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Abstract: Risk of flash floods is currently an important problem in many parts of Vietnam. In this
study, we used four machine-learning methods, namely Kernel Logistic Regression (KLR), Radial Basis
Function Classifier (RBFC), Multinomial Naive Bayes (NBM), and Logistic Model Tree (LMT) to
generate flash flood susceptibility maps at the minor part of Nghe An province of the Center region
(Vietnam) where recurrent flood problems are being experienced. Performance of these four methods
was evaluated to select the best method for flash flood susceptibility mapping. In the model studies,
ten flash flood conditioning factors, namely soil, slope, curvature, river density, flow direction,
distance from rivers, elevation, aspect, land use, and geology, were chosen based on topography
and geo-environmental conditions of the site. For the validation of models, the area under Receiver
Operating Characteristic (ROC), Area Under Curve (AUC), and various statistical indices were
used. The results indicated that performance of all the models is good for generating flash flood
susceptibility maps (AUC = 0.983-0.988). However, performance of LMT model is the best among the
four methods (LMT: AUC = 0.988; KLR: AUC = 0.985; RBFC: AUC = 0.984; and NBM: AUC = 0.983).
The present study would be useful for the construction of accurate flash flood susceptibility maps with
the objectives of identifying flood-susceptible areas/zones for proper flash flood risk management.
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1. Introduction

Flooding is considered to be one of the most dangerous natural disasters, associated with damage
to properties, infrastructure, and people around the world [1,2]. Approximately 90% of human
losses occur from flooding in Asia, especially in tropical cyclone regions such as Southeast Asia [3,4].
There are many types of floods including pluvial (surface), fluvial (riverine), and coastal (surge).
The main difference between pluvial and fluvial flood is that pluvial flood caused by heavy rainfall
creates a flood event independent of an overflowing water body, whereas fluvial flood is caused
by excessive rainfall over an extended period of time which is dependent on overflowing water
bodies. Floods also occur due to excessive amounts of snow melt and sudden breaking of natural
and manmade dams. Pluvial floods can also occur at higher elevation areas that lie above coastal
and river floodplains. Flash flooding is characterized by intense, high-velocity torrential rainfall
within a short period. Flash floods can occur on the ground surface as well as on the riverbed. Much
environmental research has indicated that human activities affect the water cycle, such as deforestation.
Forests play a critical role in the fight against natural disasters. However, there is an increasing trend
towards deforestation in recent years regarding development [5]. Erratic rainfall due to climate change,
in conjunction with deforestation and un-planned city development, has resulted in the occurrence of
more flash floods with disastrous consequences, which require greater attention from government and
other organizations. Although it is impossible to prevent flash floods, their accurate prediction by
appropriate model studies may help in reducing damage [6].

The determination of flash flood susceptibility zones is essential for risk management strategies and
is helpful for the decision-makers to manage land-use planning [7,8]. A flood susceptibility map will
show areas where floods are likely to occur. Flood susceptibility is defined as a quantitative or qualitative
assessment of an area with spatial distribution of flood, where probability of flood occurrence is likely [9].
This is a measure of the probability of future floods likely to occur depending on meteorological
conditions [10]. However, there is a limit to the temporal frequency of floods. Flood hazard is a
phenomenon that may cause loss of life, injury or other health impacts, property damage, loss of
livelihoods and services, social and economic disruption, or environmental damage (http://www.charim.
net/methodology/31). It is a combination of extent, depth, and flow velocity [11]. The information
needed depends on the hazard interpretation (evacuation, building damage, early warning etc.).
It depends on the intensity of the phenomenon within specified time and area [11]. However, flood risk
is a measure of the damage anticipated to occur in an area [12]. Risk is often expressed as a combination
of exposure, vulnerability, and flood hazard [13,14]. A hazard map is not a risk map. The risk is
dependent on the hazard and potential damage [12]. A risk analysis includes the impact of one or more
hazards, taking into account the vulnerability and resilience of the elements at risk [15]. In general,
a flash flood susceptibility map is a critical tool for flood risk management [16]. However, it is difficult
to accurately predict specific areas which would be affected most, because of the nature and dynamics
of meteorological (climatic) conditions [16].

