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Abstract

Condition-based monitoring (CBM) systems have gained huge popularity in recent
years with technological leaps that have arisen. Sensor-technology, communication
systems, and computational capability have introduced innovative systems to moni-
tor, analyze, and identify failures in industrial plants, production lines, machinery, and
equipment. The gas and oil industry lose billions of dollars yearly related to abnormal
events. Thus, abnormal event management (AEM) has become their number one pri-
ority, which aims to timely detect and diagnose abnormal events so that preventive
actions can be taken.

Similar to AEM, this research deals with the detection and classification of faulty
events in offshore oil wells by creating a CBM system. The events used in this work
are a part of the 3W database developed by Petrobras, considered the world’s third-
largest oil producer. Seven events categorized as faulty events are considered, as well
as instances considered as normal operation. This work conducts three experiments.
The first experiment is related to a new feature extraction strategy, while the last two
experiments are related to two different classification scenarios. The proposed systems
achieve an overall accuracy of 90%, indicating that the system is not only able to detect
faulty events but also successfully anticipating incoming failures.
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Chapter 1

Introduction

The interest in condition-based monitoring of industrial machines has grown in recent
years. It is one of the most innovative approaches to cope with machinery failures and
is a solution employed by corporations and governments alike. This technique has
been around for a quite some time, especially in terms of military usage for aircraft,
and can be traced back to the second world war. In that period, Britain’s Royal Air
Force was plagued by equipment issues and in some squadrons, less than half of the
aircraft were operational. The man who was in charge of the maintenance at the time
was C.H Waddington, and through his observations, he came to the conclusion that
the rate of failure or unscheduled repairs, were more frequent after scheduled main-
tenance. This phenomenon has become known as the ’Waddington Effect’ and led to
the very first development in condition-based monitoring. Their solution was to adjust
the maintenance process to correspond with the physical condition of the equipment
based on reported issues, and the frequency of its use [8, 27].

The advancements in sensor technology, communication systems for data acquisi-
tion, storage, and computational capability have caused an era of massive automatic
data collection. These advancements in technology and large gatherings of data have
caused a paradigm shift, which provides opportunities to develop innovative solutions
and systems. Smart technology has become a term for such systems and Germany has
successfully launched a project known as "Industry 4.0" to revitalize the industry based
on the aforementioned. Today, condition-based monitoring (CBM) applies state-of-art
technology and is often related to "smart technology" solutions such as Cyber-physical
systems (CPS) and Internet of Things (IoT) systems [15, 16]. These systems aim to im-
prove the efficiency, reliability, and productivity of industrial applications. The solu-
tions are often with data-driven analysis, where acoustic and vibration signals, current,
and temperature are examples of features that are monitored to identify the condition
of bearings, motors, and other machinery [1].

1.1 Condition-based monitoring

Condition-based monitoring has become a method adopted to monitor and identify
the condition of processes, machinery, or component under investigation. It is often
used with two different strategies. One of the strategies is directly related to mainte-
nance and aims at perceiving and anticipating the remaining useful lifetime of a com-
ponent, machine, or process so that planned maintenance can be scheduled. The other
strategy aims at anticipating and detecting incoming failures, so that preventive ac-
tions can be taken during its continuous operation to preserve a stable production by
avoiding unexpected downtime. However, the goal of any intelligent CBM system
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is to make decisions without human interaction. An example of enabling technolo-
gies of this kind includes sensors with built-in intelligence (SMART sensors), which
are capable of extracting rich, high-grade information in combination with algorithms
base on machine learning (ML), that can analyze trends within raw-sensory data [10].
CBM systems consist of three main steps, namely data acquisition, data processing,
and maintenance decision-making. The first step collects and stores data relevant to
the system. The second step starts by preprocessing and analyzing the data collected
from the previous step for better understanding and interpretation of the data. Here,
techniques such as time-domain and frequency-domain analysis are common. The last
and final step of the system is decision-making support, where the goal is to provide
prognostics to predict fault or failures before they occur [12].

1.2 Oil and gas industry

The oil and gas industry has some of the most demanding requirements for operational
safety, productivity, and efficiency. This is because undesirable abnormal events can
cause production losses for days and even weeks. It is estimated that the oil and gas
industries lose 20 billion dollars every year. Thus, they have rated abnormal event
management (AEM) as their number one problem that needs to be solved. As CBM
systems, AEM address fault detection and diagnosis. Through different means, it aims
to timely detect, diagnose, and correct abnormal conditions of faults in a process [33].

1.2.1 Current State-of-the-art

Applying algorithms for detection and classification in the oil and gas industry have
become important tools during the early (e.g., drilling and construction) and late stages
(e.g., production phase and operating the oil well with all its subsystems) of an oil well.
This can be as early as the well-testing interpretation, which was investigated by Ah-
madi et al. 2017. That work presents an approach to determine underlying reservoir
models from noisy pressure data. The authors investigate the use of random forests
(RF), Support Vector Machine (SVM), linear regression (LR), and probabilistic neural
networks (PNN) as classifiers for well-testing model classification, from pressure tran-
sient test data with geometric features. That work demonstrates prominent results,
where the RF classifier achieved an accuracy as high as 94.9%. Other examples of de-
tection techniques and algorithms in the early stages of the oil well include the work of
Tang et al. 2019. In that work, the authors present a method that uses real-time drilling
data to automatically detect flow influx during drilling. The authors investigate the use
of statistical features for this purpose, such as, quantifying the increase and decrease in
local fluctuations. This approach showed reliable performance and was able to predict
undesirable flow influx trends 10 minutes before reported detection, on average.

Examples of detection algorithms in later stages include the work of Liu et al. 2011,
which examined an approach for semi-supervised classification to detect failures in ar-
tificial lift systems. Artificial lift systems are techniques to enhance oil production by
increasing the pressure within the reservoir, which directly lifts fluids to the surface.
The authors present a framework that applies feature engineering with clustering and
semi-supervised learning techniques to enable learning of failures/normal patterns
from noisy and poorly labeled multivariate time series. The authors explored three
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different classifiers: Decision trees (DT), SVM, and Bayes Net. Among those three,
SVM achieved the highest overall accuracy of 98.5%, while Bayes Net achieved 96.4%
and DT achieved 97% accuracy. In addition, Liu, Li, and Xu 2019 presents an integrated
model for the detection and location of leakages in pipelines. The authors investigate
two modules, one that can detect larger leakages and another for micro-leakages. Patri
et al. 2015 present an approach to predict valve failures in gas compressors from oil
fields, with the use of sensor data from multiple sensors. The authors’ approach con-
sisted of the use of feature extraction and selection, combined with DT. Xie et al. 2019
presents data-driven models such as principal component analysis (PCA) and partial
least squares regression (PLSR) combined with statistical models to identify influenc-
ing factors and predicting failure rates of equipment based on data from six Norwegian
oil and gas facilities.

1.3 Thesis statement and contributions

The objective of this work is to research and develop a condition-based monitoring
(CBM) system that can identify and detect undesirable abnormal events before and
when they occur. A full methodology to develop and implement the aforementioned
will be addressed. This includes preprocessing the data in an early stage, calculat-
ing statistical features and reducing dimensionality with PCA and training a machine
learning algorithm. This thesis comprises the following sub-tasks:

1. Analyse current solutions and applications of CBM systems related to this work.

2. Provide a literature review on machine learning concepts, from the early stages
of extracting statistical features, transforming data to principal components, and
training the algorithm.

3. Implement and train a CBM system with the acquired 3W dataset to identify and
detect real and simulated undesirable abnormal events in oil wells.

4. Test the CBM system and assess the performance and capability of the solution.

5. Provide a final evaluation and assessment for future applications.

1.3.1 Main contributions

The main goal of this thesis was to implement and train a machine learning-based
CBM system, which was able to classify normal and faulty events in the 3W dataset.
In order to illustrate and experiment with the CBM system, some of the end results is
summarized below.

Implementing the CBM methodology

In this work, a proper CBM system has been implemented based on the common
methodology used in the industry. This consists of: cleaning raw-sensor data, where
factors such as nan values and unlabeled observations are treated; Extracting relevant
and rich features from the cleaned sensor data; reducing the dimensionality of the data,
such that it can be processed through a machine learning algorithm without causing
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memory leakage; and, training and applying an ML algorithm to detect and classify
faults.

Exploring individual window sizes for feature extraction

An approach to apply individual window sizes for each fault type was introduced
in this work. This was done by applying the grid search for hyperparameter opti-
mization, where the window size was analyzed for all faults. The grid search showed
promising results and designated distinct behaviors for each fault type. Therefore,
these best results for each classifier were applied for further use when different classi-
fication scenarios were investigated.

Investigation of different classification scenarios

The implemented CBM system was introduced with a new classification scenario,
which is referred to as "fault versus not fault". This classification scenario aims to im-
plement and train one binary classifier for each fault against all other faults and normal
events, in the 3W dataset. Another classification scenario that has been implemented is
known as, "fault versus normal". This method also applies binary classifiers but aims
at identifying and detecting faulty events against normal events. Furthermore, these
classification methods were tested and assessed in a CBM manner, where factors such
as reliability and efficiency are important factors.

1.4 Outline

The remainder of this thesis is structured as follows. Chapter 2 introduces the basic
concepts of machine learning to provide the technical knowledge required to under-
stand this work. Chapter 3 presents background knowledge about sub-sea oil wells
and their sensors. Moreover, the chapter discusses the 3W dataset and the eight dif-
ferent types of faults characterized as undesirable abnormal events in oil wells. More-
over, the challenges related to the 3W dataset is reviewed. Chapter 4 elaborates on the
strategy used in the implementation of the CBM system. This relates to how the data
is cleaned, which statistical features are used and how they are extracted, and how
and why PCA is used. Furthermore, important factors such as algorithm choice, the
training routine, and how to evaluate the fit models are reviewed. Chapter 5 provides
the test results related to model performance, and an in-depth analysis is conducted.
Chapter 6 is the last chapter, which presents conclusions and summarizes the achieved
results of the proposed system. Furthermore, future works are discussed with ideas
on how to learn more about the problem and perhaps improve the proposed system in
this work.
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Chapter 2

Machine Learning

This chapter covers the general aspects of machine learning needed to understand the
results presented in this work. This has been done by providing an overview of ma-
chine learning, where topics such as supervised learning, unsupervised learning, re-
gression, and classification are discussed. Subsequently, the importance of features is
reviewed and how to extract those features with statistical tools. Furthermore, why
and how to apply dimensionality reduction are reviewed. Next, the focus relies on
presenting the methods applied in machine learning for classification, such as decision
trees and random forests, where the construction of the classifiers and how they work
are explained with a few real-world examples.

2.1 Overview

The goal of machine learning (ML) is to learn and adapt from experience by detecting
meaningful patterns in huge amounts of data and then use these learned patterns to
analyze future data. The learning of an ML algorithm is usually divided into two main
types, supervised and unsupervised learning. The supervised learning methodology
is done by mapping inputs x to outputs y, with a target function f : x → y, given a
labeled set of input-output pairs D = (xi, yi)

N
i=1, where D denotes the training set and

N is the number of training samples. On the contrary, unsupervised learning does
not apply labeled data. Only the inputs are given, D = (xi)

N
i=1, where the goal is to

find patterns that might be of interest, which is why it is sometimes referred to as
knowledge discovery [23].

