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Abstract: Frequency in power systems is a real-time information that shows the balance between
generation and demand. Good system frequency observation is vital for system security and pro-
tection. This paper analyses the system frequency response following disturbances and proposes a
data-driven approach for predicting it by using machine learning techniques like Nonlinear Auto-
regressive (NAR) Neural Networks (NN) and Long Short Term Memory (LSTM) networks from
simulated and measured Phasor Measurement Unit (PMU) data. The proposed method uses a
horizon-window that reconstructs the frequency input time-series data in order to predict the fre-
quency features such as Nadir. Simulated scenarios are based on the gradual inertia reduction by
including non-synchronous generation into the Nordic 32 test system, whereas the PMU collected
data is taken from different locations in the Nordic Power System (NPS). Several horizon-windows
are experimented in order to observe an adequate margin of prediction. Scenarios considering noisy
signals are also evaluated in order to provide a robustness index of predictability. Results show the
proper performance of the method and the adequate level of prediction based on the Root Mean
Squared Error (RMSE) index.

Keywords: non-synchronous generation; frequency response; low-inertia power systems; primary
frequency control; wind power; nadir estimation; machine learning; deep learning

1. Introduction

The digitalization era is pushing the power generation sector to rapidly adapt driven
megatrends such as the large-scale renewable energy integration which is motivated by
zero-emissions policies, and the continuous expansion need for increased energy supply
and use of sustainable sources. To respond to these megatrends and challenges, cleaner,
smarter and more efficient solutions for energy production shall be accounted in parallel
with the development of smart grid technologies, and innovative applications [1].

System operators face numerous and increasing challenges to maintain and opti-
mize their grids since the power network are being stressed by the adoption of renew-
ables [2]. The natural consequence is that timescales for operational decision making have
decreased [3]. Therefore, it is essential to rapidly foresee undesirable situations, and have
forecasting analysis on grid contingencies of short-coming situations as a functionality that
helps the Transmission System Operators (TSOs), to resolve risks and secure the continuous
grid stability for the current and future operation [4,5].
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With the increasing complexity operation, data-driven methods in power systems have
opened the possibility to incorporate system dynamics analysis and control mechanisms
from measurements, and realistic scenarios rather than model-based power planning
stages [6]. Power systems data analysis is the current frontier of innovation, exploration and
productivity, and its research is on the rise. Such data analysis has addressed diverse system
areas like coherency groups identification [7], trajectory prediction to identify system
dynamics from a noisy measurements [8], short-horizon wind power forecasting [9], on-
line prediction of transient stability with renewables [10], photo-voltaic power production
nowcasting in microgrids [11], power system collapse prediction [12], wide area control [13],
load frequency control [14], and for renewable integration impact assessment [15].

Machine Learning (ML), as a sub-set of data-driven methods and computational
intelligence has been in continuous development during the latest decades, making possible
to extract critical information from the collected data sets and provide accurate predictions
and insights that can be used to power critical analysis that can bring more flexibility
and resilience, transforming the next decades of power generation [16]. Artificial Neural
Networks, (ANN) as a branch of Machine Learning, have been applied to power systems in
a variety of areas such as wind power forecasting [17], photo voltaic day-ahead forecast [18],
coherency clustering [19], inertia estimation [20], and system state estimation [21].

Equally, time-series forecasting based on Neural Networks (NN) has been proved to
help to understand large data sets that require future-ahead visualization on non-linear
problems [22,23], and has been successfully used in power systems in load forecasting [24],
and wind power pattern prediction [25] for instance. Additionally, it has been demon-
strated that ML models, specifically based on NN, have shown better results for time
series forecasting applications, when comparing the traditional linear models employed
in forecasting such as Auto-Regressive (AR), Mobile Average (MA) or combined ARMA
models. Other strategies based on seasonal or integrated as SARMA, ARIMA and similar
methods produce results with lower performances indexes, as seen in [26–28]. Nonlin-
earity is observed on the grid frequency time-series behavior, making that the aim of the
present document to analyze the employment of basic architectures of NN for frequency
forecasting as a first approximation in the particular time series from frequency deviations
in a power system

Frequency monitoring has been always necessary as an indicator of the power balance
in the grid, and to activate protection and controllers in a power system [29]. Several
approaches have been proposed to predict the grid power frequency. For instance, a con-
ceptual look-ahead frequency dynamics tool is presented in [30] to highlight the importance
of a correct detection of frequency contingencies for the control adequacy and further mon-
itoring calibration. Meanwhile, a study of dynamics and statistics of power grid frequency
fluctuations considering frequency time-series with arbitrary noise distributions is given
in [31].

