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Abstract

Ternary logic theory and CNTFETs

The basic theory of ternary logic and CNTFETs are explored and explained, to set a theoretical context

and build a base for the rest of the thesis. For ternary logic, this includes radix economy, ternary

notations, ternary-valued logic functions, ternary algebra, and conversion overhead. For CNTFETs,

topics discussed are the architecture, voltage threshold and characteristics, nanotube chirality, benefits

over MOSFETs, and simulation models.

Ternary-valued CNTFET circuit design and logic synthesis

The methods used for transistor- and gate-level circuit design of ternary-valued CNTFET circuits

are described, utilized, optimized, and automated with a logic synthesizer for generating simulation

files with a research paper accepted in the SIMS 2020 conference, which includes proposed full adder

circuits compared with simulation results.

Radix conversion of data between binary and ternary

Several methods of data radix conversion is discussed and explained. One method is implemented and

optimized using the logic synthesizer, with circuit simulation results in HSPICE. It is shown that data

radix conversion can be done at high speeds with a low transistor count and power consumption with

the CNTFET circuits generated by the proposed logic synthesizer tool, with the proposed gate-level

design.

Comparing binary-valued circuits with ternary-valued circuits for the purpose of basic arithmetic

Several ternary-valued full adder circuits are compared with binary-valued full adder circuits, including

synthesized circuits as well as circuits found in related works. These circuits are compared in terms of

transistor count, power consumption, and signal delay, while scaling for the digit ratio between binary

and ternary. Despite any benefits of ternary logic, a ternary-valued adding circuit could not be found

to outperform an equivalent binary-valued circuit for the purpose of basic arithmetic in terms of PDP

and transistor count, with the CNTFET circuits used in this thesis.
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Chapter 1

Introduction

In recent years, the development of processors with higher processing power has been slowing down [1].

To continue exponential growth and miniaturization, chip manufacturers must shift to new technologies.

One promising technology is Carbon Nanotube Field Effect Transistors (CNTFETs) [2] which may

allow Moore’s law to continue in some form, and to go beyond the limitations of current technology.

The current outlook, based on the past 70 years, is that processor technology will advance while

keeping the binary-value computing paradigm in place, with little consideration to multi-valued logic

with more than 2 logical values for the purpose of general computation [3], outside of research. In

recent years, there has been a renewed interest in ternary research with CNTFET circuits.

1 What is ternary logic?
Today, most computation and data storage is done with binary, the individual unit of which is called

a bit. These bits are represented by the two values 0 and 1, hence the name ”binary”, or base 2.

However, multi-valued logic with a radix higher than 2 can be done as well, and in fact it is used in

some cases such as in digital signal processing [4][5][6]. Ternary, represented by trits, makes use of

three values for each digit with the logical values of 0, 1, and 2.

2 Ternary computation in the past
In 1958, a balanced ternary-valued computer was developed at Moscow State University. This was

the Setun [7]. This computer was developed to fulfill the computational needs of the university, and

fifty computers were built, until production was halted in 1965. In recent years, there has still been

a small amount of research into software development for these types of computers [8]. One reason

that binary-valued logic has been dominating over ternary-valued logic in the past is the difficulty and

cost of engineering silicon-based transistor circuits as these require large components such as resistors

to achieve three stable voltage levels[3]. However, recent work such as [9] demonstrate by circuit

simulation that CNTFET-based logic circuits can be engineered to have three stable voltage levels by

varying the width of the carbon nanotubes, with no need of extra components other than transistors.

3 Why use ternary logic?
It has been suggested in theory that a ternary-value computer, or ternary data processing components

in general, may be more cost-efficient than an equivalent binary version. This has been suggested with

the calculation of the radix economy [10][11], and the more compact representation of information itself

(eg. 8 bit information can be stored in 6 trits, a saving of 25%). Another possible advantage is the

much higher number of 19683 possible binary operators in 3-valued logic, compared to 16 in 2-valued

logic [12]. This larger number of binary operators may allow for further-reaching abstractions than in
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binary logic. Some functions such as ternary state machines might benefit from natively ternary states.

In safety-critical systems, ternary-value computation may provide a benefit in allowing digits to be in

an ”uninitialized” stage, with the two remaining digit values functioning as binary values, to ensure

that uninitialized values are not read as data values [13]. For safety-critical systems, ternary logic may

also be used with ternary decision diagrams [14][15].

4 What are CNTFETs?
Carbon NanoTube Field-effect Transistors (CNTFETs) are a type of transistor which can be built with

different voltage thresholds by changing the diameter of the carbon tube. This allows for multi-valued

logic circuits such as ternary, without the need for extra components such as resistors to create the

middle voltage level [9].

Example theorized or realized ternary chips are AI chips [16], graphical co-processors in a GPU, ternary

based security [13], or ternary blockchain chips for IOTA [17].

5 The need for efficient radix converters
It is imaginable that specialized ternary chips will be integrated next to binary chips and pre-existing

technology. This strongly benefits from a hardware radix conversion solution to minimize the conversion

penalty of delay, as opposed to converting the inputs and outputs via microprocessors and software. To

enable ternary technologies to develop in the near future, solutions for efficient radix conversion must

first be developed, so that ternary components may be integrated in a mixed-radix system without too

much conversion penalty.

Potentially, in later adoption stages of ternary-valued logic, the need for binary to ternary conversion

chips will still be relevant for backwards compatibility or for mixed radix systems where binary and

ternary values may coexist. To facilitate the feasibility of mixed radix systems, the signal delay through

the proposed converters must be as low as possible, and should be scalable, to allow for fast and

large-scale radix conversion of large quantities of data on the fly.

6 Research methodology

6.1 Research questions
A set of research questions is asked to guide the research project.

• 1. How can CNTFETs circuits perform multi-valued logic computation, and what methods are

there to design the ternary circuits on the transistor and gate level?

• 2. How can compatibility be achieved between ternary-valued and binary-valued circuits? To

enable ternary technology to develop into practical uses, it has to be compatible with existing

technology. How can the data of the established binary radix be converted into the ternary radix

efficiently, and what are the conversion penalties in terms of signal-delay, power consumption,

transistor count?

• 3. How does ternary-valued logic circuits perform compared to binary-valued circuits? Can the

benefits be shown to exist with circuits such as basic arithmetic circuits in terms of PDP?

To answer the research questions posed in this thesis, the primary methodological approach was to

automate a logic synthesis algorithm, and simulate the circuits in HSPICE, after which they can be

examined objectively. Using this same method for both binary-valued and ternary-valued circuits

results in a more fair comparison, as binary-valued technologies have the benefit of many decades of

aggressive optimization. Additionally, related research was also recreated and compared.
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6.2 CNTFET circuit simulation
For simulating CNTFET circuits two components are integral, a SPICE circuit simulator and a

CNTFET simulation model. Two SPICE simulators were considered: T-Spice from the Tanner

software suite, [18] and HSPICE from the Synopsys software suite [19]. Two simulation models of

CNTFETs are provided by Stanford University: the standard 32nm CNFET model [20], and the

more compact VS-CNFET model [21]. The VS-CNFET was attempted to be used with T-Spice, with

some functional circuits achieved, however did not produce sufficient correctness and functionality in

circuit measurements when compared with existing research. As the models are optimized for use with

HSPICE, T-Spice produced frequent convergence issues. Through experiment, the best combination

was found to be the standard 32nm CNFET model in combination with HSPICE, which is also the

most commonly used CNTFET model and SPICE software in research. The CNFET parameters used

in this thesis is shown in table 1.1.

Table 1.1: Parameters for CNTFET model

Parameter Value Description

Lch 32e-9 Physical channel length

Lgeff 100e-9 The mean free path in the intrinsic CNT channel region due to

non-ideal elastic scattering

Lss 32e-9 The length of doped CNT source-side extension region

Ldd 32e-9 The length of doped CNT drain-side extension region

Tox 4e-9 The thickness of high-k top gate dielectric material

Kox 16 Gate oxide dielectric constant

Efi 0.6 The Fermi level of the doped S/D tube

Csub 40e-12 The coupling capacitance between the channel region and the substrate

Pitch 20e-9 The distance between the centers of two adjacent CNTs

Tubes 3 Number of CNTs

Supply 0.9 Gate supply voltage

Temp 25 Temperature

6.3 Circuit measurement methodology
With H-SPICE, the performance characteristics or a circuit can be measured.

Transistor count is the number of transistors used in a circuit. For sub-circuits that require extra

external components such as input inverters, both the sub-circuit count and total count is included.

Current measurement is measured at the voltage supply, with an ideal 0V supply in series with the

circuit. To find the power in Watt, multiply by the supply voltage (0.9V). As the inputs may have

half-voltage (0.45V), the currents should not be directly added. However, in most circuits the inputs do

not produce a significant current, as they are only used as a transistor gate voltage. In the event that

they do produce power, they should be measured separately to find the correct power consumption. In

the event of alternating current direction, only one way of the current is measured for each voltage

source, to prevent duplicate measurements of the same current going through multiple voltage sources.

The worst-case delay is the maximum time the circuit takes from a change in inputs to a stable and

correct output. It is the worst-case which limits the frequency at which the circuit can be functional.

The PDP is the power-delay product, which is found by multiplying the power consumption with the

delay of the circuit. For the best-case PDP, the worst-case delay is used. As a circuit output load,

a capacitor can be used, or alternatively an FO4 fan out load consisting of 4 inverters in series, to

simulate the sub-circuit of interest in the context of a larger circuit with external capacitance.
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Chapter 2

Theory

This chapter will cover the basic theory of ternary logic and CNTFETs.

1 Ternary logic
In the past, there have been claims of ternary being the optimal radix [3], as well as some counterargu-

ments against these claims [22]. There are several reasons ternary-valued logic might have benefits

over binary-valued logic.

1.1 Radix economy
The radix economy is a measure of the cost of expressing numbers in a given base. This is found by

taking the number of digits required to express a number and multiplying by the base [23]. For the

general case of base b and number N, this can be expressed as in equation 2.1.

E(b,N) = b ∗ blogb(N) + 1c (2.1)

The radix economy of different bases can be compared by taking the average of the radix economy for

a given base b with an increasing N up to a large number. The average is used, since data overhead

will cause noise in the data. As N increases, the significance of this overhead will decrease.

Table 2.1: Average radix economies for various bases

Base b Avg. E(b,N) Avg. E(b,N) Avg. E(b,N) Avg. E(b,N)

N = 1 to 6 N = 1 to 43 N = 1 to 182 N = 1 to 5329

1 3.5 22.0 91.5 2665.0

2 4.7 9.3 13.3 22.9

e 4.5 9.0 12.9 22.1

3 5.0 9.5 13.1 22.2

4 6.0 10.3 14.2 23.9

5 6.7 11.7 15.8 26.3

According to these equations, the optimal radix can be found to be e, or 2.718, with base-3 and base-2

following in optimality, as seen in table 2.1. Since digital logic operates on integer bases, it follows that

ternary-valued logic is the optimal base for computation. One flaw with this logic is the assumption

that the number of required components scales proportionally with the base, i.e. an increase by a

factor of 1.5 from binary to ternary. This will be investigated further in later chapters.
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1.2 Balanced and unbalanced ternary notation

Table 2.2: Unbalanced and balanced
ternary compared to decimal and binary

Decimal Binary Unbalanced Balanced

-3 0 - 0

-2 0 - +

-1 0 0 -

0 000 000 0 0 0

1 001 001 0 0 +

2 010 002 0 + -

3 011 010 0 + 0

4 100 011 0 + +

5 101 012 + - -

6 110 020 + - 0

There are mainly two methods for expressing a number in

ternary. The most straight-forward notation is unbalanced

ternary, which is analogous to unsigned binary numbers.

It is expressed with the symbols ’0’, ’1’, ’2’. The other,

more elegant notation, is balanced ternary, which is ex-

pressed with the symbols ’-1’, ’0’, ’+1’, or ’-’, ’0’, ’+’ as a

short form [24][25]. Donald Knuth, a renowned computer

scientist, writes in his book ”The Art of Computer Pro-

gramming”, that ”Perhaps the prettiest number system of

all is the balanced ternary notation, which consists of radix-

3 representation using –1, 0, and +1 as “trits” (ternary

digits) instead of 0, 1, and 2”. Furthermore, he stated that

”If it would have been possible to build reliable ternary

architecture, everybody would be using it.” [26].

A comparison of unsigned binary, unbalanced and balanced

ternary is shown in table 2.2. While binary requires a

sign-bit to express negative numbers, balanced ternary can

express both positive and negative numbers, while utilizing

the full capacity of the trits. A result of this is a halved range in the positive value range compared to

unbalanced, analogous to signed and unsigned binary numbers. Note that balanced ternary sometimes

requires one more digit than the unbalanced ternary. To convert balanced ternary between positive to

negative, all the digits are inverted, or in other words + is swapped with − and vice versa [27].

Despite the fault of having half the capacity of unsigned ternary numbers, balanced ternary makes up

for it with arithmetic convenience[28][29], such as simpler addition and subtraction, and the capability

of representing negative numbers.

Since the established norm with binary logic is that 1 represents ’true’, it is also sometimes used as

’true’ in unbalanced ternary values, with 2 representing ’unknown’ or ’undefined’. It is more common

to use 2 as ’true’, as it is easier to operate on full binary voltage, while the middle voltage level may

be used either to represent an uninitialized value, i.e. ”unknown” [10], or a logical middle value with

radix-3 data encoding.

1.3 Logic functions
A logic function, also known as a logic gate, is an abstract element which takes a number of digit

inputs and outputs one digit output. With these logic functions, any logical operation can be done

[30]. The number of parameters or inputs a function has, is known as the functions ”arity”. This arity

can for example be 1, 2, or 3, which are known as unary, binary, and ternary functions respectively

[31]. Note that the arity of a function does not imply the radix of the digit inputs to the function.

The number of possible functions for a specific arity and radix can be calculated as in equation 2.2,

where R is the radix and A is the arity.

Frange = R(RA) (2.2)

An increase of the radix by one offers an extreme increase of number of possible functions as the arity

increases, as shown in Table 2.3.
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Table 2.3: Number of possible logic functions in
binary-valued logic versus ternary-valued logic

Arity Radix 2 Radix 3

1 22
1

= 4 33
1

= 27

2 22
2

= 16 33
2

= 19683

3 22
3

= 256 33
3

= 7,625,597,484,987

A logic function can be expressed in terms of a truth table. Tables 2.4 and 2.5 show the truth tables

for the ternary-valued unbalanced sum, and the binary-valued XOR, both of which are used to find

the sum of two digits, a and b.

Table 2.4: Ternary-valued truth table
for unbalanced sum

a b Sum

2 2 1

2 1 0

2 0 2

1 2 0

1 1 2

1 0 1

0 2 2

0 1 1

0 0 0

Table 2.5: Binary-valued truth table for ”XOR”

a b XOR

1 1 0

1 0 1

0 1 1

0 0 0

1.4 Ternary logic algebra
Like with boolean algebra for binary logic, a similar ruleset can be defined for decomposing ternary logic

into smaller functions. With some base functions, such as MIN, MAX, increment, decrement, equalities,

as well as the inverters NTI, PTI, STI, any ternary-valued logic function can be constructed [32]. The

truth table of these functions are shown in tables 2.6 and 2.7. Note that here, the unbalanced notation

is used, however these rules apply to both balanced and unbalanced, with −0+ being interchangable

with 012 for the purposes of a logic truth table.

Table 2.6: Truth table for MAX and
MIN

a b MAX MIN

2 2 2 2

2 1 2 1

2 0 2 0

1 2 2 1

1 1 1 1

1 0 1 0

0 2 2 0

0 1 1 0

0 0 0 0

Table 2.7: Truth table for increment, decrement, NTI, PTI, STI,
equalities

a incr. decr. NTI PTI STI eq0 eq1 eq2

2 0 1 0 0 0 0 0 2

1 2 0 0 2 1 0 2 0

0 1 2 2 2 2 2 0 0
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From table 2.7, it can be seen that NTI is the same function as equal 0, and that PTI is the inverse of

equal 2, and STI is the inverse. Thus, we can write the functions used in ternary logic algebra as in

equations 2.3 to 2.11

STI(a) = −a (2.3)

NTI(a) = (a = 0) (2.4)

Equal1(a) = (a = 1) (2.5)

Equal2(a) = (a = 2) (2.6)

PTI(a) = −(a = 2) (2.7)

Increment(a) = a+ 1 (2.8)

Decrement(a) = a− 1 (2.9)

MAX(a, b) = a ∨ b (2.10)

MIN(a, b) = a ∧ b (2.11)

As in boolean algebra, DeMorgan’s theorem still holds for ternary-valued logic [25], shown in equation

2.12.

−(a ∧B) = −a ∨ −b (2.12)

Furthermore, MAX and MIN are distributive, the same way AND and OR is in boolean algebra [25],

shown in equation 2.13

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) (2.13)

With these rules, any ternary-valued logic function can be implemented with the basic functions listed.

One method to achieve this is to write out the canonical sum of products for the functions, and

optimize the equation. An example of this for the balanced sum function is given in chapter 4.

Two more commonly used basic logic functions, Consensus and Any, can be defined here. They can

be defined in terms of the other basic functions as in equation 2.14 and 2.15, and therefore they are

not strictly needed as basic functions. However due to their ease of direct implementation they are

included here nonetheless. Their truth tables are shown in table 2.8.

Table 2.8: Truth table for CON and
ANY

a b CON ANY

2 2 2 2

2 1 1 2

2 0 1 1

1 2 1 2

1 1 1 1

1 0 1 0

0 2 1 1

0 1 1 0

0 0 0 0

CON(a, b) = a⊗ b = (a ∧ b)
∨((−(a = 0)) ∧ 1)

∨((−(b = 0)) ∧ 1) (2.14)

ANY (a, b) = a⊕ b = ((a = 0) ∧ (b = 2) ∧ 1)

∨((a = 1) ∧ b)
∨((a = 2) ∧ ((b = 0)− 1)) (2.15)
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1.5 Data sizes and overhead
One clear benefit of ternary-valued logic compared to binary-valued logic is the higher data capacity

per digit, which is a given since it is a higher base. This has implications for data storage, transmission,

and processing, as data may be expressed more efficiently. The data capacity for binary and ternary

scales exponentially as the number of digits increases, as can be seen in equation 2.16 where b is the

base, and n is the data size. A comparison between binary and ternary is shown in table 2.9.

bn b, n ∈ N (2.16)

Table 2.9: Data capacity for ternary and binary

Data size Binary Ternary

1 21 = 2 31 = 3

2 22 = 4 32 = 9

3 23 = 8 33 = 27

4 24 = 16 34 = 81

5 25 = 32 35 = 243

6 26 = 64 36 = 729

7 27 = 128 37 = 2187

8 28 = 256 38 = 6561

When converting between binary and ternary data, one might want to consider different data sizes

to convert. One aspect to consider is the overhead, which is the difference in capacity of the binary

number and the ternary number. The capacity of an unsigned number can be expressed as the base to

the power of the number of digits. If signed, the capacity is roughly halved. Examine the equation

(2.17).

2n = 3m m,n ∈ N (2.17)

One consequence of this equivalence is the ratio between the number of digits required for the two

bases. From equation 2.17, equation 2.18 can be derived, which implies that one trit can replace

approximately 1.5849 bits.

n =
m ∗ log(3)

log(2)
≈ 1.5849 ∗m (2.18)

Another consequence is that while both m and n are integers above zero, there are no integer solutions

to equation 2.17, since 2n will always be even, and 3m will always be odd. This means that some

overhead is unavoidable when converting between binary and ternary numbers. However, the overhead

can be minimized by choosing the right data sizes.
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Optimized data sizes

When considering radix conversion, it is here assumed that the ternary data size is larger in capacity

than the binary. Data sizes with little overhead may be considered, such as 84 bit to 53 trit. This

would have a mere 0.2 percentage overhead, as shown in (2.19).

