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Summary

The method of high speed photography is used to visualize those phenomena which occur
so fast that it is impossible to visualize by the normal human eyes. One of those phe-
nomena is a shock wave propagation during gas explosion experiments. A shockwave is a
strong compression wave existing in the supersonic flow field across which gas properties
like pressure, temperature, and density increase significantly. This thesis is aimed at de-
veloping image processing frameworks, which will process the high speed videos captured
during gas explosion experiments and extract some useful information about the shock
waves.

One way to extract any sort of information about propagating waves from the high speed
videos is by tracking the position of the wave front. The common choice of image pro-
cessing technique to perform this then naturally becomes any kind of edge detection tech-
nique. However, when the images are comparatively of low quality in terms of contrast,
resolution and include a high amount of noise, basic edge detection techniques might not
give the precised result. Hence, some of those image processing techniques, which have
the potential to detect edges in the low quality images were studied and implemented in
this thesis.

The first approach is based on a energy minimizing curve, which moves towards the
edges and eventually lies around the edges, widely known as active contour models or
Snakes. Based on a classic close contour approach, an open contour model is developed
and implemented to contour a wave front from top to bottom of the image (Article
I). The second technique studied is region wise image segmentation method called the
watershed algorithm (Article II). Both of these methods do track the edges within a
required precision however, they are time consuming. The active contour model requires a
good initialization of the curve from the user and also includes multiple parameters. The
watershed algorithm eliminates any parameter requirements however, requires multiple
pre/post-processing steps.

The third technique is a statistical object detection method of template matching, which
reduces the number of pre/post-processing steps. At first, a binary template matching
is implemented in the binary images of the high speed videos (Article IV). This method
minimizes the edge detection error but requires an image to be transformed into a binary
form. The updated template matching uses a dynamic template that varies its intensity
values depending on each considered image (Article III). This approach eliminated the
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need of image thresholding in order to detect edges. Furthermore, it shows to be more
robust and faster compares to previous techniques. Even though it is possible to track the
front without any pre-processing by using a dynamic template matching, it shows better
results in the filtered image.

The images from a high speed camera, when operated in a higher frequency are compar-
atively of low quality, and also ongoing chemical changes in the flow significantly corrupt
the images. A standalone edge detection technique therefore might not be able to track
the front as accurately as when it is combined with an image denoising/filtering. Hence,
image filtering in both spatial and Fourier domain were also studied and implemented
before applying any of above mentioned tracking techniques.

The tracking of wave fronts do not only show the structure and position of the waves but
also gives a possibility to extract primary information about the shock wave like, shock
speed, shock angle, etc. Furthermore, secondary information like Mach number, pressure,
and temperature can also be estimated, by combining the primary information and the
traditional gas dynamics equations. While calculating shock speed from the tracked shock
position, a basic two-point method (distance/time) shows some oscillations in the result.
Hence, a relatively new approach non-linear square fit method (NLSFM) was modified
and implemented, which reduces the oscillations significantly (Article V).

For validation, the estimated pressure for some of the experiments was compared to the
reading from pressure transducers, which shows a good match. The results provide in-
sightful information about the reflected shock wave and its boundary layer interactions.
The calculated wave properties demonstrate a variation that occurred within a time inter-
val of 300 microseconds (µs) at a distance of 100 millimeters (mm). This information is
difficult to extract while using a traditional approach such as pressure transducers. Thus,
a combination of the high speed videos and digital image processing has a huge potential
to study gas dynamics phenomena is a detailed manner.
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Introduction

This chapter of the thesis contains a brief background of images and high speed imaging
along with an introduction of digital image and digital image processing. The chapter
also includes the objectives and the challenges of this thesis.

. Background

History of imaging goes back to early 19th century, when images were captured on the
silver coated plates and took hours to be completed. Throughout the 19th century, pho-
tography techniques kept on improving in minimizing, the time required, size of the
apparatus and the labor needed. One of the major development was introduced in the
year 1878 by Eadweard Muybridge. He introduced high speed photography, which cap-
tures those phenomena which occur so fast that it is impossible to visualize by the normal
human eyes. He used high speed photography to determine whether a horse lifted all four
hooves off the ground or not when galloping (Shimamura, 2015). A snippet from the first
high speed film is presented in Figure 1.1.

Figure 1.1: A series of images from the first high speed video captured by Eadweard Muybridge in 1878
(Shimamura, 2015).

After few years, physicist Peter Salcher captured the first image of a supersonic (speed
greater than the speed of sound) bullet using high speed photography, which was later
used by Ernst Mach to study the supersonic motion (Pohl, 2002). One of the early images
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of a flying bullet from the study of Ernst Mach is presented in Figure 1.2. In the field
of gas dynamics/combustible flow, images have been part of flow visualization from the
early years. They provided the needed visual representation of the phenomena for the
researchers. Mainly two types of flow visualization techniques i.e. shadowgraph and
schlieren were used for capturing the flows with variable density (Settle, 2001). However,
the images were restricted mainly for visual purpose and any information from the images
had to be extracted manually.

Figure 1.2: The first image capturing a flying bullet (Pohl, 2002).

A breakthrough in the imaging technology came by the introduction of a digital imaging
around the late 1960s (Rosenfeld, 1969). Later during the 1980s and 1990s, the devel-
opment of digital cameras along with charge-coupled device (CCD) and complementary
metal-oxide semiconductor (CMOS) technology revolutionized digital photography and
eventually high speed imaging. Today, there are high speed cameras that operate at more
than a million frames per second (FPS). Following this development along with the easy
availability of computers, investigations on extracting the information from the schlieren
and shadowgraph high speed images using digital image processing techniques have been
increasing (Kleine, 2005). However, in most of the work, image processing was not the
main focus but used as a tool to validate experimental results (Sommersel et al., 2008;
Damazo, 2013; Mata et al., 2017).

For example in Sommersel et al. (2008), a high speed imaging with a flow visualization
technique called Background Oriented Schlieren (BOS) (Raffel, 2015) was used for finding
the shock wave position in the images. The pressure of the wave was estimated by using
the shock positions, which was later used to validate the experimental pressure records.
An example of a background subtraction technique is presented in Figure 1.3. It can be
observed from this example that, an image processing can extract the information which
otherwise is not visible for human eyes. Thus, a combination of the high speed videos and
digital image processing has a huge potential to study gas dynamics apart from traditional
experimental studies and computer simulations.
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(a) (b) (c)

Figure 1.3: Background Oriented Schlieren (a) distorted image; (b) undistorted image; (c) result of sub-
tracting image (a) from (b), position of the shock wave becomes visible (Sommersel et al.
(2008)).

. Digital Image

Figure 1.4: An example of a digital image showing the location and intensity of few pixels.

A two dimensional (2-D) image can be defined as a 2-D signal f (x,y), where x and y are
the spatial coordinates, and the value of f (x,y) at any pair of coordinates (x,y) is the
intensity of an image at those coordinates. If (x,y) and f (x,y) are both finite and discrete
quantities, we call it a digital image. Hence, a 2-D digital image is a matrix, composed
of a finite number of elements called pixels, each of which has a particular position and
intensity. An example of a 2-D digital image whose pixel values are normalized between
0-1 is shown in Figure 1.4. As can be observed from Figure 1.4, image/pixel coordinate
system is slightly different from normal (x,y) coordinate system. It defines x-axis as a
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column, increasing from left to right and y-axis as row increasing from top to bottom
keeping the origin at the top left corner. A pixel position is therefore generally defined
by its row and column position, for example, the bottom left pixel position in Figure
1.4 shows the location of row number 8 and column number 1. A digital image can be
of various types depending on the pixel values, however this thesis mainly deals with 1)
grayscale image which pixel value lies between 0 - 255 and 2) binary image whose pixel
value is either 0 or 1.

Digital images can be read and processed using computer algorithms, which is basically
known as a digital image processing. It was introduced in the late 1960s, however, the
process was expensive and the application was limited to few fields like satellite imagery
(NASA, 1999). The introduction of fast and cheap commercial computers around the
mid 1990s expanded the area of research using computer algorithms. At present, the
application is expanded widely in the field of computer vision (Arnold et al., 2019), medical
imaging (Hoheisel, 2006) etc.

Onwards in this thesis, digital image and digital image processing referred as image and
image processing respectively.

. Image processing techniques

There are numerous image processing techniques, for example, image filtering/denoising,
image enhancement, image segmentation, image classification and edge detection to men-
tion few (Gonzalez and Woods, 2000; Chan and Shen, 2005). Most of the image processing
techniques are implemented based on methods like;

• Statistical: based on probability and statistics.

• PDE: based on energy minimization and iterations.

• Domian transform: images are transformed into other domains apart from the spa-
tial domain for the processing.

• Machine learning: use a machine to make a decision based on training.

The short introduction of two most important image processing techniques for this work
i.e. image denoising and edge detection are described in the following subsections.
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(a) (b)

Figure 1.5: Image denoising (a) grayscale image degraded by random noise; (b) result after image denois-
ing.

. . Image denoising/filtering

Image denoising is a process of eliminating random noise as far as possible while preserving
important details of an image. A noisy image produces undesirable visual quality, besides
it also lowers the visibility of low contrast objects. Hence, noise removal is an essential
part to recover and enhance fine details that are hidden in the image data (Gonzalez and
Woods, 2000). Image filtering is one of the common ways to reduce or eliminate noise
from the images. The process can be defined as an operation in which the value of an
output pixel is determined by a combination of the pixel values in the neighborhood of
the corresponding input pixel, which results in a smooth image. An example of image
filtering is depicted in Figure 1.5.

. . Edge detection

(a) (b)

Figure 1.6: Edge detection (a) grayscale image; (b) result of edge detection.
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Edge detection is one of the fundamental image processing techniques, for finding the
boundaries of objects within an image. It is implemented by identifying sharp discon-
tinuities in the image intensities as can be seen in Figure 1.6. It plays a significant role
in image processing applications like image segmentation (Senthilkumaran and Reghun-
adhan, 2007) and motion tracking (Murray and Basu, 1994). Motion of any object in a
series of images can be tracked by detecting the edges of that object in those images. This
is one of the reason why edge detection is an intergral part of this thesis. Moreover, edge
detection usually results as a binary image, which reduces a memory size of the image
significantly while preserving important features.

. Objective and Problem Description

High speed videos were recorded during two types of gas experiments, i.e, detonation and
SWBLI experiments. Gas detonation experiments were conducted in the setup located
at USN and, SWBLI experiments were conducted at GLACIT detonation tube (GDT),
Caltech. The experiments were recorded in the high speed videos by using a high speed
camera named KIRANA1. The camera can take upto 5 millions FPS, however it was
operated with the frame rate of either 500,000 or 200,000 FPS. The flow visualization
techniques, shadowgraph or schlieren were used for capturing the flow (Settle, 2001).

Figure 1.7: Images from the experiment conducted for a gas detonation (Exp no. 00022) in 30% H2 above
air. The wave is propagating from left to right and the time between each image is 24 µs.
The images are sorted from top to bottom, and left to right.

1https://www.specialised-imaging.com/products/video-cameras/kirana
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An example of a gas detonation experiment, showing the detonating H2 gas above a non-
reacting layer of air is presented in Figure 1.7. Generation of Mach stem around the lower
boundary of the tube can be observed in the Figure 1.7. An exmaple from the SWBLI
experiments conducted with CO2 gas, showing a reflected shock wave is shown in Figure
1.8. Reflected shock wave initiates once an incident shock wave hits the end wall (Mark,
1958). Distortion of the reflected shock wave foot due to its interaction with a boundary
layer created behind the incident shock can be seen in the Figure 1.8.

Figure 1.8: Images from the experiment conducted with CO2 for SWBLI (Exp no. 2516). The wave is
propagating from right to left and the time between each image is 40 µs. The images are
sorted from top to bottom, and left to right.

The main objective of this PhD is to study image processing techniques for analysing these
high speed videos and extract primary information like the shock speed, the position of
triple point and the shock angle (refer Figure 1.9(a)). Thereafter, by combining the calcu-
lated primary information and traditional gas dynamic equations, secondary information
like pressure and temperature can be estimated as well. At the end, the calculated results
can be used for validating results from pressure tranducers and computer simulations.

One way of extracting primary information is by finding the position of a wave front in
each image which is basically a front tracking, for instance like the yellow curve in Figure
1.9(a). For human eyes, it is a rather simple task to find the position of wave front in
these images, however, a close look around the wave front in Figure 1.9(b), makes the
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Figure 1.9: (a) An image from high speed video showing different parts of a reflected shock wave; (b)
closed look at the red marked area around the wave front.

task subjective. In addition, if the number of images is large, manual tracking becomes
inefficient. Therefore, image processing algorithms that estimate the wave front position
as accurately as possible are required. And to find the position of any object in an image,
the edge detection technique introduced in Section 1.3.2 naturally becomes a choice.
Image filtering technique described in Section 1.3.1 is then used to help edge detection by
removing any kind of background noise.

The images processed during this thesis are comparatively of lower quality in terms of
object contrast, resolution, etc. This is mainly due to higher camera frequency, varying
background noise, lighting. Hence, straight forward edge detecting techniques didn’t
perform as accurately as when applied to better quality images. For example, the result
of applying one step edge detection techniques as in Guoshuai et al. (2019), are shown
in Figure 1.10. As can be seen from the results, edge detections are not good enough
to detect the position of the wave front. Hence, there is a necessity of developing front
detection algorithms that could detect the wave front even in lower quality images.

Besides, some other challenges need to be addressed as well. Such as, the developed
detection algorithms should be able to detect wave fronts in different videos with min-
imum to no change on any parameters. The wave structure is different in every high
speed video, thus the algorithms should be independent of structure. At last, as this
PhD is application driven, the algorithms should be easily understandable and applicable
without being expert in image processing. There are numerous image processing methods
purposed for edge detection in a noisy environment, still, they are seldom used in wave
front detection. One of the reasons might be, the purposed image processing algorithms
are relatively complex and require some expertise. With this thesis, some of the existing
image processing techniques of edge detection, which have a potential on the wave front
tracking in low quality or noisy images are explored.
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(a) (b)

(c) (d)

Figure 1.10: Result of MATLAB edge detection function. (a) Filtered image; (b) Sobel; (c) Prewitt; (d)
Roberts.

Once the wave front position is tracked, primary information like the shock speed (both
normal and oblique), the position of triple point, and the shock angle (refer Figure 1.9(a))
need to be calculated. The challenge while estimating shock speed is the high sensitivity,
meaning mispositioning of even one pixel will influence the speed calculation drastically.
Usually, to overcome this challenge, the speed is estimated over a longer time, however,
this will miss out on the actual variation happening in between. So, the methods which
could overcome this challenge also need to be studied and implemented.

. Thesis structure

This thesis is divided into three parts.

Part I is an overview of the PhD work and consists of multiple chapters, an introduction
of the thesis including background and description of imaging, problem description, and
the objective of the thesis is described in Chapter 1. The literature study in Chapter
2 describes the existing image processing methods for image denoising/filtering, edge
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detection, and object tracking. The details of experimental setups and high speed videos
used for the thesis are explained in Chapter 3. Chapter 4 briefly explained the description
of all the methods developed throughout the study. In Chapter 5, the results of methods
are discussed according to the corresponding articles. For the details about the developed
algorithms and their implementation, it is requested to refer to the corresponding articles.
The conclusions are given in Chapter 6.

Part II consists of all the published and prepared scientific articles. In the end, Part III
of this thesis contains the unfinished work of using Machine learning to track the wave
front. Though, this work couldn’t progress forward and isn’t mature enough to draw any
conclusion, it can be one of the interesting work in the near future.
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Literature review

This chapter is divided into four sections; Section 2.1 and Section 2.2 is a selection of
a literature study on various image denoising/filtering and edge detection techniques
respectively. These sections are aimed for readers who are relatively new to image pro-
cessing, thus the methods containinig from the basic one step to some advanced ones
are included. These techniques are classified based on the different methods mentioned
in Section 1.3. Section 2.3 gives a general overview of the progress of image processing
techniques in the shock wave analysis. While the wave tracking in high speed images is
not studied as it should be and there is not many work in literature, object tracking itself
is a very well researched topic. There are numerous image processing methods purposed
for different type of object tracking in a noisy environment, which implements relatively
more advanced edge detection techniques. Some of those methods which are in the scope
of this thesis are described in Section 2.4.

. Image denoising/filtering

Classic image filtering techniques use a basic way of sliding a pre-defined kernel over an
image, which smooths the overall image. Modern filtering techniques involve relatively
advanced methods like PDEs and space transform, which smooth the noise while pre-
serving the edges and other features. In this section, some of the techniques from both
classic and modern methods are presented.

. . Statistical based techniques

Most of the statistical based techniques are performed by sliding the kernel (h) over the
image, generally starting at the top left corner. It moves the kernel through all the
positions where the kernel fits entirely within the boundaries of the image. Each kernel
position corresponds to a single output pixel, the value of which is depends on which kind
of filtering technique has been used.
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Figure 2.1: An operation of median filter of kernel size [3×3].

A non-linear filtering is one of the techniques often used to remove noise in an image.
One of the popular non-linear filter is a median filter, whose output value is the middle
element of a sorted array of pixel intensities from the pre-defined kernel as in Figure 2.1.
Since the median value is robust to outliers, the filter is used for reducing the impulse
noise (Yang et al., 1995). The result of using median filter of kernel size [9× 9] onto
a grayscale image of size [100× 100] degraded by salt and pepper noise is presented in
Figure 2.2. Some of the other non-linear filters are Bilateral filters, Anisotropic diffusion,
Morphological operations (on binary images) (Lim, 1990), Rank conditioned rank selection
(Hardie and Barner, 1994) etc.

(a) (b)

Figure 2.2: Median filter (a) grayscale image degraded by salt and pepper noise; (b) filtered image with
[9×9] kernel size median filter.

Figure 2.3: An operation of [3×3] linear filter; average filter operation and convolution operation.

Linear filtering is a filtering algorithm in which a pixel value in an output image is
a linear combination of the neighbouring pixel values in an input image. The simplest
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linear filter is a mean/average filter, whose output is an average of the intensities of the
pixels that surround the considered pixel. In practice, however, linear filtering is achieved
rather by a convolution (Lim, 1990). The output pixel value is calculated by multiplying
together the kernel value and the underlying image pixel value for each of the cells in the
kernel, and then adding all these numbers together as in (2.1), a is the size of kernel here.
An example of an average filter and a convolution operation is illustrated in Figure 2.3.
The result of using convolution on Figure 2.2(a) with two different kernel size is presented
in Figure 2.4.

I f (m,n) =
a

∑
i=−a

a

∑
j=−a

h(i, j)I(m− i,n− j). (2.1)

(a) (b)

Figure 2.4: Result of convolution corresponding to Figure 2.2(a) with kernel size of; (a) [9×9]; (b) [16×
16].

Apart from above described techniques, statistical based techniques like Bayes theorem
and maximum likelihood are also used massively in the field of image processing. The
application might not be particularly for filtering, however these methods are huge part
of image analysis specially image segmentation and reconstruction.

. . PDE based techniques

Total variation (TV) denoising is one of the prominent PDE based denoising techniques.
It is established on the observation that the noise will be at high frequencies and the images
with excessive detail will have a high total variation i.e. the integral of the absolute
gradient of those images is high. Based on these observations, it is proposed to reduce
the total variation of the image subject to getting a close match to the original image
(Rudin et al., 1992) see also Chan et al. (2006) for a review of advances and literature.
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It claims to be better than a conventional linear and median filtering, as it prevents the
edges while smoothing noise. Suppose that we are given a noisy image I, then denoised
image I f can be obtained as the solution of a minimization problem,

argmin
I f∈BV (Ω)

‖ I f ‖TV (Ω) +
λ

2

∫
Ω

(I − I f )
2dx, (2.2)

where λ is a positive parameter, BV (Ω) is the bounded variation over the domain Ω,
TV (Ω)is the total variation over the domain and ‖ . ‖ is the Euclidean norm. This min-
imization problem is referred to as the Rudin-Osher-Fatemi or ROF problem.

(a) (b)

Figure 2.5: TV denoising (a) grayscale image with a random noise; (b) result after TV denoising.

Split Bregman method is a technique for solving a variety of L1-regularized optimization
problems and is particularly effective for problems involving TV regularization (Tom and
Osher, 2009). The results using this method for TV denoising are presented in Figure
2.5. Another popular PDE based method for smoothing images is a Linear diffusion
methods, which assume the intensity of illumination on edges varies like geometric heat
flow in which heat transforms from a warm environment to a cooler one until the tem-
perature of the two environments reaches a balanced point (Perona and Malik, 1990).
Several authors have proposed higher order PDEs for image denoising and edge detection
(You and Kaveh, 2000; Lysaker et al., 2003).