Authors in [32], propose the minimum frequency value forecasting applying a Newton-
method-based approximation and the interpolation of the frequency second derivative
for Under-Frequency Load Shedding (UFLS) scenarios. A data-driven approach using
the second-derivative of the system frequency is proposed in [33], where the disturbance
initial time and response time are estimated. A real-time predictor for frequency evolution
for active network management is presented in [34], where auto-regressive estimation
is used on frequency observations considering a prediction horizon of one time-step.
A dynamic frequency prediction methodology, based on adaptive neuro-fuzzy inference
system (ANFIS) is proposed in [35]. An analytical model for the frequency nadir prediction
with polynomial fitting on the parabolic trajectories overall governor’s responses is given
in [36].

A power system frequency prediction using ANNs has been presented in [37], using
training data sets for treatment of significant outages of generators. Such approach uses
the NN to approximate the entire frequency time-series data. Another approach that
utilizes ANNs for system frequency behavior prediction is given in [38]. The system used
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in this case is the Terceira Island system. ANNs, whose weights are learnt using Genetic
Algorithms (GA) are used for estimation of power system sudden change in load and noise
conditions in [39]. Again, the entire frequency data is used.

Grid power-frequency prediction has several applications, such the online-time es-
timation of the power system inertia [40,41], the improvement of frequency containment
reserves [42], the implementation of advanced network management schemes and protec-
tion architectures [43], synchro-phasor accuracy measurements improvement [44], Under
Frequency Load Shedding (UFLS) schemes improvement [45], steady-state security as-
sessment [46], emergency conditions by disconnecting the feeders [38], further renewable
connection assessments [38], HVDC-AC interaction studies [47], and anticipatory sec-
ondary controllers [48]. Additionally, entities like the European Network of Transmission
System Operators (ENTSO-e), are working on a more accurate frequency estimation since
several interconnections among countries are expected with an increasing deployment of
renewables [49].

Typically, the frequency studies on prediction have used time-series analysis tak-
ing the whole data to be entirely reconstructed by the NN model and have very short
estimation time. From the aforementioned contributions, it is seen that active power net-
work management requires further research on frequency prediction advancements. Thus,
the motivation of this document by proposing the NN as a frequency-event forecaster with
a minor portion of data. A previous contribution of this work has been presented in [50],
where the frequency nadir forecasting with a considerable inertia reduction was analysed.
However, in [50], only a few cases were analysed. This paper instead is an extension of
that previous work and adds more cases to the simulated low-inertia reduction studies,
and includes collected PMU data for the Nordic Power System (NPS). Additionally, a noise
performance indicator is shown for the simulated cases. Moreover, it proposes a new
time-horizon window for the data where the time-evolution of the measured frequency
after a large disturbance is predicted as the major contribution of this paper. Nonlinear
Auto-Regressive (NAR) and Long Short Term Memory (LSTM) methods, based on NN
architectures, are compared with the same time-horizon percentage of data.

The rest of this paper is organized as follows: Section 2 describes the theoretical
framework of the frequency response and shows the theoretical behaviour of grid system
frequency. Section 4 briefly explains the machine learning theoretical background and their
relationship with time-series forecasting. Section 4.2 explains the methodology used for the
time-series frequency trajectory forecasting. Section 3 introduces the system data studied,
having two cases, the simulated data and real measurements. The simulation results and
discussions are presented in Section 6. Finally, the conclusion are given in Section 8.

2. Frequency Response Preliminaries
2.1. Frequency Response Preliminaries

The frequency deviations in a power system after a disturbance caused by either a
loss of generation or a load event, can be categorized into different control zones: namely
inertial frequency response zone, Frequency Containment Reserve (FCR) (primary control)
and Frequency Restoration Reserves (FRR) (secondary control) zones.

Inertial response is inherent in the power system due to the synchronizing torque
present in the rotating masses of machines, providing a counter response within seconds,
to oppose the frequency deviations following the disturbance.