100
353 − 284

353
= 0.208595 (2.19)

These data sizes could be used in cases where it is integral to keep overhead to a minimum, such as

data storage, or efficiency-critical data processing components. There are also larger pairs of data sizes

with even lower overhead. If a large increase of data sizes is allowable, an overhead arbitrarily close to

0 can be achieved. This can be shown to be evident with the following method.

Figure 2.1: Overhead over datasize

overhead(m) =
3bmc − 2blog23

bmcc

3bmc (2.20)

The graph in figure 2.1 can be plotted from equation 2.20. The

points in this graph each represent the conversion overhead,

represented by the y-axis, of a ternary data size, represented by

the x axis. It is clear that this is not a function which converges

to one value, and therefore taking the limit of this function is

a dead end. Instead, it is observed that all the points land on

a specific set of arcs. Furthermore, it is known that the points

are only on whole numbers along the x-axis. Thereby, the off-set

positioning of the points on each arc is defined by the distance

between the arcs. If this distance is irrational, then there are no

repeating patterns, and it can be assumed that every rational

overhead will be covered as the data size approaches infinite.

This is most likely the case, since the log of integers produces

irrational numbers.

However, a generally useful converter to be used in standard binary systems should adhere to the

standard binary data sizes, which generally have a number of bits which are a power of two.

Compatibility with powers of two

If this overhead exceeds the benefits of ternary, it might not be advantageous to use binary data sizes

in a ternary setting. Depending on the choice of data sizes, the overhead may be on the ternary side,

or the binary side. The radix with overhead must be limited in range to not exceed the limit of the

other radix. For this thesis, it is assumed that the ternary data size is bigger than the binary, however

here overheads are given for both cases. Tables 2.10 and 2.11 show the data conversion overhead for

standard binary data sizes, for the cases of 2n < 3m, and 2n > 3m respectively.

Table 2.10: Ternary conversion overheads
with standard binary data sizes

Bits Trits Overhead

28 36 64.88%

216 311 63.00%

232 321 58.94%

264 341 49.42%

Table 2.11: Binary conversion overheads
with standard binary data sizes

Bits Trits Overhead

28 35 5.08%

216 310 9.90%

232 320 18.82%

264 340 34.09%



CHAPTER 2. THEORY 10

2 CNTFETs
Carbon Nanotube Field-Effect Transistors (CNTFET) is a highly promising transistor technology

subject to a lot of research in recent years. One recent major milestone in CNTFET research was

MIT’s RISC-V processor, RV16XNano, which contains 14 000 CNTFETs[2].

2.1 Architecture of CNTFETs
Carbon Nanotube Field-effect Transistors (CNTFET)
is a type of FET, which uses semi-conducting carbon
nanotubes (CNTs) as the channel, depicted in figure 2.2
from [33], instead of bulk silicon like in traditional field-
effect transistors like MOSFETs. These CNTs have the
same atomic structure as graphene, formed into a tube,
usually with one wall a single atom thick. While similar
in function to a MOSFET, they’ve been shown to have
significant benefits in terms of performance [34], which
may facilitate more compact processor designs, such as
3D-VLSI [35]. A CNT acts as a one-dimensional electron
path, resulting in no electron scattering. CNTs have
certain benefits over bulk silicon, like a better threshold
voltage and sub-threshold slope, a high electron mobility
due to the one-dimensional nature of the single-atom
thick nanotube resulting in quasi-ballistic transport of
electrons, high current density compared to bulk sili-
con, high linearity in the relationship between voltage
and current, and high transconductance [36][37]. The
manufacturing of these CNTFETs can use a similar pro-
cess as MOSFETs, with the exception of the carbon
nanotubes, which can be grown or deposited during the
manufacturing process [38]. Like with MOSFET transis-
tors, n-type and p-type transistors can be achieved by
different chemical dopings in the channel [39].

Figure 2.2: (a)Typical CNTFET (b)SB-
CNTFET (c)MOSFET-like (d)T-CNTFET

2.2 Voltage characteristic and threshold
CNTFETs are useful for ternary-valued logic because
of the fact that the voltage threshold of a specific
transistor is dependant on the diameter of its carbon
nanotubes. By using a combination of different voltage
thresholds in the same circuit, multi-valued logic can
be achieved. The voltage threshold Vth can be found
with equation 2.21, where d0 is the carbon-to-carbon
bond distance in carbon nanotubes, and Vπ is the
carbon π-π bond energy [40]. Figure 2.3 shows the
voltage-current characteristic of CNTFETs of various
diameters, simulated in HSPICE. The simulations show
that the voltage-current characteristic of the CNTFET
matches up with the equation 2.21.

Vth ≈
d0Vπ
eDCNT

≈ 0.43v

DCNT [nanometer]
(2.21)

Figure 2.3: Voltage-current characteristic at
various CNT diameters
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2.3 Carbon nanotube chirality
The voltage threshold of a transistor can be chosen by specifying the nanotube diameter. The diameter

and structure of the CNT can be expressed in terms of a chirality vector. The chirality vector ~Ch

symbolizes the two points which connect when the graphene is formed into a nanotube, i.e. the

circumference of the tube. It is defined by the base vectors ~a1 and ~a2 and integer scalars (n,m) [41], as

in equation 2.22.

~Ch = n~a1 +m~a2 (2.22)

This chirality vector also indicates if the carbon nanotube is metallic or semi-conducting, which is a

result of the structure of the tube [20]. For the purpose of CNTFETs, the chirality vector is restricted

to semi-conducting values. The metallic CNTs have a structure called ”Armchair”, which is the case

when n and m are equal, while the structure of semiconducting CNTs are called ”Zigzag”, which are

when one scalar is 0, while the other is free to vary to specify the CNT diameter. For CNTFETs, the

Zigzag pattern is utilized to produce semiconducting CNTs with variable diameter. Figure 2.4 shows

the base vector, with the ”Armchair” and ”Zigzag” patterns on the atomic structure of flat graphene.

Figure 2.4: Chirality vectors of the CNT on a sheet of graphene

Since the chirality vector represents the circumference of the tube, equation 2.23 shows the relation

between diameter of the CNT and the base vector scalars, where d0 is the carbon-carbon atomic

bonding distance.

DCNT =

√
3d0
π

√
m2 +mn+ n2 ≈ 0.0783

√
m2 +mn+ n2 [nanometer] (2.23)

To ensure the semi-conductivity of the CNT, m is set to 0 while n varies from transistor to transistor.

Thus the equation for the diameter can be simplified to equation 2.24.

DCNT ≈ 0.0783 ∗ n [nanometer] (2.24)
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2.4 Viability for ternary logic circuits
While the transistors themselves are inherently binary (on or off), due to the properties of the carbon

nanotube, the voltage threshold of individual transistors can be specified by selecting a precise carbon

nanotube diameter. With this knowledge, in combination with knowing how a binary inverter functions,

we can build two of the three ternary inverters; the Positive Ternary Inverter (PTI), and the Negative

Ternary Inverter (NTI). These two circuits can be combined to produce the Standard Ternary Inverter

(STI) [9]. Their truth tables are shown in table 2.12, and circuit implementations in figure 2.5.

Table 2.12: Truth tables for the ternary inverters

a NTI PTI STI

2 0 0 0

1 0 2 1

0 2 2 2

Figure 2.5: CNTFET implementations of the NTI(a),
PTI(b), and STI(c) inverters

This circuit demonstrates that ternary-valued

logic circuits can be achieved with complemen-

tary circuits with binary-valued outputs, such

as NTI and PTI. The middle voltage is achieved

through what is essentially voltage division, which

naturally results in a higher power consumption.

When NTI outputs ’0’, and PTI outputs ’2’, there

is a path between VDD and GND. This current is

limited by the series resistance of the two 1.096nm

transistors connecting NTI and PTI. This has

been cited as one of the main flaws of ternary-

valued logic in CNTFET logic circuits [22].

Next, a question of the stability of the middle

value comes up. What happens if many STIs

are connected in series? Will the voltage drift

from the middle value over time? To show that

CNTFET circuits such as the STI can produce

a stable middle value, the input/output voltage

characteristic of the STI can be generated in simulation using the 32nm CNFET model, which can be

compared with that of an ideal linear voltage inverter, which in theory would have no voltage drift

in any direction when connected in series. For these circuits, the voltage range used is 0V to 1V.

By overlaying the two voltage curves, it becomes clear in which areas the voltage is serially pushed

upwards or downwards by the STIs in series. For example, while the ideal voltage inverter would in

theory invert 900mV to 100mV, the curve of the input/output characteristic of the STI lies below

this line, meaning 900mV outputs a value lower than 100mV, and similarly for an input of 100mV, is

inverted by the STI to a voltage higher than 900mV. The consequence of this, is that voltages outside

the thresholds of the middle value, which is the area between the two furthest points where the two

curves cross, will drift towards the outer values, while the voltages within these thresholds will drift

towards the value at the middle crossing point. A comparison of 5 serial STIs and the inverse voltage

of the input is show in figure 2.6.
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Figure 2.6: DC analysis of 5 STI circuits in series, compared to the input voltage and its inverse

The DC analysis shown in figure 2.6 demonstrates that for complementary ternary-valued circuits such

as the STI inverter, the voltage levels are self-regulating, meaning voltage drift from the middle value

to the high or low value is not an issue. In this example, the voltage thresholds are at 360mV and

630mV, inside which the voltage will drift towards the middle value of 0.5V, and outside of which the

voltage will drift towards 0V and 1V.
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Chapter 3

Related works

Before we continue, a brief literature review is done, which summarizes some pre-existing research

and what their significances are in relation to this thesis. Like this thesis, the literature review is

divided into three categories; Circuit design and logic synthesis, Binary-ternary data radix conversion,

Comparisons of ternary-valued and binary-valued logic.

1 Circuit design and logic synthesis
Six papers or studies are identified, which present different methods of ternary-valued circuit design.

1.1 Stanley L. Hurst, 1984
Multiple-Valued Logic - Its Status and Its Future [3] surveys the possibility of MVL logic as

opposed to binary, to increase information density in digital signals. pre-existing circuit implementations

are discussed, realized with a CMOS-resistor design, which can be used to create combinatorial logic

circuits with the Min, Max, and Unary logic gates. They consider future possible technologies, however

this paper was published before the first demonstration of a CNTFET in 1998 [42][43]. They call the

fact that no true multistate device higher than binary exists the major restraint to MVL technologies.

1.2 Douglas W. Jones, 2012
The Ternary Manifesto [25], by Douglas Jones from the University of Iowa Department of Computer

Science, is a blog detailing ternary logic and how it could be implemented. He takes security-through-

obscurity as a fundamental principle, to say that ternary should have security benefits over binary. He

postulates that ternary logic, due to the fewer number of digits needed, should reduce the density of

interconnect wiring, which is one of the main limiting factors of today’s technology [3][44][45]. This

benefit may possibly outweigh any additional cost of implementing more complex ternary circuits

compared to binary.

The blog covers ternary logic, gate implementations with ternary logic algebra, ternary arithmetic,

number and character encoding, heptavintimal encoding of triplets of trits, and proposes an instruction

set computer architecture for ternary logic.

1.3 Chetan Vudadha et al. 2013
2:1 Multiplexer Based Design for Ternary Logic Circuits [46] investigates the usage of multi-

plexers to design a ternary full adder. They connect 1-trit multiplexers to produce the circuits used in

a half adder, and by extension a full adder. In combination with ternary logic algebra, this method

can be used to create combinatorial logic circuits to achieve any logic function.
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1.4 Mohammad Hossein Moaiyeri et. al. 2015
An efficient ternary serial adder based on carbon nanotube FETs [47] proposes a ternary

serial full adder with a clocked flip-flop gate. Interestingly, the full adder is implemented with the

unary logic gates of an STI inverter, with shifted voltage thresholds, and capacitors to take averages

of voltages for the input to the unary gates. This allows for a very low transistor count, however it

relies on extra components which take up space in a circuit, and which may cause a larger power

consumption due to high-frequency current leakage through the capacitors, as well as high delay due

to the capacitance required to produce a functional voltage in the nodes of the circuit. Therefore, its

efficiency is debatable.

1.5 Sunmean Kim et al 2017
An Optimal Gate Design for the Synthesis of Ternary Logic Circuits [48] proposes a method

of synthesising ternary-valued logic gates using a static gate design, based on pull-up and pull-down

networks The paper claims that their method produces a minimal number of transistors for logic gates.

The optimality is debatable, as other papers have produced full adders with a lower transistor count

[49]. They show an decrease in power-delay product compared to earlier work. They claim that the

reason ternary logic has not been shown to outperform binary logic is due to the lack of optimization of

the ternary circuits. However, they do not show a comparison of their results with binary arithmetical

circuits. This method is applicable for the synthesis of any ternary-valued logic gate with a good PDP

performance.

1.6 Mingqiang Huang et. al. 2019
Design and Implementation of Ternary Logic Integrated Circuits by Using Novel Two-

Dimensional Materials [50] investigates design of ternary-valued logic through ternary algebra with

functions such as MIN and MAX, with the use of two-dimensional materials as opposed to CNTFETs.

They argue that in large scale circuits, approximately 70 percent of the chip area is designated for

wire interconnections, thus a significant decrease of interconnections can give a strong boost to the

performance of a chip.

They show a 50% reduction in number of transistors in 2-dimensional-based transistor circuits compared

with research done with silicon-based and CNT-based transistor circuits for an unbalanced ternary full

adder, which may give a very significant decrease in interconnection density.
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2 Radix conversion between binary and ternary
Papers which cover radix conversion are reviewed, particularly ones which relate to binary-ternary

radix conversion.

2.1 Fu-Qiang et al., 1995
A binary to balanced ternary converter based on Josephson junctions [51] makes use of

Superconducting Quantum Interference Device (SQUID) gates to construct a binary to ternary radix

converter circuit. This specific circuit requires superconductors at low temperatures. However,

their method of binary to ternary radix conversion can be applied to CNTFET circuit design. By

decomposing the arithmetic relation between binary and ternary digits, each ternary output can be

defined as the sum of a set of binary inputs, with carry signals propagating from the least significant

trit to the most significant trit.

2.2 Sasao, 2005
Radix converters: complexity and implementation by LUT cascades [52] assesses the design

methods of general n-ary to q-ary data radix converters with the use of look-up table cascades. They

use column multiplicity to mathematically deduce the lower bound of complexity for such a circuit.

This work was continued in [53] and [54], where arithmetic decomposition is used to design the

converters.

2.3 Arjmand et al., 2012
In [55] an unbalanced ternary to unsigned binary converter for Quantum-dot Cellular Automata (QCA)

is proposed. There are four possible states of a ternary QCA cell, two of which are zero, each of which

are mapped on to two bits. While this same method could generally be implemented in a ternary logic

circuit, this is not a capacity efficient conversion method, as two bits are used to store one trit, while

the optimal tends towards approximately 1.58496 bits per trit, and therefore is not applicable to an

efficient binary-ternary radix converter based on CNTFETs.

2.4 Shahangian et al., 2019
Design of a multi-digit binary-to-ternary converter based on cntfets [56] proposes a design

method for unsigned binary to unbalanced binary, using the arithmetic decomposition method to

produce the binary-ternary digit relation. Optimized adders are constructed with some unary circuits

such as increment, decrement, and the inverters, as well as compact optimized 1-trit MUX circuits,

and carry generator. These circuits are optimized in regards to the expected values of the inputs. As

an example, the mux may only need to decode the select trit to two possible values instead of the full

three, depending on the exact circuit. They show performance results for various digit sizes, including

8-bit to 6-trit.

2.5 Shahangian et al., 2020
Universal Method for Designing Multi-Digit Ternary to Binary Converter Using CNT-

FET [57] is a continuation of [56], and proposes a method of converting unbalanced ternary to unsigned

binary. They use similar methods, except that this circuit decodes the individual trits to binary signals

to process them with binary adder circuits. They show simulation results, which are significantly

better than their binary-ternary results.
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3 Comparing ternary logic with binary logic

3.1 Hande Alemdar et al. 2017
Ternary Neural Networks for Resource-Efficient AI Applications [58] proposes a TNN

(ternary neural network) with ternary neuron activations using a step function with two thresh-

olds. With the levels used for weights and activation of -1, 0, and +1, they prune smaller weights

by setting them to 0 during training, which makes them sparser, and thus makes the neural network

more energy-efficient, compared to the binary counterpart of -1 and +1. Instead of encoding this data

directly in balanced ternary with MVL circuits, the balanced ternary digits is encoded in binary data

[59]. They consider efficient encoding and decompression of the balanced ternary digits in binary [60].

This will involve some overhead between the data space used and the actual symbols represented with

bits. They do not consider the use of natively ternary-valued circuits.

3.2 Daniel Etiemble, 2019
Ternary circuits: why R = 3 is not the Optimal Radix for Computation [22] claims to have

disproven that ternary-valued computation is superior to binary-valued computation. They review

other existing research without providing simulation data themselves for power consumption or signal

delay, with mainly comparisons of transistor count of equivalent binary and ternary circuits, which

could possibly outweigh the higher transistor count needed to implement a more complex truth table.

They argue that a higher transistor count overall can only lead to a higher interconnection length,

however studies such as [61] show that the interconnection length can be reduced with ternary logic

circuits.

While they refute the claim of radix economy implying ternary to be optimal, they do not refute the

potential of ternary technologies over binary technologies in every aspect, as they do not properly

consider factors such as PDP and interconnection wire length densities, and only cover some operators

such as sum, and not multipliers. They have only shown that ternary has not yet been shown to

outperform binary, due to engineering challenges.

3.3 Kiyung Kim et al., 2020
Extreme Low Power Technology using Ternary Arithmetic Logic Circuits via Drastic

Interconnect Length Reduction [61] implements cell layouts for a balanced full adder and a

multiplier, using the static gate design of [48]. Their balanced full adder is identical to the one proposed

in [48], as well as the ”compound” balanced full adder described in this thesis in chapter 4 section 2.3.

They measure the interconnect wire length of the adder and the multiplier, for 5 trits, and compare

it with the wire length for an 8-bit binary-valued adder and multiplier. They show that the ternary

5-trit multiplier significantly outperforms the 8-bit binary multiplier with a 37% reduction in length,

however the ternary adder is slightly outperformed by the binary adder. They do not investigate the

PDP of the circuits with circuit simulation, or consider the transistor count.
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4 Conclusion of literature review
There are multiple methods for designing circuits, such as the static gate design with pull-up and

pull-down networks, circuits built from unary gates and voltage-averaging capacitor, circuits based on

MIN and MAX gates, and circuits built on ternary-valued 1-trit multiplexers. Additionally, circuits

may be designed using LUT-cascades such as the radix converter design method proposed in [52].

The research done in regards to arithmetic is mainly focusing on unbalanced ternary as opposed to

balanced ternary. An alternative technology, the novel two-dimensional material of [50], may challenge

the CNTFET circuits, as they claim to have a 50% reduction in transistor count compared to circuits

with CNT and silicon based devices.

Mainly two methods for radix conversion has been proposed, which are the LUT-cascade design and

the arithmetic decomposition design. Binary to unbalanced ternary radix conversion circuits and

reverse have been implemented in simulation. No CNTFET circuit implementations of 8-bit binary to

6-trit balanced ternary was found.

