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Measurements of the inclusive J/ψ yield as a function of charged-particle pseudorapidity density dNch/dη
in pp collisions at 

√
s = 13 TeV with ALICE at the LHC are reported. The J/ψ meson yield is measured 

at midrapidity (|y| < 0.9) in the dielectron channel, for events selected based on the charged-particle 
multiplicity at midrapidity (|η| < 1) and at forward rapidity (−3.7 < η < −1.7 and 2.8 < η < 5.1); both 
observables are normalized to their corresponding averages in minimum bias events. The increase of the 
normalized J/ψ yield with normalized dNch/dη is significantly stronger than linear and dependent on the 
transverse momentum. The data are compared to theoretical predictions, which describe the observed 
trends well, albeit not always quantitatively.

© 2020 European Organization for Nuclear Research. Published by Elsevier B.V. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Hadronic charmonium production at collider energies is a com-
plex and not yet fully understood process, involving hard-scale 
processes, i.e. the initial heavy-quark pair production, which can 
be described by means of perturbative quantum chromodynamics 
(pQCD), as well as soft-scale processes, i.e. the subsequent bind-
ing into a color-neutral charmonium state. The latter stage is ad-
dressed via models which assume that it factorizes with respect 
to the perturbative early stage. The widely used non-relativistic 
QCD (NRQCD) effective theory [1] incorporates contributions from 
several hadronization mechanisms, like color-singlet or color-octet 
models (see Ref. [2] for a recent review on models and Ref. [3] for 
a comparison with data of Run 1 at the LHC). The NRQCD formal-
ism combined with a Color Glass Condensate (CGC) description of 
the incoming protons [4] is a recent example of a comprehensive 
treatment of the transverse momentum pT and rapidity dependent 
production, in particular extended down to zero transverse mo-
mentum. Measurements of inclusive J/ψ production, as reported in 
this publication, contain a non-prompt contribution from bottom-
hadron decays and the production of bottom quarks can be calcu-
lated in QCD pertubatively.

The event-multiplicity dependent production of charmonium 
and open charm hadrons in pp and p–Pb collisions are observ-
ables having the potential to give new insights on processes at the 
parton level and on the interplay between the hard and soft mech-
anisms in particle production and is widely studied at the LHC. 
ALICE has studied the multiplicity dependence in pp collisions at 
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√
s = 7 TeV of inclusive J/ψ production at mid- and forward ra-

pidity [5], and prompt J/ψ (including feed down from ψ(2S) and 
χc), non-prompt J/ψ and D-meson production at midrapidity [6]. 
The general observation is an increase of open and hidden charm 
production with charged-particle multiplicity measured at midra-
pidity. For the J/ψ production, multiplicities of about 4 times the 
mean value were reached. The results are consistent with an ap-
proximately linear increase of the normalized yield as a function 
of the normalized multiplicity (both observables are normalized 
to their corresponding averages in minimum bias events). For the 
D-meson production, normalized event multiplicities of about 6 
were reached; a stronger than linear increase of D-meson produc-
tion was observed at the highest multiplicities. Observations made 
by the CMS Collaboration for ϒ(nS) production at midrapidity at √

s = 2.76 TeV indicate a linear increase with the event activity, 
when measuring it at forward rapidity, and a stronger than lin-
ear increase with the event activity measured at midrapidity [7]. 
At RHIC, a measurement of J/ψ production as a function of mul-
tiplicity was recently performed by the STAR Collaboration [8] for √

s = 0.2 TeV, showing similar trends as observed in the LHC data. 
The J/ψ production as a function of charged-particle multiplicity 
was studied also in p–Pb collisions, exhibiting significant differ-
ences for different ranges of rapidity of the J/ψ meson [9,10]. 
A clear correlation with the event multiplicity (and event shape) 
was experimentally established for the inclusive charged-particle 
production [11] as well as for identified particles, including multi-
strange hyperons [12].

Several theoretical models, described briefly in Section 4, pre-
dict a correlation of the normalized J/ψ production with the nor-
malized event multiplicity which is stronger than linear. These 
include a coherent particle production model [13], the percolation 
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Table 1
Number of selected events and corresponding integrated luminosities for the different triggers used in this anal-
ysis.

