

uMemristorToolbox: Open source framework to control
memristors in Unity for ternary applications

Bos, Steven1; Gundersen, Henning1; Sanfilippo, Filippo2

1Department of Science and Industry systems - University of South-Eastern Norway
2Institutt for ingeniørvitenskap - University of Agder

Bos, S., Gundersen, H., & Sanfilippo, F. (2020). uMemristorToolbox: Open source
framework to control memristors in Unity for ternary applications. In B. Werner (Ed.),
 2020 IEEE 50th International Symposium on Multiple-Valued Logic (ISMVL)

(p. 212-217). https://doi.org/10.1109/ISMVL49045.2020.000-3

Publisher’s version: DOI: 10.1109/ISMVL49045.2020.000-3

© 2020 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component

of this work in other works.

https://doi.org/10.1109/ISMVL49045.2020.000-3
https://doi.org/10.1109/ISMVL49045.2020.000-3

uMemristorToolbox: Open source framework to
control memristors in Unity for ternary applications

Steven Bos
Dept. of Science and Industry systems

University of South-Eastern Norway
Kongsberg, Norway
steven.bos@usn.no

Henning Gundersen
Dept. of Science and Industry systems

University of South-Eastern Norway
Kongsberg, Norway

henning.gundersen@usn.no

Filippo Sanfilippo
Dept. of Engineering Sciences

University of Agder
Grimstad, Norway

filippo.sanfilippo@uia.no

Abstract—This paper presents uMemristorToolbox, a novel
open source framework that reads and writes non-volatile ternary
states to memristors. The Unity (C#) framework is a port of the
open source Java project Memristor-Discovery and adds a closed-
loop ternary memory controller to enable both PC and real-
time embedded ternary applications. We validate the closed-loop
ternary memory controller in an embedded system case study
with 16 M+SDC Tungsten dopant memristors. We measure an
average switching speed of 3 Hz, worst case energy usage of
1 µW per switch, 0.03% random write error and no decay in
(non-volatile) state retention after 15 minutes. We conclude with
observations and open questions when working with memristors
for ternary applications.

Keywords-multi-valued logic, ternary computing, ternary stor-
age, memristor SDK

I. INTRODUCTION

Ternary computers are the logical next step to create a
post-binary world. The ternary number system is the closest
discrete number system to the mathematically proven optimal
e, the radix economy proof [1]. This proof looks at the cost
of representing a digit, which is assumed to be proportional
to the base. A higher base requires more hardware or more
complexity to represent it stably. More importantly, the proof
assumes that there is a proper measure of hardware complexity
(the cost) expressed as possible values * number of digits
in that base to represent number N. Memristor are shown
to stably represent binary digits, but the same hardware can
also process multiple-values, currently up to 92 [2]. With new
technology such as CNTFET for ternary logic gates [3] and
memristors, a post-binary world is the most economical choice
and the next frontier in computing.

Ternary computers are not a new phenomenon. The Setun
showed in 1958 that electrical ternary computers can be
constructed [4]. However to represent 1 trit, three out of
possible four states were used [5] making binary (or base 4)
a more economical choice. That and other reasons [4] led to
a decreased investment in ternary and increased investment in
binary. In this paper we want to verify and measure a memris-
tive circuit implementation. According to [6] theoretical and
simulation papers vastly outnumber implementation and mea-
sure papers (85% vs 15%) in a multi-database survey of 142
top articles. The core focus of this paper is the introduction of
uMemristorToolbox, an open source software framework that

Fig. 1: uMemristorToolbox architecture

allow researchers to experiment with memristive circuit im-
plementations for ternary or multiple-valued applications. The
framework contains visualisation tools and hardware/software
debug methods to use memristors as memory cells by reading
and writing to them.