The papers examined in the literature review have not shown a proven improvement over binary

logic, although some research indicate that interconnect density may be significantly lower than

binary-valued circuits for some ternary-valued circuits such as a multiplier circuit. Furthermore, there

are be technologies which encode ternary values in binary, and which could possibly benefit from

implementing natively ternary values. However, existing ternary-valued logic circuits in CNTFET

circuit research generally have a higher PDP and transistor count compared to equivalent binary

circuits, for the purposes of adding.
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Chapter 4

Logic Synthesis and Circuit Design

In this chapter, the different designs and methods of constructing ternary-valued circuits are explored.

Furthermore, the synthesis of the static gate design is automated, along with our SIMS 2020 paper.

1 Circuit design methodologies
Multiple design methods to achieve a circuit for logic functions have been considered. These design

methods may rely on some gate-level circuit design, as well as transistor-level circuit design. As an

example, ternary logic algebra may be used to break a large function into smaller function in the

gate-level design, however it does not take into account the transistor-level design or optimizations

thereof.

1.1 Capacitor-aided circuits
If we allow the use of capacitors, we can achieve circuits such as a ternary full adder with unary

functions. These types of circuits work by using capacitors to take the average of multiple voltages,

which can be processed by simple unary functions with shifted voltage threshold to achieve the specific

function. Figure 4.1 shows one possible example to achieve different types of full adder circuits, such

as unbalanced or balanced.

While the transistor count and delay of this circuit may outperform other designs, it has a very severe

flaw of a high current leakage through the capacitors at high input frequencies. Current can flow

between the inputs, as well as from the inputs to VDD and GND within the unary functions, and

through the two C2 capacitors. Furthermore, capacitors take up quite a lot of space on a chip. Both the

size and the current can be remedied by reducing the size and capacitance of the capacitors, however

this limits their ability to produce sufficient output voltages.

Figure 4.1: Capacitor-aided ternary circuit
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1.2 Static gate design with pull-up and pull-down

The static gate design is a highly versatile and reliable
circuit design which can achieve any ternary-valued logic
function. It uses complementary transistor networks to
pull the output voltage to high or low, or the middle volt-
age by dividing the voltage between the two transistors
in the half-VDD path, which is from an active pull-up
network to an active pull-down network.
These 4 transistor networks are binary in function in
the sense that they either do or do not connect the
output to VDD or GND. However, with variations in
the diameters of the transistors within the network, in
combination with NTI and PTI inverters on the inputs, a
binary-valued truth table encompassing all combination
of the ternary-valued inputs can be achieved.
Two types of the static gate design were identified [48][32],
as shown in figure 4.2. Type A utilizes two transistor net-
works purely for the middle value, and two for the binary
high and low output values. To limit the leakage current,
the two pairs of networks have to be cross-wise exclusive
of each other, i.e. no open path between VDD and GND
with the exception of voltage division, which results in a
higher transistor count required. Type B functions in a
similar manner to the commonly used design for the STI
inverter. The top pair of networks generate an output
analogous to the NTI part of an STI, while the bottom
pair of networks are as the PTI part. Unlike type A, the
networks are not at risk for cross-wise current leakage,
however as neither pair of transistor networks can be
active simultaneously, the same restrictions occur, giving
the same increase in required transistors.

Figure 4.2: Static ternary gate design
type A and type B

Type A and type B of the static gate design are found to
be approximately equivalent in terms of transistor count,
power consumption, and signal delay, and both designs
can commonly be found in ternary-valued circuit design
and research.
Within each network, the binary-output truth table with
ternary inputs is achieved through the 4 transistor config-
urations shown in figure 4.3 from from [48]. For pull-up
networks, p-type transistors are used, while n-type tran-
sistors are used for pull-down networks. Within each
transistor network, 4 configurations of transistors can be
connected in series to form a n-dimensional rectangle on
the circuit truth table, which in parallel builds the whole
truth table.

Figure 4.3: Transistor switching table
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1.3 Ternary Algebra with static gate base-functions
With the use of select base-functions, all ternary logic can be achieved. This
method relies on the basic logic functions used in ternary logic algebra,
the transistor circuits of which must be designed using some other method.
Ternary logic algebra allows gate-level design of circuits, building on these
base functions. As an example, the balanced sum gate can be constructed.
The truth table is shown in table 4.1. While ANY and CON are simple to
implement, the sum function inherently has a much higher complexity, due
to the alternating values in the truth table. Therefore, we can use basic
functions to achieve the sum function. The SOP form can be written as in
equation 4.1. As 0 is equivalent to false, terms 2, 4, and 9 can be removed, as
they will not contribute to the output. From equation 4.2, in terms 5 and 6,
(b = 1) ∧ 1 and (b = 2) ∧ 2 can both be replaced with b. In a similar fashion,
in terms 1 and 3, (b = 0) ∧ 2 and (b = 2) ∧ 1 can be replaced with (b− 1),
and in terms 7 and 8, (b = 0) ∧ 1 and (b = 1) ∧ 2 is replaced with (b + 1),
which results in equation 4.3. From here, there are 3 terms being repeated
twice. Thus it is reduced to equation 4.4. The resulting gate-level design of
the sum gate is shown in figure 4.4.

Table 4.1: Truth ta-
ble of balanced sum

a b sum

2 2 0

2 1 2

2 0 1

1 2 2

1 1 1

1 0 0

0 2 1

0 1 0

0 0 2

Figure 4.4: Basic gate-based balanced sum

a+ b = ((a = 0) ∧ (b = 0) ∧ 2) [term1]

∨((a = 0) ∧ (b = 1) ∧ 0) [term2]

∨((a = 0) ∧ (b = 2) ∧ 1) [term3]

∨((a = 1) ∧ (b = 0) ∧ 0) [term4]

∨((a = 1) ∧ (b = 1) ∧ 1) [term5]

∨((a = 1) ∧ (b = 2) ∧ 2) [term6]

∨((a = 2) ∧ (b = 0) ∧ 1) [term7]

∨((a = 2) ∧ (b = 1) ∧ 2) [term8]

∨((a = 2) ∧ (b = 2) ∧ 0) [term9] (4.1)

a+ b = ((a = 0) ∧ (b = 0) ∧ 2) [term1]

∨((a = 0) ∧ (b = 2) ∧ 1) [term3]

∨((a = 1) ∧ (b = 1) ∧ 1) [term5]

∨((a = 1) ∧ (b = 2) ∧ 2) [term6]

∨((a = 2) ∧ (b = 0) ∧ 1) [term7]

∨((a = 2) ∧ (b = 1) ∧ 2) [term8] (4.2)

a+ b = ((a = 0) ∧ (b− 1)) [term1]

∨((a = 0) ∧ (b− 1)) [term3]

∨((a = 1) ∧ b) [term5]

∨((a = 1) ∧ b) [term6]

∨((a = 2) ∧ (b+ 1)) [term7]

∨((a = 2) ∧ (b+ 1)) [term8] (4.3)

a+ b = ((a = 0) ∧ (b− 1)) ∨ ((a = 1) ∧ b) ∨ ((a = 2) ∧ (b+ 1)) (4.4)

The basic functions needed, being the unary functions of equality, increment and decrement, and the

binary functions of MAX and MIN, can be generated with the logic synthesizer using the static gate

circuit design method.
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1.4 MUX-based LUT circuit
By utilizing multiplexer(MUX) circuits on the inputs as selection digits, the multi-digit output can be

connected to a selection of sets of predefined values in the form of a look-up table(LUT). This method

allows for circuits with n inputs and m outputs. The selection of outputs can be hard-wired voltages,

outputs from other circuits, or the inputs themselves. Alternatively, it can be read from a configurable

memory, making it a universal programmable function. Figure 4.5 shows the concept of a MUX-based

n-input m-output circuit. While these types of circuits are generally fast, they require a large circuit

which may result in a high passive current. In the general case, the number of selectable outputs is

equivalent to the number of possible input combinations, and each selectable output combination can

have a variable number of digits regardless of number of digit inputs. Since the multiplexing circuit

can become exponentially complex for a high number of inputs, this circuit is mainly applicable for a

smaller number of inputs. The MUX consists of decoders of the inputs, which check if each digit input

is a specific value. This is done with the 3 equality functions. These decoders can give 3 outputs, to

activate one of 3 inputs, as shown in figure 4.6.

Figure 4.5: General MUX-based circuit

Figure 4.6: 1-trit MUX
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These 1-trit MUX circuits can be connected to create more complex functions. As an example, the

sum function can be constructed. Based on the logic algebra equation for the sum function, shown in

equation 4.4, the MUX circuit can be constructed, and similarly the same can be done for the carry,

also known as consensus, based on equation 2.14 as in figure 4.7.

Figure 4.7: Balanced sum (a) and carry MUX (b) circuits

With these two circuits, a half adder can be constructed, and by extension a full adder with the

”Accept Any” circuit, as shown in figure 4.8.

Figure 4.8: Balanced full adder circuit (a) with any MUX circuit (b)

One interesting observation to make here is that any 2-input function can be created with this method,

however with a relatively high transistor count, as each 1-trit MUX requires 36 transistors to operate.
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The decoder circuit for a 1-trit MUX consists of the 3 equality functions. This decoder circuit can be

extended to n trits with the addition of 1-trit MUX circuits, as shown in figure 4.9 with an example of

a 2-trit decoder with 9 output signals.

Figure 4.9: 2-trit decoder extension of the 1-trit decoder

It is clear that the increase of trits in the decoder brings an exponential growth of circuit complexity,

and it’s therefore ill-advised to use these multi-trit decoders over the alternative of a combination of

1-trit MUXes based on the ternary logic algebra of the function, as was demonstrated with figures 4.7

and 4.8.

Paper [52] utilizes a cascade of LUT circuit, which are optimized using column multiplicity of the

truth table, i.e. how many duplicate columns can be found in different configurations of the specific

function truth table. This method can also be used to design a circuit.
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2 Risto et al. 2020
In our research paper ”Automated synthesis of netlists for ternary-valued n-ary logic functions in

CNTFET circuits”, accepted in the SIMS 2020 research conference[62], we presented an open-source

ternary-valued logic synthesizer for the transistor-level design using the static gate design, which

generates design files for simulation, with CNTFET logic circuits from a truth table with up to 7

inputs, i.e. functions with arity up to 7. We also proposed an indexing system for the logic functions

generated, which makes gate-level design much more convenient, as any circuit generated by a specific

logic synthesizer can be referenced by an index without the need for a truth table or circuit diagram.

Furthermore, we proposed the usage of a combination of different arities of function in a circuit. As an

example, we compared three balanced full adders; Purely non-compound, traditional compound, and a

hybrid of the two. Using simulation results to compare the three, the hybrid circuit outperformed the

two others.

2.1 Function Indexing
Due to the large quantity of possible logic functions in ternary logic, we proposed an indexing system,

which makes use of the base-27 heptavintimal notation shown in table 4.2.

With the heptavintimal notation, 3 trits can be expressed with a single character, which is analogous

to hexadecimal encoding of bits in binary logic.

Table 4.2: The heptavintimal notation

Weight(Decimal) 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Ternary 000 001 002 010 011 012 020 021 022 100 101 102 110 111

Heptavintimal 0 1 2 3 4 5 6 7 8 9 A B C D

Weight(Decimal) 14 15 16 17 18 19 20 21 22 23 24 25 26

Ternary 112 120 121 122 200 201 202 210 211 212 220 221 222

Heptavintimal E F G H K M N P R T V X Z

The function indexing system is a method of referring to specific truth tables with a string of

heptavintimal characters. Since these truth tables have 3m elements, it is divisible into groups of 3

ternary values, allowing for a convenient indexing of logic functions with the heptavintimal notation. As

an example, the 19683 ternary-valued logic functions of arity 2 can be expressed with 3 heptavintimal

characters. The functions are ordered by the values in the truth table, as shown in figure 4.10.

Figure 4.10: Truth tables for arity-2 functions with heptavintimal indexing
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2.2 Logic synthesis algorithm
By taking the truth table for the entire circuit, 4 binary truth tables are made, to represent the 4

transistor networks with the pull-up and pull-down network design method. These truth tables are

represented by n-dimensional tables, which are 3 elements long in each dimension. An example of

these 4 truth tables generated from a function truth table is shown in figure 4.11 from [48].

Figure 4.11: Truth table synthesis for pull-up and pull-down networks for the unbalanced SUM gate

Then, for each of the 4 networks, the truth table is drawn in n-dimensional space, and the largest

n-dimensional rectangular groupings of 1s are found, to cover all the 1s with as few groups as possible.

Each group is then interpreted as a transistor path within the network. Using the 4 different modes

for pull-up and pull-down transistors, as shown in figure 4.3, transistor paths can be constructed from

groupings on the truth table, as in the example in figure 4.12. The nanotube diameter of the transistors

are color coded with red, green, and blue, for 0.783nm, 1.018nm, and 1.487nm respectively.

Figure 4.12: Circuit implementation of a pull-up network truth table with 2 groups
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The code listing below shows the pseudocode for a general description of the logic synthesizer algorithm.

For more detail of the synthesizer, read the source code with comments in appendix C, or on github[63].

take c i r c u i t t ruth t a b l e inputs

f o r each network

generate t r a n s i s t o r network truth t a b l e s

f o r every p o s s i b l e grouping in truth t ab l e

generate n−dimens iona l mask f o r the group

compare mask with truth t ab l e

i f mask cover s no ’0 ’ s and at l e a s t one ’1 ’

s t o r e the mask group in the groups vec to r

f o r each group in the groups vec to r

compare the group with the sum of a l l other groups

i f group i s covered by the sum of other groups

remove group from the groups vec to r

f o r groups in the group vec to r

generate t r a n s i s t o r path with in the network

Using this synthesis algorithm, circuits for any ternary-valued logic function can now be generated.

Figure 4.13 shows the circuit for the arity-3 balanced full carry function, as it is synthesized by the

code.

Figure 4.13: Circuit implementation of the balanced carry
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2.3 Full adder architecture
To demonstrate the usage of the logic function netlist synthesizer, we compared three full adder

gate-level designs, shown in figure 4.14.

Figure 4.14: Three proposed balanced ternary full adders ”compound”(a), ”non-compound”(b), ”hybrid”(c)

The compound adder only makes use of functions with an arity of 2. This is the traditional design

method most commonly used [48][50][46].

The non-compound design method represents a more holistic view of the circuit as a relation between

the inputs and the outputs, as each output can be achieved with a single function.

The hybrid design method is a combination of these two, which takes advantage of the benefits of

lower and higher arity functions. In this example, the sum output is achieved in the same way as the

compound full adder, however the carry output is generated by a single holistic function.

2.4 Simulation results
The circuits, as generated by the logic synthesizer, was simulated in HSPICE, and compared in terms

of delay, power consumption, and number of transistors. The PDP (power-delay-product), represents

the product of the worst-case delay and the power consumption. The results are shown in table 4.3.

Table 4.3: Simulation results with 2fF load capacitor

Circuit Transistors Avg. power 50MHz Worst Delay PDP 50MHz

2-sum (7PB) 40 (32) 0.35µW 530ps 0.185e-15 J

2-ncarry (4DE) 10 0.80µW 20ps 0.016e-15 J

2-nany (15H) 18 0.32µW 40ps 0.013e-15 J

3-sum (B7P7PBPB7) 150 (138) 0.34µW 1530ps 0.526e-15 J

3-carry (XRDRDCDC9) 50 (38) 0.82µW 30ps 0.024e-15

[64] Unbalanced FA 106 0.47µW 0.89ns 0.421e-15 J

[49] Unbalanced FA 98 0.43µW* 1.57ns* 0.667e-15 J*

Proposed Compound Balanced FA 118 (102) 2.29µW 0.55ns 1.262e-15 J

Proposed Non-compound Balanced FA 188 (176) 1.18µW 1.53ns 1.805e-15 J

Proposed Hybrid Balanced FA 118 (102) 1.50µW 0.56ns 0.840e-15 J

* see [64]

We compare our results with some data-points from other researchers, however it should be noted that

this is not entirely an equivalent comparison, as the results were not generated in the same simulation

environment. Despite this, it is interesting to see that the performance is in a similar ball-park of

numbers as cutting edge research.

More interestingly, we compare our own circuits, with simulation results of both individual functions,

and full adder circuits. The results show that the hybrid design outperforms both the compound and



CHAPTER 4. LOGIC SYNTHESIS AND CIRCUIT DESIGN 29

non-compound full adder designs. Based on the results of the individual functions, this is expected;

the higher arity functions have lower power consumption but worse delay. In the hybrid full adder,

the critical path of delay are the sum functions, while the carry function can expense some delay in

exchange for less power consumption with the same number of transistors, resulting in a full adder

with the same delay as the non-compound design, with the same number of transistors, but lower

power consumption. This result shows that the higher arity functions generated by the synthesizer can

provide benefits over lower arity functions in the right context.

2.5 Contributions
In this paper, we had 3 major contributions:

• 1. An open source netlist synthesizer for n-ary ternary-logic functions in CNTFET circuits,

available on GitHub.

• 2. A proposed function indexing system

• 3. Three proposed gate-level full adder methods were simulated and compared

3 Optimizing gate-level design
Using this logic synthesizer, ternary logic gates can now be generated with ease. This facilitates

gate-level design of logic circuits, on the higher abstraction level. That said, there is still a question of

which functions should be used.

3.1 Expected input values
One strategy is to consider the expected values on each input to the function. As an example, if one of

the inputs is a binary-valued input, that input will never be the middle value. When generating the

function, all outputs in the case of that specific input being the middle value can be written as ’x’,

i.e. ”don’t care”. The synthesizer will then optimize with this in mind and generate the most simple

function to achieve the wanted functionality.

3.2 Compound vs non-compound
As shown in the results of our paper, the choice of arity and compoundness of the larger circuit can

have an effect on the performance. Higher arity functions generally have a lower power consumption,

but higher delay and transistor count. Therefore, a circuit can be optimized by only using higher arity

functions in signal paths with non-critical delay.
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Chapter 5

Radix conversion circuits

Radix conversion is important not only for compatibility with binary-valued technology, but it also

opens up for the possibility of mixed-radix systems. It is imaginable that specialized ternary circuits

may be integrated into a binary-valued system, and therefore it must be shown that the costs of

converting the radix of data does not outweigh the benefits of using ternary-valued circuits for either

computation or data storage.

1 Radix conversion circuit architecture
In this subchapter, every method conceived or discovered is described. Some of these methods are quite

trivial, however they are discussed here for completeness. Software solutions are not considered, as this

conversion is meant to take place at the hardware interface between binary and ternary components.

1.1 Simultaneous iteration method
One conceivable method, although highly inefficient, is to synchronously iterate a counter in each

radix from zero until the counter in the radix to be converted from reaches the value to be converted.

Then, the counter in the other radix will have the translated value. While it is clear that this is an

time-inefficient method, its non-linear time complexity can be shown to be O(2n) for n bits, which is

proportional to the value range of the input data.

1.2 The analog intermediate method
If a binary-to-analog and analog-to-ternary converter has high enough resolution, it may be used to

convert between these two radices. A time-efficient ADC with parallel comparators for each measurable

value may be used, however this would be a very complex circuit with high requirements for resolution

and accuracy, and may be rendered useless by electrical noise for larger converters. This method has

the issue of voltage stabilization and signal noise, and an exponentially increasing circuit-complexity.

It could be possible to implement for smaller converters, such as 8-bit, as only 256 voltage levels needs

to be differentiated. However, the circuits for digital-analog conversion is relatively complex and not

entirely reliable with narrow voltage bands [65].