MB and HM triggers EMCal triggers

MB HM EG1 EG2

Number of events 1.25 × 109 0.64 × 109 82.4 × 106 120 × 106

Integrated luminosity 21.6 ± 1.1 nb−1 5.4 ± 0.1 pb−1 7.2 ± 0.1 pb−1 0.82 ± 0.02 pb−1

model [14], the EPOS3 event generator [15], a CGC-complemented 
NRQCD model [16], the PYTHIA 8.2 event generator [17,18], and 
the 3-Pomeron CGC model [19]. While for instance multiparton in-
teractions (as implemented in PYTHIA) play an important role in 
charm(onium) production, it is important to notice that the pre-
dicted correlation is, in all the models to first order, the result of 
a (Nch-dependent) reduction of the charged-particle multiplicity. 
Well known is the color string reconnection mechanism imple-
mented in PYTHIA, but initial-state effects as in CGC models lead, 
with very different physics, similarly to a reduction in particle mul-
tiplicity.

In this Letter, the measurements of the inclusive J/ψ yield as a 
function of charged-particle pseudorapidity density in pp collisions 
at 

√
s = 13 TeV are presented. The measurements are performed 

in the dielectron channel at midrapidity with the ALICE detector at 
the LHC. The pT-integrated and differential results are presented 
for minimum bias events as well as for events triggered on high 
multiplicity, which extend the multiplicity range up to 7 times the 
average multiplicity, and on the electromagnetic calorimeter sig-
nals, which allow to access pT values up to 15-40 GeV/c. Section 2
outlines the experimental setup and the data sample; Section 3
describes the analysis, while Section 4 presents the results; a brief 
summary and outlook are given in Section 5.

2. Experiment and data sample

The reconstruction of J/ψ in the e+e− decay channel at midra-
pidity is performed using the ALICE central barrel detectors, 
described in detail in Refs. [20,21]. The setup is located in a 
solenoidal magnet providing a field of 0.5 T oriented along the 
beam direction.

For this analysis, a minimum bias (MB) trigger, a high mul-
tiplicity (HM) trigger, and two triggers based on the deposited 
energy in the combined Electromagnetic Calorimeter (EMCal) and 
the Di-jet Calorimeter (DCal) [22–24] are employed. Both the MB 
and HM triggers are provided by the V0 detector, that consists of 
two forward scintillator arrays [25] covering the pseudorapidity 
ranges −3.7 < η < −1.7 and 2.8 < η < 5.1. The MB trigger sig-
nal consists of a coincident signal in both arrays, while the HM 
trigger requires a signal amplitude in the V0 arrays above a thresh-
old which corresponds to the 0.1% highest multiplicity events. The 
EMCal and DCal are located back-to-back in azimuth and form a 
two-arm electromagnetic calorimeter. While the EMCal detector 
covers |η| < 0.7 over an azimuthal angle of 80◦ < ϕ < 187◦ , the 
DCal covers 0.22 < |η| < 0.7 for 260◦ < ϕ < 320◦ and |η| < 0.7 for 
320◦ < ϕ < 327◦ . As a consequence of identical construction, both 
have identical granularity and intrinsic energy resolution. In this 
paper, EMCal and DCal will be referred to together as EMCal. The 
EMCal trigger consists of the sum of energy in a sliding window of 
4 × 4 towers above a given threshold (a tower is the smallest seg-
mentation of the EMCal). In this data set, the trigger requires the 
presence of a cluster with a minimum energy of 9 GeV (EG1) or 4 
GeV (EG2) in coincidence with the MB trigger condition.

Tracks are reconstructed in the pseudorapidity range |η| < 0.9
using the Inner Tracking System (ITS) [26], which consists of six 
layers of silicon detectors around the beam pipe, and the Time 
Projection Chamber (TPC) [27], a large cylindrical gas detector 

providing tracking and particle identification via specific ioniza-
tion energy loss dE/dx. The first two layers of the ITS (covering 
|η| < 2.0 and |η| < 1.4), the Silicon Pixel Detector (SPD), are used 
for the charged-particle multiplicity measurement at midrapidity 
by counting tracklets, reconstructed from pairs of hits in the two 
SPD layers pointing to the collision vertex.

The results presented in this Letter are obtained using data 
recorded by ALICE during the LHC Run 2 data taking period for pp 
collisions at 

√
s = 13 TeV. The number of selected events and the 

corresponding integrated luminosities [28] are listed in Table 1 for 
the different triggers used in this analysis. For the analyzed data 
set, the maximum interaction rate was 260 kHz, and the maxi-
mum pileup probability was about 5 × 10−3.

3. Analysis

In this work the inclusive production of J/ψ mesons is studied 
as a function of the pseudorapidity density of charged particles at 
midrapidity, dNch/dη. The J/ψ yield in a given multiplicity inter-
val and in a given rapidity (y) range dNJ/ψ/dy is normalized to 
the J/ψ yield in the INEL>0 event class, 〈dNJ/ψ/dy〉. The INEL>0 
event class contains all events with at least 1 charged particle in 
|η| < 1. In this ratio, most of the systematic uncertainties related 
to tracking and particle identification cancel.

