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Abstract

The popularity of learning and predictive 
technologies, across many problem domains, is 
unprecedented and it is often underpinned with the fact 
that we efficiently compute with vast amounts of data 
and data types, and thus should be able to resolve 
problems, which we could not in the past.  This view is 
particularly common among scientists who believe that 
the excessive amount of data, we generate in real life, 
is ideal for performing predictions and training 
algorithms.  However, the truth might be quite 
different.  The paper illustrates the process of 
preparing a training data set for an ML classifier, 
which should predict certain conditions in mechanical 
engineering.  It was not the case that it was difficult to 
define and choose classifiers, in order to secure safe 
predictions.  It was our inability to create a safe, 
reliable and trustworthy training data set, from 
scientifically proven experiments, which created the 
problem.  This places serious doubts on the way we use 
learning and predictive technologies today.  It remains 
debatable what the next step should be.  However, if in 
ML algorithms, and classifiers in particular, the 
semantic which is built-in data sets, influences 
classifier’s definition, it would be very difficult to 
evaluate and rely on them, before we understand data 
semantics fully.  In other words, we still do not know 
how the semantic, sometimes hidden in a data set, can 
adversely affect algorithms trained by them.

1. Introduction 

The proliferation of applications of Machine 
Learning (ML), across numerous problem domains, 
has surprised many computer scientists, but also 
opened the door to exploring learning and predictive 
technologies for addressing a variety of problems, 
which use an excessive amount of data.  In this jungle 
of availability and popularity of ML algorithms, which 
run almost instantaneously, as soon we be obtain data, 

by anyone who downloaded software suites, which can 
automatically create and run almost any ML algorithm, 
we started worrying.  Research focuses often on 
computational models and algorithms, because they 
process data, deliver functionalities and therefore they 
are supposed to be scrutinized.  In ML researchers
measure their success in evaluating results of 
predictions through the precision of algorithms they
define.  They often move from one algorithm to 
another, to find the best possible solution for a given 
problem.  We all know theoretically which ML 
algorithms are suitable for which problem(s), but in 
most cases we are able to run one algorithm after 
another, in a sequence, in a very short period of time
using the same data set.  Sometimes, it is not even 
important if we run probabilistic algorithms together 
with, for example linear classification.  We wish to use
them all and check their performance and results.

However successful we are in the processing of 
data through predictive and learning technologies, we 
are in danger of neglecting the semantic stored in our 
data, if we do not pay attention to it.  Data powers all 
algorithms and its semantics affects algorithm’s 
performance [1].  If we do not understand data
semantic fully or if we misinterpret it for any reason, or 
if we ignore problems that might be hidden in data 
semantics, we might get unreliable results without 
knowing it. 

This paper illustrates an example of applying ML 
algorithms for running predictions in mechanical 
engineering, which revealed hidden problems when 
structuring and creating training data sets.  We had to 
question the suitability of ML not only for this problem 
domain, but also across similar problems in 
engineering.  Being aware of the semantic of data 
which is needed for a training data set, and focusing 
more on the data than on choosing the best ML 
algorithm, revealed how easy it is to forget about data 
and misuse its semantics.

The paper is primarily written by computer 
scientists, for practitioners and students, who would 
like to start using learning and predicative technology 
on a larger scale.  They might be interested in 
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investigating the role data sets may have in the process 
of defining ML algorithms, ML classifiers and their
features.  However, it is important to re-iterate that the 
journey of semantic of data, from its source to a 
training data set, would determine the success of our 
algorithmic predictions.

The paper is organized as follows.  Section 2 
introduces the task from the mechanical learning field, 
and sets up a scene for collecting data and it’s semantic 
for the purpose of creating a training data set. It will be
used in ML classifiers, which should predict slippery 
driving conditions in rail transport.  The section has 
four subsections, which describe the process of finding 
data, finding factors which may influence driving 
conditions in rail transport, defining the structure of the 
potential training data set from discovered factors, and 
entering data values for all factors.  The problems
encountered in this process are highlighted in the same 
section, but Discussion and Conclusions comment on
research discoveries, outline options for resolving 
detected problems and pave the future work.

2. Structuring a Training Data Set

If we wish to create a data set, which would train an
ML algorithm, in order to categorize conditions 
between rails and tracks as slippery or non-slippery, we 
would need to find out the definition of slippery and 
non-slippery conditions, how they are calculated and 
which factors influence them.