The input x of an ML algorithm applying supervised learning can be everything
from an image to a sentence or time-series, which is converted to a d-dimensional
vector of numbers. For instance, a full high-definition image will be converted to a
1920×1080×3 dimensional vector (Width×Height×RGB), where the red-green-blue
(RGB) channels of the image represent the features. Furthermore, the output yi is ei-
ther categorical or real-valued, depending on the problem. If the problem is to classify
animals, such as either a cat or a dog, then the problem is known as classification, and
the output form is a finite set of categorical values, y = [C1, C2, .., Cn], while problems
that predict real-values are known as regression. Applications such as predicting the
steering angle of a self-driving car or predicting stock-market prices are few examples
of what a regression problem may be.
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2.1.1 Neural networks

Feed-forward neural networks known as multilayer perceptron are a popular archi-
tecture for pattern recognition in machine learning. They consist of several neurons,
also known as units arranged in a series of hidden layers and have their origin from
attempting to represent information processing in biological systems [4].

FIGURE 2.1: Illustration of a neural network.

Figure 2.1 illustrates a feed-forward neural network with an input layer, two hid-
den layers, and an output layer. In this architecture, each hidden layer’s neuron is
fully connected to all previous and next layers’ neurons. The input information (i.e.,
X1, X2, X3) is fed to the input layer and propagates forward through the ith neuron in
the jth hidden layer until it has reached the end of the output layer (i.e., y1, y2). In a
classifier problem, for instance, the output layer represents the class scores in the form
of an output vector. The relation between the next layer’s input to the previous layer
is given by

aji = σ((wjik ∗ a
j−1
k ) + bji ), (2.1)

where σ denotes an activation function, wjik represents the weight from the kth neuron
in the i − 1th layer to the ith neuron in the jth layer. bji is the bias in the jth layer from
the ith neuron. Moreover, the activation output aji is the output value of the so-called
activation function, commonly defined in Equation (2.2), where zji is used to represent∑
k

(wjika
j−1
k + bji ), where

aji = σ(zji ) =
1

1 + e−h
j
i

. (2.2)

The purpose of the activation functions in neural networks is to restrict the outputs
from achieving huge values. Therefore, non-linear functions are applied to limit the
values such that they are mapped in a range between −1 and 1.
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2.2 Feature extraction

When dealing with huge datasets, there are often attributes which do not provide any
valuable information to solve a complex task. Raw measured data often has noise, and
the relationship among the objects are complex. In such circumstances, the data is pre-
possessed to solve this challenge, which is often referred to as feature extraction. This
is done by applying statistical and signal processing tools to find the strongest depen-
dencies among these objects with the intent of extracting meaningful information to
the ML algorithm.

2.2.1 Statistical features

Extracting features can be very powerful, and it is used to simplify a complex task.
This was shown in Goldberg et al. [9]. For instance, a single statistical feature was ap-
plied to monitored signals to detect site disruptions on eBay. The approach excelled
compared to the previous rule-based system and was able to detect anomalies that
the previous system was incapable of. In the work of Raghavenda et al. [26], a dual
moving median was used as a statistical feature in fault prediction for artificial lift sys-
tems in oil fields. In that approach, the global median was used to represent long-term
performance in terms of months, a mid-term median for recent performance such as
over a past week and one short-term median for current performance representing the
most recent number of days. A similar approach was used in the work of Tang et al.
[30], which investigated a new method to detect flow influx during real-time drilling.
One of the statistical features they introduced was the divergence of moving average
(DMA). This statistical feature was applied to quantify the increase and decrease in lo-
cal fluctuations. The maximum, minimum, median, and mean values are a few simple
statistical tools that can be applied to build statistical features of raw measured data.
Table 2.1 shows a summary of commonly used statistical features in ML, with their
respective equations.
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TABLE 2.1: Summary of Statistical Features Applied in ML.

No. Name Equation

1 Maximum xj ≥ xi, for all x ∈ X (2.3)

2 Minimum xj ≤ xi, for all x ∈ X (2.4)

3 Median


XN

2
+XN+1

2

2 , when N is even.
XN+1

2
, when N is odd.

(2.5)

4 Mean
1

n

n∑
i=1

xi (2.6)

5 Variance
1

n

n∑
i=1

(xi − x)2 (2.7)

6 Standard de-
viation

√√√√ 1

n

n∑
i=1

(xi − x)2 (2.8)

7 Skewness
1

N

n∑
i=1

(xi − x)3

(
√
(xi − x)2)

3
2

(2.9)

8 Kurtosis
1

N

n∑
i=1

(xi − x)4

(
√
(xi − x)2)4

(2.10)

2.3 Dimensionality reduction

Reducing the dimensionality to a lower-dimensional subspace is common in ML when
dealing with high dimensional data. In the case of images, often it is redundant to use
all three colour-channels. Hence, the image can be converted from RGB full colour to
grayscale. This means that the three colour-channels are converted to a single channel,
which only represents brightness information without any apparent colour for each
individual pixel in the image. An important note is that re-scaling the size of an image,
which is common in ML is not the same as dimensionality reduction. Even though
it may improve the algorithm by removing inessential information. Reducing the di-
mensionality of the data has several benefits, such as, the computational time of an ML
algorithm execution, due to aspects as memory allocation and calculations. In addi-
tion, if done correctly, it often results in enhanced model performance, in the manner
of predictive accuracy. A common statistical tool to do this is Principal Component
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Analysis (PCA), which filters out redundant features and focuses on the essential fea-
tures [23].

2.3.1 Principal component analysis

The goal of the PCA is to reduce the dimensionality of a dataset consisting of a large
number of connected variables, at the same time keeping the variation present in the
dataset. Principal Components (PCs) are variables that are transformed and achieving
this objective. The PCs are uncorrelated and ordered in a specific hierarchy, such that
the first few PCs retain the highest variation present in all of the original dataset [13].
Simplified, the PCA is done in four steps:

1. The first step is normalization, based on observed mean and standard deviation
(i.e., mean of zero and standard deviation of 1), also known as standardization.

zi =
xi − x
S

, (2.11)

where x and S denote the mean and standard deviation, respectively.

2. Second step is to calculate the covariance matrix:

Cov(X, Y ) =
1

n− 1

n∑
i=1

(xi − x)× (yi − y), (2.12)

C =

(
cov(x, x) cov(x, y)
cov(y, x) cov(y, y)

)
. (2.13)

3. Third step is to find the eigenvectors and eigenvalues of the covariance matrix:

Cv = λv, (2.14)

where v is the eigenvector of the covariance matrix C with eigenvalue λ.

4. The fourth step is to hierarchically sort the eigenvectors by eigenvalues, where
the eigenvectors define the direction of the new axis and the eigenvalues with the
highest value define the eigenvector with the highest variance in terms of energy.
Thus, the eigenvectors with the smallest eigenvalues will be discarded for the
new subspace, which has lower dimensionality.

2.4 Decision tree

In machine learning, decision trees have been widely used in classification and regres-
sion problems in different disciplines. The goal of a decision tree is to reach a final
conclusion of a given problem statement (e.g., classify a person’s gender) by eliminat-
ing assumptions with true or false questions. The structure of the model are similar
to a tree, where the flow of the input data starts from the root node and propagates
through the internal nodes down to the terminal node, also known as the leaves, based
on true or false assumptions in each node.
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To get a better understanding of how decision trees work, [Louppe, 2014] has defined
a decision tree with the following five concepts [19]:

1. A tree is a graph G = (V,E) in which any two vertices (or nodes) are connected
by exactly one path.

2. A rooted tree is a tree in which one of the nodes has been designated as the root.
In our case, we additionally assume that a rooted tree is a directed graph, where
all edges are directed away from the root.

3. If there exists an edge from t1 to t2 (i.e., if (t1, t2) ∈ E) then node t1 is said to be
the parent of node t2 while node t2 is said to be a child of node t1.

4. In a rooted tree, a node is said to be internal if it has one or more children and
terminal if it has no children. Terminal nodes are also known as leaves.

5. A binary tree is a rooted tree where all internal nodes have exactly two children.

With the given concepts above, a decision tree can be defined as a model with a
target function h : X → Y , represented with a rooted tree Xt0 = X and Xt2 ⊆ Xt1 ⊆ X
for all (t1, t2) ∈ E. Furthermore, the internal nodes t of the rooted tree are labeled with
a split st taken from a set of binary questions (i.e., true or false), Q. The terminal node
are labeled with the best guess value ŷ ∈ Y . When an input x propagates through a
decision tree model, it ends up in a terminal node, also called a leaf, where the label of
this leaf is the final output prediction value h(x).

Learning a decision tree according to some dataset D is basically about deciding
the tree structure. This is done by following Occam’s Razor principle. The principle
concludes that with a given occurrence of any problem, the solution to the problem is
most likely the solution with the fewest assumptions. If this is applied to the decision
tree. The best-constructed decision tree will most likely be the shallowest tree h∗, which
minimizes the error Ein. The impurity measure i(t) evaluates the goodness of a given
node t, which is determined by the purity of the node and predictions. The purer the
node and the better predictions ŷt(x) have, the smaller i(t) [19]. The impurity decrease
of a binary split s ∈ Q is given by

∆i(s, t) = i(t)− NtL

Nt

i(tL)− NtR

Nt

i(tR), (2.15)

whereNtL andNtR denotes the left node and right node, respectively, andNt is the size
of the subset Dt. The two most commonly used impurity functions for classification
trees are the Shannon Entropy and the Gini index. The Shannon Entropy quantifies the
uncertainty of Y within node t, and is given by

iH(t) = −
J∑
k=1

p(ck|t)log2[p(ck|t)], c ∈ Y. (2.16)

The Gini index defined as

iG(t) =
J∑
k=1

p(ck|t)[1− p(ck|t)], c ∈ Y, (2.17)
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measures how often a randomly chosen object x would be misclassified if it was ran-
domly labeled by a class c ∈ Y according to the distribution p(y|t).

To know if a split of a node is good two main factors that have to be evaluated.
Those two factors are the entropy and the information gain, where entropy is a mea-
surement of randomness. So, a good binary split s ∈ Q of a dataset D produces two
sets of data which provide fewer assumptions required to identify a class, thus, reduc-
ing the randomness (entropy) and increasing the information gain. Thus, the best split
s ∈ Q is the split that achieves the maximum information gain and lowest entropy.
Constructing and training decision trees are usually done with randomized methods
which will be reviewed in next section.