3.1. Event selection

All events selected in this analysis are required to have a recon-
structed collision vertex within the longitudinal interval |zvtx| <
10 cm in order to ensure uniform detector performance and one 
SPD tracklet in |η| < 1. Beam-gas events are rejected using tim-
ing cuts with the V0 detector. Pileup events are rejected using 
a vertex finding algorithm based on SPD tracklets [21], allowing 
the removal of events with 2 vertices. Because of the relatively 
small in-bunch pileup probability and the further event selection 
performed in the analysis, the fraction of remaining pileup is neg-
ligible in the minimum bias events sample and at most 2% in the 
high multiplicity triggered sample.

Events are binned in multiplicity classes based on either the 
SPD or the V0 detector signals, as shown in Fig. 1. Events cor-
responding to the onset of the V0 HM trigger are excluded; that 
onset is rather sharp. The smearing seen in the distribution in the 
right panel of Fig. 1 is due to the different thresholds used dur-
ing operation. To illustrate this, the V0-amplitude distribution for 
a single data taking period is included in Fig. 1 (right panel, open 
squares).

For the measurement of the charged-particle pseudorapidity 
density dNch/dη at midrapidity, |η| < 1, the SPD tracklets are 
used [29]. Given the close proximity of the SPD detector to the 
interaction point (the two layers are at radial distances of 3.9 and 
7.6 cm), its geometrical acceptance changes by up to 50% in the 
zvtx interval selected for analysis. In addition, the mean number 
of SPD tracklets also varied during the 3-year Run 2 data taking 
period due to changes in the number of active SPD detector el-
ements. In order to compensate for these detector effects, a zvtx
and time-dependent correction factor is applied such that the mea-
sured average multiplicity is equalized to a reference value. This 
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Fig. 1. Distribution of the corrected SPD tracklets Ncorr
trk (left) and V0 amplitude (right) for the MB events as well as the HM- and EMCal-triggered events used in the analysis. 

The vertical lines indicate the used multiplicity intervals (see Table 2; the first bin spans from 0 to the position of the first line). For the HM-triggered events, the V0 
amplitude distribution for a single data taking period is included for illustration (open squares).

reference was chosen to be the largest mean SPD tracklet mul-
tiplicity observed over time and zvtx. This procedure is similar to 
what was done previously in Ref. [5]. The correction factor for each 
event is randomly smeared using a Poisson distribution to take into 
account event-by-event fluctuations. In the case of the event selec-
tion based on the forward multiplicity measurement with the V0 
detector, the signal amplitudes are equalized to compensate for de-
tector aging and for the small acceptance variation with the event 
vertex position.

The overall inefficiency, the production of secondary particles 
due to interactions with the detector material and particle decays 
lead to a difference between the number of reconstructed track-
lets and the true primary charged-particle multiplicity Nch (see 
details in Ref. [29]). Using events simulated with the PYTHIA 8.2 
event generator [30] (Monash 2013 tune, Ref. [31]), the correla-
tion between the tracklet multiplicity (after the zvtx-correction), 
Ncorr

trk , and the generated primary charged particles Nch is de-
termined. The propagation of the simulated particles is done by 
GEANT 3 [32] with a full simulation of the detector response, 
followed by the same reconstruction procedure as for real data. 
The correction factor β(Ncorr

trk ) = Nch/Ncorr
trk to obtain the average 

dNch/dη value corresponding to a given Ncorr
trk bin is computed 

from the Ncorr
trk –Nch correlation, shown in Fig. 2 for events sim-

ulated with PYTHIA 8.2 and particle transport through GEANT 3. 
As the generated charged-particle multiplicity in Monte Carlo dif-
fers from data, a corrected Nch distribution is constructed from 
the measured Ncorr

trk distribution using Bayesian unfolding. From it, 
the corrected β factors are obtained. A Monte Carlo closure test in 
PYTHIA 8.2 with unfolding based on EPOS-LHC events is used to 
validate the procedure.