Using memristors as memory cells has various benefits over
capacitor (eg. DRAM) or floating gate (eg. FLASH) based
memory cells, although not all memristors have the same
properties. The tested SDC (self-directed channel) memristor
are non-volatile and can be used for both RAM and ROM
operations. Compared to capacitor and floating gate memory
cells considerable power consumption is saved as no periodic
refresh rate for integrity is required and reading operations on
the cells does not require discharging and recharging the cell.
The current downside is that its switching speed is slow (in
our case study) compared to traditional DRAM and FLASH.
Research by [7] has shown that memristors can have sub-
nanosecond switching speeds, but this has only been tested
with binary thresholds.

Ternary applications have several benefits over their binary
counterparts. Less space is required to store data. For example

1 byte of 8 bits can be stored in 6 trits, saving of 25%. This
however has large overhead, since 9 full bits fit the same
6 trits saving 33% without any compression. The maximum
theoretical gain of ternary over binary is log2(3) = 1.58 or
58 %. Processing and storing less data has other benefits too,
reducing wiring complexity, energy consumption, and com-
munication latency since fewer symbols have to be processed.
The impact on society is therefore large, as ternary applications
can reduce battery life, cost and size of electrical devices while
improving performance.

This paper is structured in four parts. In the first part, the
related work, we review literature that propose methods to
control memristors. In the second part we present uMemris-
torToolbox and the results of the validation experiments. In
the third part a case study that uses uMemristorToolbox is
discussed, a real-time embedded ternary application. In the
fourth part we discuss some measurements and observations
and close with conclusions and future directions.

II. RELATED WORK

The memristor (or memory resistor) is, in circuit theory,
the fourth fundamental element which uses the relationship
between flux and electric charge for its operation. Chua
postulated this component in 1971 [8] on the basis of the
principle of symmetry with other components of the circuit,
such as the resistor, inductor and capacitor. A memristor
works as a variable resistor, the value of which depends on
the current or voltage across the component, i.e. if there
is a positive voltage across the memristor, its memristance
decreases to a small value; if there is a negative voltage
across the memristor, its memristance increases up to a high
value. Theoretically, the memristor could potentially supplant
state-of-the-art integrated electronic devices for advanced com-
puting and digital and analog circuit applications. However,
the memristor remained only of philosophical interest for
more than 30 years [9] till HP Labs provided its physical
implementation [10] based on a nanometer scale, TiO2, thin
film containing doped and undoped regions between two
metal contacts, for its fabrication. Significant attention has
been paid to the physical memristor model made by HP
researchers, and many new studies have subsequently taken
place in literature. Nevertheless, there are some significant
shortfalls related to the HP’s implementation, such as just
having been only prototypically produced in the laboratory
and retaining a low working speed. In 2012, Crupi, Pradhan
and Tozer identified a new design to build circuits of neural
synaptic memory using organic ion-based memristors [11].
However, the proposed model remains only as a proof of
concept so far. In 2014, a flexible memristive system compris-
ing a MoOx/MoS2 heterostructure sandwiched between silver
electrodes on a plastic foil was published by Bessonov et al
in [12]. The manufacturing method of the proposed memristor
is based exclusively on the use of two-dimensional layered
transition metal dichalcogenides (TMDs) printing and solution
processing technologies. This fabrication approach makes it
possible to build memristors that are mechanically flexible,

optically transparent and produced at low cost. However, the
proposed system is still not available commercially to the best
of authors’ knowledge. The memristor, termed a self-directed
channel (SDC) device was introduced by Dr Kris Campbell,
in 2017 [13]. The SDC devices offer considerable advantages
over other types of ion-conducting chalcogenide device, such
as significantly higher processing and operating temperatures,
and no photodoping required during manufacturing. This for-
mer feature makes the device manufacturing process achiev-
able by simply using a generic commercially available sputter
tool for all device layers, including the top electrode, for
one in-situ film deposition stage. The SDC device is the first
memristive component available commercially to researchers,
students and electronics enthusiast worldwide [14]. This devise
is distributed by Knowm. A simple Application programming
interface (API) for automated memristor experiments and data
collection is available together with a series of open source
projects and libraries [15]. The former are usually very simple
interfaces that are adopted by users such as researchers and
industrial developers to add memristor capabilities to their
applications by partially hiding the complexity of program-
ming memristor devices. Nevertheless, these tools still need
considerable programming skills to be integrated with user
applications. This process can therefore often be a repetitive
and time-consuming task, keeping developers from concen-
trating entirely on the software logic needed to accomplish
the core task. Moreover, most of the currently available APIs
do not offer flexible tools for executing extensive experiments
with memristors for ternary storage. Developers are therefore
forced to develop custom solutions that are often lacking in
generality. To the best of authors’ knowledge, an open-source
real-time embedded framework to test and control memristors
for ternary applications has not been released yet. This is the
main contribution of this work.