. . Transform based techniques

Image filtering using a convolution of a kernel in each pixel becomes operationally costly
when the image size is too large. Therefore, in such cases, filtering can be done in a
frequency/Fourier domain, where the input image can be directly multiplied with a fil-
ter function. Fourier transform (FT) is a mathematical technique for transforming a
spatial domain signal into a frequency domain signal. The main concept is, in frequency
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domain low frequency correspond to a smooth varying image features whereas, high fre-
quency corresponds sharply changing features such as boundaries or edges. A 2-D discrete
Fourier transform can be obtained as,

F(k, l) =
1

MN

M−1

∑
m=0

N−1

∑
n=0

I(m,n)e
− j2π

(
k
M

m+
l
N

n

)
. (2.3)

Here, F and I is a Fourier transformed and spatial image respectively with size [M,N] and
i =

√
−1.

(a)

(b)

Figure 2.6: FFT of images (a) grayscale images in spatial domain; (b) corresponding Fourier transformed
images.

Some examples of spatial images and the corresponding Fourier transformed images are
shown in Figure 2.6. Once the image is transformed into Fourier domain, it is multiplied
with the filter function H as in (2.4) to get the filtered image Ff . Thereafter, Ff is trans-
formed back to the spatial domain filtered image I f by using inverse Fourier transform,
as in (2.5),

Ff (k, l) = F(k, l)×H(k, l). (2.4)
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I f (m,n) =
M−1

∑
k=0

N−1

∑
l=0

Ff (k, l)e
j2π

(
k
M

m+
l
N

n

)
. (2.5)

A common way to filter the noise from an image in the frequency domain is by using low
pass filter (LPF), which attenuates high frequencies greater than a given cut off frequency
fc, resulting in a smoother image in the spatial domain. The LPF function is given by,

H(k, l) = 1 if
√

k2 + l2 < fc, (2.6)

H(k, l) = 0 if
√

k2 + l2 > fc. (2.7)

(a) (b)

Figure 2.7: Frequency filtering of the top right grayscale image in Figure 2.6 with low pass filter of cut
off frequency (a) 30 Hz; (b) 10 Hz.

Filtered images by using fast Fourier transform with a cut off frequency of 30Hz and 10Hz
can be seen in Figure 2.7. Further, on the fast Fourier transform and filtering of images
in the frequency domain can be read in Najim (2010). The advantages of using Fourier
analysis to study the shock wave unsteadiness can be read in Estruch et al. (2008).

Another image filtering technique which operates in a different domain apart from the
spatial domain is wavelet transform. This transform decomposes a signal with finite
energy in the spatial domain into a set of functions as a standard in the modular spatial
domain of orthogonal. Compared with the traditional Fourier analysis, the wavelet trans-
form can analyse the function in the modular spatial domain and timing domain which
has a better local capacity of the frequency and time (Li, 2003; Xizhi, 2008). A two stage
non-locally collaborative filtering method in the transform domain is BM3D purposed by
Dabov et al. (2007). In this method, similar patches are stacked into 3-D groups by block
matching, and the 3-D groups are transformed into the wavelet domain.
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. . Machine learning

With the continuous development of machine learning, more and more image processing
problems were being solved by various types of networks and achieved good results. For
image denoising also, numerous approaches have been purposed in the past few years.
In Jain and Sebastian (2009), a convolutional neural network (CNN) model was used for
denoising images. Their algorithm claims to achieve better results than the traditional
models. Denoising based on stacking layers of denoising autoencoders which are trained
locally to denoise corrupted versions of their inputs was purposed in Vincent et al. (2010).
A different kind of neural network with a special architecture (i.e. containing a sparsifying
logistic) and image patches is used in Ranzato et al. (2007) to the denoise image. Chen
and Pock (2017) proposed a feed-forward deep network called the trainable non-linear
reaction diffusion (TNRD) model, which achieved a better denoising effect. Zhang et al.
(2017) introduced residual learning and batch standardization into image denoising for
the first time; they also proposed feed-forward denoising CNNs (DnCNNs).

. Edge detection

There are various ways of detecting edges, one simple way is by approximating the first or
the second order derivative of image intensity. A relatively advanced way is by using an
energy minimizing curve, which eventually lies around the edges. Similarly, finding regions
in an image whose pixels have the same properties instead of detecting sharp changes, is
a region based way of detecting edges. The region based methods are extensively used for
image segmentation.

. . Gradient based techniques

One of the usual approaches to find the magnitude and the direction of the intensity
changes in an image I is a gradient operator (Gonzalez and Woods, 2000), defined as the
vector,

∇I =
[

gx
gy

]
=

[
∂ I
∂x
∂ I
∂y

]
(2.8)

The magnitude (M) and non-unique direction (α) of the gradient vector ∇I are calculated
as,

M(x,y) =
√

g2
x +g2

y , (2.9)

α(x,y) = tan−1
(

gx

gy

)
. (2.10)
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The simplest of all edge detectors that use first order derivative to identify the intensity
change is Roberts edge operator, which was introduced in Roberts (1963). At any pixel
position (m,n), it can be computed as,

∂ I
∂y

≈ I(m,n+1)− I(m,n), (2.11)

∂ I
∂x

≈ I(m+1,n)− I(m,n). (2.12)

(a) (b) (c) (d)

Figure 2.8: Gradient of an image (a) grayscale image; (b) horizontal derivative gx; (c) vertical derivative
gy; (d) gradient magnitude image M.

An example of the gradient (horizontally and vertically) and its magnitude by using the
Roberts operator is presented in Figure 2.8. The Roberts operator can be implemented
as a 1-D mask for vertical and horizontal edges as shown in Figure 2.9(a). An update or
more symmetric version of the Roberts operator is Prewitt operator, which consider both
sides of a central point more like a central difference (Prewitt, 1979). This operation can
be implemented by filtering the image with two [3×3] masks as in Figure 2.9(b). A slight
variation of the Prewitt operators which gives more weight on the central coefficients of
the masks as in Figure 2.9(c) is Sobel operator (Sobel, 2014).

(a) (b) (c)

Figure 2.9: (a) Robert operator; (b) Prewitt 2-D masks of size [3×3]; (c) Sobel 2-D masks of size [3×3].

Apart from the first order, some operators are based on the second order derivative.
These operators are based on detecting edges in images by finding zero crossing points
of the second derivative/Laplacian of the image. To do this, the Laplacian of Gaussian
(LoG) combines Gaussian filtering with the Laplacian (Marr and Hildreth, 1980; Fisher
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et al., 2003). The same filtered image LoG(x,y) can be obtained by either first convolving
the image with a Gaussian kernel and then approximating the Laplacian as in (2.13), or
convolving the image with the linear filter that is the Laplacian of the Gaussian filter as
in (2.14)

LoG(x,y) = ∇
2[G(x,y)∗ I(x,y)]. (2.13)

LoG(x,y) = [∇2G(x,y)]∗ I(x,y). (2.14)

. . Transform based techniques

The classic Hough transform was first introduced to identify the lines in the image, but
later it was extended to identifying positions of arbitrary shapes, most commonly circles
or ellipses (Hough, 1962). In general, the straight line y = ax+b can be represented as a
point (b,a) in the parameter space. However, vertical lines pose a problem. They would
give rise to unbounded values of the slope parameter a. Thus, for computational reasons,
Duda and Hart proposed the use of the Hesse normal form,

r = xcosθ + ysinθ , (2.15)

where r is the distance from the origin to the closest point on the straight line, and θ is the
angle between the x-axis and the line connecting the origin with that closest point. It is,
therefore, possible to associate with each line of the image a pair (r,θ). A line is detected
if the number of points in a pair (r,θ) is above a suitable threshold. The (r,θ) plane is
sometimes referred to as Hough space for the set of straight lines in two dimensions (Duda
and Hart, 1972).

Fourier transform is also used in some cases to detect the edges in an image, which are
usually made of high frequencies. In the case of FFT, a high pass filter keeps all high-
frequency features (e.g. sharp peaks and corners) which are usually not classified as
edges.

. . PDE based techniques

These techniques use one or more parametric curve which moves and changes shape and
size according to some kind of energy defined by image intensity. They mostly rely on
the strong edges as a stopping factor, thus contouring the edges.

Active contour is one of the widely researched PDE based methods, which was intro-
duced in Kass et al. (1988) and commonly known as a snake model. The idea is to evolve a
parametric curve initialized manually by a set of (x,y) points around the object of interest.
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By representing the snake V (s) = (x(s),y(s)) in (x,y) coordinate system parameterized by
arclength (s ∈ [0, 1]), its energy function is defined as in (2.16). The energy is calculated
for each point along with the snake and the snake will move in the direction where there
is minimum energy compare to the previous position. The snake will be stationary once
the energy is balanced in all directions.

Esnake =
∫

s
Eint(V (s))+Eext(V (s))ds. (2.16)

The first term in (2.16), Eint is an internal energy which is responsible for the smoothness
of the curve, and can be defined as

Eint = 1/2[α|V ′(s)|2 +β |V ′′(s)|2]. (2.17)

Here α and β are positive weighting parameters for controlling the snake’s tension and
rigidity respectively. V ′(s) and V ′′(s) are the first and the second derivative of V (s) with
respect to s. The second term in (2.16), Eext is the external energy which is responsible
for attracting the curve towards the edges. It is calculated from the image such that it
takes minimum values at the point of interest like edges and boundaries. For example,
for a grayscale image I(x,y), the external energy can be calculated as

Eext =−|∇I(x,y)|2. (2.18)

(a) (b)

Figure 2.10: A snake model in a binary image (a) calculated GVF showing the balance of GVF at the
edges; (b) movement of a snake towards an object, green line: initial contour.

A major drawback of the classic snake model is that the snake cannot move towards
the objects that are too far. Many methods were purposed to solve this problem, one
of the significant ones is Gradient Vector Flow(GVF) snakes purposed by Chenyang and

22



Jerry (1997). In this work, an original potential external force field was replaced by
a GVF field. GVF field points towards the object boundary and varies smoothly over
homogeneous regions using a computational diffusion process. GVF calculated for a
binary image is illustrated in Figure 2.10(a), a crossing of the arrows at the edges is
visible. A corresponding snake movement is shown in Figure 2.10(b), a green curve with
an asterisk is an initial contour given by a user. In Caselles et al. (1993), a new model for
active contours based on a geometric PDE was purposed. The model is intrinsic, stable
and permits a rigorous mathematical analysis. It enables us to extract smooth shapes and
it can be adapted to find several contours simultaneously. Some other noticeable works
done regarding snake models are Cohen and Cohen (1993); Caselles et al. (1997); Chan
and Vese (1999).

Figure 2.11: An example of level set function in two different time ( van Dijk et al. (2013)).

Most existing active contour models are formulated on closed curves, while much fewer
open active models are put to use. The open contour model has been adapted occasionally
for applications like satellite imagery (Della Rocca et al., 2004), medical (Cohen, 1991),
and road images (Cohen, 1996)(Melonakos et al., 2008). Apart from distinct energy
functionals that suit their respective applications, the difference in open active contour
can be characterized by their different boundary conditions. In fixed boundary, the end
points are assumed to be known apiori with full certainty and need not shift during
evolution. After the boundary points are set, rest of the snake evolution resembles the
classical closed snake. Some of the methods introduced to reduce sensitivity to local
minima during the curve evolution can be found in (Cohen, 1991) (Melonakos et al.,
2008).

In some application, where the end points of the snake cannot be fixed at one point, the
end points could be moved along the direction tangent to the curve (Hongsheng et al.,
2009). A new class of open active contours with free boundary conditions, in which the
end points of the open active curve are restricted to lie on two parametric boundary curves
is suggested in Shemesh and Ben-Shahar (2011).

Another widely studied PDE based method for edge detection is the level set method
purposed by Osher and Sethian (1988). The method is based on defining a contour V as
a level set of a high dimensional function. The main advantage of level set over active
contour is its ability to deal with the change of topology in the image as demonstrated
in Figure 2.11. The level set method is more suitable for topology changes, which is
appealing in situations in which the number of objects that must be detected is not
known in advance. However, this makes the method less robust to noise because contours
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can over split. A simple representation of an interface Γ in the level set defined in Osher
and Sethian (1988) is,

φ(X) =−d for X ∈ Ω
− (2.19)

φ(X) = +d for X ∈ Ω
+ (2.20)

φ(X) = 0 for X ∈ Γ, (2.21)

where d is the euclidean distance to Γ. A new model for active contours based on; curve
evolution, Mumford-Shah functional (Mumford and Shah, 1989) and the level set was
purposed by Chan and Vese (1999). For a recent survey of level set snakes, see Gibou
et al. (2017).

. . Region based techniques

Region based methods are generally used for image segmentation and object detection.
Nevertheless, there is a close overlap between these methods and edge detection. For
example in Figure 2.11, a level set approach detects the edges while also segmenting the
objects from a background.

Split and merge is based on the divide and conquer approach. In this method, an input
image is divided into sub regions until the sub regions become small enough for segment-
ation. Then appropriate merge rule is used to produce final segmentation results. This
process is divided into four phases; split the image, merge similar sub regions, spatially
adjacent regions and elimination of small regions. The criterion for the test is the homo-
geneity of the region, which can be grayscale intensity, mean, variance, etc (Gonzalez and
Woods, 2000).

(a) (b)

Figure 2.12: An example of the watershed algorithm (a) a grayscale image; (b) representation of the
grayscale pixel values as a topological field.
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Watershed algorithm is based on the topology of the image and came from the field
of mathematical morphology. Beucher and Lantuejoul were the first ones to apply the
concept of watershed and divide lines to a segmentation problem in Beucher and Bilodeau
(1979). The approach is simple, every pixel value is directly proportional to the height;
such that the minimum is the deepest as demonstrated in Figure 2.12. The algorithm first
divides the whole image into several catchment basins corresponding to its local minima
and then start flooding the basins from the bottom. Starting from the minima of the
lowest altitude, the water will progressively fill up the different catchment basins. Now,
at each position where the water coming from two different minima would merge, the
so-called dam/watershed line is built to prevent the merging of water from two basins,
which eventually form the contours separating each catchment basins. The operation is
demonstrated in Figure 2.13.

Figure 2.13: Watershed with immersion algorithm (Romero-Záliz and Reinoso-Gordo, 2018).

(a) (b) (c)

Figure 2.14: An example of the watershed algorithm (a) a grayscale image1; (b) a distanced transformed
image; (c) final result of segmentation in thresholded image marker controlled technique.

The original algorithm has few drawbacks, like over segmentation, sensitivity to noise,
poor detection of objects with low contrast and thin structure. To overcome the problem
of over segmentation, a strategy known as marker-controlled segmentation purposed in
Meyer and Beucher (1990). In Meyer (1994), the flooding process by using a distance
transformed image was implemented, which still today is one of the best ways to imple-
ment the watershed algorithm. The distanced transform image represents the shortest
distance between the pixel and the closest boundary. It is operated mostly on binary
images (Kimmel et al., 1996). An example of implementing the marker controlled water-
shed algorithm and flooding in distanced transformed image is presented in Figure 2.14.
Some of the other important contributions in the field of watershed segmentation are in
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Vincent and Soille (1991); Beucher and Meyer (1993); Bieniek and Moga (2000); Bieniecki
(2004).

Figure 2.15: An example of template matching 2.

Template matching or pattern matching is one of the oldest image processing method,
to detect a relatively smaller object in an image. It starts with creating a template of
a relatively smaller size, whose one or multiple features match with the features of the
desired object. Then, the created template is slid in a pixel-by-pixel basis, computing the
similarity between the template features and its footprint in the image (Brunelli, 2009).
An example of object detection using a template is illustrated in Figure 2.15. Some
common features that are used for calculating a similarity while matching are, the sum
of absolute difference (SAD), cross correlation, normalized cross correlation, the sum of
squared error, mean square error (MSE), eigenvalues (Ouyang et al., 2012; Mahalakshmi
et al., 2012).

. . Machine learning

Most of the work on edge detection in the field of machine learning makes a heavy use of the
ground truth provided by the Berkeley Segmentation Data Set (BSDS) in Arbelaez et al.
(2011), where each of the 500 images was processed by multiple human annotators. In the
pioneering work Konishi et al. (2003), edge detection is formulated as a discrimination task
specified by a likelihood ratio tested on the filter responses. Martin et al. (2004) carefully
design features to characteristic changes in brightness, color, and texture associated with
natural boundaries, and learn a classifier to combine the features. In Kivinen et al.
(2014), the algorithm is divided into two parts; the first performs feature extraction by
unsupervised feature learning techniques, while the second uses the features for edge
prediction. The other one is proposed in Ganin and Lempitsky (2015), in which feature
for image patch is learned using a conventional CNN and then the feature is mapped to an
annotation edge map using kd-tree. Besides of supervised learning, Arbelaez et al. (2011),

1Image is from lecture note: https://www.uio.no/studier/emner/matnat/ifi/INF4300/h11/undervis-
ningsmateriale/INF4300-2011-f04-segmentation.pdf

2https://pythonspot.com/tag/template-matching.
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combine multiple local cues into a globalization framework based on spectral clustering
for edge detection.

. Image processing in shock wave analysis

After Ernst Mach showed the existence of shock waves in a supersonic flow by capturing
them in the high speed video, images slowly started to become a small but important part
of the shock wave study. They provided the much needed visual verification of the various
wave phenomena. In Mark (1958), which is the first of its kind to study about the SWBLI,
images were extensively used to visualize the shock structure at various conditions. The
images were captured using schlieren and shadowgraph visualization techniques, which
are the most common technique for any kind of supersonic flow visualization. Two of the
images from the memorandum is presented in Figure 2.16.

(a) (b)

Figure 2.16: Images from Mark (1958); (a) Initial shock ; (b) reflected shock.

Flow visualization techniques during the last few decades have evolved massively. These
techniques are not limited to just capturing a phenomenon now but to simultaneously
diagnose the phenomena as well. Imaging based flow diagnostic techniques, like Particle
image velocimetry (PIV) (Brossard et al., 2009), Background Oriented Schlieren (BOS)
(Raffel, 2015), and Schlieren Image Velocimetry (SIV) (Biswas and Qiao, 2007) are gaining
popularity as a novel measurement technique. PIV and SIV capture the entire 2D/3D
velocity field by measuring the displacements of numerous small particles that follow
the motion of the flow. The consecutive images are then cross-correlated to yield an
instantaneous flow velocity field. An example of an instantaneous velocity field estimated
by using PIV is presented in Figure 2.17 3.

3https://www.cavitar.com/library/time-resolved-piv-measurements-cavilux-hf-diode-laser/
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(a) (b)

(c)

Figure 2.17: PIV (a),(b) Example of particle image; (c) an instantaneous flow field.

BOS on the other hand uses random dot pattern in the background and correlate them
similar to PIV. Recently, NASA has successfully tested an advanced Air-to-Air BOS or
AirBOS, in flight, capturing the first ever images of the interaction of shock waves from two
supersonic aircraft in flight is shown in Figure 2.184. The application of BOS to estimate
displacement field of a laser-induced underwater shock wave can be read in Yamamoto
et al. (2015). Development of schlieren and shadowgraph high speed imaging in the field of
shock wave visualization is nicely reviewed in Settle and Hargather (2017). Furthermore,
the imaging technique of color schlieren visualization to have a closer look at the problems
associated with the shock bifurcation in a boundary layer is infallibly described in Kleine
et al. (1992) Kleine (2005). Even though the methods of estimating flow velocity field is
extremely popular in supersonic flow study, the techniques are based in a flow visualization
technique and measurements rather than the actual image processing techniques.

On the other hand, the commercial computing software platforms like MATLAB, Python
have developed their image processing techniques extensively. Thus, the quantitative
analysis of schlieren and shadowgraph high speed videos using these platforms started to
take the momentum from the past few years. However, there are just a handful of articles
dedicated to image processing techniques for tracking shock wave front and most of them

4https://www.nasa.gov/centers/armstrong/features/supersonic-shockwave-interaction.html
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Figure 2.18: The images, originally monochromatic and shown here as colorized composite images, were
captured during a supersonic flight series flown, in part, to better understand how shocks
interact with aircraft plumes, as well as with each other.

are based on the simple inbuilt edge detection techniques, like Canny, Sobel, etc.

