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A B S T R A C T   

We contribute to the literature on the assessment of innovation systems by relating the amount of inputs 
available to the system and its performance through the concept of returns to scale (increasing, constant or 
decreasing). We study to what extent the size or scale of innovation systems relates to their performance, which is 
estimated through frontier Data Envelopment Analysis-TOPSIS methods, which overcome several limitations of 
the standard DEA approach. 

Using the same data provided by the European Innovation Scoreboard (EIS) for years 2010, 2013 and 2016, 
our results indicate that countries with a high innovation scale tend to overinvest in innovation inputs. This 
results into scale inefficiencies stemming from decreasing returns, leading to lower productivity levels. Thanks to 
DEA-TOPSIS we identify the best and worst performing innovation systems. This provides helpful information by 
setting suitable reference benchmarks for policy analysis and decision-making. 

Our results question the current allocation of resources and call for a reconsideration of how innovation 
policies are designed in many European countries. We conclude that for the EIS to become a useful instrument for 
the definition of innovation policies, it should consider the nature of returns to scale. This would allow poli-
cymakers to identify problems and limitations related to the size of their respective innovation systems, and 
hence, design holistic innovation policies to act upon them.   

1. Introduction 

Innovation (the ‘residual’ in growth accounting) is the most impor-
tant source of productivity growth and thereby of increased welfare. The 
European Commission has been one of the most active agents as to the 
measurement of innovation with the development of the European 
Innovation Scoreboard (between 2010 and 2015, Innovation Union 
Scoreboard) and the implementation of the Community Innovation 
Surveys (CIS). Other scoreboards also include the UK Competitiveness 
Index, the index of the Massachusetts Innovation Economy, the Global 
Innovation Index, the Nordic Innovation Monitor or the Bloomberg 
Innovation Index to mention a few. What these approaches share is that 
they all are based on the use of a synthetic scalar measure that, through 
composite indicators, provides a ranking of the countries under study, 

with consequent political implications. 
However, the simplistic use of synthetic composite indicators may be 

dangerous because the rankings derived from them are often taken for 
granted, without any deliberation of their validity (Grupp and Mogee, 
2004; Grupp and Schubert, 2010: 69). They can have a communication 
function to raise awareness about innovation policy, but they should not 
be instrumentally used to make policy decisions without relevant 
qualifications (see Edquist et al., 2018). However, if innovation score-
boards are expected to have a real impact on the definition of innovation 
policies, it is essential that they set the ground for an exhaustive char-
acterization of innovation systems. We believe that such characteriza-
tion can only be achieved when it is based on sound scientific concepts 
and methodologies, which are able to identify the strengths and weak-
nesses of every innovation system, so the policy design can take this 

* Corresponding author. Department of Economics, Universidad Autónoma de Madrid. Francisco Tomás y Valiente 5, 28049 Madrid, Spain. 
E-mail addresses: jose.zofio@uam.es, jzofio@rsm.nl (J.L. Zofío).  

Contents lists available at ScienceDirect 

Technovation 

journal homepage: www.elsevier.com/locate/technovation 

https://doi.org/10.1016/j.technovation.2021.102314 
Received 9 January 2020; Received in revised form 19 March 2021; Accepted 22 May 2021   

mailto:jose.zofio@uam.es
mailto:jzofio@rsm.nl
www.sciencedirect.com/science/journal/01664972
https://www.elsevier.com/locate/technovation
https://doi.org/10.1016/j.technovation.2021.102314
https://doi.org/10.1016/j.technovation.2021.102314
https://doi.org/10.1016/j.technovation.2021.102314
http://crossmark.crossref.org/dialog/?doi=10.1016/j.technovation.2021.102314&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Technovation 107 (2021) 102314

2

diagnosis as a point of departure. 
Due to the impact that innovation is having in most economies, and 

also as a consequence of increasing interests from policy-makers con-
cerning public accountability (Lovell, 2002; Batterbury, 2006), there 
has been an increasing development, use and exploitation of indicators 
to improve the measurement of innovation systems (Castro-Martínez 
et al., 2009; Dziallas and Blind, 2019). Several concepts have been 
introduced in the literature to assess and characterize innovation sys-
tems, such as innovation capacity, innovation potential, propensity to 
innovate, innovativeness or innovation performance to mention a few 
(Carayannis et al., 2015; Furman et al., 2002; Hagedoorn and Cloodt, 
2003; Jordan, 2010; Mairesse and Mohnen, 2002; Prajogo and Ahmed, 
2006; Zabala-Iturriagagoitia et al., 2007a). However, few have tackled 
the actual meaning behind these concepts, neither offering robust defi-
nitions that allow distinguishing them, nor discussing their potential 
complementary effects (Carayannis and Grigoroudis, 2014; Lee, 2015). 

In this paper we relate the volume of innovation inputs available to 
an innovation system and its performance. Innovation inputs is here used 
as a measure of the amount of resources that are invested in the inno-
vation system. In turn, innovation performance is defined as the rela-
tionship between these resources (i.e. innovation inputs) and the results 
(i.e. innovation outputs) that emanate from the system. Hence, inno-
vation performance is defined as a measure of the efficiency levels 
achieved by a particular innovation system, or, equivalently, its relative 
productivity (see Edquist et al., 2018). Both concepts are rendered 
operational in the paper through corresponding scalar measures of input 
size and efficiency. These two concepts are also related through the 
analysis of the returns to scale (increasing, constant or decreasing) to 
clarify if an increase in the amount of innovation inputs available to the 
innovation system also leads to higher innovation performance. If 
countries increase innovation inputs and the resulting increase in out-
puts is proportionally larger, equal or smaller than the increase in the 
inputs, then they face increasing, constant or decreasing returns to scale, 
respectively.1 In the latter case of decreasing returns, continuous efforts 
to increase the amount of innovation inputs will result in successive 
reductions in the productivity of the system (as outputs grow at a lower 
rate than inputs, and therefore their ratio decreases), which will even-
tually result in lower efficiency levels, when compared to those of other 
countries. This justifies the importance of determining the nature of 
returns of scale of innovation systems and testing the previous 
hypothesis. 

A key feature of the concept of innovation performance used in this 
paper is that it is defined in relative terms.2 Production theory studies 
the relation between the amount of inputs used within a system (i.e., the 
scale of the system) and the amount of outputs that such system is 
capable of producing (Shephard, 1970). From this relation a natural 
measure of relative performance emerges by comparing the two through 
the concept of efficiency or productivity (i.e. the ratio of an aggregate 
output index to an aggregate input index). Hence, to assess the inno-
vation performance of national innovation systems we rely on the 
literature on efficiency and productivity (Fried et al., 2008). This is 
interactively determined by multi-lateral comparisons of multiple 

input-output combinations (Guan and Chen, 2012). To measure inno-
vation performance in a robust manner we introduce to the field of 
innovation the advanced Data Envelopment Analysis techniques related 
to the Technique for Order of Preference by Similarity to Ideal Solutions 
(DEA-TOPSIS).3 The rationale for using the DEA-TOPSIS methods lies in 
that it helps overcome the severe limitations of the standard DEA 
approach, which has already been applied to assess innovation perfor-
mance in previous research efforts (e.g., Zabala-Iturriagagoitia et al., 
2007b; Edquist et al., 2018). 

The previous methodology is applied to the data provided by the 
European Innovation Scoreboard (EIS) for years 2010, 2013 and 2016.4 

The EIS aims to “provide a comparative assessment of the research and 
innovation performance of the EU Member States and the relative 
strengths and weaknesses of their research and innovation systems” 
(European Union, 2017: 8). The EIS is the main instrument used by the 
European Commission to monitor the results achieved by the Innovation 
Union, which is one of the flagship initiatives defined by the European 
Union within its Europe 2020 Strategy to create an innovation-friendly 
environment that supports the generation, emergence and diffusion of 
innovations. The EIS calculates a Summary Innovation Index (SII) that 
synthetizes all the indicators included in the EIS, regardless of their 
character (i.e. inputs, outputs, determinants, outcomes, impacts), by 
calculating their arithmetic mean (i.e. the basic aggregating function 
one may rely on to obtain a single scalar measure). The SII ranks all EU 
countries according to what is explicitly called “EU Member States’ 
Innovation Performance” (European Union, 2017), so the underlying 
logic is that the bigger the SII (‘size’ in terms of all indicators), the better 
the innovation performance.5 

The rest of the paper is organized as follows. Section 2 presents the 
indicators that constitute the ‘standard’ or base model followed in the 
paper to characterize national innovation systems based on the data 
provided by the EIS. In section 3 we present the applied methodology 
and discuss the advantages of using the DEA adaptation of the multi- 
criteria TOPSIS method compared to the standard DEA approach that 
has been applied in the literature for the purpose of measuring the ef-
ficiency of innovation systems. Section 4 compares the results achieved 
when DEA-TOPSIS and standard DEA methods are applied to the same 
models for years 2010, 2013 and 2016. Section 5 shows the conclusions 
that can be deduced from the previous results, while providing a dis-
cussion of the main findings and its relevance for the practice of inno-
vation policymaking. 

2. Characterizing innovation systems 

Innovation systems are composed by a complex network of inter-
acting organizations, policies and institutions whose main purpose is to 
improve the conditions under which the emergence, generation, diffu-
sion and uptake of innovations take place (Metcalfe, 1995; Palmberg, 
2006). Since its advent, the characterization of innovation systems has 
always constituted a challenge, not only for policy-makers but also for 
researchers engaged in the innovation studies community. The original 
works by Nelson (1993), Lundvall (1992) and Edquist (1997), among 
many others, started studying the main characteristics of a set of na-
tional innovation systems, analyzing the organizations embedded in 
them and the institutions affecting those. These studies set the ground 
for the emergence of a wider set of quantitative studies. In Europe in 
particular, the data provided by the CIS and the EIS facilitated the rapid 

1 Numerically, the concept of decreasing returns to scale takes place when a 
proportional increase in inputs (e.g., doubling the amount of inputs, 2x) results 
in a lower proportional growth in outputs (i.e., less than double, <2x). If out-
puts and inputs increase in the same proportion, then constant returns to scale 
are observed (i.e., double, = 2x). Finally, increasing returns to scale are 
observed if the outputs grow at a higher rate than the inputs (greater than 
double, >2x).  

2 The main purpose of developing comparative studies “is to assist policy by 
summarizing a range of innovation indicators at the national, regional or sector 
level, by permitting a comparison of the relative success or failure of the 
innovation system, or through the identification of specific aspects of the 
innovation system which perform well or poorly” (Arundel and Hollanders, 
2008: 30). 

3 See Section 3 for a detailed description of the DEA-TOPSIS methodology.  
4 The data are retrieved from the 2017 edition of the European Innovation 

Scoreboard.  
5 The EIS does not provide any specific definition of innovation performance, 

beyond the Summary Innovation Index (SII). It can thus be said that for the EIS, 
innovation performance is understood as the arithmetic mean of all the in-
dicators in the EIS (i.e. the SII). 
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development of quantitative works. However, despite the fact that the 
number of indicators available for measuring innovation has increased 
over the last three decades, the characterization problem still remains 
(Dziallas and Blind, 2019). 