III. UMEMRISTORTOOLBOX

This paper presents uMemristorToolbox [16], an open
source GPL v3 framework to experiment with memristors
and create multi-valued logic application in Unity C#. The
framework architecture shown in Fig. 1 offers a software
stack to hook into various levels of abstraction, allowing full
control over the memristors. It supports hardware and software
debugging and features a file data logger and scientific graph
library to plot results. The repository contains a demo scene
with currently 5 memristor applications ("experiments") dis-
cussed throughout this section. The repository also includes
an AT2560 firmware for real-time embedded systems that
interface with uMemristorToolbox applications.

A. Background

uMemristorToolbox initially started as a direct port of
Knowm’s Java based Memristor-Discovery [17] out of a desire
to use a faster and more flexible prototyping environment. We
implemented the Analog Discovery 2 C# SDK and developed
various graphing tools mimicking the real-time diagrams found
in the original project. To validate our port, we ran the Direct

Current (DC) and Checkerboard experiments on both projects
and achieved identical results.

Several classes like the pulse controller, containing the
PulseUtils and PulseDriver are direct ports of the original
project, with minor modification to fit the C# best practices.
Some original experiments are not (yet) ported. The Pulse
experiment for example, requires a port of the JSpice analog
circuit simulator first.

A key differentiation compared to the original project is the
focus on multiple-valued logic applications. uMemristorTool-
box features a ternary memory controller (described below).
Three new experiments were created to analyse the memristors
by controlling it with the ternary memory controller. The
Retention experiment, The RandomWrite experiment and 1
Trit AnalogToDigital (ADC) experiment. They are described
in more detail below.

B. Ternary memory controller

A key feature of this framework is the included closed-loop
feedback ternary memory controller. The memory controller
programs three resistance levels at 0-8kΩ (logical 2) @ +1V,
8-100kΩ (logical 1) @ +0.4V, >100kΩ (logical 0) @ -2V
using one or more 10Hz half-sine pulses. These values have
empirically been found to be the most stable across the used
memristors and is subject to future fine-tuning. The ternary
memory controller has absolute control over the scheduler,
allowing immediate read/write/erase operations to be sched-
uled if needed. The memory controller operation is shown in
Fig. 1. The 25 ms wait periods (and 5ms wait periods for
memristor selection) are reported in the original Java SDK,
but further experimentation is required to see the influence
on stability of these (costly) waits, potentially speeding up
the ternary memory controller manifold. It should be noted
that the algorithm does not guarantee that a desired state is
written to the memristor, it merely attempts a fixed number
of times. We only experimented with amplitude and number
of pulse and did not experiment with pulse width or shape of
the pulse. We noticed that by applying consecutive 1V pulses
we can damage or "burn" the memristor, losing its typical
pinched hysteresis loop behavior. The algorithm shows a single
erase before writing the first write pulse try in the Write case,
incurring another 25ms + Erase write delay penalty.

C. Validation

To validate the uMemristorToolbox framework and the
ternary memory controller in particular, several experiments
are performed. The testing platform was an Alienware m15
laptop with i9-8950HK CPU, GeForce RTX 2080 Max-Q and
32GB RAM. The software ran on Windows 10 with Unity
2019.2.2f1. Experiment 2 and 3 use the ternary memory con-
troller. The memristor data in all three validation experiments
is provided as open data.