The normalized charged-particle pseudorapidity density in each 
event class is calculated as:

dNch/dη

〈dNch/dη〉INEL>0
= β × 〈Ncorr

trk 〉
	η × 〈dNch/dη〉INEL>0

, (1)

where 〈Ncorr
trk 〉 is the averaged value of Ncorr

trk in each multiplic-
ity class, corrected for the trigger and vertex finding efficiencies. 
The former is estimated from Monte Carlo simulations and the 
latter with a data driven approach. They are below unity only 
for the low-multiplicity events. The value corresponding to INEL 
> 0 events, 〈dNch/dη〉INEL>0, was cross-checked with the pub-
lished ALICE measurement [29], and is found to be in very good 
agreement. A similar procedure is also used for the event se-
lection based on the V0 amplitude, measured as a sum of sig-
nals from charged particles in the intervals −3.7 < η < −1.7 and 

Fig. 2. Correlation between the number of generated primary charged particles, Nch, 
and the number of reconstructed SPD tracklets, Ncorr

trk , in |η| < 1, from PYTHIA 8.2 
simulated collisions with detector transport through GEANT 3. The black points rep-
resent the mean values of Nch.

Table 2
Average normalized charged-particle pseudorapidity density in |η| < 1 for each 
event class selected in Ncorr

trk measured in SPD (|η| < 1; left part) and in V0 am-
plitude (−3.7 < η < −1.7 and 2.8 < η < 5.1; right part). The values correspond to 
the data sample used for the pT-integrated analysis. Only systematic uncertainties 
are shown since the statistical ones are negligible. The corresponding fraction of the 
INEL>0 cross section for each event class is also indicated.

SPD selection V0 selection
dNch/dη

〈dNch/dη〉INEL>0
σ/σINEL>0

dNch/dη
〈dNch/dη〉INEL>0

σ/σINEL>0

0.23 ± 0.01 32% 0.40 ± 0.01 37%
0.60 ± 0.01 25% 0.76 ± 0.01 26%
1.23 ± 0.02 25% 1.41 ± 0.02 25%
2.11 ± 0.03 11% 2.26 ± 0.03 9.0%
2.98 ± 0.05 4.7% 3.03 ± 0.04 2.5%
3.78 ± 0.06 1.8% 3.92 ± 0.06 0.5%
4.58 ± 0.08 0.6% 4.33 ± 0.07 0.08%
5.37 ± 0.09 0.2% 4.96 ± 0.08 0.01%
6.17 ± 0.11 0.05%
7.13 ± 0.12 0.02%

2.8 < η < 5.1. The resulting values of the normalized multiplicity 
for the event classes considered in the analysis are summarized in 
Table 2 alongside the respective fractions of the INEL > 0 cross 
section.
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Fig. 3. Top: Invariant mass distribution of electron-positron pairs for MB (left), HM (middle) and EMCal (right) triggers, together with combinatorial background estimation 
from the track-rotation method (blue lines in the left and middle panels) and the full background estimation (black squares). In the lower panels, the J/ψ signal obtained 
after background subtraction is shown together with the J/ψ signal shape from Monte Carlo simulations. The entries contain a correction for the relative efficiency (see text). 
The vertical lines indicate the mass range for the signal counting.

3.2. J/ψ signal extraction

The J/ψ meson is measured in the dielectron decay channel 
at midrapidity. Electrons and positrons are reconstructed in the 
central barrel detectors by requiring a minimum of 70 out of max-
imally 159 track points in the TPC and a value of the track fit χ2

over the number of track points smaller than 4 [27]. Only tracks 
with at least two associated hits in the ITS, and one of them in 
the two innermost layers, are accepted. This requirement ensures 
both a good tracking resolution and the rejection of electrons and 
positrons produced from photons converting in the detector mate-
rial. In the MB and HM trigger analysis, a further veto on the tracks 
belonging to identified photon conversion topologies is applied. 
The electron identification is achieved by the measurement of the 
specific energy loss of the track in the TPC, which is required to 
be compatible with that expected for electrons within 3 standard 
deviations. Tracks with a specific energy loss being consistent with 
that of the pion or proton hypothesis within 3.5 standard devia-
tions are rejected. For the analysis of the EMCal-triggered events, 
the energy deposition of the track in the TPC is required to be 
in a range between −2.25 to +3 standard deviations around the 
mean expected value for the electrons. In addition, at least one 
of the J/ψ decay electrons is required to be matched to a clus-
ter in the EMCal, with a cluster energy above the trigger threshold 
and an energy-to-momentum ratio in the range 0.8 < E/p < 1.3. 
Electrons and positrons are selected in the pseudorapidity range 
|η| < 0.9 and in the transverse momentum range pT > 1 GeV/c.