In a power system, in the case of sudden disconnection of a generating unit, the system
frequency drops because of the imbalance between generation and load as the rotating
mechanical power stored in the machine masses is converted into electrical power in the
system. During the inertial response period, the rotating machines in the power system
either release or store kinetic energy tending to reduce the frequency deviation. The system
frequency response of the power system is a reflection in the power system of the total
amount of kinetic energy stored in all rotating masses.
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The inertial time constant of an individual generator takes typical values varying
between 2–9 s and can be interpreted as the time that the generator can provide full output
power from its stored kinetic energy. Beyond the inertial response, the frequency is first
stabilized and then restored to its nominal frequency by the FCR (governor action) and
secondary controllers, respectively. FCR acts as a proportional controller to counteract
large frequency deviations, and the response of this control is typically given in <30 s.
However, since the FCR is a proportional controller, a steady-state error would still remain.
An additional controller such as the FRR then corrects this steady state error over time.
Figure 1 shows the frequency response including the time-frame control reactions.
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Figure 1. Power System Frequency Response.

Following (1), the dynamics of the system frequency are written as:

2Hiω̇i = Pm
i − Pe

i + Pns
i − Diωi (1)

where ωi (in rad/s) is the frequency of generator i, Pm
i is the mechanical power (p.u.),

Pe
i is the electric power (p.u.), Hi ∈ R > 0 is the inertia constant and Di ∈ R > 0 is the

droop damping.

2.2. Performance Metrics

Following a disturbance in the system, in particular given a negative step disturbance
such as a sudden load increase or generation drop at t = t1, the following metrics are
defined for quantifying the performance of the forecasting.

• Nadir is the maximum dynamic frequency deviation following an active power distur-
bance/contingency [51].

• Nadir time is the associated time t = t2 to the nadir occurrence.

2.3. Measurement Metrics

In order to have an aggregated frequency measurement of an entire interconnected
power system, the Center of Inertia (CoI) is used, which is computed based on the individ-
ual speeds ωi and the inertia constants of the synchronous generators Hi.

Assuming the set G of synchronous generators, the expression to compute the CoI is:

ωCoI =
Σi∈GHiωi

Σi∈GHi
(2)

3. Test Systems
3.1. Nordic Test System

The single-line diagram of the Nordic test system is shown in Figure 2. This sys-
tem contains 32 high voltage buses, 20 synchronous generators with different types of
generation, in four geographical identified areas. The North and External areas are hydro-
dominated while the South and Central areas have a mixture of nuclear, thermal and coal
power plants. The central area has the highest level consumption whereas the North
area has the lowest level. The transmission system is designed for 400 kV (19 buses)
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with some regional systems at 220 kV (2 buses) and 130 kV (11 buses). The simulation
of this test system has been performed by the software DigSILENT (DIgSILENT GmbH,
Gomaringen, Germany)®.
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Figure 2. Nordic 32 Bus Test System.

To model system scenarios with large amounts of non-synchronous generation, some
of the synchronous generators are replaced with the non-synchronous generation with
back-to-back FRC with the same active and reactive power outputs. Power outputs are
fixed through all simulations. The different cases Case 1 (C1), Case 2 (C2), and Case 3
(C3) represent the replacement of synchronous generation by different amounts of non-
synchronous generation based Full Rated Converter (FRC). C1 considers the replacement
of one generation only, and C2 considers the replacement of two generators including
the one in C1, and so on. It is assumed that the dispersed generation is connected to one
established substation [52]. These five scenarios are summarised in Table 1 and visualized
them in Figure 3:

Table 1. Generator Replacement for Each Case.

Case C1 C2 C3 C4 C5

Generator G7 G16 G17 G14 G6

Bus 1043 4051 4062 4042 1042

Power (MW)% 1.2 5.4 9 13 15
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Figure 3. Full Rated Converters Cases.

3.2. PMU Measurements

In order to have a more realistic observation of the frequency behavior and the
performance of the forecasting through the neural models, a dataset is taken from several
PMUs installed in the Nordic Power System is studied [53].

The frequency data used is from 2012 sampled at 1 Hz, using a ABB RES521 in
agreement with the IEEE standard [54] of 2005. A frequency event is considered as a large
disturbance if the frequency goes below 49.80 Hz. It is ensured that the events are at least
15 min apart, i.e., the time when a frequency disturbance should return to normal according
to the balancing agreement in the Nordic Region. This separation of events also remove
any cascading frequency events, thus ensuring that the system is at a sturdy operating
point prior to the disturbance with sufficient primary reserve. Furthermore, it is important
that the initial frequency, is within [49.9, 50.1] Hz in order to ensure that the system is not
already responding to a frequency deviation outside the normal operating range.