In recent years, different statistical methods have been developed and applied effectively in flood
susceptibility mapping. Presently, Machine Learning (ML) or Artificial Intelligence (AI) methods,
which are advanced soft computing approaches for natural hazard prediction and assessment,
are mostly used for the flood study [17]. These methods are based on effective and objective
mathematical algorithms for analysis and prediction [18-21]. Some popular ML methods used for
flood susceptibility assessment are Artificial Neural Networks (ANN) [22,23], Logistic Model Trees
(LMT) [24], Support Vector Machines (SVM), Logistic Regression (LR) [25,26], Adaptive Neuro-Fuzzy
Inference Systems (ANFIS) [27], and Neural-Fuzzy (NF) approach [28,29]. So far, there is no existing
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model that can be applied in all regions for flood susceptibility assessment and mapping accurately [30].
There is a need for ongoing research to explore the possibility of the selection of appropriate models
for accurate identification and mapping of flash flood-susceptible areas. With this objective, we
have experimented with the four ML models, namely Kernel Logistic Regression (KLR), Radial Basis
Function Classifier (RBFC), Multinomial NB (MNB), and LMT, which were not applied and compared
earlier in flash flood studies. These models were applied in the Nghe An province, which is one
of the flash flood-prone areas of Vietnam. All these models use supervised learning algorithms to
solve classification problems with high prediction accuracy. Receiver Operating Characteristic (ROC)
and various statistical measures were used to validate and compare the performance of the models.
Results were compared to select the best method among these four models for flash flood susceptibility
mapping. Arc Map 10.2 and Weka 3.7.12 software were used to process data and generating flash flood
susceptibility maps.

2. Description of Study Area

Vietnam in general and Nghe An in particular has been affected by different natural hazards
such as flood, arsenic pollution [31], radiation hazard [32], erosion [33-35], sea level rise [36,37],
earthquakes [38—42], volcanos [43,44], and landslides [45]. Nghe An province is in the North Central
Coast region of Vietnam (Figure 1). The morphology of the region consists of mountains, midlands,
plains, and coastal areas. The topography of the area is very complicated, with very steep slopes,
narrow valleys, and deep gorges. In the study area, the highest peak is Pulaileng peak (2711 m)
in the Ky Son district, and the lowest area is the plain in Quynh Luu, Dien Chau, and Yen Thanh
districts, which is only 0.2 m above the sea level. Mountains and hills account for 83% of the province’s
natural land.
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Figure 1. Location of the study area and flash floods.

In Nghe An province, rainfall is concentrated in the coastal zone and the eastern slopes of
the Truong Son mountain range. The rainy season, lasting until December, has most rain between
September and November. These maximums are associated with atmospheric disturbances that
develop in the inter-tropical convergence zone, and with tropical cyclones. Agricultural area increase
and dam filling are some of anthropogenic causes of deforestation [46,47]. Loss of watershed forest
makes flood prevention difficult.

Nghe An province has seven river basins with a total length of rivers and streams in the region of
9828 km, giving an average density of 0.7 km/km?. The steep upstream slopes are associated with
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dense hydrological networks that add to the complexity of flash floods in the event of a rain episode
of increasing intensity. In this study, a minor part of Nghe An province (Longitudes: 104.7544° N to
105.0364° N and Latitudes: 19.4890° E to 19.6947° E) is selected for flash flood mapping (Figure 1).

3. Data Used

3.1. Flash Flood Inventory

In the modelling, a knowledge of historical flash floods is important [24,48]. Thus, a flash flooding
inventory map is essential. Every year, there are 10-15 flash floods in Vietnam due to extreme weather
conditions causing heavy rainfall within a short period. A large part of Nghe An’s surface is covered by
forests, which play an essential role in the fight against flash floods and landslides. However, in recent
years, forested areas have decreased because of agricultural activity and other anthropogenic activities
of development. Therefore, flash floods have become increasingly hazardous in this area. Typhoons in
this area also cause flash flood. In 2018 in Nghe An flash flood caused severe damage to properties and
material: 6 houses collapsed, 5 schools were affected, more than 19,000 hectares of rice and vegetables
damaged, and more than 15,000 m of road was affected besides loss of lives.