D. Experiment 1: Pinched Hysteresis

The hallmark property of memristors are the zero-crossing
current-conductance behavior, so-called "pinched hysteresis"

Algorithm 1: Ternary Memory Controller

/* Init. Timer,Scheduler,UI,Logger */
1 Initialize();
2 FileLogger.Log(time, ExperimentName);
3 while Scheduler.IsActive do
4 if Scheduler.Queue.Count > 0 then
5 var task = Scheduler.Dequeue();
6 ToggleMemristor(task.memristorId, ON);
7 switch task.instruction do
8 case READ do
9 StartOscilloscope(task);

10 StartWaveformGenerator (task);
11 var r = OscilloscopeToResistance();
12 var trit = ResistanceToTrit(r);
13 FileLogger.Log(time, task);
14 Wait(25ms)
15 end
16 case WRITE do
17 var tries = 0;

/* ERASE PASS */
18 StartOscilloscope(task);
19 StartWaveformGenerator (task);
20 Wait(25ms);
21 while DONE == FALSE do

/* WRITE PASS */
22 StartOscilloscope(task);
23 StartWaveformGenerator (task);
24 Wait(25ms) /* READ PASS */
25 StartOscilloscope(task);
26 StartWaveformGenerator (task);
27 var r = OscilloscopeToResistance();
28 var trit = ResistanceToTrit(r);
29 FileLogger.Log(time, task);
30 if task.desiredState == trit then
31 DONE = TRUE;
32 else
33 tries++;
34 if tries >= 3 then
35 DONE = TRUE;
36 FileLogger.Log(time, "too

many tries:", task);
37 else
38 end
39 Wait(25ms)
40 end
41 end
42 end
43 ToggleMemristor(task.memristorId, OFF);
44 UpdateUI/Console.Log(task.result);
45 end
46 end
47 FileLogger.Log(time, new ExperimentStatistics());

Fig. 2: Zero-crossing pinched hysteresis of 16 memristors

loop. We select the "DC experiment" and test all 16 memristors
for this behavior to determine the quality of the memristors.
We use identical settings as published in the manual of the
original Java version for a good comparison (+0,8V Triangle-
UpDown wave signal at 2Hz), shown overlaid in Fig. 2

E. Experiment 2: Random Write

For this experiment we select the "Random Write" exper-
iment and set N to be 100, so 100 0’s, 100 1’s, 100 2’s are
generated and scheduled in random order. We measure how
often the desired (and written) state is the actual state and plot
the result in a confusion matrix. The time to complete the task
was 83 seconds.

F. Experiment 3: Data Retention

For this experiment we select the "Data Retention" experi-
ment and set the read interval I to 1 Hz and T=320 seconds
and another experiment with I = 1/60 Hz and T= 15. We write
a single state to the memristor analyse how the resistance (and
thus states) are affected by time and frequency of periodic read
signals. After a complete trace, we erase the memristor and
write another state until all states are measured.

IV. CASE: REAL-TIME EMBEDDED TERNARY APPLICATION

To test uMemristorToolbox and the ternary memory con-
troller, we developed a real-time embedded system with 16
button inputs and 16 x 4 LED outputs. The wiring schematic
is presented in 8. The firmware on the embedded system is
written in embedded C, directly programming the AT2560 but
using the rich and affordable Arduino board to prototype var-
ious circuits. The ternary application, named one trit Analog
To Digital Conversion (ADC) experiment was written in C#,
interfacing over a serial bridge with asynchronous input and
output. A system overview is shown in Fig 6

A file logger and UI event handler was connected to the
memristor showing how the programmed logic values relate to
the groundtruth. We have not done a quantitative analysis, but

Fig. 3: Single Erase, Single Write, Multiple Read test with 1
Hz sample rate

Fig. 4: Single Erase, Single Write, Multiple Read test with
1/60 Hz sample rate

(a) Confusion matrix (b) User interface

Fig. 5: (a): Random write test of 100 0’s, 100 1’s and 100
2’s in random order. (b): Unity user interface for 1 trit ADC
experiment showing groundtruth and memristor output