The number of reconstructed J/ψ is obtained from the invari-
ant mass distribution of all the opposite-sign (OS) pairs, which 
contains e+e−pairs from J/ψ decays as well as combinatorics and 
other sources. In the MB and HM trigger analysis, the combina-
torial background is estimated using a track rotation procedure in 
which one of the tracks is rotated by a random azimuthal angle 
multiple times to obtain a high statistics invariant mass distri-
bution. This distribution is then normalized such that its integral 
over a range of the invariant mass well above the J/ψ mass peak 
matches the one of real OS pairs, and is subtracted from the latter 
distribution. The remaining residual background, which can be at-
tributed to physical sources, e.g. correlated semileptonic decays of 
heavy-quark pairs, is estimated using a second-order polynomial 

function. For the analysis of the EMCal-triggered events, a fit to 
the OS invariant mass distribution is performed using a MC shape 
for the signal added to a polynomial to describe the background. 
A second- or third-order polynomial function is used, depending 
on the pT range. The number of J/ψ is extracted by summing the 
dielectron yield in the background-subtracted invariant mass dis-
tribution in the mass interval 2.92 < mee < 3.16 GeV/c2, which 
contains approximately 2/3 of the total reconstructed yield. The 
yield falling outside of the counting window at low invariant mass 
is due to the electron bremsstrahlung in the detector material and 
to the radiative J/ψ decay, and is corrected for using Monte Carlo 
simulations. Also, a correction for the yield loss due to the lim-
ited trigger and vertex finding efficiencies at low multiplicities is 
applied.

Due to the trigger enhancement, the yields obtained using the 
EMCal-triggered events were corrected by the trigger scaling factor, 
which is observed to be identical for all event classes. This correc-
tion is necessary to convert the yield per EMCal-triggered events 
into a yield per MB-triggered event and is accomplished by a data-
driven method using the ratio of the cluster energy distribution in 
triggered data divided by the cluster energy distribution in mini-
mum bias data. The ratio flattens above the trigger threshold and 
the scaling factor is then obtained by fitting a constant to the flat 
interval.

In the top panels of Fig. 3 are shown the OS invariant mass dis-
tribution for MB events (left), a high multiplicity interval from the 
HM- (middle) and EMCal-triggered events (right), together with 
the estimated background distribution. The combinatorial back-
ground distribution from the track rotation method is shown in 
the left and middle panels with the blue lines, while the total 
background is shown as black squares in all the panels. The sig-
nal obtained after background subtraction is described well by the 
signal shape obtained from Monte Carlo simulations (discussed be-
low); these MC templates have been scaled and overlaid on the 
data points in the bottom panels of Fig. 3.

The J/ψ measurement is performed integrated in transverse 
momentum and in the pT intervals 0 < pT < 4 GeV/c and 4 <
pT < 8 GeV/c, using the MB and HM triggers. At higher pT, the 
J/ψ mesons are reconstructed using the EMCal triggered events 
in the transverse momentum intervals 8 < pT < 15 GeV/c and 
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15 < pT < 40 GeV/c. It was checked that the acceptance and ef-
ficiency for J/ψ reconstruction are not dependent on the event 
multiplicity. This was performed using pp collisions simulated with 
the PYTHIA 8.2 event generator with an injected J/ψ signal. The 
dielectron decay is simulated with the EvtGen package [33] using 
PHOTOS [34] to describe the final-state radiation. The J/ψ mesons 
are assumed to be unpolarized consistent with measurements in 
pp collisions at the LHC [35].

To account for the multiplicity dependence of the pT spectrum 
of the J/ψ mesons, a correction for the relative efficiency, namely 
the efficiency for a given pT value relative to the pT-integrated 
value, is applied to each dielectron pair. This is contained in the 
invariant mass distributions shown in Fig. 3.

3.3. Systematic uncertainties

Normalized multiplicity: The systematic uncertainty on the nor-
malized multiplicity contains contributions from the trigger, vertex 
finding, and SPD efficiencies. The first two contributions are esti-
mated using alternative approaches: the trigger efficiency is cal-
culated in a data-driven way, and for the vertex finding efficiency 
Monte Carlo simulations are used. The differences to the values 
obtained with the default methods are taken as the systematic un-
certainties. The contribution from the vertex finding efficiency is 
below 1% (relative uncertainty) in all event classes, the one from 
the trigger efficiency reaches a maximum value of 1.3% for the low-
est multiplicity class.

In order to estimate uncertainties due to the SPD tracklet re-
construction efficiency, the number of corrected tracklets is scaled 
up and down by 3%, which is the maximum observed discrepancy 
of the average number of SPD tracklets between data and Monte 
Carlo simulations. This uncertainty amounts to 3.6% in the lowest 
multiplicity class, and to less than 1.5% in all other classes. The 
uncertainty from the unfolding of the charged-particle multiplic-
ity distribution is estimated by varying the number of iterations 
used in the Bayesian unfolding, as well as by using an alternative 
unfolding method [36]. The uncertainty is found to be negligible. 
All the aforementioned uncertainty sources are added in quadra-
ture, leading to a total uncertainty on the normalized multiplicity 
of 3.7% for the lowest multiplicity class, and to less than 2% for all 
other classes.

