

University College of Southeast Norway
Faculty of Technology and Maritime Sciences

-
Master Thesis in System Engineering With Embedded Systems

Kongsberg Department of Engineering
May 27, 2020

Eivind Tangen Haldorsen
Path planning for multiple collaborative UAVs

iii

Abstract

Unmanned aerial vehicles and autonomous robots have gained popularity in recent
years, finding use in military applications, surveillance of urban areas, and hobbies.
Autonomous drones require programming to follow distinct paths for their motion,
and ultimately decide the shortest and most effective path in a vast network of nodes.
This can range from maneuvering around in a city for surveillance and monitoring,
to reach a certain destination during natural disasters as quickly as possible to gather
life-saving environmental data.

This research is concerned with the matters of creating graph networks and ulti-
mately calculate the shortest path from a given position to a given destination. Further
motion planning for UAVs and their maneuverability based on the planned paths are
also of great concern, whether it is based on following the path itself or maintaining
stability of the system. Algorithms for determining the shortest path are investigated,
regardless of the complexity of the graph network. Simulations are carried out and
discussed, in order to illustrate and reflect various problem settings.

v

Acknowledgements
First and foremost, I would like to convey my sincere and deepest gratitude to my

supervisor Dr. Antonio L. L. Ramos for his guidance and inspiration during the thesis.
I am thankful for his feedback during my research, which has made the process much
easier. I am also thankful for his suggestion of this topic, which I have enjoyed working
on and learned a lot from.

I would like to thank my friends and colleagues at University of South-eastern Nor-
way (USN), specifically Chrisander Brønstad for his helpful advice and encourage-
ment, and Ole Marius Norderud, Bilgehan Günaydin and Huseyin Derbent as good
colleagues during the Master’s programme. I am also very thankful to the great lec-
turers at USN such as Dr. Dag A. H. Samuelsen and Dr. Antonio L. L. Ramos for
introducing me to Objected Oriented and Embedded Systems programming, as well
as Dr. Jose Ferreira for further embedded programming courses. Lastly, I would like
to thank my closest family for being supportive and encouraging during the writing of
this thesis.

Eivind Tangen Haldorsen
Kongsberg, Norway, May 27, 2020

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Unmanned aerial vehicle maneuverability 2

1.1.1 Autonomous unmanned aerial vehicles 2
1.1.2 State of the Art . 2

1.2 Path planning . 3
1.2.1 Multiple UAVs and their path . 4

1.3 Objective . 4
1.4 Main contributions . 5

UAV in simulated environment . 5
Graph network tool . 5
Path planning algorithm . 5

1.5 Outline . 6

2 Background 7
2.1 Unmanned aerial vehicles . 7

Single-rotor . 8
Multi-rotor . 8
Fixed-wing . 8

2.2 Graph theory and path planning algorithms 9
2.2.1 Vertices and edges . 9
2.2.2 Path planning algorithms . 11

Single pair . 11
Single source . 12
Single target . 12
All pairs . 12

3 Methodology 13
3.1 UAV maneuverability . 13

3.1.1 Localization for UAVs . 14
3.1.2 Quadcopter maneuverability . 16

3.2 Multiple UAVs and path cost . 18
3.3 Proposed path planning algorithms . 18

3.3.1 Dijkstra’s algorithm . 19
Dijkstra’s algorithm pseudocode 20

3.3.2 A∗ search algorithm . 20
Heuristic estimate . 21
Euclidean distance . 21

viii

Manhattan . 21
A∗ algorithm pseudocode . 22

3.4 PID Controller . 24
3.4.1 The proportional term . 24
3.4.2 The integral term . 24
3.4.3 The derivative term . 25
3.4.4 Paths and positions for UAV . 25

4 Simulations and implementation 29
4.1 Unity 3D simulation engine . 29

Unity 3D student package . 29
Visual studio 2017 . 29
Unity asset - Windridge City Demo 29
AirSim - Quadcopter model . 30

4.1.1 Development in Unity 3D . 30
Gameobjects within scene . 31

4.2 Simulating an unmanned aerial vehicle 33
4.2.1 Overview of drone simulation . 35

4.3 Path planning implementation . 35
4.3.1 Graph network . 35
4.3.2 Graph network user interface . 36
4.3.3 Path planning algorithms . 37

4.4 Simulation results and discussion . 37
4.4.1 Path planning . 37
4.4.2 UAV - Quadcopter simulation results 40
4.4.3 Heuristic estimates and performance 42

5 Conclusion and Future Work 47
5.1 Conclusion . 47
5.2 Future work . 48

A Code listings for Unity and Matlab 49
A.1 Graph network implementation . 49
A.2 Path planning algorithm . 51
A.3 UAV . 54

Bibliography 57

ix

List of Figures

1.1 Simulated drone in Unity 3D game engine with representative paths. . . 1
1.2 Quadcopter with indicated rotor rotation directions. 3

2.1 Single-rotor drone. 8
2.2 Multi-rotor drone. 8
2.3 Fixed-wing drone. 9
2.4 Directed vs undirected graphs represented with 3 vertices. 10
2.5 Weighted graph network with edges with weight cost w(u, v), G = (5, 5). 10

3.1 Robot position in global space. 13
3.2 Robot localization without observing surroundings. 15
3.3 Robot localization by observing landmark objects to estimate position. . 15
3.4 Quadcopter movement based on rotor thrust [4]. 16
3.5 Forces acting on an unmanned aerial vehicles during flight. 17
3.6 2D tile-map of an environment illustrating the shortest path from s to v. 19
3.7 Manhattan- vs euclidean distance in a 2D tile grid environment. 22
3.8 UAV error relative the target path from edge e(u, v). 26
3.9 Graph networkG = (3, 3) where more vertices can be added represented

as lines for increasing network accuracy. 26

4.1 Unity scene hierarchy for Windridge, containing all objects in simulation. 30
4.2 Windridge city in Unity, used for simulation as environment for drone. . 31
4.3 Inspector window of a given game object, in this case the drone itself. . . 31
4.4 Unity rigidbody type with mass, and both drag and angular drag for air

friction. 32
4.5 Script attached to drone object for configurations. 32
4.6 Indicating drone movement in global space, hovering vs roll. 33
4.7 Drone camera for monitoring and usage for environmental data. 34
4.8 Drone simulation with additional information such as drone status, and

camera feed. 35
4.9 Graph network tool user interface. 36
4.10 Graph network with shortest path from a source vertex s and goal vertex v. 38
4.11 Calculated shortest path from vertex v0 → v8. 38
4.12 Example graph network in the city, increasing the number of vertices

may be beneficial for accuracy, G = (10, 12). 41
4.13 Drone following path in the city environment from graph network. . . . 41
4.14 Small graph network in city, representing shortest path with the blue

line indication from s to v, G = (16, 21). 42
4.15 Euclidean vs Manhattan heuristic in A∗ algorithm. 42
4.16 Function for execution times based on variables V and E from Equa-

tion (4.5). 44

x

4.17 Function for execution times based on variables V and E from Equa-
tion (4.5). 45

xi

List of Tables

2.1 Drone categorization based on weight. 7

4.1 Simulation computer hardware specifications. 30
4.2 Axes in simulation environment. 34
4.3 Mean value of calculation times without path planning algorithm. . . . 39
4.4 Calculation times using the A∗ algorithm with Euclidean heuristic esti-

mate. 40
4.5 Calculation times using the A∗ algorithm with Manhattan heuristic esti-

mate. 40

xiii

List of Abbreviations

APSP All Pair Shortest Path
CCW Counter Clockwise
CPU Central Processing Unit
CW Clockwise
CIA Central Intelligence Agency
FPS Frames Per Second
GPU Graphics Processing Unit
HTOL Horizontal Take-Off and Landing
IDE Integrated Development Environment
MV Manipulated Variable
PV Process Variable
PID Proportional Integral Derivative
RAM Random Access Memory
SAR Search And Rescue
SLAM Simultaneous Localization And Mapping
SP Set Point
SSSP Single Source Shortest Path
UAV Unmanned Aerial Vehicle
USAF United Sates Air Force
VTOL Vertical Take-Off and Landing

1

Chapter 1

Introduction

FIGURE 1.1: Simulated drone in Unity 3D game engine with representa-
tive paths.

The interest in unmanned aerial vehicles has grown over the last years with applica-
tion examples such as surveillance of urban areas, hobbies, or military tools. Exploiting
the versatility of sensors that can be mounted on the drones as well as the technology
improvements for component’s size and weight, have made it possible for unmanned
aerial vehicles to operate in a wide range of applications. They have been around for
over a century, especially in terms of military usage for monitoring or radio commu-
nication, which can be traced all the way back to 1900’s. The United States of America
started early with their development research on unmanned aerial vehicles, and tested
various flying drones during the period of 1910 to World War II. The British military
in 1915 initiated the groundwork for unmanned aerial vehicles, which utilized drones
during the Battle of Neuve Chapelle to capture more than 1,500 sky view maps of the
German fortifications [24].

The primary objective was to develop technology that could be utilized to monitor
enemy defences, or strategies. However, the usage of drones in modern times have

2 Chapter 1. Introduction

increased towards urban areas in a civil manner such as camera footage of environment
sales, or taking advantage of available sensors in search and rescue missions. This
work is concerned with the autonomy of unmanned aerial vehicles and how they plan
their path to a given destination, by avoiding obstacles such as city objects, or other
drones on similar path to the same destination. Various algorithms for finding the
shortest path have been investigated, as well as tools and techniques for maneuvering
along the planned path. Issues related to environmental mapping, motion planning
and localization of the unmanned aerial vehicle has also been addressed in this work.

1.1 Unmanned aerial vehicle maneuverability

Unmanned aerial vehicles (UAVs), also known as drones, are currently manufactured
for a wide range of applications such as construction, journalism, security, monitor-
ing, or even personal deliveries [13]. This further implies to being able to adapt to
environmental changes and avoiding obstacles which may seem as a simple task for
humans, but not that simple for robots. Not only are the UAVs supposed to maneu-
ver in a collision-free path, but also satisfy other performance requirements such as
maintaining stability and effectiveness of their flying. This is based around external
surroundings or individual component weights and sizes [33]. Additionally, calculat-
ing the appropriate path may take an extensively long time, based on the complexity
of available paths and microprocessor performance. This may cause latency issues,
which prevents the UAVs from operating at a desired level due to inaccuracies and
slow decisions. Environmental data such as mapping, UAV movement and localiza-
tion and path finding algorithms are just a brief selection of areas that need to be taken
into consideration when building autonomous UAVs.

1.1.1 Autonomous unmanned aerial vehicles

UAVs are usually operated by an external device controlled by a human. However
autonomous unmanned aerial vehicles are becoming more popular for applications
such as search and rescue (SAR) missions, and locating humans or objects with the use
of thermal vision, cameras or other external sensors in difficult environment condi-
tions [13]. The maneuverability and scalability of the UAVs makes them able to reach
areas that we are not able to, especially when applying autonomous flying. In nat-
ural disasters, such as hurricanes or earthquakes, time is of the essence and making
use of autonomous UAVs that calculate the shortest path to a certain destination may
save lives by taking advantage of the monitoring possibilities and environmental data
collection from a target site.

1.1.2 State of the Art

There are several types of unmanned aerial vehicles, whether it is based on military
uses for remote bomb detonation, monitoring or communications, or civil uses in ur-
ban areas with drones as a hobby for enjoyment. The first notable use of robots in a
SAR mission, was land based robots for locating victims during the terrorist attack on
September 11th in New York [13]. The most frequently used UAVs, are quadcopters,

1.2. Path planning 3

which are types of vertical take-off and landing (VTOL) drones that consists of four
propellers arranged at each corner, as seen in Figure 1.2.

FIGURE 1.2: Quadcopter with indicated rotor rotation directions.

These machines differ from other VTOL drones, due to the fact that their rotors have to
vary in thrust, in order to control pitch, roll and yaw angles respectively [4]. Initially,
two of the rotors rotate clockwise (CW) and two anti-clockwise (CCW), and the quad-
copter can further maneuver in three dimensions based on the power applied to each
individual rotor.