Slippery conditions in traffic are measured through 
the level of adhesion or friction, which exists between 
two different surfaces. The term adhesion describes 
the tendency of dissimilar particles or surfaces to stick 
one to another.  It is calculated as force required to 
separate two surfaces in contact [2].  In engineering, 
the term is widely used to describe the tangential force 
induced in the wheel–rail contact.  The adhesion is the 
relation between the longitudinal tangential force and 
normal force in wheel-rail interaction [3].  However, 
friction is the force that appear as resistance when one 
body is sliding/moving on another [4].

The adhesion force coefficient μadhesuin is 
calculated as a ratio between adhesion force and 
normal force

μadhesion = FT / FN
It is related to the friction coefficient as:

μadhesion  μfriction
This relation is important because the adhesion 

coefficient can hardly be measured directly, but 
friction coefficient can be measured by special 
equipment [5]. 

Therefore the process of creating a training data 
set must concern the factors which may influence the 

level of adhesion/friction (a/f) between rail tracks and 
wheels. It is expected that the training data set will 
have all the data values, for all possible situations in 
which any combination of factors determines exactly 
the level of adhesion and friction.  This expectation 
comes from the data science point of view. 

The next 4 subsections explain the process of 
creating a training data set.

2.1. The Process of Finding Factors Which 
Influence Adhesions and Frictions

The calculation of the level of a/f, for various 
conditions, where numerous factors influence them, 
requires another calculation, for a/f coefficients, which 
in turn depend on data values we have for all relevant 
factors. Therefore the problem of predicting slippery 
conditions between rails and wheels is now moved 
towards the problem of finding factors and their data 
values, which affect a/f coefficients.

We had to define our own process of finding 
relevant factors, which may influence a/f between hard 
surfaces, because there is no available source of data 
which lists such factors and helps in calculating a/f 
coefficients for all possible known factors and their 
combinations.  

Therefore, this paper involves finding all relevant 
factors and their impact on a/f, through a) peer 
reviewed literature, available for the last 50 years and 
b) collected results of described experiments.

The process consisted of four steps:
1) Extracting experiments and factors, from each 

experiment, which may cause slippery conditions 
in rail transport

2) Collating experiments/factors/group of factors into 
a table in order to find potential overlapping or 
exclusions between the experiments

3) Recording data values for a/f coefficients from 
each experiments in order to have them ready for 
our potential training data set 

4) Analyzing the collected factors in order to outline 
potential problems and inconsistencies which 
could adversely affect our training data set

5) Defining the semantic of collected data in terms of 
its role and potential in structuring and defining a 
training data set.

However, the first problem appeared even before 
reviewing the literature and executing step 1): There is 
no consensus on how to measure a/f.

In rail traffic, the most accurate measurement of 
adhesion is obtained by using instrumented train that 
measures adhesion between actual wheels and rail [6].  
However, this method is complicated, expensive and 
not easily controllable. A cheaper solution is a 
tribometer, a hand-pushed device with steel wheels that 
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roll over the rail [7].  This device measures adhesion, 
but unfortunately it is not measured between the train 
wheel and rail track.  It is measured between the 
device’s wheel and rail surface instead.  Thus, the 
obtained data is interpreted in the literature as 
maximum available level of adhesion measured, and it 
will not correspond to exact coefficient of adhesion 
between the wheel of the rain and rail [5].

2.2. Creating a Table of Factors (Group of 
Factors) for Each Experiment

Finding all relevant factors which can cause 
slippery conditions and calculating the level of a/f is 
far from being a trivial task.  Table 1 lists factors and 
collection of factors, which appeared as verified factors 
in experiments extracted from the literature.

Table 1: Factors which influence a/f extracted from 
the published experiments

Factors and set of factors ref.

changes of speed for dry, damp, damp leaf and 
wet rail

[8]

Herzian contact pressure [9], 
[10]

humidity level [11]
level of humidity changes and rail surface 
temperature (constant, 3 values)

[12]

humidity and the presence of leaf 
contamination or dry rail head condition

[13]

dry and clean rail surface or dry rail surface 
with sand applied on it
wet and clean surface or wet surface with the 
applied sand
greasy contaminated surface [14]

moisture on the rail-head
light snow or light snow with sand on the rail 
surface

wet leaves on the rail
water lubricated conditions at certain 
temperature, two values of contact pressure, 
two types of surface roughness and changing 
speed
synthetic ester oil conditions at certain 
temperature, two values of contact pressure,
two types of surface roughness and changing 
speed
water lubricated conditions at two values of 
temperature, the contact pressure, two types of 
surface roughness and changing speed