Normalized J/ψ yield: The systematic uncertainties of the normal-
ized J/ψ yield are due to the signal extraction, bin-flow caused by 
the Poissonian smearing applied for the zvtx-dependent correction 
of the SPD acceptance and vertex finding, trigger and SPD effi-
ciencies. For the analysis of the EMCal-triggered events, there is 
an additional component due to the matching of tracks to EMCal 
clusters and the electron identification via the E/p measurement, 
which has a non-negligible multiplicity dependence. The E/p in-
terval and the value of E used to select only electrons above the 
EMCal trigger threshold are varied to determine the systematic un-
certainty of the electron identification with the EMCal, leading to 
values from 1% to 12%, depending on the multiplicity bin.

The uncertainty of the J/ψ signal extraction is determined by 
varying the functions used to fit the background (first- or second-
degree polynomials or exponential) and the fitting ranges, with the 
RMS of the distribution of normalized yields obtained from these 
variations being taken as a systematic uncertainty (the normalized 
yield corresponds to the default selection). The bin-flow effect is 
estimated from the RMS of the results obtained by repeating the 
analysis several times with different seeds for the random num-
ber generator. The uncertainties from the signal extraction and the 
bin-flow effect are the dominant ones. They are of comparable size, 
with values between 1% and 8% depending on the multiplicity and 
pT interval. The uncertainties of the vertex finding, trigger and 

Fig. 4. Normalized inclusive pT-integrated J/ψ yield at midrapidity as a function 
of normalized charged-particle pseudorapidity density at midrapidity (|η| < 1) with 
the event selection based on SPD tracklets at midrapidity and on V0 amplitude at 
forward rapidity in pp collisions at √s = 13 TeV. Top: normalized J/ψ yield (diag-
onal drawn for reference). Bottom: double ratio of the normalized J/ψ yield and 
multiplicity. The error bars show statistical uncertainties and the boxes systematic 
uncertainties.

SPD tracklet efficiencies affect the estimated number of INEL>0 
collisions, and hence the event-averaged minimum bias J/ψ yield 
〈dNJ/ψ/dy〉, as well as the J/ψ yield in the low multiplicity classes. 
The uncertainties of the vertex finding and SPD efficiencies are be-
low 1% in most classes, while the uncertainty due to the trigger 
efficiency reaches up to 4%, depending on the multiplicity class.

All the mentioned sources are added in quadrature to obtain 
the total systematic uncertainty, which, for the pT-integrated re-
sults, varies between 3% and 7% with the multiplicity class. For 
the selected pT intervals, the uncertainties are larger, varying be-
tween 3% and 10% with multiplicity and pT interval, mainly due 
to the signal extraction, which is affected by statistical fluctuations 
of the background. The results at high pT, employing the EMCal, 
have uncertainties up to 13%, which are larger because of the ad-
ditional selection requirements on the track-cluster matching and 
the EMCal electron identification selections.

4. Results and discussion

The top panel of Fig. 4 shows the normalized J/ψ yield as a 
function of the normalized charged-particle pseudorapidity density 
at midrapidity, dNch/dη/〈dNch/dη〉. The dashed line also shown in 
the figure is a linear function with the slope of unity.

These results include both the MB and HM triggered events, 
which allow for a coverage of up to 7 times the average charged-
particle multiplicity, when events are selected based on the mea-
sured midrapidity multiplicity. This is a significant extension with 
respect to our previous results in pp collisions at 

√
s = 7 TeV [5], 

where only the range up to 4 was covered and with larger un-
certainties. Using the event selection based on the V0 forward 
multiplicity (green squares), which should largely remove a pos-
sible auto-correlation bias, the measurement extends only up to 5 
times the 〈dNch/dη〉. The results for the two event selection meth-
ods are in very good agreement. In both cases, the normalized 
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Fig. 5. Normalized inclusive J/ψ yield at midrapidity as a function of normalized charged-particle multiplicity in pp collisions at √s = 13 TeV, for different ranges of pT of 
the J/ψ meson. Left: event selection based on multiplicity at midrapidity. Right: event selection based on multiplicity at forward rapidity. The error bars show statistical 
uncertainties and the boxes systematic uncertainties.

J/ψ yield grows significantly faster than linear with the normal-
ized multiplicity.