In this work, the words drone and UAV are used interchangeably. In general, any
unmanned aerial vehicle may be defined as "any fixed rotary winged aircraft or lighter
than air vehicle capable of flight without an on-board pilot or crew" [9]. Initially, the DJI phan-
tom [11], is the most common quadcopter sold for civil uses which typically comes
with a camera mounted beneath as a surveillance tool for capturing videos and images
for personal use. On the contrary, the Predator series are military drones being used
by the United States Air Force (USAF) and Central Intelligence Agency (CIA). How-
ever, these are considerably different than the quadcopters discussed earlier, as it is
an aircraft with propeller mounted pointing forward in the rear to improve visibility
for sensors [14], which in turn creates a completely different flying mechanism. These
drones are used for offensive operations by USAF and CIA, mostly in the reconnais-
sance role in certain areas. Additionally, there are two missiles mounted on the wings
as well as sensors, a ground control station, and a primary satellite link for communi-
cation [5]. Nonetheless, the main focus in this work will be on quadcopters and their
structure, as well as their maneuver possibilities based on rotor placements and thrust
for yaw, pitch and roll.

1.2 Path planning

The benefits of UAVs is that they can be programmed accurately and are able to per-
form tasks precisely based on given commands, whether it is monitoring and analysing
environments, or prominently reaching certain destinations. Path planning, which re-
lates to travel from A to B as quick as possible, or finding the most effective route
through a network of paths, is a very important term that is used in autonomy. It may
consist on computing a collision-free path between two points in a three-dimensional

4 Chapter 1. Introduction

space. Multiple UAVs may also be used in some cases, to increase the likelihood of
completing a given task successfully.

In short, path planning is based on how the robot will maneuver in a given environ-
ment in order to perform a given task. There are several algorithms for this, whether
it is based on calculating the shortest path between two points in a known environ-
ment, global path planning, (Dijkstra’s, A* or Floyd-Warshall[22]) or mapping the en-
vironment real-time and calculate optimal paths based on sensor data. The latter, also
known as local path planning, can be achieved using an algorithm called Simultane-
ous Localization And Mapping (SLAM) [3], simultaneously, keep track of the robot’s
position within the environment. This is useful in scenarios for environments which
are unstructured and unknown, and the robot needs to adapt its movement based on
sensor readings.

On the other hand, using multiple UAVs may provide benefits in certain missions,
although it is a difficult task to ultimately create coordinated robots. This is due to
the UAVs need to continuously know other UAVs’ current position. Swarm intelli-
gence is a term that relates to the usage of multiple UAVs, in which they can analyze
environments by maximizing the minimum distance between them [34]. However in
unknown environments, it is difficult to know others three dimensional positions ac-
curately, without appropriate communication capability implemented.

1.2.1 Multiple UAVs and their path

Assuming a set of UAVs Ai that have to reach a position Gi following a certain path Pi

for each drone. Calculating this target path from start to goal before take-off is bene-
ficial in cases where the environment is not changing, as it makes it possible to check
if two paths intersect with each other, and re-evaluate before take-off [27]. However,
ideally Pi should be calculated in real-time as each drone Ai presumably experiences
environmental changes since the original planned path [17].

1.3 Objective

The objective of this work is to research and develop an autonomous flying system
for UAVs that include path planning for finding the shortest path in a graph network.
Further, the shortest path will be calculated using algorithms and optimizing parame-
ters such as heuristic estimates, distance measurements and graph network complex-
ity. Additionally, UAV movement in 3D space with rotation and vectors relative to the
calculated path will also be addressed. The work method consists of using an agile
methodology for carrying out tasks and reviewing previous work. This thesis can be
derived into different sub-tasks:

• Analyse current solutions and applications of using autonomous UAVs.

• Literature review on UAVs movement and rotation with quaternions and move-
ment with 3D-vectors.

• Implement a flying drone in a simulated environment, for further application in
autonomous flight.

• Research basic graph theory and understanding graph networks.

1.4. Main contributions 5

• Investigate graph networks and shortest-path algorithms and implement graph
networks that can be used for UAVs.

• Testing UAV simulation and graph network separately for faults and then inte-
grate the two.

• System testing while optimizing algorithms and UAV movement to maximize
performance.

• Final evaluation and assessment for possible future applications.

1.4 Main contributions

The main goal of this thesis was to simulate UAVs and their motion based on a planned
path. This path is derived from a given start position to a given destination in a graph
network. In order to illustrate and experiment with various path planning algorithms,
some of the end results is summarized below.

UAV in simulated environment

The simulation environment in this work was created in a game engine that represents
a city with environmental objects such as roads, buildings, signs or trees. The integra-
tion of a quadcopter within the environment has made it possible to illustrate its ma-
neuverability, with a reference to the real-world. Functions for maintaining stability
of the drone, as well as movement control using roll, pitch, and yaw has been imple-
mented in order to carry out the available performance of a quadcopter, regarding its
speed and angular velocities.

Graph network tool

A tool for creating vertices and edge connections between them, has been made for
supporting and experimenting on path planning algorithms. With the help of this tool,
vertices can be added and removed as needed, which increases the versatility, and
ease of use regarding path planning testing. This means that execution times can be
calculated during path planning, where a carefully placed vertex or edge connection
can impact the algorithm performance.

Path planning algorithm

By using the graph network tool for creating custom graph networks, path planning
algorithms can be applied based on given start- and goal-vertex. The implemented al-
gorithms are compatible with the graph network tool, with a user interface for choos-
ing certain graph networks or running tests. Specifically, the A∗ algorithm has been
implemented where experiments can be performed in regards to parameters within
the algorithm.

6 Chapter 1. Introduction

1.5 Outline

The remainder of this thesis structures as follows. Chapter 2 briefly introduce basic
terms in regards to graph theory and unmanned aerial vehicle movement, as well as
state-of-the-art path planning algorithms. Chapter 3 consists of the working method-
ology and basic graph networks for path planning algorithms and elementary UAV
movement in 3D space. This also discusses programming tools and listings that can as-
sist in simulating and achieving autonomous UAVs, that is further discussed in Chap-
ter 4. Moreover, Chapter 4 elaborates implementations of flying drones with quater-
nions and 3D vectors, and graph networks with vertices and edges using simulations
with game engine. Experimental test results and observations of the performance of
the proposed system architecture will also be discussed. Finally, chapter 5 presents
conclusions and summarizes achieved results of the proposed system solution. It elab-
orates various directions of possible future work in regards to new areas of application
for autonomous UAVs, as well other possibilities for further optimization.

7

Chapter 2

Background

There are several types of unmanned aerial vehicles, and this chapter will cover some
of the basic aspects regarding existing solutions and technologies. An overview of
basic graph terms and terminology such as vertices and edges in a graph network, and
various types of graph networks is also provided.

2.1 Unmanned aerial vehicles

Unmanned aerial vehicles can be represented as flying machines, which can be pro-
grammed to perform certain tasks whether it is based on a search and rescue mission
with infra-red cameras or recording an environment with camera stabilization tech-
niques. The structure of the different drones that currently exists, ranges from multi-
rotor- to fixed wing UAVs. Below is a representation on some of the various types of
drone structures, mostly based on their flying architecture such as number of rotors
and their positions on the drone. Additionally, it is important to distinguish between
propellers and rotors, in which rotors are used with lift, in order to provide vertical
ascend and descent whereas propellers are usually referenced to when providing hor-
izontal thrust. It is important to note that it is easier to maintain forward thrust than
upward lift due to gravity, in which case main rotors are substantially larger than pro-
pellers on an UAV with same mass. Table 2.1 shows an overview of drone types based
on their initial weight categorized by Brooke-Holland [6, 15].

TABLE 2.1: Drone categorization based on weight.

Type Weight range
Nano Drones < 200 g
Micro Drones 200 g - 2 kg
Mini Drones 2 kg - 20 kg
Small Drones 20 kg - 150 kg
Tactical Drones 150 kg - 600 kg
Strike Drones > 600 kg

8 Chapter 2. Background

Single-rotor

Given by its name, these types of drones only have one rotor attached at the top and
is typically structured as a helicopter, which provides vertical lift and hover flight pos-
sibilities [7]. Additionally, they might be powered by gas power which provides in-
creased endurance and longer flight times. However, they are harder to fly and more
training is needed in order to operate these drones correctly. These drones vary in size,
and can generally be categorized as any drone type in Table 2.1 as both nano drones
and tactical helicopter drones are used [15].

FIGURE 2.1: Single-rotor drone.

Multi-rotor

Multi-rotor drones can be categorized based on their weight typically from nano drones
to mini drones, rarely larger. These types of drones are circular shaped, with 2 or more
rotors attached perpendicular to each other in order to provide vertical lift and stabil-
ity. Some of these drones are more commonly known as hexacopters, octocopters or
the more famous quadcopter [7]. Their names represents the amount of rotor-positions
that can provide vertical lift. They are the typical hobbyists choice, especially when it
comes to aerial photography, and video inspections in certain areas [21]. This is due
to their user friendly design and stability control which increases the ease of use when
controlling and steering the drone. However, due to an increased amount of rotors,
weight is increased requiring more power to provide enough lift at each rotor which
in turn lowers the flight times. Just like their counterpart single-rotor drones, they are
VTOL drones with hover flight possibilities [15].

FIGURE 2.2: Multi-rotor drone.

Fixed-wing

Fixed wing drones are inspired by the typical aeroplane with fixed wings to provide
lift, rather than vertical rotors. This means that these drones need to have propellers
attached in order to provide forward thrust that can create vertical lift as a whole on

2.2. Graph theory and path planning algorithms 9

the drone. They are not able to take-off vertically and is of the type Horizontal take-off
and landing (HTOL), which restricts their usage as its launch requires a large space.
Fixed-wing UAVs have a long endurance and greatly increased flight speed compared
to the other rotor types which makes them perfect for aerial mapping and coverage,
and power line inspection [7]. These drones are heavier due to the wings, and can
usually be categorized as the upper range in Table 2.1, ranging from mini- to tactical
drones.

FIGURE 2.3: Fixed-wing drone.

The DJI phantom 3 is an example of a multi-rotor VTOL quadcopter, and has a weight
of 1280 grams with batteries and rotors included [33]. By Table 2.1, it can be observed
that the DJI phantom 3 hobby drone can be categorized as a micro drone based on the
weight from its specifications.

2.2 Graph theory and path planning algorithms

Graph theory is a study of graphs which describes a specific relationship between a set
of objects or points. This relationship vary, based on the specific task at hand, however
they all share the same idea, which is illustrating a hierarchical view of objects and
their connections. A graph G can be defined as a set of two elements, namely vertices
V , and edges E, as G = (V,E). An edge element connects two vertices which may
then be called an edge’s end-vertices. Initially, two vertices can be divided as a subset
of a given edge E. Thereby, a simple graph consists of no more than one edge between
two vertices as well as no abnormal connections such as curves or loops, which are
edges connecting a vertex to itself [20]. However these terms are commonly used in
multi-graphs, where multiple edges and loops are used.

2.2.1 Vertices and edges

Assuming two connected vertices u and v, it is said that these are adjacent or neigh-
bours of one another, specifically written as u ∼ v. A vertex v can be represented as a
tuple in world space such that vi = (xi, yi, zi), for i = 0, ..., n where n is the amount of
vertices in a graph. Furthermore, in a simple graph network, each edge is associated
with only two vertices, which can be represented as components such that (u, v) ∈ E
is the edge from u to v with a given length which is typically represented as a weight
w(u, v). Generally, in simple graph networks, the direction of the edge is irrelevant,
such that (u, v) ∈ E = (v, u) ∈ E is true. This means that the only meaningful informa-
tion within a simple graph is which vertices are connected and the distance between
them, this is referenced as undirected graph type. Figure 2.4a represents an undirected

10 Chapter 2. Background

graph which ignores the orientation, or direction of the edge connections. On the con-
trary, Figure 2.4b illustrates a set of edges with orientations [19].

(A) Undirected graph no orientation, G = (3, 3). (B) Directed graph with orientation, G = (3, 3).

FIGURE 2.4: Directed vs undirected graphs represented with 3 vertices.

Lastly, a weighted graph is a graph network where the edges are given a value that
can, for example, represent the distance between its two vertex components. Figure 2.5
illustrates a weighted graph with numbers, or weights represented at each edge inclu-
sively. Negative weights are also possible, although in this example all the numbers
are positive, representing the distance between each vertex [19].

FIGURE 2.5: Weighted graph network with edges with weight cost w(u, v),
G = (5, 5).