Fig. 6: System overview Ternary storage controller (1) Button
interrupt, send button id. (2) Update trit state ground truth,
send write and read signal to scheduler. (3) Select memristor.
(4) Start oscilloscope for reading. (5) Start waveform generator
for writing. (6) Update resistance in memristor. (7) Check
if desired state, otherwise repeat step 4,5,6. (8) Deselect
memristor, Write to log. (9) Update LED with new trit state.

our demonstration over the span of several weeks repeatedly
show great correlation between keypad input and LED output
in real-time. A data example from the 1 trit ADC experiment
is shown in Fig 7

V. DISCUSSION

Much is still unknown about using memristors in real-
world applications. We could not find an extensive technical
comparison of memristors as ternary memory cells against
traditional DRAM (volatile) and FLASH (non-volatile) mem-
ory cells. What are the cost/MB if they are mass produced,
MTBF, retention limits, silicon footprint and optimal switching
speed? And, can the memristors discussed here be integrated or
stacked with a hardware memory controller in existing silicon
fabrication processes?

We have performed three experiments to validate the per-
formance of the memristors. In the DC experiment in Fig.
2 we observe that all 16 memristors show similar hysteresis
loops. These are similar to published in the Knowm Memristor
manual. Note that the values are not deterministic and vary a
little every experiment. After we burned the first memristor,
the pinched hysteresis plot for that memristor changed, clearly
showing it to be defective. The result was that we could not
program the memristor in a high resistance state.

In the random write experiment in Fig. 5a we observe that
the memristor controller fails in 11/300 times. We limited the
amount of correction signals to 3 because the time penalty
in this version is still high and will impact the use case in
real-time applications. All reported errors were found in a
confusion between writing a logical 1 while after 3 tries the
logical value was a 0 (high resistance state, >100kΩ). This
could be improved by improving the memory controller to vary
more parameters such as waveform, pulse width and a higher

number of tries. Another approach might be to program the
memristor in low resistance and slowly nudge the resistance
using small (dynamically computed) negative pulses.

In the retention experiment in Fig. 3 we observe the
read retention at 1 Hz interval over about 5 minutes. A
read operation requires a memristor selection switch, setting
a transistor, that could influence the memristance as reported
in the manual. We do not observe any inconsistencies at 1 Hz
interval, but have seen switching artifacts in earlier versions of
our controller like in 9 . The behavior in Fig. 4 at 1 minute
reading intervals over 15 minutes was more inconsistent. The
memristance values were still within boundaries, hence the
large chosen bandwidths for state 1 compared to state 0 and
2. Further testing to see how the memristance decays after
hours or days or possibly longer is still needed.

Some final notes on working with memristors and ternary
applications. We were careful by not exposing the memristor
with large voltage amplitudes and placing two 5kΩ series
resistors like in [13]. Never the less, we exposed the memristor
to +2V and did a few 1000 operations without showing any
visible degradation, until we repeatedly and in quick succes-
sion exposed it to +1V pulses. We changed the memristor
controller to protect the memristor for this pattern. Although
temperature can influence the memristor as reported in [13] we
used the memristor in various locations outside the lab. Future
experiments will include temperature measurements and see its
effects in Nordic environments.

VI. CONCLUSION

This work presents an open source framework to program
memristors in Unity C# including various (real-time) interac-
tion and visualisation tools and a firmware for interfacing with
real-time embedded systems. The framework can be used to
program multi-valued logic applications. We added a closed-
loop ternary memory controller to program the memristor for
3-valued logic.

In a case study, we show that non-volatile ternary applica-
tions on real-time embedded devices are feasible with off-the-
shelf memristors, however, various open research questions
about the limits of using memristors in such applications
remain open. The case study also reconfirms earlier studies
reporting consistent current-conductance properties in com-
mercially available, mass-produced memristors over several
months. We encourage the research community to experiment
with the Knowm Memristor-Discovery (Java) and this (Unity
C#) SDK, replicate and share results as open data to start a
dialogue in this new field.