Included in Fig. 4 is also the double ratio of the normalized J/ψ
yield to the normalized multiplicity (bottom panel). Two regimes 
could be identified, with a stronger increase of the double ra-
tio for events with small multiplicity and a weaker increase for 
high-multiplicity events. It is noted that the “energy cost” for the 
production of a J/ψ meson, characterized by a transverse mass 
mT =

√
m2

J/ψ + p2
T/c2 � 5 GeV/c2, is similar to the one for particle 

production per unit rapidity of the underlying MB event, estimated 
as 〈dNch/dη〉 ·〈pT〉. A linear (diagonal) correlation with multiplic-
ity is then expected to first order and observed in PYTHIA 8.2 
simulations [18]. As seen in Fig. 4, the data exhibit richer features 
than this baseline expectation.

The data in intervals of pT of the J/ψ meson are shown in Fig. 5. 
The data exhibit a significant increase of the normalized J/ψ yield 
with the normalized multiplicity between the J/ψ pT intervals 0–4 
and 4–8 GeV/c. This effect could be attributed to various contribu-
tions [18], like associated J/ψ production with other hadrons in jet 
fragmentation or from beauty-quark fragmentation, as the fraction 
of J/ψ from b-hadron decays increases with pT [37].

Measurements of the correlation with the event multiplicity 
for inclusive charged-particle production have identified similar 
trends [11] as for the J/ψ pT dependence. The strength of this cor-
relation is similar for J/ψ and for inclusive charged particles (dom-
inated by pions) for pT values giving a comparable mT value. The 
production of strange hyperons at midrapidity was also observed 
to exhibit a correlation with event multiplicity in proportion to 
their mass [38]; a strong correlation was also measured for the ϒ
mesons [7].

The theoretical models currently available attribute the ob-
served behavior to different underlying processes. In the PYTHIA 
8.2 event generator [17], multiparton interactions (MPI) are an im-
portant factor in charm-quark production. Indeed, from MPIs alone 
a stronger than linear scaling is expected for open-charm produc-
tion, as was demonstrated in Ref. [6] with PYTHIA 8.157. Taking 
into account all sources of heavy-quark production, however, a 

close to linear increase is predicted [18]. PYTHIA 8.2 reproduces 
well the observation in data with a very similar correlation with 
multiplicity for the two different rapidity intervals used for multi-
plicity measurement, as seen in the left panel of Fig. 6, although 
the overall slope of the trend is underestimated. To illustrate the 
effect of non-prompt J/ψ in the inclusive production, in Fig. 6 the 
case of prompt J/ψ meson production as predicted by PYTHIA 8.2 
is shown in addition. A significant reduction of the correlation is 
observed, which appears to be stronger for the SPD event selection 
case.

In the EPOS3 event generator [15,39], initial conditions are gen-
erated according to the parton-based Gribov-Regge formalism [40]. 
Sources of particle production in this framework are parton lad-
ders, each composed of a pQCD hard process with initial- and 
final-state radiation. This model already predicted the stronger 
than linear increase with multiplicity observed for open-charm 
mesons [6], originating from a collective (hydrodynamical) evo-
lution of the system. The predictions from EPOS3, here without 
the hydrodynamic component, are similar in magnitude to those 
from PYTHIA 8. In the percolation model [14], spatially extended 
color strings are the sources of particle production in high-energy 
hadronic collisions. In a high-density environment they overlap; 
such a decrease in the effective number of strings leads to a 
reduction in particle production. Since the transverse size of a 
string is determined by its transverse mass, lighter particles are 
affected in a stronger way than heavier ones. This results in a 
linear increase of heavy-particle production at low multiplicities, 
gradually changing to a quadratic one at high multiplicities. The 
coherent particle production (CPP) model [13,41] employs phe-
nomenological parametrizations for light hadrons and J/ψ derived 
from p–Pb collisions, and predicts a stronger than linear relative 
increase of J/ψ production with the normalized event multiplic-
ity. In the Color Glass Condensate (CGC) approach, the NRQCD 
framework is employed for J/ψ production. This effective field 
theory predicts, both for J/ψ and D mesons, a relative increase 
with the normalized multiplicity that is faster than linear, both 
for pp and p–Pb collisions [16]. In a CGC saturation model, a 
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Fig. 6. Left: Comparison of data and PYTHIA 8.2 predictions for the two methods of event selection. For PYTHIA 8.2, the case of prompt J/ψ meson production is included 
for illustration. Right: comparison of data (with SPD event selection) with model predictions from the coherent particle production model [13], the percolation model [14], 
the EPOS3 event generator [15], the CGC model [16], the 3-Pomeron CGC model [19], and PYTHIA 8.2 predictions. Except for the latter, none of the models include the 
non-prompt component.