2.5 Random forests

The principle of randomized ensemble methods for decision trees are known as ran-
dom forests. Decision trees are prone to the generalization error which is the phe-
nomenon of poor performance on unseen data. Therefore, a randomized ensemble
methods is used to implement random perturbations into the learning procedure. By
utilizing this method, the prediction variance is reduced while the respective bias is not
increased greatly. This is done such that several individual models can be produced
from a single learning set L and then combining the prediction of those models to form
the prediction of the complete ensemble [19]. Consider a set ofM = [m1,m2, ..,M ] ran-
domized models which have learned on the same data L, but each model built on a set
of random seed of features θm. Ensemble methods operate by combining the predic-
tions of these models into a new ensemble model, such that the generalization error of
the ensemble is reduced compared to any of the individual randomized models. The
predictions in classification are usually aggregated by considering the models in the
ensemble and then resort to the class with the majority of the votes to form a final
prediction [19], and is given by

ŷ = arg max
c∈Y

1

M

M∑
m=1

pm(c|x). (2.18)

Random forest methods are typically divided into two main categories, based on
how the random perturbations are implemented into the learning procedure. The two
methods are not mutually exclusive and can be combined. The two methods are as
follows:

• Bagging: This method consists of randomizing the data by bootstrap aggrega-
tion, such that each tree grows from a random selection of examples in the learn-
ing set L. It is done by creating a form of replicate datasets LB, where each
replicated dataset is drawn at random and consists of NB samples but with re-
placements of L. Each sample NB may or may not appear repeated times in any
particular LB [6]. In order to build the forest, we train a modelMB using LB and
repeat the process to produce an ensemble ofMmodels.

• Randomized node optimization: This method consists of using a random se-
lection of features to split each node, where each node is split from a random
selection among the K best splits. The K best splits are the subset of features of
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interest. Each node can be split by one or more features. Usually a split of more
than 1 feature is applied. To dive into greater detail, consider a complete set of
parameters T where each parameter θi can be used to make a decision or split
at a given node j. When training the jth node, only a small subset Tj ⊂ T of
such parameters is available [7]. Therefore, undertraining a tree is achieved by
optimizing each split node j, and is defined as

θ∗j = arg max
θj∈Tj

. Ij, (2.19)

where I represents the information gain based on the entropy. The degree of
randomness is controlled by the ratio of two parameters, p and d, where if p = 1,
the maximum randomness and uncorrelated trees are achieved. On the other
hand, all the trees are identical and there is no randomness if p = d.

Random forests have been used in a wide set of disciplines, such as in the oil field.
Anderson [3] introduced the Petroleum and Analytics Learning Machine (PALM), which
is a machine-learning-based analysis system that uses random forests as one of its clas-
sifiers to to maximize the performance of oil and gas wells and pipeline systems. This
is accomplished by predicting the production volumes of oil, natural gas, and water as
each well ages.

2.6 Summary

This chapter have discussed several techniques applied in the field of machine learn-
ing, from the early stages of pre-processing the data to feeding an ML algorithm with
data for classification. Some relevant features to this work have been presented and
discussed along with the impact they can have to different applications. In addition,
we have presented why dimensionality reduction is beneficial and how to apply it with
PCA. Furthermore, the theory of constructing, optimizing and training machine learn-
ing classifiers that will be applied in this work has been covered. In the next chapter,
the 3W dataset is introduced, which most of this work is based upon. The different
events characterized as faults will be reviewed, and relevant information about off-
shore oil wells. Furthermore, a discussion is provided to understand the challenges
with the dataset.
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Chapter 3

Data Analysis

This chapter aims to provide an understanding of the 3W dataset that is used in this
work. This is done by presenting relevant information about offshore oil wells and
sensors that are used to detect undesirable events during oil well production, followed
by a discussion about the dataset and the events that may occur in oil wells.

3.1 Offshore oil wells

An offshore oil well is a unit installed on the bottom of the seabed to produce oil from
large oil and gas reservoirs. The term "oil well" is used for a larger system consisting
of several subsystems, such as, a production tubing, which is the main path for the
well fluid; a wellhead to ensure structural safety during drilling and production; and
a "Christmas tree" installed on the top of the wellhead, which gives access to the pro-
duction tubing and controls the production with several valves and sensors that can
be accessed from the surface. The communication link between the surface and the
oil well on the seabed is referred to as an "umbilical", which is an electro-hydraulic
unit used for transmission of electrical signals and hydraulic power. Furthermore, it
is connected between the Christmas tree and the surface control system (i.e., a nearby
production platform) [14]. Figure 3.1 illustrates an example of a typical offshore oil
well set-up, described above.
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FIGURE 3.1: Simplified schematic of a typical offshore naturally flowing well based
on [32].

3.2 3W dataset

The 3W dataset is a public dataset released by Petrobras [32], considered as the world’s
third-biggest oil company. The dataset consists of real, simulated, and hand-drawn
data of oil wells during operation. Moreover, the data shows instances of the oil well
during normal operation and more importantly when undesired events in the oil well
occur. This is shown through sensor readings extracted from five monitored variables:

1. Pressure at the Permanent Downhole Gauge (PDG);

2. Pressure at the Temperature and Pressure Transducer (TPT);

3. Temperature at the TPT;

4. Pressure upstream of the Production Choke Valve (PCK);

5. Temperature downstream of the PCK;

Temperature and Pressure Transducer (TPT) and Permanent Downhole Gauge (PDG) are
devices that consist of pressure and temperature sensors. PDG remains fixed in a cer-
tain position of the production tubing while the TPT is located at the Christmas tree.
The last device is the control valve that is responsible for well control at the surface,
this control valve is located at the beginning of the production unit and is called the
Production Choke Valve (PCK). Furthermore, The Downhole Safety Valve (DHSV) is an-
other device that is monitored, to the extent of the closure mechanism. The PCK and
DHSV and their impact are explained further on. Figures 3.1 and 3.2 show the location
of the mentioned devices.
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FIGURE 3.2: Simplified schematic of a typical subsea Christmas
tree based on [32].

The 3W dataset considers eight types of undesirable events in oil wells. Water, sed-
iment, natural gas, and their ratio and flow rate are important factors to these unde-
sirable events. As mentioned earlier, there are real, simulated, and hand-drawn un-
desirable events in the dataset, where all real instances have been extracted from the
plant information system of Petrobras. The simulated instances have been computer-
simulated with OLGA. OLGA is a highly used dynamic flow simulator used in the oil
industry. Furthermore, the hand-drawn instances have been made by experts within
the field. Simulated and hand-drawn instances were created in manner to reduce the
imbalance of the dataset. Due to the reasoning that 58% of the real instances (597 of all
1025 real instances) consist of normal operation, where no undesirable event occurs.
Moreover, the distribution among the real instances of undesirable events is uneven,
where 80% of all instances (344 instances of all 428 real instances of undesirable events)
belong to only one type of undesirable event. Every undesirable event in the dataset
is a continuous sequence of observations with three states: normal, faulty transient and
faulty steady state. In the normal state, there is no evidence of abnormal behavior. In the
faulty transient state, the dynamics caused by undesirable events are ongoing. When
these dynamics cease, the faulty steady-state cease. These states were created in order
to allow early detection of a given failure event. The units used in this dataset include
Pascal [Pa], standard cubic meters per second [sm3/s], and degrees in Celsius [◦C].

3.2.1 Fault description

The subsection provides the general description of the eight fault types contemplated
in the 3W dataset. Vargas et al. [32] has defined the eight fault types as the following:



16 Chapter 3. Data Analysis

1. Abrupt increase of basic sediment & water

Basic Sediment and Water (BSW) is defined as the ratio between the water and sedi-
ment flow rate and the liquid flow rate, both measured under normal temperature and
pressure (NTP). During the life cycle of a well, its BSW is expected to increase due to
increased water production from either the natural reservoir aquifer or artificial injec-
tion to avoid declining production. However, a sudden increase of BSW can lead to
several problems related to flow assurance, lower oil production, oil lifting, incrusta-
tion, industrial plant processing, and the recovery factor. Automatic identification of
this type of undesirable event may permit actions such as administering production or
artificial injection to avoid this sort of problem.

2. Spurious closure of DHSV

The Down-hole Safety Valve (DHSV) is placed in the production tubing, where its
purpose is to ensure the closing of the oil well. It provides safety by shutting off the
well in situations in which the production unit and well are physically disconnected or
in the event of an emergency or catastrophic failure of surface equipment. However,
the closing mechanism will eventually fail in a spurious manner (e.g., the pressure
drop in the hydraulic actuator). This kind of failure is problematic because there are
often no indications of the failure on the surface, which causes production losses and
additional cost. Actions can be taken if the spurious closure of this valve is detected in
a timely manner, such that the production losses can be reduced.

3. Severe slugging

This type of undesirable event occurs frequently at irregular intervals, on mature oil
fields. Severe slugging takes place when "slugs" of liquid separate bubbles of gas
through the pipeline. This causes pressure and flow rate oscillations everywhere in
the pipe and can cause a substantial decrease in oil production [22]. In the 3W dataset,
it is considered a critical type of instability and can result in stress or even damage to
equipment in the well and/or the industrial plant. Actions can be taken to prevent
damage or production loss if detected in advance.

4. Flow instability

During flow instability, there is a periodical change of pressure but with acceptable
amplitudes. Flow instability is not necessarily equal to slugging, what separates those
two anomalies is the lack of periodicity. Though flow instability can result in slugging.
As instability can progress to severe slugging, its prognosis avoids all the negative
aspects associated with this more severe anomaly.

5. Rapid productivity loss

There are several factors that can change the productivity of a naturally flowing well,
the factors consist of the diameter of the production line, percentage between water
and basic sediment, static pressure of the reservoir, and the viscosity of the produced
fluid. When any of these factors are changed to the extent that the system’s energy is
not sufficient enough to overcome the losses, the flow of the well will slow down or
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even stop, which causes productivity loss. To prohibit this, the operating point of the
well can be changed if the fault is predicted in advance.

6. Quick restriction in PCK

Production choke (PCK) is a control valve located at the beginning of the production
unit. It is responsible for well control and can restrict, control ,and regulate the flow.
The choke can be controlled from the surface and when operated manually problems
may occur, such as unwanted restrictions. This is referred to as "quick restriction in
PCK" and occurs when there is an amplitude above a specified reference (e.g., 5%) and
in a short time (e.g., less than 10s). Identifying this event automatically is desirable
because unwanted restrictions can be reversed.

7. Scaling in PCK

Inorganic deposits will occur during production. Therefore, it is important to monitor
the production choke since it significantly reduces oil and gas production. If detected,
Losses of oil and gas production can be avoided. Thus, detecting it in an early stage is
favorable, so actions can be taken.

8. Hydrate in production line

This undesirable event occurs when water and natural gas form a crystalline com-
pound, which happens under extreme pressure and temperature conditions. This crys-
talline compound resembles ice and when it is formed in production lines it can stop
production for days and weeks. This is one of the biggest problems in the oil industry.
Thus, avoiding this is desirable.

3.3 Data review and challenges

There are several factors that cause the 3W dataset to be challenging. As noted earlier,
the dataset is very imbalanced even though measures have been taken to reduce the
imbalanced ratio among the fault types. Another concern is that the dataset itself is
limited, in the manner that there is only a total of 1984 instances of the different events,
which are few instances in general. This can be observed in Table 3.1, which shows the
amount and distribution of real, simulated, and hand-drawn instances of each event
in the dataset.
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TABLE 3.1: Quantitative relation of the instances in the 3W dataset.