As already introduced, the aim of this paper is to relate the amount of 
innovation inputs available to the innovation system and its innovation 
performance through the concept of returns to scale. The idea of 
addressing the performance of innovation systems has been already 
discussed in the literature (Zabala-Iturriagagoitia et al., 2007b; Cher-
chye et al., 2008; Nasierowski and Arcelus, 2012; Carayannis et al., 
2015; Kou et al., 2016; Edquist et al., 2018). A good example in this 
regard is the Global Innovation Index (Dutta et al., 2017), which cal-
culates the so-called “Innovation Efficiency Ratio”, defined as the pro-
ductivity ratio between an aggregate innovation output sub-index over 
an aggregate innovation input sub-index (p. 12).6 Indeed, this approach 
is, in its basic characteristics, very similar to the “Productivity Innovation 
Index” proposed by Edquist et al. (2018). However, the former is based 
on composite indicators while the latter resorts to optimizing Data 
Envelopment Analysis (DEA) techniques for aggregation. As regards the 
concept of innovation scale, the Global Innovation Index provides a 
synthetic input score measuring the size of innovation systems, 
depending on the availability of inputs that are put into the system. 

Nonetheless, there are still several methodological limitations that 
previous studies have not managed to elucidate, and which justifies the 
novel approach adopted here (see Section 3.1). Despite the extensive 
evidence suggesting that efficiency methods can provide a systemic 
interpretation of innovation performance, the EIS has remained meth-
odologically blind. Both the “Summary Innovation Index” (SII) of the EIS 
and the overall “Global Innovation Index score” (GII) still follow a “the 
bigger, the better” rationale. The underlying logic behind composite 
measures such as the SII or the GII is that the larger the amount of these 
synthetic indicators, the superior will also be the ability of the system to 
produce and diffuse innovations. However, this does not mean that the 
system is able to keep certain proportionality between the invested re-
sources and the actual results in terms of innovation, leading to a partial 
explanation on the functioning of innovation systems. To capture this 
relevant economic effect, we introduce the concept of innovation per-
formance, which measures the efficiency of innovation systems. 

If we are to characterize and measure innovation systems, it is crit-
ical to select the right set of input and output indicators capturing their 
complex characteristics (Katz, 2016), which is not an easy task. The 
number and kind of indicators to be used is difficult to deduce system-
ically from innovation theory (Grupp and Schubert, 2010: 68; Dziallas 
and Blind, 2019). The literature on innovation studies has discerned a 
series of activities or functions which are accomplished within the frame 
of an innovation system, and which are required for its proper func-
tioning (e.g. Galli and Teubal, 1997; McKelvey, 1997; Brenner and 
Broekel, 2011). Such a focus on the activities of an innovation system 
emphasizes ‘what happens in the system’, providing a dynamic 
perspective on its functioning. Each of the activities may thus be 
considered a partial determinant of the development and diffusion of 
innovations. 

In this regard, Hekkert et al. (2007) propose a set of seven functions 
to be applied when mapping an innovation system. These seven func-
tions are: (i) entrepreneurial activities, (ii) knowledge development, (iii) 
knowledge diffusion through networks, (iv) guidance of the search, (v) 
market formation, (vi) resources mobilization, and (vii) creation of 
legitimacy/counteract resistance to change. Johnson (2001) also follows 

a similar approach, by relating the functions accomplished by an inno-
vation system with the activities developed in it. Accordingly, she 
identifies the following functions: (i) supply incentives for companies to 
engage in innovative work, (ii) supply resources, (iii) guide the direction 
of search, (iv) recognize the potential for growth of innovation, (v) 
facilitate the exchange of information and knowledge, (vi) stim-
ulate/create markets, (vii) reduce social uncertainty, and (viii) coun-
teract the resistance to change. The work by Edquist (2005, 2011) needs 
to be stressed here, as he provides a systemic and holistic rationale for 
the activities required by an innovation system. Edquist introduces a list 
of ten activities, which are structured into four thematic categories, and 
which represent those factors that influence, support, hinder, ease and 
promote the development of innovation processes (see Table 1). 

The functions listed above are not independent, but rather reinforce 
— or offset — one another (see Acs et al., 2014). The underlying logic 
behind the previous views on innovation functions is that the more ac-
tivities developed in a system, the larger will be its ability to produce 
and diffuse innovations (i.e. namely, to act as a fully equipped system). 
However, the literature has not managed to elucidate as to yet which 
could be the indicators that could help characterize each of the previous 
functions, which remains for further exploration. 

Since our purpose in this paper is limited to national innovation 
systems in Europe, a departing point is the set of indicators provided by 
the EIS. Edquist et al. (2018) discuss at length which subset of the EIS 
indicators are most sensible for measuring innovation performance. The 
set of key indicators they substantiate as being more appropriate for 
such a purpose is presented in Table 2. From their point of view, despite 
the indicators included in the EIS are related to innovation, many of 
them refer to environmental or contextual factors (e.g. population with 
tertiary education, new doctorate graduates), or to the impact of in-
novations on the economy as a whole (e.g. employment in 
knowledge-intensive activities, medium and high-tech product exports), 
which are beyond the actual management of any innovation system. 

To ease comparison with their results, in this paper we use the same 
set of indicators, corresponding to what Edquist et al. (2018) name 

Table 1 
Key activities/functions of innovation systems.  

I. Provision of knowledge inputs to the innovation process 
1. Provision of R&D results, and thus creation of new knowledge, primarily in 

engineering, medicine and natural sciences. 
2. Competence building, e.g. through individual learning (educating and training 
the labour force for innovation and R&D activities) and organizational learning. 
This includes formal learning as well as informal learning. 

II. Demand-side activities 
3. Formation of new product markets (e.g. public procurement for innovation). 

4. Articulation of new product quality requirements emanating from the demand 
side. 

III. Provision of constituents 
5. Creating and changing organizations needed for developing new fields of 

innovation. Examples include enhancing entrepreneurship to create new firms and 
intrapreneurship to diversify existing firms, and creating new research 
organizations, policy organizations, etc. 
6. Networking through markets and other mechanisms, including interactive 
learning among different organizations (potentially) involved in the innovation 
processes. This implies integrating new knowledge elements developed in different 
spheres of the SI and coming from outside with elements already available in the 
innovating firms. 
7. Creating and changing institutions – e.g., patent laws, tax laws, environment and 
safety regulations, R&D investment routines, cultural norms, etc. – that influence 
innovating organizations and innovation processes by providing incentives for and 
removing obstacles to innovation. 

IV. Support services for innovating firms 
8. Incubation activities such as providing access to facilities and administrative 

support for innovating efforts. 
9. Financing of innovation processes and other activities that may facilitate 
commercialisation of knowledge and its adoption. 
10. Provision of consultancy services relevant for innovation processes, e.g., 
technology transfer, commercial information, and legal advice. 

Source: Adapted from Edquist (2011). 

6 The Global Innovation Index (GII) includes 81 indicators for 143 countries. In 
it, all indicators are classified as innovation inputs or outputs and a sub-index is 
calculated for each. Rather than using the arithmetic mean for aggregation, a 
weighted mean is employed, but the weights for the individual input and output 
indicators are unreported. The GII also provides an “overall GII score” which 
follows the same logic as the SII of the EIS. 

J. Barbero et al.                                                                                                                                                                                                                                 



Technovation 107 (2021) 102314

4

“standard (baseline) model”, according to the following criteria (p. 
199).7: 

• Innovation inputs: variables referring to the resources (human, ma-
terial and financial; private as well as governmental) used not only to 
create innovations but also to bring them to the market.  

• Innovation outputs: variables referring to new products and processes, 
new designs and community trademarks, as well as marketing and 
organizational innovations, which are connected to the market, and 
which can either be new to the world, the industry and/or to the 
firm. 

Accordingly, a scalar measure of innovation inputs corresponds to the 
arithmetic mean of the four indicators selected by Edquist et al. (2018). 
Increasing the number of possible input indicators (corresponding to 
alternative models studied by these authors) does not result in sub-
stantial changes in the value of the arithmetic mean. We have calculated 
alternative definitions by considering up to seven innovation inputs 
instead of four. The correlations for year 2010 are 0.9069, 0.9245 for 
year 2013, and 0.8753 for year 2016.8 In turn, innovation performance is 
measured using the DEA-TOPSIS method applied to the previous set of 
eight innovation output indicators and four innovation inputs. 

Given the heterogeneity of innovation systems in Europe, the set of 
12 indicators identified by Edquist et al. (2018) allows to assess those 
activities which need to be undertaken by all innovation systems, 
despite, with different intensities. As we discuss in the method section 
(see Section 3) the DEA approach will attribute the most favorable 
weights to each of these indicators in each country, depending on its 
structural characteristics, so as to maximize its relative efficiency. The 
next section discusses the methodological details behind the measure-
ment of innovation performance using DEA-TOPSIS methods. 

3. Methodology 

Charnes et al. (1978) introduced DEA to assess the relative perfor-
mance of a group of observations. Their original ratio-form formulation, 
known as CCR in the literature, computes the productivity of each 
observation relative to those of their remaining counterparts. However, 
the original formulation restricts productivity measurement to either the 
partial (radial) output orientation that increases outputs given a level of 
inputs, or its counterpart input orientation that reduces inputs for a 
given a level of outputs. Later, Chambers et al. (1996) proposed a more 
flexible measure of relative productivity by allowing for both output 
increases and input reductions. 

This can be formalized in the context of the present study as follows. 
Let us denote by j = 1, …, J the set of countries observed in t = 1, …,T 
time periods− years. Countries use innovation resources (human, ma-
terial and financial), each represented by the elements of the follo-
wing− input− vector: xt

i =  (xt
1i,…, xt

Ni) ∈ RN
+, to generate innovation 

outputs such as new products and processes, new designs, etc., repre-
sented by the output vector yt

i =  (yt
1i,…, yt

Mi) ∈ RM
+ . The relative pro-

ductivity of an innovation system i in the direction defined by the vector 

gt =
(

gt
x, gt

y

)
∕= 0, can be calculated by solving the following program: 

min
vt

n ,μt
m ,ωt

−
∑M

m=1
μt

myt
im +

∑N

n=1
νt

nxt
in + ωt = D→

t (
xt

i, yt
i; gt) (1)  

s.t. 

∑M

m=1
μt

myt
jm − ωt

∑N

n=1
νt

nxt
jn

≤ 1, j = 1, ..., J,

∑N

n=1
νt

ngt
n +

∑M

m=1
μt

mgt
m = 1,

νt
n ≥ 0, μt

m ≥ 0,

where νt*
n and μt*

m denote the optimal input and output weights, and ωt* 

is a scalar that informs about the nature of returns to scale at the 
benchmark variable returns to scale frontier− see Fukuyama (2003). 
Note that the weights νt*

n and μt*
m define aggregator functions for the 

inputs and outputs and that the objective function in (1) represents the 
supporting hyperplane bounding the productivity levels across the 
group of J countries. 