In Cui et al. (2013), the result of shock front wave tracking from different inbuild edge
detection techniques in MATLAB was presented and discussed. The overall process con-
tains four steps. The first two steps, smoothing, and enhancement are for removing noise
and enhance the edges. The last two steps, detection, and localization are to determine
the exact location of the edges. The challenge faced during the work however is dealing
with the large volume of data captured by high speed camera and the high computa-
tional complex image processing algorithms. Similar work can be also seen in Guoshuai
et al. (2019), the process includes background image subtraction, object area restora-
tion, filtering, thresholding, and edge detection. In the end, the velocity of the shock
wave is calculated using the detected instantaneous locations of shock waves. The result
shows that image noises are eliminated effectively by background image subtraction in
the frequency domain and proper filter method.

In Damazo (2013), a separate edge detection algorithm was developed and implemented.
The mean transverse grayscale value was determined as a function of distance from the
end wall by taking a vertical average of the image intensity. An example of determining
the wave location is shown in Figure 2.19. The image processing part is not the focus of
the work; however, it serves as a tool to validate experimental and simulation results. The
process of comparing the results between image processing, numerical simulations, and
experimental results continued for a very long time and still very much practiced (Kleine
et al., 1992)(Akbar, 1997)(Timmerman, 2008). It is also worth mentioning that in most
of the past work, the framerate of high speed video is lower than the framerate of high
speed videos processed during this thesis.
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Figure 2.19: Schlieren image of incident detonation for shot 2152 with vertically averaged image intensity
and determined wave location window. The solid black line shows the location of the end-wall
and the dashed black lines represent the location of the detonation with uncertainty

. Object tracking techniques

Even though wave tracking is not studied much, object tracking itself is a very well
studied field. In the literature, there is numerous object tracking methods depending
on its application like video surveillance (Ojha and Sakhare, 2015), traffic management
(Kilger, 1992) (Ebbecke et al., 1997), etc. These methods implement relatively more
advanced edge detection techniques such that they can track objects even in challenging
situations. Nevertheless, the quality of results highly depends on apriori information
about the object to be tracked, its features, and also on the quality of the video. Most of
the algorithms work on the three steps process; object representation, feature selection,
and object tracking. Any object can be represented in multiple ways, for example, points,
contour, skeleton, template, etc. Some of the popular features that are used for tracking
are color, edges, texture, etc. The actual object tracking procedures differ depending
on the nature of the object representation and feature selected. For example, a point
tracking fits for point representation and contour tracking for contour representation. For
a detailed review of object tracking methods, please refer to Meenakshi and Gomathy
(2015) Balaji and Karthikeyan (2017), while some of the tracking techniques which are in
the scope of this thesis are described shortly in the following subsections.
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. . Contour Based Tracking

Figure 2.20: A snippet from Yilmaz et al. (2004) showing the contour based tracking of various objects.

Contour based tracking method tracks moving objects by representing them by their
boundary contours. The method takes a contour from the previous image and iteratively
progress it to fit into the object in the current image. Thus, it is required that at least
some part of the object region in the previous frame is overlapped by the object region
in the current frame. In Dokladal et al. (2004), closed active contours and a gradient
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based attraction field (described in Section 2.2.3) is used for tracking objects like people’s
face. A feature weighted gradient was used to estimate a gradient field and the attraction
field is generated by a bi-directional, data dependent integrator. A faster active contour
algorithm to reduce computation time and improve the performance of detecting and
tracking the contour is proposed in Lee et al. (2009).

Using contour as representation makes it easier to represent complex and/or non-rigid ob-
jects and flexible in object representation (Patel and Patel, 2012). However, the method
faces a huge challenge in handling occlusion. In Yilmaz et al. (2004), shape priors consist-
ing of shape level sets are used to recover the missing object regions during occlusion. A
snippet from Yilmaz et al. (2004) showing the contour based tracking of various objects is
presented in Figure 2.20. Some of the other approaches to implementing contour tracking
are state space models (Pu2, 2011), optic flow (Kanagamalliga and Vasuki, 2018), etc.

. . Region Based Tracking

Region based tracking method first segments an object region as foreground and the
remaining as the background. For segmentation, at first, a background image is formed
and the simplest way of forming a background image is perhaps taking an image of
the scene when no objects are present. Then, based upon background subtraction, the
foreground is typically identified by subtracting the background from the current image.
The resulting image is then converted into a foreground and background (binary image)
by using thresholding, i.e. if the value of the resulting pixel is less than the threshold it is
assumed to be the background. The object region can be then tracked using approaches
like cross-correlation function (Stephen et al., 2009). This method is used in the study of
a real-time traffic monitoring system for the detection of moving vehicles (Kilger, 1992).
However, the algorithm experienced difficultly to detect the vehicles under congested
traffic, because vehicles partly occlude with one another.

In order to overcome the occlusion problem, an algorithm motivated by the assumption
that the distribution of the error histogram of the occlusion region is different from that of
the non-occlusion region is purposed in Song and Lee (2004). The proposed algorithm uses
the mean and variance values to decide whether an occlusion has occurred in the region.
Therefore, the proposed occlusion detection and motion estimation scheme detects the
moving regions and estimates the new motion vector, while avoiding misdetection caused
by the occlusion problem.

Not only vehicles, but a region based object tracking is also widely used for tracking
pedestrians in a road. However, to segment, a moving human being in real-time is a very
challenging task. In Wren et al. (1997), a real-time system called pfinder (person finder)
was developed that solves the problem of tracking a single person using a fixed camera.
The algorithm combines color and gradient information obtained from background sub-
traction to deal with shadow and unpredictable color clues. The obtained color clues are
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used to distinguish between the objects during occlusion. Instead of using a human body
method, Mckenna et al. (2000) presents a color based tracking system. The visual parts
depend on the clothing of a person and vary with a person’s dress color. There are some
situations like two humans have dressed similarly then the tracker will fail to track when
they form a group.

. . Template based Tracking

Template based tracking method is relatively simple and a straight forward method to
track objects. In the case of tracking a single object, a basic template matching can
be used as described in Section 2.2.4 with different features like color or image intensity
to form the template. The static template is formed from a reference image and runs
over all the other images, whereas the dynamic/adaptive template changes its feature
dynamically. An object tracking using an adaptive template matching algorithm by using
the Sum of Squared Difference (SSD) as a matching parameter is presented in Chantara
et al. (2015).

A tracking algorithm based on a multi feature joint sparse representation and adaptive
templates to track multiple objects is presented in Hu et al. (2015). The variance ratio
has been introduced to adapt the weights of different features. The template set has been
updated adaptively using the tracking results. By using a sparse weight constraint, a
large number of templates can be kept in the template set. Another algorithm suggested
for tracking multiple objects is in Hai et al. (2002), which considers the image as a set of
layers, and the number of layers is equal to the number of objects including an additional
background layer. Features like layer appearance and a motion model corresponding to the
object being represented define each layer. The background layer is used to compensate for
any background motion so that an object’s motion can be calculated from the compensated
image. This way occlusion can be explicitly handled.

Another suggested method to detect occlusions uses the Bayesian decision theory (Zhou
et al., 2006). This is done by using color intensity and color histograms as a feature
representation and a similarity score for each detected pair. If the matching score is
higher than a certain selected threshold value the pair is considered to be a match, and
the templates used for tracking are updated. If the score is lower than the threshold value
the object is further investigated to see if occlusion has occurred.

. . Machine learning

In recent years, with the rise of Deep Learning, the tracking algorithms have benefited
from the representational power of deep models. In Kaiheng et al. (2019), a fast and
accurate deep network based object tracking method is proposed. The method combines
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feature representation, template tracking, and foreground detection for robust tracking.
In Supreeth and Patil (2018), Gaussian mixture model based object detection along with
deep learning neural network is proposed. This model claims to handle false detections
by improving the efficiency. A comprehensive survey on works that employ deep learning
models to solve the task of multiple object detection on single camera videos is presented
in Ciaparrone et al. (2020).
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Materials

The details about experimental setups, high speed imaging and CFD simulation method
are explained in this chapter.

. Experimental setup

The high speed videos processed in this PhD study were recorded in two different ex-
perimental setups. The first experimental setup, USN detonation tube, is situated at
the Process Technology Laboratory, USN. The second, GALCIT detonation tube (GDT)
is located at the Graduate Aeronautical Laboratories California Institute of Technology,
Caltech. Both of the experimental setups are shortly described in the following subsec-
tions.

. . USN detonation tube

A schematic representation of USN detonation tube and a photograph of the tube in an
actual scene are presented in Figure 3.1. A three meter long rectangular channel is made
up of the transparent polycarbonate walls, whose one end is closed and another is open to
the atmosphere. An adjustable baffle type obstacle was located 1 meter from the closed
end to generate the detonation wave. Five Kistler 603b type pressure transducers were
used to record the pressure at various locations along the top and bottom walls. While
conducting experiments, the channel was filled with combustible gases and ignited at the
closed end. The gas filling was conducted by using two rotatometers, one for fuel and
one for air. The two flows were set to a concentration and mixed in a T-junction before
the mixture flowed into the channel. The details of the setup can be found in Haglund
(2015).

. . GALCIT detonation tube

The GDT is a 7.6 m long, 280 mm inner-diameter detonation tube equipped with a 152.4
mm wide test section and two quartz windows to provide optical access. The possibility
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(a)

(b)

Figure 3.1: (a) A schematic representation of the USN detonation tube (Bjerketvedt et al. (2015)); (b) a
photograph of the USN detonation tube in the laboratory.

Figure 3.2: GALCIT detonation tube with test-section detail (Damazo, 2013).

of shock wave boundary layer interaction motivated the design and 68 construction of a
splitter plate that raised the effective floor of the test section to the center of the windows.
This allowed any interaction of the shock wave with the boundary layer to be observed.
The geometry of the GDT, test section and splitter plate is illustrated in Figure 3.2.
The test section has a rectangular cross section; this differs from the geometry used in
the driven-thin detonation experiments in which the cross section was circular. However,
considering the radius of curvature of the driven-thin specimen tubes of 63.5 mm was much
larger than the expected boundary layer thickness and detonation cell size, we expect the
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Figure 3.3: Representative schematic of schlieren visualization system as viewed from above in GDT
(Damazo (2013)).

general flow features to be similar in the two experiments. The details of the setup can
be found in Damazo (2013).

. Shadowgraph and Schlieren setup

Two traditional flow visualization techniques for flows with variable density i.e. shadow-
graph and schlieren methods have been used to gain qualitative insight into flow phe-
nomena. Both imaging techniques translate the phase speed difference of a light passing
through the medium, into the different intensities in a viewing plane (image). The phase
speed difference is described by the refractive index of the medium, which is defined as,
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η =
c0

c
. (3.1)

Here, c0 and c are the speed of light in the vacuum and medium respectively. For gases,
the refractive index is linearly dependent on the gas density, thus enabling the viewing
of gas flow with the changing density (compressible flow). The angular deflection of the
light ray travelling in z-direction when it passes through a region of varying density is
given by,

η = Kρ +1. (3.2)

where K is Gladstone-Dale constant and ρ is the density and their product is much smaller
than 1 which requires a very sensitive optics to detect the changes in density. Equation
3.1 also implies that,

ε =
1
η

∫
∂η

∂x
∂ z. (3.3)

Here, x is the direction orthogonal to the light ray propagation. The deflection of the light
ray to the extent of the region of varying density in the z-direction is what made visible
in the images by using shadowgraph and schlieren techniques. The schematic diagram of
the schlieren visualization system as viewed from above in GDT is illustrated in Figure
3.3. For the detail description of shadowgraph and schlieren technologies, refer to Settle
(2001).

. Kirana high speed camera

Figure 3.4: A high speed camera.

A high speed camera manufactured especially for capturing the fast phenomena namely
‘KIRANA’1 shown in Figure 3.4 was used for capturing all the high speed videos in this

1https://www.specialised-imaging.com/products/video-cameras/kirana
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thesis. The camera was operated with the frame rate of either 500,000 or 200,000 FPS.

. High speed video

Figure 3.5: Some of the images from H2 (Exp no. 00016) detonation experiments chronologically sorted
from top to bottom, and left to right. The time between two subsequent frames is 24 µs.

During the initial days of this PhD, the experiments completed beforehand during the
mater thesis Haglund (2015) were processed. These experiments were conducted in the
USN detonation tube to study the detonation in stratified H2 layer. Few images from a
high speed video that shows detonation of H2 gas in a benchmark experiment are presented
in Figure 3.5. For uniformity, a test number in Haglund (2015) is written as an Exp no.
in this thesis.

Later, SWBLI experiments were conducted for the study of a shock wave at GDT. Some of
the images from one of the high speed video are presented in Figure 3.6 (another example
is in Figure 1.8). When a planar incident shock wave propagating in a uniform gas in a
shock tube (Glass and Patterson, 1955), hits the solid reflecting wall, a reflected shock
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Figure 3.6: Images from a high speed video captured during SWBLI experiment conducted with 50 CO2+
50 Ar (Exp no. 2564) chronologically sorted from left to right, and top to bottom. The time
between two subsequent frames is 24 µs.

wave initiated. The images in first row of Figure 3.6 visualize the incident shock wave
propagating from left to right towards the end wall. The rest of the images in Figure
3.6 represent the reflected shock wave propagating away from the end wall. Immediately
after initiation, it starts to interact with a boundary layer that was generated by the
flow following the incident shock wave. The phenomenon is known as a shock wave
boundary layer interaction (SWBLI) (Mark, 1958). In some cases, this interaction leads
to a shock bifurcation. In this case, some part of the reflected shock around the boundary,
precedes the main reflected shock, while a second shock (rear limb) develops behind the
intersection of the preceding shock (oblique shock) and the main shock (normal shock).
The phenomena can be observed in the images from below the first row in Figure 3.6.
The meeting point of these three different shocks is what called a triple point. In other
cases, the interaction can just lead up to a slightly distorted foot without a triple point
structure (Babinsky and Harvey, 2011).

The images in both Figure 3.5 and Figure 3.6 were cropped to the appropriate size to avoid
the unwanted portions like a viewing window. These high speed videos were captured at
the frame rate of 500,000 FPS and the time between two subsequent images is 24 µs. Each
high speed video consists of 180 images and has a size of [768×924] pixels. However, the
size of the images in the metric system in each video might be different. The image size
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in the metric unit is either about [81×97] mm or [60×72] mm depending on the scaling
factor of 9.528 or 12.902 pixels/mm respectively.

. CFD simulation method

To compare the calculated shock speed with a simulation result, a physical process was
simulated using an in-house CFD-code solving the mass, momentum and energy equation
using the ideal gas law (Vaagsaether et al., 2007; Vaagsaether, 2010; Gaathaug et al.,
2012). The equation set is solved by a centered flux limiter method (FLIC) for the
hyperbolic part of the equations and central differencing for the viscous stresses. The 2-D
simulation domain shown in Figure 3.7 is [70×15] mm with constant mesh size of 10 µm.
The heat capacity ratio for CO2 was set to 1.23 for this simulation. A normal propagating
shock wave is placed 200 control volumes from the left boundary as the initial condition.
The Mach number of the shock wave is set to 2.4. Few images of the reflected shock in
the created domain are presented in Figure 3.8. Compare to the images from high speed
films, these images are better quality in terms of background noise. For these images, the
front position is determined at the first black pixel from left.

Figure 3.7: The 2-D simulation domain with a normal incident shock wave.

Figure 3.8: The images of the reflected shock generated during a CFD simulation for the same experiment
setting.
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Methodology

The image processing algorithms developed for image filtering, tracking a front position,
and calculating wave properties like speed, position of a triple point, pressure, etc. are
described in this chapter. The developed front tracking methods are based on some of
the edge detection and object tracking methods described in Chapter 2.

As this PhD is application driven, the approach has been to develop algorithms that are
straight forward, understandable, and at the same time efficient. Many of the object
tracking methods are focused on tracking multiple objects in a real-time situation. Both
of these requirements were not necessary for the problem in hand i.e. front tracking. Thus,
the tracking methods developed are comparatively simpler than existing object tracking
methods. This might encourage researchers to use image processing for wave tracking in
the gas study. However, each high speed video differs in quality, meaning that basic edge
detection techniques could be used for high quality videos, whereas advanced techniques
had to be developed while processing low quality videos.

The development of front tracking began with a contour based method. The second
method explored the region based segmentation to overcome the challenges faced during
the contour based method, for example, initialization of the contour, parameter tuning,
etc. The next approach is a template based tracking, which minimizes the tracking error
and also simpler than the previous methods. The developed algorithms are described in
the following subsections in accordance to the timeline of development. Due to the time
limitations, the front tracking algorithm based on machine learning could not be fully
developed. Though this work couldn’t progress forward and isn’t mature enough to draw
any conclusion, it might be one of the interesting work in the near future. The brief
introduction and preliminary results are therefore presented as unpublished work in Part
III.

In this section, the images from the high speed videos in the figures are appropriately
cropped to [400 × 400] for better visualization.

. Image filtering

Noise and the other artifacts in the images of the high speed videos are mainly introduced
by the ongoing chemical changes, filming technology, and the experimental equipments.
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Two image filtering algorithms were developed to eliminate unwanted noise in the images,
namely

1. Non-linear median filter in the spatial domain

2. Linear/convolution filter in the Fourier domain.

To make filtering more efficient, background subtraction was implemented before applying
any of these filtering algorithm. Background subtraction is a popular pre-processing
method for moving object detection in a video recorded with a common background
(Piccardi, 2004). One way of forming an acceptable background image for a high speed
video is by taking an average of all the images without a visual wave front. For those
cases, where there is no image without a wave front, a single image from the video between
the incident wave and the reflected wave is selected. In both ways, a background image
was constructed with a prior study of the images. The constructed background image
was then successively subtracted from all the images with a visual front.

(a) (b)

Figure 4.1: Image filtering (a) median filtering corresponding to top right image from Figure 1.8 with
[9×9] kernel size. (b) Frequency filtering corresponding to Figure 3.6 with cut off of 50 Hz.

The result of median filtering in a background subtracted image from a high speed video
is shown in Figure 4.1(a). The median filter works adequately, however, when the images
contains a higher amount of distortion, this filtering technique was relatively less efficient.
Therefore, a faster and relatively better frequency filtering algorithm was developed. The
result of a low pass filtering with a cut off frequency of 50 Hz is shown in Figure 4.1(b).
In some cases, the resulting image after filtering is converted into a binary image by using
thresholding, i.e. if the value of the resulting pixel is less than the threshold it is set to be
0 and more than threshold to be 1. An example of a binary image can be seen in Figure
4.5(a).
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. Open active contour model

The first algorithm developed to track the wave front was based on the active contour
model introduced in Kass et al. (1988). As it is based on the evolution of the curve, any
kind of wave could be tracked independently of shape and size. This is one of the major
reasons to implement this technique for front tracking. An open contour model with
a fixed boundary condition was developed to track the wave front from top to bottom
boundary, an example can be seen in Figure 4.2. The traditional snake V (s) = (x(s),y(s)),
described in Section 2.2.3, which aims to minimize the energy function Esnake (2.16) must
satisfy the Euler equation,

αV ′′(s)−βV ′′′′(s)−∇Eext = 0. (4.1)

This can be viewed as a force balance equation,

Fint +Fext = 0, (4.2)

where,

Fext =−∇Eext (4.3)

Fint = αV ′′(s)−βV ′′′′(s). (4.4)

An GVF field described in Chenyang and Jerry (1997) was used as the external force Fext .
The GVF field G(x,y) = (u(x,y),v(x,y)) can be calculated by solving energy minimizing
function,

ε =
∫ ∫

µ(u2
x +u2

y + v2
x + v2

y)+ |∇f|2|G−∇f|2dxdy. (4.5)

Here f(x,y) is an edge map derived from the image, having the property that is larger
near the image edges, for example a gradient of an image.

By approximating the derivatives with the finite differences, the corresponding internal
force Fint at any point Vi of the snake can be written in a matrix form as,

Eint(Vi) = A.Vp
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Figure 4.2: The initial points selected manually for initializing an open snake.

Here A is penta diagonal matrix and Vp is a vector of the 5 consecutive points of the
contour V as,

Vp = [Vi−2 Vi−1 Vi Vi+1 Vi+2]
T .