In this research, an inventory map with 126 flash flood events (locations) obtained from the
Department of Natural Resources and Environment, Nghe An province (Vietnam) and verified from
aerial photographs, satellite images, and field surveys were used for the construction of a flash flood
inventory map (Figure 1).

3.2. Flash Flood Influencing Parameters

For flash flood modelling, it is crucial to select the appropriate influencing factors adapted for
flash flood assessment. In our research, the choice of factors is based on the nature of flash flood
observation related to different conditions of study area such as physical, hydrologic, climatic conditions,
and human activity. A total of 10 factors, including soil, slope, curvature, river density, flow direction,
distance from rivers, elevation, aspect, land use, and geology (Figure 2), were selected and used for
analysis and modelling. In this research, a digital elevation model (DEM) with a resolution of 20 m were
constructed from topographic maps at a scale of 1:50,000. DEM was used to extract the geomorphology
factors (slope, aspect, curvature, and elevation) and hydrology factors (river density and distance
from the river). This data was verified from the data of the Department of Natural Resources and
Environment, Nghe An province (Vietnam).

Slope is an essential factor for studying flash flood susceptibility because it controls the speed
of water flow from high to low altitude [49]. In this study, five main classes are used for the slope
map (Figure 2a). Aspect is related to the directions of water flow affecting flash flood occurrence [50]
and aspect map was built with eight classes: flat, north, northeast, east, southeast, south, southwest,
and northwest (Figure 2b). Curvature is a conditioning factor in flash flood modelling that influences
accumulation and runoff on the slope. In addition, flash flood zones are linked to convergence of
topographic height [51]. Curvature classes used in this research are concave, flat, and convex (Figure 2c).
River density is related to surface runoff, which can promote flash flooding. Areas closer to the river
are more prone to experience flooding. Density of rivers and distance from rivers are considered the
main factors affecting the occurrence of a flash flood [52]. Maps of river density and distance from
rivers were constructed with various classes (Figure 2d,f). Flow direction, which is the direction in
which water travels, is considered to be a conditioning factor of flash flood. Flow direction of this area
was grouped into eight classes: 1, 2, 4, 8, 16, 32, 64, and 128 (Figure 2e). Elevation is a conditioning
factor due to the weathering of rocks and soil on the slope [53,54]. An elevation map was constructed
with five groups: 77-297.3, 297.3-487 .4, 487.4-695.5, 695.5-961 .4, and 961.4-1 551.1 m (Figure 2g).
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Figure 2. Maps of flash flood conditioning factors: (a) slope, (b) aspect, (c) curvature, (d) river density,
(e) flow direction, (f) distance from rivers, (g) elevation, (h) soil, (i) land use, and (j) geology.

Soil type is considered an essential factor that is strongly related to rainfall runoff mechanisms
affecting flash flood occurrence [55]. In this study, soil type was divided in five categories. The soil
map was extracted from the MONRE geologic map at a scale of 1:100,000 (Figure 2h). Land use is an
essential conditioning factor in flash flood research as it affects surface runoff. Runoff often occurs
differently on agricultural and settlement lands. In addition, forests play an important role in reducing
runoff speed and reducing the possibility of flash floods. A land use map (1:100,000 scale) of this
area was extracted from the Landsat 7 satellite and classified into five types: natural forest land,
planted forest land, forest restoration land, agriculture land, and settlement land (Figure 2i). Geology is
an essential factor related to the process of runoff and infiltration, thus affecting flash flood occurrence.
In this area, a geology map was compiled based on four tiles of the Geoscience and Mineral Resources
Map of Vietnam at a scale of 1: 100,000 and constructed with eight classes: eruption rock of Song Ma
complex, limestone rock of La Khe formation, eruption rock of Huoi Nhi complex, limestone rock of
Muong Long formation, metamorphic and sedimentary rock of Bu Khang formation, eruption rock of
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Muong Hinh complex, granite rock of Dai Loc complex, and sedimentary and metamorphic of Song
Ca formation, quaternary formation (Figure 2j).