1.3 Look-up table
A look-up table can be used to map any input value to a hard-wired output value. This may also be

used to convert between binary to ternary numbers, if every possible input is extensively covered with

mapping to a corresponding output. By the use of multiplexing, the correct value can be accessed

from a look-up table given its input. Each added binary input would require one additional layer of

multiplexing, and double the size of the look-up table. Due to the exponentially increasing circuit

complexity of this type of circuit, this method is not feasible for a large circuit such as a binary-ternary

radix converter.
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1.4 Adder-based arithmetic decomposition method
A set of equation can be defined for each binary digit of the input, by decomposing the binary digit

into its arithmetic values represented in balanced ternary form, with regards to its digit place. This

set of equations show the influence each binary input has on each ternary output, in other words the

relation between the input and output digits. Table 5.1 shows this process for 8-bit binary to 6-trit

balanced ternary.

Table 5.1: Digit relation

20 = + 30

21 = + 31 - 30

22 = + 31 + 30

23 = + 32 - 30

24 = + 33 - 32 - 31 + 30

25 = + 33 + 32 - 31 - 30

26 = + 34 - 33 + 32 + 30

27 = + 35 - 34 - 33 - 32 + 31 - 30

tn t5 t4 t3 t2 t1 t0

As each digit tn represents the 3n component of the number to be converted, each output digit can be

found from their component of the sum of the contributions of the binary digits in balanced ternary

form. Thus, the radix relation matrix can be made from table 5.1.

Table 5.2: Radix relation matrix

30 +b0 -b1 +b2 -b3 +b4 -b5 +b6 -b7

31 +b1 +b2 -b4 -b5 +b7

32 +b3 -b4 +b5 +b6 -b7

33 +b4 +b5 -b6 -b7

34 +b4 -b7

35 +b7

20 21 22 23 24 25 26 27

Each row in table 5.2 represents contribution each binary input has at each digit place of the balanced

ternary output. Each input may influence each output through a matrix of adders in accordance with

the matrix derived from the radix relation matrix between binary and ternary. Note that these full

adders will sum up each row, and produce a carry signal which propagates downwards to the higher

significance digit place rows[54][53]. This type of circuit has been achieved in CNTFET simulations

for both binary to unbalanced ternary, and unbalanced ternary to binary [56][57]. However it has not

been done for balanced ternary numbers.
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2 Circuit design
Based on the arithmetic decomposition method of radix conversion, the logic circuits can be constructed

for the purpose of simulation. The indices used in this chapter refers to synthesized circuits.

2.1 Pure adder-based
As a starting point, a radix converter circuit is built by using the ”hybrid” full adder circuits proposed

in chapter 4. The circuit schematic is shown in figure 5.1. Each block represents an adder component,

labeled SUM, HA, FA, for summation, half adder, and full adder respectively. The blocks are also

numbered by rows and columns for easy reference when optimizing. The sum output of each block

propagates to the right, while the carry output propagates downwards. The inputs counts from i0 to in

from the lowermost input upwards for each block. The full adder uses the hybrid balanced full adder

architecture described earlier, while the half adder uses one 2-input sum and one 2-input carry. For

the SUM blocks, either one or two 2-input sum functions are used, depending on the number of inputs.

For this version, inverters are used on the binary inputs to achieve the negative sign, with 450mV

representing 0, to make binary 0 and 1 analogue to balanced ternary 0 and +. Carry signals from the

lowermost blocks could be utilized to signify overflow, which for this circuit should never happen.

Figure 5.1: Radix converter with unoptimized adders

2.2 Optimized functions
As mentioned in Chapter 4 Section 3, the gate-level design can be optimized if the expected input

values for each function are known. For example, in this circuit many of the inputs are binary-valued,

meaning they have the values of either low or high, or in this case ’0’ or ’2’. Furthermore, the carry

output of many of these functions are limited, which gives further information on which input values

are expected for the functions further down the line. By starting from the top row working downwards

to the right of the pure adder-based radix conversion circuit, a table of expected values at every point

in the circuit can be constructed. Based on this table, most of the adders can be replaced with simpler

ones, while still achieving the same expected function. In addition, all negative signs on binary inputs,

resulting from the digit relation, can be accounted for in the selection of the optimized functions. For

this specific circuit, all sum outputs for the blocks is expected to be any of the three values, however

the carry outputs are often limited. The expected values for the carry signal for each block is listed in

table 5.3.
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Table 5.3: Expected carry signal values from each block in the radix converter circuit

Row Column 0 Column 1 Column 2 Column 3 Column 4 Column 5 Column 6

0 0 0/+ -/0 0/+ -/0 0/+ -/0

1 0/+ -/0 -/0/+ -/0 0/+ -/0/+

2 0/+ -/0/+ -/0/+ 0/+ -/0/+

3 0/+ -/0/+ -/0/+ -/0/+

4 0/+ -/0/+ -/0/+

Since this method does not account for the concurrent values of the carry signals, but instead every

expected possible value for each of them, some expected values might be a result of concurrent expected

values which never coincide. Therefore, it is clearly possible to optimize this circuit further. This

method can also show the sub-optimality of the circuit, as the 5th row should never output a carry

signal, as 28 < 36, yet this method implies a possible non-zero carry output from the 5th row.

From here, the logic synthesizer can be used to optimize the individual functions used. The wanted

output for input values which are not expected to occur can be written as ’x’, or ”don’t care”, which

will allow the grouping algorithm to construct a simpler circuit. The binary inputs b0..b7 are either

the high value or the low value, however with the synthesizer, we can choose how they are interpreted.

For the middle value, ’x’ can be written as output, as it is not expected to occur with binary values.

For the high value, it can be interpreted as addition or subtraction, to account for the signs on the

inputs. The resulting functions are listed in table 5.4 and table 5.5, for sum and carry respectively.

Functions connected serially to produce a 3-input functions are notated with + between the indices.

Table 5.4: Indices of optimized sum functions for the radix converter circuit

Row Column 0 Column 1 Column 2 Column 3 Column 4 Column 5 Column 6

0 CRX 77P BBP 77P BBP 77P BPP

1 55X + 7PP PPB BPP + 7PP BPP + PPB 7PP 77P + PPB

2 88R + PPB BPP + 7PB 77P + PPB 77P + 7PP BPP + 7PB

3 88R + 7PB 77P + 7PB BPP + 7PP BPP + 7PB

4 8R9 77P + 7PB BPP + 7PB

5 8R9 77P + 7PB

Table 5.5: Indices of optimized carry functions for the radix converter circuit

Row Column 1 Column 2 Column 3 Column 4 Column 5 Column 6

0 RRD CDD RRD CDD RRD CDD

1 ZZXXXDXXD DDC DRRCDDCDD CDDCDD9CC RDD RRDRRDDDC

2 RRDRRDDDD DRRCDD9CC RRDRRDDDC XXRRRDRRD DRRCDD9CC

3 ZZRRRDDDD XXRRRDDDC DRRCDDCDD DRRCDD9CC

4 RDD XXRRRDDDC DRRCDD9CC

The netlist implementation of this optimized circuit is shown in Appendix B.
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Table 5.6: Performance of 8-bit to 6-trit radix converter

Circuit Transistors Current Worst-case delay Best-case PDP 1GHz PDP

Pure adder-based 2452 70.1µA 640ps 4.037e-14 6.309e-14

Optimized 1587 55.4µA 395ps 1.969e-14 4.986e-14

[56] 700 465.9µA 137ps 6.370e-14 n/a

3 Simulation results

Table 5.7: Input value sequences for simulation

Input 0ns 1ns 2ns 3ns 4ns 5ns

b0 1 1 0 1 1 0

b1 1 1 1 0 1 0

b2 1 0 0 1 0 1

b3 1 0 1 0 1 0

b4 1 1 0 1 0 1

b5 1 1 1 0 0 1

b6 1 0 0 1 1 0

b7 1 0 1 0 1 0

Figure 5.2: Transient analysis of the optimized radix
converter

With the input value combination pattern in ta-

ble 5.7, a transient circuit simulation was done

in HSPICE for the radix converter circuits. The

transient output for the optimized radix converter

circuit is shown in figure 5.2, with t0, t1, t2, t3,

t4, t5 shown as dark blue, orange, gray, yellow,

light blue, and green respectively. All the outputs

consistently inhabit three well-defined voltage lev-

els with clear separation and little to no voltage

drift. The transition period at each input change

is relatively short, implying that it could run com-

fortably at a higher input frequency. The data

from these transient simulations were analysed

to produce assessable data, displayed in table 5.6.

These results show the increase in performance

for the optimized circuit, and shows that one Gi-

gaByte per second of 8-bit binary-valued data

can be converted to balanced ternary, at roughly

50µW . These circuits can be connected in par-

allel, which means data can be converted at a

rate of 50µW and 1587 transistors per GB/s. For

example, a 20GB/s radix converter has a power

consumption of 1mW , and a component count

of 31740 transistors. In conclusion, conversion

of data radix between binary and ternary is very

feasible with CNTFET circuits.



35

Chapter 6

Ternary versus Binary logic circuits

In this chapter, the application of ternary-valued logic is compared with binary-valued logic, in

terms of efficiency and component count. Both synthesized circuits and some alternative circuits are

investigated.

1 General overview of synthesized functions
The individual functions for binary and ternary logic can be examined in terms of transistor count, as

well as power consumption and signal delay. Figure 6.1 shows the transistor count for all 19683 of the

ternary functions with an arity of 2, ordered by index and by transistor count, as they are generated

by the logic circuit synthesizer.

Figure 6.1: Transistor count for all ternary-valued functions of arity 2, by index (a), by count (b)

Although the synthesizer is intended for generating circuits for ternary-valued logic functions, the

binary-valued functions are a subset of the functions that can be synthesized. The 16 binary-valued

functions with an arity of 2 is listed in table 6.1 with simulation results at 2GHz input frequency, with

4 inverters in series on the output as a fanout load (FO4). These binary-valued functions is compared

with some commonly used ternary-valued functions, listed in table 6.2 with simulation results.
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Table 6.1: The 16 binary-valued functions

Index Name Transistors With Current Worst-case delay PDP

inverters

f 000 Constant 0 0 0 0 0 0

f 002 NOR 4 4 8.32E-08 13E-12 9.73E-19

f 00K A and not B 4 6 4.26E-08 20E-12 7.67E-19

f 00Z not B 2 2 3.75E-08 7E-12 2.36E-19

f 200 not A and B 4 6 3.16E-08 19E-12 5.39E-19

f 222 not A 2 2 3.72E-08 7E-12 2.34E-19

f 20K XOR 8 12 9.50E-08 23E-12 1.96E-18

f 22Z NAND 4 4 4.29E-09 5E-12 1.93E-20

f K00 AND 4 8 2.94E-08 14E-12 3.70E-19

f K02 NOT XOR 8 12 1.53E-07 19E-12 2.61E-18

f KKK A buffer 2 4 6.16E-08 13E-12 7.20E-19

f KKZ A or not B 4 6 8.59E-08 15E-12 1.16E-18

f Z00 B buffer 2 4 6.16E-08 13E-12 7.20E-19

f Z22 not A or B 4 6 6.55E-08 9E-12 5.30E-19

f ZKK OR 4 8 1.06E-07 14E-12 1.33E-18

f ZZZ Constant 1 0 0 0 0 0

Table 6.2: Commonly used ternary-valued functions

Index Name Transistors With Current Worst-case delay PDP

inverters

f PC0 MIN / AND 10 18 2.54E-07 16E-12 3.66E-18

f ZRP MAX / OR 10 18 3.26E-07 15E-12 4.40E-18

f 8 PTI 2 2 6.27E-09 12E-12 6.77E-20

f 2 NTI 2 2 4.30E-08 6E-12 3.32E-19

f 5 STI 6 6 3.24E-07 6E-12 1.75E-18

f RDC Consensus 10 18 6.26E-07 15E-12 8.45E-18

f 7PB Balanced sum 32 40 3.47E-07 33E-12 1.03E-17

f C90 Unbalanced carry 8 16 2.64E-07 21E-12 4.99E-18

f VK0 Unbalanced carry 2 8 16 4.80E-08 16E-12 6.92E-19

f B7P Unbalanced sum 31 39 3.41E-07 36E-12 1.11E-17

f 2 Equal 0 2 2 2.62E-08 17E-12 4.01E-19

f 6 Equal 1 4 6 5.66E-08 12E-12 6.11E-19

f K Equal 2 2 4 4.71E-08 11E-12 4.66E-19

f 7 Increment 7 9 4.64E-07 15E-12 6.27E-18

f B Decrement 7 9 4.77E-07 17E-12 7.30E-18
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The transistor counts and PDP of the ternary-valued and binary-valued functions are graphed in figure

6.2.

Figure 6.2: Transistor count(a)(c) and PDP(b)(d) for binary-valued(a)(b) and common ternary-valued(c)(d)
functions

From these results, it is clear that individual synthesized ternary-valued CNTFET circuits tend to have

a significantly higher transistor count and PDP compared to the synthesized binary-valued circuits.

By examining the PDP of the ternary-valued functions, it becomes clear that the functions which only

output 0 or 2 have a much lower PDP than the rest of the functions. This is due to a major flaw of

the circuit, being the voltage division to create the middle voltage. It could be possible to remedy this

with a second voltage source for the middle voltage, which removes the need to do voltage division

in the logic circuit, improving the PDP. However, this would be a trade-off with a higher number of

interconnections, as well as transistor count to keep the two voltages exclusive of each other. For a

complete comparison, we need to consider the implementation of these functions to achieve a desired

output, where an m-trit ternary output can be thought to be equivalent to an n-bit binary output.

2 Use cases of ternary logic
When comparing binary and ternary logic, it is important to keep in mind the possible use cases for

ternary logic. While only the PDP and transistor count of adder circuits are investigated, there are

other use cases as well to keep in mind.

2.1 Basic arithmetics
Basic arithmetics such as adding are essential operations for a general computing system. To show

that ternary-logic is superior to binary logic in the aspect of general computing, basic arithmetics

must be shown to be more efficient in ternary-logic. Since basic arithmetic operations on n bits are

generally less complex than the radix conversion circuit for n bits, it’s evident that it is not worthwhile

to convert the radix to only do simple arithmetics in a mixed radix system. However, there may still be

benefits to using a purely ternary-valued logic system. Therefore, the arithmetical function of adding

is compared for ternary-valued and binary-valued logic.
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2.2 Data storage and transmission
Although this research project did not cover data storage and transmission, it’s worth noting that

ternary-valued data have a higher information density. The advantage of ternary over binary in this

aspect is 1.58 times better than binary, as shown in earlier Chapter 2 Section 1.5.

To enable ternary data to be stored, a special technology called memristors can be used. Research has

been done on memristors and ternary data storage in the Ternary Research Group at USN [66][67].

While the exact performance of this data storage depends on the performance of memristors, the

component count may be lower, and data transmission may be faster as a result of fewer digits needed

to be stored and transmitted, however more research must be done on these topics.

2.3 Specialized ternary algorithms
While it is imaginable that special algorithms may exist which are more efficient to perform in ternary

logic, as most if not all algorithms are based on the basic arithmetics such as adding, multiplying, and

subtracting, basic arithmetics are the baseline comparison of ternary and binary logic in these circuit

implementations.

One study [16] implements Ternary Neural Networks by encoding balanced ternary in binary values.

It may have benefits from natively ternary circuits, however more research is needed. Another study

[61] shows that the multiplication operation can be done in ternary with lower interconnection density.

This implies that even if adding can not be done more efficiently in ternary, there may still exist other

operations and algorithms which might benefit from ternary logic.

3 Design of adder circuits
Multi-digit adders for binary and ternary logic are compared. Both binary and ternary full adders are

synthesized for a fair comparison. Additionally, some alternate commonly used circuits are compared.

3.1 Synthesized binary adder circuit
Using the synthesized functions, a binary full adder can be constructed with a common design such as

in figure 6.3, shown with synthesizer index for binary XOR(20K), AND(K00), OR(ZKK) gates.

Figure 6.3: Common gate-level design of binary full adder
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3.2 Synthesized balanced ternary adder circuit
The hybrid gate-level design proposed in our SIMS paper is used, as shown in figure 6.4.

Figure 6.4: Proposed ternary full adder

3.3 Basic gate-based balanced ternary full adder
As an example of a circuit built with logic algebra from the basic gates, the sum function was

constructed in chapter 4. The sum gate is shown with radices for each gate in figure 6.5. Each gate

can be synthesized by the netlist generator with the index shown.

Figure 6.5: Gate-based sum

To achieve a full adder, the functions of consensus and any can be used, as in the compound design

described in our paper, with the sum gate derived with logic algebra replacing the sum gate 7PB.
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3.4 Capacitor-aided balanced ternary full adder
Using the capacitor-aided circuit design, a balanced full adder can be constructed as in 6.6 from [47].

Figure 6.6: Capacitor-aided ternary full adder

Due to the voltage thresholds required for each inverter gate, and quite large current at 2GHz frequency

through the capacitors, this circuit was found to not be applicable for high-performance adding. The

paper [47] similarly report a high power consumption of 28.5µW , as well as a high delay time of 200ps

for their serial adder. The current can be limited by reducing the size of the capacitors, however this

causes the circuit to malfunction below a certain capacitance. Despite its low transistor count, it is an

inefficient and unreliable circuit, whose function is better implemented with other circuits.
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4 Simulation results
The single full adders are simulated individually, and are compared in terms of transistor count and

power-delay product.

4.1 Results
Table 6.3 shows the simulation results for the full adders discussed above. Circuits are simulated in

HSPICE, at 2GHz input frequency and FO4 output load. The best results for both the binary and

ternary category are highlighted.

Table 6.3: Simulation results of binary and ternary full adders

Circuit T
ra

n
si

st
or

s

w
/

in
ve

rt
er

s

Current Worst-case PDP

delay

Synthesized binary FA 46 52 7.02E-07 5.80E-11 3.67E-17

28-transistor binary FA 28 28 1.63E-07 2.20E-11 3.22E-18

Proposed balanced ternary FA 106 118 2.55E-06 1.28E-10 2.94E-16

Basic gate-based balanced ternary FA 258 270 1.29E-05 2.00E-10 2.32E-15

MUX-based balanced FA 72 108 5.75E-06 1.61E-10 8.33E-16

4.2 Comparison of results
Table 6.4: Minimum digits required for a
minimum counting range

Positive Bits Trits Digit ratio

range

22 2 2 1

24 4 4 1

28 8 6 1.333

216 16 11 1.454

232 32 21 1.523

264 64 42 1.523

33/2 4 3 1.333

39/2 14 9 1.555

327/2 42 27 1.555

381/2 128 81 1.580

3243/2 385 243 1.584

→ ∞ → ∞ → ∞ → 1.58496

Of the balanced ternary full adders discussed, the proposed

balanced ternary full adder has the best PDP performance,

although the capacitor-aided full adder far outperforms in

terms of transistor count, although this is weighed against

the choice of using capacitors which are large in size, and

causes a much higher current than the transistor-based

voltage division. Therefore, the proposed balanced ternary

FA is the highest performing balanced ternary full adder

that was discovered in this project.