Identifying a vertex’ neighbours is vital in graph theory due to solving certain prob-
lems and understanding algorithms, such as finding the shortest path or solving the
traveling salesman problem. The latter, is a problem that was mathematically formu-
lated in the 1800’s, which asks a specific question: Consider a graph consisting of cities

2.2. Graph theory and path planning algorithms 11

G = (C,E), what is the shortest path possible to visit all cities? Now, increasing the
number of cities C further scales the complexity of the solution, due to the amount of
possibilities. Assuming there are a total of three cities A, B and C, there would be a
total of 3! = 6 different edge connections E between them. Furthermore, solving the
traveling salesman person may be done with brute force by trying each combination,
however this is not effective as the number of cities increases.

2.2.2 Path planning algorithms

Based on any existing graph network, finding the shortest path between A and B can be
performed in several ways. By this, it is necessary to have information of the whole net-
work such as distances between the vertices, and the connections between them based
on the neighbours. The most important aspect when choosing which algorithm to ap-
ply to a given graph network, is the calculation, or time complexity of the algorithm.
A common term being used is the Big O notation, which indicates that worst-case cal-
culated time. It is referenced as time complexity T (n) with a calculation time of O(n),
where n is the size, or number of elements in a given problem. When T (n) ∈ O(n), the
time complexity is linear, meaning that the given algorithm goes through each element
n once, until it is completed. Note that the Big O notation always represents the worst-
case scenario. For instance, finding an item in an unsorted list with 10 elements has the
worst-case time complexity of O(10) = 10 steps if the item we want to find is the last
element. By this, we can understand the time complexity of different path planning
algorithms.

Furthermore, assuming we have a set of edges and vertices in a graph network,
each edge has a weightw(u, v) associated with it. Calculating the length of this network
p = (v0, v1, ..., vk) can be performed by summarizing each weight such that

w(p) =
k∑

i=1

w(vi−1, vi), (2.1)

where k is the number of vertices in the path. By this information, we can derive two
main path planning algorithms, strictly known as single source shortest-path (SSSP)
and All-pairs shortest path (APSP) [22]. We can use the weight information from Equa-
tion (2.1), and define the shortest path

δ(u, v) =

{
w(p) : u→ v if there is a path from u to v,
∞ otherwise,

(2.2)

for any given vertices u and v in G. There are mainly four types of shortest path algo-
rithms that are based on these equations [22].

Single pair

Single pair shortest path is based on finding the optimal path from a given vertex u
to a given vertex v in a graph network G based on the initial weights for each pair.
Typically referenced as finding the shortest path from vertex A to B.

12 Chapter 2. Background

Single source

Single source relates to finding the shortest path from a source vertex s to any given
vertex v in G.

Single target

Typically, this is referenced as the shortest path from a target vertex t from every other
vertex in G. These types of shortest path algorithms are beneficial when there is a goal
vertex that needs to be reached from all available vertices.

All pairs

All pair type is a slightly different algorithm type, where the main goal is to find all the
shortest paths between every vertex in G.

13

Chapter 3

Methodology

This chapter covers more details on maneuverability for UAVs, as well as localization
problems based on their positions. It also presents a discussion on path planning al-
gorithms, specifically single source shortest path or all pair shortest path algorithms.
These are usually utilized when planning routes for UAVs.

3.1 UAV maneuverability

Maneuvering an UAV is not a simple task, and it becomes even harder when designing
autonomous unmanned aerial vehicles that needs to plan their motion respectively.
Motion planning can be described as how a system supposedly maneuvers in a certain
sequence to reach a goal from a given start point. When maneuvering a robot, we have
to take its position and rotation relative to the global space into consideration. This is
due to the fact that when the drone has to navigate to a new point, it has to update its
position in the system. By this, it is given that the robot knows its own local position
based on previous events, however it does not know its global position. Usually, global
position is referenced as the earth fixed frame FE such as the UAV physical properties
of roll, pitch, yaw, and angular velocities. On the contrary, local position is typically
referenced as the body fixed frame FB, in which some properties are measured such
as linear acceleration of the UAV [4]. Assuming a 2D coordinate system, we can use
homogeneous coordinates to transform a local point from a robot’s perspective into
global coordinates [8]. This means that a robot has its own frame that it operates in,
independently from the global system, as seen in Figure 3.1.

FIGURE 3.1: Robot position in global space.

14 Chapter 3. Methodology

By using homogeneous coordinates, we can represent a top-down illustration of
the UAV in 2D, where the z-axis is set as a constant number [8]. Further, if the robot
moves, a new local position X is found, which can be transformed to the global frame
by multiplying the point with the robots local coordinate system, ṽlocal, expressed as

ṽglobal = Xṽlocal. (3.1)

To calculate its local position ṽlocal, we have to multiply its rotation R with its position.
Firstly, we can use trigonometric functions based on a direction ψ to define the rotation
such that

R =

(
cosψ − sinψ
sinψ cosψ

)
, (3.2)

which ultimately can calculate its local position ṽlocal by further adding the current
position t of the UAV

ṽlocal =

(
R t
0 1

)
=

cosψ − sinψ x
sinψ cosψ y
0 0 1

 . (3.3)

Here ψ is the direction, or yaw angle, while x and y represent position in local space [8].
For instance, assuming the robot moves 1m in x-axis which is the forward direction, a
yaw angle rotation of 45°, and position of x = 0.7, y = 0.5, we calculate the new global
position to be

ṽglobal =

cos 45° − sin 45° 0.7
sin 45° cos 45° 0.5

0 0 1

1
0
1

 =

1.41
1.21
1

 . (3.4)

Additionally, it may be useful to do it the other way around, by converting a global
position into local coordinates [4]. In such cases, this can be achieved by multiplying
the inverse of the robot’s pose, i.e.,

ṽlocal = X−1ṽglobal. (3.5)

3.1.1 Localization for UAVs

Based on Equations (3.1), (3.3) and (3.5) we can calculate a robot’s position depending
on how it maneuvers. However, there are other factors that affect a robots position
such as minor inaccuracies in motors, or friction caused by wind and weather condi-
tions [2]. This will ultimately increase the difficulty of maintaining an accurate position
of an UAV. A term referenced as localization, can be used for UAVs to ensure that its po-
sition is correct, based on additional external data to calculate position in global space.
Simultaneous localization and mapping (SLAM) is a navigation algorithm that uses
localization techniques when maneuvering to ensure that a robots position is correct in
its system. A valid technique is to observe landmark objects such as trees, buildings or
generally any static object during navigation, and storing these objects in the system.
Assuming a set of observation points pn in global space with given landmark objects
on. For each new observation point p, its known position fluctuates exponentially due

3.1. UAV maneuverability 15

to the fact that earlier estimations of its position might be incorrect [1, 2]. This is il-
lustrated in Figure 3.2, where each circle in pi represents approximations of where the
UAV might be positioned after navigating from one point to the next.

FIGURE 3.2: Robot localization without observing surroundings.

Furthermore, by having access to environment information such as trees, buildings
and other landmark objects, we can estimate a drone’s position in global space more
accurately. From Figure 3.3, we can see that the UAV observes landmark objects o1
and o2 in position p1, and an estimate of its position is calculated. After the UAV has
navigated to p2, it can perform a set of observations and store discovered landmark
objects and their positions into its system.

FIGURE 3.3: Robot localization by observing landmark objects to estimate
position.

16 Chapter 3. Methodology

From this information, the UAV can calculate its position based on how it navigated
using Equation (3.3), and refine the estimate using additional information from what it
has observed in p1 and p2. In this regard, landmark object o1 was discovered multiple
times, which is utilized to retrieve an improved estimate of its position. However,
this raises another aspect in regards to localization, which is how to distinguish the
different landmark objects, and how to detect and recognize which ones have already
been observed. The impact of having wrong associations with objects, greatly impacts
a robots pose and, in worst case, will result in collisions.

3.1.2 Quadcopter maneuverability

Quadcopters, as discussed in Chapter 2, are of the type multi-rotor VTOL aircraft. Fig-
ure 3.4 illustrates how a quadcopter can utilize and maneuver in three dimensions, x,
y and z respectively by applying power to the four different rotors. Yaw rotation ro-
tates the quadcopter around the vertical axis (z) while maintaining horizontal plane
stability. Pitch is referred to when the UAV tilts forward, around the side-to-side axis
(y), typically for achieving forward momentum. Finally, roll can be achieved when the
UAV rotates around the front-to-back axis (x) for sideways motion. Two of the rotors
rotates counter-clockwise (CCW), and the other two in the opposite directions rotates
clockwise (CW).

FIGURE 3.4: Quadcopter movement based on rotor thrust [4].

3.1. UAV maneuverability 17

Understanding the basics of quadcopter movement can be achieved by observing
the various forces that affects the UAV. Figure 3.5 illustrates four main forces and their
directional pull on the quadcopter, and any typical aircraft.

FIGURE 3.5: Forces acting on an unmanned aerial vehicles during flight.

From Figure 3.5, it is easily observed that to maintain height and stability, the
amount of lift L must be greater than or equal to the gravitational force, such that
L ≥ mg. Not only for quadcopters but for any multi-rotor UAV, the sum of each force
generated at each propulsor must be greater than mg in order to maintain height [4].
This means that the overall vertical ascend or descent Fz on the UAV can be repre-
sented as

Fz =
k∑

n=1

(Ln)−mg, (3.6)

where k is the number of rotors on the UAV andm is the mass of the quadcopter respec-
tively [4]. This equation is only true if each propulsor Ln generates the same amount
of lift, otherwise the UAV will start to rotate in pitch, yaw, or roll directions, causing
instability if not regulated correctly. If Fz > 0 the UAV will ascend, or the contrary
if gravity is stronger than the lift generated by the rotors, i.e., Fz < 0. We achieve a
hovering aircraft when Fz = 0, meaning the rotors generate just enough upwards lift
to counteract the gravitational pull, maintaining the same altitude. Calculating lift Ln

for each rotor depends on the air density and friction around the UAV, and the rotation
speed of the blades in order to propel air downwards to create upward lift [25].

As seen from Figure 3.5, drag is a counteracting force which slows the UAV down
due to friction and air in front of the UAV. The drag force Fd will be subtracted from the
optimal thrust in vacuum in forward Fx or side direction Fy in order to create a realistic
picture for UAV maneuverability. We can assume a quadcopter, and determine how to
gain forward thrust based on the rotor individual lift. From Figure 3.4, we can observe
that to achieve pitch and forward motion, the northern rotor lift LN must be less than
the southern rotor lift LS . However, if the difference of rotor power between LS and
LN is too large, the UAV’s pitch angle will exceed its limits, which will cause loss in
altitude and instability. The specification of the DJI phantom 3 quadcopter has a max
tilt angle of 35°.

18 Chapter 3. Methodology

3.2 Multiple UAVs and path cost

Using multiple unmanned aerial vehicles to communicate with each other and fly in
formations, is a difficult task. In order to maintain control of the UAVs and prevent
collisions, each UAV must know others exact position, as well as the velocities to ap-
proximate the positions in the next iteration. Based on the discussion earlier on graph
theory, we can assume a set of multiple UAVs represented as Ai and starting positions
in Si = {xsi , ysi , zsi } in global space. The total amount of way-points in the graph net-
work that the UAVs can follow, consists of Q − 1 total points based on a path Pi of
agent Ai from Si to goal point Gi = {xfi , y

f
i , z

f
i } [27]. Hence, the available path for each

individual UAV is given as Pi = {W0, ...,WQ}, where each vertex is represented as a
tuple Wk = {xk, yk, zk}, for k = 0, ..., Q. This further gives the starting point when
k = 0 and goal point when k = Q. Each UAV would then have a cost Ci to reach the
goal which should be minimized. Vertical climb and decent costs should be taken into
consideration between each vertex as the power usage increases during climbs and re-
duces during descents respectively. The cost can be calculated by finding the distance
between vertices, and additionally use vertical climb and decent such that

Ci =

Q−1∑
k=0

(‖Wk −Wk+1‖+ (V k
c − V k

d)), (3.7)

which gives a cost based on path length between two vertices Wk and Wk+1, and ver-
tical climb and descent gains V k

c and V k
d between each point, respectively [27]. By

using this formula, we can derive different path planning algorithms from the calcu-
lated path cost. Paths can be calculated pre-takeoff, and later, determine if any planned
paths intersect with other UAVs and recalculate respectively.