When country i under evaluation maximizes productivity at the scale 
given by ωt*, it corresponds to the minimum feasible distance to the 
supporting hyperplane, and therefore the objective function is zero: 

D→
t (

xt
i , yt

i ; gt) = 0, implying that i defines the reference frontier. The 
greater the optimal value (distance to the frontier), the more inefficient 
the innovation system. Notice that we can deem the solution to (1) as a 
relative inefficiency measure because the set of J constraints normalize 
the productivity to one. Therefore, when an innovation system is effi-
cient, its productivity is maximal and equal to one in the i = j constraint 
corresponding to itself. The scale parameter ωt* in program (1) plays a 
critical role in our analysis by capturing the nature of returns to scale of 
innovation inputs. Fukuyama (2003: 114) extends the analysis by 
Banker et al. (1984) on the scale properties of the radial output and 
input formulations under variable returns to scale to the directional 
distance function. In this case, the nature of returns to scale at the 
reference frontier can be ascertained through the following values:  

i) Decreasing Returns to Scale (DRS) prevails for (xt
i , yt

i)⇔ ωt*(xt
i , yt

i ;

gt) > 0 for all optimal solutions.  
ii) Increasing Returns to Scale (IRS) prevails for (xt

i , yt
i)⇔ ωt*(xt

i , yt
i ;

gt) < 0 for all optimal solutions. 

Table 2 
The “standard (baseline) model” for measuring innovation systems.   

Innovation output indicators 

2.2.1 SMEs innovating in-house (% of SMEs) 
2.3.3 Community trademarks per billion GDP (in PPP€) 
2.3.4 Community designs per billion GDP (in PPP€) 
3.1.1 SMEs introducing product or process innovations (% of SMEs) 
3.1.2 SMEs introducing marketing or organizational innovations (% of SMEs) 
3.2.2 Contribution of medium and high-tech products exports to the trade balance 
3.2.3 Knowledge-intensive services exports (as % of total service exports) 
3.2.4 Sales of new to market and new to firm innovations (as % of turnover)   

Innovation input indicators 

1.3.1 R&D expenditure in the public sector (% of GDP) 
1.3.2 Venture capital (% of GDP) 
2.1.1 R&D expenditure in the business sector (% of GDP) 
2.1.2 Non-R&D innovation expenditures (% of turnover) 

Source: Adapted from Edquist et al. (2018). 

7 Edquist et al. (2018) carry out a sensitivity analysis of what they label “the 
standard model” of innovation performance, by considering as many as 12 
innovation outputs and 7 innovation inputs, and provide evidence of the high 
correlations between the standard model and the “extended” version. The 
interested reader can consult this study for the specific list of additional inputs 
and outputs considered in the extended model.  

8 Moreover, as shown in the empirical section, we perform a sensitivity 
analysis of the innovation performance results obtained for each country using 
the baseline model, by changing the number of the input and output indicators. 
We conclude its robustness to changes in the number of indicators included in 
the analysis. Hence the choice of the number of inputs in the calculation of 
innovation scale does not statistically change the results on innovation 
performance. 

J. Barbero et al.                                                                                                                                                                                                                                 



Technovation 107 (2021) 102314

5

iii) Constant Returns to Scale (CRS) prevails for (xt
i , yt

i)⇔ ωt*(xt
i , yt

i ;

gt) = 0 for some optimal solution. 

Since innovation systems subject to either decreasing or increasing 
returns to scale cannot maximize productivity by definition, it is rele-
vant to determine the productivity loss caused by a suboptimal scale. 
This loss can be quantified by calculating the relative productivity of 
those countries whose ωt*∕= 0 when solving program (1), with respect to 
those that maximize productivity according to νt*

n and μt*
m by exhibiting 

constant returns to scale (i.e., those with ωt* = 0, representing most 
productive scale sizes in the terminology of Banker et al. (1984)). For the 
scale inefficient countries exhibiting decreasing or increasing returns 
this comparison can be perfomed by solving program (1) for a second 
time, but on this ocassion including only the subset of scale efficient 
countries with ωt* = 0 in the j = 1, …, J restrictions.9 Let us denote by 

D→
t
CRS

(
xt

i , yt
i ; gt) the distance to the supporting hyperplane defined by the 

scale efficient countries characterized by constant returns to scale, then 
the productivity loss due to a suboptimal scale is measured through the 
following scale inefficiency (SI) measure: 

SI
(
xt

i, yt
i; g

t)= D→
t

CRS

(
xt

i, y
t
i; gt) − D→

t (
xt

i , y
t
i; gt). (2) 

All countries whose scale parameter ωt* is equal to zero when solving 
program (1) are scale efficient by definition, because both distances 
coincide, i.e, SI(xt

i , yt
i ; gt) = 0. The remaining countries exhibiting 

decreasing or increasing returns incur in scale inefficiency, i.e., SI(xt
i ,

yt
i ; gt)> 0, and its value corresponds to the productivity loss due to a 

suboptimal scale, measured by the distance between the constant and 
the variable returns to scale benchmarks. Afterwards, it is possible to 
identify the nature of returns to scale causing the scale inefficiency, 
either decreasing or increasing, by looking at the values of ωt* in pro-
gram (1), as presented in i) (DRS) and ii) (IRS) above. Regarding the 
conclusions of our study, in the empirical section we show that most 
national innovation systems in Europe are prone to decreasing returns to 
scale, and calculate the magnitude of the resulting scale inefficiency. 

As it can be observed, the previous definition of innovation perfor-
mance following program (1) is far from that provided by the EIS 
through the Summary Innovation Index (SII), which corresponds to the 
arithmetic mean of the complete set of EIS indicators: SIIt

i =
∑25

l=1υl ι̂t
li,

υl = 1/25, ι̂t
li ∈ [0, 1], where ι̂t

li is the max-min normalized value of 
each l indicator (either input or output as no distinction is made). The 
Global Innovation Index (GII) provides a counterpart with the same 
structure and interpretation of the SII, which is called “GII score”. A 
second measure provided by the GII is the “Innovation Efficiency Ratio” 
(IER), whose formulation corresponds to a productivity measure, as it 
defines the ratio of an innovation output sub-index over an innovation 
input sub-index: 

IERt
i =

∑M

m=1
μmyt

mi

/
∑N

n=1
νnxt

ni, μm > 0, νn > 0. (3) 

According to the GII, this ratio “serves to highlight those economies 
that have achieved more with less … providing an insight that should be 
neutral to the development stages of economies” (italics added, p. 419). This 
remark about the development stage can be actually interpreted as 
regardless the amount of innovation inputs (scale) of the innovation 
system, since developed countries inevitably show larger innovation 
systems (measured by the SII or the GII score). The main difference with 
program (1) is that the IER does not rely on optimizing techniques to 
compare performance across observations and to obtain individual input 

and output weights, νn and μm.10 Moreover, the IER in (3) defines as an 
absolute productivity index that is characterized by constant returns to 
scale, and therefore cannot capture the nature of returns to scale that the 
innovation system faces, as shown by the optimal value of the scale 
parameter ωt*—note in particular that this is the only difference be-
tween expression (3) and the set of j = 1, …, J restrictions in (1). Hence, 
the GII constitutes a productivity index with fixed weights that is com-
parable to the efficiency measure under constant returns to scale, 

D→
t

CRS
(
xt

i , yt
i ; gt

)
, that we have presented in order to calculate scale in-

efficiency, SI(xt
i ,yt

i ; gt). However, as shown in the empirical section, the 
general assumption of constant returns to scale imposed by (3) is not 
warranted when variables returns to scale are allowed, as in (1). 

3.1. Relevant drawbacks of standard DEA methods 

Standard DEA approaches have been extensively used in the litera-
ture to assess innovation performance, as it has been proven an effective 
method to successfully identify efficient benchmarks. However, it pre-
sents several weaknesses that compromise its applicability from a poli-
cymaking perspective. The most relevant ones concerning our present 
study are the following:  

1) Inability to discriminate among efficient observations: One relevant 
weakness of standard DEA, particularly when variable returns to 
scale are brought into the analysis, is that a significant subset of 

observations are identified as efficient, with D→
t (

xt
i , yt

i ; gt) = 0.  
2) Sensitivity to extreme observations representing questionable 

benchmarks: When searching for the most favorable optimal 
weights, a large number of observations are deemed efficient by 
default.  

3) Vulnerability to rank reversals: Optimal weights are not unique, 
compromising the stability of ranks when additional observations or 
variables are included. Eventually, adding an observation with the 
same innovation indicators into the analysis may result in rank re-
versals (Wang and Luo, 2009; Soltanifar and Shahghobadi, 2014). 

There have been several proposals that partially address these 
shortcomings. A first set focuses on the ranking issue, and aim at qual-
ifying the scores of the efficient observations. This ranges from simple 
super-efficiency models to elaborated cross-efficiency proposals (Apar-
icio and Zofío, 2020; Balk et al., 2021). However, these methods do not 
solve the extreme observations problem and the need to identify a 
credible set of efficient observations. A second set is characterized by the 
introduction of weight restrictions. These restrictions are based on prior 
information on their relative importance such as expert opinion (e.g. 
engineering shadow prices), which helps to improve the discriminatory 
power of the method and reduce weight dispersion (see Cooper et al., 
2011). However, there still remains the issue of multiple− single valued, 
efficient units. Finally, both methods are prone to the rank reversal 
problem given the multiplicity of optimal weights. 

9 From a computationally perspective this is equivalent to solving program 
under the general assumption of constant returns to scale, dropping the scale 
parameter ω* in the objective function and the set of restrictions. 

10 The innovation input sub-index of the GII is comprised of five input pillars 
that capture elements of the national economy that enable innovative activities 
(Dutta et al., 2017: 11–12): institutions, human capital and research, infra-
structure, market sophistication, and business sophistication. In turn, the 
innovation output sub-index provides information about two output pillars: 
knowledge and technology outputs, and creative outputs. While the SII is the 
arithmetic mean of the EIS indicators, the GII is a weighted average: “the five 
input pillars each have a fixed weight of 0.10; the two output pillars each have a 
fixed weight of 0.25” (Dutta et al., 2017: 70). However, the weights for the 
individual inputs and outputs within each pillar remain unreported. 