When adding two numbers together, the number of digits in

the two numbers is equivalent to the number of full adders

required to add them together in parallel, with a PDP

roughly equivalent to a serial adder. Therefore, to make the

simulation results of performance equivalent between binary

and ternary, the results for the ternary can be divided by

the digit ratio for a specific counting range. The digit ratios

for various data sizes are shown in table 6.4, for counting

ranges of both 3m/2 and 2n, which shows that for commonly

used binary data sizes such as 32 and 64, a digit ratio close

to the convergent ratio can be achieved.
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Table 6.5: Equivalent comparison of full adders with adjusted values for the ternary circuits

Circuit T
ra

n
si

st
o
rs

w
/

in
ve

rt
er

s

Current Worst-case PDP

delay

Synthesized binary FA 46 52 7.02E-07 5.80E-11 3.67E-17

28-transistor binary FA 28 28 1.63E-07 2.20E-11 3.22E-18

Proposed balanced ternary FA 70* 78* 1.67E-06* 8.40E-11* 1.27E-16

Basic gate-based balanced ternary FA 170* 178* 8.46E-06* 1.31E-10* 1.00E-15

MUX-based balanced FA 48* 71* 3.77E-06* 1.05E-10* 3.56E-16

*Values are divided by 1.523 for an equivalent comparison

The equivalent results are compared in table 6.5.

To compare the simulation results, the transistor count, current, and worst-case delay of the proposed

balanced ternary full adders is divided by 1.523 to make the results equivalent. These results suggest

that, with the circuits implemented here, ternary-valued computation might not be more efficient than

binary-valued computation of basic arithmetics in terms of PDP, despite the benefit of fewer digits.

One ternary-valued circuit is implemented with a very low transistor count, however it requires extra

components and has a poor PDP performance.
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Chapter 7

Conclusion

The conclusions of this thesis is grouped in three categories; those related to the circuit design and

synthesis of ternary-valued CNTFET circuits, those related to radix conversion, and conclusions related

to the comparison of ternary-valued circuits and binary-valued circuits. The main results from the

three chapters related to these three topics are summarized here.

1 Ternary-logic circuit design and synthesis
Several design methods to achieve a ternary-valued circuits were identified and investigated. These

include capacitor-aided circuits, the static gate design with pull-up and pull-down transistor networks,

gate design from basic gates using ternary algebra, and MUX-based circuits. Ternary algebra was

shown to be useful for designing mux-based circuits, as the mux gates are equivalent to the basic

functions used. These were implemented in Chapter 6 for the purpose of full adders, to provide a

comparison between the investigated circuits and binary-valued circuits. The highest-performing circuit

was found to be the static gate design, due to its low power and signal delay, as well as versatility to

achieve any function with a single gate.

The static gate architecture was automated with a logic synthesizer which generates CNTFET circuit

simulation files from a given truth table. This synthesizer was shown to be capable of correctly

generating commonly used ternary-valued circuits, as well as a slew of other functions used in this

thesis, including binary-logic circuits. As a proof of concept for the circuit synthesizer, an 8-bit binary

to 6-trit balanced ternary radix converter circuit was constructed and simulated using synthesized

functions. Our research paper on this logic synthesizer was accepted in the SIMS 2020 conference.

An alternative circuit architecture is the capacitor based circuit, but these circuits are limited in the

functions it can achieve, have a much higher power consumption, and require a large space in the

circuit for capacitors.

The commonly used balanced ternary full adder, the ”compound” design, was improved in terms of

PDP with the proposed ”hybrid” design, with the same transistor count and negligible delay difference.

The PDP was shown to be decreased by more than a third with the proposed low-power design.
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2 Radix conversion and inter-radix compatibility
Using the logic synthesizer, an 8-bit binary to 6-trit balanced ternary radix converter was shown to

be capable of conversion at 55.4µA and 1587 transistors per 1 GB/s of 8-bit data, or potentially a

faster data rate. Using this circuit, compatibility between ternary-valued and binary-valued circuits

can be achieved, e.g. arithmetic logic circuits or data storage circuits. In terms of PDP, these results

are better than reported results in other research on binary to ternary radix converters, such as [56],

with a decrease of more than two thirds of their reported PDP for an 8-bit to 6-trit radix converter,

due to the low-power operation of the static gate design. However, their circuit has less than half

the transistor count. Furthermore, the proposed radix converter of this thesis converts to balanced

ternary as opposed to unbalanced ternary. This shows that binary to ternary radix conversion, and

by extension ternary to binary radix conversion, is very feasible to implement at high speeds and low

power with CNTFET circuits.

3 Comparison of ternary and binary for arithmetic circuits
A selection of binary-valued and ternary-valued full adders were identified, simulated, and compared.

To achieve equivalence between ternary and binary, the values were adjusted according to the ratio

between number of digits for ternary and binary at specific a data size with multi-digit adders. The

results show that the CNTFET circuit ternary-valued multi-trit adders identified in this thesis do not

outperform the binary equivalent for the purpose of arithmetic addition. However there is room for

optimization, and other research has shown that ternary multiplier circuit can be implemented with a

lower length of circuit interconnections [61] when compared to binary multiplier circuits.

4 Discussions

4.1 Validity of simulation results
As with most research into ternary-valued CNTFET circuits, the 32nm Stanford University CNFET

model was used in combination with HSPICE to simulate these circuits. This model has been tuned

according to the physics and performance of a CNTFET [68], implying that the use of this model

should produce a realistic result.

The CNFET model parameters used in the simulations were given in Chapter 1 section 6.2, which are

adhering to the specifications of the CNFET model. These parameters may vary between different

research, and may result in differing measurements.

The voltage threshold of these CNTFETs were found in simulation, as shown in figure 2.3. Comparing

this qualitative graph showing voltage thresholds for different CNT diameters with the quantitative

theory of CNTFET voltage threshold in Equation 2.21, they appear to correspond to each other,

implying that the voltage thresholds of the simulations are accurate, or close to accurate.

The circuits simulated produce the expected logic output based on the circuit design. For emulating

the integration of sub-circuits in a larger circuit, an FO4 load or capacitance output load was used, to

provide a more realistic simulation.

These simulations were done with an older version of the HSPICE simulator, with the exact simulation

condition and environment to achieve convergence and functionality found through trial and error,

which may affect the exact values measured. For absolute certainty in these results, these circuits must

be physically implemented, and be recreated in simulation by other researchers.
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4.2 Optimality of logic synthesizer
The logic circuit synthesizer produces optimized circuits, however a claim of total optimality can

not be made. The circuits are optimized with transistor count in mind, and it is assumed that the

lower transistor count will also produce a lower PDP, however this may not be an exact correlation.

Furthermore, it does not optimize for the fewest number of inverters required to achieve the input

voltages. The synthesizer only optimizes the number of components in the sub-circuit, and only to an

extent.

By manual inspection of the synthesized ternary-logic circuits, it was found that a secondary optimiza-

tion of transistor count might be possible. It could be argued that since these circuits are inherently

larger than binary-valued circuits, there is more potential for optimizing the circuits, which may

possibly lead to a performance close to or better than a binary circuit. However this is counterbalanced

by the inherently higher complexity of a ternary-logic function needed to implement a more complex

truth table. The sub-optimality may weaken the argument that ternary-valued circuits can not achieve

a better performance than binary-valued circuits in terms of PDP.

4.3 Optimality of the proposed radix converter
While a better balance between power-consumption and signal delay was found compared to [56], albeit

with a higher transistor count, the circuit can still be further optimized. This only strengthens the

argument for the feasibility of high-speed low-power radix conversion between binary and ternary.

Balanced ternary to binary radix conversion was not implemented, however [57] reports simulation

performance of an unbalanced ternary to binary radix converter, with a significantly higher performance

than their reported performance of their binary to unbalanced ternary converter. This can likely be

attributed to the fact that since the output is binary-valued, the circuit can be constructed with mostly

binary-logic components.

4.4 Completeness of binary and ternary circuits comparison
Not every circuit has been covered, due to limited scope of the project. However a reasonable sample

of the research is investigated, for the purposes of full adders.

The capacitor-aided full adder could not be implemented, and thus simulation results is not shown in

this thesis. However, partial simulations of the circuit indicate a relatively high current and delay at

high frequencies, similarly to [47]. Despite the lack of a full simulation and analysis of the circuit, it

was concluded that this circuit design was not appropriate for high-efficiency adding, when compared

to the other circuits implemented in this thesis. Despite this, a description of the circuit was included

for completeness.

This thesis only considered circuits for full adders, which could not be shown to outperform the binary

equivalent, however there are other operators, such as multiplication, which may outperform a binary

multiplier [61].

While ternary logic could not be shown to outperform binary logic for high-performance logic processing,

there are still uses for ternary-valued logic with data storage and transmission, as well as some other areas

such as in safety-critical systems, where the middle value can be used as ”unknown” or ”uninitialized”.

Furthermore, technologies that encode ternary values with binary digits may benefit from natively

ternary circuits. These topics were not investigated in this thesis, and is suggested as future work.
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5 Future work
This section describes some suggested future work that was conceived of or discovered during this

thesis.

5.1 Future work: Secondary optimization of synthesized circuits
A method to further optimize the circuits generated by the ternary circuit synthesizer is theorized.

While the synthesizer produces discrete transistor paths for each optimal grouping found, it should

be possible to make sub-group of these transistor paths within each transistor network to produce a

more interconnected network. For circuits such as the 3-input sum function B7P7PBPB7, it might be

possible for the transistor count in the full-VDD pull-up and pull-down networks to each be reduced

from 36 transistors to 23 transistors, as shown in figure 7.1.

Figure 7.1: Secondary optimization of the full-VDD pull-up transistor network of function B7P7PBPB7

For this example, 6 groupings were manually identified. What this method does is look for repetitions

in the collection of transistor-paths, and groups them together at a grouping-space, such as the top or

the bottom of the transistor network, specified with an up or down arrow. Each grouping will divide

the grouping space into a sub-space, which means that one grouping may restrict others. Therefore,

the order of the groupings is relevant. Finding the optimal grouping for the least amount of transistors

is a complex search task. The method done here by hand is to first identify the largest groups within

each grouping space, i.e. A and AN for the top grouping space, and B and BN for the bottom grouping

space, which each reduce the transistor count by 4, and so on for each resulting sub-space.

This circuit was not implemented, however no reason could be found for why this should not be a

functional optimization of the transistor networks within the synthesized circuits. Further research

into these types of optimizations is needed and is suggested as future work for ternary-logic CNTFET

circuit synthesis.
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5.2 Future work: Full optimization of carry functions
Using the expected inputs method for optimizing the carry functions in the gate-level design of the

radix converter, the circuit can be optimized further, with a full circuit analysis of expected node values.

The method that was used did not consider the concurrent values of the circuit nodes, but instead lists

every possible value for each node in the first row, and works downwards with the assumption that

any combination of possible values can occur simultaneously. This leads to an optimized and fully

functional circuit, however it is sub-optimal. For a full circuit analysis of the expected node values, the

circuit can be emulated in code, which runs through every combination of binary inputs, and records

every occurring logic value at each node. Then, a more simplified version of table 5.3 is produced,

and the optimized circuit can be constructed in the same manner. Additionally, an efficient ternary

to binary may also be constructed using the same methods used here. This is suggested as future

work for binary to ternary radix conversion, although the performance shown with the proposed radix

converter is arguably satisfactory for most purposes.

5.3 Future work: Optimizing interconnection density
In this thesis, the focus has been on transistor count and PDP performance. However, if the

interconnection density can be shown to be significantly lower in a ternary logic circuit compared to

an equivalent binary circuit, this may outweigh the extra costs of implementing ternary logic in terms

of PDP and transistor count, as the interconnection density is cited as one of the main factors limiting

modern processor technology [3][44][45]. Some research [61] has suggested that for certain circuits such

as multipliers, ternary CNTFET circuits may outperform binary circuits. Interestingly, the full adder

they implement, which is identical to the ”compound balanced full adder” in chapter XX, is barely

outperformed by the binary equivalent in terms of interconnect length. In this thesis, the ”hybrid”

design was proposed which reduces the PDP by a third with the same transistor count. It would be

interesting to see how this design would fare in terms of interconnection wire length.

5.4 Future work: Natively ternary TNN
In the literature review, a paper on ternary neural networks was discussed. They encode balanced

ternary values in binary values. To determine if technologies encoding ternary with binary would benefit

from natively ternary logic, more research is needed. The same can be done for similar technologies

which encode ternary values, such as ternary state machines, encoding of ternary trees, or ternary data

in general, or similar.

5.5 Future work: Memristor-CNTFET circuits
As [3] stated in 1984 that the main restraint of MVL technologies is the lack of a true multistate

device, this is still the case for CNTFETs. However, memristors have been shown to be capable of

inhabiting three states [66]. Therefore, it is suggested for future work to investigate the possibility of

memristor-transistor circuits such as in [69].
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Abstract
This paper is an investigation of automated netlist syn-
thesis for ternary-valued n-ary logic functions, based on
a static ternary gate design methodology. We present an
open-source C++ implementation, which outputs a ready-
to-simulate SPICE subcircuit netlist file for ternary-valued
n-ary function circuits. A circuit schematic of the 3-
operand carry is demonstrated as synthesized by the netlist
generator.

We investigate a holistic (non-compound) approach to
designing balanced full-adders by using 3-operand func-
tions as compared to a traditional 2-operand compound
design methodology. Three gate-level design approaches
(compound, non-compound and hybrid) for the balanced
full-adder have been simulated in HSPICE and are com-
pared to each other and the state-of-the-art with simulation
results.

Furthermore, we propose to standardize the ternary
functions by indexing them. This indexing system allows
for the convenience of referencing any possible logic func-
tion with no ambiguity. This indexing is necessary as most
ternary functions do not have semantic names (e.g. AND,
OR) and the amount of unique 3-valued functions grows
exponentially with higher arity.
Keywords: ternary, netlist, synthesis, simulation

1 Introduction
In recent years, along with developments of the car-
bon nanotube field-effect transistor (CNTFET), there have
been a handful of papers on the designs and synthesis of
ternary or 3-valued logic gates implemented in simula-
tions of CNTFET circuits. One paper in particular (Kim
et al., 2018) proposes a design method for ternary logic
gates, with the use of pull-up and pull-down networks con-
structed from a truth table for the circuit. In ternary logic,
with only two operands, there are 19683 possible logic
gates. With three operands, 7.6e12 logic gates are possi-
ble. The process of designing the circuit and writing the
netlists of these circuits can be a tedious process, espe-
cially for circuits with more than two operands. There-
fore, an open-source netlist synthesizer is of much use.
The study (Lee et al., 2019) reports to have automated this
process, however their code is not open-source.

2 Function Indexing
To unambiguously refer to any of the many logic func-
tions, we propose a simple indexing system.

2.1 Range of index in arities
The number of possible functions for a specific arity and
radix can be calculated as in Equation 1, where R is the
radix and A is the arity.

Frange = RRA
(1)

Table 1. Range of functions in arities and radices

Arity Radix 2 Radix 3

1 221
= 4 331

= 27
2 222

= 16 332
= 19683

3 223
= 256 333

= 7,625,597,484,987

While in binary, there are few enough functions that
naming the useful functions (AND, OR, XOR, etc.) has
been a feasible practice, for ternary logic the quantity of
possible functions is more unwieldy, as can be seen in Ta-
ble 1. Therefore, an indexing system is proposed to refer
to specific ternary-radix functions.

The indexing system maps every truth table to an index
by counting up from 0 to the function range, along with the
values of the truth table. As an example, a function always
outputting the low value would be the 0th index. Then,
the first row of the truth table acts as the three lowest-
significance trits of the index, and so on. With a truth table
listed vertically, the output values for a specific function
can be read in ternary as the function index.

2.2 Heptavintimal index encoding
We adopt the usage of the base-27 heptavintimal notation
for ternary values (Jones, 2012), as it conveniently covers
three ternary digits (trits) per symbol, as shown in Table
2. As one operand can have one of three values, the truth
table of a function is three trits long in each dimension.
Therefore, a logic function index can conveniently be en-
coded with the heptavintimal notation.



Table 2. The heptavintimal notation

Weight(Decimal) 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Ternary 000 001 002 010 011 012 020 021 022 100 101 102 110 111

Heptavintimal 0 1 2 3 4 5 6 7 8 9 A B C D

Weight(Decimal) 14 15 16 17 18 19 20 21 22 23 24 25 26
Ternary 112 120 121 122 200 201 202 210 211 212 220 221 222

Heptavintimal E F G H K M N P R T V X Z

3 Methodology
Based on the static ternary gate design methodology of
(Kim et al., 2018), we have implemented an algorithm in
C++, which produces a ready-to-simulate SPICE subcir-
cuit netlist file from a circuit truth table.

The program takes an n-dimensional truth table, and
constructs the four truth tables for the pull-up and pull-
down networks. Then, for each network, a set of n-
dimensional rectangular groupings are found. Each of
these groupings will provide a transistor path to the out-
put within each pull-up and pull-down network.

3.1 Usage
To use the program, compile the open-source code in a
C++ compiler. The netlists will be generated in the same
file directory as the compiled program. When the pro-
gram starts, it asks for the function arity, and the values of
each element in the three-by-three n-dimensional truth ta-
ble, with values low(0), middle(1), high(2), don’t care(x).
The filename will be generated as the function index of
the specific function. The transistor parameters, as well
as which CNTFET model is being used, can be specified
with the string variables p0, p1, p2, n0, n1, n2.

The program will produce a subcircuit which must be
connected externally to a 0.9V voltage supply, and the
operand inputs. The circuits rely on external 2-transistor
Positive Ternary Inverters (PTI) and Negative Ternary In-
verters (NTI) to achieve the four different transistor oper-
ations detailed in (Kim et al., 2018).

3.2 Logic minimization algorithm
The logic minimization done to produce an optimized cir-
cuit is similar to karnaugh-mapping. The grouping algo-
rithm takes the truth tables for each transistor network and
draws n-dimensional rectangular groupings which covers
every ’1’ on the truth table for each network, with as
few groupings as possible. These groupings represent the
transistor-paths in the circuit towards the output within
each of the four transistor networks. Each transistor in
series narrows down the throughput, until the logical rect-
angle of a grouping is achieved.

4 Circuit schematics
The common procedure for constructing functions with
more than two operands is to combine smaller functions

to create bigger compound functions. However, circuits
with more operands can also be generated with our pro-
gram. Therefore we investigate the usage of 3-operand
functions in a 1-trit balanced full-adder circuit, in the form
of a non-compound and a hybrid gate architecture. These
architectures are a more holistic view of the function as a
relation between input and output. Figure 1 shows three
different balanced full-adder circuit design approaches.

Figure 1. Three approaches for a balanced full-adder

Figure 2 shows the circuit schematic for the 3-carry cir-
cuit used in the hybrid 1-trit full-adder, with diameters
1.487 nm and 1.018 nm being depicted as blue and green
respectively.



Table 3. Simulation results with 2fF load capacitor

Circuit Transistors Avg. power 500MHz Avg. power 50MHz Worst Delay PDP 500MHz PDP 50MHz

2-sum (7PB) 40 (32) 0.61µW 0.35µW 530ps 0.327e-15 J 0.185e-15 J
2-ncarry (4DE) 10 0.80µW 0.80µW 20ps 0.016e-15 J 0.016e-15 J
2-nany (15H) 18 0.33µW 0.32µW 40ps 0.013e-15 J 0.013e-15 J
3-sum (B7P7PBPB7) 150 (138) 0.56µW 0.34µW 1530ps 0.856e-15 J 0.526e-15 J
3-carry (XRDRDCDC9) 50 (38) 0.87µW 0.82µW 30ps 0.026e-15 J 0.024e-15

(Lee et al., 2019) Unbalanced FA 106 (no data reported) 0.47µW 0.89ns (no data reported) 0.421e-15 J
(Vudadha et al., 2018) Unbalanced FA 98 (no data reported) 0.43µW* 1.57ns* (no data reported) 0.667e-15 J*
Proposed Compound Balanced FA 118 (102) 2.73µW 2.29µW 0.55ns 1.44e-15 J 1.262e-15 J
Proposed Non-compound Balanced FA 188 (176) 1.67µW 1.18µW 1.53ns 2.55e-15 J 1.805e-15 J
Proposed Hybrid Balanced FA 118 (102) 1.96µW 1.50µW 0.56ns 1.10e-15 J 0.840e-15 J

* see (Lee et al., 2019)

Figure 2. The balanced 3-operand carry function

5 Simulation results
The simulations were done in HSPICE, with the standard
32nm CNFET model technology from Stanford Univer-
sity. (Deng and Wong, 2007)

For the sake of these simulations, voltages below
200mV is considered "low", 250mV to 650mV is "mid-
dle", and above 700mV is "high".