3.3 Proposed path planning algorithms

Based on the path planning algorithm types discussed in Chapter 2, several algorithms
can be used for finding the shortest path whether it is a single source-, or an all-pair
problem. Assuming a 2D environment with a tile-type grid, finding a path from source
vertex s to v can be performed with simple greedy algorithms that chooses a vertex and
calculates the costs for each neighbour. This follows the guidelines from shortest path
given by Equation (2.2) in Chapter 2. Figure 3.6 illustrates an example environment in
2D, where the objective is to find the shortest path from source s to a given vertex v.
This shows an example path that can be calculated using path planning algorithms for
reaching the goal with the shortest path, while avoiding the obstacles at the same time.

3.3. Proposed path planning algorithms 19

FIGURE 3.6: 2D tile-map of an environment illustrating the shortest path
from s to v.

We can calculate the distances in a tile grid, since they always have a constant value
from each other. The horizontal or vertical distance will always be equal to constant 1,
which then ultimately can be put into distance Equation (3.9) to calculate the diagonal
distance. This will get the following equation for distance between source vertex s to
neighbour v in any 2D tile-grid:

δ(s, v) =

{
1 if v is horizontal or vertical from s,√
2 if v is diagonal from s.

(3.8)

If there is no grid, the distance formula can be used to calculate the raw distance be-
tween two points s and v respectively as such

δ(s, v) =
√
(vx − sx)2 + (vy − sy)2. (3.9)

These equations can be used to solve for any 2D environment, where we can find
the shortest path by applying any path planning algorithm, since they rely on the dis-
tance function [29]. However, when applying a new dimension to the problem so that
it becomes more realistic for real life integration, height z also needs to be considered
in δ(u, v), but the same distance formula still applies.

3.3.1 Dijkstra’s algorithm

In regards to single source shortest path, an algorithm referenced as Dijkstra’s algo-
rithm can be used. This algorithm strictly starts by creating an empty list that will
keep track of vertices that has been evaluated with a distance cost from source ver-
tex s [10]. Further, the algorithm works by assigning a distance value of infinity to
all vertices in order to compare the weights w(u, v) with new distance values that has
been found subsequently [16]. The time complexity of this algorithm is based on its
need of iterating through each vertex v in a graph G exponentially. This yields a time
complexity using the big O notation of T (V,E) = O(|V |2 + |E|).

20 Chapter 3. Methodology

Dijkstra’s algorithm pseudocode

Algorithm 1 demonstrates the basics of Djikstra’s algorithm, where it starts by initial-
izing each vertex in a graph G with a value of infinity. Further, a list Q will be filled
with all vertex elements in the graph, such that the loop in line 4 will evaluate all pos-
sible vertices, hence O(|V |2 + |E|). The goal is to start from the source vertex s, and
arbitrarily visit its neighbours and giving them a respective cost based on the distance
from s. In the next iteration, s’ neighbours has an updated cost which is lower than
the other vertices’ cost of∞, where the vertex with the lowest cost is chosen for eval-
uation. Assuming vertex u is the target for evaluation, its neighbour v will have a
new cost of Cu = w(s, v) + w(u, v) [10], as seen on line 8 in Algorithm 1. This is itera-
tively performed until queue Q is empty, and no more vertices are left to be evaluated.
However, if vertex u for evaluation is equal to the target goal vertex, the algorithm has
successfully found the shortest path, and a trace-back of the discovered path can be
performed based on which vertices each vertex came from.

Algorithm 1 Dijkstra’s algorithm in pseudocode [10].

1: function DIJKSTRA(graph, source)
2: set each vertex v cost to∞
3: add all vertices to queue Q
4: while Q is not empty do
5: u := minDist(Q, dist)
6: remove u from Q
7: for each neighbour v adjacent to u do
8: v.cost = min(v.oldCost, u.cost + w(u, v))
9: end for

10: end while
11: end function

3.3.2 A∗ search algorithm

An improvement to the Dijkstra’s algorithm by taking advantage of calculating a heuris-
tic estimate to the goal vertex. This algorithm is referenced as the A∗ algorithm, where
the idea is to find the lowest value of a given vertex v from source s as g(n) = s → v,
plus the heuristic estimate h(n) from v to the goal in a graph G [32]. This can be calcu-
lated as a cost function f(n) with a target node n such that

f(n) = g(n) + h(n). (3.10)

3.3. Proposed path planning algorithms 21

Heuristic estimate

Finding the heuristic value to the end goal from a given vertex greatly determines the
efficiency of the A∗ algorithm. It is important that the heuristic is admissible, which
means that it never overestimates, but rather underestimates and stays lower than or
equal to the actual cost [32]. Assuming a node n and a heuristic h, we can derive a
heuristic estimate h(n) with an optimal cost of h∗(n) to meet the requirement of an
admissible heuristic if

h(n) ≤ h∗(n). (3.11)

There are several way to estimate the distance to the goal vertex. Two of the most
commonly used are the Euclidean and Manhattan distance estimations.

Euclidean distance

Calculating the raw distance from a target vertex to the goal using a distance formula
can be used as a simple heuristic estimate, but it will always yield an estimate that is
lower than the actual distance. The issue with that however, is that it does not consider
any potential obstacles that interferes with the calculated line, thus may result in inac-
curate paths. For two given points in three-dimensional space, u and v, the distance δ
between the points is simply given by

δ(u, v) =
√

(vx − ux)2 + (vy − uy)2 + (vz − uz)2. (3.12)

Manhattan

Manhattan distance, also referred to as Taxicab geometry or rectilinear distance Ln,
simply calculates the distance between two points by adding the absolute differences
of their Cartesian coordinates. In three dimensions, the following taxicab distance be-
tween point u and v is given by

δ(u, v) = |ux − vx|+ |uy − vy|+ |uz − vz|. (3.13)

Figure 3.7 represents the difference between the two mentioned heuristic estimates
in two dimensions by subsequently using Equations (3.12) and (3.13) to calculate two
different distance metrics.

22 Chapter 3. Methodology

FIGURE 3.7: Manhattan- vs euclidean distance in a 2D tile grid environ-
ment.

A∗ algorithm pseudocode

Algorithm 2, illustrates a step by step implementation of the functionality of how the
A star algorithm works. Allegedly, the first steps of this algorithm is to determine the
start vertex and the goal vertex, given by the parameters in function call. Further, two
arrays named openSet and closedSet contains all the vertices that need to be consid-
ered, and those that has already been checked respectively [31]. The vertex that is being
evaluated found within openSet list, is referenced as current in the given pseudocode
with the lowest f score. The f score as discussed earlier, is a combined score of the
calculated distance it has already travelled from the start vertex g(n) and an heuristic
estimate to the finish h(n).

The algorithm further finds every neighbour of current and iterates through if the
target neighbour does not exist in the closed set. If it already exists in the closed set,
then it has already been evaluated and the iteration continues to the next neighbour. If
a neighbour has not yet been evaluated, the tentative g score must be calculated, which
is the current vertex g score plus the distance between current and the target neighbour.
Based on whether the neighbour does not exist in openSet, or has a lower tentative g
score than its current g score, a new path has been found, and this neighbour vertex is
part of the shortest path from start- to goal-vertex [32].

If current is equal to goal vertex, then the algorithm has successfully found a path
from start- to goal-vertex. This means a trace-back of the found path must be per-
formed, hence a cameFrom variable is being used. Since each vertex has the variable
as seen in line 37 in Algorithm 2, we can use this to trace which vertex it originally
came from, with a loop that iterates through these vertices. This will continue until we
reach the start vertex, which supposedly did not come from any vertex as this was the
starting point. This iteration will yield an array of all the vertices in the shortest path
in descending order, starting from goal- to the start vertex, and we have successfully
found the shortest path. Ultimately, if openSet list is empty, and if the goal vertex has
not been found after we having iterated through every possible vertex from the start
point, the function returns a failure as no path is available in given graph network.

3.3. Proposed path planning algorithms 23

Algorithm 2 Pseudocode for the A∗ algorithm [31, 32].

1: function ASTARALGORITHM(startV ertex, goalV ertex)
2: openSet := {startVertex}
3:
4: while openSet is not empty do
5: current := the node in openSet with lowest fScore
6:
7: if current = goalVertex then
8: tempVertex := current
9: while tempVertex has no cameFrom do

10: add tempVertex to resultPath[]
11: set tempVertex to vertex it came from
12: end while
13: return resultPath[]
14: end if
15:
16: add current to closedSet
17: remove current from openSet
18:
19: for each neighbour of current do
20: if closedSet contains neighbour then
21: continue . //Already checked, skip iteration
22: end if
23: tentative_g := g[current] + d(current, neighbour)
24: newPath = false
25: if openSet contains neighbour then
26: if tentative_g < g[neighbour] then
27: g[neighbour] = tentative_g
28: newPath = true
29: end if
30: else
31: g[neighbour] = tentative_g
32: add neighbour to openSet
33: newPath = true
34: end if
35: if newPath is true then . //If better g_score, or does not exists in openSet
36: f[neighbour] = g[neighbour] + h[neighbour]
37: set neighbour’s cameFrom to current
38: end if
39: end for
40: end while
41: return failure . //openSet is empty, but goal not found
42: end function

24 Chapter 3. Methodology

3.4 PID Controller

Proportional-integral-derivative controller (PID, or three-term controller) is an itera-
tion process for calculating error signals and responding with feedback for control sys-
tems [18]. In this regard, we initially have a path for the UAV to follow based on earlier
path planning algorithms, in which its position relative to this path can be used. PID
controller can be derived into four main aspects, typically

• The sensed position of target unit represented as a process-variable PV ;

• The desired position referenced as setpoint SP ;

• An error e calculated by differentiating SP − PV ; and

• The input of the whole process, such as applied power to an UAV’s rotors (propul-
sors) so that its position changes accordingly. Represented as the manipulated
value MV or control variable CV .

Based on this information we can use the PID controller algorithm as seen from
Equation (3.14) to control the motion of the UAV so that it follows the shortest path [18].
The manipulated value MV (t) is then how much we want to adjust the UAV position
so

MV (t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)
dt
, (3.14)

where t is the instantaneous time and τ is the current variable of integration that takes
values from the start to present t. Moreover, Kp is the proportional tuning parameter,
Ki is the integral tuning parameter, and Kd is the derivative tuning parameter. Choos-
ing the correct values for these parameters substantially impacts the performance of
the PID controller [18].

3.4.1 The proportional term

The proportional gain constant Kp is multiplied with the current error value in order
to create a number proportional to the error. This is the first part of the PID controller
algorithm, where the proportional output is

POut = Kpe(t). (3.15)

This means that a high Kp makes a high output value Pout and in turn makes MV (t)
change drastically based on a given error. This will make the UAV become unstable
due to the high output values for propulsors. On the contrary, a small number impacts
the system in a way that the adjustments in the control system are too minor, resulting
in a less sensitive control system [18].

3.4.2 The integral term

It is important to measure the error signal over time, meaning that the integral term
refers to both the magnitude and duration of the given error e over time t. It is generally

3.4. PID Controller 25

the sum of the instantaneous errors over a time-span, represented as

IOut = Ki

∫ t

0

e(τ)dτ, (3.16)

accumulates previous errors that should have been corrected in the system. The ben-
efits of using an integral, is that it prevents the residual steady-state error from occur-
ring [12]. The steady-state is simply the difference between the actual output value
of MV (t) and the desired output value. Furthermore, by using the integral in the al-
gorithm, the movement towards SP is accelerated based on previous errors, however
might overestimate, or overshoot, the output value to SP due to previous errors. Fi-
nally, Ki is multiplied with this integral, which in turn can be used to fine-tune the
performance of the algorithm [18].

3.4.3 The derivative term

The derivative of the algorithm is optimally not causal, meaning it only calculates fu-
ture behaviour of the UAV. This can be done by determining the slope of the error
over time to ultimately create a stabilized system and multiplying this rate with the
derivative gain Kd. The derivative output DOut of the equation is

DOut = Kd
de(t)
dt
. (3.17)

However, since the derivative part of the algorithm is not causal, it is rarely used in
real-world systems, where predictions are never real values and only estimates which
may lead to unreliable, unstable systems [12, 18].

3.4.4 Paths and positions for UAV

Applying PID controller to UAV motion and following a path can be done by firstly
determining what is the set-point, process-variable, and the manipulated value. Ul-
timately, Equation (3.14) can be used to calculate positional errors of the UAV, based
on the path it is supposed to follow. From Figure 3.8, it can be observed that we can
assign the process-variable PV as the global position of the quadcopter, and a desired
position towards current edge to be followed in the planned shortest path as set-point
SP .