The open contour method generally relies on a fixed boundary condition (Cohen, 1991)
(Melonakos et al., 2008). Apart from boundary conditions, energy definition also changes
accordingly. The few available open contour models are very challenging in terms of de-
veloping and implementing. They require adequate knowledge of computer vision, applied
mathematics and image processing. So in this work, we tried to minimize the complexity
as much as possible and stay close to the original concept of energy minimizing. A simple
fixed boundary condition that the endpoints of the snake move along the boundary is
created. If n be the number of points in the open contour such that i = 0 : n, in contrast
to the closed snake V (n) 6= V (0), i.e. all the elements in the matrix Vp doesn’t exist for
the two boundary points. So, while estimating the internal energy for these boundary
points, the matrix Vp was changed accordingly considering only the points that exist.
The initialization of the snake such that the endpoints lie as close to the boundary as
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possible can be seen in Figure 4.2. Taking advantage of apriori information about the
image size, while interpolating the initial points, it was made sure that the two endpoints
of the snake are always attached to the first and the last row.

While implementing the open snake model, the internal energy for the overall curve was
estimated by using a pentadiagonal banded matrix (see Appendix of Kass et al. (1988)).

. Watershed algorithm

The watershed algorithm is a region based method to segment the object from the back-
ground. The main cause of applying the watershed algorithm for the front tracking is to
eliminate the need for any curve and challenges with curve progression to detect edges.
Instead, the approach is to segment the front from the background precisely and detect
edge by finding the position of the pixel separating the background and the foreground.

A sequential procedure of the watershed algorithm is explained below, before that two
morphological operations that are used extensively for watershed segmentation are shortly
introduced;

• Connected component: Any two pixels are said to connected component of a subset
of pixels S, if there exists a path between them consisting entirely of pixels in S. For
example there are two connected components in Figure 4.3(a) and one in Figure
4.3(b).

• Dilation: It is an operation carried away by a structuring element to expand the
shape/boundaries present in the image.

As mention in Section 2.2.4, the watershed algorithm works better when applied into a
distanced transformed image rather than the original ones. The stepwise procedure to
obtain distance transformed image and watershed segmentation is: raw image from high
speed videos → background subtraction →median filtering → Otsu’s method of image
thresholding (Otsu, 1979) → morphological dilation (thickening)→ morphological closing
→ distance transform → watershed segmentation.

How watershed algorithm works can be briefly explained with Figure 4.3. Let d(x,y) be
the input image (a distance transformed image) and M1,M2 be the coordinates of the
regional minima. The flooding starts from n = min+1 to n = max+1 iteratively, where
min and max is the minimum and maximum intensity of d(x,y). Then let Cn−1(M1) and
Cn−1(M2) be the set of coordinates of points in the catchment basin associated with M1
and M2, flooded at stage n−1 as shown as two gray regions in Figure 4.3(a). Now moving
to stage n Figure 4.3(b), it can be seen that two connected components in stage n− 1
(showed by dashed lines) becomes one connected component q. This also implies that the
water between two catchment basins merged and there is need to build a dam.
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Figure 4.3: (a) Two partially flooded catchment basins at stage n−1 of flooding; (b) flooding at stage n,
showing that the water has spilled between two basins; (c) structuring element for dilation;
(d) result of dilation and dam construction (Gonzalez and Woods, 2000).

Let T [n] be the set of coordinates of points in d(x,y) lying below the plane d(x,y) = n and
Cn denote the union of the flooded catchment basins, such that Cn−1 is subset of Cn subset
of T [n]. The process of obtaining Cn from Cn−1, is by dilation iteratively subjected to two
conditions: 1) dilation has to be constrained to q and 2) dilation can not be performed
on pixels that would cause two basins to be merged (form a single connected component).
Suppose Q be the set of connected components in T [n], for each connected component q
in Q, there are three possibilities:

• q∩Cn−1 is empty, new minima.

• q∩Cn−1 contains one connected component of Cn−1, q lies in that catchment basin.
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• q∩Cn−1 contains more than one connected component of C[n− 1], q is then on a
ridge between catchment basins, and a dam must be built to prevent overflow.

In Figure 4.3(b), the first possibility is not applicable as there is no other connected
component that existing ones. The first dilation of Cn−1 with structure shown in Figure
4.3(c) is shown by light gray colour in Figure 4.3(d). Each q component at this step agrees
with the second condition expanding the boundary of each original connected component.
In the second dilation (shown in black), several components fall into the third condition
shown by the cross, so the dam is created at these components. The definition of the
algorithm and developed algorithm is based on Gonzalez and Woods (2000) chapter 10.
One of the results of the watershed algorithm is depicted in Figure 4.4. The position of
the front is then detected by using apriori information of the wave propagation direction.
In Figure 4.4, the wave is propagating from right → left, so a front position was picked
at the first pixel from left between the background and the foreground.

Figure 4.4: Image segmented by the watershed algorithm.

. Template matching

Figure 4.5(a) is a segmented binary image formed by background subtraction → convolu-
tion filtering → image thresholding. As can be seen in Figure 4.5(a), there are few noises
in front of the front, hence a basic approach of picking the first white pixel from the left
will give few errors. Implementation of the watershed algorithm does remove most of
the noise, however doesn’t remove all. Thus, instead of going forward with the water-
shed algorithm and introducing more image morphological steps, a one step approach of
template matching is used to find the position of the front.
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(a) (b)

Figure 4.5: Binary template matching (a) segmented image; (b) template consists of two [5×5] matrices
for a consider pixel.

A binary template which consists of two [5× 5] matrix was created as in Figure 4.5(b).
The matrices are 45 degrees skewed step like structure so that a single template can be
used for tracking both normal (straight) and oblique (tilted) shock. The element values
for the left hand matrix of the template are set to 0 (black) while for the right hand
matrix to be 1 (white). The matching error is the sum of the absolute differences between
the pixel values of the template and the footprint template created around the considered
pixel in the image. Assuming template T of size [a×b] slides over an image I, then at
each position (m,n) in I, SAD is estimated as in 4.6. The template matches best in the
image pixel where SAD is the minimum.

SAD(m,n) =
a

∑
k=1

b

∑
e=1

|I(m+ k,n+ e)−T (k,e)|. (4.6)

Most of the previous work in the field of front tracking is done after the image threshold
into a binary image (Guoshuai et al., 2019). However, image thresholding especially in
the low contrast images mostly results with an error of few pixels around the actual
edges (Villarrubia et al., 2002), which at the end might influence the calculated shock
speed. Hence, a dynamic template matching approach is introduced for tracking front in
grayscale images and eliminate image thresholding.

A template of pre-defined size of [5×20] was created, an example is presented in Figure
4.6(a). The values of the template depend on the minimum and maximum intensity of
the considered image as in Figure 4.6(b). One half of the template contains the minimum
intensity value which should technically be the intensity of background, while the other
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Figure 4.6: Dynamic template matching (a) grayscale image; (b) [5× 20] size template consists of max-
imum and minimum intensity value.

half contains the maximum intensity value which should be the intensity of the wave.
Matching is based on MSE, which takes a mean of the squared difference between the
intensity of each pixel in the template and the corresponding pixel in its footprint in the
image. At each position (m,n) in I, MSE is estimated as in (4.7). The template matches
the best in the image pixel where MSE is the minimum.

MSE(m,n) =
1

ab

a

∑
k=1

b

∑
e=1

[I(m+ k,n+ e)−T (k,e)]2. (4.7)

. Segmented regression

Segmented regression is a method of fitting multiple lines or curves in a single data set, an
example is presented in Figure 4.7. It is mainly useful when there are different patterns
in the same dataset and the timing of change in the pattern is unknown. However, it
is necessary to know the shape of the pattern, for examples if they are straight lines or
higher degree polynomial curves etc, (Ryan and Laurie, 2007).

In order to calculate some of the primary information about a shock wave, it is important
to separate a tracked front into normal shock and oblique shock (see Figure 1.9). By taking
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Figure 4.7: An example of segmented regression.

advantage of a prior knowledge that the both shocks are of first order polynomial lines,
segmented regression method was implemented. For fitting two first order polynomial
lines, it requires one break point BP, and the model can be written as,

y = a1x+b1 for x ≤ BP (4.8)

y = a2x+b2 for x > BP. (4.9)

(a) (b) (c)

Figure 4.8: Segmented regression process. The yellow marks represent different BP for line fitting. The
blue curve represents the tracked front. The orange line is a line fitted for the normal shock,
while the white line gives the line fitted for the oblique shock.

An optimum breaking point BPo was estimated by using a mean square error between the
fitted lines and respective front points. Figure 4.8 summarizes the segmented regression
process of determining the BPo by consecutively fitting two lines to the front. The blue
curve represents the tracked front and the yellow mark yields the breaking point(BP),
while the orange line represents the first line fitted as in (4.8) (note the difference between
image and (x,y) coordinate system). The white line is then fitted to the remaining points

51



below BP as in (4.9). The process follows a brute force approach, from top to bottom,
starting BP at row no. 10 and for each iteration, the BP moves down by one row. After
each iteration, the least square error is calculated for both fitted lines with their respective
points and the errors are summed up and stored. For example, in Figure 4.8(a) the orange
line will give a small amount of error as it almost coincides with the blue curve above the
yellow point, while the white line is misplaced and causes large errors.

Figure 4.8(b) shows the fitted line when the separating point is located near the triple
point and thereby the fitted lines representing the normal and the oblique shock are
rather accurate. The total error gathered from both lines seems to be at a minimum at
this location. Further down, see Figure 4.8(c), the error increases. For each image, after
the process was finished, the BP that gave the minimum error was considered as BPo and
also the separating point between the normal and the oblique shock.

. Shock wave information

In this section, a method to calculate shock wave speed by using the front position tracked
by image processing algorithms is presented. In addition, a short description of shock wave
relationships, which were used to estimate shock properties like temperature and pressure
are described shortly.

Shock speed

A two point method of estimating speed of any object is to calculate the distance travel
by the object and divide by the time taken. Let X1 and X2 be the position of the shock
front relative to the reflecting wall, at time t1 and t2 respectively, such that t2 > t1. The
shock speed U can then be defined as a first order polynomial form,

U =
X2 −X1

t2 − t1
[m/s]. (4.10)

Let’s say position of fronts tracked by the image processing algorithm, at time ti be xi.
The time ti is extracted from the frame rate of the camera considering t0 = 0 for the first
front. Then shock speed U at time ti, i.e. Ui is given by,

Ui =
(xi+n − xi)

ti+n − ti
, (4.11)

where n is a time step.
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Figure 4.9: Normal shock speed calculated by using a two point method as in (4.11) with varying n (Exp.
no 2516).

However, using the two point method for the positions tracked in the images gives high
resolution and an unusual oscillating pattern in the calculated speed. One of the causes
of high resolution is a high frame rate (i.e time) and low resolution in length scale (≈ 0.1
mm/pixel). By increasing the time step, the resolution reduces, however the oscillation
remains. The results can be observed in Figure 4.9. A similar kind of oscillation phe-
nomenon was also noticed in (Timmerman, 2008). The detail about the error and sources
of oscillations in the result can be read in (Settle and Hargather, 2017).

One way of reducing the resolution and oscillation is by using non-linear square fitting
method (NLSFM). In Damazo (2013), NLSFM was used to determine an average speed
of incident detonation using first order polynomial, and for the reflected shock a second
order polynomial was used. However, because there were enough data points even in
a small time interval, we choose to estimate shock speed in a piecewise manner rather
than averaging over the incident and reflected time. As the process were piecewise the
movement of shock was extremely small, therefore a first order polynomial was used for
both the incident shock and the reflected shock.

Lets consider n time steps/frames to estimate the speed at each position, i.e. we assume
the shock speed is constant for n time steps. From (4.10),

Xi+1 =U · (ti+1 − ti)+Xi i = 1 : n+1. (4.12)

The points which are separated by equal distance i.e. constant speed are represented by
blue circles in Figure 4.10. The y-axis values in this figure is arbitary used for better
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Figure 4.10: NLSFM, blue circles-calculate positions in different time instant with constant speed, red
asterisks-actual front positions tracked by image processing, purple circles-fitting results of
blue dotted line to minimize error between circles and corresponding red asterisks. The
y-axis values in this figure are arbitrarily used for better visualization and don’t relate to
the actual wavefront speed.

visualization and doesn’t relate to actual wave front speed. However, the actual tracked
positions xi didn’t match with Xi. So, the basic NLSFM, fits the blue dotted line in such
a way that error between corresponsing blue circles and red asterisks becomes minimum,
for example the puprle line in Figure 4.10.

The error can then be defined as (4.13),

e = sum(Xi − xi) i = 1 : n+1. (4.13)

By using ‘lsqnonlin’ function in MATLAB, we find the optimum value of U that minimizes
the error function e. The optimum value of U then gives the speed of the shock at position
i. Note that, (ti+1 − ti) is constant as the camera was operated with a fixed frame rate
so that there is no need to optimize with respect to t. The initial position of the front
for (4.12), is considered the first tracked shock front i.e. X0 = x0. Similarly, the second
iteration continues with frames between i+1 : n+1 and so on.
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Shock relations

Figure 4.11: Different states during SWBLI experiment in stationary shock system.

By calculating a shock speed, other shock properties like pressure and temperature can
be estimated using various shock relations. However, the shock speed calculated by the
image processing framework is relative to the lab coordinate system i.e. shock is moving
and flow is stationary. In order to use the shock relations and estimate shock properties,
the coordinate system needs to be changed into a stationary shock system i.e. shock is
stationary and flow is moving (Mark, 1958).

Without going into detail, some of the shock relations that were used or can be used for es-
timating temperature, pressure, and density at different stages of shock wave propagation
are written below. For illustration of different states see Figure 4.11 and the nomenclature
used are :

M = Mach number
u = flow speed relative to stationary shock
U = shock speed relative to shock tube
a = speed of sound
P = pressure
γ = specific heat capacity
T = temperature
ρ = density
R = Boltzmann constant
Mol = molar mass.
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The subscript in each property defines the property at that state. The initial pressure
(P1) and temperature (T1) were measured from the pressure transducers. Mach number
M1 is calculated by considering the shock at the stationary position and the flow is moving
into the shock. As the flow in front of the shock was in rest, such that the flow speed is
u1 =UI, which gives,

M1 =
u1

a1
. (4.14)

P2

P1
=

2γM2
1 − (γ −1)
(γ +1)

. (4.15)

T2

T1
=

[2γM2
1 − (γ −1)][(γ −1)M2

1 +2]
(γ +1)2 +M2

1
. (4.16)

ρ2

ρ1
=

(γ +1)+M2
1

(γ −1)M2
1 +2

. (4.17)

M2 =

√
(γ −1)M2

1 +2
2γM2

1 − (γ −1)
. (4.18)

a2 =

√
γ ·R ·T2

Mol
. (4.19)

u2 = M2a2. (4.20)

When the incident shock is reflected, the conditions behind the initial shock wave are now
the initial conditions for the reflected shock wave and flow speed,

u3 = u2 +U4. (4.21)

For estimating properties behind the normal shock, the above relations can be used.
However, Mach number ahead of the oblique shock, M3 is calculated as,

M3 =
u3Sinβ

a2
. (4.22)

For a detail study of shock relations and their implementation, please refer to Mark (1958);
Liepmann and Roshko (2001); Law (2010).
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Results and Discussion

In this chapter, some results from the developed algorithms, which use one or multiple
methods described in the previous Chapter 4 are presented and briefly discussed. The
results and discussion are presented according to the timeline of the articles published
or prepared in which the algorithms were introduced. The list of the articles published
during this PhD is given below. Please note that, the front tracking part of Article IV was
finished before Article III, however the application part took longer time than expected,
so Article III was published before IV. Article V is well prepared at this point of time and
will be submitted soon.

Article I: Open Active Contour Model For Front Tracking Of Detonation Waves. Ma-
harjan, S., Gaathaug, A.V., Lysaker, O.M.: In: Proceedings of the 58th Conference on
Simulation and Modelling, pp. 174–179. Linköping University Electronic Press, Sweden
(2017)

Article II: An Image Processing Framework for Automatic Tracking of Wave Fronts and
Estimation of Wave Front Velocity for a Gas Experiment. Maharjan, S., Bjerketvedt,
D., Lysaker, O.M.: In: Representation, analysis and recognition of shape and motion
FroM Image data, CCIS. 187 . Springer, (2018)

Article III: Wave Front Tracking in High Speed Videos Using a Dynamic Template
Matching. Maharjan, S.: In: 9th Iberian Conference on Pattern Recognition and Image
Analysis, LNCS . Springer, (2019)

Article IV: Processing of High Speed Videos of Shock Wave Boundary Layer Interactions.
Maharjan, S., Bjerketvedt, D., Lysaker, O.M.: Production Process: Signal, Image and
Video Processing, Signal (2020)

Article V: Information Extraction from High Speed Videos of Reflected Shock Wave
Interaction With Boundary Layer.Maharjan, S., Bjerketvedt, D., Lysaker, O.M., well
prepared and will submitt to Shock Waves.
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. Article I: Open active contour model

Open Active Contour Model For Front Tracking Of Detonation Waves.

An open active contour algorithm was developed to track wave fronts in the high speed
videos of a gas detonation experiments, one example is shown in Figure 3.5. The developed
algorithm can be used to track the open edge of any object which expands from one end
to another end in the image. The novelty of this work is an open contour model with a
simple fixed boundary condition.

Figure 5.1: The progression of an initial snake (red) towards the wave front, the green curve: final front.

Figure 5.1 shows the progression of an initial snake (red line) to the final front (green
curve) by an open active contour algorithm. The snake was initialized by few points
shown as red asterisks in Figure 5.1. Even after the consideration of internal energy for
the boundary points and tuning the α and β parameter, a close look at the boundaries
shows slight error. However, as the number of boundary points are few with compare to
the remaining points, these points can be excluded while estimating wave properties.

The drawback, however is similar to the classic snake models, the snake fails to move
towards an object when the initial points are far from the object. An example is demon-
strated in Figure 5.2, the snake didn’t move around the lower boundary as the snake is
too far from the front. As a result, the snake in the middle also get drawn to the local
minima (pointed by an arrow) and could not come out as a result of internal force balance
between lower and upper snake points. These drawbacks can be minimized by tuning the
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noise

Figure 5.2: A progression of initial snake (red) towards the wave front, when the initial snake is far from
the object, the green curve: final front.

parameters or appropriately initializing the snake. While the initialization of the con-
tour can be handled by using some additional information or using the previous contour,
tuning parameters takes a lot of time. This problem became a huge challenge when the
images within a high speed video are of different intensity levels and the algorithm has to
be used in multiple videos.

. Article II: Watershed algorithm

An Image Processing Framework for Automatic Tracking of Wave Fronts and
Estimation of Wave Front Velocity for a Gas Experiment

An algorithm combining watershed segmentation and image morphology was developed to
track the wave front in a high speed video of a shock wave (Figure 1.8). The advantage of
the watershed algorithm over the active contour model is, it works comparatively faster,
besides there was no need for initialization and any other parameters. The stepwise
algorithm is described in Section 4.3, the result after some of the steps is presented in
Figure 5.3.

Figure 5.3(a) is the result after image segmentation by applying Otsu’s method and the
corresponding morphologically removed image is in Figure 5.3(b). A morphological oper-
ation ‘remove’ sets a pixel to 0 if all its 4-connected neighbours are 1, thus leaving only
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the boundary pixels on (Gonzalez and Woods, 2000), which helps in removing noise, for
example in Figure 5.3(b) behind the oblique shock, the number of white bulbs structure
is less than in Figure 5.3(a).

(a)

(b)

(c)

Figure 5.3: Watershed algorithm in a high speed image (a) segmented image; (b) morphologically ‘remove’
image with initial front tracked as a first white pixel from left; (c) a final contour after post-
processing on the corresponding raw image.

By using apriori information of the wave propagation direction, a front position was
picked at the first pixel where the intensity value changes from 0 to 1, shown as a red
curve in Figure 5.3(b). However, for a few images there were some false tracking due to
oversegmentation (can be seen around the mid part in Figure 5.3(b)). As the most of
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the false tracking were around the normal shock, a post-processing by using a median of
the normal front was used to overcome this problem. The final front is plotted as a blue
curve upon a corresponding raw image in Figure 5.3(c).

Most of the segmentation using the watershed algorithm used markers to overcome the
problem of over segmentation. While developing watershed segmentation particularly for
the problem in hand, over segmentation was encountered fairly low. As shown in the
mid part in Figure 5.3(b)), there were small discontinuities that were corrected by post-
processing. Besides, most of the over segmentation was behind the wave front which
didn’t have any impact. For this reason, this work doesn’t dwell into using marker based
watershed segmentation. However, using marker based segmentation could have been the
next step in case of taking this algorithm further.