4. Methods Used

In this study, selection of ML model depends on the type of data and nature of the problem. In the
present study our data is of labeled type. Therefore, we have selected supervised algorithm-based
models, namely LMT, KLR, NBM, and RBFC. The reason for the selection of these four ML models is
that, as per the literature review, performance and prediction capabilities of these models are good but
they were not applied and compared earlier for flash flood studies.

4.1. Logistic Model Tree (LMT)

LMT is a method that integrates two algorithms: C4.5 and LR. In LMT, the gain ratio information
of C4.5 is used to split the tree into node and leaves, whereas the LogitBoost algorithm is applied
to adapt the LR functions occurring at a tree node [56]. Out of these algorithms, C4.5 is considered
to be a standard algorithm for creating classification rules in the form of decision tree. C4.5 is often
referred to as a statistical classifier, which is an extension part of ID3. The information gain ratio is the
default criteria of choosing to split attributes in C4.5. Instead of using the information gain as ID3,
the information gain avoids the bias of selecting attributes with different values. In the LMT model,
the overfitting problem is significant. To solve this challenge, the Classification and Regression Trees
(CART) algorithm is used for the pruning the tree during training [57]. CART is one of the important
machine-learning algorithms presenting information in a way that is intuitive and easy to visualize.
CART encloses a nonparametric regression algorithm that “grows” a decision tree based on a technical
binary hesitation. In LMT, let c be the sum of flash flood and non-flash flood layers and x = x; (i =1 —n)
be defined as flash flood conditioning factors (n is the number of the factors used). The probabilities at
the leaf nodes are measured using the linear LR model as follows [56]:

p(clx) = —=PLC) 1)

L op(le)

where while L¢(x) is the least-squares fit that is changed using following equation:

Y L) =0 )
=1

4.2. Kernel Logistic Regression (KLR)

KLR is considered to be one of the best known machine-learning techniques for classification
using nonlinear LR and probabilistic current [58]. To learn the parameters, this model estimates
the class-posterior probabilities with the kernel’s log-linear function combination by applying the
penalized maximum likelihood method [59]. In this model, the kernel function is used to look at
a discriminant function with a goal of dealing with the classification problem by transforming the
original input space into a high-dimensional feature space. Considering the predisposing factors
of the flash flood as the input vector x, and the kernel function is used to complete the nonlinear
transformation of x. As a result, the nonlinear form of the LR can be formulated as follows:

logit{p} = w.p(x) +b 3)

where w and b are the optimal model parameters obtained by minimizing a cost function,
which represents the regularized negative-log likelihood of the data [60], and p presents the probability
of flash flood that occurs in an area.
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4.3. Multinomial Naive Bayes (NBM)

NBM relies on a probabilistic method with separated training and testing processes [61]. For the
training process, suppose t = t; represents the flash flood and non-flash flood classes and c =¢; (i=1 -
n) is defined as flash flood conditioning factors (n is the number of the factors used). The probability of
each event in a class of can be measured using the following formula:

Tct
P(tle) = +———, 4)
Zt’eV Terr
where T, is the sum of times t emerges in the training information of factor ¢, and ), T is the sum

eV
of attributes in factor c. To avoid problems that occur when T, is zero or some events are not present

in the training data, smoothing of the square is performed by adding one to each equation:
T +1 Tet+1

P<t|C) B Zt’eV(Tct’ + 1) N (Zt’eV Tct’) + B (5)

For the best class, the maximum a posteriori (MAP) formula is applied to avoid underflow of the
test process:

Cmap = argmax . [log Py + Z log P(t/c)] (6)

1<k<nr

where p(c) is given by P(C) = % , Nc is the sum of data in layer ¢, and N is the sum of information in
the dataset.

4.4. Radial Basis Function Classifier (RBFC)

RBEFC is a supervised neural network considering an approximation problem in poly-dimensional
space which is used to answer questions such as interpolation and recognition [62]. In this learning
process, the network is looking for a surface in multidimensional space, which allows for a better
comparison of the training dataset. Correspondingly, the test data can be interpolated using the
multidimensional surface [62]. The network is composed of three layers: the first is the input layer,
the second is the masked layer, and the last is the output layer. Each layer is grouped by the elements
that make up the inputs and outputs. The elements of each layer are linked to transmit the information
(the elements of each layer are not related).