26 Chapter 3. Methodology

FIGURE 3.8: UAV error relative the target path from edge e(u, v).

The error can be calculated by determining the positional errors in each direction,
such that each set-point and process-variable in each dimension is

MVx(t) = ex(t) = SPx(t)− PVx(t),
MVy(t) = ey(t) = SPy(t)− PVy(t),
MVz(t) = ez(t) = SPz(t)− PVz(t).

(3.18)

For instance, observing an error value in the roll-axis ex(t), the control system knows
that it can apply power accordingly to certain rotors to roll sideways towards the path.
To achieve this, it is necessary that the UAV knows the position of the edge between
vertex u and v. However, this edge does not strictly have a position, but rather a
direction and a start and end-point. In this case, finding the set-point is troublesome,
due to the uncertainty of the exact location between two vertices [26].

Figure 3.9 illustrates further how to calculate the error from the UAV to the path, by
creating more vertices between main points, in order to assign more optimal set-points
SP .

FIGURE 3.9: Graph network G = (3, 3) where more vertices can be added
represented as lines for increasing network accuracy.

3.4. PID Controller 27

Adding more vertices between two points is beneficial so there are more available
positions to be assigned as SP . Optimally, SP is set as the closest vertex to the UAV in
the graph network. By this, the PID-controller maneuvers the UAV accordingly to stay
on the path. Once the UAV is on the path, it ultimately knows the next target vertex
and can maneuver towards this point accordingly.

29

Chapter 4

Simulations and implementation

This chapter discusses simulations and implementation aspects of various UAV behav-
iors and paths, to demonstrate the feasibility of the proposed path planning system.

4.1 Unity 3D simulation engine

In this work, two simulation engines have been researched, referenced as game en-
gines Unity 3D and Unreal Engine respectively. The benefits of using game engines,
is that they provide a good user interface and built-in modules ranging from move-
ment physics, gravity, rigidbodies and quaternions for rotation physics [23]. Further,
both Unity 3D and Unreal engine provide modules for simulations and game creation.
However, Unity has more built-in modules for managing textures and shaders, which
results in simplicity for development that in turn provides less versatility for graphics.
Nonetheless, Unreal engine is more focused towards graphics and provides a generally
more appealing look to the game simulation [23, 28]. Ultimately, graphics and general
view of the simulation is not as important as the overall physics and object behaviors.
Additionally, based on previous experiences with simulations and programming Unity
3D has been used in this work.

The software requirements for simulation can be seen in the list below, based on
tools that are needed to provide simulated results.

Unity 3D student package

In this work, the student plan for Unity 3D has been used, in which all files and ma-
terials used are open-source and free to use [23]. This is important in order to provide
availability of source files and readability, especially in regards to re-creating simula-
tions.

Visual studio 2017

Visual studio has been used for code editing and as an integrated development editor
(IDE) in regards to the code scripts used by Unity. Unity currently uses the C# pro-
gramming language, which provides a user friendly way of changing attributes and
behaviors of objects found within the Unity simulation.

Unity asset - Windridge City Demo

Furthermore, an asset from the unity store to represent a city for drone simulations has
been used [35]. This asset is completely free and consists of materials and textures of

30 Chapter 4. Simulations and implementation

city objects. Additionally, the Post Processing Stack v2 included in the Unity installa-
tion can be used for solely improving the graphics.

AirSim - Quadcopter model

The AirSim is an open-source library for both Unity and Unreal engine [30]. How-
ever, only the quadcopter model has been used in this work. No drone physics or
maneuverability has been used from this library, as everything has been implemented
independently.

As a reference during the experiments regarding calculation times and performance,
the used hardware from a desktop computer can be seen in Table 4.1.

TABLE 4.1: Simulation computer hardware specifications.

Desktop computer specifications
CPU Intel i7 4790 @ 3.60 GHz
GPU Nvidia GeForce GTX 1070
RAM 4x KHX1600C9D3 Kingston 4GB DDR3
Motherboard MSI Z97 GAMING 7

4.1.1 Development in Unity 3D

Creating simulations and virtual environments in Unity 3D can be done by adding
wanted objects directly into any given scene. A scene in Unity is a representation of a
created virtual environment, with a hierarchical view of all objects in the simulation,
and their given rotation, global position, and size as attributes. Figure 4.1 illustrates all
simulated game objects within the simulation environment, ranging from landscape
objects, controllers, lightning as well as the drone itself.

FIGURE 4.1: Unity scene hierarchy for Windridge, containing all objects in
simulation.

One can simply right click in the scene viewer to create new objects, whether they
are empty game objects, or lightning objects such as city lights and lamps which sup-
ports lightning from the built-in physics engine. Figure 4.2 shows an overview of the
Windridge city environment from Unity assets, which is the environment being used
in this work.

4.1. Unity 3D simulation engine 31

FIGURE 4.2: Windridge city in Unity, used for simulation as environment
for drone.

Gameobjects within scene

Furthermore, each of these objects within the hierarchy window can be inspected such
that attributes of the object is shown. This can be seen from Figure 4.3, where the global
earth fixed frame FE position, can be changed into any x, y and z coordinates.

FIGURE 4.3: Inspector window of a given game object, in this case the
drone itself.

Additionally, the rotation of the object is represented as Euler angles for ease of use
by the user. However, Unity internally uses quaternions to prevent the case of Gimbal
Lock. The rotation represented in this window is relative to the world axis.

When creating objects that are to be simulated, one can use the module known as a
rigidbody. This module can be observed in Figure 4.4 that contains built-in attributes
such as gravity, which is 9.81 ms2 by default. Additionally, drag for air resistance and
friction can be changed, as well as angular drag that slows rotation due to internal
frictions within the game object.

32 Chapter 4. Simulations and implementation

FIGURE 4.4: Unity rigidbody type with mass, and both drag and angular
drag for air friction.

Rigidbody is a module with built-in physics, where the most common used is
AddForce(Vector3 dir) function. The passed dir parameter indicates the amount of force
applied at the origo of the game objects position, i.e., the center of the UAV. This means
to initially get a better representation of a real drone, a function that is widely used is
AddForceAtPosition(Vector3 dir, Vector3 pos) function. This function takes two parame-
ters that firstly is a force as a 3D direction vector with magnitude, as well as the position
on the object the force is applied. By this, we can apply four forces in the UAVs cur-
rent upwards direction, initially where the four rotors are to be positioned. Utilizing
these functions is performed by attaching a script module to the game object, where an
example script of the drone can be seen in Figure 4.5.

FIGURE 4.5: Script attached to drone object for configurations.

This script is a C# file (.cs) which can be opened in a IDE to be edited. Algorithm 3
shows the different variables that can be declared in the IDE, which will automatically
update in the inspector window.

4.2. Simulating an unmanned aerial vehicle 33

Algorithm 3 : Drone class specification for updating in the inspector window.

1: function DRONECONFIGURATIONS
2: public float ascendingSpeed = 6.0f; // m/s
3: public float topSpeed = 20f; // m/s
4: public float maxTiltAngle = 42; // degrees
5: public float angularSpeed = 150; // degrees/s
6: public float yawAngularSpeed = 150; // degrees/s
7: public float droneWeight = 1.380f; // grams
8: end function

This gives an easy user friendly way of changing simulation values, for testing
various simulation results. For instance, the weight of the drone can be changed in
order to simulate different types of quadcopters based on their specifications found in
the spreadsheets.

4.2 Simulating an unmanned aerial vehicle

Using Unity 3D, simulating unmanned aerial vehicle can be achieved with the built-in
modules which handles collisions based on boundary boxes around each object as well
as movement and physics. In this work, a quadcopter has been created from an empty
object which ultimately consists of 4 points at each corner that represents the rotors.
Based on the drone variables derived from Algorithm 3, it is possible to simulate the
drone physics. Firstly, a hover force H is calculated based on the given mass and
physics with Equation (3.6). This means that the sum of all rotors applied is equal to
the gravitational pull on the aircraft. However, another solution is to have a main force
Fz in the quadcopters up direction, and use the rotation functions to roll, pitch, and
yaw the UAV.

Figure 4.6a illustrates the flying drone in the simulation environment in a stable
state, with its respective body fixed frame FB axis, here transform.up is parallel to
global frame Vector3.up.

(A) Quadcopter in a given simulation environ-
ment where transform.up ‖ Vector3.up.

(B) Quadcopter is rolling around the forward
axis where transform.up ∦ Vector3.up.

FIGURE 4.6: Indicating drone movement in global space, hovering vs roll.

34 Chapter 4. Simulations and implementation

Table 4.2 shows the axes in the simulation environment where FB is represented
with the transform keyword in Unity, whereas the earth-fixed frame FE is represented
with Vector3 keyword.

TABLE 4.2: Axes in simulation environment.

Axis Global frame FE Body frame FB

x Vector3.right transform.right
y Vector3.up transform.up
z Vector3.forward transform.forward

Based on that, it is possible to simulate drone movement with rotation around its
corresponding body frame FB axes, as roll can be achieved by rotating around trans-
form.forward axis, pitch around transform.right and yaw around transform.up axis
respectively.

To achieve rotation on the UAV, one can either apply varying power to each ro-
tor in order to achieve roll, pitch and yaw as discussed from Figure 3.4. However, a
simpler method is by using the Rotate function within Unity. The function is namely
Rotate(Vector3 eulers, Space relativeTo), where the eulers parameter takes the three co-
ordinates x, y and z and rotates based on this. A Vector3 eulers parameter value of
v = (0, 5, 0) will rotate the object in 5 degrees clockwise around the y-axis, or the up
direction. This will in turn create a yaw rotation of the UAV, where the same can be
applied to x and z axes to achieve pitch and roll respectively. The relativeTo parameter
decides whether the object is rotating in regards to world space from earth-fixed frame
FE or locally with the body-fixed frame FB.

On the other hand, a camera has been attached beneath the drone, for surveillance
and monitoring the environment for landmark objects and other external information.
This camera can be tilted up and down around local x-axis, and can be seen in Fig-
ure 4.7.

FIGURE 4.7: Drone camera for monitoring and usage for environmental
data.

Like other cameras found on modern quadcopters, a stabilizing technique is per-
formed, using gyro. This means that the only direction the camera is supposed to
change if the UAV rotates, is the yaw direction, whereas the UAV can roll and pitch
regardless without affecting the camera rotation. This is beneficial for gather environ-
mental data to minimize the noise from vibrations and UAV movement.

4.3. Path planning implementation 35

4.2.1 Overview of drone simulation

Figure 4.8 illustrates the drone simulation as discussed in this work. Information about
the drone is provided, ranging from speed to rotation in angles in each direction.

FIGURE 4.8: Drone simulation with additional information such as drone
status, and camera feed.

Firstly, the green panel contains information regarding the current performance of
the simulation, referenced as frames per second (FPS) as well as the vertical and hor-
izontal speed of the UAV. Additionally, the blue panel gives information about its ro-
tation, as well as the hover force, which is the amount of force needed to achieve a
hovering state of the UAV based on its weight. Altitude from sea level as well as the
drone camera are also shown.

4.3 Path planning implementation

As the discussion continues, the UAV now has to follow, and plan out a path. A graph
network tool has been created in the same simulation environment which represents
various nodes, or vertices with corresponding edges. This graph network tool has been
made so that optimially the UAV can maneuver and map out various vertices and store
their representative positions into its system. Furthmore, algorithms for planning the
shortest path has been implemented, such as the A∗ algorithm, as well as the Dijkstra’s
algorithm to some extent.

4.3.1 Graph network

The implementation of the graph network in this thesis is created as a C# script at-
tached to an empty game object, which allegedly consists of three, objects, vertex, edge,
and the network as a whole. The graph network object G further contains two lists of
vertex V - and edge E objects, giving that G = (V,E). Additionally, important func-
tions such as adding vertices, adding edge connections and getting total number of

36 Chapter 4. Simulations and implementation

edges and edges is found within the graph network object. Each vertex has a posi-
tion represented as a Vector3 in C# format, which purportedly contains information of
three-dimensional space relative to an origin. Adding a vertex to the graph network
can be seen in Algorithm 4, which takes two parameters such as the position in global
space of new vertex, and its neighbour vertices.

Algorithm 4 Add vertex to graph network.