J. Barbero et al.                                                                                                                                                                                                                                 



Technovation 107 (2021) 102314

6

3.2. The DEA-TOPSIS evaluation of national innovation systems 

A method capable of jointly addressing all these limitations, allowing 
to establish a meaningful and robust ranking of observations, to identify 
credible benchmarks that policymakers can agree on, and immune to 
rank reversal, is the DEA version of the Technique for Order of Prefer-
ence by Similarity to Ideal Solution (TOPSIS). This technique creates 
virtual ideal (anti-ideal) production units with the maximum observed 
values of outputs and minimum observed values of inputs (and vice 
versa), and calculates for each unit two efficiency scores, namely with 
respect to the ideal (optimistic) and anti-ideal (pessimistic) frontiers 
respectively. Central to the method is the idea that decision makers can 
learn from both best and worst practice. Wang and Luo (2006) combine 
DEA and TOPSIS using the standard (radially oriented) constant returns 
to scale measures, showing that both methods can be integrated, so as to 
provide a robust ranking of observations, using undisputed benchmarks 
such as the ideal and anti-deal observations. Later on Wu (2006) and 
Chen (2012) qualified the initial proposal by improving the interpret-
ability of the models and solving apparent inconsistencies related to 
conflicting orientations and efficiency values that question the possi-
bility of aggregating the DEA-TOPSIS best and worst relative efficiencies 
into a relative closeness ratio (RC); i.e., a composite performance index. 

We rely on this notion but generalize the methodology by consid-
ering as an efficiency measure that associated to the directional distance 
function approach, and introducing variable returns to scale. First, as the 
directional distance functions embeds the partially oriented standard 
measures, previous proposals can be obtained by setting the specific 
directional vectors gt to match the input or output orientations (Färe and 
Grosskopf, 2000), and removing the scale parameter. Second, consid-
ering variables returns to scale allows us to explore the existence of 
decreasing, increasing or constant returns to scale at the individual 
country level. 

In the present study, the DEA-TOPSIS method consists of a three-step 
process. In the first step the efficiency scores of the ideal and anti-ideal 
innovation systems, with respect to those actually observed, are calcu-
lated. In the second step, an optimistic model maximizes the relative 
efficiency of the evaluated unit under the condition that the best relative 
efficiency of the ideal unit remains unchanged. A pessimistic (or 
aggressive) model minimizes the relative efficiency of the unit while 
keeping the worst relative efficiency of the anti-ideal unchanged. The 
last step consists in calculating the Relative Closeness Innovation Index 
(RCII), which relates both measures of efficiency and ranks countries 
depending on their relative innovation performance. 

Using TOPSIS terminology, we start out defining the “Ideal Innovation 
System (IIS)” as that producing the largest amount of outputs with the 
least amount of inputs in period t, and vice versa for the “Anti-ideal 
Innovation System (AIS)”. Note that both the IIS and the AIS are virtual 
units created from real observed values. 

IISt =
(
yt

IISm, x
t
IISn

)
=

(

max
j

(
yt

mj

)
,min

j

(
xt

nj

))

, ∀ n, m,

AISt =
(
yt

AISm, xt
AISn

)
=

(

min
j

(
yt

mj

)
,max

j

(
xt

nj

))

, ∀ n, m.

Recalling program (1), and choosing as directional vector the com-
mon value corresponding to the mean of the input and output indicators: 
gt = (gt

x, gt
x) = (xt , yt)—using a common value renders the efficiency 

scores comparable, in the first step we calculate the highest relative 
productivity or efficiency of the IIS, with respect to those actually 
observed across countries. This value is the solution to the following 
model: 

min
vt

n ,μt
m ,ωt

−
∑M

m=1
μt

myt
IISm +

∑N

n=1
νt

nxt
IISn + ωt

IIS = D→
t(

xt
IIS, y

t
IIS; g

t) (4)  

s.t. 

−
∑M

m=1
μt

myt
jm +

∑N

n=1
νt

nxt
jn + ωt ≥ 0, j = 1, ..., J,

∑N

n=1
νt

nxt
n +

∑M

m=1
μt

myt
m = 1,

νt
n ≥ 0, μt

m ≥ 0.

We remark that unless one of the observed countries performs as well 

as the IIS, D→
t (

xt
IIS, yt

IIS; gt
)
< 0, indicating that the (maximum) amounts of 

outputs and (minimum) amounts of inputs must be reduced and 
increased, respectively, to reach the maximum productivity across the 
observed countries. Moreover, those countries defining the optimal 
supporting reference hyperplane for the IIS in (4) can be identified as 
those performing best by maximizing the productivity. 

While program (4) maximizes the productivity of the IIS with respect 
those observed across countries− minimizing the distance to the best 
actually observed innovation systems, its negative counterpart is 
calculated by maximizing the distance of the AIS to the worst performing 
countries. To determine this worst case bound, one solves the following 
model: 

max
vt

n ,μt
m ,ωt

−
∑M

m=1
μt

myt
AISm +

∑N

n=1
νt

nxt
AISn + ωt

AIS = D→
t(

xt
AIS, yt

AIS; g
t) (5)  

s.t. 

−
∑M

m=1
μt

myt
jm +

∑N

n=1
νt

nxt
jn + ωt ≤ 0, j = 1, ..., J,

∑N

n=1
νt

nxt
n +

∑M

m=1
μt

myt
m = 1,

νt
n ≥ 0, μt

m ≥ 0.

On this occasion, those countries defining the optimal supporting 
reference hyperplane for the AIS in (3) can be identified as those per-
forming worst by exhibiting the lowest productivity, which implies that 
their individual constraints in the set of the j = 1, …, J restrictions are, 
once again, saturated. 

Therefore, the whole purpose of programs (4) and (5) is to establish 
the best and worst reference benchmarks (hyperplanes) across the 
observed innovation systems included in the EIS, relying on the virtual 
ideal and anti-ideal innovations system as reference benchmarks to 
identify them (see Fig. 1). Once these reference hyperplanes have been 
obtained they can be used to calculate the optimistic and pessimistic 
performance of each country with respect to them. 

The second step of the TOPSIS method evaluates the performance of 
country i with respect to these best and worst benchmarks. Starting with 
the ideal benchmark, relative efficiency can be determined by solving an 
equivalent program to (4) but ensuring that the efficiency of the ideal 
reference remains constant, thereby restricting the set of available 
optimal hyperplanes to those previously identified. That is: 

min
vt

n ,μt
m ,ωt

−
∑M

m=1
μt

myt
im +

∑N

n=1
νt

nxt
in + ωt = D→

t

IIS

(
xt

i, y
t
i; gt) (6)  

s.t. 

−
∑M

m=1
μt

myt
jm +

∑N

n=1
νt

nxt
jn + ωt ≥ 0, j = 1, ..., J,

−
∑M

m=1
μt

myt
IISm +

∑N

n=1
νt

nxt
IISn + ωt = D→

t (
xt

IIS, y
t
IIS; g

t),

∑N

n=1
νt

nxt
n +

∑M

m=1
μt

myt
m = 1,

νt
n ≥ 0, μt

m ≥ 0.
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Consequently, if D→
t

IIS(xt
i ,yt

i ; gt) = 0, the innovation system of country i 
defines the reference hyperplane for the IIS in program (4); otherwise 

D→
t

IIS(xt
i , yt

i ; gt) > 0, and the shortest the distance the better the country 
under evaluation performs with respect to the benchmark peers identi-
fied by the IIS. Next, the counterpart to this program, representing the 
pessimistic approach measuring how distant is an innovation system to 
the worst reference hyperplane identified by the AIS in (5), is given by: 

max
vt

n ,μt
m ,ωt

−
∑M

m=1
μt

myt
im +

∑N

n=1
νt

nxt
in + ωt = D→

t

AIS

(
xt

i, yt
i; g

t) (7)  

s.t. 

−
∑M

m=1
μt

myt
jm +

∑N

n=1
νt

nxt
jn + ωt ≤ 0, j = 1, ..., J,

−
∑M

m=1
μt

myt
AISm +

∑N

n=1
νt

nxt
AISn + ωt = D→

t (
xt

AIS, yt
AIS; gt),

∑N

n=1
νt

nxt
n +

∑M

m=1
μt

myt
m = 1,

νt
n ≥ 0, μt

m ≥ 0.

Again, if D→
t

AIS(xt
i ,yt

i ; gt) = 0, the innovation system of country i defines 
the worst reference hyperplane for AIS in program (5). But now, since 
the rest of the innovation systems perform better that these observa-
tions, their outputs and inputs are to be reduced and increased, 

respectively, to reach the worst hyperplane, with D→
t

AIS(xt
i , yt

i ; gt) < 0. 
Therefore the longest the distance in absolute values to the reference 
hyperplane, the better the performance of the country under evaluation 
with respect to the worst benchmarks. 

Fig. 1. a provides a graphical illustration of the four different dis-
tances calculated in order to facilitate its interpretation. Fig. 1. b shows 
the extreme case of one innovation system defining both the best and 
worst frontiers (i.e., the point at the bottom-left). This result implies that 
an innovation system can perform well on some dimensions, but poorly 
on others. Results for these observations should be interpreted with 
caution and studied on a case-by-case basis.11 

3.3. A robust indicator for innovation systems performance 

The last step defines a performance composite index in the vein of the 
relative closeness (RC) ratio proposed by the TOPSIS method. Models (3) 
and (5) measure the best possible relative efficiencies of the IIS and those 
of the actually observed systems, while models (4) and (6) measure the 
worst possible relative efficiencies as compared to the AIS. As both 
performance indicators may lead to different conclusions, a robust in-
dicator capturing both dimensions into a single scalar is defined. Hence, 
the Relative Closeness Innovation Index (RCII) is defined as follows: 

RCIIt
i =

⃒
⃒
⃒
⃒D→

t

AIS

(
xt

i,yt
i;gt

)
− D→

t (
xt

AIS,yt
AIS;gt

)
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒D→

t

AIS(xt
i,yt

i;gt)− D→
t
(xt

AIS,yt
AIS;gt)

⃒
⃒
⃒
⃒+

⃒
⃒
⃒
⃒D→

t
(xt

IIS,yt
IIS;gt)− D→

t

IIS(xt
i,yt

i;gt)

⃒
⃒
⃒
⃒

,

(8)  

where the distance differences are considered in absolute terms given 

the negative values that D→
t
AIS(xt

i , yt
i ; gt) and D→

t
(xt

IIS, yt
IIS; gt) may adopt in 

both the numerator and denominator. 
The monotonicity properties of this indicator in the present direc-

tional distance function are satisfactory. For a given innovation system 
under evaluation, its RCIIt

i index is: i) increasing in the distance between 
its efficiency with respect to the worst reference frontier and that of the 

anti-ideal innovation system: D→
t
AIS

(
xt

i , yt
i ; gt) − D→

t (
xt

AIS, yt
AIS; gt)− i.e. the 

farther away from the worst frontier the better; and ii) decreasing in the 
distance between its efficiency with respect to the best reference frontier 

and that of the ideal innovation system: D→
t (

xt
IIS, yt

IIS; gt) −

D→
t
IIS
(
xt

i , yt
i ; gt)− i.e. the closer to the best frontier the better. In summary, 

the shorter the distance to the best reference frontier and the longer the 
distance from the worst reference frontier, the greater the value of RCIIt

i . 
In the following section both the standard DEA and the DEA-TOPSIS 

approaches will be used to characterize the nature of returns to scale and 
to assess the performance of national innovation systems in Europe. 