Table 3 shows simulation results for some balanced
functions, and compares three different circuit concepts
of a balanced full-adder. The average current is measured
at 500MHz and 50MHz. All measurements include the
external PTI and NTI inverters of 2 transistors each where
they are required. The transistor count is shown with and
without the external inverters. A capacitive load of 2fF
was put on the output to ground.

6 Discussion
The runtime performance of the synthesizer can be further
optimized for > 7 arity. Under that condition circuit so-
lutions can be found in reasonable time on standard hard-
ware. Due to the sheer number of possible functions, only
a minority of the circuit solutions were tested. However,
all the tests produced the correct output values.

It should be possible to optimize the circuit solutions
even further as we found by manual inspection. This is
especially true for circuits with high arity functions. It is
interesting to see that the performance of a 1-trit balanced
ternary full-adder compared is comparable to an unbal-
anced version, commonly found in literature.

7 Conclusion
For up to 7 operands, a circuit of any 1-output ternary-
valued function can be produced. We show that 3-operand
functions can be implemented in circuits such as a 1-trit
balanced full-adder, and may in some cases outperform a
traditional 2-operand design strategy, as the hybrid full-
adder was shown to outperform the compound full-adder
in terms of power-delay-product (PDP) performance.

This paper has provided three contributions:
1. An open-source implementation for synthesis of n-

ary ternary-valued CNTFET circuits (Risto, 2020).
2. An indexing system has been proposed which allows

for any possible ternary-valued logic function to be refer-
enced unambiguously.

3. A novel 3 operand, classical 2 operand, and a hybrid
1-trit balanced full-adder circuits have been simulated and
compared with simulation results.
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Appendix B

Radix converter main simulation

file, radixconverter.sp

. TITLE ’ binary to te rnary rad ix converter ’

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗For optimal accuracy , convergence , and runtime

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
. opt ions POST

. opt ions AUTOSTOP

. opt ions INGOLD=2 DCON=1

. opt ions GSHUNT=1e−12 RMIN=1e−15

. opt ions ABSTOL=1N ABSVDC=1e−4

. opt ions RELTOL=1e−2 RELVDC=1e−2

. opt ions NUMDGT=4 PIVOT=13

. opt ions VNTOL=1M

.OPTION CONVERGE=5

. opt ions dcstep = 1

.OPTIONS METHOD=GEAR

. opt ions r u n l v l=0

. param TEMP = 25

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Inc lude r e l e v a n t model f i l e s

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

. l i b ’CNFET. l i b ’ CNFET

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

. i n c lude ’ f CRX . sp ’

. i n c lude ’ f 77P . sp ’
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. i n c lude ’ f BBP . sp ’

. i n c lude ’ f CDD . sp ’

. i n c lude ’ f RRD . sp ’

. i n c lude ’ f 55X . sp ’

. i n c l ude ’ f 7PP . sp ’

. i n c lude ’ f 8R9 . sp ’

. i n c lude ’ f PPB . sp ’

. i n c lude ’ f BPP . sp ’

. i n c lude ’ f 7PB . sp ’

. i n c lude ’ f 88R . sp ’

. i n c lude ’ f DDC . sp ’

. i n c lude ’f CDDCDD9CC. sp ’

. i n c lude ’f DRRCDD9CC. sp ’

. i n c lude ’f DRRCDDCDD. sp ’

. i n c lude ’ f RDD . sp ’

. i n c lude ’f RRDRRDDDC. sp ’

. i n c lude ’f RRDRRDDDD. sp ’

. i n c lude ’f XXRRRDDDC. sp ’

. i n c lude ’f XXRRRDRRC. sp ’

. i n c lude ’f XXRRRDRRD. sp ’

. i n c lude ’f ZZRRRDDDD. sp ’

. i n c lude ’f ZZXXXDXXD. sp ’

. i n c lude ’ STI . sp ’

. i n c lude ’ n t i . sp ’

. i n c lude ’ p t i . sp ’

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗Beginning o f c i r c u i t and dev i ce d e f i n i t i o n s

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Supp l i e s and vo l tage params :

. param Supply =0.9

. param Vg=’Supply ’

. param Vd=’Supply ’

∗Some CNFET parameters :

. param Ccsd=0 CoupleRatio=0

. param m cnt=1 Efo =0.6

. param Wg=0 Cb=40e−12

. param Lg=32e−9 Lgef=100e−9

. param Vfn=0 Vfp=0

. param m=19 n=0

. param Hox=4e−9 Kox=16

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Def ine power supply

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Vd top Gnd 0 .9

Vm top vdd 0
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Main C i r c u i t s

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Vin0 b0 gnd PWL(0 ps 0v 1ps 0 .90 v 1000 ps 0 .90 v

+1001ps 0 .90 v 2000 ps 0 .90 v 2001 ps 0 .00 v 3000 ps 0 .00 v

+3001ps 0 .90 v 4000 ps 0 .90 v 4001 ps 0 .90 v 5000 ps 0 .90 v

+5001ps 0 .00 v 6000 ps 0 .00 v )

Vin0n b0n gnd PWL(0 ps 0v 1ps 0 .00 v 1000 ps 0 .00 v

+1001ps 0 .00 v 2000 ps 0 .00 v 2001 ps 0 .90 v 3000 ps 0 .90 v

+3001ps 0 .00 v 4000 ps 0 .00 v 4001 ps 0 .00 v 5000 ps 0 .00 v

+5001ps 0 .90 v 6000 ps 0 .90 v )

Vin1 b1 gnd PWL(0 ps 0v 1ps 0 .90 v 1000 ps 0 .90 v

+1001ps 0 .90 v 2000 ps 0 .90 v 2001 ps 0 .90 v 3000 ps 0 .90 v

+3001ps 0 .00 v 4000 ps 0 .00 v 4001 ps 0 .90 v 5000 ps 0 .90 v

+5001ps 0 .00 v 6000 ps 0 .00 v )

Vin1n b1n gnd PWL(0 ps 0v 1ps 0 .00 v 1000 ps 0 .00 v

+1001ps 0 .00 v 2000 ps 0 .00 v 2001 ps 0 .00 v 3000 ps 0 .00 v

+3001ps 0 .90 v 4000 ps 0 .90 v 4001 ps 0 .00 v 5000 ps 0 .00 v

+5001ps 0 .90 v 6000 ps 0 .90 v )

Vin2 b2 gnd PWL(0 ps 0v 1ps 0 .90 v 1000 ps 0 .90 v

+1001ps 0 .00 v 2000 ps 0 .00 v 2001 ps 0 .00 v 3000 ps 0 .00 v

+3001ps 0 .90 v 4000 ps 0 .90 v 4001 ps 0 .00 v 5000 ps 0 .00 v

+5001ps 0 .90 v 6000 ps 0 .90 v )

Vin2n b2n gnd PWL(0 ps 0v 1ps 0 .00 v 1000 ps 0 .00 v

+1001ps 0 .90 v 2000 ps 0 .90 v 2001 ps 0 .90 v 3000 ps 0 .90 v

+3001ps 0 .00 v 4000 ps 0 .00 v 4001 ps 0 .90 v 5000 ps 0 .90 v

+5001ps 0 .00 v 6000 ps 0 .00 v )

Vin3 b3 gnd PWL(0 ps 0v 1ps 0 .90 v 1000 ps 0 .90 v

+1001ps 0 .00 v 2000 ps 0 .00 v 2001 ps 0 .90 v 3000 ps 0 .90 v

+3001ps 0 .00 v 4000 ps 0 .00 v 4001 ps 0 .90 v 5000 ps 0 .90 v

+5001ps 0 .00 v 6000 ps 0 .00 v )

Vin3n b3n gnd PWL(0 ps 0v 1ps 0 .00 v 1000 ps 0 .00 v

+1001ps 0 .90 v 2000 ps 0 .90 v 2001 ps 0 .00 v 3000 ps 0 .00 v

+3001ps 0 .90 v 4000 ps 0 .90 v 4001 ps 0 .00 v 5000 ps 0 .00 v

+5001ps 0 .90 v 6000 ps 0 .90 v )



APPENDIX B. RADIX CONVERTER MAIN SIMULATION FILE, RADIXCONVERTER.SP 60

Vin4 b4 gnd PWL(0 ps 0v 1ps 0 .90 v 1000 ps 0 .90 v

+1001ps 0 .90 v 2000 ps 0 .90 v 2001 ps 0 .00 v 3000 ps 0 .00 v

+3001ps 0 .90 v 4000 ps 0 .90 v 4001 ps 0 .00 v 5000 ps 0 .00 v

+5001ps 0 .90 v 6000 ps 0 .90 v )

Vin4n b4n gnd PWL(0 ps 0v 1ps 0 .00 v 1000 ps 0 .00 v

+1001ps 0 .00 v 2000 ps 0 .00 v 2001 ps 0 .90 v 3000 ps 0 .90 v

+3001ps 0 .00 v 4000 ps 0 .00 v 4001 ps 0 .90 v 5000 ps 0 .90 v

+5001ps 0 .00 v 6000 ps 0 .00 v )

Vin5 b5 gnd PWL(0 ps 0v 1ps 0 .90 v 1000 ps 0 .90 v

+1001ps 0 .90 v 2000 ps 0 .90 v 2001 ps 0 .90 v 3000 ps 0 .90 v

+3001ps 0 .00 v 4000 ps 0 .00 v 4001 ps 0 .00 v 5000 ps 0 .00 v

+5001ps 0 .90 v 6000 ps 0 .90 v )

Vin5n b5n gnd PWL(0 ps 0v 1ps 0 .00 v 1000 ps 0 .00 v

+1001ps 0 .00 v 2000 ps 0 .00 v 2001 ps 0 .00 v 3000 ps 0 .00 v

+3001ps 0 .90 v 4000 ps 0 .90 v 4001 ps 0 .90 v 5000 ps 0 .90 v

+5001ps 0 .00 v 6000 ps 0 .00 v )

Vin6 b6 gnd PWL(0 ps 0v 1ps 0 .90 v 1000 ps 0 .90 v

+1001ps 0 .00 v 2000 ps 0 .00 v 2001 ps 0 .00 v 3000 ps 0 .00 v

+3001ps 0 .90 v 4000 ps 0 .90 v 4001 ps 0 .90 v 5000 ps 0 .90 v

+5001ps 0 .00 v 6000 ps 0 .00 v )

Vin6n b6n gnd PWL(0 ps 0v 1ps 0 .00 v 1000 ps 0 .00 v

+1001ps 0 .90 v 2000 ps 0 .90 v 2001 ps 0 .90 v 3000 ps 0 .90 v

+3001ps 0 .00 v 4000 ps 0 .00 v 4001 ps 0 .00 v 5000 ps 0 .00 v

+5001ps 0 .90 v 6000 ps 0 .90 v )

Vin7 b7 gnd PWL(0 ps 0v 1ps 0 .90 v 1000 ps 0 .90 v

+1001ps 0 .00 v 2000 ps 0 .00 v 2001 ps 0 .90 v 3000 ps 0 .90 v

+3001ps 0 .00 v 4000 ps 0 .00 v 4001 ps 0 .90 v 5000 ps 0 .90 v

+5001ps 0 .00 v 6000 ps 0 .00 v )

Vin7n b7n gnd PWL(0 ps 0v 1ps 0 .00 v 1000 ps 0 .00 v

+1001ps 0 .90 v 2000 ps 0 .90 v 2001 ps 0 .00 v 3000 ps 0 .00 v

+3001ps 0 .90 v 4000 ps 0 .90 v 4001 ps 0 .00 v 5000 ps 0 .00 v

+5001ps 0 .90 v 6000 ps 0 .90 v )
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∗∗NOTE: c i r c u i t s r e q u i r e both NTI and PTI o f inputs .

∗∗However with binary inputs , NTI and PTI are equ iva l en t .

xsum00 b0n b0n b1 sum00 vdd f CRX

xnt i00 sum00 sum00n vdd n t i

xpt i00 sum00 sum00p vdd p t i

xsum01 sum00 sum00p sum00n b2 b2n sum01 vdd f 77P

xnt i01 sum01 sum01n vdd n t i

xpt i01 sum01 sum01p vdd p t i

xsum02 sum01 sum01p sum01n b3 b3n sum02 vdd f BBP

xnt i02 sum02 sum02n vdd n t i

xpt i02 sum02 sum02p vdd p t i

xsum03 sum02 sum02p sum02n b4 b4n sum03 vdd f 77P

xnt i03 sum03 sum03n vdd n t i

xpt i03 sum03 sum03p vdd p t i

xsum04 sum03 sum03p sum03n b5 b5n sum04 vdd f BBP

xnt i04 sum04 sum04n vdd n t i

xpt i04 sum04 sum04p vdd p t i

xsum05 sum04 sum04p sum04n b6 b6n sum05 vdd f 77P

xnt i05 sum05 sum05n vdd n t i

xpt i05 sum05 sum05p vdd p t i

xsum06 sum05 sum05p sum05n b7 b7n sum06 vdd f BBP

xcarry01 sum00p b2n carry01 vdd f RRD

xcarry02 sum01n b3 carry02 vdd f CDD

xcarry03 sum02p b4n carry03 vdd f RRD

xcarry04 sum03n b5 carry04 vdd f CDD

xcarry05 sum04p b6n carry05 vdd f RRD

xcarry06 sum05n b7 carry06 vdd f CDD

xsum10a b1 b1n b2 b2n sum10a vdd f 55X

xptisum10 sum10a sum10ap vdd p t i

xntisum10 sum10a sum10an vdd n t i

xca r ry01pt i carry01 carry01p vdd p t i

xsum10b sum10a sum10ap sum10an carry01 carry01p sum10 vdd f 7PP

xsum10pti sum10 sum10p vdd p t i

xsum10nti sum10 sum10n vdd n t i
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xca r ry02nt i carry02 carry02n vdd n t i

xsum11 sum10 sum10p sum10n carry02 carry02n sum11 vdd f PPB

xsum11pti sum11 sum11p vdd p t i

xsum11nti sum11 sum11n vdd n t i

xca r ry03pt i carry03 carry03p vdd p t i

xsum12a sum11 sum11p sum11n b4 b4n sum12a vdd f BPP

xsum12apti sum12a sum12ap vdd p t i

xsum12anti sum12a sum12an vdd n t i

xsum12b sum12a sum12ap sum12an carry03 carry03p sum12 vdd f 7PP

xsum12pti sum12 sum12p vdd p t i

xsum12nti sum12 sum12n vdd n t i

xsum13a sum12 sum12p sum12n b5 b5n sum13a vdd f BPP

xsum13apti sum13a sum13ap vdd p t i

xsum13anti sum13a sum13an vdd n t i

xca r ry04nt i carry04 carry04n vdd n t i

xsum13b sum13a sum13ap sum13an carry04 carry04n sum13 vdd f PPB

xsum13pti sum13 sum13p vdd p t i

xsum13nti sum13 sum13n vdd n t i

xca r ry05pt i carry05 carry05p vdd p t i

xsum14 sum13 sum13p sum13n carry05 carry05p sum14 vdd f 7PP

xsum14pti sum14 sum14p vdd p t i

xsum14nti sum14 sum14n vdd n t i

xsum15a sum14 sum14p sum14n b7 b7n sum15a vdd f 77P

xsum15apti sum15a sum15ap vdd p t i

xsum15anti sum15a sum15an vdd n t i

xca r ry06nt i carry06 carry06n vdd n t i

xsum15b sum15a sum15ap sum15an carry06 carry06n sum15 vdd f PPB

xcarry10 b1n b2n carry01p carry10 vdd f ZZXXXDXXD

xcarry11 sum10n carry02n carry11 vdd f DDC

xcarry12 sum11p sum11n b4 carry03p carry12 vdd f DRRCDDCDD

xcarry13 sum12p sum12n b5 carry04n carry13 vdd f CDDCDD9CC

xcarry14 sum13p carry05p carry14 vdd f RDD

xcarry15 sum14p sum14n b7n carry06n carry15 vdd f RRDRRDDDC
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xca r ry10pt i carry10 carry10p vdd p t i

xca r ry11nt i carry11 carry11n vdd n t i

xca r ry12pt i carry12 carry12p vdd p t i

xca r ry12nt i carry12 carry12n vdd n t i

xca r ry13nt i carry13 carry13n vdd n t i

xca r ry14pt i carry14 carry14p vdd p t i

xca r ry15pt i carry15 carry15p vdd p t i

xca r ry15nt i carry15 carry15n vdd n t i

xsum20a carry10 carry10p b3 b3n sum20a vdd f 88R

xsum20apti sum20a sum20ap vdd p t i

xsum20anti sum20a sum20an vdd n t i

xsum20b sum20a sum20ap sum20an carry11 carry11n sum20 vdd f PPB

xsum20pti sum20 sum20p vdd p t i

xsum20nti sum20 sum20n vdd n t i

xsum21a sum20 sum20p sum20n b4 b4n sum21a vdd f BPP

xsum21apti sum21a sum21ap vdd p t i

xsum21anti sum21a sum21an vdd n t i

xsum21b sum21a sum21ap sum21an carry12 carry12p carry12n sum21 vdd f 7PB

xsum21pti sum21 sum21p vdd p t i

xsum21nti sum21 sum21n vdd n t i

xsum22a sum21 sum21p sum21n b5 b5n sum22a vdd f 77P

xsum22apti sum22a sum22ap vdd p t i

xsum22anti sum22a sum22an vdd n t i

xsum22b sum22a sum22ap sum22an carry13 carry13n sum22 vdd f PPB

xsum22pti sum22 sum22p vdd p t i

xsum22nti sum22 sum22n vdd n t i

xsum23a sum22 sum22p sum22n b6 b6n sum23a vdd f 77P

xsum23apti sum23a sum23ap vdd p t i

xsum23anti sum23a sum23an vdd n t i

xsum23b sum23a sum23ap sum23an carry14 carry14p sum23 vdd f 7PP

xsum23pti sum23 sum23p vdd p t i

xsum23nti sum23 sum23n vdd n t i

xsum24a sum23 sum23p sum23n b7 b7n sum24a vdd f BPP

xsum24apti sum24a sum24ap vdd p t i

xsum24anti sum24a sum24an vdd n t i

xsum24b sum24a sum24ap sum24an carry15 carry15p carry15n sum24 vdd f 7PB

xcarry20 carry10p b3n carry11n carry20 vdd f RRDRRDDDD

xcarry21 sum20p sum20n b4 carry12p carry12n carry21 vdd f DRRCDD9CC

xcarry22 sum21p sum21n b5n carry13n carry22 vdd f RRDRRDDDC

xcarry23 sum22p sum22n b6n carry14p carry23 vdd f XXRRRDRRD

xcarry24 sum23p sum23n b7 carry15p carry15n carry24 vdd f DRRCDD9CC
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xca r ry20pt i carry20 carry20p vdd p t i