1: function ADDVERTEX(position, neighbours[])
2: add vertex index to vertexList[] with position in graphNetwork
3: for each neighbour in neighbours[] do
4: create edge between neighbour and new vertex
5: update neighbour’s neighbourList[] with new vertex
6: end for
7: end function

Implementing the graph network this way, means that we get a list of every vertex
that exists in the network represented as a N−tuple where N is the number of vertices
in the network. If there is the necessity of accessing a vertex’ neighbour, we can sim-
ply look into this tuple, to access the vertex objects. This is required to successfully
calculate the shortest path and use algorithms, such as the A∗ algorithm.

4.3.2 Graph network user interface

Figure 4.9a represents the general user interface of the graph network tool, which ulti-
mately can load, save, and remove a graph respectively.

(A) Graph management and deleting vertices. (B) Path finding algorithm specification as well
as creating new vertices.

FIGURE 4.9: Graph network tool user interface.

Additionally, Figure 4.9b represents the path finding algorithm specifications, such
as the source vertex s to be used as a starting point to a target goal vertex v. Further,

4.4. Simulation results and discussion 37

Figure 4.9b also has the ability to create new vertices in the network as follows. Firstly,
the new vertex neighbours can be selected based on the index of target neighbours. For
instance, an input in the text field of 0, 3, 5 indicates that the new vertex to be created
vn+1 has neighbours 0, 3, and 5 from the graph network. The three boxes above the
create vertex button can be used to determine the position of the vertex in global space
in x, y and z respectively. However, when integration with the drone, an option that is
seen in Figure 4.9b as "Use camera as reference", can be used to create vertices based on
the position of the camera, or in this case, the UAV global position. By this, it is possible
for the UAV to fly around in an area to map a graph network, in which all the vertices
can be accessed regardless of the UAV position. When a vertex is being created, it is
drawn in the simulation scene window, so that it is available to observe the position of
the different vertices in the network. Lastly, based on the neighbour inputs, edges are
being created which are strictly drawn lines in the simulation. Note that for simulation
purposes, there exists two graph networks, one that is visually appearing for the user
such as drawn squares and lines, and another that is the graph network the drone has
stored into its system.

4.3.3 Path planning algorithms

Since the foundation of the graph network has been developed, we can simply inte-
grate the path finding algorithms discussed earlier, based on their pseudo-code algo-
rithms, as seen from Algorithms 1 and 2. However, it is also necessary to communicate
information between the game objects and controllers, such as the number of neigh-
bours to a vertex or, more specifically, the complexity of the graph network. Based
on the graph network discussed from Algorithm 4, we additionally need get and set
functions in the object. This means that we can simply call a function such as getNum-
Neighbours(int vertexIndex) or getNumVerticies() which both return number of neigh-
bours to passed parameter vertex, and number of vertices in a given graph network
respectively.

4.4 Simulation results and discussion

From the implementation discussed earlier, we are able to derive test results from ob-
serving the performance of the discovered path planning algorithms and additionally
the flying capabilities of the UAV simulation.

4.4.1 Path planning

Figure 4.10 shows a simulated environment with the graph network tool. This tool can
be utilized to simulate different paths calculated with algorithms. In this specific case
in Figure 4.10, the standard A∗ algorithm was used with the implementation discussed
in Section 3.3.2, to identify the shortest path from vertices source vertex s = 0 and
target vertex v = 17 using the Manhattan heuristic.

38 Chapter 4. Simulations and implementation

FIGURE 4.10: Graph network with shortest path from a source vertex s
and goal vertex v.

From earlier simulations, we can also get numerical values such as execution time
for the various path planning algorithms based on the chosen parameters. This in-
cludes heuristic estimates for the A∗ algorithm, the implemented algorithm type, as
well as the complexity of the graph network. From Figure 4.11 we get information
regarding the path planning algorithm, including the time spent calculating the path.

FIGURE 4.11: Calculated shortest path from vertex v0 → v8.

However, since this is a simulation, we have to account for the fact that there are
other simulation objects, such as rendering physical objects, and drawing the user in-
terface. By this, we can initially create a graph network consisting of only one node,
and thereby calculating the time spent finding shortest path. Based on the implemen-
tation from Algorithm 2, we see that once the current vertex being tested is equal to
the goal vertex, the algorithm finishes. This means that calculating the shortest path

4.4. Simulation results and discussion 39

from the same target vertex to itself, only takes one cycle. Furthermore, by utilizing
the Time library within the Unity C# scripts, we can set a variable startT ime to the
internal system clock on the simulation device from Table 4.1 as the initial time before
calculating the path. After the shortest path has been calculated, we can compare the
new system clock with the startT ime and get the final computational time for the algo-
rithm. Firstly, by having a graph networkG = (1, 0), we get an approximate calculation
time of 1.910ms, which is managing the game objects behavior and external simulation
information that is inconsequential for the algorithm performance. Table 4.3 illustrates
10 runs withG = (1, 0) to get a mean base value for the average calculation times based
on rendering and game object physics.

TABLE 4.3: Mean value of calculation times without path planning algo-
rithm.

Iteration Execution time
1 1.892ms
2 1.892ms
3 1.892ms
4 1.953ms
5 1.892ms
6 2.014ms
7 1.892ms
8 1.892ms
9 2.014ms
10 1.770ms
Mean 1.910ms

We can set this as the base time b = 1.910ms and can use this to subtract from the
time we get during testing of the various algorithms and parameters. For instance, as
shown in Figure 4.11 we can see that the time spent calculating the shortest path in a
graph network G = (21, 33) took Et = 2.345ms with the A∗ algorithm with Manhattan
heuristic from the console window to the right. Note that this is programmed to iterate
n = 10 times to get a more accurate numerical representation. To eliminate rendering
times and other external factors, we get a calculation time of

T (G) = Et − b, (4.1)

and further

T (G = (21, 33)) = 2.345ms− 1.910ms = 0.435ms. (4.2)

Based on this given information, we can derive tests for various parameters to cal-
culate the execution times for the algorithms in a given graph network. Table 4.4 illus-
trates the calculation times T (G) for the different parameter values in three different
graph networks. Which in this case, is by using the Euclidean heuristic estimate.

40 Chapter 4. Simulations and implementation

TABLE 4.4: Calculation times using the A∗ algorithm with Euclidean
heuristic estimate.

Graph Network G = (V, E) Heuristic estimate Calculation time T (G) = Et − b
G1 = (21, 33) Euclidean 0.484ms
G2 = (21, 25) Euclidean 0.478ms
G3 = (50, 80) Euclidean 1.159ms

Further, we have the Manhattan heuristic estimate as seen from Table 4.5 imple-
mented using Equation (3.13).

TABLE 4.5: Calculation times using the A∗ algorithm with Manhattan
heuristic estimate.

Graph Network G = (V, E) Heuristic estimate Calculation time T (G) = Et − b
G1 = (21, 33) Manhattan 0.395ms
G2 = (21, 25) Manhattan 0.388ms
G3 = (50, 80) Manhattan 0.934ms

From Equations (3.12) and (3.13), and Tables 4.4 and 4.5, it is seen that using a
quadratic formula for calculating the distances significantly slows down the execution
times, while on the contrary the Manhattan heuristic is much faster due to calculating
only the absolute value differences in each axis.

Additionally, during the test of the A∗ algorithm, the source vertex s and target
goal vertex v were equal for both the Euclidean and Manhattan test in G1, G2, G3 re-
spectively.

4.4.2 UAV - Quadcopter simulation results

Finally, we can utilize the simulated drone in the Windridge city asset, and maneuver
around the city based on a given implemented graph network. Figure 4.12 illustrates
an example path around a city block in Windridge city, for the UAV to follow.

4.4. Simulation results and discussion 41

FIGURE 4.12: Example graph network in the city, increasing the number
of vertices may be beneficial for accuracy, G = (10, 12).

Furthermore, Figure 4.13 represents the UAV alongside the path to follow, which
can be applied anywhere in the city.

FIGURE 4.13: Drone following path in the city environment from graph
network.

By this, it can be seen that it is possible to map out an entire city by flying an UAV
and mapping the vertices and storing their position and connections internally within
the UAV, and then further calculate the shortest path to any target position in the city.
This will ultimately generate a path for the UAV to follow, in order to reach the desti-
nation as effectively as possible.

42 Chapter 4. Simulations and implementation

Lastly, Figure 4.14 illustrates a small graph network in the city, and additionally the
shortest path between source vertex s = 4 and target v = 15.

FIGURE 4.14: Small graph network in city, representing shortest path with
the blue line indication from s to v, G = (16, 21).

We can calculate the execution time for finding the shortest path by subtracting the
base execution time b from the actual execution time gathered from the output in the
console as seen in Figures 4.15a and 4.15b with Euclidean and Manhattan heuristics
respectively.

(A) Euclidean heuristic used in Figure 4.14. (B) Manhattan heuristic used in Figure 4.14.

FIGURE 4.15: Euclidean vs Manhattan heuristic in A∗ algorithm.

We can see the calculated time for generating the shortest path for both Euclidean
and Manhattan heuristics, and by using Equation (4.1), we get

T (G = (16, 21))Euclidean = 2.347ms− 1.910ms = 0.437ms, and (4.3)

T (G = (16, 21))Manhattan = 2.304ms− 1.910ms = 0.394ms. (4.4)

4.4.3 Heuristic estimates and performance

Both the Manhattan and Euclidean heuristics calculated the same exact path, which is
the optimal route from s to v in the graph network from Figure 4.14. This means that in

4.4. Simulation results and discussion 43

simple weighted graph networks, the Manhattan heuristic might be preferred due to
the fact that it executes an average of 18.38% faster than Euclidean based from Table 4.2.
Additionally, it is illustrated from this table that a calculation time in G = (V,E) can
be created as a function based on number of vertices and edges in a network as

f(G = (V,E)) = KV V +KEE, (4.5)

where KE and KV are constant numbers from execution times of edges and vertices
respectively. KE can be calculated based on numbers from Tables 4.4 and 4.5. The idea
is that G1 and G2 contains the same amount of vertices, however the only difference is
the amount of edges found in each network. We can then calculate how long it takes
to calculate one edge with

KE = |T (G1)

EG1

− T (G2)

EG2

|, (4.6)

and further

KE = |0.484ms
33

− 0.478ms
25

| = 0.00445ms. (4.7)

Similarly,KV can be calculated by finding the fraction between execution time T (G)
and number of vertices V . It is also necessary to subtract the total execution time by
execution time for each edge, i.e.,

KV =
T (G)−KEE

V
, (4.8)

and further from G1 with Euclidean,

KV =
0.484ms− (0.00445ms · 33)

21
= 0.01605ms. (4.9)

This can be validated by using Equation (4.5) and comparing a tested graph in Ta-
ble 4.4. For instance, G3 = (50, 80) giving

T (G) = f(G = (50, 80)) = 0.01605ms · 50 + 0.00445ms · 80 = 1.1585ms, (4.10)

which is fairly close to the actual result. From these equations, we can derive a graph
where we can plot the x-axis as number of vertices, y-axis as number of edges and z as
the execution time. In Figure 4.16, the graph is illustrated, with an example calculation
time of network T (G = (25, 52)) = 0.6326ms.

44 Chapter 4. Simulations and implementation

FIGURE 4.16: Function for execution times based on variables V and E
from Equation (4.5).

The same thing can be applied with the Manhattan heuristic and re-calculate KV

and KE from Table 4.5. By using same equations we get KV = 0.00355ms and KE =
0.01323ms. This generates a new graph, as seen in Table 4.17 illustrating the same
graph network with a better execution time of T (G = (25, 52)) = 0.5153ms.

4.4. Simulation results and discussion 45

FIGURE 4.17: Function for execution times based on variables V and E
from Equation (4.5).

The graphs represented above are only meant to demonstrate an approximation
of the execution times based on number of edges and vertices found within a graph.
Firstly, it is important to note that in these tests, the same source vertex s and target
v was applied for each network. This is due to ambiguity with the placement of the
vertices, because the algorithm finishes once it finds the target vertex. If s and v were
neighbours, the algorithm would be finished in one cycle, meaning that the other ver-
tices in the network does not affect the execution time. By this, the selection of s and
v in these tests have been strategically chosen so that each vertex has been taken into
consideration. Finally, there is a constraint that is not illustrated in the graphs, where
there is no possibility to have a graph network of specification G = (2, 4) for instance.
This is due to the fact that it is only valid to have one edge in a graph with two vertices.
To fulfil this constraint, the graph network can maximally have

EMax =
V (V − 1)

2
, (4.11)

number of edges based on vertices V in given graph network [20].