. Article III: Dynamic template matching

Wave Front Tracking in High Speed Videos Using a Dynamic Template Match-
ing

A dynamic template matching algorithm based on MSE was developed to track the wave
fronts in the different grayscale images of a high speed video. A template whose value
varies in each image depending on the maximum and minimum intensity was introduced.
As can be seen in all the images presented in this thesis, the wave occupy a small part
of the image with respect to the columns. Therefore, to minimize the processing time, a
bounding box was created around the area of interest (wave) such that the sliding of the
template occurs only inside the bounding box. With prior information about the size and
direction of the wave in a high speed video, the size and initial position of the bounding
box was manually set.

Figure 5.4(a) shows the result of the algorithm when implemented in a frequency filtered
image. Similarly, the result of the same algorithm performed in background subtracted
images can be seen in Figure 5.4(b). For tracking fronts in a raw image, the side of the
template was swapped as the intensity of the front and background was opposite from
the filtered images. The result in Figure 5.4(c) shows that the algorithm works almost as
good as in filtered images.
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(a)

(b)

(c)

Figure 5.4: Result of a dynamic template matching in (a) filtered image; (b) background subtracted
image; (c) raw image.

Most of the previous work in the field of front tracking is based on edge detection tech-
niques which include image threshold Cui et al. (2013). However, image thresholding
especially in the low contrast images mostly results in an error of few pixels around the
actual edges (Villarrubia et al., 2002). Some of the pixels around the front which might
be part of the wave were segmented as a background. For ordinary problems, a false
segmentation of few pixels might not be crucial. However, for this PhD, the positions of
the fronts play an extremely crucial role as they are going to be used for speed calcula-
tion. The purposed method of dynamic template matching may be one of the simple and
effective ways to eliminate image thresholding.
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. Article IV: Segmented regression

Processing of High Speed Videos of Shock Wave Boundary Layer Interac-
tions

In this article, a binary template matching for front tracking and a segmented regression
method for separating tracked wave fronts were developed. Also, we used a different
filtering method i.e. low pass filter in the Fourier domain (refer to section 2.1.1 for
frequency filter). A binary template (see Figure 4.5) was created to track the front
position in the segmented images like in 5.3(a). The motivation behind this work was to
eliminate all the morphological steps in Article II while minimizing false tracking.

A segmented regression method was introduced to estimate the optimum breaking point
(BPo) to divide a tracked front into a normal and an oblique shock front. Even after
calculating the BPo, to estimate a precise triple point, two lines were fitted again as
shown in Figure 5.5; one with 100 points above the BPo(blue) and one with all the below
points (red). Now, the crossing point of these two lines shown as a white point is the
position of a triple point and the slope of the red line then gives the shock angle.

Figure 5.5: Segmented regression for estimating a triple point, yellow mark is BPo and white mark is the
triple point.

The limitation of this method was observed among few initial reflected shock, where the
oblique shock is small, the line fitting for the oblique shock does show some error. Due
to this, the first few fronts were excluded from this process. The estimated triple point in
the series of fronts by using segmented regression along with the tracked fronts is shown
in Figure 5.6.
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Figure 5.6: The triple point (red dots) determined by using a segmented regression method in one of the
high speed video (Exp no. 2558). For better visual, only each 5th front are plotted.

. Article V: Shock wave information

Information Extraction from High Speed Videos of Reflected Shock Wave
Interaction With Boundary Layer

Article V presents a method of estimating the shock wave information like shock speed,
triple point, shock angles and the Mach number from the tracked wave fronts. The shock
speed was calculated by using a NLSFM discussed in Section 4.6. This method helps to
minimize the problem of oscillation drastically. Figure 5.7 shows the difference between
shock speed calculated by using a two point method and by using NLSFM.

As each front contains at least 350-400 points, the segmented regression method was time
consuming. A geometric approach using the previous triple point to find the current
triple point was implemented as illustrated in Figure 5.8. If ‘TP(1)’ is a triple point a
synthetic front ‘Front 1’ then the shortest distance between ‘TP(1)’ and ‘Front 2’ should
be at ‘TP(2)’. However, the actual tracked front is not exactly as straight as the synthetic
ones. So, the median of the front is used to set the normal shock straight. Shock angles
were estimated by fitting a straight line to the points in ‘Front 2’ that are below the
calculated ‘TP(2)’. The first triple point was manually set in the image/front in which it
was visible.
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Figure 5.7: Oblique shock speed calculated by two point method (blue curve) and NLSFM (orange) (Exp
no. 2519) with n = 10.

Figure 5.8: An illustration of determining current triple point by using previous triple point.
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Figure 5.9: The calculated height of triple point from the lower boundary.
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Figure 5.10: Shock angles calculated for all the experiments.
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Figure 5.11: Mach number of the flow behind the oblique shock.

Six SWBLI experiments conducted with various initial pressure ranging from 7.5 - 20
kPa (an increase of 2.5 kPa) were processed in this work. The experiments are listed
as a legend in the figures of this section, following top to bottom approach i.e. Exp.
no. 2568 corresponds to the lowest pressure 7.5 kPa. The progression of triple points in
three SWBLI experiments, where it exists are illustrated in Figure 5.9. The triple point
structure vanishes during higher initial pressure experiments. Similarly, the estimated
shock angle and Mach number behind the oblique shock M4 are presented in Figure 5.10
and Figure 5.11 respectively. The Mach number M4 was estimated by replacing M1 and
M2 in (4.18) by M3 (4.22) and M4 respectively.
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Figure 5.12: Comparision of estimated speed with CFD simulation (a) normal shock speed; (b) oblique
shock speed (Exp no. 2516).

Comparision with CFD :

The estimated speed for SWBLI experiment (Exp no. 2516) was compared with the result
from CFD simulation which are presented in Figure 5.12. It can be observed that, the
results matches with each other. Due to the ideal condition used during CFD simulation,
the results are smoother than the results from image processing.

This comparison is not included in the paper.
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Conclusions

In this chapter, main conclusions of this thesis are discussed.

This PhD work presents the study of various image processing techniques conducted to
process the high speed videos recorded during two different types of gas experiments. Gas
detonation experiments were conducted at USN, Norway and SWBLI experiments were
conducted at Caltech, USA. The main focus was to extract the information about the
propagating wave, like the speed and the angles from the recorded high speed videos.
These information were extracted by tracking/contouring a wave front in each image of
the high speed videos. However, before implementing a tracking algorithm, images were
first denoised by using a non-linear filter or a convolutional filter.

The first tracking algorithm was developed based on the active contour model to track
the wave fronts in gas detonation experiments. The algorithm performs satisfactory, but
the parameters need to be tuned properly, which is slightly time consuming. In addition,
if the initial curve is far from the object to track, the convergence is slow and in some
cases it doesn’t converge at all. To eliminate the need for initializing, a second algorithm
based on image segmentation was introduced. The algorithm consists of multiple steps
and the position of the front needs to be determined after the image is segmented into
a binary image. The basic approach of determining the position of the wave based on a
transition of pixel value from 0 to 1 gives some misplacement with respect to the front
location.

The third algorithm was based on a binary template matching and implemented to track
a front in a binary image. This algorithm works comparatively faster and reduces mis-
tracking observed sometime during the second algorithm. However, it was realized that
the image thresholding itself was not favorable while estimating the shock speed based on
the tracked position. An error while thresholding, even it is just 1 or 2 pixels, has a huge
impact on shock speed estimation, due to the high frequency of the camera and a high
time resolution. Therefore, the fourth algorithm based on dynamic template matching
was developed to track the fronts in the grayscale images. In addition, in the framework
of the fourth algorithm a bounding box around the wave position reduces the processing
time. Each developed algorithm has its pros and cons, however, among the developed
algorithms, dynamic template matching is the simplest and the fastest.

All the developed algorithms make use of a priori knowledge about direction of wave
propagation to track the fronts. Moreover, the algorithms works step wise, first filtering,
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then tracking and in the end extracting information. Machine learning could be one way
to eliminate this multi step process, an algorithm based on machine learning was partially
developed. Even though it is not clear to which extent machine learning algorithm is a
suitable framework for this particular problem, this can definitely be an exciting future
work.

Regardless of a tracking algorithm, once the position of the wave fronts were located, the
primary information; shock speed (both normal and oblique), position of a triple point and
shock angle were calculated. Thereafter, by combining the calculated primary information
and the traditional gas equations, secondary information like the Mach number, pressure,
and temperature can be estimated. A basic approach of calculating speed i.e distance/time
gave some oscillations in the shock speed even in cases when it is known to be constant.
NLSFM was implemented instead which minimize the oscillations significantly.

The approach of studying gas dynamics, especially the SWBLI of the reflected shock
wave using high speed imaging and image processing proved to be very informative. This
approach in combination with gas dynamics equations enables to extract crucial informa-
tion about the wave. The calculated wave properties demonstrate a detail variation that
occurred within a time interval of 300 microseconds within a distance of 100 mm. This
information is difficult to extract by using traditional approach of pressure readings. It
can be concluded that the high speed films in combination with image processing can en-
rich and to some extent give new and more detailed insight to gas dynamics. In addition,
the results from these algorithms can also be used as a validation for the experimental
results and computer simulation.

69



Bibliography

(2011). Particle Filter Based on Color Feature with Contour Information Adaptively
Integrated for Object Tracking, volume 2.

Akbar, R. (1997). Mach reflection of gaseous detonations.

Arbelaez, P., Maire, M., Fowlkes, C., and Malik, J. (2011). Contour detection and hier-
archical image segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 33(5):898–916.

Arnold, E., Al-Jarrah, O. Y., Dianati, M., Fallah, S., Oxtoby, D., and Mouzakitis, A.
(2019). A survey on 3d object detection methods for autonomous driving applications.
IEEE Transactions on Intelligent Transportation Systems, 20:3782–3795.

Babinsky, H. and Harvey, J. (2011). Shock Wave-Boundary-Layer Interactions. Cambridge
University Press, Cambridge, UK.

Balaji, S. and Karthikeyan, S. S. (2017). A survey on moving object tracking using image
processing. 2017 11th International Conference on Intelligent Systems and Control
(ISCO), pages 469–474.

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A review and
new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence,
35(8):1798–1828.

Beucher, S. and Bilodeau, M. (1979). Use of watersheds in contour detection. International
workshop on Image Processing: Real-time edge and motion detection/estimation, pages
17–21.

Beucher, S. and Meyer, F. (1993). The morphological approach to segmentation: The
watershed transformation. Mathematical Morphology in Image Processing, 34:433–481.

Bieniecki, W. (2004). Oversegmentation avoidance in watershed-based algorithms for
color images. pages 169–172.

Bieniek, A. and Moga, A. (2000). An efficient watershed algorithm based on connected
components. Pattern Recognition, 33(6):907–916.

Biswas, S. and Qiao, L. (2007). A comprehensive statistical investigation of schlieren
image velocimetry (siv) using high-velocity helium jet. Exp Fluids, 58(18).

70



Bjerketvedt, D., Gaathaug, A., Vaagsaether, K., and Thomas, G. (2015). Front tracking of
ddt from ultra-high speed video films. Proceedings of the 25th International Colloquium
on the Dynamics of Explosions and Reactive Systems (ICDERS), (19).

Brossard, C., Monnier, J., Barricau, P., Vandernoot, F., and Le Sant, Y. (2009). Principles
and applications of particle image velocimetry. The Onera Journal Aerospace Lab,
1:1–11.

Brunelli, R. (2009). Template matching techniques in computer vision: Theory and
practice.

Caselles, V., Catte, F., Coll, T., and Dibos, F. (1993). A geometric model for active
contours in image processing. Numerische Mathematik, 66:1–31.

Caselles, V., Kimmel, R., and Sapiro, G. (1997). Geodesic active contours. International
Journal of Computer Vision, 22:61–79.

Chan, T., Esedoglu, S., Park, F., Yip, M., Paragios, N., Chen, Y., and Faugeras, O.
(2006). Recent developments in total variation image restoration. Mathematical Models
of Computer Vision, pages 17–31.

Chan, T. and Shen, J. (2005). Image Processing and Analysis: Variational, PDE, Wavelet,
and Stochastic Methods. Society for Industrial and Applied Mathematics., Philadelphia,
USA.

Chan, T. and Vese, L. (1999). An active contour model without edges. Scale-Space
Theories in Computer Vision, pages 141–151.

Chantara, W., Mun, J. H., Shin, D., and Ho, Y. (2015). Object tracking using adaptive
template matching. IEIE Transactions on Smart Processing and Computing, 4:1–9.

Chen, Y. and Pock, T. (2017). Trainable nonlinear reaction diffusion: A flexible framework
for fast and effective image restoration. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 39(6):1256–1272.

Chenyang, X. and Jerry, L. P. (1997). Gradient vector flow: a new external force for
snakes. Proceedings of IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pages 66–71.

Ciaparrone, G., Sánchez, F. L., Tabik, S., Troiano, L., Tagliaferri, R., and Herrera, F.
(2020). Deep learning in video multi-object tracking: A survey. Neurocomputing,
381:61–88.

Cohen, L. (1991). On active contour models and balloons. CVGIP: Image Understanding
., 53(2):211–218.

71



Cohen, L. and Cohen, I. (1993). Finite-element methods for active contour models and
balloons for 2-d and 3-d images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 15(11):1131–1147.

Cohen, L.and Kimmel, R. (1996). Global minimum for active contour models: A minimal
path approach. volume 24, pages 666–673.

Cui, S., Wang, Y., Qian, X., and Deng, Z. (2013). Image processing techniques in
shockwave detection and modeling. Journal of Signal and Information Processing,
04:109–113.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathem-
atics of Control, Signals and Systems, 2(4):303–314.

Dabov, K., Foi, A., Katkovnik, V., and Egiazarian, K. (2007). Image denoising by sparse
3-d transform-domain collaborative filtering. IEEE Transactions on Image Processing,
16(8):2080–2095.

Damazo, J. (2013). Planar Reflection of Gaseous Detonations. Doctoral thesis, California
Institute of Technology, Pasadena, California.

Della Rocca, M., Fiani, M., Fortunato, A., and Pistillo, P. (2004). Active contour model
to detect linear features in satellite images. The International Archives of the Photo-
grammetry, Remote Sensing and Spatial Information Sciences, 34.

Dokladal, P., Enficiaud, R., and Dokladalova, E. (2004). Contour-based object tracking
with gradient-based contour attraction field. volume 3, pages iii – 17.

Duda, R. and Hart, P. (1972). Use of the hough transformation to detect lines and curves
in pictures. Commun. ACM, 15(1):11–15.

Ebbecke, M., Ali, M. B. H., and Dengel, A. (1997). Real time object detection, tracking
and classification in monocular image sequences of road traffic scenes. 2:402–405 vol.2.

Estruch, D., Lawson, N. J., MacManus, D. G., Garry, K. P., and Stollery, J. L. (2008).
Measurement of shock wave unsteadiness using a high-speed schlieren system and digital
image processing. Review of Scientific Instruments, 79(12).

Farabet, C., Couprie, C., Najman, L., and Lecun, Y. (2013). Learning hierarchical features
for scene labeling. IEEE transactions on pattern analysis and machine intelligence,
35:1915–1929.

Fisher, R., Perkins, S., Walker, A., and Wolfart, E. (2003). Spatial Filters - Laplacian of
Gaussian.

Gaathaug, A. V., Vaagsaether, K., Knudsen, V., and Bjerketvedt, D. (2012). Experi-
mental and numerical investigation of ddt in hydrogen–air behind a single obstacle.
International Journal of Hydrogen Energy, 37(22):17606–17615.

72



Ganin, Y. and Lempitsky, V. (2015). Neural network nearest neighbor fields for image
transforms. pages 536–551.

Gibou, F., Fedkiw, R., and Osher, S. (2017). A review of level-set methods and some
recent applications. Journal of Computational Physics, 353:82–109.

Girshick, R., Donahue, J.and Darrell, T., and Malik, J. (2014). Rich feature hierarchies
for accurate object detection and semantic segmentation. CVPR, 25:580–587.

Glass, I. and Patterson, G. (1955). A theoretical and experimental study of the shock
tube. Journal of the Aeronautical Sciences, 23(22):73–100.

Gonzalez, C. and Woods, E. (2000). Digital Image Processing. Prentice-Hall, New Jersey,
USA.

Guoshuai, L., Muhammed, B. A., Konstantinos, K., Takahiro, U., and Sriram, R.
(2019). Image processing techniques for shock wave detection and tracking in high
speed schlieren and shadowgraph systems. Journal of Physics: Conference Series,
1215:012021.

Haglund, J. T. J. (2015). Detonation in stratified hydrogen layers.

Hai, T., Sawhney, H. S., and Kumar, R. (2002). Object tracking with bayesian estimation
of dynamic layer representations. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(1):75–89.

Hardie, R. and Barner, K. (1994). Rank conditioned rank selection filters for signal
restoration. IEEE transactions on image processing : a publication of the IEEE Signal
Processing Society, 3:192–206.

Hoheisel, M. (2006). Review of medical imaging with emphasis on x-ray detectors. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, 563:215–224.

Hongsheng, L., Shen, T., Smith, M. B., Fujiwara, I., Vavylonis, D., and Huang, X. (2009).
Automated actin filament segmentation, tracking and tip elongation measurements
based on open active contour models. In 2009 IEEE International Symposium on
Biomedical Imaging: From Nano to Macro, pages 1302–1305.

Hough, P. (1962). Method and means for recognizing complex patterns.

Hu, W., Li, W., Zhang, X., and Maybank, S. (2015). Single and multiple object track-
ing using a multi-feature joint sparse representation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 37(4):816–833.

Jain, V. and Sebastian, S. (2009). Natural image denoising with convolutional networks.
pages 769–776.

73



Kaiheng, D., Yuehuan, W., and Qiong, S. (2019). Real-time object tracking with template
tracking and foreground detection network. Sensors (Basel, Switzerland), 19.

Kanagamalliga, S. and Vasuki, S. (2018). Contour-based object tracking in video scenes
through optical flow and gabor features. Optik, 157:787–797.

Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes: Active contour models. In-
ternational Journal of Computer Vision, 1(4):321–331.

Kilger, M. (1992). A shadow handler in a video-based real-time traffic monitoring system.
pages 11–18.

Kimmel, R., Kiryati, N., and Bruckstein, A. M. (1996). Sub-pixel distance maps
and weighted distance transforms. Journal of Mathematical Imaging and Vision,
6(2):223–233.

Kivinen, J., Williams, C., and Heess, N. (2014). Visual boundary prediction: A deep
neural prediction network and quality dissection. volume 33, pages 512–521.

Kleine, H., Lyakhov, V. N., Gvozdeva, L. G., and Gronig, H. (1992). Bifurcation of a
reflected shock wave in a shock tube. pages 261–266.

Kleine, H., H. K. M. H. H. T. Y. J. K. K. K. Y. E. T. G. (2005). High-speed time-resolved
color schlieren visualization of shock wave phenomena. Shock Waves, 14:333–341.

Konishi, S., Yuille, A. L., Coughlan, J. M., and Zhu, S. C. (2003). Statistical edge
detection: learning and evaluating edge cues. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 25(1):57–74.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. Neural Information Processing Systems, 25:1106–1114.

Law, C. (2010). Combustion Physics. Cambridge University Press, New York, USA.

Lee, J., Hua, F., and Jang, J. (2009). An improved object detection and contour tracking
algorithm based on local curvature. In Ślęzak D., Pal S.K., K. B. G. J. K. H. K. T. e.,
editor, Signal Processing, Image Processing and Pattern Recognition. SIP 2009. Com-
munications in Computer and Information Science, volume 61, pages 25–32. Springer,
Berlin, Heidelberg.

Li, J. (2003). A Wavelet Approach to Edge Detection. Doctoral thesis, Sam Houston State
University, Texas, USA.

Liepmann, H. and Roshko, A. (2001). Elemnents of Gasdynamics. Dover Publications
Inc, New York, USA.

Lim, J. S. (1990). Two-dimensional Signal and Image Processing. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA.

74



Lysaker, M., Lundervold, A., and Tai, X.-C. (2003). Noise removal using fourth-order
partial differential equation with applications to medical magnetic resonance images in
space and time. IEEE Transactions on Image Processing, 12(12):1579–1590.

Mahalakshmi, T., Muthaiah, R., and Swaminathan, P. (2012). An overview of template
matching technique in image processing. Research Journal of Applied Sciences, Engin-
eering and Technology, 4(24):5469–5473,.