In the process of transmitting information, a Gaussian function is used as the following radial
basis function:

I —cj|? )

hj(x) = exp( 3

where /1;(x) is output data defined as flash flood or non-flash flood classes from j. The element in the
hidden layer where the activation function is applied to analyze the relationship between input and
output variables, x = (x1,..., x,) is the input data vector of flash flood conditioning factors linked to
the element in the hidden layer, c jis inferred as the centrepoint of the basis function and r is radius of
the basis function.

@)

4.5. Validation Methods

Validation methods such as Area Under the ROC Curve (AUC) and various statistical measures
were used to validate and compare the models in this study. ROC curve is a popular measure to
evaluate the accuracy of the model and can be used to determine the accuracy of natural hazard
susceptibility mapping [63-68]. Two values are used to build the ROC curve: sensitivity and
100-specificity [69-74]. Performance of the models is analyzed quantitatively using the area under the
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curve (AUC) [75-80]. An AUC value of 1 indicates the best classification, while 0.5 corresponds to
non-accurate models [81-85]. AUC values are calculated according to the equation:

AUC:ZTP+Z‘%+N ®)

where TP and TN are considered the rate of pixels classified correctly as flood and non-flood, P and N
are the total number of flash floods and non-flash floods, respectively.

Various statistical measures such as accuracy (ACC), sensitivity (SST), specificity (SPF), root mean
squared errors (RMSE), kappa (K) positive predictive value (PPV), and negative predictive value
(NPV) were also selected to validate flood flash modelling [86]. PPV and NPV are the values of pixel
probabilities classified correctly as “flood” occurrence and “non-flood” occurrence [87]. The proportion
of flash flood pixels is represented by SST value and proportion of non-flash flood pixels is represented
by SPF. K is used to analyze the accuracy of modelling [88]. K value varies between -1 and 1. Values of
K close to 1 represent better reliability [8]. ACC is the ratio of the rate number of correct predictions
and the total number of predictions [88]. RMSE represents the difference between data observations
and data estimates [89-103]. Equations for the different measures are given below:

TP
T=——
55 TP +FN ©)
TN
PF= ———— 1
5 TN + FP (10)
TP
PPV = ——— 11
FP 4+ TP (1)
TN
NPV_FN+TN (12)
P,_P
_ p—Lexp (13)
1_Pexp
TP+ TN
ACC = 14
cc TP+ TN + FP +FN (14)

1 n
RMSE = \, Nv ;(Xpredicted - Xactuul)z (15)

where FP and FN are the rate of pixels classified incorrectly as the flood and non-flood. Py, is the rate of
pixels classified correctly for flood or non-flood. Expected agreements is defined by Pexp. Xpredicted and
Xpctual are the predicted and real values in the training samples or the testing samples of the models,
and n is the total number of samples in the training samples or testing samples.

5. Modelling Methodology

Methodology used for constructing the flash flood susceptibility map of study area includes
five steps (Figure 3): (1) Collection of data: Various thematic maps of factors were constructed
using ArcGIS software in raster format with 20 m pixel size. These maps were sampled with flash
inventory to generate the sampling data for further processing; (2) Dataset preparation: In this
study, the sampling data has been randomly shared by two parts: the training data (70%) used for
constructing the models and maps, and the validation data (30%) used for validation of the models
and maps; (3) Model configuration and implementation. Four models, namely KLR, RFBC, NBM,
and LMT, were constructed using training data. Out of these models, RBFC was constructed with
batch size, number of functions, number of threads, ridge, and seed of 100, 2, 1, 0.01, and 1, respectively;
NBM was built with batch size of 100; LMT was built with batch size, minimum number of instances,
and number of boosting iterations of 100, 15, and 1, respectively; KLR was built with batch size,
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lambda, number of threads, and seed of 100, 0.01, 1, and 1, respectively; (4) Model validation: In this
step, validation of the flash flood susceptibility models was conducted by using PPV, NPV, SST, SPE,
ACC, RMSE, K, and AUC values; (5) Development of flash flood susceptibility maps: In this step,
flash flood susceptibility was evaluated using flood flash susceptibility indices that were produced
from the model construction processes. These indices were then transferred to all the pixels of the flash
flood zone in the study space and classified to determine susceptibility levels using natural breaks
classification method in ArcGIS application—a popular method for classifying the natural hazard
susceptibility classes [104].
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Figure 3. Methodological flow chart of this study.

