. The GPR model follows
the measured depth slightly worse that the NN model, except at the start, where the NN
model both has a larger error in the period when there is no snow, and a slightly higher value
at the start of December.
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Figure 5.4: Snow depth estimated by model vs. measured depth

5.2 ML.NET

ML.NET has a handful of regression algorithms built in. It has an automatic trainer like
MATLABS applications but, it is harder to test all the algorithms since only the algorithm
with the best validation results are offered at the end of the process. In this case a tree
algorithm might perform quite well, since the number of unique values in the output data is
limited, but ideally the model should be able to estimate values other than what it was trained
with.

To train and test the models, a Windows forms application was used. The primary purpose of
the form was to plot, the estimates and measurements in a graph. None of the built-in
regression algorithms worked as well as the NN or GPR based models from MATLAB. The
number of algorithms to choose from is also more limited. The best results came using a Fast
Forrest algorithm. Figure 5.5 shows the results of the density model.
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Figure 5.5: Snow density estimated by model vs. measured snow density

This model struggles more than the others at the start when there is no snow, and looks like it
estimates less accurately than the previous models, especially at the higher densities.

The best performing algorithm for training the depth model, ended up being the Generalized
Additive Models algorithm. The depth estimations from this model is shown in figure 5.6.
Like every other model so far, the model is unable to detect a snow depth of 0 cm.
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Figure 5.6: Snow depth model estimations vs. measured depth

5.3 Keras

Keras is a python-based API for TensorFlow, and is used for deep learning neural networks.

In this section neural network models are built, trained, and tested for both snow depth and
snow density. Keras provides far more possibilities than the more shallow neural network in
MATLAB, although there is no application with a GUI like MATLAB has, for neither deep,
nor shallow neural networks.

Both MATLAB and ML.NET normalizes the data for you, but Keras does not. Hence, before
the data can be used in the neural network the data is normalized. One NN was created for
each model and different combinations of hidden layers, neurons in those layers, and
optimizers were tested. Finding the best parameters was acheived by trial and error.

Density model

The results for the best density model can be seen in figure 5.7. The shape of the neural
network is explained in table 5.1. The adam optimizer was used during training, and 20% of
the training data was used for validating the model during training, optimizing the mean
squared error. When using the built in Keras training and validating split, the fraction of the
data that will be used for validating is set between 0.0 and 1.0. The split is chosen to use the
last part of the data set for validating. To ensure that there was enough variation in the
validation set, the order of the samples in the training data set is randomized. 1000 epochs
were used for training the model.
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Table 5.1: Snow density neural network structure

Layer Neurons Activation Function
Input Layer 7

Hidden Layer 1 150 Relu

Hidden Layer 2 125 Tanh

Hidden Layer 3 100 Relu

Hidden Layer 4 75 Relu

Hidden Layer 5 50 Relu

Hidden Layer 6 25 Relu

Output Layer 1 Relu
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Figure 5.7: Snow density estimated by model vs. measured density

As seen in figure 5.7, this is the first model that handles the period with no snow quite well.
There is a sample or two at the end where the model estimates a bit of snow, but it
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putperforms all the other models trained so far. For December and February, it is on par with
the models created in MATLAB.

Depth model

The preparation of the data for the snow depth model is similar to the density model. Several
combinations of layers, activation functions, neurons, and optimizers were tested attempt to
train the best model possible. Table 5.2 describes the neural network that achieved the best
estimations based on the testing data.

Table 5.2: Snow depth neural network structure

Layer Neurons Activation Function
Input Layer 7

Hidden Layer 1 200 Tanh
Hidden Layer 2 125 Tanh
Hidden Layer 3 80 Relu
Hidden Layer 4 100 Sigmoid
Hidden Layer 5 75 Tanh
Hidden Layer 6 75 Sigmoid
Hidden Layer 7 50 Relu
Hidden Layer 8 50 Relu
Output Layer 1 Relu

Like the rest of the depth models there are some issues when it comes to the November
samples, but it still provides a better result than the other depth models. Figure 5.8 shows the

model estimations in comparison to the measured snow depth.
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Figure 5.8: Snow depth model estimations vs. measured depth
SWE model

Most of the focus in this thesis is on the snow depth and snow density, because the SWE that
is of interest, is easily calculated from the depth and density. The best models that has been
created in this thesis were found using Keras. In figure 5.9 those two models are used to
estimate snow depth and density, and from these predictions the calculated SWE is compared
to the measured SWE. The combined model works quite well applied on the test data. It
doesn’t follow the measured SWE exactly everywhere, but this is because of the density
measurements, where the model is expected to change value gradually.
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Figure 5.9: SWE estimated by calculating estimated depth and density vs. SWE from measured depth and
density

40



6 Conclusion

6 Conclusion

The main objective of this thesis has been to evaluate whether the capacitance-based sensor
approach to measure SWE is a feasible and good solution. Based on a set of models created
and trained, it seems possible that this approach could be used to estimate both the snow depth
and the snow density needed to calculate SWE. Unfortunately, due to there being little snow in
Porsgrunn in the testing period and the black plastic heating in the sun on prototype #3 making
the measurements done with that prototype a bit uncertain. This restricted the possibilities for
training the ML models to prototype#1, that was placed in a snow safe location. There are some
uncertainties if the manual measurements of the densities are correct in December, and there is
a limited number of them and this led to the machine learning models being trained on
somewhat limited data. A larger data set, typically possessing a larger variety in snow depth
and snow density, would probably yield better models.