[15]

synthetic ester oil conditions at two values of 
temperature, the contact pressure, two

types of surface roughness and changing 
speed
water and oil on the rail surface conditions at 
two types of surface roughness, constant
speed and pressure
different types of lubricants: dry, wet, oil, dry 
leaves and wet leaves

[16]

dry and dry, sanded conditions at low speed
wet and wet, sanded conditions at low speed
dew or foggy conditions at low speed [17]
sleet and sleet, sanded conditions at low speed
light snow and light snow, sanded conditions 
at low sp
eed
wet leaves on the rail condition with speed 
was marked as low
contaminated water contamination tested at 
two values axle-load and different speed
values [18]
machine oil contamination tested at three 
values of speed and different axle-load
dry, wet, oil and leaves contaminated 
conditions

[19]

water lubricated track with the temperature, 
the surface roughness, three values of wheel 
load and different speed
water lubricated track with four values of 
temperature, the surface roughness, the wheel 
load and different speed

[20]

water lubricated track with the temperature, 
four values of surface roughness, the wheel 
load and different speed
dry, wet and oil contaminated rail conditions 
at certain speed, and load/contact pressure

[21]

water and oil(grease) contaminations with two 
values of axle loads as speed range

[22]

watered rails with temperature, the surface 
roughness, two speed rates with Hertz 
pressure variation

[23]

watered rails with temperature, two types of 
surface roughness, the speed with Hertz 
pressure variation

Table 1 illustrates the scale of the problem which 
appeared while trying to collect data which could 
possibly be used as a training data set for any ML 
classifier.  The left column of the table contains the 
factors which are taken into account in each detected 
experiment. Therefore it is expected that some sources 
report on one experiment (such as [16,19, 21,22]) and 
some report on a set of experiments, when trying to 
calculate the adhesion coefficient.

It is important to note that in all these experiments, 
when more than one factor was taken into account (as 
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in [14]) the coefficient of adhesion was calculated by 
focusing on one or two factors, and sometimes keeping 
all other factors constant during the experiment. 
Therefore source [14] really shows a good set of data 
which is used for the calculation of the adhesion 
coefficient, but in each of these experiments only a 
limited number of factors were monitored, and their 
data values are entered in the calculations for the 
adhesion level.  Unfortunately, at the time writing, 
there were no available peer reviewed papers which 
could be juxtaposed to this research and thus Table 1 
remains a unique source of information on a/f factors.

2.3. Problems Encountered

The complexity of predicting slippery driving 
conditions is now becoming obvious.  It is NOT that 
we do not know how to calculate adhesions between 
two surfaces for known factors, which affect it.  The 
problem is that there are so many known factors which 
can affect the friction between the rails and wheels, but 
there is no scientifically proved method which could 
define a universal way of calculating a/f when all these 
factors are involved. In summary:
a) There is an evidence that real time measurements 

of the friction on real tracks and wheels does not 
necessarily create correct data used in calculations.  
This signals that i. data set and its values should be 
created where each of these factors is “measured” 
according to knowledge available in the published 
work, or ii. laboratory experiments are used, in 
which humans control what has been measured 
and why. Option ii. is favourable in the literature.

b) These numerous factors listed in Table 1 are of 
different nature.  Some of them are impossible to 
measure and we do not have published research
which explores possible co-relation between them. 
Do they influence each other, why and when? 

c) There are no experiments, which overlap in terms 
of which factors are taken into account when 
calculating adhesion and friction. We could not 
compare results be-tween the experiments.

d) Some experiments deal with one or two factors 
and some keep having a set of factors in their 
focus of interest, which could affect the data 
values we entered in the data set.

e) There is no consensus from the literature on which 
factor(s) should be more important than the 
other(s), and in which combination of these factors 
may influence adhesion and friction more than in 
any other.

f) There are no publications, which cover the overall 
problem of “creating a minimal set of factors, 
which can guarantee a certain level of accuracy 
when calculating a/f”.

It appears that it will NOT be reasonable to believe 
that we can collect all possible data for all factors, for 
the purpose of predicting a/f between rail tracks and 
train wheels, and assume that a reliable training data 
set is being created.