Type
of Event

Real
Instances

Simulated
Instances

Hand-Drawn
Instances

Total
Instances

0. Normal 597 0 0 597
1. Abrupt
Increase of BSW 5 114 10 129

2. Spurious Closure
of DHSV 22 16 0 38

3. Severe
Slugging 32 74 0 106

4. Flow
Instability 344 0 0 344

5. Rapid
Productivity Loss 12 439 0 451

6. Quick Restriction
in PCK 6 215 0 221

7. Scaling
in PCK 4 0 10 14

8. Hydrate in
Production Line 3 81 0 84

Total 1025 939 20 1984

Despite its great technical value, the 3W dataset includes a great deal of missing
and frozen variables and unlabeled observations. In this case, a ’variable’ refers to the
monitored operational settings and sensor readings. Furthermore, an ’instance’ refers
to a recorded event of one of the eight fault types in the 3W dataset, while an ’obser-
vation’ is a sample from an instance, showing the true label, timestamp, operational
settings, and sensor readings. These definitions are used in the following subsections,
which review challenges related to the 3W dataset.

3.3.1 Unlabeled observations

An observation is considered unlabeled when there is no label of the fault type for
a given sample of an instance. 5,130 (0.01% of all 50,913,215 observations of all 15,872
variables of all 1,984 instances) observations are considered unlabeled in the 3W dataset.
Figures 3.3 and 3.4 show an instance that has unlabeled observations of the fault type
’Abrupt increase of BS&W’. The figures show the behavioral pattern of the sensor
readings of the pressure at the TPT, temperature at the TPT, and pressure at PDG, re-
spectively. Furthermore, different periods are highlighted with individual colors. The
green period illustrates that there are is abnormal behavior (i.e., normal operation), the
orange period illustrates the faulty transient state, and the red period illustrates the
faulty steady-state. The black period indicates unlabeled observations. In this case,
there were seven unlabeled observations. These observations create complication be-
cause it is not clear whether the observation is in the faulty steady state or in the faulty
transient state.
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FIGURE 3.3: Real instance of ’Abrupt increase of BS&W’ showing pressure at TPT.

FIGURE 3.4: Real instance of ’Abrupt increase of BS&W’ showing temperature at TPT.

3.3.2 Missing and frozen variables

A variable is considered missing when all observations of that particular variable in
an instance have a missing value. 4,947 (31.17% of all 15,872 variables of all 1,984
instances) variables are considered missing in the 3W dataset. In the case of frozen
variables, they are considered frozen when all observations of that particular variable
in an instance have the same constant value. 1,535 (9.67% of all 15,872 variables of
all 1,984 instances). variables in the 3W dataset are considered frozen. Figure 3.5 is
an example of a variable that is frozen. All the observations of the ’pressure at PDG’
have the exact same value. Missing and frozen variables occur due to sensor, system
configuration, or network communication issues.
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FIGURE 3.5: Real instance of ’Abrupt increase of BS&W’ showing pressure at PDG.

3.3.3 Hand-drawn instances

A challenge of this dataset is related to hand-drawn instances, this is because the be-
havior varies a lot when it is compared to real instances. The hand-drawn instances are
too artificial and are quite distinct from the real ones. This is evident when comparing
the hand-drawn instance in figure 3.6 against the real instance in figure 3.7, where both
instances are of the same fault type. Due to the mentioned difficulties, fault type seven
(Scaling in PCK) are completely omitted from all subsequent analyses, since 10 of all
14 instances are hand-drawn.

FIGURE 3.6: Hand-drawn instance of ’Scaling in PCK’ with sensor variable P-TPT.
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FIGURE 3.7: Real instance of ’Scaling in PCK’ with sensor variable P-TPT.

3.4 Summary

In this chapter, the 3W dataset has been detailed. Offshore oil wells and their sensors
have been reviewed before discussing the undesirable events that occur in oil wells.
Furthermore, the chapter has evaluated the 3W dataset and provides information re-
garding the challenges associated with the observations and variables in the dataset.
The next chapter provides the technical background required to understand the ma-
chine learning concepts applied in this work.
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Chapter 4

Methodology

This chapter discusses the methodology and covers the proposed system framework
as a condition monitoring system. The chapter aims to address both the theoretical
and practical aspects to gain a broader understanding of the different matters, pro-
vided in this thesis. Firstly, a brief introduction to the framework is presented to get
an overview of the complete system. The following sections discuss how the data is
prepared in three different stages before it is fed to the chosen classification algorithm.
Lastly, it also discusses the training routine of the classification algorithm and how the
performance of the fitted model is measured.

4.1 System framework

This subsection provides a brief introduction to the proposed framework used in this
work. The goal of the system framework is to serve as a condition monitoring system.
In other words, the system must be able to perceive and distinguish undesirable events
(anomalies) from normal conditions, based on raw sensor signals.

The framework consists of four important stages, shown in figure 4.1, where the
functions of each stage are as follows. Firstly, the raw input data is preprocessed,
such that it is applicable. Secondly, this preprocessed data is transformed into sta-
tistical features with the objective to present the initial data with deeper and different
insights. Thirdly, these statistical features are transformed into principal components
to enhance the performance of the anomaly detection algorithm. The fourth and final
stage receives the transformed data and model it with a given classification algorithm.

FIGURE 4.1: Block diagram of the framework.
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In Section 4.2, the first block of the framework is presented, explaining how the
raw data is preprocessed and the necessity of this step. Section 4.3 explains in detail the
features that have been considered in this work and how they’re extracted, which is the
second block of the framework. Section 4.4 explains the third block of the framework,
giving the details about the transformation strategy that has been applied. Section 4.5
reviews the last block in the framework, which discusses what the role of a classifier
is and which classifier that is used in this work. Section 4.6 explains the factors that
are important to consider when training a machine learning algorithm and the training
routine used in this work.

4.2 Preprocessing

The first block of the system represents the preprocessing stage. This stage consists of
two important steps: firstly, the data is split into a training and test set, such that we
can train an algorithm and test it on unseen data; and secondly, the raw data is cleaned,
such that it is applicable in the next stage, where the statistical features are extracted.
Table 4.1 shows the number of instances for all the events for each dataset, where the
data was spread randomly with a 70/30 distribution ratio. All hand-drawn instances
were removed since they are completely different from real instances, which can be
seen in Section 3.3. Consequently, event type 7 (scaling in PCK) was omitted as it has
very few (only four) real/simulated instances.

TABLE 4.1: Quantitative relation between the training and test set.

Type of event Train
Instances

Test
Instances

Total
Instances

0. Normal 418 179 597
1. Abrupt
Increase of BSW 84 35 119

2. Spurious Closure
of DHSV 27 11 38

3. Severe
Slugging 74 32 106

4. Flow
Instability 241 103 344

5. Rapid
Productivity Loss 316 135 451

6. Quick Restriction
in PCK 155 66 221

8. Hydrate in
Production Line 59 25 84

Total 1374 586 1960

The continuation of the process is to prepare and clean the data. All observations
(samples) from all instances that consist of a numeric data type that can be interpreted
as not a number (Nan values) are replaced with zeroes. Also, all observations that can-
not be classified due to missing labels are kept when extracting features but removed
when training the classification algorithm. Table 4.2 shows the number of Nan values
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and unlabeled observations that were removed from each event. Keep in mind that
the remaining 633 unlabeled observations of all 5,130 unlabeled observations belonged
to event type 7, which was removed altogether from our experiments, as mentioned
above.

TABLE 4.2: Total amount of Nan values and unlabeled
observations for each event in the dataset.

Type of event NaN
Values

Unlabeled
Observations

0. Normal 17,537,620 0
1. Abrupt
Increase of BSW 26,729,233 1,019

2. Spurious Closure
of DHSV 2,071,568 1,026

3. Severe
Slugging 13,368,136 0

4. Flow
Instability 4,289,933 0

5. Rapid
Productivity Loss 38,948,805 1,461

6. Quick Restriction
in PCK 23,286,058 622

8. Hydrate in
Production Line 6,742,972 369

Total 132,974,325 4,497

4.3 Feature extraction

The second block in the framework extracts statistical features. Prior to this stage, the
data has been divided into a training and test set, and furthermore cleaned from Nan
values, so that it is possible to compute arithmetic functions on the data. Thus, the
input data to this block is cleaned time-series data, which has been sampled second
by second from eight different sensors. Many statistical features are often used in ma-
chine learning applications and in this work nine popular features have been extracted
from the raw time-series sensor data, which can be seen below. In addition to the fea-
tures below, the arithmetic mean was computed. The mathematical definitions for the
features below are provided in Chapter 2 in Table 2.1.

Standard deviation

Standard deviation is a measure of how far the data fluctuates from the mean, where
the variance represents the power of these fluctuations. In some cases, when the mean
and standard deviation is given, the comparison among them can yield the relation-
ship between the measured signal and the noise, known as signal-to-noise ratio (SNR).
In these circumstances, the standard deviation represents the noise, while the mean
describes what is being measured [29].
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Skewness and kurtosis

Skewness is used to measure the lack of symmetrical shape of data distributions. A
perfect symmetrical dataset has a skewness of zero. In this case, the median, mode,
and mean all have equal values. On the other hand, the distribution is skewed if the
symmetrical shape of the distribution has a long tail in one direction. Skewness with
positive values means that the curve is skewed to the right (right-tail), while skewness
with negative values suggests skewing to the left (left-tail). Kurtosis measures the
peakedness or flatness of a data distribution, where positive values are interpreted as
a more peaked distribution, and negative values suggest a flatter data distribution,
compared to the normal distribution [5].

5-number summary

The five-number summary represents a set of features, which is the minimum, lower
quartile, middle quartile (median), upper quartile, and maximum values of a data dis-
tribution. When these features are combined and provided, it gives a proper indica-
tion of how spread the data is. This is evident when considering which attributes are
achieved when they are combined. In short, the minimum and maximum represent the
range of the data, and the median represents the center of the distribution. Moreover,
the first quartile represents the center between the minimum and median, while the
upper quartile represents the center between the maximum and median [24].

The nine statistical features explained above have been extracted through a sliding-
window, where each individual statistical feature has been computed over the same
sliding window size. The extraction is completed by transforming a set of N × n sam-
ples (with N samples from n variables) into a vector of nf elements. This is illustrated
in figure 4.2, which can be interpreted as a function that maps a real matrix a×b (initial
data X) into a real matrix c × bf (transformed data Xtr), i.e., f : Ra×b 7−→ Rc×bf . Con-
sidering a sliding window size of length N and a step size s between two consecutive
windows yields a function output c = a−N

s
+ 1 instances. Thus, Xtr = f(X) yields a

real a[M−N
s

] + 1× nf matrix, considering M instants represented in the input matrix.
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FIGURE 4.2: The raw data is represented as the initial data X (matrix on the left
side) which has n variables. The matrix on the right side represents the transformed
data Xtr, obtained by computing features from the initial data X . This is done over
a sliding window of N rows along with all its columns with a step size of s rows
between each transformation. For each variable that is transformed inside a window,
a feature k is produced. Thus, the transformed data ends up with nk columns. The
figure and approach of extracting features is based on Marins [20].