The results show that all the models have a challenge when there is no snow present. This isn’t
necessarily a problem, since the whole purpose installing these sensors is to measure when
there is snow, not whether there is snow. Though obviously, being able to detect snow would
be preferrable. During winter when there is snow present, and the temperature is below zero
degrees centigrade, the estimates from the models perform well and the estimates are pretty
close to the observed values.

Unfortunately, as discovered in March and April, the snow retracts from the moisture sensors
when the temperature increases. The planned use for this system is to help predict the inflow
of water to reservoirs. This is mainly done during the spring when the temperatures are starting
to rise, so even if the models work reasonably well during the winter, it is not very likely that
they will work for their intended purpose.

What we have seen from the test seems to be that a major issue is that retracting snow will
likely be a challenge for any sensor system that depends on physical contact with the snow to
make measurements unless one is able to prevent the snow from melting close to the sensors.
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Appendix A — Thesis Description

University of
South-Eastern Norway

Faculty of Technology, Natural Sciences and Maritime Sciences, Campus Porsgrunn

FMH606 Master's Thesis

Title: Development of models for estimating snow height and snow density using machine
learning methods.

LISN supervisor: Nils-Olav Skele and co-supervisors Hikon Viumdal and Ole Magnus Brastein
External partner: Skagerak Energi AS / Beathe Furenes

Task background:

Part of the work at the Hydrologist group at Skagerak Energl AS is to develop and maintain
maodels to predict the amount of inflow for energy production in hydropower systems. The
input to these models are based on among others the weather forecast to predict this
irflow,

The springtime in northern countries can be a challenge for such systems as the melting of
the snow will highly affect this prediction of inflow. Today manual measurements of the
snow height and density are performed during the end of the wintertime to estimate the
inflow. These measurements must often be taken at impassable locations so the manual
operation takes time and is expensive.

An M5c project group autumn 2019 at USN evaluated different measurement principles, and
an M5c master thesis spring 2020 made some preliminary conclusions based on insufficient
snow measurements with a selected measurement principle. This project will be a
continuation of the results from previous work at USN.

Skagerak Energl AS wants a robust autonomous measurement system for snow density
which can be deployed remotely with a minimal footprint, and transmit the desired
infarmation to the data centre at Skagerak Energi AS. The focus in this thesis is data pre-
processing and data-driven modelling, not the data communication nor system design.

Task description:
The suggested task description is:
» Make a Iiterature survey of such systems available today.
* Evaluate the usage of a mechanistic model using the measurement from the node for
estimating the snow density and snow height.
* Give an overview of machine learning platforms like TensorFlow and Keras, and
support in programming languages like MATLAB, Python, R, Julia and C#,
o Evaluate the supervised and reinforcement learning methods for this projects and
indicate any requirements for such learning methods.
* Describe the structure of making a data driven model based on machine learning
algorithms and relate the structure to available methods in the ML NET library for C&.
= Two prototypes are available, one with only capacitance sensor devices, and one
with both capacitance, temperature and pressure sensor devices, and a set of
samples will be available for developing a model. Make an analysis of the data sets
with a discussion of the pre-processing of these data sets.
* Develop models for estimating the snow height, snow density and the snow water
equivalent based on the data sets.
* Discuss the data communication challenges and propose a protocol between the
measurement system and the data centre when the data centre will use the data
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driven models developed in this project, including an option for supervised learning,
for estimating the snow height, snow density and snow water equivalent (SWE),

* The air humidity affects the capacitance sensor devices. Evaluate if the change in air
humidity can be used to indicate raining?

¢ Optional: make a paper for the SIMS conference in autumn 2021
(www.scansims.org).

Student category: lIA (EET, EPE, IIA or PT students)
The task is suitable for online : Yes
Practical arrangements:

Measurements from one prototype of the remote sensor node in the Lillehammer area will
be available. Another prototype will also be available for the project at campus if more
measurements are wanted.

As a general rule, the student is entitled to 15-20 hours of supervision. This includes
necessary time for the supervisor to prepare for supervision meetings (reading material to
be discussed, etc).