Therefore, bullets 1)-3) summarize the findings:
1) The calculation of adhesion and friction 

coefficient is not very simple. It is not a linear 
function and it is practically almost impossible to 
determine co-relation between all these factors,
which is valid in any circumstances.

2) This information is not transparent, i.e. it is hidden 
in the literature, not available explicitly and not 
systematized, in order to assist in this research.

3) We should be extremely careful in the process of 
creating the training data set in this problem 
domain. The literature review and the data 
available from scientifically proven experiments 
do not guarantee a reliable training data set. 

Therefore, if for any reason the initial perception that it 
would be possible to use learning technologies to 
predict slippery rail condition, might proof wrong. 

2.4. Creating a Training Data Set

The process of structuring and creating the training 
data set is iterative and consists of:
(i) deciding upon factors from Table 1 which could 

be a good starting point in the calculation of a/f 
coefficient

(ii) finding values for a/f coefficients, based on chosen 
factors in (i), which are available in the literature

(iii) assessing the semantics of the content of the 
training data set and its factors in terms of 
repetition and overlapping and

(iv) defining a rationale behind decisions to either 
merge/split factors or re-categorize certain factors 
defined in (i) into training data set values, or both.

The process from (i)-(iv) deliberately keeps the 
problems from a)-f) in our mind. They have not been 
completely resolved, but the data set, which has serious 
issues with the lack of scientifically proven content, 
does need a user centered process for creating 
semantics which is essential in the training. This is 
exactly what has been defined in (i)-(iv).  No 
automated software tools could help us in this 
particular case.  They might be dangerous.

2.4.1 Defining Factors and Data Values for the 
Training Data Set

Figures 1 and 2 show the first attempt to choose the 
factors for the training data set, available from Table 1,
and to enter their data values into the spreadsheet. 
Calculations for the adhesion coefficient is placed in 
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Column A.  The top row in these figures outline the 
specific way of choosing factors from the left column 
in Table 1.  However, each row in Figures 1 and 2 
should corresponds to one experiment in Table 1. 

Figure 1.: The Data set, left side

Figure 2.:The Data set, right side

Factors which were collected in the left column of 
Table 1 may overlap between experiments and 
therefore, all experiments were inspected together in 
order to find out if the overlapping factors give new 
insights into the calculations for adhesion coefficients.  
This had to be done before data values, for tables 
shown in Figures 1 and 2 were entered.

The rationale for choosing factors are discussed in 
the next four paragraphs.

Factors such as rain, the layer of Fe2O3, humid 
weather, sunshine, oil, grease and organic 
contamination (leaf) are easy to detect. The factor 
which defines dry condition is named ’dry’ in our set 
of factors, but it does not mean “opposite to rain” 
condition. It indicates the absence of water that can 
appear on the rail head surface. However, it was found 
that in the UK railway experiments, where the changes 
of the coefficient of adhesion appear because of the 
train speed modification [9] a new speed factor has 
become important which was added to Fig. 1. 

The next factor, isolated from Table 1 is Hertzian 
stress, or Hertzian contact pressure [9], [10] and 
calculations for its adhesion level were available. . 
Factors ’air humidity’ and ’surface temperature’(of 
rails), ’sand’ and ’snow’ ’contact pressure’, ’surface 
roughness’, and ’lubricant temperature’ had impact on 
the adhesion level with available calculation for the 
coefficients in the literature.  

There was something very interesting found in 
[16], where the authors described the relation between 
the level of adhesion and different types of 
contamination, which can be dry, wet, oil, dry leaves 
and wet leaves They are all considered to be a 

contaminant of rail tracks.  However, it was difficult 
to add all these different types of contaminants to our 
selection of factors because their number grew 
significantly and we do not know their correlation. 
Therefore, it was decided not to separate these 
factors.  For example, we assumed that the condition 
for wet leaves would be equal to rain, i.e. we wanted 
to show the presence of “water” in the wheel/rail 

contact when we have wet leaves as contaminants.
The data-set contains 14 columns and 315 rows. 

The columns with the adhesion and speed values 
were filled by their numerical values.  For factors 
which cannot have quantitative data values, symbol 
"+" was used to show the presence of that factor in 
the experiment, and symbol "-" for its absence. The 
factors which have data values or status (are they 
present or absent) not described in the experiment, 
were left empty, without their data values.