Fig. 7. Normalized inclusive J/ψ yield at midrapidity as a function of normalized charged-particle pseudorapidity density at midrapidity for different pT intervals; the data 
are compared to theoretical model predictions from PYTHIA 8.2.

faster than linear trend generically arises from the Bjorken-x de-
pendent saturation scale which would suppress more the soft-
particle multiplicity, produced at low-x, compared to J/ψ produc-
tion which is sensitive to larger values of x. In the 3-Pomeron 
fusion model [19], the correlation arises as J/ψ production via 3-
gluon fusion processes from various Pomeron configurations are 
considered. The larger configuration space for the particular case 
of the overlapping rapidity interval for J/ψ and charged parti-
cles leads to a significantly stronger correlation. Gluon satura-
tion is implemented in this model; its effect, interestingly a re-
duced correlation, becomes significant for normalized multiplici-
ties above 7.

All models predict an increase which is faster than linear, as 
shown in the right panel of Fig. 6. In all models this is effectively 
the result of a (Nch-dependent) reduction of the charged-particle 
multiplicity, realized through rather different physics mechanisms 
in the various approaches (color string reconnection or percola-
tion, gluon saturation, coherent particle production, 3-gluon fusion 

in gluon ladders/Pomerons). The PYTHIA 8.2 and EPOS3 models 
underpredict the data, while the percolation model slightly over-
predicts them at high multiplicity; good agreement is seen for the 
CGC, the coherent particle production, and the 3-Pomeron mod-
els.

These observations need to be considered having in mind that 
in all models except PYTHIA 8.2 only the prompt J/ψ production 
is included. As illustrated in Fig. 6 for PYTHIA 8.2, the prompt J/ψ
meson production exhibits a weaker relative increase with multi-
plicity compared to the inclusive production. The agreement with 
data will improve in case of EPOS3 and will degrade for all the 
other models, in a consistent comparison. That could be realized 
either once the data for the prompt component will become avail-
able or as soon as the non-prompt component will be added to 
the current model predictions.

The contribution from decays of beauty hadrons increases sig-
nificantly with pT [37] and might also have a different depen-
dency on multiplicity; the existing measurement of charm and 
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beauty production [6] is not precise enough to be conclusive, but a 
study in PYTHIA 8.2 [18] showed that the feed-down from beauty 
hadrons influences the result. The trend of stronger increase in the 
pT intervals above 4 GeV/c seen in the data is qualitatively repro-
duced by PYTHIA 8.2, which, however, underestimates the data for 
pT < 8 GeV/c, as shown in Fig. 7.

5. Summary and conclusions

We have presented a comprehensive measurement of inclusive 
production of J/ψ mesons as a function of the event multiplicity 
in pp collisions at 

√
s = 13 TeV performed with the ALICE appa-

ratus. The J/ψ production at midrapidity is studied using a data 
sample including minimum bias, high event activity, and EMCal 
triggered events. The event selection is performed based on the 
charged-particle measurement at midrapidity and in the forward 
region. The J/ψ yield in a given multiplicity interval normalized 
to the J/ψ yield in INEL > 0 collisions is presented as a func-
tion of the charged-particle multiplicity similarly normalized. The 
advantage of such a representation is that most of the experimen-
tal systematic uncertainties cancel; also, some of the theoretical 
model uncertainties are mitigated for such normalized yields.

A stronger than linear increase of the relative production of J/ψ
as a function of multiplicity is observed for pT-integrated yields; 
this increase is stronger for high-pT J/ψ mesons. The trends are 
qualitatively, and for some of the models quantitatively, repro-
duced by theoretical models, but a critical appraisal of the sim-
ilarity or difference between the physics mechanisms at play in 
various models is yet to be performed. More stringent tests of the 
models are needed too. Disentangling the feed-down from beauty 
hadrons, not included in most of the current theoretical predic-
tions, will be an important step towards shedding light on the 
mechanism of hadronization of charm (and beauty) quarks, in par-
ticular in the environment of a high density of color strings created 
in high-multiplicity pp collisions. Data which will be collected in 
Run 3 at the LHC will be a significant addition for such studies.
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V. Pacik 89, S. Padhan 49, D. Pagano 140, G. Paić 69, J. Pan 143, S. Panebianco 137, P. Pareek 50,141, J. Park 61, 
J.E. Parkkila 126, S. Parmar 100, S.P. Pathak 125, B. Paul 23, J. Pazzini 140, H. Pei 6, T. Peitzmann 63, X. Peng 6, 
L.G. Pereira 70, H. Pereira Da Costa 137, D. Peresunko 88, G.M. Perez 8, S. Perrin 137, Y. Pestov 4, 
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