47

Chapter 5

Conclusion and Future Work

This work covers the state-of-the-art UAVs and path planning algorithms for the de-
sign of autonomous unmanned aerial vehicles that can be utilized in a wide range of
applications. Following are some conclusions and potential future developments of
this work.

5.1 Conclusion

The development of autonomous vehicles is one of the hottest topics of modern en-
gineering. It is also a multidisciplinary discipline and indeed a very challenging en-
deavor that has captured the attention and imagination of many researchers around
the world. This work is concerned with autonomous aerial vehicles in particular, and I
had to dive among fields such as graph theory, for mapping out city areas and perform
path planning, control engineering, quaternions, that can be regarded as an extension
of complex numbers to higher dimensions, and, of course, programming.

Various graph networks and unmanned aerial vehicle physics have been imple-
mented and demonstrated through simulations using Unity 3D engine. Moreover, in-
tegrating simulations based on research and literature review, has made it possible
to demonstrate proposed path planning algorithms and their performances. Choosing
the optimal path planning algorithm is the most crucial step, where it has been demon-
strated in this work that Dijkstra’s algorithm is slower than the A∗ algorithm due to
lack of heuristic estimates. Using the latter, finding the shortest path is performed by
calculating a heuristic distance to a given destination from each vertex plus the dis-
tance travelled. This means there are fewer vertices that needs to be explored, thus
improving execution times. A∗ algorithm may use more resources in terms of memory,
although it will always yield the optimal path in a graph network more effectively than
Dijkstra’s algorithm, if one exists. The heuristic estimate being used also determines
the efficiency of the algorithm. From the results carried out in this research, it was dis-
covered that the Manhattan heuristic executed almost 20% faster than the Euclidean
heuristic, where both calculated the same optimal path in a representative selection
of graph networks. Calculation time depends on structure, size, and complexity of a
graph network as well as source vertex s and target v position in the graph network.

Using the graph tool that was created for simulation purposes, made it easy to ex-
periment on various graph networks. The path planning algorithms was conveniently
applied to any given graph network. Vertices and edges could be removed in order
to experiment how the different relationships between vertices affect the performance
of the planned path. Similarly, using read and write file functions, it was possible to
save and load graphs in a given environment, from a position in global space. This

48 Chapter 5. Conclusion and Future Work

was achieved by saving the graph network architecture such as each individual ver-
tex’ position and its neighbours into a file. The graph tool served a great purpose for
accumulating the shortest path, which could be tested using the custom path calcula-
tion function. Vertices could be selected, and the distance from the first selected vertex
to the last was given in the console window. By this, it was possible to compare the ac-
tual shortest path, with a calculated path from the algorithms and check if the optimal
path has been found.

Furthermore, simulating UAVs in Unity has shown promising results. Quaternions
and Euler angles has been useful for integrating pitch, roll and yaw attributes to the
UAV, and similarly using gravity physics within Unity to calculate the necessary force
for upwards lift. This was done in order to achieve a hovering state for the drone,
where force can be removed or applied to ascend or descend, respectively. A func-
tional and flexible simulation environment has been developed, taking into account
the current state-of-the-art on UAVs. Issues such as maneuverability and enhanced
localization of the quadcopter, utilizing environmental data such as landmarks to rec-
ognize an UAV’s body-fixed frame position in global space, have also been given due
attention.

Simulating an unmanned aerial vehicle in a representative city within a graph net-
work has been demonstrated through the results presented in this work. Graphs can
be used for mapping out paths in a city environment for the UAV to follow, where
the vertices’ position can be stored in the UAV. Thereby, the UAV can be given a com-
mand to maneuver to a specific destination, and would opt to follow the shortest path
based on stored vertex positions. This path can be calculated preemptively based on
the network, using the A∗ algorithm with an admissible heuristic.

5.2 Future work

This research has created a groundwork for autonomous UAVs, with the use of graph
networks and state-of-the-art path planning algorithms. Despite the promising results,
the experiments still need optimization regarding UAV motion planning. The follow-
ing issues would be worth investigating further:

• Some aspects regarding algorithms for multiple UAVs has not been simulated,
e.g., the particle swarm optimization algorithm. This could be investigated fur-
ther, by using this work as a foundation, where a path cost function for multiple
UAVs is carried out in Equation (3.7) in Chapter 3.

• Optimizing the vertex placement in a graph network as well as integrating curved
edges for smoother and more efficient paths for the UAVs to follow, as they can
maintain their speed more effectively.

• A modified version of the A∗ algorithms for shorter calculation times.

• The most interesting direction would be towards motion planning for UAVs, as
the planned path is already determined regardless of algorithm efficiency. In
other words, utilizing the PID controller by fine-tuning the hyper-parameters
such as the proportional Kp, integral Ki and derivative Kd gains, to increase the
stability of the system.

49

Appendix A

Code listings for Unity and Matlab

Most important code sections for implementation in Unity can be seen here, both in
regards to path planning algorithms and UAV movement. This is included in order
to support the discussed topics, for instance the parameters and function for the given
Matlab graph representation of execution times from results.

A.1 Graph network implementation

1 // V e r t i c e s
2 publ ic c l a s s ver tex {
3 publ ic Vector3 p ;
4 publ ic L i s t < int > neighbours ;
5

6 publ ic ver tex (Vector3 pos , i n t [] n) { // Constructor .
7 p = pos ;
8 neighbours = new Lis t <int > () ;
9 neighbours . AddRange (n) ;

10 }
11

12 publ ic void addNeighbour (i n t newNeighbour) {
13 neighbours .Add(newNeighbour) ;
14 neighbours . Sor t () ;
15 }
16

17 publ ic void removeNeighbour (i n t ind) {
18 f o r (i n t i = 0 ; i < neighbours . Count ; i ++) {
19 i f (neighbours [i] == ind)
20 {
21 neighbours . RemoveAt (i) ;
22 }
23 }
24 neighbours . Sor t () ;
25 }
26

27 // used to lower a l l neighbours indexes above t a r g e t ver tex
28 publ ic void shif tNeighbours (i n t ind) {
29 f o r (i n t i = 0 ; i < neighbours . Count ; i ++) {
30 i f (neighbours [i] > ind) {
31 neighbours [i] = neighbours [i] − 1 ;
32 }
33 }
34 }
35 }

50 Appendix A. Code listings for Unity and Matlab

1 // Edges
2 publ ic c l a s s edge {
3 publ ic ver tex vertexA ;
4 publ ic ver tex vertexB ;
5

6 publ ic f l o a t len ;
7 publ ic edge (ver tex a , ver tex b) {
8 vertexA = a ;
9 vertexB = b ;

10 len = Vector3 . Distance (vertexA . getPos () , vertexB . getPos ()) ;
11 }
12

13 publ ic f l o a t getLength () {
14 re turn len ;
15 }
16

17 publ ic ver tex getVertexA () {
18 re turn vertexA ;
19 }
20

21 publ ic ver tex getVertexB () {
22 re turn vertexB ;
23 }
24 }

A.2. Path planning algorithm 51

A.2 Path planning algorithm

1 // A s t a r h e u r i s t i c s and execut ion time v a r i a b l e s
2 publ ic c l a s s PathFindingControl ler : MonoBehaviour {
3

4 // Used f o r c a l c u l a t i n g execut ion speed
5 publ ic double s tar tTime = 0 . 0 f ;
6

7 // Source and t a r g e t ver tex
8 publ ic i n t s t a r t V e r t e x = −1;
9 publ ic i n t goalVertex = −1;

10

11 // Accumulated path length
12 f l o a t pathLength = 0 . 0 f ;
13

14 // Euclidean funct ion
15 publ ic void c a l c u l a t e E u c l i d e a n H e u r i s t i c (Vector3 goalPos) {
16 h = Vector3 . Distance (pos , goalPos) ;
17 }
18

19 // Manhattan funct ion
20 publ ic void ca lcu la teManhat tanHeur is t i c (Vector3 goalPos) {
21 h = Mathf . Abs (pos . x − goalPos . x) +
22 Mathf . Abs (pos . y − goalPos . y) +
23 Mathf . Abs (pos . z − goalPos . z) ;
24 }
25 publ ic void updateFScore () {
26 f = g + h ;
27 }
28 }

52 Appendix A. Code listings for Unity and Matlab

1 // A s t a r algorithm with chosen h e u r i s t i c
2 // Returns path with i n t e g e r array with ver tex indexes
3 i n t [] a _ s t a r () {
4 Lis t < int > r e s u l t = new Lis t <int > () ;
5 openSet .Add(v e r t i c e s [s t a r t V e r t e x]) ;
6 while (openSet . Count > 0) {
7 i n t current = 0 ;
8 f o r (i n t i = 0 ; i < openSet . Count ; i ++) {
9 i f (openSet [i] . f < openSet [current] . f) {

10 current = i ;
11 }
12 }
13 VertexValuesAStar currentVer tex = openSet [current] ;
14 i f (currentVer tex . ID == goalVertex) {
15 VertexValuesAStar tmp = currentVer tex ;
16 while (tmp . cameFrom != −1) {
17 pathLength += Vector3 . Distance (
18 gc . g e t V e r t e x P o s i t i o n (tmp . ID) ,
19 gc . g e t V e r t e x P o s i t i o n (tmp . cameFrom)) ;
20 r e s u l t .Add(tmp . ID) ;
21 tmp = v e r t i c e s [tmp . cameFrom] ;
22 }
23 r e s u l t .Add(s t a r t V e r t e x) ;
24 re turn r e s u l t . ToArray () ;
25 }
26 c l o s e d S e t .Add(currentVer tex) ;
27 openSet . Remove (currentVer tex) ;
28 i n t [] currentNeighbours =
29 gc . getVertexNeighbours (currentVer tex . ID) ;
30 f o r (i n t n = 0 ; n < currentNeighbours . Length ; n++) {
31 i n t neigh = currentNeighbours [n] ;
32 i f (c l o s e d S e t . Contains (v e r t i c e s [neigh])) {
33 continue ;
34 }
35 f l o a t tempG = currentVer tex . g +
36 Vector3 . Distance (gc . g e t V e r t e x P o s i t i o n (currentVer tex . ID) ,
37 gc . g e t V e r t e x P o s i t i o n (neigh)) ;
38 bool newPath = f a l s e ;
39 i f (openSet . Contains (v e r t i c e s [neigh])) {
40 i f (tempG < v e r t i c e s [neigh] . g)
41 {
42 v e r t i c e s [neigh] . g = tempG ;
43 }
44 } e l s e {
45 v e r t i c e s [neigh] . g = tempG ;
46 openSet .Add(v e r t i c e s [neigh]) ;
47 }
48 v e r t i c e s [neigh] . updateFScore () ;
49 v e r t i c e s [neigh] . cameFrom = currentVer tex . ID ;
50 }
51 }
52 re turn n u l l ;
53 }

A.2. Path planning algorithm 53

1 // Matlab code with l i n e a r execut ion times based on edges/ v e r t i c e s
2 ke = 0 . 0 0 3 5 5 ; %Manhattan . Euclidean = 0 .00445 ms/E
3 kv = 0 . 0 1 3 2 3 ; %Manhattan . Euclidean = 0 .01605 ms/V
4

5 x = 1 : 5 0 ;
6 y = 1 : 1 0 0 ;
7 [X , Y] = meshgrid (x , y) ;
8 z = @(x , y) (kv * x) + (ke * y) ; % Function
9 f i g u r e

10 s u r f (x , y , z (X , Y))
11 t i t l e ([’ Manhattan execut ion times ’])
12 x l a b e l (’ Vertex count ’) ;
13 y l a b e l (’ Edge count ’) ;
14 z l a b e l (’ Execution time (ms) ’) ;
15 grid on
16 f i g u r e
17 grid

54 Appendix A. Code listings for Unity and Matlab

A.3 UAV

1 publ ic c l a s s flyDrone : MonoBehaviour {
2 publ ic c l a s s DroneConfigurations {
3 publ ic f l o a t ascendingSpeed = 6 . 0 f ; // m/s
4 publ ic f l o a t topSpeed = 20 f ; // m/s
5 publ ic f l o a t maxTiltAngle = 4 2 ; // degrees
6 publ ic f l o a t angularSpeed = 2 0 0 ; // degrees/s
7 publ ic f l o a t yawAngularSpeed = 1 5 0 ; // degrees/s
8 publ ic f l o a t droneWeight = 1 .380 f ; // kilograms
9 }