Maier, A., Syben, C., Lasser, T., and Riess, C. (2018). A gentle introduction to deep
learning in medical image processing. Zeitschrift für Medizinische Physik, 29(2):86–101.

Mark, H. (1958). The Interaction of a Reflected Shock Wave With the Boundary layer in
a shock tube. Doctoral thesis, Cornell University, Ithaca, New York.

Marr, D. and Hildreth, E. C. (1980). Theory of edge detection. Proceedings of the Royal
Society of London. Series B, Containing papers of a Biological character. Royal Society
(Great Britain), 207:187–217.

Martin, D. R., Fowlkes, C. C., and Malik, J. (2004). Learning to detect natural im-
age boundaries using local brightness, color, and texture cues. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 26(5):530–549.

Mata, H. O., Falcapoundso Filho, J. B. P., Avelar, A. C., Carvalho, L. M. M. d. O., and
Azevedo, J. L. F. (2017). Visual experimental and numerical investigations around the
vlm-1 microsatellite launch vehicle at transonic regime. Journal of Aerospace Technology
and Management, 9:179 – 192.

Mckenna, S., Jabri, S., Duric, Z., Rosenfeld, A., and Wechsler, H. (2000). Tracking groups
of people. Computer Vision and Image Understanding, 80:42–56.

Meenakshi, S. and Gomathy, N. (2015). A survey on real time object detection and track-
ing algorithms. International Journal of Applied Engineering Research, 10:8290–8297.

Melonakos, J., Pichon, E., Angenent, S., and Tannenbaum, A. (2008). Finsler active con-
tours. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(3):412–423.

Meyer, F. (1994). Meyer, f.: Topographic distance and watershed lines. signal process.
38, 113-125. Signal Processing, 38:113–125.

Meyer, F. and Beucher, S. (1990). Morphological segmentation. Journal of Visual Com-
munication and Image Representation - JVCIR, 1:21–46.

Mumford, D. and Shah, J. (1989). Optimal approximation by piecewise smooth functions
and associated variational problems. Communications on Pure and Applied Mathem-
atics, 42(5):577–685.

Murray, D. and Basu, A. (1994). Motion tracking with an active camera. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 16(5):449–459.

75



Najim, M. (2010). Digital filters design for signal and image processing. Wiley Press,
London, UK.

NASA (1999). Making new reality: Computers in simulations and image processing.

Ojha, S. and Sakhare, S. (2015). Image processing techniques for object tracking in video
surveillance- a survey. pages 1–6.

Osher, S. and Sethian, J. (1988). Fronts propagating with curvature-dependent speed:
Algorithms based on hamilton-jacobi formulations. Journal of Computational Physics,
79(1):12–49.

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Trans-
actions on Systems, Man, and Cybernetics, 9(1):62–66.

Ouyang, W., Tombari, F., Mattoccia, S., Stefano, L., and Cham, W. (2012). Performance
evaluation of full search equivalent pattern matching algorithms. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 34(1):127–143.

Patel, C. and Patel, R. (2012). Contour based object tracking. International Journal of
Computer and Electrical Engineering.

Perona, P. and Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7):629–639.

Piccardi, M. (2004). Background subtraction techniques: a review. 4:3099–3104 vol.4.

Pohl, W. G. (2002). Peter salcher und ernst mach schlierenfotografie von ‹berschall-
projektilen, wie diese bilder unsere sinne erweiterten und in welcher weise sie ein beispiel
f¸r wissenschaftliche zusammenarbeit im habsburgerreich sind. pages 22–26.

Prewitt, J. (1979). Object enhancement and extraction. Academic Press.

Raffel, M. (2015). Background-oriented schlieren (bos) techniques. Experiments in Fluids,
56(60).

Ranzato, M., Boureau, Y., Chopra, S., and Lecun, Y. (2007). A unified energy-based
framework for unsupervised learning. Proc. Eleventh International Conference on Ar-
tificial Intelligence and Statistics.

Roberts, L. (1963). Machine perception of three-dimensional solids. Doctoral thesis,
Massachusetts Institute of Technology, Massachusetts, USA.

Romero-Záliz, R. and Reinoso-Gordo, J. F. (2018). An updated review on watershed
algorithms.

Rosenfeld, A. (1969). Picture processing by computer. ACM Comput. Surv., 1(3):147–176.

Rudin, L. I., Osher, S., and Fatemi, E. (1992). Nonlinear total variation based noise
removal algorithms. Physica D: Nonlinear Phenomena, 60:259–268.

76



Ryan, S. and Laurie, S. (2007). A tutorial on the piecewise regression approach applied
to bedload transport data.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks,
61:85–117.

Senthilkumaran, N. and Reghunadhan, R. (2007). Edge detection techniques for im-
age segmentation - a survey of soft computing approaches. INFORMATION PAPER
International Journal of Recent Trends in Engineering, 1.

Settle, G. (2001). Schlieren and Shadowgraph Techniques. Springer, Berlin, Heidelberg,
Berlin, Heidelberg.

Settle, G. and Hargather, M. (2017). A review of recent developments in schlieren and
shadowgraph techniques. Measurement Science and Technology, 28(4).

Shemesh, M. and Ben-Shahar, O. (2011). Free boundary conditions active contours with
applications for vision. In Bebis G. et al. (eds) Advances in Visual Computing. ISVC
2011. Lecture Notes in Computer Science, volume 6938, Berlin, Heidelberg. Springer,
Berlin, Heidelberg.

Shimamura, P. (2015). Muybridge in motion: Travels in art, psychology and neurology.
History of Photography, 26:341–350.

Sobel, I. (2014). An isotropic 3x3 image gradient operator. Presentation at Stanford A.I.
Project 1968.

Sommersel, O. K., Bjerketvedt, D., Christensen, S. O., Krest, O., and Vaagsaether, K.
(2008). Application of background oriented schlieren for quantitative measurements of
shock waves from explosions. Shock Waves, 18(4):291–297.

Song, E. Y. and Lee, J.-J. (2004). Moving object detection using region tracking. Artificial
Life and Robotics, 8:20–28.

Stephen, G., Gao, T., and Koller, D. (2009). Region-based segmentation and object
detection. In Bengio, Y., Schuurmans, D., Lafferty, J. D., Williams, C. K. I., and
Culotta, A., editors, Advances in Neural Information Processing Systems 22, pages
655–663. Curran Associates, Inc.

Supreeth, H. S. G. and Patil, C. M. (2018). Moving object detection and tracking us-
ing deep learning neural network and correlation filter. In 2018 Second International
Conference on Inventive Communication and Computational Technologies (ICICCT),
pages 1775–1780.

Timmerman, B. (2008). High-speed digital visualization and high-frequency automated
shock tracking in supersonic flows. Optical Engineering, 47:103201.

77



Tom, G. and Osher, S. (2009). The split bregman method for l1-regularized problems.
SIAM J. Imaging Sciences, 2:323–343.

Vaagsaether, K. (2010). Hydrogen Leaks in Partially Confined spaces-Dispersion and
Explosions. Doctoral thesis, University of South Eastern Norway/NTNU, Porsgrunn,
Norway.

Vaagsaether, K., Knudsen, V., and Bjerketvedt, D. (2007). Simulation of flame accel-
eration and ddt in h2–air mixture with a flux limiter centered method. International
Journal of Hydrogen Energy, 32(13):2186–2191.

van Dijk, N. P.and Maute, K., Langelaar, M., and van Keulen, F. (2013). Level-set meth-
ods for structural topology optimization: a review. Structural and Multidisciplinary
Optimization, 48(3):437–472.

Villarrubia, J., Vladár, A., Lowney, J., and Postek, M. (2002). Scanning electron micro-
scope analog of scatterometry. Proc. SPIE, 4689.

Vincent, L. and Soille, P. (1991). Watersheds in digital spaces: An efficient algorithm
based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell., 13:583–598.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P. (2010). Stacked
denoising autoencoders: learning useful representations in a deep network with a local
denoising criterion. Journal of Machine Learning Research, 11:3371–3408.

Wren, C. R., Azarbayejani, A., Darrell, T., and Pentland, A. P. (1997). Pfinder: real-
time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 19(7):780–785.

Xizhi, Z. (2008). The application of wavelet transform in digital image processing. 2008
International Conference on MultiMedia and Information Technology, pages 326–329.

Yamamoto, S., Tagawa, Y., and Kameda, M. (2015). Application of background-oriented
schlieren (bos) technique to a laser-induced underwater shock wave. Experiments in
Fluids, 56.

Yang, R., Yin, L., Gabbouj, M., Astola, J., and Neuvo, Y. (1995). Optimal weighted
median filtering under structural constraints. IEEE Transactions on Signal Processing,
43(3):591–604.

Yilmaz, A., Xin, L., and Shah, M. (2004). Contour-based object tracking with occlu-
sion handling in video acquired using mobile cameras. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 26(11):1531–1536.

You, Y.-L. and Kaveh, M. (2000). Fourth-order partial differential equations for noise
removal. IEEE Transactions on Image Processing, 9(10):1723–1730.

78



Zhang, K., Zuo, W., Chen, Y., Meng, D., and Zhang, L. (2017). Beyond a gaussian
denoiser: Residual learning of deep cnn for image denoising. IEEE Transactions on
Image Processing, 26(7):3142–3155.

Zhou, Y., Hu, B., and Zhang, J. (2006). Occlusion detection and tracking method based
on bayesian decision theory. page 474–482. Springer-Verlag.

79



Part II

Published and unpublished scientific articles

80





Article I: Open Active Contour Model For Front Tracking Of

Detonation Waves

Open Active Contour Model For Front Tracking Of Detonation Waves.
Samee Maharjan, Andre V. Gaathaug and Ola Marius Lysaker.

Published in: Proceedings of the 58th Conference on Simulation and Modelling, pp.
174–179. Linköping University Electronic Press, Sweden (2017)



OPEN ACTIVE CONTOUR MODEL FOR FRONT TRACKING
OF DETONATION WAVES

Samee Maharjan 1 Andre Vagner Gaathaug1 Ola Marius Lysaker1

1Department of process, energy and environmental technology, University College of Southeast Norway, Norway.
samee.maharjan@usn.no

Abstract
This paper presents an image processing framework for
tracking the front of the detonation wave from a sequence
of images. The images are captured by high speed camera
during a laboratory gas explosion experiment. By tracking
the fronts in two or three consecutive frames, it is possible
to calculate the thermodynamic properties like velocity
and pressure along the entire wave front. Alternatively,
these calculations are limited to measurements recorded
by sensors at some fixed, locations. An active contour
model having Gradient Vector Flow (GVF) as an external
force field is used to track the wave front in each image.
The structure and the properties of detonations in combus-
tion physics has been the point of interest since early 80’s.
In the present paper, detonation is studied in the stratified
layer of combustible gas above a non-reacting layer of air.
The recorded images are digitally processed, and the local
velocities are calculated based on the tracked fronts. The
calculated velocities are then used to estimate the pressure
ahead of the wave front with the help of the normal shock
relations. The estimated pressure is compared with the
measured values from pressure transducers mounted on
the top and bottom of the experiment tube.

Keywords: Open contour, Front Tracking, Detonation

1 Introduction
Active contours, popularly known as snakes, have been
an essential part in image processing and computer vision
applications. Snakes are mainly used for edge detection
and boundary contouring in the field of image segmenta-
tion. A snake is a moving curve within an image, which
eventually lie itself around the surface/edge of the desired
object. The snake moves under the influence of internal
forces within the curve itself and the external force calcu-
lated from the image data. It was first developed by Kass
et al.in 1988 (Kass et al., 1988). Many developments and
improvements have been purposed thereafter, for exam-
ple the Chan-Vese (CV) model (Chan and L.Vese, 2001)
that detects the boundary of an object using the Mumford-
Shah functional (Mumford and Shah, 1989), the level set
method (Osher and Sethian, 1988) to name a few. The
application of active contours are seen mainly in the field
of medical research see, (Phama and Tranc., 2015; Yan

et al., 2014) and the references therein. For the last decade,
active contour models have been an active research field.
However most applications are based on closed contours.
But for some application like front tracking, where the
edge/boundary expands from top to bottom of the image
an open snake is more efficient. This study will show the
development of an open contour model and its application
in the field of physical science of detonations.

Detonations are among the worst consequences of ac-
cidents related to gas handling and explosion in which
a generated wave can exert pressure around 40 bar and
velocity of more than 2000 m/s. It is relevant for many
combustible gases, while mostly considered for the more
reactive gases such as propane, ethylene, hydrogen and
acetylene (Law, 2010). The detonation study of this work
regards the detonations in a stratified layer of hydrogen
gas above a non-reacting layer of air. The formation of a
high-pressure Mach stem at the lower wall (see Figure 4)
is of particular interest in the field of Combustion.

The paper is organized as follows: In Section 2, there
is a short description of the experimental setup that was
used for the experiment and image recording. In Section
3, a general snake model is described which is followed
by Section 4, where the numerical implementation of an
open snake is shown. The front tracking and velocity cal-
culation is put together in Section 5. Finally, the results
and the conclusions of the study is presented in Section 6.

2 Experimental Setup
Figure 1 illustrates the experimental setup for conduting
the gas explosion experiments. The setup is made of a 3 m
long channel with transparent polycarbonate walls. One
end is closed and the other is open to the atmosphere, and
an adjustable baffle type obstacle is located at 1 m from
the closed end. The channel was filled with hydrogen
and air and then ignited from the closed end such that
the wave propagated towards the open end. Kistler 603b
type pressure transducers were used to record the pressure
at various locations along the top and the bottom wall
of the tube. A high speed camera recorded the wave
propagation behind the obstacle at 500 kHz. A schlieren
imaging method was used to record the propagation at
23 cm diameter window expanding from a 1.2 m to 1.4
m behind the obstacle. The schlieren system is a double
mirror system which is based on the fact that light rays
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bends whenever there is a change in the refractive index
of the meduim in which the light passed (Settles, 2001).
All experiments are done with premixed hydrogen and air
at ambient temperature and pressure. Detail description
of the setup can be found in (Gaathaug et al., 2010).

Figure 1. Experimental setup for premixed hydrogen and air
combustion in a long tube.

Figure 2(a) shows the portion of captured high speed
frame sequence during an experiment and Figure 2(b)
shows the schlieren images captured at the highlighted
rectangle portion in Figure 2(a). An overview of the over-

Figure 2. (a) High speed images showing a detonation wave in
an experiment tube.(b) The schlieren images captured within the
red rectangle in (a).

all designed framework for tracking the fronts from the
image is depicted in the flowchart shown in Figure 3.

Figure 3. Flow chart showing the designed framework.

3 Active Contour Model
A basic snake defined in (Kass et al., 1988) is a paramet-
ric curve formed within an image. The snake is initialized
manually by a set of x-y points around the object of inter-
est and simultaneous interpolates between the points. By
representing the position s of the snake parametrically as
V (s) = (x(s),y(s)) in x-y coordinate system , its energy
function is defined as in (1). The energy is calculated for
each point along the snake and the snake will move in the
direction where there is minimum energy compare to the
previous position. The snake will be stationary once the
energy is balanced in all directions.

Esnake =
∫

s
Eint(V (s))+Eext(V (s))ds. (1)

The first term in (1), Eint is an internal energy which can
be defined as

Eint = 1/2[α(s)|V ′(s)|2 +β (s)|V ′′(s)|2]. (2)

Here α(s) and β (s) are positive weighting parameters
for controlling the snake’s tension and rigidity respec-
tively. V ′(s) and V ′′(s) are the first and the second deriva-
tive of V (s) with respect to s. The second term in (1), Eext
is the external energy function which is calculated from
the image such that it takes minimum values at the point
of interest like edges and boundaries. For example, for a
gray scale image Im(x,y), the external energy can be cal-
culated as

Eext =−|∇Im(x,y)|2, (3)

where ∇ is the gradient operator. A snake that minimizes
Esnake must also satisfy the Euler equation

αV ′′(s)−βV ′′′′(s)−∇Eext = 0, (4)

which can be viewed as force balance between the internal
and the external forces. Both α(s) and β (s) are taken as
constant for the entire framework. Mathematically,

Fint +Fext = 0. (5)

The internal force term Fint = αV ′′(s)− βV ′′′′(s) pre-
vents the snake from stretching and bending whereas the
external force term Fext = −∇Eext attracts the snake to-
wards the desired location (Xu and Prince, 1997).
To solve (4), V (s) is taken also as a function of time t such
that V (s) moves with time step t i.e. V (s, t). The external
energy Eext for the image does not change with time.

∂V (s, t)
∂ t

= αV ′′(s, t)−βV ′′′′(s, t)−∇Eext . (6)
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Figure 4. (a) Edge map of the image, Mach stem area is high-
lighted with red square. (b) External force field around the Mach
stem.

4 Numerical Implementation
The numerical solution of (6) can be found when ∂V (s,t)

∂ t
tends to zero and (6) becomes,

αV ′′(s, t)−βV ′′′′(s, t)−∇Eext = 0. (7)

The solution for (7) can be obtained by decritizing the con-
tinous snake V (s, t) as in (8). The details can be found in
(Kass et al., 1988).

α[Vi−V(i−1)]−α[V(i+1)−Vi]+β [V(i−2)−2V(i−1)+Vi]

−2β [V(i−1)−2Vi +V(i+1)]+β [Vi−2V(i+1)+V(i+2)]

+( fx(i), fy(i)) = 0.
(8)

Here Vi = (xi,yi) is the ith point of the contour/snake
s and ( fx(i), fy(i)) which are equal to (−∂Eext/∂xi,
−∂Eext/∂yi) are the external force at point i.

4.1 Internal energy
The overall internal energy at each point can now be de-
scribed in a matrix form as

AV +( fx(i), fy(i)) = 0. (9)

Here A is pentadiagonal matrix ,

and V is a vector of the 5 consecutive points,
V = [Vi−2 Vi−1 Vi Vi+1 Vi+2]

T .

If n is the total number of points in each contour, then
for closed contour V1 =Vn, the internal energy can be esti-
mated using (8) for all points along the contour. However,
for open contours the end points should remain at the top
and bottom boundary, hence V(i−1) and V(i−2) will not ex-
ists for the first two points whereas V(i+1) and V(i+2) for the
last two points. The matlab program is designed in such a
way that these points stays at the boundary and therefore
only move in x-direction with respect to its own external
energy and its own previous position. Using Euler method
with time step t for (8), the contour point V t

i at time t can
be related to its previous point V t−1

i as,

AV t
i +( fx(i), fy(i))V t−1

i =−γ(V t
i −V t−1

i ) (10)

where γ is a step size. Solving (10) by matrix inversion
and separating Vi into xi and yi,

xt
i = (A+ γI)−1[γx(t−1)

i − fx(x
(t−1)
i ,y(t−1)

i ] (11)

yt
i = (A+ γI)−1[γy(t−1)

i − fy(x
(t−1)
i ,y(t−1)

i ], (12)

where I is an identity matrix.

4.2 External energy
One of the main drawback of the snake models is that
the calculated external energy were not sufficient for at-
tracting the snake from long distance. The simple exter-
nal energy calculated by using (3) works nicely when the
initial snake is near to the object but fails to attract the
snake when it is placed far away. To overcome this draw-
back, the gradient vector flow (GVF) proposed in (Xu and
Prince, 1997) is used for the external force field. For es-
timating GVF, first the edge map Eedge(x,y) is formed in
such a way that it has a larger value at the edges and at the
boundaries, compared to homogeneous region. Later, the
estimated edge map is used to estimate the over all exter-
nal force field. For this study, the edge map is taken as the
gradient magnitude of the image,

Eedge(x,y) =
√
(g2

x +g2
y), [gx,gy] = ∇Im(x,y).

and the result in shown in Figure 4(a). The Mach stem
is marked by a red rectangle in this figure. Following the
steps described (Xu and Prince, 1997), the final external
external force ( fx(i), fy(i)) for an image is calculated by
iterating the equations (13) and (14) until it converges.

fx(i) = µ∇
2 fx(i)−|∇Eedge(x)|2( fx(i)−∇Eedge(x))

(13)

fy(i) = µ∇
2 fy(i)−|∇Eedge(y)|2( fy(i)−∇Eedge(y))

(14)
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Figure 5. (a) Original raw image (b) Binary image (c) Filtered binary image with initial points for the snake. (d) Final contour
along the wave front.