Signatures:

Student (write clearly in all capitalized letters): Henrik Nikolai Vahl

| S f
Student (date and signature): 4-FEB-21 / ... o L J/
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Appendix B - Description of snow capacitance and density measurement prototypes

1 SnowSensorNodes

Caze Dezeripilon of anow capaciiance snd denaily messuremens: proioivpes
Awthor Nils-Olav Skeie [NOE)
Date 2L-FEB-21- Version [

1.1 Introduction

In coopersilon with Slegersk Energy A% in 2018, = project was siaried for saiimsiing the weier contemis
in anow. Skegersk Fnergy AS need 1his information for esiimeiing 1the apring ocd. The project staried up
with & B3¢ preject in Awiumn 201%, and comtinued with 8 MSc Thesis in spring 2020 =nd 2021, The foen:
n ihs MS5e project wes = aysiem overview snd a propesasl for = aveiem srchiteciure for & remete anow senzor
nods. The mein requirermnenia sre 8 amsll fooi print and weing s bailery sz ithe power sowree. The M3e
ihesiz in 2020 wes bazed on a protoiype with fve sensors messuring ike copaciiance in the snow, buwi dus 1o
ihe Covid-10 ziiusiion eould noi 1he preiciype be uzed on the cabin on Sjuzjeen. No snow in the Grenlsnd
gres requliz in ome messurement series on Viddsseter. Two mew proioivpe: were build the sutwmn 2020 snd
one of these proioiypes &2 located st Klufimovegen 100 =1 Sjuzjeen.

All the protoiype: =re besed on the humidiy senzor for Ardume prejecia messunng ihe humidity in
flower pote. The senzor devies 12 shown 1n Figure 1.

kL

Figure 1: The capeciiense aensor, messure sbout 1022 em.

Thia semszor device 1= loceied at differemi heights on the snow senzor 10 mesaure the cepaciiance &1 differeni
heighia. The hypotihesis 12 1hei ihe weier conient m znow, the denaniy of the snow, can be eziimated uaing
ihe capaelisnes of the snow. By using the espaciiance ai differem heighis, 1he demeity ei diferemt heighds
cen be estimeied, and 1hs snow helahi cen be cziimeied bazed on the senzors at differemi heightis. According
ie the MSc project will 18 be 2 chellenge to messure the snow height, therefor the firai spproach waa io
eailmeie ihe amow height bazed on the capeelienes messurermenia.

The now weter content, or anow weter equivalent (9WE), 12 estimseted bered on the following squeiion:

SWE=F *

where h iz the anow height, o s the density of the anow, and g, i3 the denaity of water l_'_lg ':::ns_\l. MNate
ihat 1ihe unil for SWE 12 em. The denaiiy of the snew 13 1n the renge of 100 1o 400 f-_kg m?:f- and can be
eeleulsied waing = pipe with diameier & =sa:

Mas2, amie Mo38,ammzia [3]

= 1000

Snew Density = — :
Vol, orzta mrik [em?]

where the me2z 13 messured, end b 32 the amew heighi where the zample 1z igken.
The proioivpes are bezed on an Arduine aysiem colleciing ihe valusa from ihe sensors, one messurement
every minute, end iranimitiing ihe senaor value: on the USE conneetion 1o 8 Window: computer far logging.

An gverview of ihe logping process 12 shown mn Figure 2.
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Figure 1: The syetem airuciure for lopging the zenser veluss. The remede snow messuring node coniging a
ze1 of zenaors, resd by en Arduine syaiem located =i the nede, snd irsnimiiiing the veluez on 8 Dhlodbue
ETU bazed proiocol 1o the logging device.

The protoccl: conzizta of the locetion ID (protoiype ID) end the semsor values from the apecific node.
The logging sofiware on the Windows svalem must exiraet 1he values, Slier the zenasor velusa and log 1he
velues on = cov file. The cov file will slio coniain the menusl anew height end snew densiiy. Theze marusl
veluzs muat be sdded by 2 humen snd updsied fom 1ime 1o time. Due 1o thiz 1ims frame will these manual
veluea be marked = velid only for & specific peried of iime by ihe aupervize flag in ihe eav file.