4. Neural Models

Neural Networks (NN) models are set of architectures and algorithms based on the
behaviour of the brain. The objective behind these models is to learn from examples and
to adjust the connections between basic units known as neurons, in a similar way as the
human cerebral cells do. The NNs have numerous applications due to their capacity to
find patterns based on data, and their adaptability to determine nonlinear relationships
in a input–output mapping [55]. This process is carried out in a supervised learning
approach, where it is necessary to provide to the network a set of input–output pair values
which the model is trained. According to the application, the supervised learning achieves
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classification or regression tasks. For the present study, the NN is used as a regressor.
Then, the forecasting for time-series is implemented, introducing non-linearity and the
ability to learn from data in a horizon window methodology. In the present work, two
main NN models were employed: Nonlinear Autoregressive (NAR) and Long Short Term
Memory (LSTM).

4.1. Nonlinear Auto-Regressive Model

NAR models employ an architecture based on inputs and two layers (see Figure 4),
in an equivalent mode as the multilayer perceptron architectures [56]. This approach
works likewise the classical auto-regressive (AR) model, where an output is determined
by a linear computation from its own previous values, according to an order p and the
minimization of the error ε, which is white noise in most of cases [57].

Figure 4. NAR Model.

A nonlinear mapping is provided by the NN model, which is implemented through
the activation function, employing hyperbolic tangent or logistic functions. Equation (3)
represents the NAR model, where it is possible to adjust the ai coefficients, similar to a
classical AR model but renamed as synaptic weights (wij) from the NAR model. The order
p in NAR processes determines the number of lags or inputs of the approach, determining
the number of input nodes. To evaluate the performance of NAR architecture, different
models were trained with a variation in the number of past (input) values (order). Based
on past values of the time-series yi minimizing the error between the original time series
and the estimated one as:

yi = tanh(
p

∑
k=1

aiyi−k + b) (3)

where yi is the time series to be modeled and ai are the coefficients of the model (called
synaptic weights (wij) in other applications). Parameter b is a bias value used to fix the
function to be found.

4.2. Long Short Term Memory Model

Alternative NN architectures, known as recurrent neural networks (RNN), are also
employed for forecasting, where connectivity information forming the input–output map-
ping is stored as hidden states. This RNN holds a recursive structure that implies that fewer
parameters are demanded than NAR models to learn the relation input–output in data [58].
LSTM are architectures based on RNN, where the ability to preserve part of the information
that belongs to the hidden layer can be used in specific moments for forecasting [59]. These
feedback connections inside the LSTM architecture are the main differences compared to
NAR models. Figure 5 shows the typical LSTM structure.
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This NN model holds an architecture composed by gated memory units or cells, which
regulates three parameters related to the forecasting as the input, output and a forgetting
component. This last has as function to determine what must be remembered by the
network. In this way, three gates are used to control the flow information that get into
and out of the cell [60]. The formulation of the expressions for the LSTM training can be
describe for the input (4), output (6) and forget (5) parameters. Also, the management of
the cell state is given by c(t) in (7), which is the long-term. Equation (8) represents the
output or hidden state, which is the memory focused for be used.

i(t) = θi(Wxix(t) + Whih(t− 1) + Wcic(t− 1)) (4)

f (t) = θ f (Wx f x(t) + Wh f h(t− 1) + Wc f c(t− 1)) (5)

o(t) = θo(Wxox(t) + Whoh(t− 1) + Wcoc(t)) (6)

c(t) = f (t)c(t− 1) + i(t)θc(Wxcx(t) + Whch(t− 1)) (7)

h(t) = o(t)θh(c(t)) (8)

where it, ft, o(t) correspond to the input, forget and output gates, and c(t) determines the
cell activation vectors with same size for the hidden vector h(t). Activation functions are
labeled by the θ symbol, Wi, W f , Wc, Wq, and Wh are the weight matrices related to the
input, forgetting, cell (long-term memory), output and hidden layer respectively [61].

The LSTM advantage, in relation to common RNN models is the improvement of the
performance to the gradient vanishing problem, which represents a difficulty in the traditional
back-propagation algorithm employed for training. This is alleviated by tge LSTM, according
to its deep connections over extended periods in time through its cell proposal [62], making
that this structure based on control gates do not affect the training [60,63].