Here ∇2 is the lapalcian operator and µ is a regular-
ization parameter governing the trade off between the first
term and second term. Generally, µ is taken as a con-
stant which is set according to the noise present in the
image. For a sequence of images where the noise varies
with time, µ along with |∇Eedge(x,y)|2 can be taken as
spatially varying weighting factor as presented in (Xu and
Prince, 1998). The initial value for ( fx(i), fy(i)) is taken
as ∇Eedge(x,y). The computed GVF field points towards
the edges and varies smoothly over homogeneous regions,
see Figure 4(b).

5 Front tracking and velocity calcula-
tion

It is necessary to reduce the background noise presents in
the images before actual tracking of the front. For this
purpose, the pre-processing of the image is done by first
changing each image into binary form using Otsu method
(Otsu, 1976), follwed by filtering using median filter. Fig-
ure 5(a) shows the raw image from the experiment and in
Figure 5(b) the binary version of the same image is visu-
alized. Though the GVF force field has advantages com-
pared to the external forces used in (Kass et al., 1988), the
formation of the initial points for the snake highly influ-
ence the overall performance of the framework. One pos-
sible way to initialize the snake automatically to a location
close to the object, is to use the information of the gradient
values in the image. For this task, a priori information of
the direction of the wave propagation is used. By starting
a search from the opposite direction of the wave propaga-
tion for predefined set of rows (every 20th), an initial point
is chosen to be the first point where the gradient value ex-
ceeds a given threshold value, see Figure 5(c). The snake
is then initialized by interpolating these initial points such
that there exist the snake point V (s) for each unique row
value of the image. For example, if size of an image Im
is [300× 800] then the size of the snake is [300× 1]. By
implementating, the method defined in Section 4, the final
contour is obtained as shown in Figure 5(d).

Suppose V K(s) is the final snake (tracked front) in Kth

image of the sequence. For calculation of a normal ve-

locity at point Vi = (xi,yi) of the front V K(s), a local nor-
mal vector −→n is calculated by forming a local polynomial
function around the point Vi (5 points above and 5 points
below are used). The normal vector −→n will forms a tri-
angle between the fronts with an angle θ at point Vi. The
normal displacement is now estimated by using the final
snake of the V K+1(s) of (K + 1)th image of the sequence
as shown in Figure 6. By using the value of V K+1(s) for
the same row yi the displacement dm can be calculated and
an angle θ can be estimated by calculating the slope of the
normal vector −→n .

Figure 6. Method for estimating normal front velocity.

Figure 7. Spatially varying γ for top and bottom of the tube.

By assuming the normal vector −→n is locally normal to
both fronts at K and K + 1, a normal displacement dn is
estimated as dn = dm ∗ cosθ .

The normal displacement dn is then changed to stan-
dard unit of meter with system configuration of (1px =
0.0002778 m) and the normal velocity Vf is calculated at
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Figure 8. (a)A final contour in filtered binary image.(b) The front contours with local velocity (m/s) given by the color according
to the colormap.

Figure 9. Pressure estimated for top and bottom of each front.

frequency of 500 kHz. By using the calculated velocity
to estimate the Mach number M, the pressure behind the
front is estimated by normal shock relation shown in (15)
(Law, 2010).

P1

P0
=

2γM2− (γ−1)
γ +1

. (15)

Here, P1 is the pressure behind of the wave front and P0
is the pressure ahead the wave front. The pressure ahead
of the wave front is assumed to be 1 bar in this case. The
Mach number M is defined as,

M =
Vf

c
, (16)

c =
√

γRT/M is the speed of sound in medium (H2) at
temperature T . R , M and γ are respectively gas constant,
Molecular mass and specific heat ratio of H2. As the gas
is different in top and bottom of the tube, γ is taken as
spatially varying along the tube from 1.3995 to 1.4012 as
shown in Figure 7 (γ for H2 is 1.4). The speed of sound
for hydrogen is calculated and considering temperature T
ahead the wave front is uniform at 25o C. The estimated
M is then used for finding pressure P1 from (15).

Figure 10. Pressure records from the experiment by the pressure
transducers.

6 Results and Conclusion
For clarity, the final contour along the detonation wave
front is plotted in filtered image shown in Figure 8(a).
The calculated velocities along all the tracked wave fronts
from a sequence is plotted in Figure 8(b). As expected
the velocity in the upper layer that is filled with com-
bustible gas is relatively higher than the velocity in the bot-
tom layer. Due to the generation of Mach stem along the
lower boundary of the tube, velocity of the front around
the lower boundary is noticeably high. The average pres-
sure estimated at top and bottom of the each front is plot-
ted in Figure 9 ( top and bottom 10 points are used). The
reading from pressure transducers mounted on the top and
the bottom of the tube at fixed location is shown in Figure
10. Due to the difference between the location of pressure
transducers and the moving wave front, direct compari-
sion cannot be justified. Nevertheless, it can be seen that
maximum and minimum pressure on both the figure are
almost in same range.
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The designed image processing framework was also
used to calculate the velocity for a benchmark experiment.
The results of the experiment shows an average detona-
tion velocity of 1967 m/s which is 9 m/s lower than the
theoretical value (Gaathaug et al., 2016). Thus, it can be
assumed that the framework gained detailed information
of the detonation front within expected precision. Further
work need to be done considering assumptions made dur-
ing pressure estimation using a normal shock relation.
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Abstract. This work presents an image processing framework designed
to automatically track the wave front in a sequence of images from a high
speed film. A watershed algorithm is used for segmentation and contour-
ing, while an active contour model is used for controlling the flexibility
and the rigidity of the contour. The velocity of the wave front is calcu-
lated by estimating the displacement of the front in two frames, divided
by the time difference between the frames. The calculated velocity is
compared with the sensor measurements. Further, the calculated veloc-
ities can be used to estimate thermodynamic properties like the Mach
number, the pressure and the temperature across the wave. With the
purposed framework, these properties can be estimated along the entire
wave front. Otherwise, these thermodynamic properties are limited to
either theoretical values or to sparse measurements from sensors. The
experiment is done by using a shock tube and the film is captured by a
high speed camera using the shadowgraph system.

Keywords: Image processing application, Watershed, Front tracking, Active
contour model.

1 Introduction

Image segmentation is one of the important and most explored field in image
processing. Among the numerous methods of image segmentation, watershed
algorithm which is based on mathematical morphology of an image is well known
and widely used, especially for boundary contouring and edge detection [1]. The
watershed method takes an image as a topographic surface, where the graylevel
values of the image corresponds to the altitude of a surface (minimum being the
deepest). The algorithm was first introduced by Digabel and Lantu´ejoul [2] and
further modified by Beucher and Lantu´ejoul [3, 4]. Initially, the algorithm was
highly suffering by over segmentation due to the large number of local minima
present in an image. To overcome with the problem of over segmentation, Meyer
and Beucher proposed a strategy known as marker-controlled segmentation [5].
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More on the application of watershed method in grayscale images and overall
review of the marker controlled segmentation can be found in [6, 7].

The active contour or snake model was first developed by Kass et al. in
1988 [8]. The snake model is an essential part in image processing and computer
vision applications, mainly used for shape modeling [9] and motion tracking [10].
A snake is a moving curve within an image, which eventually lie itself around
the surface/edge of the desired object. For the present work, an open contour
model developed in [11] is used.

In general, shock waves appear in many flow fields, for example, at the wings
of an airplane, in explotions, fired bullets, exhaust of engines etc. The study of
the structure and the properties of a shock wave and its boundary layer inter-
actions has been the point of interest during World War II [12, 13]. Shock wave
initiates when the speed of the wave exceeds the speed of sound in the meduim.
It is characterized by the fact that across the shock regions, the gas properties
like the pressure, the temperature, and the gas density increases drastically. The
major cause for shock initiation is detonation, but sources could also be explo-
sion or lighting. The study of shock waves is a key component in the field of
aerospace and oil and gas industry as it could provide necessary information
for designing better aircraft and safety equipment. Generation of a shock wave
through detonation and its properties can be studied in [14].

Image processing technology has become a valuable tool in the field of gas
combustion and fluid mechanics. However, most of the time, the use of images
are limited to visualize the structure of the waves [12]. There is a lack of an
image processing framework which manage to extract information of the wave
properties. One challenging task is to capture this extremely high-speed phe-
nomena. The generated waves propagate at a speed of 200 m/s and above, and
the reactions of interest are completed within a microsecond. Therefore, a spe-
cial high-speed camera designed for capturing these phenomena is needed. In
addition, the high speed images from a gas experiment can vary rapidly from
frame to frame due to the continous chemical reaction, which demands a ro-
bust framework. In the past, a few work has been done based on numerical
simulation and thermodynamic differential equations [15]. However, to obtain a
tolerable accuracy using numerical models is a CPU demanding task. The main
goal of the paper is to design a complete image processing framework, which
pre-process/filter the images and automatically track the wave front in these
images. The tracked fronts are then used to estimate the velocity of the wave.

The rest of the paper is organized as follows. Section 2 gives a brief description
on the experimental setup for the generation of a shock wave. The methodology
behind image filtering, front tracking and post processing is described in Section
3, which is followed by Section 4 in which the procedure for calculating velocity
from the tracked fronts is presented. The results from the framework are shown
in Section 5. Lastly, the conclusion and some possible further work is discussed
in Section 6.
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2 Experimental set up

Fig. 1. (a) Schematic representation of the shock tube (b) pressure distribution along
the tube at t = 0 and t = t1 6= 0.

The shock wave was generated in the laborotory using a pure CO2 gas and
a shock tube, with the initial pressure and temperature of 10kPa and 274 K
respectively. A shock tube is one of the most used and essential laboratory
instrument for study of the fluid mechanics and gas combustion [16]. A shock
tube typically is a closed tube that consists of two chambers, one with a high
pressure known as the donor section and another with fairly low pressure known
as the acceptor section. Fig. 1 shows the schematic representation of a shock tube
with its pressure distribution. The shock propagation is captured at the closed
end of the acceptor section. Due to the boundary layer following behind the
incoming shock, the reflected shock wave bends around the boundary creating
an oblique shock. An oblique shock makes a certain angle with the boundary of
the tube known as a shock angle. Hence, a single reflected shock wave can be
divided into two parts: a normal shock and an oblique shock (see Fig. 2). This
paper focus on the reflected shock wave, hence the notation ’shock wave’ refers
to the reflected shock wave onwards.

Some of the images from the high speed film capturing the shock wave prop-
agation are presented in Fig. 2. The growing of the oblique shock is clearly
visible in the images. A shadowgraph system [17] is used for capturing the wave
propagation.

3 Methodology

In this section, the four parts of the image processing framework are described.
For simplicity, only the lower halves of the images are taken for further processing
as the phenomena is almost identical at both the top and the bottom boundary.
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Fig. 2. Some of the raw images from the high speed film showing the reflected shock
wave propagation. The shock wave travels from left to right, as shown in frames 1-4.

3.1 Pre-processing

The pre-processing of an image not only reduce the variations of noise present
in the image, but also reduce the problem of over segmentation of an image. The
pre-processing framework presented here consists of 3 steps. The first step is
the background subtraction. An image was formed by making an average image
based on all the images prior to the front propagation, and this image was then
successively subtracted from all the images with a visual front. The background
subtracted images are normalized to intensity level [0 − 1] in the second step.
The third step is filtering of noise from the normalized image. The filtering is
done by using the log transformation of the image followed by the [2×2] median
filter [18].

3.2 Segmentation

The filtered image is changed into a binary image by using Otsu method [19]
followed by the morphological operation ’closing’. The closing of the binary image
[5] enhanced the edges of an object as well as filling the tiny gaps found close to
the edges. The sequence of images in Fig. 3 shows the output from each step of
the pre-processing operation of an image from the high speed film.

Generally, the watershed segmentation is not performed directly to the orig-
inal image due to over segmentation. In this work, the distance transformed
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Fig. 3. (a) Background subtracted normalized image (b) filtered image (c) thresholded
binary image.

image [20] is used for the segmentation. The distance transformed image is suit-
able when the edge of the object is diffuse, but visuable. Fig. 4(a) and Fig. 4(b)
respectively shows the distance transformed image and the output of the water-
shed transformation of Fig. 3. The watershed algorithm uses 8 neighbourhood
pixels for the catchment building and consecutive flooding [21].

Fig. 4. (a) Distance transformed image (b) watershed output (c) morphologically re-
moved image with initial contour.

3.3 Front tracking/Contouring

To represent of the front in the segmented image, the morphological operation
’remove’ is done. This operation removes all the internal pixels in an object, but
keep all the edge pixels unchanged [22]. By using a priori information of the
direction of the wave propagation, a contour point is placed at the first position
where the intensity value changes from 0 to 1. The search starts from the left to
the right i.e. opposite direction of propagation. The points are tracked for all the
rows and the contour is created by simply joining them. If the size of an image is
[m,n], the contour can now be represented as a vector of size [m, 1]. The initial
contour plotted in the morphologically removed image is shown in Fig. 4(c).
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Fig. 5. (a) This subsection of the front is selected from the area pointed with a white
arrow in (b), initial contour (green) and final smoothed contour (red). (b) final fronts
from the high speed film tracked by the framework.

3.4 Post processing

It can be seen from Fig. 5(a) that the initial contour (green) has a ragged shape.
Thus, a proper module for smoothing the curve was needed. By using a snake
model [11], the smoothing was done locally using only on a few neighbouring
points. A basic active contour model or snake model defined in [8] is a con-
trolled continuity parametric curve, formed within an image, where the snake
is initialized manually by set of x-y points. However, for this work the contour
from the watershed segmentation is taken as an initial snake, eliminating any
human interactions. By representing the position of the snake parametrically as
P (s) = (x(s), y(s)), its energy function is defined as in (1)

Esnake =

∫
s

Eint(P (s)) + Eext(P (s))ds. (1)

The first term in (1), Eint is an internal energy and the second term, Eext is the
external energy function. An open active contour model developed in [11] which
is used to smooth the curve. Fig. 5(a) shows the contour from watershed (green)
and the smoothed contour (red) by the snake model. It also shows convergence
of the contour to the actual wave front around the pointed part in Fig. 5(b)).
Fig. 5(b) shows the 100 final fronts of the shock wave tracked by the designed
framework in the sequence of images of a high-speed film.

4 Velocity calculation

By estimating the displacement of the front in two frames combined with the
framing frequency of a camera (which will give the time difference between the
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Fig. 6. (a) Schematic sketch of two consecutive fronts with the fitted lines, the median
and the shock angle. (b) A raw image with actual tracked front and fitted line for the
oblique shock.

frames), the velocity can then be calculated. For the present work, the frequency
of a camera is 500 kfps and the pixel to meter scaling is approx. 1px = (0.0001±
5%) m. The velocity of a front at point P1 = (x1, y1) ( x1 and y1 represents row
and column) in image k can be estimated by using the point P2 = (x1, y2) of the
front in the consecutive image k + 1. If a displacement is d =| P2 − P1 |, then
velocity v will be,

v =
d× 0.0001

0.2× 10−5
m/s. (2)

One of the raw image from the film with the tracked front (red) and the line
formed for the oblique shock (blue) is shown in Fig. 6(b). The shock angle β can
be estimated by forming a line (equation) for the oblique shock, therefore the
contour needs to be divided into two sections; normal shock (upper) and oblique
shock (lower). For this, a median of top 100 points of the tracked front (red)
is used. The separating point is chosen to be situated where the front starts
to deviate from a median in an increasing order. The equation for the oblique
shock is formed by using all the points below the separating point shown in
Fig. 6(b) by a blue line. Fig. 6(b) also point out the desired calculations from the
tracked front and the fitted line. The top and bottom velocities are calculated by
taking 10 points on each of them (highlighted by an oval structure). The normal
velocity is then estimated by using velocity at the bottom v and shock angle β
i.e. vsinβ. The calculated velocity is then used to estimate the Mach number
at that point. A Mach number M is the ratio between the velocity of the wave
and the speed of sound in the medium. By using the Mach number along with
the initial temperature and pressure, the final pressure and temperature can be
estimated with the use of shock relationships. More about the Mach number, its
importance and implementation along with the shock relationships can be found
in [23].
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Fig. 7. Average velocity calculated for each frame at the top , bottom and average
normal velocity at the bottom plotted along the time.

5 Results

The velocity at the top and the bottom of the front along with the normal
velocity at the bottom as pointed in Fig. 6(b) are plotted in Fig. 7 for each
front. Please notice that the time start from the first frame considered and is
estimated from the frame rate of the camera which gives 2 µsec per frame.

The calculated average velocity is compared with the experimental results
that was calculated from the readings of the pressure transducers. The method
of calculating velocity and other thermodynamic properties from the pressure
transducers and all the experimental results will be published in a separate
publication (in progress). The results are also compared to the similar work
done by using pattern matching and segmented regression in [24]. The overall
comparison is shown in Table 1.

The comparison shows that the designed framework produces results within
a necessary precision. The difference between the experimental result (pressure
transducer readings) and the result from the framework is 11 m/s (top) and 1
m/s (bottom). The error of the framework due to misplacement of the contour by
1 pixel leads to deviation of approx. 5.23 m/s. Even though, individual velocity
along the front may vary with the experimental value, overall average seems to
match well.



Automatic Tracking of Wave Fronts 9

Fig. 8. Shock angle (β) at the foot of all the tracked fronts plotted along the time.

6 Conclusion and Further work

From the results presented in Section 5, it can be concluded that the designed
framework produces results in accordance with the pressure transducer mea-
surements. Furthermore, the velocity at each point along the front can now be
calculated by using the procress described in Section 4. The procedure and re-
sults of estimating thermodynamic properties of gas like the Mach number, the
pressure and temperature ratios by using this framework will be presented in a
different publication [25].

Table 1. Comparison between results from different methods.

Exp.no Average velocity
at the top

Average velocity
at the bottom

Av. Shock angle
(degree)

2516

Pressure
transducer results

216 m/s 266 m/s 48

Results from [24] 229 m/s 262 m/s 50

Results from the
designed

framework

227 m/s 267 m/s 48.9
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Abstract. In recent years, image processing has been evolving as an
important tool to estimate the properties of a generated wave during
a gas experiments. The wave properties were estimated by tracking a
wave fronts in the images of a high speed video, captured during the
experiment. In this work, we purposed a dynamic template matching
method, based on the mean square error (MSE) between the intensity
values of a template and its foot print in an image to track the wave
front. At first, a dynamic template of a predefined size [5 × 20] was
created, whose values varies according to the minimum and maximum
intensity of the considered image. Secondly to reduce the processing time,
a bounding box was set around the area of interest in the considered
image, such that the matching process is limited within the area covered
by the bounding box. The purposed method was tested for four different
high speed videos from four different gas experiments conducted two
different experimental set-ups. All the results from the purposed method
are within an acceptable accuracy.

Keywords: Image processing application, Dynamic template, Front tracking.

1 Introduction

Template matching or pattern matching is an image processing method to de-
tect the desired object in an image by using a predefined template. A template
matching starts with creating a template of relatively smaller size whose one or
multiple features matches with the features of the desired object. Then, the cre-
ated template is slid in a pixel-by-pixel basis, computing the similarity between
the template features and its footprint in the image [1]. The few common features
that are used for calculating a similarity while matching are, normalized cross
correlation (NCC), the sum of absolute difference (SAD), the sum of squared
error (SSD), mean square error (MSE) [2]. In this work, we took the template
matching based on MSE, due to its simplicity and fast processing. The MSE
takes a mean of the squared difference between the intensity of each pixel in the
template and the corresponding pixel in its footprint in the image. Assuming
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template T of size [m × n] slides over an image I, then at each position (x,y) in
I, MSE is estimated as in (1). The template matches the best in the image pixel
where MSE is the minimum.

MSE(x, y) =
1

no.ofpixel

m∑
k=1

n∑
e=1

[I(x + k, y + e) − T (k, e)]2. (1)

In general, a gas explosion can be defined as a process where combustion of a
premixed gas cloud, i.e. fuel-oxidiser is causing a rapid increase in pressure in a
close vessel or confined area due to any kind of external energy. When the pres-
sure exerted inside the vessel is higher than the vessel can hold then it explodes
producing extremely powerful and destructive waves [3]. The most common ap-
proach to study these geberated waves and estimate their characteristics are by
using the pressure transducers in the experimental area and/or computer simu-
lations [4]. However, in recent years, the estimation of wave characteristics using
the high speed videos and image processing have been emerging [5] - [7]. A high
speed video captured during the gas experiment was later processed using im-
age processing technologies to track the wave front in the images of the video.
By tracking the wave front in these images, the wave characteristics like speed,
temperature and pressure were estimate.