10 publ ic DroneConfigurations currentDrone ;
11 f l o a t t h r u s t = 0 . 0 f ;
12 Rigidbody rb ;
13 void S t a r t () {
14 rb = GetComponent<Rigidbody > () ;
15 rb . mass = currentDrone . droneWeight ;
16 }
17 // Update i s c a l l e d once per frame
18 void FixedUpdate () {
19 s t a b i l i z e () ;
20 updateThrust () ;
21 rb . AddForce (t h r u s t * transform . up) ;
22 }
23 }
24 f l o a t getDroneLi f t () {
25 // re turns newton value to keep drone hovering
26 f l o a t newtons = rb . mass *
27 Mathf . Abs (Physics . g r a v i t y . y) ;
28 re turn newtons ;
29 }
30 void updateThrust () {
31 i f (! hasLanded ()) {
32 t h r u s t = getDroneLi f t () +
33 (getThrustInput () *
34 currentDrone . ascendingSpeed *
35 currentDrone . droneWeight) ;
36 }
37 }
38 void s t a b i l i z e () {
39 i n t yawDir = 0 ;
40 i f (Input . GetButton ("LB_YAW")) {
41 yawDir = −1;
42 }
43 i f (Input . GetButton ("RB_YAW")) {
44 yawDir = 1 ;
45 }
46 Vector3 r = transform . eulerAngles ;
47 r . x = Input . GetAxis ("L_PITCH") * currentDrone . maxTiltAngle ;
48 r . z = Input . GetAxis ("L_ROLL") * currentDrone . maxTiltAngle ;
49 transform . r o t a t i o n = Quaternion . RotateTowards (
50 Quaternion . Euler (transform . eulerAngles) ,
51 Quaternion . Euler (r) ,
52 Time . deltaTime * currentDrone . angularSpeed) ;

A.3. UAV 55

53 f l o a t yawRot = currentDrone . yawAngularSpeed
54 * yawDir * Time . deltaTime ;
55 transform . Rotate (0 , yawRot , 0) ;
56 }
57 publ ic Vector3 g e t V e l o c i t y () {
58 re turn rb . v e l o c i t y ;
59 }
60 publ ic f l o a t getWeight () {
61 re turn rb . mass ;
62 }
63 }

57

Bibliography

[1] Hanafi Anis et al. “Automatic Quadcopter Control Avoiding Obstacle Using
Camera with Integrated Ultrasonic Sensor”. In: Journal of Physics: Conference Se-
ries 1011 (Apr. 2018), p. 012046. DOI: 10.1088/1742-6596/1011/1/012046.

[2] Jorge Artieda et al. “Visual 3-D SLAM from UAVs”. In: J. Intell. Robotics Syst. 55
(Jan. 2009), pp. 299–.

[3] T. Bailey and H. Durrant-Whyte. “Simultaneous localization and mapping (SLAM):
part II”. In: IEEE Robotics Automation Magazine 13.3 (Sept. 2006), pp. 108–117.
ISSN: 1558-223X. DOI: 10.1109/MRA.2006.1678144.

[4] Zoran Benić, Petar Piljek, and Denis Kotarski. “Mathematical Modelling of Un-
manned Aerial Vehicles with Four Rotors”. In: Interdisciplinary Description of Com-
plex Systems 14 (Jan. 2016), pp. 88–100. DOI: 10.7906/indecs.14.1.9.

[5] William W. Bierbaum. UAV Predator specifications and specifics. 2013. URL: https:
//web.archive.org/web/20130601053222/http://www.airpower.maxwell.af.mil/

airchronicles/cc/uav.html.

[6] Louisa Brooke-Holland. Unmanned Aerial Vehicles (drones): an introduction. Dec.
2012.

[7] Andrew Chapman. “Types of Drones: Multi-Rotor vs Fixed-Wing vs Single Rotor
vs Hybrid VTOL”. In: Dec. 2019.

[8] Daniel Cremers. Lecture 2.1: Recap on Linear Algebra. 2014.

[9] Martin E Dempsey. ’Eyes of the Army’: U.S. Army Roadmap for Unmanned Systems,
2010-2035. Apr. 2010. URL: https://www.hsdl.org/?abstract&did=705357.

[10] E. W. Dijkstra. “A Note on Two Problems in Connexion with Graphs”. In: Numer.
Math. 1.1 (Dec. 1959), 269–271. ISSN: 0029-599X. DOI: 10.1007/BF01386390. URL:
https://doi.org/10.1007/BF01386390.

[11] DJI Phantom 4 Pro – Specs, Tutorials & Guides – DJI. URL: https://www.dji.com/no/
phantom-4-pro/info.

[12] Liptak Bela G. Instrument engineers handbook Process control and optimization (4th
ed.) CRC Press, 2003, pp. 100–110.

[13] Sean Grogan, Robert Pellerin, and Michel Gamache. “The use of unmanned aerial
vehicles and drones in search and rescue operations – a survey”. In: Sept. 2018.

[14] Victor Hansen. Predator Drone Attacks. 2012. URL: https://papers.ssrn.com/sol3/
papers.cfm?abstract_id=2009313.

[15] Mostafa Hassanalian and Abdessattar Abdelkefi. “Classifications, applications,
and design challenges of drones: A review”. In: Progress in Aerospace Sciences
(May 2017).

https://doi.org/10.1088/1742-6596/1011/1/012046
https://doi.org/10.1109/MRA.2006.1678144
https://doi.org/10.7906/indecs.14.1.9
https://web.archive.org/web/20130601053222/http://www.airpower.maxwell.af.mil/airchronicles/cc/uav.html
https://web.archive.org/web/20130601053222/http://www.airpower.maxwell.af.mil/airchronicles/cc/uav.html
https://web.archive.org/web/20130601053222/http://www.airpower.maxwell.af.mil/airchronicles/cc/uav.html
https://www.hsdl.org/?abstract&did=705357
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390
https://www.dji.com/no/phantom-4-pro/info
https://www.dji.com/no/phantom-4-pro/info
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2009313
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2009313

58 Bibliography

[16] Adeel Javaid. “Understanding Dijkstra Algorithm”. In: SSRN Electronic Journal
(Jan. 2013). DOI: 10.2139/ssrn.2340905.

[17] J. Kennedy and R. Eberhart. “Particle swarm optimization”. In: Proceedings of
ICNN’95 - International Conference on Neural Networks. Vol. 4. 1995, 1942–1948
vol.4.

[18] Kiam Heong Ang, G. Chong, and Yun Li. “PID control system analysis, design,
and technology”. In: IEEE Transactions on Control Systems Technology 13.4 (2005),
pp. 559–576.

[19] Dixit Prasanna Kumar, Sahoo Archana, and Badajena Tushar Kumar. “Graph
Theory in an Object Oriented Approach”. In: Journal of Computer Sciences and
Applications 3.6 (2015), pp. 123–126. ISSN: 2328-725X. DOI: 10.12691/jcsa-3-6-2.
URL: http://pubs.sciepub.com/jcsa/3/6/2.

[20] Klavdija Kutnar and Dragan Marušič. “Some Topics in Graph Theory”. In: vol. 613.
Jan. 2009, pp. 3–22.

[21] Hua-Ying Liu et al. Drone-based all-weather entanglement distribution. 2019. arXiv:
1905.09527 [quant-ph].

[22] Amgad Madkour et al. “A Survey of Shortest-Path Algorithms”. In: (May 2017).

[23] Wei Meng et al. “ROS+unity: An efficient high-fidelity 3D multi-UAV naviga-
tion and control simulator in GPS-denied environments”. In: vol. 92. Nov. 2015,
pp. 931–944.

[24] Shea O’Donnell. A Short History of Unmanned Aerial Vehicles. June 2019. URL:
https://consortiq.com/en-gb/media-centre/blog/short-history-unmanned-aerial-

vehicles-uavs.

[25] Jamal Osama et al. “Design and Manufacturing of Quadcopter”. In: Aug. 2019.

[26] Robert Paz. “The Design of the PID Controller”. In: (Jan. 2001).

[27] Sujit P.B and Randal Beard. “Multiple UAV Path Planning using Anytime Algo-
rithms”. In: July 2009, pp. 2978 –2983.

[28] Sirawat Pitaksarit. “Objectively comparing Unity and Unreal Engine”. In: Jan.
2019.

[29] N. Sariff and Norlida Buniyamin. “An Overview of Autonomous Mobile Robot
Path Planning Algorithms”. In: July 2006, pp. 183 –188. ISBN: 978-1-4244-0526-8.

[30] Shital Shah et al. “AirSim: High-Fidelity Visual and Physical Simulation for Au-
tonomous Vehicles”. In: Field and Service Robotics. 2017. eprint: arXiv:1705.05065.
URL: https://arxiv.org/abs/1705.05065.

[31] Harshita Sharma et al. “Determining similarity in histological images using graph-
theoretic description and matching methods for content-based image retrieval in
medical diagnostics”. In: Diagnostic pathology 7 (Oct. 2012), p. 134.

[32] Daniel Shiffman The Coding Train. “Coding Challenge 51.1: A* Pathfinding Al-
gorithm - Part 1”. In: (Jan. 2017). URL: https://youtu.be/aKYlikFAV4k?t=85.

[33] Esteban Valencia Torres, Victor HIDALGO DIAZ, and Orlando Calle. “Method-
ology for Weight and Performance Assessment of an UAV for Precision Agricul-
ture at Cruise Condition”. In: 53rd AIAA/SAE/ASEE Joint Propulsion Conference
(July 2017). DOI: 10.2514/6.2017-4868.

https://doi.org/10.2139/ssrn.2340905
https://doi.org/10.12691/jcsa-3-6-2
http://pubs.sciepub.com/jcsa/3/6/2
https://arxiv.org/abs/1905.09527
https://consortiq.com/en-gb/media-centre/blog/short-history-unmanned-aerial-vehicles-uavs
https://consortiq.com/en-gb/media-centre/blog/short-history-unmanned-aerial-vehicles-uavs
arXiv:1705.05065
https://arxiv.org/abs/1705.05065
https://youtu.be/aKYlikFAV4k?t=85
https://doi.org/10.2514/6.2017-4868

Bibliography 59

[34] G. Varela et al. “Swarm intelligence based approach for real time UAV team coor-
dination in search operations”. In: 2011 Third World Congress on Nature and Biolog-
ically Inspired Computing. Oct. 2011, pp. 365–370. DOI: 10.1109/NaBIC.2011.6089619.

[35] Windridge City: 3D Roadways: Unity Asset Store. URL: https://assetstore.unity.
com/packages/3d/environments/roadways/windridge-city-132222.

https://doi.org/10.1109/NaBIC.2011.6089619
https://assetstore.unity.com/packages/3d/environments/roadways/windridge-city-132222
https://assetstore.unity.com/packages/3d/environments/roadways/windridge-city-132222

	Abstract
	Acknowledgements
	Introduction
	Unmanned aerial vehicle maneuverability
	Autonomous unmanned aerial vehicles
	State of the Art

	Path planning
	Multiple UAVs and their path

	Objective
	Main contributions
	UAV in simulated environment
	Graph network tool
	Path planning algorithm

	Outline

	Background
	Unmanned aerial vehicles
	Single-rotor
	Multi-rotor
	Fixed-wing

	Graph theory and path planning algorithms
	Vertices and edges
	Path planning algorithms
	Single pair
	Single source
	Single target
	All pairs

	Methodology
	UAV maneuverability
	Localization for UAVs
	Quadcopter maneuverability

	Multiple UAVs and path cost
	Proposed path planning algorithms
	Dijkstra's algorithm
	Dijkstra's algorithm pseudocode

	A* search algorithm
	Heuristic estimate
	Euclidean distance
	Manhattan
	A* algorithm pseudocode

	PID Controller
	The proportional term
	The integral term
	The derivative term
	Paths and positions for UAV

	Simulations and implementation
	Unity 3D simulation engine
	Unity 3D student package
	Visual studio 2017
	Unity asset - Windridge City Demo
	AirSim - Quadcopter model

	Development in Unity 3D
	Gameobjects within scene

	Simulating an unmanned aerial vehicle
	Overview of drone simulation

	Path planning implementation
	Graph network
	Graph network user interface
	Path planning algorithms

	Simulation results and discussion
	Path planning
	UAV - Quadcopter simulation results
	Heuristic estimates and performance

	Conclusion and Future Work
	Conclusion
	Future work

	Code listings for Unity and Matlab
	Graph network implementation
	Path planning algorithm
	UAV

	Bibliography