xca r ry21pt i carry21 carry21p vdd p t i

xca r ry21nt i carry21 carry21n vdd n t i

xca r ry22pt i carry22 carry22p vdd p t i

xca r ry22nt i carry22 carry22n vdd n t i

xca r ry23pt i carry23 carry23p vdd p t i

xca r ry24pt i carry24 carry24p vdd p t i

xca r ry24nt i carry24 carry24n vdd n t i

xsum30a carry20 carry20p b4 b4n sum30a vdd f 88R

xsum30anti sum30a sum30an vdd n t i

xsum30apti sum30a sum30ap vdd p t i

xsum30b sum30a sum30ap sum30an carry21 carry21p carry21n sum30 vdd f 7PB

xsum30nti sum30 sum30n vdd n t i

xsum30pti sum30 sum30p vdd p t i

xsum31a sum30 sum30p sum30n b5 b5n sum31a vdd f 77P

xsum31anti sum31a sum31an vdd n t i

xsum31apti sum31a sum31ap vdd p t i

xsum31b sum31a sum31ap sum31an carry22 carry22p carry22n sum31 vdd f 7PB

xsum31nti sum31 sum31n vdd n t i

xsum31pti sum31 sum31p vdd p t i

xsum32a sum31 sum31p sum31n b6 b6n sum32a vdd f BPP

xsum32anti sum32a sum32an vdd n t i

xsum32apti sum32a sum32ap vdd p t i

xsum32b sum32a sum32ap sum32an carry23 carry23p sum32 vdd f 7PP

xsum32nti sum32 sum32n vdd n t i

xsum32pti sum32 sum32p vdd p t i

xsum33a sum32 sum32p sum32n b7 b7n sum33a vdd f BPP

xsum33anti sum33a sum33an vdd n t i

xsum33apti sum33a sum33ap vdd p t i

xsum33b sum33a sum33ap sum33an carry24 carry24p carry24n sum33 vdd f 7PB

xcarry30 carry20p b4n carry21p carry21n carry30 vdd f ZZRRRDDDD

xcarry31 sum30p sum30n b5n carry22p carry22n carry31 vdd f XXRRRDDDC

xcarry32 sum31p sum31n b6 carry23p carry32 vdd f DRRCDDCDD

xcarry33 sum32p sum32n b7 carry24p carry24n carry33 vdd f DRRCDD9CC

xcar ry30pt i carry30 carry30p vdd p t i

xca r ry31nt i carry31 carry31n vdd n t i

xca r ry31pt i carry31 carry31p vdd p t i

xca r ry32pt i carry32 carry32p vdd p t i

xca r ry32nt i carry32 carry32n vdd n t i

xca r ry33pt i carry33 carry33p vdd p t i

xca r ry33nt i carry33 carry33n vdd n t i

xsum40 carry30 carry30p carry31 carry31p carry31n sum40 vdd f 8R9
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xsum40pti sum40 sum40p vdd p t i

xsum40nti sum40 sum40n vdd n t i

xsum41a sum40 sum40p sum40n b6 b6n sum41a vdd f 77P

xsum41apti sum41a sum41ap vdd p t i

xsum41anti sum41a sum41an vdd n t i

xsum41b sum41a sum41ap sum41an carry32 carry32p carry32n sum41 vdd f 7PB

xsum41pti sum41 sum41p vdd p t i

xsum41nti sum41 sum41n vdd n t i

xsum42a sum41 sum41p sum41n b7 b7n sum42a vdd f BPP

xsum42pti sum42a sum42ap vdd p t i

xsum42nti sum42a sum42an vdd n t i

xsum42b sum42a sum42ap sum42an carry33 carry33p carry33n sum42 vdd f 7PB

xcarry40 carry30p carry31p carry40 vdd f RDD

xcarry41 sum40p sum40n b6n carry32p carry32n carry41 vdd f XXRRRDDDC

xcarry42 sum41p sum41n b7 carry33p carry33n carry42 vdd f DRRCDD9CC

xcar ry40pt i carry40 carry40p vdd p t i

xca r ry41nt i carry41 carry41n vdd n t i

xca r ry41pt i carry41 carry41p vdd p t i

xca r ry42pt i carry42 carry42p vdd p t i

xca r ry42nt i carry42 carry42n vdd n t i

xsum50 carry40 carry40p carry41 carry41p carry41n sum50 vdd f 8R9

xsum50pti sum50 sum50p vdd p t i

xsum50nti sum50 sum50n vdd n t i

xsum51a sum50 sum50p sum50n b7 b7n sum50a vdd f 77P

xsum50apti sum50a sum50ap vdd p t i

xsum50anti sum50a sum50an vdd n t i

xsum51b sum50a sum50ap sum50an carry42 carry42p carry42n sum51 vdd f 7PB

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Measurements

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
. measure tran iavgsum avg i (vm) from=0p to =6000p

. tran 1p 6000p

. p r i n t V( sum06 ) ∗∗∗ t0

. p r i n t V( sum15 ) ∗∗∗ t1

. p r i n t V( sum24 ) ∗∗∗ t2

. p r i n t V( sum33 ) ∗∗∗ t3

. p r i n t V( sum42 ) ∗∗∗ t4

. p r i n t V( sum51 ) ∗∗∗ t5

. end
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Appendix C

Ternary logic function circuit

synthesizer, main.cpp

1

2

3 // Written by Halvor Nyboe Risto for a student short paper for SIMS 2020

4 // Research group website: http ://www.ternaryresearch.com/

5 // GPL -3 license

6 // github: www.github.com/halvor64/Ternary -logic -function -circuit -generator/blob/

master/main.cpp

7

8

9

10 using namespace std;

11

12 #include <iostream >

13 #include <vector >

14 #include <math.h>

15 #include <fstream >

16 #include <string >

17 #include <algorithm >

18 #include <functional >

19 #include <cctype >

20 #include <direct.h>

21 #include <stdlib.h>

22 #include <stdio.h>

23

24

25 vector <char > truthtable; //the truthtable for the entire circuit

26 vector <char > tempVect;

27 vector <vector <char >> networks; // the four truth tables , pull -up and pull -down

networks for 0.9v and 0.45v

28 vector <char > upvddgnd; // network [0][x]

29 vector <char > downvddgnd; // network [1][x]

30 vector <char > uphalfvdd; // network [2][x]

31 vector <char > downhalfvdd; // network [3][x]

32 vector <vector <vector <string >>> circuit; //network , group , series. The transistor types

and their connections are encoded in this vector

33 vector <char > mask; // the rectangular groupings are first generated here , then

compared to the truthtable.

34 vector <vector <char >> groups; //groupnr , values. The valid rectangular groupings are
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stored here.

35

36 int dimensions = -1; // the number of inputs

37 int maskIndex = 0;

38

39

40 int dimensionLevel(int index , int dimension) { // returns the level a specific

dimension is for a given index (not its value) NOT ZERO INDEXED

41 return (( index % int((pow(3, dimension)))) / int(pow(3, (dimension - 1))));

42 }

43

44 void maskRecurs(int n, int p1 , int p2) {

45 // recursivly goes through all the dimensions an fills in the mask vector between the

two opposing corner points

46 for (int i = 0; i < 3; i++) {

47 if (n == 1) {

48 maskIndex += 1;

49 }

50 if (!(i > dimensionLevel(p2, n)) && !(i < dimensionLevel(p1, n))) { //"current

point" not smaller than p1,

51 if (n > 1) { //not bigger than p2 in the current

dimension

52 maskRecurs(n - 1, p1 , p2);

53 }

54 else {

55 mask[maskIndex - 1] = ’1’;

56 }

57 }

58 else {

59 if (n > 1) maskIndex += int(pow(3, n - 1));

60

61 }

62

63 }

64 }

65

66 void drawMask(int p1, int p2) { // draws an n-dimensional rectangle between two

corner points

67 fill(mask.begin(), mask.end(), ’0’);

68 maskIndex = 0;

69 bool error = false;

70 for (int i = 1; i < dimensions + 1; i++) {

71 if (dimensionLevel(p2, i) < dimensionLevel(p1, i)) {

72 error = true;

73 }

74 }

75

76 if (error) {

77 cout << "\nError: one of p2’s dimensions is lower than p1’s.\n"; // The starting

corner of the rectangle must be smaller in all dimensions compared to the end

corner

78

79 }

80 else {

81 maskRecurs(dimensions , p1, p2); // calls the recursive function to draw the

rectangle in the mask vector

82 }

83 }

84
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85 int main() {

86

87 cout << "\nEnter the function arity(number of inputs , 1~7): ";

88 cin >> dimensions;

89 while (!(( dimensions < 8) && (dimensions > 0)) || cin.fail()) { // Higher arities

are possible but not recommended

90 cout << "\nEnter the function arity(number of inputs , 1~7): ";

91 cin.clear();

92 cin.ignore (256, ’\n’);

93 cin >> dimensions;

94 }

95

96 int maxGrpNr = dimensions * dimensions * 100;// dimensions * 1000; // This number

must be higher for more inputs. Program will crash if it is too low. Must be

higher than number of groups found.

97 int grpExp = 1.64;

98

99 cout << "\ngenerating vectors ...\n";

100 circuit.resize(4, vector <vector <string >>(maxGrpNr , vector <string >( dimensions)));

101

102 for (int i = 0; i < pow(3, dimensions); i++) {

103 truthtable.push_back(’0’);

104 tempVect.push_back(’0’);

105 networks.resize (4);

106 networks [0]. push_back(’0’);

107 networks [1]. push_back(’0’);

108 networks [2]. push_back(’0’);

109 networks [3]. push_back(’0’);

110 mask.push_back(’0’);

111

112 groups.resize(int(pow(pow(3, dimensions), grpExp)));

113 for (int j = 0; j < int(pow(pow(3, dimensions), grpExp)); j++) {

114 groups[j]. push_back(’0’);

115 }

116 }

117

118 char indexyn;

119 cout << "\nWould you like to generate the circuit from an index? (y/n): ";

120 cin >> indexyn;

121 string index = "";

122 if (indexyn == ’y’) {

123 bool valid = false;

124 while (!valid) {

125 valid = true;

126 cout << "\nEnter the index ("<< truthtable.size()/3 <<" characters) : ";

127 cin >> index;

128 transform(index.begin (), index.end(), index.begin(), ptr_fun <int , int >( toupper))

; // converting to uppercase

129

130 for (int i = 0; i < truthtable.size() - 2; i = i + 3) { // checking if the index

is valid

131

132 string base27 = "0123456789 ABCDEFGHKMNPRTVXZ";

133 bool lettervalid = false;

134 for (int j = 0; j < 27; j++) { // if a letter in the index is not

found in base27 , the index is not valid.

135 if (index[i/3] == base27[j]) lettervalid = true;

136 }

137 if (! lettervalid) {
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138 cout << "\n" << index[i / 3] << " is not a valid heptavintimal character !\

nThe valid characters are " << base27 << "\n";

139 valid = false;

140 }

141 }

142 }

143

144 for (int i = 0; i < index.length (); i++) {

145 // THE BASE -27 HEPTAVINTIMAL NOTATION

146 // 000 001 002 010 011 012 020 021 022 100 101 102 110 111 112 120 121 122 200

201 202 210 211 212 220 221 222

147 // 0 1 2 3 4 5 6 7 8 9 A B C D E F G H K M N P R T V X Z

148

149 // converts the inputted index to truthtable values , starting from lower

significance

150 if (index[index.length () - i - 1] == ’0’) { truthtable[i * 3] = ’0’; truthtable[

i * 3 + 1] = ’0’; truthtable[i * 3 + 2] = ’0’; }

151 if (index[index.length () - i - 1] == ’1’) { truthtable[i * 3] = ’1’; truthtable[

i * 3 + 1] = ’0’; truthtable[i * 3 + 2] = ’0’; }

152 if (index[index.length () - i - 1] == ’2’) { truthtable[i * 3] = ’2’; truthtable[

i * 3 + 1] = ’0’; truthtable[i * 3 + 2] = ’0’; }

153 if (index[index.length () - i - 1] == ’3’) { truthtable[i * 3] = ’0’; truthtable[

i * 3 + 1] = ’1’; truthtable[i * 3 + 2] = ’0’; }

154 if (index[index.length () - i - 1] == ’4’) { truthtable[i * 3] = ’1’; truthtable[

i * 3 + 1] = ’1’; truthtable[i * 3 + 2] = ’0’; }

155 if (index[index.length () - i - 1] == ’5’) { truthtable[i * 3] = ’2’; truthtable[

i * 3 + 1] = ’1’; truthtable[i * 3 + 2] = ’0’; }

156 if (index[index.length () - i - 1] == ’6’) { truthtable[i * 3] = ’0’; truthtable[

i * 3 + 1] = ’2’; truthtable[i * 3 + 2] = ’0’; }

157 if (index[index.length () - i - 1] == ’7’) { truthtable[i * 3] = ’1’; truthtable[

i * 3 + 1] = ’2’; truthtable[i * 3 + 2] = ’0’; }

158 if (index[index.length () - i - 1] == ’8’) { truthtable[i * 3] = ’2’; truthtable[

i * 3 + 1] = ’2’; truthtable[i * 3 + 2] = ’0’; }

159 if (index[index.length () - i - 1] == ’9’) { truthtable[i * 3] = ’0’; truthtable[

i * 3 + 1] = ’0’; truthtable[i * 3 + 2] = ’1’; }

160 if (index[index.length () - i - 1] == ’A’) { truthtable[i * 3] = ’1’; truthtable[

i * 3 + 1] = ’0’; truthtable[i * 3 + 2] = ’1’; }

161 if (index[index.length () - i - 1] == ’B’) { truthtable[i * 3] = ’2’; truthtable[

i * 3 + 1] = ’0’; truthtable[i * 3 + 2] = ’1’; }

162 if (index[index.length () - i - 1] == ’C’) { truthtable[i * 3] = ’0’; truthtable[

i * 3 + 1] = ’1’; truthtable[i * 3 + 2] = ’1’; }

163 if (index[index.length () - i - 1] == ’D’) { truthtable[i * 3] = ’1’; truthtable[

i * 3 + 1] = ’1’; truthtable[i * 3 + 2] = ’1’; }

164 if (index[index.length () - i - 1] == ’E’) { truthtable[i * 3] = ’2’; truthtable[

i * 3 + 1] = ’1’; truthtable[i * 3 + 2] = ’1’; }

165 if (index[index.length () - i - 1] == ’F’) { truthtable[i * 3] = ’0’; truthtable[

i * 3 + 1] = ’2’; truthtable[i * 3 + 2] = ’1’; }

166 if (index[index.length () - i - 1] == ’G’) { truthtable[i * 3] = ’1’; truthtable[

i * 3 + 1] = ’2’; truthtable[i * 3 + 2] = ’1’; }

167 if (index[index.length () - i - 1] == ’H’) { truthtable[i * 3] = ’2’; truthtable[

i * 3 + 1] = ’2’; truthtable[i * 3 + 2] = ’1’; }

168 if (index[index.length () - i - 1] == ’K’) { truthtable[i * 3] = ’0’; truthtable[

i * 3 + 1] = ’0’; truthtable[i * 3 + 2] = ’2’; }

169 if (index[index.length () - i - 1] == ’M’) { truthtable[i * 3] = ’1’; truthtable[

i * 3 + 1] = ’0’; truthtable[i * 3 + 2] = ’2’; }

170 if (index[index.length () - i - 1] == ’N’) { truthtable[i * 3] = ’2’; truthtable[

i * 3 + 1] = ’0’; truthtable[i * 3 + 2] = ’2’; }

171 if (index[index.length () - i - 1] == ’P’) { truthtable[i * 3] = ’0’; truthtable[

i * 3 + 1] = ’1’; truthtable[i * 3 + 2] = ’2’; }
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172 if (index[index.length () - i - 1] == ’R’) { truthtable[i * 3] = ’1’; truthtable[

i * 3 + 1] = ’1’; truthtable[i * 3 + 2] = ’2’; }

173 if (index[index.length () - i - 1] == ’T’) { truthtable[i * 3] = ’2’; truthtable[

i * 3 + 1] = ’1’; truthtable[i * 3 + 2] = ’2’; }

174 if (index[index.length () - i - 1] == ’V’) { truthtable[i * 3] = ’0’; truthtable[

i * 3 + 1] = ’2’; truthtable[i * 3 + 2] = ’2’; }

175 if (index[index.length () - i - 1] == ’X’) { truthtable[i * 3] = ’1’; truthtable[

i * 3 + 1] = ’2’; truthtable[i * 3 + 2] = ’2’; }

176 if (index[index.length () - i - 1] == ’Z’) { truthtable[i * 3] = ’2’; truthtable[

i * 3 + 1] = ’2’; truthtable[i * 3 + 2] = ’2’; }

177

178 }

179

180 }

181 else {

182 // takes inputs for each truthtable value

183 for (int i = 0; i < pow(3, dimensions); i++) {

184 truthtable[i] = ’y’;

185 while (truthtable[i] != ’0’ && truthtable[i] != ’1’ && truthtable[i] != ’2’ &&

truthtable[i] != ’x’) {

186 cout << "Enter the function output (0,1,2,x) when ";

187 for (int j = 1; j < dimensions + 1; j++) {

188 cout << "i" << j << " = " << dimensionLevel(i, j) << " ";

189 }

190 cin >> truthtable[i];

191 }

192

193 }

194 }

195

196

197

198 // generates the truthtables for the 4 transistor networks based on the full

truthtable

199 for (int i = 0; i < truthtable.size(); i++) {

200

201 if (truthtable[i] == ’x’) {

202 networks [0][i] = ’x’;

203 networks [1][i] = ’x’;

204 networks [2][i] = ’x’;

205 networks [3][i] = ’x’;

206 }

207 if (truthtable[i] == ’0’) {

208 networks [0][i] = ’0’;

209 networks [1][i] = ’1’;

210 networks [2][i] = ’0’;

211 networks [3][i] = ’x’;

212 }

213 if (truthtable[i] == ’1’) {

214 networks [0][i] = ’0’;

215 networks [1][i] = ’0’;

216 networks [2][i] = ’1’;

217 networks [3][i] = ’1’;

218 }

219 if (truthtable[i] == ’2’) {

220 networks [0][i] = ’1’;

221 networks [1][i] = ’0’;

222 networks [2][i] = ’x’;

223 networks [3][i] = ’0’;
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224 }

225 }

226

227

228 fill(truthtable.begin(), truthtable.end(), ’0’); // empties the full truthtable for

later use

229

230

231 for (int n = 0; n < 4; n++) {

232 cout << "\n\nNETWORK " << n << ": \n";

233 for (int i = 0; i < truthtable.size(); i++) {

234 if (i % 3 == 0) cout << "\n";

235 if (i % 9 == 0) cout << "\n\n";

236 cout << networks[n][i];

237 }

238

239 }

240

241 int groupNr = 0;

242 bool lessthan = false; // if p2 is lower in any dimension than p1, it is not a valid

rectangle

243

244 for (int n = 0; n < 4; n++) {

245 // For each of the 4 network , a set of optimal groupings of 1s are found.

246 // Each grouping represents a transistor -path towards the output.