2.4.2 More Problems Encountered

One of the first problems encountered when 
inspecting the potential training data set was the 
absence of data values. However careful we were when 
defining the factors, we could not avoid this problem:
the absence of values in the data set signals that they 
can not be found in the literature, i.e. in scientifically 
proved experiments. This in turn creates another 
problem: the lack of data is an obstacle for defining 
features and obtaining precision of ML classifiers. 

The lack of data from the literature is not unusual. 
All these experiments have to be done by monitoring 
maximum 1-2 factors and keep all others constant. This 
is how these experiments could give viable results. 
They do not have an issue of missing information: they 
just keep a few factors “constant” in order to monitor a 
chosen factor for its impact on adhesion.

Therefore, this problem is aggravated with the 
following discoveries:

a) Most of the rows contain information with 
coefficient of adhesion value in column A and 
the value of one factor which influences it.  The 
rest of the data values for other factors are 
unmarked (factors have no data values).

b) Values for some of the factors in some 
experiments might be irrelevant.  They are 
sometimes either not measured or are unknown.

c) Some data values for factors are numbers, some 
are ranges of numbers, some data values for 
identical factors are given in different 
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measurement units and some are just simply 
NOT PRESENT. 

Examples of missing values in the data set are 
numerous, but legitimate.  Therefore all options where
carefully explored in order to minimize the number of 
missing values, without damaging the semantic of data.

We give one example where our discretion was 
used, while not interfering with the semantic of data.  
For example, Figure 3 shows that the row which 
contains a data value for the coefficient of adhesion has 
only one data value which is "+" in the grease column. 
On the one hand, the values for temperature for air and 
rail, surface roughness, speed, and contact pressure are 
REALLY UN-KNOWN for this value of adhesion. 
This is not all. Oil and organic contamination factors 
are not applicable to this example, and in our data set, 
it looks like information about them is missing! This is 
a significant anomaly in the data set and quite 
dangerous to use in any learning algorithms.

Figure 3: “Empty space” problem

Figure 4. shows a chosen “solution”, which might 
eliminate this problem and possibly populate the data 
set with more values. When the experiment stated that 
for dry railway condition the values for rain, humid 
weather, oil, grease, and organic contamination are not 
applicable, these values were marked as "-" with a 
yellow background color.  This is how far we could go 
with a potential labeling of data without impacting the 
semantics of data taken from the experiments.

Figure 4 Potential solution for a missing data value

Figure 4 allows for a better visualization of the 
content of the data set and may help in the definition of 
the classifier.  The values for the Fe2O3 and sunshine 
conditions (factors) were not often found in the 
literature and we found only one publication, but with 
the values for friction, not for adhesion. There were 
also numerous problems with the definitions of 
contaminants, but no co-relation was found between 
their data values.  Do contaminants interfere with each 
other and in which conditions?

3. Discussion and Conclusions

The previous section illustrates the process of 
creating a training data set for predicting slippery 
conditions between hard surfaces applicable to rail 
traffic.  However precise and determined we were to 
create a coherent and correct semantic of the data set, 
numerous problems were detected.  Apparently, every 
step carried out in the process of creating a training 
data set, ended up with a list of problems.

It started from the beginning, when it was 
discovered that it was not possible to measure adhesion 
and friction between wheels and rails from real life
experiments. Therefore no live generated data, created 
by trains in motion, can be used for any data set.  This 
means that it can not be assumed that rail transport can
generate data, while trains are running, which could be 
used in calculations of a/f coefficients.  

In this study, the process of data collection created 
a data set which is accurate, but it is half-empty, due to 
numerous missing data.  Under no circumstances could 
they be substituted with values because there are no 
scientifically proven experiments for such an action.

Therefore, most of the time problems were collated, 
which could not help in proposing solutions for 
creating a reliable data set. 

However, the following options can be debated. 
Option 1 - Small manual improvements of the data 

set could be carried out without affecting the semantic 
of data, by adding various labels, symbols and tags to 
the data set and possibly merging columns to minimize 
the impact missing values may have on ML classifiers.  
There are commercial software tools and data science 
environments which encourage us to do so. 

Option 2 - This data set and experiments with all 
possible options could be used when defining a ML 
classifier and, manipulating feature selections may
detect if it can help in minimizing the impact of
deficiencies in our data set [24,25,26].

Option 3 - Follow the philosophy from Mechanical 
Engineering practices and mirroring each experiment 
with a particular settings in/fraction of the data set, 
should be tested. For example, a (the) main factor(s)
used in one experiment are to become the only 
feature(s) of a particular instance of the classifier.  
How would feature selection impact classifier 
precision upon our data set?