4. Empirical results 

4.1. Assessing innovation performance through standard DEA 

Recalling the discussion in Section 2 on the characterization of 
innovation systems, we first implement the DEA-TOPSIS analysis for the 
baseline model including the selected four input and eight output in-
dicators proposed by Edquist et al. (2018). Before undertaking the 
analysis, we explore the efficiency levels and returns to scale 

Fig. 1. A graphical representation of the DEA-TOPSIS method with one input and one output.  

11 Shen et al. (2016) establish sufficient conditions to ensure that the efficient 
and inefficient frontiers do not intersect. In our empirical application we obtain 
this result in very few occasions. 
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characteristics of the innovations systems of the standard DEA method 
following program (1) – see Section 3. This allows identifying the initial 
benchmark innovation systems under variable returns to scale, which in 
the first step of the DEA-TOPSIS method are potential candidates to 
define the best reference hyperplanes for the IIS. We also calculate the 
magnitude of the scale inefficiency resulting from decreasing or 
increasing returns to scale, implying that innovation systems exhibit 
suboptimal scales. 

Table 3 presents the results for the directional distance function in 
years 2010, 2013, and 2016. The weaknesses of the standard DEA be-
comes immediately clear, resulting in a large number of innovations 
systems being efficient and thereby pointing to the low discriminatory 
power in ranking analyses of standard DEA. Out of the 31 countries 
considered in the EIS, only 6, 7 and 9 countries are respectively deemed 

inefficient in these three years; i.e. D→
t
(xt

i , yt
i ; gt) ≥ 0. Estonia, Croatia, 

Lithuania, The Netherlands and Poland present evidence of inefficient 
innovation systems in at least two years, while Sweden is consistently 
inefficient in all years considered. These results should not come as a 
surprise. On the one hand, Sweden invests heavily in innovation, placing 
this country at the top of the rank by the amount of innovation inputs (i. 
e. largest aggregate input indicator). The direct effect is that it also ranks 
high up in terms of aggregate output indicators. This is why it is 
generally in the first position of the SII, computed as the arithmetic mean 
of all EIS indicators. However, even if Sweden is defined as an innovation 
leader by the EIS, when an undisputed measure of relative efficiency or 
productivity like (1) is brought into the analysis, Swedish performance 
can be described as relatively poor, belonging to the scarcely populated 
set of inefficient countries. 

In relation to the high number of efficient countries, and thanks to 
the parameter characterizing the nature of returns to scale in program 
(1), ωt*, we identify that many of them are indeed scale inefficient: 12 in 
2010, 10 in 2013, and 19 in 2016. Fukuyama (2003) shows that 
maximum productivity is attained by those observations defining 
reference hyperplanes characterized by constant returns to scale (ωt*=

0). Contrarily, those countries that, being efficient, exhibit increasing or 
decreasing returns to scale (ωt*<0 and ωt*> 0, respectively) incur in 
scale inefficiencies and therefore could increase their productivity by 
either increasing or reducing the amounts of innovation inputs 
employed. Table 3 reports the magnitude of the scale inefficiency caused 
by either decreasing or increasing return to scale, defined as the dif-
ference between distances under constant and variables returns to scale, 

SI(xt
i , yt

i ; gt) = D→
t
CRS(xt

i , yt
i ; gt) ¡ D→

t
(xt

i , yt
i ; gt), see expression (2). 

Comparing the values of SI(xt
i , yt

i ; gt) and D→
t
(xt

i , yt
i ; gt) we see that scale 

inefficiency is remarkably larger than technical inefficiency. Indeed, the 

average value of SI(xt
i , yt

i ; gt) doubles that of D→
t
CRS(xt

i , yt
i ; gt), and even 

triples the value in 2016: 0.087 vs. 0.030. This shows the relevance of 
the productivity loss resulting from a suboptimal scale, either because of 
increasing or decreasing returns. We now confirm that this loss is due to 
the latter. 

As shown in the last three columns of Table 3, decreasing returns to 
scale predominate over increasing returns as the main cause of scale 
inefficiency (only in 4 cases ωt* is negative indicating the existence of 
increasing returns, IRS). This is confirmed in Table 4 summarizing the 
nature of returns to scale. The widespread and increasing existence of 
decreasing returns causing scale inefficiency is confirmed. In fact, there 
is a shift towards decreasing returns over the whole period. While in 
2010 the number of innovation systems (efficient and inefficient) with 
increasing returns represented 6.5% of countries (n = 2), those with 
decreasing returns accounted for 35.5% (n = 11). Yet, in 2016, 58.1% of 

the innovations systems exhibit decreasing returns (n = 18). As for 
inefficient countries, the existence of decreasing returns in their refer-
ence benchmarks is certain, since over 80% of them are subject to this 
type of returns in all three years.12 

These results show the positive correlation between scale in-
efficiency and innovation inefficiency, implying that countries with a 
high innovation scale tend to overinvest in innovation inputs when 
compared to less developed innovation systems. To corroborate this 
relationship we have calculated the correlation between scale in-
efficiency SI(xt

i , yt
i ; gt) and the value of the scale parameter ωt*in abso-

lute terms (since both negative (IRS) and positive (DRS) values result in 
scale inefficiency): ρ(SI(xt

i ,yt
i ; gt), |ωt*|) = 0.534, which is significant at 

the 1% level. Hence, we conclude that the existence of decreasing 
returns to scale results in relevant scale inefficiencies of the innovation 
systems. 

This result proves that the forces that prevent the materialization of 
all investments into innovation outputs are highly related scale in-
efficiencies, because of lower rates of return to those investments. There 
is a need to reflect on the cause of this result, because once a country 
reaches high levels of innovation scale due to the large investments 
made in it, even if the returns on those investment are low, it is coun-
terintuitive to prescribe a downsizing (i.e. reducing the amount of 
innovation inputs) of the innovation system from a policy perspective. 
Yet, the other option of increasing the innovation outputs associated to 
those investments is also unrealistic given the existence of decreasing 
returns. Nevertheless, for inefficient countries, a general recommenda-
tion is to learn from other countries that, using similar amounts of 
innovation inputs (i.e. and which are in the same development stage of 
their innovation system), exhibit better innovation performance. We 
thus conclude that a serious reconsideration of the way in which re-
sources are being invested should be made, since our results point to 
clear saturations in some of the activities of the system (see Acs et al., 
2014), in contrast to others which could be still subject to increasing 
returns to scale of innovation inputs. This calls for the realization of 
possible economies of scope (or diversification versus specialization), 
related to changes in the mix of innovation outputs, which need to be 
explored as possible sources of further productivity gains (e.g. Morita 
2003). 

4.2. Assessing innovation performance through DEA-TOPSIS 

The first step in the DEA-TOPSIS methodology is to calculate the 
highest (lowest) relative productivity or efficiency of the IIS (AIS), with 
respect to those actually observed, solving programs (3) and (4) 
respectively. Table 5 provides the distances of the IIS and AIS with 
respect to the best and worst reference benchmarks (hyperplanes) across 
the observed sample of countries (see Fig. 1). As for the nature of returns 
to scale at the best and worst innovation frontiers, inspecting the 
reference countries for the IIS for the three years we learn that in most 
cases they exhibit constant returns (83.3%), with a scale parameter 
ωt* = 0 in Table 3.13 Unsurprisingly, this implies that the reference 
hyperplane for the IIS is defined by benchmarks that maximize pro-
ductivity since they are not subject to increasing or decreasing returns. 
Conversely, the reference hyperplane for the AIS is made up of a 

12 Only Romania (2010), Latvia (2013) and Lithuania (2016) exhibit 
increasing returns.  
13 Reference countries for the IIS are Austria (2010, 2013), Cyprus (2010), 

Germany (2010, 2013), Greece (2013), Italy (2010, 2013), Luxemburg (2010, 
2013, 2016), Malta (2010, 2013, 2016), Slovakia (2016), Spain (2013), United 
Kingdom (2016), and Switzerland (2016). 
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majority of countries (57.9%) that exhibit decreasing returns to scale 
ωt* > 0, and therefore incur in scale inefficiencies.14,15 Therefore, based 
on the nature of returns to scale at the supporting hyperplanes, we 

Table 3 
Efficiency values of the innovation system, scale inefficiency and returns to scale, program (1).  

Country D→
t
(xt

i ,yt
i ; gt) D→

t
CRS(xt

i ,yt
i ; gt) SI(xt

i ,yt
i ; gt) ωt*  Returns to scale 

2010 2013 2016 2010 2013 2016 2010 2013 2016 2010 2013 2016 2010 2013 2016 

Austria 0.000 0.000 0.000 0.000 0.000 0.083 0.000 0.000 0.083 0.000 0.000 0.709 CRS CRS DRS 
Belgium 0.051 0.000 0.000 0.131 0.000 0.122 0.080 0.000 0.122 0.898 0.000 0.197 DRS CRS DRS 
Bulgaria 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 CRS CRS CRS 
Croatia 0.034 0.000 0.139 0.064 0.000 0.140 0.030 0.000 0.001 0.313 0.000 0.033 DRS CRS DRS 
Cyprus 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 CRS CRS CRS 
Czech Republic 0.000 0.000 0.000 0.239 0.048 0.129 0.239 0.048 0.129 0.500 0.208 0.293 DRS DRS DRS 
Denmark 0.000 0.000 0.161 0.038 0.000 0.179 0.038 0.000 0.019 0.148 0.000 0.214 DRS CRS DRS 
Estonia 0.000 0.189 0.148 0.168 0.433 0.325 0.168 0.243 0.177 0.228 1.184 0.864 DRS DRS DRS 
Finland 0.000 0.034 0.000 0.081 0.210 0.203 0.081 0.176 0.203 0.342 0.976 0.748 DRS DRS DRS 
France 0.000 0.029 0.000 0.000 0.055 0.184 0.000 0.027 0.184 0.000 0.758 0.807 CRS DRS DRS 
Germany 0.000 0.000 0.000 0.000 0.078 0.278 0.000 0.078 0.278 0.000 0.342 0.331 CRS DRS DRS 
Greece 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 CRS CRS CRS 
Hungary 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 CRS CRS CRS 
Ireland 0.000 0.000 0.000 0.063 0.000 0.000 0.063 0.000 0.000 0.662 0.000 0.000 DRS CRS CRS 
Italy 0.000 0.000 0.000 0.000 0.000 0.048 0.000 0.000 0.048 0.000 0.000 0.385 CRS CRS DRS 
Latvia 0.000 0.000 0.050 0.000 0.000 0.056 0.000 0.000 0.006 0.000 0.000 − 0.028 CRS CRS IRS 
Lithuania 0.000 0.066 0.034 0.013 0.112 0.103 0.013 0.046 0.069 − 0.120 − 0.167 0.391 IRS IRS DRS 
Luxembourg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 CRS CRS DRS 
Malta 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 CRS CRS CRS 
Netherlands 0.090 0.073 0.000 0.102 0.144 0.000 0.012 0.071 0.000 0.596 0.610 0.000 DRS DRS CRS 
Poland 0.000 0.037 0.135 0.000 0.045 0.147 0.000 0.008 0.012 0.000 0.110 0.065 CRS DRS DRS 
Portugal 0.000 0.000 0.000 0.000 0.000 0.185 0.000 0.000 0.185 0.000 0.000 0.318 CRS CRS DRS 
Romania 0.046 0.000 0.000 0.047 0.000 0.000 0.002 0.000 0.000 − 0.123 0.000 0.000 IRS CRS CRS 
Slovakia 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 CRS CRS CRS 
Slovenia 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.053 0.000 0.000 DRS CRS CRS 
Spain 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 CRS IRS CRS 
Sweden 0.236 0.187 0.121 0.357 0.285 0.524 0.121 0.097 0.403 0.898 1.427 1.493 DRS DRS DRS 
United Kingdom 0.016 0.000 0.000 0.021 0.000 0.021 0.005 0.000 0.021 0.067 0.000 0.431 DRS CRS DRS 
Iceland 0.000 0.000 0.028 0.000 0.000 0.298 0.000 0.000 0.270 0.000 0.000 0.678 CRS CRS DRS 
Norway 0.000 0.000 0.122 0.000 0.000 0.339 0.000 0.000 0.217 0.000 0.000 0.522 CRS CRS DRS 
Switzerland 0.000 0.000 0.000 0.000 0.379 0.258 0.000 0.379 0.258 0.000 0.685 0.285 CRS DRS DRS 