The process of extracting features adds two hyper-parameters to the system, the
window size N , and the step size s. The window size N controls the length of the
window that is transformed, and it may be changed without great consideration, as
opposed to the step size s. Extracting features drastically reduces the amount of data
if there is a rise in the step size. Therefore, to avoid reducing the amount of data of an
already small dataset, the step size is not experimented on and is kept constant of one
row for each feature. Despite the latter, the data must be reduced in some manner: So,
that it can fit directly into the memory when training a classification algorithm. The
data can be reduced because each instance of each event has several virtually unaltered
observations/samples representing the same characteristics, which yields several re-
dundant samples. Thus, subsampling samples from the training set for each instance
for each event is possible without removing a great extent of vital information. In this
work, each instance is sub-sampled by extracting every 10th sample for events that are
associated as an anomaly (event/class 1 to 8) and every 50th sample for each instance
belonging to the event associated as normal operation (event/class 0).

4.4 Data transformation

In this section, the data transformation block is explained. Data transformation is done
to represent the data in a different manner and to reduce the dimensionality. One can
argue that when extracting statistical features, the amount of information is increased.
Thus, a more efficient way to represent the data may be beneficial. Consider a dataset
with three feature variables, and for each of these original feature variables, some sta-
tistical analysis might be beneficial to classify anomalies. If three common statistical
analyses, such as the minimum, median and maximum are extracted and used to repre-
sent the center and range of the distribution, then the number of input features has in-
creased threefold if it is applied to every original feature variable. As witnessed, when
many statistical analyses are used to extract features to gain additional information,
the dimensionality increases rapidly. Processing additional features take additional
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time and the new features alone are not ensured to be profitable for a classification
algorithm. Therefore, a method of reducing the dimensionality of the feature space
without the expense of losing sensitive information will allow us to exploit the addi-
tional information gained through statistical analysis while reducing the time to train
an algorithm. To achieve this Principal Component Analysis (PCA) which was earlier
introduced in the Machine learning chapter can be applied.

4.4.1 Principal component analysis

The principal component analysis has been widely used in various machine learning
tasks, such as face recognition to image compression. The technique is used to find
components that capture the maximal variance in the data. This is because high energy
features in terms of variance in the Euclidean space are often important and consist
of sensitive information. On the other hand, low energy features often hold lesser
important information. Therefore, it is reasonable to assume that if the high energy
features are kept while the low energy features are removed, it should be possible to
reduce the dimensionality of the data without removing any sensitive information (i.e.,
the high energy features).

There is an important factor to analyze when removing the low energy features and
that is the threshold. The threshold of the PCA is an important hyperparameter, which
decides the amount of principal components that are kept for further use. If the trans-
formed data have n eigenvectors and eigenvalues, and only the first ρ eigenvectors (the
components with the most energy) are chosen, then the final dataset has been reduced
to only ρ dimensions [28]. Figure 4.3 shows the PCA applied to the training set after
extracting features. The green, yellow, orange and red lines respectively highlight the
number of principal components required to represent 75%, 90%, 95% and 99% of the
cumulated variance in the training data.

FIGURE 4.3: Principal component analysis performed on the train-
ing set of the 3W dataset. In this case, the data had a total of 72
features, which were extracted from the computation of nine sta-
tistical features.
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4.5 Classification modeling

This section describes the last block in the system framework. Prior to this stage, the
raw input data has been cleaned, statistical features have been extracted and these fea-
tures have been transformed into principal components. The next step is to provide
a mapping of the input data to a specific category by analyzing the transformed fea-
tures. A classification algorithm is required to achieve the latter. That is because a
classification algorithm provides a probabilistic output, which yields the probability of
the input data belonging to a certain class label.

Before choosing a classification algorithm, one must choose between using a ma-
chine learning or a deep learning approach, where both approaches have their pros
and cons. The most known trait of the two different approaches is also what sepa-
rates them, i.e., deep learning algorithms require massive amounts of data to train,
while machine learning algorithms can train on smaller datasets. Machine learning
algorithms tend to require lesser amounts of data to train due to the limited choices of
hyperparameters to be tuned, compared to deep learning algorithms. Deep learning
algorithms often consist of large networks that have a vast choice of hyperparameters
to be tuned, e.g., number of layers, number of neurons in each layer, and type of acti-
vation function. Based on these factors, and the amount of time and the small quantity
of data at disposal, machine learning will be applied.

4.5.1 Random forests

There are a few factors that must be considered when making the decision of which
machine learning algorithm to be used. The most important factor to be considered is
the complexity of the data at hand. The data at hand is highly imbalanced between the
distribution ratio among the classes, besides, there is a lot of missing variables in the
data, where almost 5000 variables have a missing value. Random forests are a machine
learning classifier that can be applied to the mentioned challenges. This is due to its
well-known traits:

• It can handle missing data.

• It can handle small datasets.

• It is simple to train and deploy.

• It is easy to parallelize.

• It is robust to noise and outliers.

Each tree in the random forest classifier is independent and trained separately. The
trees are trained by a random subset of the data and a small random set of drawn fea-
tures. By applying this approach, each tree can learn from a different partition of the
data and each tree will be uncorrelated with other trees. This is illustrated in figure 4.4,
where the input features represent the previously extracted statistical features of the
dataset. Furthermore, each split in a tree is based on their respective set of randomly
drawn features. When each tree in the forest has given a class label to the input data
based on their respective independent splits, a majority voting is done. The majority
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voting provides a probabilistic distribution for the system output. In a binary classi-
fication problem, this probabilistic distribution can be interpreted as if 70 trees out of
100 trees predict a certain class, then it is said to have 70 % certainty of an observation
belonging to that given predicted class. Thus, the final classification of the random for-
est classifier will be the outcome of the probabilistic distribution given by the majority
voting.

FIGURE 4.4: A simplified schematic of the random forest architecture for a classifica-
tion problem. The features are fed to the trees, where each tree yields a classification
and the majority class will be the final classification k.

There are two hyper-parameters that has to be tuned to achieve the best results with
the random forest classifier. Those two hyper-parameters are:

• Max tree depth: This hyper-parameter decides how deep each tree can go in its
splits.

• Number of estimators: This hyper-parameter decides how many trees to be used
in the random forest.

In this work, Python 3 and the machine learning library scikit-learn has been used
to implement and train the random forest classifier. How the classifier has been trained
and the importance of the training routine will be discussed in the next section.

4.6 Classifier training

This section covers the training of the model and the strategy that will be used to
achieve the best results. How the training routine is performed is an important part in
order to achieve a good performing machine learning model. There are certain things
that must be taken into mind, such as generalizing well to new data that the model has
never seen before. That is the main objective of a machine learning model. The main
parametric to measure a model performance is something known as the generalization
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error, which is the expected value of the misclassification rate when averaged over fu-
ture data. In other words, how accurate a machine learning model can predict outcome
values for previously unseen data. So, to achieve a model that generalizes well on un-
seen data, there are two events that we try to avoid when training the model, which is
overfitting and underfitting. Overfitting happens when we model every minor varia-
tion in the input data. As a result, the model does not just learn the true signal but also
the noise which relies in the data. This leads to an inaccurate model, which categorizes
based on too many details. Underfitting is the opposite event of overfitting, it happens
when we fail to model the major variation in the input data, in other words, when the
model does not fit the data well enough [23].

When the training of one or several models are done, we need to know if the
model(s) overfit or underfit. In other words, the model must be tested to reveal if it
generalizes well because the training accuracy does not always reflect the performance
of the model. A designated test set is not available in this thesis; Therefore, the model
is tested, and an error rate is estimated by holding out a subset of the training set from
the training process and then testing the model on this particular subset. This cer-
tain approach of holding a subset and testing is known as the validation set approach
which will be discussed in the next subsection.

4.6.1 Validation set and cross-validation

The validation set approach consists of randomly dividing the available data into two
parts, a training set, and a validation set or hold-out set. The model is fit on the training
set, and the fitted model is used to predict the responses for the data in the validation
set. This results in a validation set error-rate, which yields an estimate of what the
test error-rate is. According to James et al., 2014, the validation set approach has two
potential drawbacks:

• The test error rate can be highly variable, depending on precisely which observa-
tions are included in the training set and which observations are included in the
validation set.

• The validation set error rate tends to overestimate the test error rate. This is
because only a subset of the observations is included in the training set (approxi-
mately half the size of the full dataset), which is used to fit the model. As a result,
the model learns from fewer observations, which suggests that it will perform
worse.

In order to address the drawbacks of the validation set approach, a refined method
has been created. The method is known as Leave-one-out Cross-Validation (LOOCV)
and they are closely related. Instead of creating two subsets of comparable size, a
single observation (x1, y1) is used as a validation set and the remaining observations
(x2, y2), ..., (xn, yn) will be used as the training set. This procedure is repeated by se-
lecting (x2, y2) as the validation data and training the model on the remaining n − 1
observations, i.e., (x1, y1), (x3, y3), ..., (xn, yn). This certain procedure is repeated until
all possible combinations are performed and then the error is averaged for all trials,
where the number of possible combinations is equal to the number of data points (ob-
servations) in the original dataset [11]. The complexity of the implementation and
computation is based on the number of data points; Therefore, it would be very time
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consuming to use the LOOCV based on the available dataset in this work. Thus, an
approach that is based on the validation set approach and the LOOCV will be applied,
which will be introduced in the next subsection.

4.6.2 K-fold cross-validation

A widely used cross-validation technique is the k-fold strategy. In this strategy, the
training set is split into a k number of subsets, also called a fold. The strategy consists
of iterations, and for each iteration, two steps are performed:

1. A model is trained on all folds with the exception of the i-th fold;

2. The trained model is tested on the i-th fold;

Figure 4.5 brings an illustration of this process with a 3-fold cross-validation strat-
egy. During the first iteration, the first fold is used as a testing set for the model, and
the remaining two folds are used as training sets. The second iteration uses the first
and the last folds as a training set, and the second fold as a testing set. The last iteration
uses the last fold as a testing set and the remaining two folds as training sets.

FIGURE 4.5: Illustration of the k-fold strategy. The dataset is split into k subsets,
where each iteration uses the orange fold as a test set to evaluate the model and the
remaining green folds are used to train the model. This process is repeated until each
orange fold of all k folds have been used as a testing set to evaluate the model.

In this work, since the data is time-series there is a risk of contaminating the data.
Therefore, every sample of a given event from the same instance belongs to the same
fold. This is done by assigning a group to every sample and then splitting each fold
based on these groups. This strategy is known as group k-fold cross-validation and
figure 4.6 illustrates how the groups are assigned. Moreover, the samples between
t0 − t1, t1 − t2 and t2 − t3 are assigned to group 1, group 2 and group 3, respectively. In
this case, event 1 denotes any undesirable events of anomalies, while event 0 denotes
samples from normal operation (event/class 0) and initial normal (i.e., samples that
show normal dynamic behavior before an anomaly event has begun).
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FIGURE 4.6: Illustration of how the samples are categorized into groups based on
the condition of the event. These groups are used when applying the Group k-fold
strategy during training.