Figure 5. LSTM Model.

5. Methodology

Figure 6 includes the steps to complete the employed methodology. The process
begins with a time series normalization to avoid exploiting values in the NN parameters.
In the development of machine learning models as NN, it is necessary to divide the data
into training and validation steps at least. For this reason this division was implemented,
according to a horizon window approach. Training is followed, searching the best model
based on the modification of a minimum of specifications and performance metrics. Fi-
nally, the analysis and comparison of the results are considered to find the best strategy
for forecasting.
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Figure 6. Methodology.

5.1. Horizon-Window Approach

For validation of models in ML techniques, different strategies can be employed [64].
Forecasting of frequency time-series in the present case is implemented using an out-of-
sample (OOS) evaluation. For this, a section from the end of the series is employed for
evaluation due to the the size of datasets. In this way, only one evaluation on a test set is
considered, and then, metrics for evaluations are computed. The first portion of time-series
is called the training set, where the parameters of the NN models are adjusted, searching
for the error minimization. Then, the generalization of the models is analyzed, employing
a test or evaluation set and compared to the original time series. Even though the Nadir
prediction is the first target of this document, the training section was selected before this
point happens, simulating a real context where the model never knows when the Nadir
will happen. According to both scenarios, three lengths for the training sections were
employed. Table 2 shows the portion of the time-series used for the models’ training.

Table 2. Time series proportion used in the models’f training.

Proportions Simulated Cases PMU Data

1 5% 18%
2 6.25% 20%
3 7.5% 22%

Figure 7 visualizes the described methodology, where three different size segments of
the time-series are employed for training. These three portions were selected before the
frequency Nadir happened. Based on this data and trained NN model, the next samples of
the series are estimated in terms of a forecasting. In Figure 7 the already-trained model
is given by the blue line, whereas the forecasted model is represented by the red line.
The green dashed line represents the frequency nominal reference value.

50

time [s]

f[
H

z]

Figure 7. Applied Methodology.

5.2. Models Training

According to previous explained models, a comparison was accomplished to analyze
differences between NN models, exploring possibilities related to what is the more appro-
priate for the present application. For the simulated and PMU scenarios, three aspects were
considered in the comparison:
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(i) window size, according to the proportion employed for training,
(ii) order of the model, represented by the number of lags or inputs in the model, and
(iii) number of units or neurons in the hidden layer.

For the last two aspects, where parameters related to the neural models architectures
were analyzed, an approach based on equivalence for the NAR and LSTM networks were
used. Number of inputs were modified from one to five in a similar way as the number of
neurons in the hidden layer. For the same comparison, the number of training epochs was
50 epochs and data was similar to that case. Computational experiments were driven by
using Python 3.7 and scikit learn library.

5.3. Prediction Validation

In time series forecasting, there are different measures to quantify how the perfor-
mance of the model is. For the present work, the Root Mean Square Error (RMSE) was
employed for this task due to the wide used in this kind of applications. Expression (9)
describes the computation of the error in the way:

RMSE =

√√√√ 1
N

N

∑
i=1

e2
i (9)

where ei is the error between samples given by the value of the original time series y and
the forecasted value yk, N is the number of the samples,

6. Results and Analysis

This section presents the results of the test system data simulations and real-time
measurements. Both scenarios, the non-synchronous generation inclusion cases and PMU
measurements are evaluated with NAR and LSTM models. The neural models of the simu-
lated data have been evaluated with noise addition in order to test the trajectories forecast.

6.1. Non-Synchronous Generation Integration Cases

The data-set of frequency observables is extracted as time-series with distinct initial
conditions, e.g., gradual non-synchronous generation inclusion, which produces different
time-response conditions due to the inertia reduction in the system. Note the inertia
estimation is out of the scope of this document. The frequency measurement for these
cases uses Equation (2), which quantifies the frequency in the entire system. We initially
evaluate the model’s performance on the simulated cases at each case. Note that all the
cases are evaluated with the same time-series future trend percentages in order to compare
the performance of the prediction.