Average 0.015 0.020 0.030 0.043 0.058 0.117 0.027 0.038 0.087 0.305 0.613 0.460    
Maximum 0.236 0.189 0.161 0.357 0.433 0.524 0.239 0.379 0.403 0.898 1.427 1.493    
Minimum 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 − 0.195 − 0.167 − 0.028    
Stand. Dev. 0.046 0.049 0.055 0.082 0.115 0.134 0.057 0.085 0.113 0.364 0.499 0.362    

Notes: gt =
(

gt
x, gt

y

)
= (xt , yt); * Descriptive statistics for the scale parameter ωt* exclude scale efficient countries for whom it is zero in the reported optimal solution. 

Legend: DRS: Decreasing returns to scale; IRS: Increasing returns to scale; CRS: Constant returns to scale. 

Table 4 
Characterizing the nature of innovation systems’ returns to scale. Program (1).  

2010 

Nº efficient ISs (%): 25 (80.6%) Nº inefficient ISs (%): 6 (19.4%) 
IRS (ωt* <

0)  
CRS 

(ωt* = 0)  
DRS 

(ωt* > 0)  
IRS 

(ωt* < 0)  
CRS 

(ωt* = 0)  
DRS 

(ωt* > 0)  

1 (4.0%) 18 
(72.0%) 

6 (24.0%) 1 (16.7%) 0 (0.0%) 5 (83.3%) 

2013 

Nº efficient ISs (%): 24 (77.4%) Nº inefficient ISs (%): 7 (22.6%) 
IRS (ωt* <

0)  
CRS 

(ωt* = 0)  
DRS 

(ωt* > 0)  
IRS 

(ωt* < 0)  
CRS 

(ωt* = 0)  
DRS 

(ωt* > 0)  

0 (0.0%) 21 
(87.5%) 

3 (12.5%) 1 (14.3%) 0 (0.0%) 6 (85.70%) 

2016 

Nº efficient ISs (%): 22 (71.0%) Nº inefficient ISs (%): 9 (29.0%) 
IRS (ωt* <

0)  
CRS 

(ωt* = 0)  
DRS 

(ωt* > 0)  
IRS 

(ωt* < 0)  
CRS 

(ωt* = 0)  
DRS 

(ωt* > 0)  

0 (0.0%) 12 
(54.5%) 

10 
(45.5%) 

1 (11.1%) 0 (0.0%) 8 (88.9%)  

Table 5 
DEA-TOPSIS analysis. Step 1. Benchmark ideal and anti-ideal efficiencies. Pro-
grams (3) and (4).  

Year Benchmark 

Ideal I.S. (IIS) Anti-ideal I.S. (AIS) 

D→
t
IIS(xt

i ,yt
i ; gt) D→

t
AIS(xt

i ,yt
i ; gt)

2010 − 0.865 1.008 
2013 − 0.836 1.322 
2016 − 0.931 0.977  

14 Reference countries for the AIS are the Czech Republic (2010), Estonia 
(2010, 2013, 2016), Finland (2013), Ireland (2013), Lithuania (2016), Hungary 
(2016), Poland (2016), Romania (2013), Slovenia (2013), Sweden (2010, 
2016), United Kingdom (2013), Iceland (2016), and Switzerland (2010, 2013, 
2016).  
15 The reference countries for the IIS and the AIS can be identified from the 

optimal solutions to programs (4) and (5), respectively. They corresponds to 
those countries in the j = 1, …, J restrictions whose constraints are satisfied as 
equalities (therefore equal to zero). 
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anticipate that countries exhibiting suboptimal scales (e.g. by using 
large amounts of inputs), will tend to rank poorly in terms of the relative 
closeness innovation index, RCII, because they share the scale charac-
teristics of the worst performing benchmarks. We illustrate this suppo-
sition in Fig. 2 below. 

The results provided by the TOPSIS method allow us to rank the 31 
countries included in the EIS according to their RCII so the larger its 
value the better the relative performance of the innovation system. After 
solving programs (5) and (6), Table 6 shows the distances of every 
country with regard to the best and worst frontiers, the value of the RCII 
as defined in (7), and the ranking of innovation performance for every 
country in 2010, 2013 and 2016. The ranking is led by Luxembourg in 
2010 and 2016 and by Austria in 2013. Other countries scoring high in 
their innovation performance are Italy, Greece, Germany and Malta. All 
these countries are characterized by being closer to the IIS and farther 
away from the AIS. It can also be observed that the relative performance 
of every innovation system is more clearly depicted by the DEA-TOPSIS 
method, as compared to the standard DEA approach, in which most 
countries were ranked as efficient (see previous section). The DEA- 
TOPSIS method also increases the discriminatory power of the evalua-
tion by reducing the number of reference hyperplanes, yielding an in-
dividual ranking position. 

From a policy perspective, we contend that this diversity of efficient 
countries provides a relevant range of potential benchmarks. Again, this 
does not mean all countries should be benchmarked with Malta or 
Greece, nor do the results imply that Greece or Malta are the most 
comprehensive innovation systems. We do however contend that there 
is something to be learnt from these high performing innovation sys-
tems, which can serve as example for others in similar stages of devel-
opment.16 This implies that every country should aim to benchmark 

itself against those structurally similar innovation systems. The solutions 
provided by the DEA-TOPSIS allow identifying which could be the most 
sensible benchmarks that every inefficient country could learn from. In 
the case of Sweden for example, as a relatively ‘small’ developed 
economy, representing a so called “innovation leader” by the EIS, but 
nevertheless showing a poor innovation performance, sensible targets 
could be Austria (benchmark in 2010 and 2013), Luxembourg (bench-
mark in 2010 and 2013) or Switzerland (benchmark in 2016), due to 
their similar innovation scale, but better innovation performance. In 
turn, for a larger economy like Spain, a country labelled as a “moderate 
innovator” by the EIS and showing an intermediate innovation perfor-
mance, the DEA-TOPSIS identifies Germany (benchmark in 2010), Italy 
(benchmark in 2010) or the United Kingdom (benchmark in 2016) as 
potential references. Spain could learn from the innovation policies 
being implemented (and the results observed thereof) in these ‘peer’ 
countries, so identifying the mix of benchmarks should be welcome by 
policymakers in innovation policy circles. The identification of bench-
marks represents one of the major advantages of DEA methods, and 
hence, its systematic exploration could be further explored. 

To demonstrate that large spending in innovation inputs may result 
in diminishing innovation performance for EU countries because of the 
widespread existence of decreasing returns to scale, we regress inno-
vation performance, using the calculated RCIIi, on innovation input 
scale, Scalei—defined, once again, as the arithmetic mean of the four 
input indicators. Pooling the three years under study: 2010, 2013, 2016, 
the estimated coefficient for innovation input scale is − 0.156, with a 
robust t-statistic of − 2.96, which is significant at the 0.01 level; i.e., 
RCIIi = 0.602–0.156 Scalei. This confirms the existence of a mild but 
significant negative relationship between innovation performance and 
innovation scale. Particularly in the last year, 2016, when decreasing 

returns to scale are prevalent with 18 countries enduring this source of 

Fig. 2. Country categories based on the rankings of innovation input scale and innovation performance (Average for years 2010–2013-2016).  

16 The only caveat is the case illustrated in Fig. 1 b corresponding to inno-
vation systems that define both the efficient and inefficient frontiers. This is 
only observed for Switzerland in 2016. However, this outcome does not alter 
substantially its raking position based on the RCII, 16th, which does not differ 
much from that of the two previous years. 
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scale inefficiency (see Appendix 1).17 This also explains previous results 
obtained in the literature that suggested this relationship but left it 
unexplained (e.g. Zabala-Iturriagagoitia et al., 2007b; Edquist et al., 
2018). 

Based on this negative relationship we propose an instrumental 
characterization of national innovation systems depending on their 
ranking position in terms of innovation performance and innovation 
scale. Tabulating the information as presented in Fig. 2, which compares 
the rankings in innovation inputs (x-axis) and innovation performance 
(y-axis), results in the following four categories of countries18:  

• High innovation inputs and high innovation performance (HIHP): 
France, Netherlands, Denmark, Germany, Austria.  

• High innovation inputs and low innovation performance (HILP): 
Sweden, Finland, Switzerland, Estonia, Belgium, Iceland, Czech Re-
public, Ireland, United Kingdom, Norway, Slovenia.  

• Low innovation inputs and high innovation performance (LIHP): 
Portugal, Luxembourg, Spain, Cyprus, Slovakia, Italy, Malta, Greece.  

• Low innovation inputs and low innovation performance (LILP): 
Lithuania, Poland, Croatia, Hungary, Bulgaria, Romania, Latvia. 