6. Results and Analysis

6.1. Models Validation and Comparison

Performance of the models (RBFC, NBM, LMT, and KLR) is shown in Figures 4-6 and summarized
in Table 1, which is based on both the training and validation datasets. For the training data, the results
show that KLR and RBFC have the highest values of PPV (94.32%), KLR has the highest values of
NPV (95.45%), SST (95.4%), SPF (94.38%), and ACC (94.89%) compared with those of other models.
In the case of the validation data, LMT and NBM achieve the highest values of PPV (94.74%), LMT,
KLR, and RBFC have the highest values of NPV (97.37%), LMT has the highest value of SST (97.3%),
SPF (94.38%), and ACC (96.05%) (Figure 4). In terms of K value, KLR has the highest value of K (0.8977)
with training data whereas LMT has the highest value of K (0.9211) with validation data (Figure 5).
Regarding the RMSE value, KLR has the highest value of RMSE (0.215) with training data whereas



Water 2020, 12, 239

11 0f 21

LMT has the highest value of RMSE (0.184) with validation data (Table 1). Based on these results,
it can be stated that performance of KLR is better than other models in the training dataset; however,
LMT has the best predictive capability compared to other models in terms of validation dataset.
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Table 1. Summary of validation results of the models.

12 of 21

Models
Statistical Training Dataset Validation Dataset
Measures
KLR RBFC NBM LMT KLR RBFC NBM LMT
PPV 94.32 94.32 92.05 93.18 92.11 92.11 94.74 94.74
NPV 95.45 94.32 92.05 93.18 97.37 97.37 92.11 97.37
SST 95.4 94.32 92.05 93.18 97.22 97.22 92.31 97.3
SPF 94.38 94.32 92.05 93.18 92.5 92.5 94.59 94.87
ACC (%) 94.98 94.32 92.05 93.18 94.47 94.74 93.42 96.05
RMSE 0.215 0.222 0.254 0.241 0.205 0.207 0.217 0.241
K 0.8977 0.8864 0.8409 0.8636 0.8947 0.8947 0.8684 0.9211
AUC 0.982 0.983 0.970 0.97 0.985 0.984 0.983 0.988

ROC curve results indicate that RBFC model (AUC = 0.983) outperforms three other models in
terms of the training prediction rate (KLR:AUC = 0.982; NBM:AUC = 0.970; and LMT:AUC = 0.970).
In terms of validation, LMT is more accurate in comparison to the other models with the AUC of
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0.988, followed by KLR with AUC of 0.985, RBFC with AUC of 0.984 and NBM with AUC of 0.983,
respectively (Figure 6).

6.2. Flash Flood Susceptibility Map

Flash flood susceptibility maps were constructed using four ML models (KLR, RBFC, NBM,
and LMT) with five classes: very low, low, moderate, high, and very high (Figure 7). The distribution
of each susceptibility class on the maps obtained with different methods is shown in Figure 8. A map
generated by KLR model indicates that 61.84% of the pixels are in the very low class, 6.372% in the
moderate class and 13.18 in the very high. In the map constructed by RBFC model, 47.63% of the
study area is in the very low level, 11.33% in the moderate level, and 12.94% in the very high level.
The map built by NBM model shows 62.59% of the study area as very low level, 6.641% as moderate
level, and 11.96% as very high level. Finally, the map constructed by LMT model shows that 40.06%
of the area is in the very low level, 6.163% in the moderate level and 9.589% in the very high level
(Figure 8). Validation of the maps using frequency ratio, which is a ratio of percentage of flash flood
pixels observed on each susceptibility class, and percentage of all pixels of susceptibility class, was also
done as shown in Figure 8. Validation results show that most of the flash flood pixels were observed in
high and very high levels. However, the frequency ratio of flash flood observed in high and very high
classes of the map produced by LMT is higher than those of other maps produced by other models
(KLR, RBFC, and NBM). Thus, it can be stated that the map produced by LMT is more reliable than
those of other models.
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Figure 7. Flood susceptibility maps using various models: (a) KLR, (b) RBFC, (c) NBM, (d) LMT.
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Figure 8. Analysis of the frequency of flash floods on the susceptibility maps (class pixels represents
the total number of pixels in whole susceptibility class and flash flood pixels is the total number of
flash flood pixels observed in the susceptibility class).