Option 4 - A classifier could be used just as an 
indication for potential danger in rail transport: the data 
set may just raise awareness of potentially slippery 
conditions in transport without making firm 
conclusions.  This may be useful in situations when 
changes in conditions in transport are either clear, or 
obvious or frequently described in the data set, and the 
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classifier would recognize them.  Would rail 
companies need this?

Option 5 – There is a possibility of investigating
the active learning model [27] which has been used in 
improving the quality of a training data set in
unsupervised learning [28].  The process of creating 
the training data set is not automatic and relies on 
human involvement. Therefore it would be still cost 
effective to pre-build an ML classifier which can label 
missing data values through human intervention.  This 
newly “trained” data could be merged with the current 
training data set.  Similar ideas have been used for 
unsupervised deep learning for image classifications
[29], and SVM for text classification [30].  Similarly, 
transfer learning might be of help here [31,32]. 

Option 6 – Various models of data collections for 
the purpose of running ML algorithms [33] could also 
be investigated.  However, the sensitivity of this 
problem domain and the fact that we need the highest 
level of classifier’s accuracy upon the training data set 
might not open a door to data from shared sources.

3.1. Could Full Scale Exploratory Data Analytics 
Help?

The competing worlds of data science and statistics
have not been properly debated in publications and it is 
no secret that both sides have different methods and 
goals.  In computational algorithms, which are 
underpinned by learning and predictive software 
technologies, we focus on their accuracy, and the 
accuracy of prediction models we create for a 
particular problem domain.  Data scientists walk from 
one model to another and keep an eye on their 
accuracy.  This is not the same as in the world of 
statistics.  Statisticians carefully verify their models, by 
looking if the data, chosen for a model, does not 
violate its conditions and assumptions (i.e. the model’s 
semantics), before they run it.  Therefore, it does not 
surprise us that data scientists advocate the process of 
exploratory data analytics (EDA) [34,35], which uses 
summary statistics and visualization in order to extract 
insights from the data which could help in modelling 
ML algorithms.

Practices of EDA from the industry, which claim to 
guarantee the extraction of meaningful insights from 
raw data, using various software tools, suggest using 
descriptive statistics, correlation, analyses of variance 
and simple semantic grouping of data, which could 
also address missing values in the training data set, 
which obviously make sense.  This study uses a 
specific EDA, which is partially described in section 
2.4.2.  It included only correlation, grouping of data 
and addressing missing values.  Descriptive statistics
and analysis of variance was not considered because 

throughout the process of collecting data, it become 
obvious that calculations of a/f coefficients, essential
for training algorithms were not always reliable, as 
debated in section 2.   Data entries into the training 
data set were restricted to values which are guaranteed
and CORRECT, but

a) the data set could not grow and
b) the quantity of missing data did grow.  

Consequently in order to address missing values, 
through data grouping and correlation, as shown in 
Figures 3 and 4, nothing “new” was discovered, which 
was not previously, or intuitively obvious.  There was 
no “insight” from data through EDA which could not 
have been obtained through the process of creating the
training data set.

It is important to note that correlation, which is 
considered to be a part of EDA, proved to be more
useful in the definition of a classifier, particularly when 
measuring if feature selections affect the precision of 
predictions [36].  However, feature selections should 
be performed upon a relatively reliable training data 
set, and it is debatable if, during the process of 
classifier definition, it is wise to go back to the training 
data set and try to “get more insight” from it. For 
computer scientists, it is prudent to distinguish between 

(i) defining the semantic of data and 
(ii) defining a computational model which uses 
the data.

In other words there should be a subtle difference
between defining a training data and defining a ML 
classifier.

For readers interested in results of co-relation 
between selected features of the ML classifier and a/f 
levels, the visualization of potential co-relation 
between data values of a selection of features and the 
average value of adhesion for the same features, was 
used.  It was important to find out if changes in 
slippery to non-slippery conditions, and vice versa, 
appear when the data values for each feature change.  
Apart from a few known features: axle load in kN, 
Hertzian contact pressure, speed, surface roughness 
and lubricant temperature, which have also been 
described in the literature on the calculations of a/f 
coefficients, there were no further or “new” insights 
found within the semantic of the data set.

To summarize, if EDA is supposed to be performed 
as a part of initial investigation on data, to detect 
patterns and anomalies in particular, then in this 
particular problem domain, EDA failed to give us any 
results which could be interpreted as a new insight in 
the data set.