Fig. 2 serves to illustrate the difference between the classic evalua-
tion paradigm associated to “the-more-the-better”, corresponding to the 

HIHP and LILP quadrants located in the positive diagonal, and our new 
approach emphasizing the relevance of studying innovation perfor-
mance, focusing also on the LIHP and HILP categories; i.e. the quadrants 
in the negative diagonal. Arguably countries belonging to these cate-
gories deserve further scrutiny by falling outside what is traditionally 
expected. In this regard numerous countries that invest the lowest 
amount of resources—and hence exhibit low aggregate values of inno-
vation inputs— present a considerable innovation performance—as 
measured by the RCII index, thereby belonging to the LIHP category (e. 
g. Portugal, Spain, Greece, Italy, Slovakia, and Malta). However, not all 
countries with a low innovation input scale achieve a high innovation 
performance (e.g. Lithuania, Poland, Croatia, Hungary, Bulgaria, 
Romania, Latvia), simply because those resources do not materialize in 
innovation outputs (LILP). Similarly, High input scale-Low performance 
(HILP) countries show also that large innovation performance does not 
necessarily go hand in hand, per se, with a large size of the innovation 
system. Finally, as previously remarked, it is also possible to observe 
that some countries can reconcile both perspectives in their innovation 
system (HIHP), constituting the reference benchmarks of both the 
traditional and new evaluation paradigms. These would be the ones that 
could be regarded as comprehensive innovation systems, as they count 
both with a high innovation input scale and a high innovation 
performance. 

Ultimately, these results justify the need to distinguish between the 
size of an innovation system, measured through the quantity of inputs 
available to the system, and its innovation performance. Although the 
identification of the size of an innovation system is important, how 
efficiently the resources available in it are being applied should be as 
important. The amount of innovation inputs may provide an indication 
of the actual level of development of an innovation system, namely, 
whether it is in an embryonic stage, it is evolving or is fully developed, 
with low or high conditions for the development, emergence diffusion 

Table 6 
DEA-TOPSIS analysis.  

Country 2010 2013 2016 

D→
t
IIS(xt

i ,yt
i ; gt) D→

t
AIS(xt

i ,yt
i ; gt) RCIIti  Rank D→

2014
IIS (xt

i ,yt
i ; gt) D→

t
AIS(xt

i ,yt
i ; gt) RCIIti  Rank D→

t
IIS(xt

i ,yt
i ; gt) D→

t
AIS(xt

i ,yt
i ; gt) RCIIti  Rank 

Austria 0.000 − 0.273 0.597 5 0.000 − 0.739 0.711 1 0.027 − 0.354 0.582 4 
Belgium 0.500 − 0.292 0.488 24 0.269 − 0.460 0.617 14 0.618 − 0.324 0.456 22 
Bulgaria 0.397 − 0.008 0.446 27 0.283 − 0.203 0.577 22 0.259 − 0.153 0.487 18 
Croatia 0.377 − 0.118 0.476 26 0.459 − 0.596 0.597 18 0.931 − 0.030 0.351 29 
Cyprus 0.000 − 0.262 0.595 6 0.110 − 0.235 0.622 13 0.606 − 0.668 0.517 14 
Czech Republic 0.743 0.000 0.385 31 0.179 − 0.483 0.640 12 0.208 − 0.280 0.525 12 
Denmark 0.257 − 0.292 0.537 11 0.057 − 0.275 0.641 11 0.240 − 0.351 0.531 10 
Estonia 0.169 0.000 0.494 22 0.372 0.000 0.523 27 0.644 0.000 0.383 26 
Finland 0.694 0.000 0.393 30 0.260 − 0.087 0.562 24 0.495 − 0.336 0.479 19 
France 0.344 − 0.287 0.517 16 0.295 − 0.354 0.597 17 0.254 − 0.305 0.520 13 
Germany 0.000 − 0.393 0.618 3 0.000 − 0.514 0.687 4 0.175 − 0.199 0.515 15 
Greece 0.115 − 0.485 0.604 4 0.000 − 0.733 0.711 2 0.293 − 0.421 0.533 8 
Hungary 0.281 − 0.168 0.506 18 0.278 − 0.351 0.600 16 0.438 0.000 0.417 24 
Ireland 0.456 − 0.369 0.510 17 0.587 0.000 0.482 31 0.170 − 0.493 0.572 6 
Italy 0.000 − 0.465 0.630 2 0.000 − 0.721 0.710 3 0.065 − 0.573 0.609 3 
Latvia 0.080 − 0.127 0.546 9 0.474 − 0.522 0.585 21 0.855 − 0.083 0.372 28 
Lithuania 0.282 − 0.130 0.498 21 0.688 − 0.099 0.483 30 0.940 0.000 0.343 31 
Luxembourg 0.000 − 0.615 0.652 1 0.000 − 0.194 0.645 9 0.000 − 0.820 0.659 1 
Malta 0.000 − 0.124 0.567 7 0.000 − 0.476 0.683 6 0.000 − 0.740 0.648 2 
Netherlands 0.239 − 0.310 0.544 10 0.303 − 0.313 0.589 19 0.412 − 0.522 0.528 11 
Poland 0.121 − 0.103 0.530 13 0.464 − 0.040 0.512 28 0.434 0.000 0.417 23 
Portugal 0.263 − 0.290 0.535 12 0.160 − 0.503 0.647 8 0.566 − 0.335 0.467 20 
Romania 0.485 0.000 0.427 28 0.277 − 0.379 0.605 15 0.531 − 0.290 0.464 21 
Slovakia 0.156 − 0.257 0.533 8 0.033 − 0.568 0.685 5 0.000 − 0.309 0.580 5 
Slovenia 0.221 0.000 0.481 25 0.266 − 0.660 0.643 10 0.198 − 0.137 0.497 17 
Spain 0.351 − 0.224 0.503 19 0.000 − 0.448 0.679 7 0.026 − 0.273 0.566 7 
Sweden 0.647 0.000 0.400 29 0.418 − 0.155 0.541 26 0.692 0.000 0.376 27 
United Kingdom 0.476 − 0.294 0.493 23 0.501 0.000 0.497 29 0.000 − 0.086 0.533 9 
Iceland 0.352 − 0.211 0.500 20 0.362 − 0.370 0.585 20 0.922 0.000 0.345 30 
Norway 0.424 − 0.405 0.523 14 0.491 − 0.430 0.569 23 0.928 − 0.227 0.393 25 
Switzerland 0.058 0.000 0.522 15 0.212 0.000 0.558 25 0.000 0.000 0.512 16 

Notes.gt =
(

gt
x, gt

y

)
= (xt , yt)

17 Estimation results for each year are available in the Supplemental On-line 
Appendix.  
18 Fig. 2 shows that despite the general negative relation between performance 

and scale attested by the regression results, it cannot be excluded that some 
individual countries exhibiting high innovation scales can simultaneously 
achieve high levels of innovation performance (i.e., those in the lower left 
quadrant and characterized as HIHP). 
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and absorption of innovations. However, the latter complements the 
conclusions achieved from a single perspective as innovation scale, and 
hence increases the robustness of the policy recommendations that can 
be derived from the use of scoreboard indicators. 

We would also like to exert caution when interpreting the new results 
based on the RCII. Although a country may be at the top of the ranking in 
terms of innovation performance, by employing relatively few resources 
in relation to the attained results (e.g. Italy, Greece), it does not mean 
that it constitutes per se a reference benchmark for wider objectives such 
as enhancing economic development, reducing the gap in growth rates, 
social welfare, etc., which fall out of the quantitative scope of the pre-
sent analysis (see Fagerberg and Srholec, 2008). On the other hand, a 
country that invests huge amounts of resources in its innovation system 
(e.g. Sweden, Finland) but whose use of resources is identified as inef-
ficient compared to the peer group of best practice countries, cannot be 
seen as an example of best practice either. In terms of our categorization, 
those countries showing high innovation inputs but low performance 
(HILP) would be required to study the innovation systems of benchmark 
countries investing high in innovation inputs while simultaneously 
achieving high levels of performance (HIHP). 

4.3. Testing the robustness of the DEA-TOPSIS results 

One of the potential critiques that may emanate from the above re-
sults is the pertinence of the previous 12 indicators to assess the per-
formance of each and every innovation system. To address robustness 
concerns and potential limits associated to the use of a single baseline or 
‘standard model’− including the selection of the 4 inputs and 8 outputs 
indicators, we have run the DEA-TOPSIS model for all possible combi-
nations of 21 of the 27 indicators in the EIS (see Landete et al., 2017; 
Hou et al., 2018). This implies that we solve all sensible models, starting 
with the simplest one charactering a barebone innovation system with 
minimum requirements, including at least 2 inputs and 3 outputs, up to a 
full model that considers 21 indicators of the EIS (i.e. 9 inputs and 12 
outputs). Table 7 compares the indicators considered in the “baseline 
model” introduced by Edquist et al. (2018) with the models with the 
minimum and maximum requirements considered in this combinatory 
analysis. This implies that a total of 4096 combinations are solved per 
country and per year to test whether the previously reported results are 
statistically robust, and hence, whether the policy recommendations 
derived from them are sensible. As a result, these 4096 models 
contemplate all possible scenarios, given the EIS indicators, and hence, 
avoid the potential bias that the standard model may not fit well the 
innovation structure of some countries. 

We calculate all 4096 RCIIs for every country and year, yielding the 
same number of rankings. Fig. 3 presents a box plot of the distribution of 
ranking positions (1st thru 31st) of each country for all models for year 
2016.19 The box in each “candle stick” represents the interval between 
the first and third quartiles of the ranking distribution (i.e. the inter-
quantile range – IQR –, between Q1 and Q3), with its median represented 
by the horizontal line within it. The upper and lower “whiskers” 
represent thresholds one and a half times above and below the inter-
quantile range: Q1− 1.5 × IQR and Q3+1.5 × IQR). Any ranking posi-
tion below and above these values is represented by an asterisk and can 
be regarded as outliers in the distribution. The dispersion in the rankings 
within the interquartile ranges is rather low in general and no country 
exceeds a distance greater than 10 positions (Estonia presents the 
highest spread with 10 positions, 16th-26th). Finally, the upper and 
lower whiskers signal ranking positions one and half times the IQR, with 
the dots above and below representing outliers laying beyond those 
values. 

Luxemburg consistently ranks in first place and therefore there is no 

Table 7 
Indicators considered in the robustness analysis.   