/ Locations

1.2 Protoiypes
There exiziz ihres projoiypea:

1. Loeailon #£1: A proioiype bulld weing = plasile pipe wih & height of 2 m snd = diemeier of 65 mum.
Ths protoiype iz loceted &t the cebin on Sjusjeen (Klufimoregen 190, 1364 Nerozet ), inatelled putzids
=t the end of November 2020, before the anow fall. Frve cepeciisnce zenaor: at different height in 1hs
plestic pipe, = temperature sensor [LMP—36) located =i the top of the pipe, and two pressure semaore.
O'ne ghaolute preasure semsor 21 the bottom of the senzor to mesaurs the enow prezaure (the membrans
iz too :mell?} snd en ebaclute preszure renzore inzide the pipe 1o messure the simospheric presaurs.
The aenzor nede 1z shovn in Figure 2. The five cepaciiznce senzor: sre locsied at the following heights:
10, 30, 50, 80, 110 [em]. A messuring i2pe &= glusd 1o the pipe to messure the snow height. The Arduine
gvaiem 1= loceied at ihe top of the pipe, together with & 12V P8V and the tempersiure senacr, snd
he: been 1eziing In temperaiures dewn o —26°C. The node 13 powered by 220V, wiih an integraied
17WVDC PEU. The PSU iz added due 1o the preszure senacrs. The dats iz iranamitied on the USE pon,
OIE MNEEIEgE VATV mmuie.

2. Loeailon£2: A proioiype builld in 8 :me]l plaztic box wiih ihe dimenaions 20, 15 end 7.5 em contaming
four capecitence zenacrz, one tempersiure zenaor (LMP — 36) and an ultre sonie senzor. The meszure-
ment range for the ulire sonie 2emsor i 2 — 430 [em]. The capsciiznes senaors have been modified
z0 the first zensor has & vere bosrd =2 the capeellencs pleis with an sree of 1626 cm and the zecond
cgpacliance aenzor hes iwe standard plates of 622 cm snd the rest of the capeclienes zensors have 1he
giandard plate of 622 em. Theae zenzorz sre moumied on diferent side: of the plastic bax and 1he
shoew height moust be simulated by filling each 2id: with :now. The ultra zonic zenszor iz moumied =i
ihe laai aide of ihe box, without any cepscrisnce senanr. The aemzor node = powered uwsing the USE
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Figure 3: The cav file formst for the logger spplicsiion, with the header on the first line.

pori. The deta 13 iremsmuiited on the USE pori, one meszage every minuie. This iz 8 porisbles device
uzed =i different locedions, both 2t the cebin and =1 home.

. Locaiion £8: A protoiype buld =i USN bazed on zeveral plestic pipes, 3 heighi of shouwl 1.8m
end = diameier of 110 mm. The protoiype 1= loceted =i Siethelle or Poregrunn (USN), end eovered
by amow sfier ihe amow fall. The protoiype cenalziz of fve capaciiances at ihe following heights:
23, 36,64 92,122 [em] A tempersiure senzor ([TMP — 36) ha: been =dded to the syziem. The zensar
nods 1z powered waing the USE port. The dets iz iremamiited on the USE pori, one meszage every
mimaie. Blsck plaatic pipes sre used giving a chellenge with ihe aun =2 the amew close 1o pipe: -
mzliing fazier than the surroundings anew.

Ga

1.3 Cszv file format

The cav fils fields are separaied by the szemi colon end comtaining the following felda:

1 Deie and iime DD /MM YYYY HHMM

7  Locstien xx (01- 9%)

3 Sensor device: Flosting value, number depend on loesiicn

4  Manusl snew height imeger, In o

i Manusl snow denaiiy integer, iIn kg/ m™F

f Commenis siring, lately with the snow denaity informeticn
7  Supervized lesrming fleg  ON/OFF Hag, 1urn off afier x zamples

The manuel inputz sre part of configuretion snd the file can be witheut these felds. An exemple of 2
eav fils 13 ahown m Figure 3.
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Appendix C — Code

The figure below shows a flow-chart of different scripts and the files they produce and use,
used to create the plots seen in this thesis. For the ML.NET the Visual Studio project is

located in the MLRegression folder. The scripts can be found at https://github.com/Henrik-
V/ThesisScripts

Testinput.mat
—’D_” MATLAB regressionlearner app DensityModel.mat DensityModelTest.m
[ } )I l yi I
TestTarget.mat |_| l_l L
® | DepthModel.mat DepthModelTest.m
ComparisonPlots.m matlabTraininginput.mat ! 1:D
Cabin1SnoDelogData202012.csv J ]
I | |_] MATLAB nnstart app DensityB_R_50.m  PensityNNModeltest.m
matlabTriningTargetDensity.mat
MoistureSensorPlots.m 1 P
Cabin2SnoDelogData202012.csv “—D . DepthB_R_50.m DepthNNModelTest.m
matlabTriningTargetHeight.mat —
TestData.m ! | >
GD—OD—G' testData.csv
Cabin3SnoDelogData20212.csv ,E'i
e 1 d ityTest.
TrainingData.m trainingData.csv densityNNTraining.py modelDensity ensityTest.py
Vl I 'l ‘ {I
trainingSet.csv SWETest.py
0—": depthNNTraining.py modelDepth 0'.]
testingSet.csv .—.E’—'l:l_‘ depthTest.py

:
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Appendix D - Sensor measurement comparison plots
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Moisture Sensor #3 -
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