Page 897



3.2. Conclusions and Potential Future Work

The main outcome of this study is that there is no 
evidence in scientifically published papers that ML 
classifiers may predict accurately slippery conditions 
in rail transport, because we can not guarantee the 
reliability of its training data set.  Only by obtaining 
data from real life and scientifically proven 
experiments could a reliable, i.e. trustworthy training
data set for ML classifiers be created.

However there are publications which address the 
problem of low adhesion in rail transport by looking at 
adhesion estimation through model-based and 
multiple-model based methods [37], model based 
condition monitoring [38], vibration [39], motor 
current differences [40] and hybrid slip control 
methods [41], [42], [43], to mention just a few.  It is 
unfortunate that in most of these cases, low adhesion is 
actually detected AFTER it occurs, which makes these 
solutions impractical to use in real life and thus its 
results are unsuitable for a training data set.  
Furthermore, some of these methods require, for 
example, precise measurements of rotational wheel 
speed and absolute vehicle speed, which are both 
problematic to obtain in real time.  Some of these 
methods detect adhesion only during movements, and 
some have problems with the definition of velocity, 
which aggravates the problem.

Due to the complexity of the problem, it is not 
possible directly to measure all factors which create 
low adhesions, and the lack of real-time information 
which fully describes areas of low-adhesion between 
hard-surfaces exuberates the problem.  

An interesting study for the detection of adhesion 
and its changes in [44] exploits the variations in the 
dynamic behavior of the railway wheelset caused by 
the contact condition changes.  The authors use a bank 
of Kalman filters, designed at selected operation points 
for the adhesion estimation and fuzzy logic in order to 
identify the contact conditions by examining the 
residuals from the Kalman filters.  The increased 
number of these filters may improve the accuracy of 
calculations, but they require time, which is impractical 
in real life and in turn, may affect a/f coefficient 
values.  Also, Kalman filter accuracy is limited in cases 
of low friction and large track irregularities [45].

Therefore, the results of these experiments were 
not considered to be suitable for the training data set in 
this study.

What could be proposed?
In the first place, the scientific community might 

need around table talk, where mechanical engineers, 
physicists, computer scientists and statisticians would 
sit together and analyze the problem of and agree on 
the way of determining adhesions and friction levels.  

We are in the third decade of the 21st century, where 
computational models accommodate current ML 
algorithms, which differ from the traditional process of 
performing calculations for detecting slippery
conditions in rail transport, which existed more than 
100 years ago.

Therefore, for computer scientists the following 
question still holds. If the process of creating a reliable 
training data set for this problem domain is 
troublesome, with numerous obstacles encountered, 
should not this process have been abandoned earlier?

There are two possibilities which should be 
considered in order to address the question above, but 
they do not rely solely on predictive and learning
technologies.  If data scientists still wish to predict 
slippery levels in rail transport, based on all known 
factors which influence them, they should start looking 
at software solutions outside statistics and predictions.  
Just by assuming that a vast amount of data, which 
may be potentially generated by modern sensor 
technologies in rail transport, would guarantee the 
success of predictions for slippery driving conditions,
through ML classifiers, is simply wrong.

The first possibility considers the power of 
semantic technologies, their manipulation of semantics 
through description logic and reasoning with rules, we 
could use our training data set in the definition of a
semantic classifier, which would be able to understand 
the meaning of missing data.  In other words, a 
dynamic definition of a classifier and its features 
would be governed by ontological reasoning and we 
could guard the classification and learning from the
data set through reasoning. 

The second possibility focuses on algorithms. It 
appears that all of them, currently used in ML 
represent very well tried and old probabilistic or linear 
models.  Has the time arrived to start thinking 
differently in terms of algorithms, which would 
support what we wanted to do here? Should we start 
thinking about data centric ML instead of focusing on 
algorithms?

There is absolutely no way of knowing exactly, 
what the effectiveness of the ML classifiers in this 
study would be, even if all available ML classifiers are 
run upon the data set.  They might score high in their 
precision level [36], [46], but would it be enough for 
sitting comfortably on a train managed by predictions 
based on the created training data set?  Without 
thorough analysis of data, while preparing the training 
data set, how would anyone know WHERE a danger 
is?  It is not that data scientists might not be aware of 
deficiencies of the data.  They will not be aware of 
potentially dangerous results.

Should we blame algorithms for this?
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