4.7 Summary

In this chapter, the system has been discussed in detail, following the data from the
first block of the system all the way to its outputs. This chapter has aimed at giving
the reader a thorough understanding of the complexity of the system and its many
choices that must be decided. This has been evident from the very first block of the
system, where an important factor in preprocessing is to choose a strategy on how
to deal with Nan values. Following the second block of the system, which discussed
the strategy on how to extract features and the decisions that must be taken regarding
new hyperparameters that arise, such as window length and step size. The decisions
continue through the data transformation block to the classification modeling block,
where factors such as the PCA threshold, number of estimators, and tree depth are
under focus. In the remaining sections of the chapter, a strategy is proposed to train
the model. There are many opportunities available, and the system is complex. Thus,
a list of candidates to conduct experiments are reviewed at the beginning of the next
chapter. Furthermore, the chapter reviews the chosen experiments and analyze their
respective results to assess system performance.
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Chapter 5

Implementation and Results

This chapter covers the implementation and results. The vast number of candidates
for experiments is reviewed to show the opportunities that are related to this system
and how complex it is. The chosen experiments and contributions of this work are dis-
cussed, where factors such as system configuration and implementation are provided.
The final sections analyze and elaborate on the experimental results, and factors such
as reliability and efficiency of the system are discussed.

5.1 Candidates for experiments

There are a vast number of experiments that can be performed with this system. The
system is very complex and an empirical approach to the problem is required to eval-
uate what this proposed system is capable of. In this work, the following candidates
are considered relevant as proper experiments:

1. Evidently, the 3W dataset consists of many classes, and there are several possi-
bilities and methods that can be used to detect and identify these classes. The
system does not necessarily need to be a multiclass classification system even
though there are several classes, it can also be looked upon as a binary classifi-
cation problem. Thus, some of the experiments that can be done with the two
different techniques are:

(a) Binary classification:

i. Using a single binary classifier to perceive and discriminate between
normal and faulty operations. This is done by combining every class
considered a fault into a single unique class.

ii. Using multiple binary classifiers, where each classifier is uncorrelated to
the other classifiers and is designed and trained to discriminate between
a specified fault against the normal operation mode. In this approach,
one can analyze which faults are the hardest to classify.

(b) Multiclass classification:

i. Using a single multiclass classifier to identify and discriminate between
faulty and normal operations. In this strategy, there will be eight classes
to identify, where seven of the eight classes consist of the types of events
that are considered as faults, and the last class is considered as a normal
event. The only event which will not be classified is "Scaling in PCK".

2. Principal component analysis:
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(a) Exploring the impact of the PCA. This can be done by experimenting what
difference PCA offer compared to not using any data transformation tech-
niques at all.

(b) Experiment on the influence of the PCA threshold offer. This experiment
consist of using PCA as feature selection with different thresholds τ , such as
τ ∈ 0.90, 0.95, 0.99. Then analyze which parameter value which yields the
best model performance.

3. Features:

(a) Experimenting on different statistical features, e.g., extracting several types
such as the mean, the minimum and maximum.

(b) Exploring feature importance by analyzing the influence of each individual
feature and how they impact the system.

(c) Evaluate the impact of the feature extraction parameters. There are two hy-
perparameters related to feature extraction, which is the window sizeN and
the step size s. For instance, an experiment could be done by testing differ-
ent window sizes, such as N ∈ 60, 300, 900.

4. Random Forest:

(a) Experimenting on the number of trees (estimators) in the forest (e.g., E ∈
20, 100, 200).

(b) Experimenting on the maximum depth of the forest (e.g., d ∈ 5, 10, 20,∞).

5. Hyperparameter optimization: This consists of finding the hyperparameters of
the machine learning algorithm that yields the best performance, measured on
the validation set. Two popular hyperparameter optimization techniques that
can be explored are grid search and Bayesian hyperparameter optimization.

It is evident that there are many opportunities to explore with the proposed system,
and not all of the candidates can be carried out to be experimented on. This is because
this master’s thesis has a time constraint, and it would not be possible to explore every
possible opportunity. The next section presents the candidates that were carried out as
experiments and their respective results.

5.2 Experiments

This section presents a comprehensive analysis of system performance. The analysis
has been conducted by approaching this as a binary classification problem under two
classification scenarios. In this work, these classification scenarios are characterized as
Fault versus Normal Operation and Fault versus Not Fault.

Fault versus normal operation

In this scenario, each binary classifier is designed to discriminate and identify between
normal operation and a single specific class, categorized as a fault event. Thus, seven
individual uncorrelated classifiers are required (one for each event representing an
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anomaly). Furthermore, all samples from normal operation (event/class 0) are com-
bined to a single unique class, with the samples that show normal dynamic behavior
preceding the given fault class (initial normal).

Fault versus not fault

In this scenario, each binary classifier discriminates and identifies between a single
specific fault against everything that does not belong to that specific fault. This is
done by designing seven uncorrelated classifiers, one for each fault, and combining
the remaining events into a single unique class.

The experiments above have been conducted to achieve a greater understanding of
the system and to acquire more information about each fault class. Besides, this con-
tinues and contributes to the work of Marins et al. [21], which have shown that a CBM
system can be used to classify the faults, with binary and multiclass classifiers. This
work introduces a new classification scenario (fault vs not fault) and a new classifica-
tion strategy by placing more emphasis on dynamic behavior. This is done by propos-
ing an individual window size for each fault type, based on the assumption that each
fault type shows a distinct dynamic behavior in the initial normal, faulty transient, and
faulty steady states. Individual window sizes will be the initial experiment in this work
and grid search will be applied to find the best hyperparameters.

The samples that belong to the faulty transient and faulty steady states for each
fault are combined to one unique class in the two classification scenarios, described
above. In this work, the model performance is assessed in detail: firstly, by measuring
the overall model performance; secondly, by measuring the capability to discriminate
between normal operation and each transitional state; and lastly, by individually mea-
suring the simulated and real instances of the latter two metrics.

5.3 Experiment 1: parameter search

As mentioned earlier, this work proposes individual window sizes for each fault. The
proposal is an attempt to provide a strategy that simplifies the identification by enhanc-
ing distinct patterns of the dynamic behavior for each fault. The traditional grid search
is a method to assess the best hyperparameters, which has been applied to the window
size. In short, the method computes a set of chosen hyperparameters for a specified
algorithm. The performance of the set of hyperparameters is indicated through the
measurement of the cross-validation set.

A grid search computed for the Random Forest classifier and the PCA transforma-
tion shows that E = 200, d = 15, and τ = 0.99 are the best hyperparameters. These
hyperparameters denote the number of estimators, maximum depth, and PCA thresh-
old, respectively. In this case, these hyperparameters are the best based on mean ac-
curacy and computational time. The conducted set of hyperparameters in this search
were E ∈ 100, 200, 300; d ∈ 10, 15, 20; and τ ∈ 0.95, 0.99. Additionally, other conducted
parameters consist of group k fold cross-validation with CV = 3 splits/folds and a
window size of N = 600. The experiment of the window size was carried out with the
best hyperparameters from the previous result. This is shown in the list below, where
all parameters are listed for the grid search of the window size.
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• Random Forest parameters:

– Number of trees (estimators): E = 200.

– Maximum depth: d = 15.

• Feature extraction parameters:

– Window size: N ∈ 100, 200, 300, ..., 1200.

– Step size: s = 1.

• Other parameters:

– PCA threshold: τ = 0.99.

– Subsample factor: 10 for all faults.

The results to discover the best window size for each fault indicate that individ-
ual window sizes improve the performance. Figure 5 illustrates this, which shows the
results for the grid search of the window size. The red crosses show the local maxi-
mum, which represents the highest mean validation accuracy for each class. The mean
validation accuracy is the computed mean of the accuracy over all splits of the cross-
validation set. In this search, only real samples of the transitional states from each fault
were employed. Only classes 3 and 4 used samples from class 0 (normal operation),
due to the absence of samples that represent the ’initial normal’ phase. The reason to
limit the window size to 1200 is because of the delay it yields, where a window size of
1200 equals a delay time of 20 minutes.

FIGURE 5.1: Grid search results of the window size, showing mean test accuracy for
each fault and their respective window sizes.
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The individual window size for each classifier besides classes 3 and 4 was chosen
based on the best options from the grid search results. Classes 3 and 4 achieved similar
results for each window size, and therefore a decision was made to use a smaller win-
dow than 1000 to reduce the delay. Therefore, classes 3 and 4 will be experimented on
further with a window size of 300, while classes 1, 2, 5, 6, and 8 respectively apply win-
dow sizes of 900, 400, 300, 300, and 1200. These window sizes are within the limit of
not exceeding the average time-interval of the transient state for their respective class
faults, which can be seen in Table 5.1. Moreover, grid search results for each classifier
can be found in Appendix A. Keep in mind that not a single instance from the test set
have been applied during the grid search nor during the training of the forests.

TABLE 5.1: Average time of the transient state for each fault, based on all
real instances in the 3W dataset. Empty entries indicate the absence of data.

Fault Average
Transient Time

Real
Instances

Class 1 259.38 min 5
Class 2 66.96 min 22
Class 3 - 32(10)
Class 4 - 344(103)
Class 5 441.88 min 12
Class 6 17.36 min 6
Class 8 440.3 min 3

5.4 Experiment 2: fault versus normal operation

This section reviews the experiment characterized as fault versus normal operation. In
this experiment, each classifier is fit on data from normal operation (class 0) and their
respective fault. The only change in any hyperparameter relates to the subsampling
factor. In this case, fault events with less than 20 real instances apply a subsampling
factor of 1 for real instances. This is with the intent to balance the distribution ra-
tio, between simulated and real instances. Moreover, the list of window sizes of each
classifier consists of 900, 400, 1200 for classes 1, 2, and 8, respectively; and, 300 for
the remaining classes. These specific window sizes represent the best performance for
their given classifier, which is evident in figure 5.1.

The test results of the 3W dataset for the transitional states and overall accuracy
can be seen in Table 5.2. In this table, ’Transitional ACC’ denotes the overall accuracy
for the transitional states, i.e., initial normal (normal operation preceding an anomaly
event), faulty transient state, and faulty steady-state. Additionally, ’Overall ACC’ rep-
resents the accuracy for all transitional states combined with samples from class 0. The
reason for showing the overall and transitional accuracy separately is because approx-
imately 30% of all instances from the complete 3W dataset belongs to Class 0. Thus,
the overall accuracy is not sufficient alone and may misrepresent the performance of
the classifier. More details can be seen in Table 5.3, which shows real and simulated
test results for class 0 and each transitional state.
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TABLE 5.2: Overall and transitional test results of the classification scenario fault ver-
sus normal operation, including real and simulated instances for each classifier.

Fault Window
Size Type Transitional

ACC
Overall

ACC

Class 1 900 Real 0.214 0.989
Simulated 0.999 0.999

Class 2 400 Real 0.986 0.999
Simulated 0.996 0.996

Class 3 300 Real 0.998 0.999
Simulated 0.998 0.998

Class 4 300 Real 0.967 0.986
Simulated - -

Class 5 300 Real 0.888 0.992
Simulated 0.993 0.993

Class 6 300 Real 0.972 0.999
Simulated 0.951 0.951

Class 8 1200 Real 0.892 0.999
Simulated 0.956 0.956

TABLE 5.3: Test results of ’Normal Operation’ (class 0) and each transitional state of
the classification scenario fault versus normal operation, including real and simulated
instances for each classifier.