7. Discussion

Determining the areas that are most susceptible to flash floods is considered to be the most critical
issue for risk management and land-use planning. Although there are several different methods
developed and applied for the flash flood zone prediction around the world, generation of a flash
flood susceptibility map using suitable methods for a specific area remains a topic of concern among
researchers. In this study, the main purpose is to assess and compare various methods to choose the best
for generating an accurate flash flood susceptibility map of the mountain area of the Nghe An province,
which is one of the most affected flash flood disaster area in Vietnam. For flash flood modelling,
four methods, namely KLR, RBFC, NBM, and LMT, were selected as these are advanced and effective
ML models for natural hazard prediction and assessment [105-107]. Conditioning factors may change
depending on the local geo-environmental conditions of the study area [108]. In general, flash flooding
occurs mainly on watersheds, especially in hilly areas, where the topography is favorable to rapid flow
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(runoff) in the event of heavy rainfall within a short time. Loss of vegetation accentuates the flooding
process. Topography and river density affect the occurrence of flash flood [109]. Considering this,
ten factors, namely soil, slope, curvature, river density, flow direction, distance from rivers, elevation,
aspect, land use, and geology, were used to construct the flood database for modelling.

In the context of spatial planning, selection of suitable models for the generation of accurate
flood susceptibility map is desirable to avoid damage to property and human losses [110]. Out of the
four models proposed in this paper, KLR is the best compared with other models using training data.
However, LMT achieves a higher predictive capability during the validation process. This model is
more reliable than the other models for flash flood susceptibility mapping. Performance of LMT is
related to its robustness, noise reduction, and variance, as well as the reduction of overfitting. Thus,
LMT is better compared to other models because of its reduced overfitting and variance. In addition,
KLR uses the fractal dimension for input data, and thus performed well in the training dataset.
Results also indicate that NBM has less accuracy compared to the other three models, as it rests on the
independent hypothesis of the conditioning factors that could influence its accuracy. Overall, the four
flash flooding models have an acceptable performance for assessing flash flood susceptibility but LMT
is the best compared with other models.

Even though flash flood prediction ability may decrease when a low proportion of training
samples were used, in the present case, models demonstrated robustness. With the complexity of flash
floods and the interaction of several factors, a comparison of more modelling methods are required
and different sets of characteristics and factors can be determined using various techniques that would
make it possible to give different points of view regarding feature selection and improvement of
performance of machine-learning models.

8. Conclusions

In this study, four ML models, namely LMT, KLR, RBFC, and NBM, were used to generate flash
flood susceptibility maps of Nghe An province in Vietnam. For this purpose, 126 flash flood historic
events and ten conditioning factors (soil, slope, curvature, river density, flow direction, distance from
rivers, elevation, aspect, land use, and geology) were used for the construction the flash flood database
for modelling. Various methods such as area under ROC curve (AUC), and several statistical measures
were used for the validation and comparison of the models.

Validation results show that LMT had the best performance (AUC = 0.988), followed by KLM
(0.985), RBEC (0.984), and NBM (0.983), respectively. LMT model also achieved the highest PPV
(94.74%), NPV (97.37%), SST (97.3%), SPF (94.38%), and ACC (96.05%) in comparison to other models.
Therefore, this method can be used for flash flood susceptibility mapping of other areas also. There is
always scope for improvement in the performance of methods adopted in this study by using different
combinations of ML models considering greater numbers of flash flood events and influencing factors
depending on the physical, hydrological, and meteorological conditions of the area.
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