247 if (n == 0) cout << "\nBuilding the 0.9V pull -up circuit ...\n";

248 if (n == 1) cout << "\nBuilding the 0.9V pull -down circuit ...\n";

249 if (n == 2) cout << "\nBuilding the 0.45V pull -up circuit ...\n";

250 if (n == 3) cout << "\nBuilding the 0.45V pull -down circuit ...\n";

251

252 groupNr = 0;

253 for (int f = 0; f < truthtable.size(); f++) {

254 fill(groups[f]. begin(), groups[f].end(), ’0’);

255 }

256 for (int p1 = 0; p1 < truthtable.size(); p1++) { //for each point in the network

which is 1 or x

257

258 if (( networks[n][p1] == ’1’) || (networks[n][p1] == ’x’)) {

259 for (int p2 = p1; p2 < truthtable.size(); p2++) { // for each point after the

1 or x

260 lessthan = false;

261

262 for (int j = 1; j < dimensions + 1; j++) { // check if it’s lower

in any dimension (it would result in a 0-mask)

263 if (dimensionLevel(p2, j) < dimensionLevel(p1, j)) {

264 lessthan = true;

265 }

266 }

267

268 if (! lessthan) { // if it is a valid rectangle , compare it with the

truthtable of the network

269 drawMask(p1, p2);

270 bool equalMask = true;

271 for (int j = p1; j < p2 + 1; j++) { // for every point , see if a 1 in

the mask is a 0 in the network truth table

272 if (mask[j] == ’1’) {

273 if (networks[n][j] == ’0’) {

274 equalMask = false;

275 }
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276 }

277 }

278

279 if (equalMask == true) { // if there are no 0s compared to the mask

280 bool written = false;

281 bool covered = true;

282

283 for (int g = 0; g < groupNr; g++) { // check if a group would be

covered by the next group , and overwrite it if it does

284 //NOTE: This can overwrite multiple groups ,

resulting in duplicate groups

285 covered = true;

286 for (int c = 0; c < p2; c++) {

287 if (( groups[g][c] == ’1’) && (mask[c] == ’0’)) {

288 covered = false;

289 }

290 }

291 if (covered) {

292 for (int j = p1; j < p2 + 1; j++) {

293 groups[g][j] = mask[j];

294 }

295 written = true;

296 }

297 }

298

299 if (! written) {

300

301 fill(tempVect.begin(), tempVect.end(), ’0’); // checks if the sum

of the pre -existing groups would cover the mask

302 for (int g = 0; g < groupNr; g++) {

303 for (int j = 0; j < truthtable.size(); j++) {

304 if (groups[g][j] == ’1’) {

305 tempVect[j] = ’1’;

306 }

307 }

308 }

309

310 covered = true;

311 for (int j = 0; j < truthtable.size(); j++) {

312 if (mask[j] == ’1’) {

313 if (tempVect[j] == ’0’) {

314 covered = false;

315 }

316 }

317 }

318 if (! covered) {

319 for (int j = p1; j < p2 + 1; j++) {

320 groups[groupNr ][j] = mask[j];

321 }

322 groupNr += 1;

323 cout << ".";

324 }

325 }

326

327 }

328 }

329 }

330 }

331 }
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332

333 bool duplicate = false;

334

335 for (int g = groupNr - 1; g > 0; g--) { // checks for duplicate groups

336 for (int g2 = 0; g2 < g; g2++) {

337 duplicate = true;

338 for (int c = 0; c < truthtable.size(); c++) {

339 if (( groups[g2][c] == ’1’) && (groups[g][c] == ’0’)) {

340 duplicate = false;

341 }

342 }

343 }

344

345 if (duplicate) {

346 for (int j = 0; j < truthtable.size(); j++) {

347 groups[g][j] = ’0’;

348 }

349 //for () // shift all groups above this one down and subtract groupNr (not

implemented)

350

351 }

352

353 }

354

355

356 //for each group , see if the sum of the other groups would cover all the 1s (

WITHOUT x)

357 for (int i = 0; i < groupNr; i++) {

358 fill(tempVect.begin(), tempVect.end(), ’0’);

359 for (int j = 0; j < groupNr; j++) {

360 if (i != j) {

361 for (int k = 0; k < truthtable.size(); k++) {

362 if (groups[j][k] == ’1’) {

363 tempVect[k] = ’1’;

364

365 }

366 }

367

368

369 }

370 }

371

372 bool covered = true;

373 for (int k = 0; k < truthtable.size(); k++) {

374 if (( networks[n][k] == ’1’) && (tempVect[k] != ’1’)) {

375 covered = false;

376 }

377 }

378 if (covered) { // if the group is not needed , set it to 0

379 for (int k = 0; k < truthtable.size(); k++) {

380 groups[i][k] = ’0’;

381 }

382 }

383 }

384

385

386 fill(tempVect.begin(), tempVect.end(), ’0’);

387 for (int j = 0; j < groupNr; j++) {

388
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389 for (int k = 0; k < truthtable.size(); k++) {

390 if (groups[j][k] == ’1’) {

391 tempVect[k] = ’1’;

392

393 }

394 }

395

396 }

397

398

399 // reconstructing the final full truthtable (if it had x’s in it to begin with , it

don’t anymore !)

400 for (int i = 0; i < truthtable.size(); i++) {

401 if (tempVect[i] == ’1’) {

402 if (n == 0) {

403 truthtable[i] = ’2’;

404 }

405 else if (n == 1) {

406 truthtable[i] = ’0’;

407 }

408 else if (n == 2) {

409 if (truthtable[i] != ’2’) {

410 truthtable[i] = ’1’;

411 }

412

413 }

414 //else if (n == 3) {

415 // don’t need this one , it’s covered by the others

416 //}

417 }

418 }

419

420

421 // build the circuit

422 for (int g = 0; g < groupNr; g++) {

423 for (int d = 0; d < dimensions; d++) {

424

425 bool cut = true;

426 string transType = "111"; // transtype represents the types of transistors. For

example , "100" is open for low voltage , but not for medium or high

427 // "010" is a connection of "110" and "011" in series

428 // the circuit is build by covering every group with the use of these

transistor types

429 for (int L = 0; L < 3; L++) {

430 for (int i = 0; i < truthtable.size(); i++) {

431 if (dimensionLevel(i, d + 1) == L) {

432 if (groups[g][i] != ’0’) {

433 cut = false;

434 }

435 }

436 }

437 if (cut) {

438 transType[L] = ’0’;

439 }

440 else cut = true;

441 }

442 circuit[n][g][d] = transType;

443 }

444 }
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445

446 }

447

448

449 /* NOTE:

450 The circuit can be optmized further at this point.

451 If two transistors of the same type and input in the same network are both connected

to vdd on one side , they can be merged.

452 The spaces along VDD , GND , OUT can hold mergings , which then produces sub -spaces for

further merging.

453 This optimization was not implemented here.

454 (the order of transistors in each branch can be swapped around for maximum

optimization)

455 high -arity functions can be optimized more than low -arity functions

456 (The high arity functions are highly unoptimized in this synthesizer)

457 */

458

459

460 cout << "\n\n final circuit truthtable: \n";

461

462 for (int i = 0; i < truthtable.size(); i++) {

463 if (i % 3 == 0) cout << "\n";

464 if (i % 9 == 0) cout << "\n";

465 if (i % 27 == 0) cout << "\n";

466 cout << truthtable[i];

467 }

468

469 // THE BASE -27 HEPTAVINTIMAL NOTATION

470 // 000 001 002 010 011 012 020 021 022 100 101 102 110 111 112 120 121 122 200 201

202 210 211 212 220 221 222

471 // 0 1 2 3 4 5 6 7 8 9 A B C D E F G H K M N P R T V X Z

472 index = "";

473 string hept;

474 for (int i = truthtable.size() - 1; i > 0; i -= 3) { // the heptavintimal function

index is generated

475 hept = truthtable[i];

476 hept += truthtable[i - 1];

477 hept += truthtable[i - 2];

478 if (hept == "000") { index += "0"; }

479 else if (hept == "001") { index += "1"; }

480 else if (hept == "002") { index += "2"; }

481 else if (hept == "010") { index += "3"; }

482 else if (hept == "011") { index += "4"; }

483 else if (hept == "012") { index += "5"; }

484 else if (hept == "020") { index += "6"; }

485 else if (hept == "021") { index += "7"; }

486 else if (hept == "022") { index += "8"; }

487 else if (hept == "100") { index += "9"; }

488 else if (hept == "101") { index += "A"; }

489 else if (hept == "102") { index += "B"; }

490 else if (hept == "110") { index += "C"; }

491 else if (hept == "111") { index += "D"; }

492 else if (hept == "112") { index += "E"; }

493 else if (hept == "120") { index += "F"; }

494 else if (hept == "121") { index += "G"; }

495 else if (hept == "122") { index += "H"; }

496 else if (hept == "200") { index += "K"; }

497 else if (hept == "201") { index += "M"; }

498 else if (hept == "202") { index += "N"; }
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499 else if (hept == "210") { index += "P"; }

500 else if (hept == "211") { index += "R"; }

501 else if (hept == "212") { index += "T"; }

502 else if (hept == "220") { index += "V"; }

503 else if (hept == "221") { index += "X"; }

504 else if (hept == "222") { index += "Z"; }

505

506 }

507

508 cout << "\nheptavintimal function index: " << index;

509 cout << "\n\n";

510

511

512 if (dimensions >4) cout << "Custom filename is recommended for high -arity functions\n"

;

513 cout << "Would you like to use the index as the filename? (y/n): ";

514 char nameyn = ’n’;

515 cin.ignore (100000 , ’\n’);

516 cin >> nameyn;

517 string filename;

518 if (nameyn == ’y’) {

519 filename = "f_";

520 for (int i = 0; i < (int(pow(3, dimensions - 1))) - index.length (); i++) {

filename += "0"; }

521 filename += index;

522 } else {

523 cout << "Enter the filename: ";

524 cin >> filename;

525 }

526

527

528

529 if (_mkdir("./ functions") == 0){

530 printf("Directory ’./functions ’ was successfully created\n");

531 } //else printf (" Problem creating directory ’./functions ’\n");

532

533

534 ofstream myfile;

535 string path = "functions/";

536 path += filename;

537 path += ".sp";

538 myfile.open(path);

539

540

541

542

543 // SPECIFY TRANSISTOR MODEL AND PARAMETERS HERE

544 string p0 = " gnd PCNFET Lch=Lg Lgeff=’Lgef’ Lss=32e-9 Ldd =32e-9 \n+Kgate = ’Kox’

Tox = ’Hox’ Csub = ’Cb’ Vfbp = ’Vfp’ Dout = 0 Sout = 0 Pitch = 20e-9 tubes = 3

n2 = n n1 = 13 "; //" ptype 1.018nm";

545 string n0 = " gnd NCNFET Lch=Lg Lgeff=’Lgef’ Lss=32e-9 Ldd =32e-9 \n+Kgate = ’Kox’

Tox = ’Hox’ Csub = ’Cb’ Vfbn = ’Vfn’ Dout = 0 Sout = 0 Pitch = 20e-9 tubes = 3

n2 = n n1 = 13 "; //" ntype 1.018nm";

546

547 string n1 = " gnd NCNFET Lch=Lg Lgeff=’Lgef’ Lss=32e-9 Ldd =32e-9 \n+Kgate = ’Kox’

Tox = ’Hox’ Csub = ’Cb’ Vfbn = ’Vfn’ Dout = 0 Sout = 0 Pitch = 20e-9 tubes = 3

n2 = n n1 = 10 "; //" ntype 0.783nm";

548 string n2 = " gnd NCNFET Lch=Lg Lgeff=’Lgef’ Lss=32e-9 Ldd =32e-9 \n+Kgate = ’Kox’

Tox = ’Hox’ Csub = ’Cb’ Vfbn = ’Vfn’ Dout = 0 Sout = 0 Pitch = 20e-9 tubes = 3
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n2 = n n1 = 19 "; //" ntype 1.487nm";

549

550 string p1 = " gnd PCNFET Lch=Lg Lgeff=’Lgef’ Lss=32e-9 Ldd =32e-9 \n+Kgate = ’Kox’

Tox = ’Hox’ Csub = ’Cb’ Vfbp = ’Vfp’ Dout = 0 Sout = 0 Pitch = 20e-9 tubes = 3

n2 = n n1 = 10 "; //" ptype 0.783 nm";

551 string p2 = " gnd PCNFET Lch=Lg Lgeff=’Lgef’ Lss=32e-9 Ldd =32e-9 \n+Kgate = ’Kox’

Tox = ’Hox’ Csub = ’Cb’ Vfbp = ’Vfp’ Dout = 0 Sout = 0 Pitch = 20e-9 tubes = 3

n2 = n n1 = 19 "; //" ptype 1.487 nm";

552

553

554

555 myfile << ".subckt " << filename << " "; //<< " i0 i0_p i0_n i1 i1_p i1_n out vdd\n

"; // circuit relies on external PTI and NTI

556

557 for (int i = 0; i < dimensions; i++) { // CREATING THE SUBCIRCUIT INTERFACE. will

only require PTI and NTI when necessary

558 bool bI = false;

559 bool bIP = false;

560 bool bIN = false;

561 for (int n = 0; n < 4; n++) {

562 for (int g = 0; g < maxGrpNr; g++) {

563 if (n % 2 == 0) {

564 if (circuit[n][g][i] == "100" || circuit[n][g][i] == "110" || circuit[n][g][

i] == "010") {

565 bI = true;

566 }

567 if (circuit[n][g][i] == "001") {

568 bIP = true;

569 }

570 if (circuit[n][g][i] == "011" || circuit[n][g][i] == "010") {

571 bIN = true;

572 }

573 }

574 else {

575 if (circuit[n][g][i] == "001" || circuit[n][g][i] == "011" || circuit[n][g][

i] == "010") {

576 bI = true;

577 }

578 if (circuit[n][g][i] == "110" || circuit[n][g][i] == "010") {

579 bIP = true;

580 }

581 if (circuit[n][g][i] == "100") {

582 bIN = true;

583 }

584 }

585

586 }

587 }

588 if (bI) myfile << "i" << i << " ";

589 if (bIP) myfile << "i" << i << "_p ";

590 if (bIN) myfile << "i" << i << "_n ";

591 }

592

593 myfile << "out vdd\n"; // end of inputs/outputs interface

594

595 myfile << "\n\nxp0 up out out" << p0;

596 myfile << "\nxn1 out out down" << n0 << "\n";

597 int connections = 0; // counts number of connection nodes

598 int transistors = 2; // counts number of transistors
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599

600

601 string connect1 = ""; // connection variables (these depend on the network and group

number)

602 string connect2 = "";

603 string connect3 = "";

604 string out = ""; // the connection to the output (out , up, down)

605 string vsource = ""; // the first connection (gnd , vdd)

606

607 for (int n = 0; n < 4; n++) {

608

609

610 if (n == 0) {

611 out = "out";

612 vsource = "vdd";

613 myfile << "\n\n*** pullup full" << endl;

614 }

615 if (n == 1) {

616 out = "out";

617 vsource = "gnd";

618 myfile << "\n\n*** pulldown full" << endl;

619 }

620 if (n == 2) {

621 out = "up";

622 vsource = "vdd";

623 myfile << "\n\n*** pullup half" << endl;

624 }

625

626 if (n == 3) {

627 out = "down";

628 vsource = "gnd";

629 myfile << "\n\n*** pulldown half" << endl;

630 }

631

632

633 for (int g = 0; g < maxGrpNr; g++) {

634 // the first and last groups to be implemented indicates when the connections

should be at vsource and out

635 // in circuit[n][g][d], what number d is the first and last valid one? (empty ,

111, 000 are not valid)

636 int firstDimension = -1;

637 int lastDimension = 0;

638 for (int dd = 0; dd < dimensions; dd++) {

639

640 if (circuit[n][g][dd] != "000" && circuit[n][g][dd] != "111" && !circuit[n][g

][dd].empty()) {

641 lastDimension = dd;

642 if (firstDimension == -1) {

643 firstDimension = dd;

644 }

645 }

646 }

647

648 for (int d = 0; d < dimensions; d++) {

649 if (! circuit[n][g][d]. empty() && circuit[n][g][d] != "000" && circuit[n][g][d]

!= "111") {

650

651 // connection variables are defined

652 if (d == firstDimension) {
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653 myfile << "\n";

654 connect1 = vsource;

655 }

656 else {

657 connect1 = ’p’ + to_string(connections);

658 connections += 1;

659 }

660

661 if (d == lastDimension) {

662 if (circuit[n][g][d] == "010") {

663 connect2 = ’p’ + to_string(connections);

664 connections += 1;

665 connect3 = out;

666 }

667 else {

668 connect2 = out;

669 }

670 }

671 else {

672 connect2 = ’p’ + to_string(connections);

673 if (circuit[n][g][d] == "010") {

674 connections += 1;

675 connect3 = ’p’ + to_string(connections);

676

677 }

678 }

679

680 // circuit is built using the "transistor types" in the circuit vector and

the connection variables

681 if (n % 2 == 0) {

682 if (circuit[n][g][d] == "100") { // small ptype I

683 myfile << "\nxp" << transistors << " " << connect1 << " i" << d << " "

<< connect2 << p1;

684 transistors += 1;

685 }

686 if (circuit[n][g][d] == "110") { // big ptype I

687 myfile << "\nxp" << transistors << " " << connect1 << " i" << d << " "

<< connect2 << p2;

688 transistors += 1;

689 }

690 if (circuit[n][g][d] == "001") { // big ptype I_P

691 myfile << "\nxp" << transistors << " " << connect1 << " i" << d << "_p "

<< connect2 << p2;

692 transistors += 1;

693 }

694 if (circuit[n][g][d] == "011") { // big ptype I_N

695 myfile << "\nxp" << transistors << " " << connect1 << " i" << d << "_n "

<< connect2 << p2;

696 transistors += 1;

697 }

698 if (circuit[n][g][d] == "010") { // big ptype I + big ptype I_N

699 myfile << "\nxp" << transistors << " " << connect1 << " i" << d << " "

<< connect2 << p2;

700 transistors += 1;

701 myfile << "\nxp" << transistors << " " << connect2 << " i" << d << "_n "

<< connect3 << p2;

702 transistors += 1;

703 }

704 }
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705 else {

706 if (circuit[n][g][d] == "100") { // big ntype I_N

707 myfile << "\nxn" << transistors << " " << connect1 << " i" << d << "_n "

<< connect2 << n2;

708 transistors += 1;

709 }

710 if (circuit[n][g][d] == "110") { // big ntype I_P

711 myfile << "\nxn" << transistors << " " << connect1 << " i" << d << "_p "

<< connect2 << n2;

712 transistors += 1;

713 }

714 if (circuit[n][g][d] == "001") { // small ntype I

715 myfile << "\nxn" << transistors << " " << connect1 << " i" << d << " "

<< connect2 << n1;

716 transistors += 1;

717 }

718 if (circuit[n][g][d] == "011") { // big ntype I

719 myfile << "\nxn" << transistors << " " << connect1 << " i" << d << " "

<< connect2 << n2;

720 transistors += 1;

721 }

722

723 if (circuit[n][g][d] == "010") { // big ntype I_P + big ntype I

724 myfile << "\nxn" << transistors << " " << connect1 << " i" << d << "_p "

<< connect2 << n2;

725 transistors += 1;

726 myfile << "\nxn" << transistors << " " << connect2 << " i" << d << " "

<< connect3 << n2;

727 transistors += 1;

728 }

729 }

730 }

731 }

732 }

733 }

734

735 myfile << "\n\n.ends\n\n";

736 myfile.close();

737

738 cout << "\n\n Circuit outputted into functions/" << filename << ".sp\n\n";

739

740 system("pause");

741

742

743

744 return 0;

745 }