Fault Window
Size Type Normal

(Class 0)
Initial

Normal
Transient

State
Steady
State

Class 1 900 Real 1.000 0.779 0.098 0.011
Simulated - 0.999 0.999 0.999

Class 2 400 Real 0.999 0.952 0.996 1.000
Simulated - 1.000 0.970 1.000

Class 3 300 Real 0.999 - - 0.998
Simulated - - - 0.998

Class 4 300 Real 0.990 - - 0.967
Simulated - - - -

Class 5 300 Real 0.999 0.514 0.904 -
Simulated - 0.134 0.999 1.000

Class 6 300 Real 0.999 0.981 0.882 1.000
Simulated - 0.876 0.955 0.956

Class 8 1200 Real 0.999 0.000 1.000 1.000
Simulated - 0.258 0.996 0.999

Analyzing these two tables, one can notice that almost all classifiers outperform
the models from the grid search. This is a result of a limited dataset in regards to the
amount of data at disposal. The grid search was fit on only real samples (of which
are very few) and with cross-validation, which prevents the classifier to be fit on all
samples at a time. Only classes 3 and 4 show a similar performance between these two
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results, which is a consequence of being among the classes that have larger datasets.
Thus, the classifier can afford to split the training data into a larger amount of subsets.
To conclude further on this, the imbalance between the distribution ratio of the 3W
dataset reflects on the performance of each classifier. This is evident in the case of class
1 and 8, where both classifiers seem to struggle on real data if one omits the perfor-
mance of class 0 (normal operation). These two classes have less than 10 real instances
combined, in contrast to classes 2, 3, and 4, which have 22, 34, and 344 instances, re-
spectively. One can also observe that class 5 has difficulties correctly classifying sam-
ples of the initial state. This applies to the case of both real and simulated instances.
On the other hand, the classifier achieves satisfactory accuracy in correctly classifying
samples belonging to normal operation and the transient state. In this case, the results
show an accuracy of over 90% for the latter two events.

5.4.1 Event-based evaluation

This section reviews the system in a real-world scenario as a CBM system. To be a
reliable CBM system, the system must have the capability to detect any event as soon as
possible. Table 5.4 shows how many events each classifier was able to detect correctly.
An event is considered to be detected correctly if the classifier can correctly predict all
its samples with an accuracy of 90%. In this event-based evaluation, only real events
will be analyzed and reviewed. Class 4 wrongly predicted seven steady-state events
of all 103 events. However, there was only one event in which the classifier was not
able to predict any correct samples. For the remaining events, the classifier was able to
correctly predict all samples for four events with approximately 70% accuracy, or more
and the other two events with 41.6% and 59.5% accuracy.

Outwardly, the accuracy numbers of the wrongly classified events from Class 4 may
seem impressive. But, the classifier in these events shows an inconsistent behavior.
This is evident in Figure 5.2, which shows the rapid fluctuations in the classification
between event values ’0’ and ’1’. In Class 5, one event yields inconsistent behavior
with fluctuating system classifications. This can be seen in Figure 5.3, which shows
the system classification for all transitional states of a real event. Except for this given
example of Class 5, inconsistent system classifications appear to be constrained to the
events that have been wrongly classified in Class 4. This may be due to the high ac-
curacy Class 4 achieves on each event that is categorized as wrongly classified. Except
for this given example of Class 5, inconsistent system classifications appear to be con-
strained to the events that have been wrongly classified in Class 4. This may be due
to the high accuracy Class 4 achieves on each event that is categorized as wrongly
classified. This is clear in the examples shown in Figures 5.4, 5.5, and 5.6. These are
events that have been wrongly classified by their respective classifiers but still show a
consistent classification pattern.
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TABLE 5.4: Event-based analysis of classification scenario fault versus not normal,
showing the events that were correctly classified with an accuracy of 90%. Designated
numbers in parenthesis show total number of events.

Fault Type Initial Normal Transient Steady-State

Class 1 Real 1(2) 0(2) 0(2)
Simulated 34(34) 34(34) 34(34)

Class 2 Real 5(7) 7(7) 3(3)
Simulated 5(5) 5(5) 5(5)

Class 3 Real - - 10(10)
Simulated - - 22(22)

Class 4 Real - - 96(103)
Simulated - - -

Class 5 Real 1(3) 3(4) -
Simulated 18(132) 132(132) 132(132)

Class 6 Real 1(2) 1(2) 2(2)
Simulated 57(65) 61(65) 61(65)

Class 8 Real 0(1) 1(1) 1(1)
Simulated 23(24) 24(24) 19(19)

FIGURE 5.2: Example of a real instance of Class 4 showing the inconsistency of the
system classification, where only 70% of the samples were correctly classified. Event
values ’1’ and ’0’ denote normal and faulty states.
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FIGURE 5.3: Example of a real instance of Class 5 showing the inconsistency of the
system classification, where only 54% of the samples were correctly classified. Event
values ’1’ and ’0’ denote normal and faulty states.

FIGURE 5.4: Example of a real instance of Class 6 along with the system classifica-
tion, where the system was not able to correctly classify a single sample in the initial
normal state. Event values ’1’ and ’0’ denote normal and faulty states.
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FIGURE 5.5: Example of a real instance of Class 2 along with the system classification,
where the system achieved below than 90% accuracy on initial normal. Event values
’1’ and ’0’ denote normal and faulty states.

FIGURE 5.6: Example of a real instance of Class 6 along with the system classifica-
tion. All samples belonging to initial normal and steady-state were correctly classi-
fied. However, the transient state only accomplished 80% accuracy. Event values ’1’
and ’0’ denote normal and faulty states.

5.4.2 System efficiency and reliability evaluation

To assess how reliable and efficient the system is to anticipate incoming failures, three
time-intervals have been applied. These time intervals (in seconds) are defined as fol-
lowing: how fast each classifier is to detect the transient state (time of detection); how
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many consecutive correct predictions are made after the time of detection; and how
long time to take action before the incoming failure occurs, respectively denoted as
t1, t2, and t3. Figure 5.7 illustrates these time intervals on a real instance of fault 1
along with the system classification. This case is of an instance considered as wrongly
classified, as the system was only able to correctly classify roughly 12% of the transient
state. However, the system roughly used t1 = 2460s to detect the incoming failure, with
t2 = 2700s consecutive correct predictions, and t3 = 18530s time left before the condi-
tion of faulty-steady state arrives. Taken this into consideration, one can argue that the
system was able to detect the transient state with 2700 consecutive correct predictions
from time of detection. Table 5.5 shows the average values of the time-intervals t1, t2,
and t3 for each classifier and their respective faults, where each number designated in
parenthesis is the percentage of the corresponding time-interval concerning the tran-
sient state. Classes 0, 3, and 4 are not included as their transient phase is absent in the
3W dataset.

FIGURE 5.7: A real instance of Class 1, predicted sample-wise for all transitional
states. Event ’0’ and ’1’ denote the initial normal, transient, and steady states, re-
spectively.
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TABLE 5.5: Transient analysis of how well each classifier perform. Time-intervals are
given in seconds and the designated numbers in parenthesis are the percentage of the
corresponding time-interval concerning the total transient state.

Fault Type t1 [s] t2 [s] t3 [s]

Class 1 Real 2463.0 (11.73%) 2710.0 (12.90%) 18530.0 (88.26%)
Simulated 4.4 (0.009%) 38545.2 (83.49%) 46160.2 (99.99%)

Class 2 Real 15.5 (0.33%) 4700.1 (99.67%) 4700.1 (99.67%)
Simulated 103.4 (2.87%) 2795.4 (77.65%) 3496.6 (97.12%)

Class 5 Real 564.2 (1.06%) 41879.0 (78.87%) 52533.7 (98.93%)
Simulated 1.18 (0.02%) 4708.7 (99.99%) 4708.7 (99.99%)

Class 6 Real 73.5 (11.87%) 546.0 (88.20%) 546.0 (88.20%)
Simulated 1.5 (0.02%) 6677.1 (92.34%) 7229.8 (99.98 %)

Class 8 Real 1.0 (0.00%) 20078.0 (100%) 20078.0 (100%)
Simulated 5.3 (0.03%) 7640.3 (43.31%) 17633.9 (99.96)

5.5 Experiment 3: fault versus not fault

This section reviews the experiment and results of the classification scenario fault ver-
sus not fault. In this experiment, each classifier is fit on data from all classes. The same
settings from the latter classification scenario apply in this case, with regards to hyper-
parameter selection and training routine. As for the training routine, the subsampling
factor had to be increased, since each classifier is fit on data from every class. Each
classifier under training applied a subsampling factor of 100 for instances that did not
belong to their given class (Not Fault). Also, real instances belonging to their given
class were not subsampled, but simulated instances applied a subsampling factor of
10.

The test results of this classification scenario of the 3W dataset can be seen in Tables
5.6 and 5.7. The classification method shows satisfactory results with the classifiers of
classes 2, 3, and 4. These classes are correctly classified with an average accuracy of
over 90% of Class 0 and all transitional states when it comes to real instances. Sim-
ulated instances of these classes indicate to be harder to predict, where the accuracy
drops as low as 80% for the transient state and 93% for the steady-state for classes 2
and 3, respectively.
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TABLE 5.6: Overall and transitional test results of the classification scenario fault ver-
sus not fault, including real and simulated instances for each classifier. Empty entries
indicate the absence of data for that given fault type.

Fault Window
Size Type Transitional

ACC
Overall

ACC

Class 1 900 Real 0.213 0.992
Simulated 0.999 0.999

Class 2 400 Real 0.991 0.999
Simulated 0.862 0.997

Class 3 300 Real 0.995 0.980
Simulated 0.936 0.990

Class 4 300 Real 0.977 0.985
Simulated - 1.000

Class 5 300 Real 0.373 0.966
Simulated 0.993 0.996

Class 6 300 Real 0.868 0.999
Simulated 0.925 0.987

Class 8 1200 Real 0.892 0.999
Simulated 0.972 0.982

TABLE 5.7: Test results of ’Not Fault’ (class 0) and each transitional state of the clas-
sification scenario fault versus not fault, including real and simulated instances for
each classifier. Empty entries indicate the absence of data for that given fault type.

Fault Window
Size Type Not Fault

(Class 0)
Initial

Normal
Transient

State
Steady
State

Class 1 900 Real 1.000 0.779 0.098 0.001
Simulated 0.999 0.999 0.999 0.999

Class 2 400 Real 0.999 0.970 0.998 1.000
Simulated 0.999 1.000 0.821 0.848

Class 3 300 Real 0.979 - - 0.995
Simulated 0.998 - - 0.936

Class 4 300 Real 0.987 - - 0.977
Simulated 1.000 - - -

Class 5 300 Real 0.999 0.396 0.372 -
Simulated 0.997 0.103 0.999 0.999

Class 6 300 Real 1.000 0.997 0.384 0.150
Simulated 0.999 0.813 0.936 0.930

Class 8 1200 Real 0.999 0.000 1.000 1.000
Simulated 0.983 0.939 0.961 0.999

5.5.1 Event-based evaluation

This classification scenario shows similar problems related to inconsistent system clas-
sifications when it comes to Class 4, as in the previous experiment. Furthermore, sim-
ilar performance is seen in classes 1, 2, 3, 4, and 8 with the same number of correct
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classified events. This can be seen in Table 5.8, which shows how many events were
classified correctly with a threshold of 90%. However, Class 5 is only able to correctly
classify one of the total four transient events, and not a single event of the initial nor-
mal state was correctly classified. As a result, the system yields rapid fluctuations in its
classifications, which can be seen in Figures 5.8 and 5.9. Class 6 shows similar perfor-
mance but indicate different behavior compared to Experiment 2 (fault versus normal).
Figure 5.10 shows the same instance that the previous system in Experiment 2 wrongly
classified all samples in the initial normal event. However, in this case, the system was
able to correctly classify roughly 80% of all samples of the same event.