Baseline 
model 

Model with 
minimum 
requirements 

Model with 
maximum 
requirements 

Inputs 
1.1.1 New doctorate 

graduates per 1000 
population aged 25-34   

X 

1.1.2 Population aged 25–34 
having completed tertiary 
education (% share)   

X 

1.1.3 Population aged 25–64 
involved in lifelong 
learning (% share)   

X 

1.2.1 International scientific 
co-publications per million 
population    

1.2.2 Scientific publications 
among the top 10% most 
cited publications 
worldwide (% of total 
scientific publications of 
the country)    

1.2.3 Foreign doctorate 
students (% of all doctorate 
students)    

1.3.1 Broadband penetration    
1.3.2 Opportunity-driven 

entrepreneurship 
(Motivational index)   

X 

2.1.1 R&D expenditure in the 
public sector (% of GDP) 

X  X 

2.1.2 Venture capital (% of 
GDP) 

X  X 

2.2.1 R&D expenditure in the 
business sector (% of GDP) 

X X X 

2.2.2 Non-R&D innovation 
expenditures (% of 
turnover) 

X X X 

2.2.3 Enterprises providing 
training to develop or 
upgrade ICT skills of their 
personnel (% of all 
enterprises)   

X 

Outputs 
3.1.1 SMEs introducing 

product or process 
innovations (% of SMEs) 

X X X 

3.1.2 SMEs introducing 
marketing or 
organizational innovations 
(% of SMEs) 

X X X 

3.1.3 SMEs innovating in- 
house (% of SMEs) 

X  X 

3.2.1 Innovative SMEs 
collaborating with others 
(% of SMEs)    

3.2.2 Public-private co- 
publications per million 
population    

3.2.3 Private co-funding of 
public R&D expenditures 
(% of GDP)   

X 

3.3.1 PCT patent applications 
per billion GDP (in PPS)   

X 

3.3.2 Trademark applications 
per billion GDP (in PPS) 

X  X 

3.3.3 Design applications per 
billion GDP (in PPS) 

X  X 

4.1.1 Employment in 
knowledge-intensive 
activities (% of total 
employment)   

X 

4.1.2 Employment in fast- 
growing enterprises (% of 
total employment)   

X 

(continued on next page) 
19 The results for years 2010 and 2013 are available upon request. These 

boxplots have not been included due to space constrains. 
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spread between quartiles, but a few outliers below the 1st position. Some 
countries exhibiting comprehensive innovation systems that perform 
well under the baseline model with 12 indicators discussed in the pre-
vious section, i.e. “High Innovation Input and High Performance – 
HIHP” countries in Fig. 2, e.g. Netherlands and Denmark, always rank at 
the top, while Austria and Germany fare badly falling down to upper- 
middle positions for some models using less inputs and output in-
dicators. However, the chart shows that considering our four group 
classification based on the preferred model and depicted in Fig. 2, results 
generally hold. Considering the opposite “Low Innovation Input-Low 
Performance – LILP” category, all countries belonging to this group 
rank in the worst positions, except the Czech Republic that improves its 
ranking to upper middle positions surpassing even Germany. Spain also 
behaves better than in the standard model. Within this group on the 
negative side, Croatia and Sweden are the two countries that perform 
the worst consistently, ranking between the 28th and 31st positions.20 

In brief, we find that the relative position shown by most countries 
varies to a low extent, and while countries such as Sweden, Slovakia, 
Malta, Luxembourg, Italy, Spain or Ireland show really stable patterns 
across all models, in others, the variation is a bit larger, but still without 
entailing significant differences when compared to those previously 
reported for the base model. The reliability of the baseline model 
introduced by Edquist et al. (2018) can thus be confirmed by calculating 

the rank correlation coefficient between this model and the ranking 
based on the median position for the remaining 4096 combinations. As 
few countries have the same median ranking position we employ Ken-
dall’s tau definition. The coefficient τ = 0.7392 shows that a positive and 
rather large correlation exists, which is statistically significant at the 
standard confidence levels.21 We can thus conclude that the results re-
ported and discussed for the baseline model generally hold, as the 
ranking positions fall within the confidence intervals presented in Fig. 3, 
and not far from the median values. Indeed, these values can be 
consistently considered as representative ranking positions for bench-
marking analyses of innovation systems and policymaking. 

5. Discussion 

The policy evaluation related literature is largely in agreement about 
the need to combine different approaches, methodologies and indicators 
to avoid biased assessments of system/policy performance (Michelson, 
2006). We also consider that the literature on innovation measurement 
should seek to combine different approaches, sometimes applying them 
to the same datasets, to avoid potential biases and thus, produce more 
credible policy recommendations. This paper aims to contribute in this 
respect by relating the amount of innovation inputs available to an 
innovation system and its innovation performance, through the notion 
of returns to scale. To achieve this goal we build upon Edquist et al. 
(2018), who leave this relevant question unexplored, but provide the 
conceptual framework for the evaluation of innovation performance. 
Hence, making use of production theory we can relate the size of the 
innovation system with its performance, calculate the nature of returns 
to scale, and show whether productivity gains can be realized by 
increasing the amount of innovation inputs invested in the system or 

Table 7 (continued )  

Baseline 
model 

Model with 
minimum 
requirements 

Model with 
maximum 
requirements 

4.2.1 Exports of medium and 
high technology products 
as a share of total product 
exports 

X  X 

4.2.2 Knowledge-intensive 
services exports as % of 
total services exports 

X  X 

4.2.3 Sales of new-to-market 
and new-to-firm 
innovations as % of 
turnover 

X X X  

Fig. 3. Boxplots of the ranking distributions (from 1 to 31) for all 4096 models (year 2016). 
Note: Boxplots summarizing the distribution of the ranking positions for each country. Each ranking position corresponds to one of the 4 
096 chosen evaluation models that include alternative combinations of inputs and outputs (i.e., those between the minimum and maximum requirements models 
shown in Table 7). 

20 Edquist et al. (2018) discuss the Swedish paradox in extent. 

21 We also compare our results with the efficiency scores reported by Edquist 
et al. (2018). In particular, we have calculated the correlation between the 
ranking associated to their bootstrapped efficiency scores calculated using the 
standard− input oriented− DEA formulation, and the ranking associated to the 
directional distance function (4) against the ideal benchmark hyperplanes. 
Thereby we only consider best performance in the comparison. Even though the 
assumption on returns to scale is different in both studies, constant and vari-
able, Kendall’s tau τ = 0.6798, is again positive, large and statistically 
significant. 
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not. For this purpose we resort to robust Data Envelopment Analysis 
techniques (DEA-TOPSIS) that improve on existing DEA standard 
methods, as those employed by the previous authors. 

Our results indicate that in many cases, countries often regarded as 
‘innovation leaders’, using the labeling of the EIS, count with an inno-
vation performance far from satisfactory. This suggests that innovation 
leading countries, while dedicating vast resources (i.e. high innovation 
inputs), often do not manage to produce as much output as it could be 
expected (i.e. low innovation performance), pointing to the existence of 
decreasing returns to scale in innovation. We confirm such hypothesis at 
the aggregate country level. This shows that the relative allocation of 
resources currently made in many countries does not yield the expected 
returns, which calls for a reconsideration of how innovation decisions 
are made in the policy field. Despite decreasing returns being observed 
in other production activities (see Madsen, 2007; Lang, 2009), innova-
tion, and hence innovation policy, is still being regarded as a field in 
which the more resources invested, the better the relative performance 
of the innovation system is likely to be (Rodríguez Pose and Crescenzi, 
2008). The evidence provided in this study shows otherwise; i.e. that the 
bigger is not always the better. Fragkandreas (2013) also discusses the 
existence of this paradox, in the sense that innovation seems not to 
pay-off for some territories in Europe, even highly innovative ones, as 
these grow at a slower pace than other peers. It is true that innovation 
may continue being the engine that provides the solutions to the grand 
challenges we are currently facing. However, the evidence provided by 
Strumsky et al. (2010) also raises some doubts as to whether innovation 
activities in developed economies will continue being as productive as 
they were in the past (see also Crafts, 2018). 

These results might be explained by the complexity of innovation 
processes and the need to coordinate the activities articulated by inno-
vation policies (Magro et al., 2014). Leading countries with large 
innovation systems in terms of invested inputs and a long tradition in the 
implementation of science, technology and innovation policies, tend to 
support new growth industries in the long-run, which imply higher risks 
in their innovation strategies. As a result, despite the innovation systems 
of these countries may be dynamic and with an innovation-friendly 
climate, the high levels of coordination required and the uncertainties 
involved reduce their levels of efficiency. We classify these countries in 
the “High Innovation Inputs-Low Performance” (HSLP) group – see 
Fig. 2. 

On the contrary, countries with less developed innovation systems 
tend to absorb and adopt the embodied knowledge and the innovations 
of others, as their innovation systems do not count with the required 
conditions for such an effective generation and diffusion of in-house 
innovations. This strategy requires lower levels of development and 
hence lower input amounts in the operation of the system, while at the 
same time producing more efficient behaviors since risk is avoided and 
the ‘new’ knowledge is rapidly adopted. These countries are classified 
within the “Low Innovation Inputs -High Performance” (LIHP) group. It 
also needs to be noted that countries with fewer available resources have 
to pay much more attention to how these are being exploited. They 
cannot afford to squander the scarce resources dedicated to innovation 
activities, and as a result, their cautious behavior result in higher 
efficiencies. 

Naturally, not all innovation systems share the same properties, as 
the strategies followed by the different countries in their innovation 
policies also differ. However, it seems reasonable to think that despite 
the different strategies followed, any policymaker would opt for an 
efficient allocation of their investments within the system in order to 

maximize the innovation outputs that are to be achieved with it. Related 
to this question and the alternative innovation strategies, another 
possible reason explaining innovation inefficiency is the existence of 
scope economies, by which output (or input) mixes in some countries 
might be sub-optimal when compared to those of the leading, best 
performing benchmarks.22 

In all instances, and according to our evidence, it seems sensible to 
relate the amount of inputs invested in an innovation system and its 
performance, using this distinction to identify categories of innovation 
systems (see Fig. 2). This way, policymakers may consider the results of 
different and complementary analyses to obtain a wider picture of their 
respective innovation systems. From a quantitative perspective, we 
conclude that the approach followed by the EIS, the GII, and other ap-
proaches to measuring innovation and producing innovation-related 
rankings, thus offer a partial view of the actual state of development 
of any innovation system. 

We conclude by acknowledging some limitations of our model and 
relevant research venues. As for the limitations, which can be raised also 
against the EIS and GII, we acknowledge that, as in any process of 
change, there are time lags between the investments made on the input 
side and achieving certain outputs. Accounting for these lags constitutes 
a challenging task due to the differences in the structural characteristics 
of every innovation system, and because, for example, radical in-
novations may require longer gestation periods than incremental in-
novations. As for relevant extensions related to our conclusions, further 
research could be developed to explore the existence of the above 
mentioned economies of scope (diversifications versus specialization) 
related to sub-optimal proportions in the usage of inputs and production 
of outputs. Also, an interesting extension would be the systematic 
identification of benchmarks for every country to provide policymakers 
with guidelines related to specific innovation models. Finally, the pro-
ductivity analysis that we perform in levels (cross-section) could be 
complemented with the study of productivity trends through the so- 
called Malmquist productivity indices introduced by Färe et al. 
(1994). This will allow to determine long run trends in total factor 
productivity growth and identify its main drivers, particularly techno-
logical progress, efficiency change and the dynamic effects associated to 
returns to scale (Balk et al., 2020; Zabala-Iturriagagoitia et al., 2021). 
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22 For example, from an input perspective, either too much or too low relative 
investments in the public sector with respect to the private sector; from an 
output perspective, a sub-optimal balance between innovation activities carried 
out by SMEs with respect to larger firms, which in turn may hamper achieving 
larger export shares in foreign markets. 
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