Figure 8 shows the forecasting results for the cases using the NAR models with the
percentage proportion shown in Table 2. Case C1 shows that for the 6.25% margin the NAR
model is unable to reconstruct the signal and do an appropriate forecast. Whereas with the
7.5% margin the trajectory is well reconstructed. In case C2 by using the margin of 6.25%
the frequency signal is able to forecast the rest of the signal. In the case C3, only by using
the 6.25% margin the forecast is achieved. For cases 4 and 5 only the 7.5% margin achieves
an appropriate prediction model of the frequency time-series.
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Figure 8. Results for the NAR models in all simulation cases.

Figure 9 shows the cases using the LSTM models. In general, only by using the 7.5%
margin the forecast is partially achieved. The performance of both methods are quantified
in Figure 10, where a computation for all five cases is obtained in relation to the number
of lags, neurons in the hidden layer and RMSE. There, it is possible to see that smaller
portions needed more lags to make the prediction, but the number of neurons in hidden
layer increased when the window size augmented.
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Figure 9. Results for the LSTM models in all simulation cases.

Figure 10. Resume of Results for the NAR and LSTM models in all simulation cases.



Electronics 2021, 10, 151 13 of 21

6.2. Non-Synchronous Generation Integration Cases: Noise Addition

Figure 11 shows the forecasting results for the cases using the NAR models with the
percentage proportion and white added noise. In this case, the effect of noise is evident for
all time-series, showing how for cases C4 and C5 the models had the worse performance.
Three first cases exhibited better results for window size for 6.25% (case C1) and 7.5% (cases
C2 and C3).

Figure 12 shows the cases using the LSTM models and time-series affected by the
white noise. A similar situation as the NAR models, the three first cases obtained better
results with a window size of 7.5% for training. Last two cases did not have a higher
quality for the prediction. As previous scenario, a comparison for the simulation cases
when white noise was added is represented by Figure 13. There, the increment in the RMSE
values can be seen but a different effect is found. The number of lags is rising in a similar
way as the window size is augmented. For the number of neurons in the hidden layer,
the prediction for the model with 6.25% portion in training demanded more units in mean
in the NAR case.

Figure 11. Results for the NAR models in all simulation cases with added noise.
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Figure 12. Results for the LSTM models in all simulation cases with added noise.

Figure 13. Resume of Results for the NAR and LSTM Models in the Simulation Cases when Noise
was added.

6.3. PMU Measurement Cases

Ten time-series cases are used for the testing of the neural methods. Note the nature
of the load, control settings and inertia conditions are unknown. Most of the cases have
an initial decay due to a disturbance and subsequently have frequency oscillations after
the re-establishment of the load and/or the control actions. Additionally, in most of the
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cases is possible to observe the Nadir and the frequency overshoot. Except Case 3 which
represents the stochastic frequency behavior under normal operation which typically oper-
ates in a band of 50± 1 Hz. Since the PMU measurements are real frequency behaviours,
the response contains oscillations after the frequency dip. This data is evaluated with
different margins as mentioned in Table 2. Figures 14 and 15 show the results for the
NAR and LSTM models respectively. In general the NAR models exhibit an adequate
trajectory forecasting of the given data. The results obtained results for LSTM models show
comparable performance to the NAR ones. An exception in case 9 that none of the margins
are close enough to the original time-series. Finally, Figure 16 resumes the comparison
for two NN strategies and PMU cases. In general, it is possible to see that NAR models
required more lags (input) in mean than LSTM models. Similarities were found in relation
to the number of neurons in the hidden layer. The RMSE presented higher values for the
LSTM models.

Figure 14. Results for the NAR models in the Sweden measurement cases.
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Figure 15. Results for the LSTM models in all Sweden cases.

Figure 16. Resume of Results for the NAR and LSTM models for Sweden cases.

7. Discussion

As mentioned before, the forecasting of the grid power frequency can be of used for
TSO planners due to the concern of primary frequency control regulations for the the Nadir
adequacy [65], that prevents the minimum frequency (Nadir) from dropping below the
UFLS settings relays as the TSOs require. The maximum nadir value established by the
Nordic TSOs joint of the interconnected power systems of Finland, Norway, Sweden and
parts of Denmark or NORDEL is 49.4 Hz. Additionally, a frequency assessment security
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can provide operative regulations to keep the frequency inside the statutory limits for
different values of aggregated system inertia and disturbances of different magnitudes [66].

Digital twin models of frequency behaviour can be used for diagnosing and health
the physical system in advance [67]. The use of collected data of a system will be enhanced
by using ML techniques to guarantee the correct behaviour of the system and foresee
undesired events.