TABLE 5.8: Event-based analysis of classification scenario fault versus not fault,
showing the events that were correctly classified with an accuracy of 90%. Desig-
nated numbers in parenthesis show total number of events.

Fault Type Initial Normal Transient Steady-state

Class 1 Real 1(2) 0(2) 0(2)
Class 2 Real 5(7) 7(7) 3(3)
Class 3 Real - - 10(10)
Class 4 Real - - 96(103)
Class 5 Real 0(3) 1(4) -
Class 6 Real 1(2) 1(2) 1(2)
Class 8 Real 0(1) 1(1) 1(1)

FIGURE 5.8: Example of a real instance of Class 5 along with the rapid inconsistent
system classifications. Event values ’1’ and ’0’ denote normal and faulty states.
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FIGURE 5.9: Example of a real instance of Class 5 along with the rapid inconsistent
system classifications. Event values ’1’ and ’0’ denote normal and faulty states

FIGURE 5.10: Example of a real instance of Class 6 along with the system classifica-
tion, where the system achieved below than 90% accuracy on initial normal. Event
values ’1’ and ’0’ denote normal and faulty states.

5.5.2 System efficiency and reliability evaluation

The assessments of each classifier based on the time-intervals t1, t2, and t3 can be seen
in Table 5.9. The system shows interesting results in class 2, where the time of detec-
tion has decreased by over six seconds compared to Experiment 2. As mentioned and
showed in the last section, Class 5 is influenced by very inconsistent classifications, and
therefore, it might seem like it quickly detects the transient state. This is not the case
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and becomes evident with the figures showed earlier, which shows the inconsistency.
The inconsistency applies to all the transitional states, and this makes the system very
unreliable.

TABLE 5.9: Transient analysis of how well each classifier perform. Time-intervals are
given in seconds and the designated numbers in parenthesis are the percentage of the
corresponding time-interval concerning the total transient state.

Fault Type t1 [s] t2 [s] t3 [s]

Class 1 Real 2463.0 (11.73%) 2707.0 (12.90%) 18530.0 (88.26%)
Class 2 Real 9.3 (0.19%) 4706.4 (99.81%) 4706.4 (99.81%)
Class 5 Real 1.0 (0.00%) 822.3 (1.55%) 53097.3 (99.9%)
Class 6 Real 318.5 (51.5%) 237.5 (38.4%) 300.5(48.54%)
Class 8 Real 1.0 (0.00%) 20078.0 (100%) 20078.0 (100%)

5.6 Discussion

The results achieved from Experiment 2 and Experiment 3 show that the system is ca-
pable of correctly classifying faults but also capable of predicting incoming faults from
their transient state. These incoming faults are often predicted in an early stage, such
that it is possible to take necessary preventive action. The amount of data at disposal
for each class tends to reflect the system performance for the given classifier. This ap-
plies to both classification methods, and in particular, to real instances of classes 1 and
8. Neither of the two classification methods can correctly classify any sample related
to the initial normal state of Class 8. Classes 2, 3, and 4 achieves great accuracy for
their respective transitional states and Class 0, for both classification scenarios. On the
other hand, the fault versus normal classification scenario accomplishes better results
for classes 5 and 6 compared to its counterpart, fault versus not fault.

Comparing these results with the work of Marins et al. [21], it is noticeable that
their binary classification method with fixed window size achieved higher accuracy
in classifying the initial normal state for each class on real instances. However, their
multiclass classification method with a fixed window size achieved a lower average
accuracy for real instances over all transitional states for most classes. Their multiclass
classification method achieved 50.8%, 88.8%, 79.1% 95.4%, 83.3%, 71.1%, and 0% accu-
racy for class 1 to 8, respectively. In comparison to the results achieved by the ’fault
versus normal’ system with individual window sizes, their multiclass classification
system only achieved a higher average accuracy over all transitional states for class 1.
Keep in mind that it is expected that the binary classifiers in this work achieve higher
accuracy for each class compared to the multiclass classification system. This is be-
cause using a single classification system to identify all classes imposes a significantly
more challenging machine-learning problem than using multiple binary classifiers.

5.6.1 Initial normal

The results have shown that the normal samples that belong to Class 0 (normal oper-
ation) are easily classified compared to normal samples preceding an abnormal event
(initial normal). These samples vary a lot when compared to each other. A reason for
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the discrepancy between the classification accuracy of Class 0 samples and initial nor-
mal samples for real instances may be related to inactive sensors and frozen/missing
variables. An example of this is that all sensor readings of the sensor referred to as
"QGL" are approximately frozen 70% of the time and inactive the remaining 30% of
the time for Class 0 (normal operation). Furthermore, in the case of Class 8, all sensor
readings of the sensor "QGL" are available for all initial normal samples. Conclusion
on this, the result from Experiment 2 (fault versus normal) suggests that the classifier
identifies normal operation solely based on whether the sensor "QGL" is inactive or
not, which is why not a single initial normal sample is correctly classified for Class 8.

5.6.2 Inconsistency

Besides the poor performance related to Classes 1 and 8, the limitations of this system
are tied to the fluctuations in system classifications for Classes 4 and 5. A few instances
from those two classes have shown inconsistent classifications for both systems in Ex-
periments 1 and 2. However, in those situations, the classifiers have often shown high
accuracy, which indicates that measures can be taken to decrease these inconsistencies.
In this work, we suggest a simple filter to smoothen these fluctuations that occur dur-
ing inconsistent classifications, referred to as "time-consistency filter." The filter strides
over the system classifications with a window and removes the class with the fewest
output classifications inside that given window. Figure 5.11 shows an example of a
real instance of Class 4, along with the system classifications and the outputs of the
time-consistency filter. In this case, the window size of the time-consistency filter is
120 samples. It is evident that the filter is not able to prevent all classification oscil-
lations, but it does smoothen out the majority. The filter may be more efficient if the
window size is increased, but this will increase the delay, which should be prevented.

FIGURE 5.11: Example of a real instance of Class 4 along with the rapid inconsistent
system classifications and with the time-consistency filter. Event values ’1’ and ’0’
denote normal and faulty states.
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5.7 Summary

This chapter has reviewed the implementation and results of the proposed system.
Two classification scenarios have been implemented, where a strategy of individual
window sizes have been applied. Initial experiments have been done with these win-
dow sizes through the grid search to find the best hyperparameters. Furthermore, an
in-depth analysis of the results related to the classification scenario is provided, where
the system is evaluated as a CBM system in a real-world scenario, where factors such as
efficiency and reliability are addressed. This chapter has also reviewed the limitations
related to the system and provided an analysis of the challenges related to the initial
normal samples, and given a method to smoothen out oscillations during inconsistent
classifications.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The development of innovative systems considered as "Smart Technology" is one of
the hottest topics of modern engineering. These technologies apply the current state-
of-the-art in sensor-technology and communication systems, known as IoT systems,
and data-driven applications for analysis. This work is concerned with fault detection
and identification in particular, and I had to explore fields related to condition-based
monitoring and predictive maintenance, where complex machine learning tools are the
current state-of-the-art.

This work has built a complete CBM system to successfully identify and detect
real abnormal events in offshore oil wells related to the 3W dataset. The implemented
CBM system is capable of preprocessing raw-sensor data, extracting features, reduc-
ing dimensionality, and classifying with the popular random forests algorithm. A new
classification scenario and strategy has been introduced to the problem. The new strat-
egy includes the use of individual window sizes for each class fault during the feature
extraction process. The use of individual window sizes has been applied to two clas-
sification scenarios, which is the "fault versus normal operation" and the new classifi-
cation scenario referred to as "fault versus not fault." These two classification scenarios
include the use of binary classifiers, one for each class, but attempt to identify and clas-
sify fault events in a different manner. The two methods do not only show that they
are capable of correctly classifying faults but also to anticipate incoming faults.

Analysis of the results indicates that there are certain limitations related to the sys-
tem. These limitations arise in the minority of the number of situations for Classes 4
and 5 and are associated with rapid fluctuations in system classification. In the few
cases it happens, the classifiers show an inconsistent behavior in classifications but
usually achieve an overall high accuracy of predictions. However, these behavioral
patterns occur mainly during faulty states, which can be desirable. This is due to the
reasoning that many false positives can cause distrust for an operator, and the system
will be viewed as unreliable. Consequently, if these fluctuating classifications should
appear in faulty states, they would still not be desirable but would be able to detect a
fault and notify an operator.
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6.2 Future work

This work has successfully implemented a CBM system to detect and identify nor-
mal and faulty events in subsea oil wells. The CBM system applies state-of-the-art
solutions, such as machine learning techniques and algorithms. Despite this, the ex-
periment still has uncovered areas. The following issues would be worth investigating
further:

• There are many opportunities in feature analysis and application for this exper-
iment. This could be done by investigating the features that have been applied,
where interesting subjects such as feature importance can uncover knowledge of
which features are most rich in information. Furthermore, introduce new fea-
tures. Until now, only statistical first-order features have been applied. Interest-
ing research would be to explore second-order features applied in fields such as
signal processing.

• Implementing more powerful machine learning classification algorithms, where
XGBoost is an interesting algorithm that attempts to exploit the advantages of
random forests and gradient boosting. Another widely used and popular ma-
chine learning algorithm that can be explored is the Light Gradient Boosting
Machine (LGBM), which also has a similar architecture to random forests and
XGBoosts, which is that is built of trees.
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Appendix A

Experiments

A.1 Grid Search on rolling window size

This appendix shows the results for Experiment 1, where the grid search was applied
to find the best window size for each class. In this experiment, only real samples from
each class have been used, and the classification method "fault versus normal." The
seven separate figures in this appendix show the mean test accuracy for every window
size N ∈ 100, 200, 300, ..., 1200, for each fault. The best window size for each fault is
shown with a red cross, marking the local maximum.

FIGURE A.1: Grid search result showing mean test accuracy for the different window
sizes for fault 1.
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FIGURE A.2: Grid search result showing mean test accuracy for the different window
sizes for fault 2.

FIGURE A.3: Grid search result showing mean test accuracy for the different window
sizes for fault 3.
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FIGURE A.4: Grid search result showing mean test accuracy for the different window
sizes for fault 4.

FIGURE A.5: Grid search result showing mean test accuracy for the different window
sizes for fault 5.
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FIGURE A.6: Grid search result showing mean test accuracy for the different window
sizes for fault 6.

FIGURE A.7: Grid search result showing mean test accuracy for the different window
sizes for fault 8.
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