VII. FUTURE WORK

Our research group is interested in the use of memristors for
safety-critical applications embedded in autonomous collabo-
rative robots. Ternary logic is perfectly suited for safety critical
applications as the third state can be used to flag the status
of a cell (eg. corrupt, not initialized, unknown, etc) on the
hardware level. We are also exploring how the ternary memory

Fig. 7: Data example from 1 trit ADC experiment

Fig. 8: Wiring schema

Fig. 9: Retention artifact

controller can work on the tryte level with Error Correction
Codes.

VIII. ACKNOWLEDGMENT

This research was fully funded by the University of South-
Eastern Norway (USN) through the project titled “Secure
Multi-sensor Autonomous RoboTs and surveillance operations
for Search And Rescue (SMART-SAR) operations in smart
buildings”, which was initiated by Dr. Filippo Sanfilippo.

We thank Dr. Campbell and Knowm for open sourcing
their memristor software and offering their memristors for
the scientific community. We thank the members of SMART,

Cyber Physical and Applied Smart Systems, and the Ternary
Research Group for their feedback.

REFERENCES

[1] B. Hayes, “Computing science: Third base,” American Scientist, vol. 89,
no. 6, pp. 490–494, 2001.

[2] S. Stathopoulos, A. Khiat, M. Trapatseli, S. Cortese, A. Serb, I. Valov,
and T. Prodromakis, “Multibit memory operation of metal-oxide bi-layer
memristors,” Sci Rep, vol. 7, p. 17532, 2017.

[3] R. A. Jaber, A. Kassem, A. M. El-Hajj, L. A. El-Nimri, and A. M.
Haidar, “High-performance and energy-efficient cnfet-based designs for
ternary logic circuits,” IEEE Access, p. 99, 07 2019.

[4] F. Hunger, Setun. Institut für Buchkunst Leipzig, 2007.
[5] W. W.H., A. S.N., P. Armer, M. Astrahan, L. Bers, H. Goode, H. Huskey,

and M. Rubinoff, “Soviet computer technology,” Communications of the
ACM, 1959.

[6] N. TaheriNejad and D. Radakovits, “From behavioral design of mem-
ristive circuits and systems to physical implementations,” IEEE Circuits
and Systems Magazine, vol. 19, no. 4, pp. 6–18, Fourthquarter 2019.

[7] A. C. Torrezan, J. P. Strachan, G. Medeiros-Ribeiro, and R. S. Williams,
“Sub-nanosecond switching of a tantalum oxide memristor,” Nanotech-
nology, vol. 22, no. 48, p. 485203, nov 2011.

[8] C. L., “Memristor - the missing circuit element,” IEEE Transactions on
Circuit Theory, vol. 18, no. 5, pp. 507–519, 1971.

[9] P. Junsangsri and F. Lombardi, “A memristor-based tcam (ternary content
addressable memory) cell: design and evaluation,” in Proceedings of the
great lakes symposium on VLSI. ACM, 2012, pp. 311–314.

[10] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” nature, vol. 453, no. 7191, p. 80, 2008.

[11] M. Crupi, L. Pradhan, and S. Tozer, “Modelling neural plasticity with
memristors,” IEEE Canadian Review, vol. 68, pp. 10–14, 2012.

[12] A. A. Bessonov, M. N. Kirikova, D. I. Petukhov, M. Allen, T. Ryhänen,
and M. J. Bailey, “Layered memristive and memcapacitive switches for
printable electronics,” Nature materials, vol. 14, no. 2, p. 199, 2015.

[13] K. A. Campbell, “Self-directed channel memristor for high temperature
operation,” Microelectronics journal, vol. 59, pp. 10–14, 2017.

[14] Knowm Inc. (2019, November) Knowm memristors. [Online]. Available:
https://knowm.org/product/sdc-tungsten-1x16-memristor-array/

[15] Knowm Inc. (2019, November) Knowm’s open source projects.
[Online]. Available: https://knowm.org/open-source/

[16] S. Bos. umemristortoolbox initial release version: hydrogen-horse.
[Online]. Available: https://doi.org/10.5281/zenodo.3557410

[17] K. Inc. (2019) Memristor discovery github project. [Online]. Available:
https://github.com/knowm/memristor-discovery

	2020BosUmemristor
	2020BosUmemristor1