Studies related to the use of windows to predict next samples were employed in [68].
However, aspects with few works were treated due to the forecasting performance is
deteriorated when time steps is increased. This was taken into account in the present study,
developing models with as maximum five samples in the input [68].

Error of training process is employed to chose the model. In this way, the values
exhibited in Figures 10, 13 and 16 are associated with training error. Due to this, the error
for first window (5% and 18%) belong to segment of time-series when the behavior is stable
without variations before the Nadir point.

Currently, the ML techniques are employed to provide decision support in many fields
related to power systems [69,70]. For the present case, it is noticeable than NN models
could learn the behaviour of time-series. Despite the fact that information related to Nadir
was not included for the training of models, the generalization reached performances that
indicate the ability to obtain the representation of the physical system. This can be useful
for power systems operator, which have an extra-help to determine how to act. Even
though the conventional LSTM model is the current state of art for time-series forecasting,
when implementing the two methods, NAR and LSTM, the NAR showed a better forecast
approximation of the data after the training. This is due to the LSTM approach can be a
sophisticated model for the present application. In some applications, comparisons between
traditional forecasting methods with LSTM can be found in [71,72], and specifically for
power systems applications are in [73,74]. However, a direct comparison with NAR and
LSTM has been not reported for time-series in power systems. The closest cases were
reported for traffic application in [75], where LSTM models worked better. Furthermore,
the results depend on specific application of ML method and data, which can modify the
analysis totally as seen in the present study.

One of the limitations of this study is related to the unidimensional analysis of time-
series, the present proposal searches to indicate the performance of using values of the
same time series. The inclusion of more variables to do the forecasting could be explored
in future work with the employment of vector auto-regressive models. Another aspect
of being analyzed is the use of many more models to do the forecasting. Deep learning
approaches can be studied for the present application, including more architectures with
more layers. However, the necessity of large numbers of data to produce satisfactory results
is a requirement that must be considered. In the process of using applications related to
NN models, the present work analyzed smaller architectures first. Finally, in the specific
field of development of machine learning models, the exploration of hyper-parameters
of the NN could be more comprehensive, making use of more sophisticated techniques.
Despite this, the obtained results allowed to observe the effect of the chosen parameters in
terms of the frequency-time series forecasting

Data-driven control systems is another possibility of use data-trajectory models as
previously mentioned in [6]. Applications of data-driven or model-free controllers require
the development of advanced control techniques as proposed in [76], where optimal param-
eters were found, while counteracting the disturbances in the system. Another example of
a model-free approach is shown in [77], where stochastic adaptive control is applied. Since
large-power systems present several stochastic conditions to be analyzed in such fashion,
a data-driven approach is used in [15], for non-synchronous generation impact analysis.
False injection attacks also uses data-driven controllers to detect anomalies in the power
systems data as mentioned in [78]. Data-driven electromechanical oscillations controllers
are part of such development [79], where oscillations-data paths can be identified for power
systems monitoring [80]. In general, machine learning data models can provide strategies
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for further power systems data interpretation and control. From these applications, further
developments are expected in this area.

8. Conclusions

This paper has shown the application of an strategy for time series forecasting based
on NAR and LSTM neural models, for the power grid frequency case. Simulations with
various scenarios were analyzed, including non-synchronous generation with changes
in the inertia and frequency response in the system when noise addition was performed.
Additionally, PMU measurements were analysed to confirm the possibility of using it for
field applications or power system planning.

The power grid frequency forecasting presented specific particularities that can be
learnt by the classical NAR models. Despite the prediction performance of the LSTMs,
which reached comparable results, trained models based on more straightforward tech-
nique given by the NAR models were light better for this particular application.

Future works will require to involve a more significant number of data and cases in
order to test the performance of the neural methods. In light of the limitations described
above, a reasonable next step would be trying NAR models with exogenous (NARX) inputs,
searching for the improvement of the results. Only one training univariate time-series
data set was used for each training since each frequency response is unique and its grid
conditions. Additionally, Vector Autoregressive (VAR) models with the nonlinearity based
on NN models also will be considered as further studies due to the possibility to analyze
simultaneous measurements like inertia or active power and correlate them. Other aspect
to include is the employment of models based on deep learning with more layers or cells,
specifically for the LSTM models can be explored.
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