Fig. 1. Block diagram of the framework.

However, due the poor quality of images in a high speed videos, most of
the image processing framework consists of multiple processing units, which not
only cost a computational time but also require manual interference. One of the
previous work that used template matching for front tracking can be read [8].
The tracking was done in the raw images with two predefined templates: one for a
straight wave and one for the tilted (oblique wave) in a single image (refer to Fig.
2 second row). The framework then use a post-processing for finding the optimum
result from both templates. The matching was based on the predefined average
intensity of the template for an individual video. Even though, the framework
works fine with some manual input, the sliding of a template in an overall image
along with post-processing takes a high computational time. In this work, we
purpose a new method of creating a dynamic template and sliding the created
template within a certain region in an image bounded by a bounding box. As,
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we are working with a set of images from a multiple high speed videos, whose
intensities varies with each image, we create a template with a fixed size but
with a varying value depending in the intensity of each image to be matched.

Fig. 2. Some of the images from different gas experiments chronologically sorted from
left to right. An arrowhead points towards the direction of the wave propagation in the
corresponding video. From top to bottom row: N2, CO2, H2 and H2 +air experiment.

The rest of the paper is organized as follows. Section 2 gives a brief description
on the high speed videos and the methodology of template creation, setting
bounding box and matching the created template in the area surrounded by the
bounding box. The results from the purposed method with some discussion are
presented in Section 3. Lastly, the conclusion and some possible further work is
discussed in Section 4.

2 Materials and Methods

The block diagram presented in Fig. 1 depicted the work flow of the overall
framework. More on the each part are described in following sub-sections.
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2.1 High speed videos

The four high speed videos captured during four different gas experiments were
processed in this work. The experiments were conducted with N2 (Exp.2534),
CO2 (Exp.2558), H2 (Exp.0016) and H2 +air (Exp.0022) gases. Figure. 2 shows
the wave propagation during the considered four gas experiments. The images in
each row are from an individual experiment and are presented in chronologically
order from left to right. All the upcoming figures in this paper with four rows
follows the structure row wise i.e. from top to bottom row: N2, CO2, H2 and
H2 + air experiment. An arrowhead points towards the direction of the wave
propagation in the corresponding video. The characteristics of the generated
wave during any gas explosion depends on the characteristics of the gas itself and
the initial conditions like initial pressure and temperature. Due to this reason,
the structure of wave is different in each experiments. The objective of this
work is to design a single framework, which track the wave front in all these
images/videos regardless of their structure.

Fig. 3. Background image created for left: CO2 and right: H2 experiments.

The first two experiments were conducted in a shock tube and the propagat-
ing wave is known as a reflected shock wave. The details of a shock tube and
the method of capturing high speed video while experimenting in a shock tube
can be read in [5]. The bottom two experiments were conducted in an open end
experimental tube and the propagating wave is known as a detonation wave [10].
A schlieren technique [12] of imaging was used for capturing all the videos, and
a special high speed camera called ’Kirana’ was operated with the frequency of
500,000 frames per second. Each high speed video consists of 180 images of size
[768 × 924] pixels ≈ [70 × 100] mm. However, some part of the image contains
capturing window, which was cropped appropriately before processing. The final
size of images for respective experiments are : N2 and CO2 is [400 × 910], H2 is
[356 × 631] and H2 + air is [356 × 640].

2.2 Pre-processing/Filtering

Due to the high frame rate of the camera and the ongoing chemical reactions
during the experiment, the images in the high speed videos are generally with
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high amount of noise. Therefore, it is preferred to pre-process the images before
further processing. The pre-processing of an image in the current framework
consists of a background subtraction followed by a low pass frequency filtering.
For background subtraction, a background image was created by taking average

Fig. 4. Result of pre-processing, right column: result after background subtraction, left
column: respective filtered image after LPF.

intensity values of the initial images which doesn’t consists of the visual wave
front. The background image created for the high speed videos of CO2 and H2

experimnets are shown in Fig. 3. After that, the created background image was
subtracted from each image with the visual front or which needs to be procressed.
The remaining noise in the background subtracted image was then removed by
using a low pass filter with the threshold frequency of 50 Hz. The examples of
the background subtraction in the images from high speed videos is presented in
Fig. 4 left column, and the right column shows their respective low pass filtered
images. The process of the frequency filtering in the images and its benefits can
be read on [15].
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2.3 Template creation

Fig. 5. The mesh plot showing the intensities. Left : the filtered images and right: a
template created for the corresponding images (right).

The close look of the intensity difference between wave band and background
in the background subtracted images suggested that the waveband contains of
bright pixels where as background contains of dark pixels. With this reference, a
dynamic template of predefined size [5 × 20] was created, which values depends
on the minimum and maximum intensity of the considered image. One half of
the template, contains the minimum intensity value which should technically be
the intensity of a background, while another half contains the maximum inten-
sity value which should technically be the intensity of the wave band. However,
which side of template takes the minimum and maximum value depends on the
direction of the wave propagation. For example, for first two videos in which the
wave is propagating from right to left, the wave front is located at the left side of
the wave band. Therefore, the right half of the template contains the maximum
intensity value (wave) and left half contains minimum (background). The values
in the template for the bottom two videos would be exactly opposite as the wave
is propagating in an opposite direction and the wave front lies at the right side
of the wave band. The mesh plot illustrating the intensity level of a wave band
and background in the filtered images from Fig. 4 along with the mesh plot of
their respective created templates are presented in Fig. 5.
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Fig. 6. Template matching process left: a filtered image from CO2 experiment with a
bounding box for matching, center : MSE calculated from matching within the bound-
ing box, right: the result of choosing the minimum MSE in each row presented by the
green curve in a raw image of the same image in left.

2.4 Bounding Box

As it can be seen in all the images presented in previous sections, the wave
actually stands in the small part of image. Hence, sliding a template all over
the image will only increase the processing time. Therefore, to minimize the
processing time, a bounding box was created around the area of interest (wave)
such that the sliding of template occurs only inside the bounding box. The height
of bounding box is always the number of rows in the image, whereas the width
varies depending on the horizontal span of wave band in the image. For the
initial image, the bounding box was set at the side of image where, the wave
originates and then it moves along the direction of wave propagation with each
consecutive images. The movement of the bounding box was governed by the
values of the previous tracked front.

Lets take an example of the CO2 experiment, the bounding box was set
initially at the right end of the image where the wave originated. The right end
of the bounding box was set at the right end of image itself, whereas the left side
was set 200 columns ahead of the right end. After the first front was tracked,
the position of the bounding box was updated according to the position of the
tracked front. As the wave was always going forward (towards left), the right
side of the bounding box was updated with the median value of the first tracked
front while keeping the width of the bounding box constant. The choice of 200
columns as the width of the bounding box came from the a priori visualization of
the high speed video which gave rough idea about the total wave span (refer to
Fig. 2 second row). Similarly for the H2 experiment, the bounding box with the
width of 100 was initially set at the left side of the image. After first tracking,
the left side of the bounding box was then updated with the median of the first
tracked front keeping the width as it is. However, in H2 + air experiment to
accommodate the shape of the wave, the bounding box of width 200 was set
with the median value of last 50 rows. One of the raw images from CO2 and H2

experiment are presented in the left image of Fig. 6 and Fig. 7 respectively. The
width of bounding box for the N2 experiment are 50.
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Fig. 7. Template matching process left: a filtered image from H2 experiment with a
bounding box for matching, center : MSE calculated from matching within the bound-
ing box, right: the result of choosing the minimum MSE in each row presented by the
green curve in a raw image of the same image in left.

2.5 Template Matching

The sliding of the template always started from the top left of the bounding box
and moved towards top right. For example, a bounding box in Fig. 6 spreads
from top to bottom (all rows) and column 350 to 550. The first matching took
place at top left of bounding box i.e. 1st row and 350th column of the image
and the template slide along each column calculating MSE at each pixel till
531th column. After, it reached 531th column, it slide to 2nd row 350th column
and continued till 531th column and so on. Four pixels at the bottom and 19
pixels at left of bounding box was exempted due to boundary adjustment. At
each position, MSE between the template and its footprint in the image was
estimated as in (1), such that x = 1 : 396, y = 350 : 531. After completing
calculating MSE in one image, a pixel with the least MSE was picked out in
each row. Please note that the actual front position is in the middle of the
template, such that the minimum MSE pixel in any row gives the front position
at 2 rows below. The position of the wave front is then 10 columns behind actual
column of MSE pixel. For example, the minimum MSE point in a 1st row is at
lets say column ym actually gives the front position in 3rd row which will be in
column ym + 10. Hence, there was no front tracked for top 2 and bottom 2 rows.

3 Results and Discussion

A created bounding box of width 200 pixels, the result of template matching
within the bounding box and the position of front in one of the raw image from
CO2 experiment is shown in Fig. 6. Similarly, the image from H2 experiment
with a bounding box of width 100 pixels, the calculated for the bounding box
and result from the minimum is presented in Fig. 7. Figure. 8 summarizes the
results of a dynamic template matching based on MSE for tracking wave fronts
in four different high speed videos. The first and second column presents the
result in an individual images while, third columns shows all the tracked fronts
with their respective position in the image. High speed video of N2 and CO2 are
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Fig. 8. Template matching process left: a filtered image from H2 experiment with a
bounding box for matching, center : MSE calculated from matching within the bound-
ing box, right: the result of choosing the minimum MSE in each row presented by the
green curve in a raw image of the same image in left.

comparatively with less background noise than the H2 +air and H2 experiment.
The tracked fronts are therefore with less or no distortion as seen in top two rows.
However, few distortions can be seen in the results from H2 + air experiment,
the noise within the bounding box is matched more than the actual front. In
such cases, some post processing should be performed, as simple one can be the
smoothing of the front or piecewise line fitting.

The framework/matching process also tested in the raw images as well as the
background subtracted images from the high speed videos. For better illustration
in Fig. 9, one image from each experiment are presented in a raw, background
subtracted and filtered form with the respective front tracked by the method
in the same images. For better quality video with N2, the results are almost
same for all type of images. For the H2 experiment, the results are smoother
and better with each step of pre-processing. In contrast, for H2 + air and CO2

the worst results is while using background subtracted image as the noise in the
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background subtraction enhanced a background noise as line structure inside the
wave band.

Fig. 9. Template matching process left: a filtered image from H2 experiment with a
bounding box for matching, center : MSE calculated from matching within the bound-
ing box, right: the result of choosing the minimum MSE in each row presented by the
green curve in a raw image of the same image in left.

Figure 10 shows the result of using ’prewitt’ edge detection method from
Matlab image processing toolbox corresponding to right bottom image in Fig.
4. Some of the available edge detection methods in various processing toolboxes
were able to detect the edges, however they did not provide the required precision
of front position. The red curve is plotted with the first white pixel from right
and green one is from the template matching. This shows the importance and
the advantage of using a robust method like template matching in order to track
the exact front position.
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4 Conclusion

A dynamic template with the predefined size and varying value was created to
track the wave front the high speed videos. A bounding box which size varies
with the size of the wave in the image was set in the images for sliding the
created dynamic template to minimize the processing time. The use of bounding
box has minimize the processing time by more than 1/3 times. The time of
execution of one image from H2 is 0.440 seconds while using bounding box while
took 1.839 seconds while not using bounding box. However, the setting and the
movement of of the bounding box depends upon the wave propagating direction
and structure of the wave, so a prior information about the structure of the
wave in an image is necessary. Visually, all the results are within a acceptable
accuracy and a purposed method of template matching have a huge potential for
tracking various kinds of wave. The purposed method can also be used without
any pre-precessing, however, the tracked fronts would be rougher hence, some
post processing are suggested.

Fig. 10. The result of using ’prewitt’ edge detection method corresponding to right
bottom image in Fig. 4. Red curve - first white pixel from right and green curve - the
template matching.
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Abstract
This paper presents a framework for processing high-speed videos recorded during gas experiments in a shock tube. The main
objective is to study boundary layer interactions of reflected shock waves in an automated way, based on image processing.
The shock wave propagation was recorded at a frame rate of 500,000 frames per second with a Kirana high-speed camera.
Each high-speed video consists of 180 frames, with image size [768 × 924] pixels. An image processing framework was
designed to track the wave front in each image and thereby estimate: (a) the shock position; (b) position of triple point; and
(c) shock angle. The estimated shock position and shock angle were then used as input for calculating the pressure exerted
by the shock. To validate our results, the calculated pressure was compared with recordings from pressure transducers. With
the proposed framework, we were able to identify and study shock wave properties that occurred within less than 300µsec
and to track evolveness over a distance of 100mm. Our findings show that processing of high-speed videos can enrich, and
give detailed insight, to the observations in the shock experiments.

Keywords Image processing · Front tracking · Shock wave · High-speed videos

1 Introduction

The introduction of charge-coupled device (CCD) and com-
plementary metal-oxide semiconductor (CMOS) technology
revolutionized high-speed photography during 1980s and
1990s. Today, there are numerous types of high-speed cam-
eras that operate at a frame rate ofmore than amillion images
per second with resolution of one mega pixel. This devel-
opment enables researchers to capture fast phenomena like
the shock wave propagation and gas explosion in a video as
a series of images [1]. Based on the advanced image and
computer technology, these images now give an alternative
source to estimate the shock wave characteristics like shock
speed, pressure etc. [2,3]. However, in early days, images
were mainly used for visualization of the phenomena [4].
From an image processing perspective, the ability to extract
the desired information automatically was limited.

Image processing is an interdisciplinary research field,
where the aim is to extract some desired information from

B Samee Maharjan
samee.maharjan@usn.no

1 University of South-Eastern Norway, Kjølnes ring 56, 3918
Porsgrunn, Norway

images. It is widely used for object detection, object location,
classification, segmentation and motion detection, among
others. Based on improved computer power, sensor devel-
opment and algorithmic progress, the applications have been
broaden into various other fields, for example security sys-
tem, road safety, document enhancing and gas dynamics. The
study of a shock wave generally called shock on the other
hand is one of the important research area in gas dynamics
[5]. Over the years, the methods for estimating shock charac-
teristics have evolved from local pressure sensor recordings
and numerical simulations [4,6] to advanced simulation tech-
niques [7]. The use of image processing in this particular field
was evolved during early 2000s. One of the main advantages
of using high-speed video/images over a traditional sensor-
based approach is the possibility of extracting large amount
of information within a small-scale experiment (< 100mm).
It makes it possible to extract information with intervals
< 1mm, meaning that several images may be recorded in
between two pressure transducers. In [2,3], a rather simple
image processing method using intensity difference success-
fully determined the shock front position in the images. These
images were captured at low frame rate; thus, they are of
a high quality. However, in case of higher frame rates, the
quality of images degrades. Thus, improved image process-
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ing methods are needed. Some previously developed image
processing framework to process similar high-speed videos
and determining shock front position can be read in [8,9].
The filtering methods suggested in [8,9] have a multistep
spatial filtering unitwhich increases the computing time. Fur-
thermore, in some of the noiser images, the corresponding
segmented images contain more background noise.

In this paper, we propose an image processing frame-
work based on a fast preprocessing unit in combination
with a robust tracking algorithm. The proposed framework
processes images from high-speed videos, recorded during
shock wave boundary layer interaction (SWBLI) experi-
ments. The tracked wave fronts were further analyzed to
estimate (a) the shock position; (b) position of triple point;
and (c) shock angle. The pressure exerted by the reflected
shock was calculated by using the incident shock speed, the
shock angle and shock polare. For validation, the estimated
pressure was compared with the pressure measurement from
the transducer.

The rest of the paper is organized as follows. A descrip-
tion of the experimental setup and the high-speed videos is
described in Sect. 2. The designed image processing frame-
work along with the method to approximate the shock wave
characteristics is described in Sect. 3. The estimated results
are presented and discussed in Sect. 4 followed by the con-
clusions in Sect. 5.

2 Materials

2.1 Experimental setup

The experiments were conducted in the Graduate Aero-
nautical Laboratories at California Institute of Technology
(GALCIT) detonation tube [2]. The tube is a 7.6m long,
280mm inner-diameter and equipped with a 152.4mm wide
test section and two polycarbonate windows to provide opti-
cal access.. The opticalwindowconstructed in the test section
makes it able to capture shock wave boundary layer interac-
tionwhen the incident shock is reflectedbackby the reflecting
wall. For details of experimental setup, refer to [2]. The pla-
nar incident shock in the CO2 gas was driven by a detonating
slugg of C2H2 − O2. The initial pressure was 13kPa, and
Mach number of the incident shock was 2.4.

2.2 Shock wave boundary layer interaction

A schematic diagram of a test section is illustrated in Fig. 1.
As shown in Fig. 1a, the first event is a planar incident shock
propagating toward the reflecting end wall. A boundary layer
is simultaneously formed at the tube wall behind the propa-
gating incident shock as seen in Fig. 1b.When this shock hits
the reflecting end wall, the reflected shock then propagates

Fig. 1 Schematic representation of the shock wave propagating in a
shock tube; a shock tubewith incident shock; b formation of a boundary
layer (B-L) behind the incident shock at the tube wall; c shock tube after
the incident shock reflected off the end wall; d reflected shock interacts
with the (B-L) and formed a triple shock configuration at the tube wall

backward illustrated in Fig. 1c and interacts with the bound-
ary layer. AMach stem structure with a triple point is formed
as a result of the interaction which is shown in Fig. 1d. The
phenomena is known as a bifurcation of a reflected shock
wave. Mark reported a classic study of boundary layer inter-
action of reflected shocks in a shock tube in 1958 [4]. The
distorted reflected shock close to the wall preceding the nor-
mal reflected shock is commonly called an oblique shock or
the foot. The third shock behind these two shocks is known
as rear shock. The point where all three shocks meet is what
called a triple point, and the angle that the oblique shock
makes with the boundary is a shock angle. The triple point
configuration is also known as aMach stem structure; further
description of bifurcation of reflected shock and Mach stem
can be found in [4,5].

2.3 Imaging technology

The two imaging techniques used for capturing the wave
propagation, namely shadowgraph and schlieren [10]. They
translate the phase speed difference of a light passing through
the medium, into different intensities in a viewing plane
(image). The use of these imaging technologies in the flow
visualization can be read in [11]. For the review of recent
developments in shadowgraph and schlieren techniques,
refer to [1].
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Fig. 2 Shadowgraph images showing the propagation of the incident shock (first row) and the reflected shock (second row) during Exp. 2516.
Images are placed chronologically left-to-right in the first row and right-to-left in second row

2.4 High-speed videos

A high-speed camera especially introduced for capturing a
fast phenomena like the compressible gas flow namedKirana
1 was used to record the SWBLI experiments. Even though
the camera was operated at the frame rate of 500,000 frames
per second, the SWBLI is an extremely fast phenomenon,
which occurs in less than a millisecond. Thus each high-
speed video consists of 180 images of size [768×924] pixels
which is about [81 × 97] mm or [60 × 72] mm, depending
on the scaling factor of 9.528 or 12.902 pixels/mm, respec-
tively. In this paper, we processed two experiments, one
done with schlieren technique (Exp. 2558) and another with
shadowgraph (Exp. 2516). A sequence of images from the
high-speed video (Exp. 2516) is shown in Fig. 2. The images
in the first row show the propagation of the incident shock
from left to right toward the reflecting end, and the images in
the second row show the propagation of the reflected shock
from right to left. The formation of a triple point structure is
clearly visible in the second row.

3 Image processing

In short, an image processing framework was designed to
perform these following tasks:

1. Read each image from a high-speed video.
2. Reduce background noisewhile preserving desired infor-

mation.

1 https://www.specialised-imaging.com/products/video-cameras/
kirana.
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Fig. 3 Plot of the intensity values of a single row in one of the images
from the high-speed video (Exp. 2516)

3. Track/locate the front of the shock wave in images with
a visual front.

4. In case of reflected shock, segment the tracked front into
a normal shock and an oblique shock.

5. Calculate the shock angle and the height of the triple
point.

Due to the presence of the camera window in the upper part
in all images (see Fig. 2), only the lower 400 rows were
considered for the rest of this paper.

For the human eyes, the fronts are easily captured in the
images, and however, to get a computer program to perform
the same task is not trivial. To elaborate this, a 1-D intensity
profile of a single row is given in Fig. 3. This figure shows the
ambiguity of the solution. The framework to process high-
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Fig. 4 Examples of background subtraction when applied to a bottom
left image in Fig. 2; b one of the image from Exp. 2558

speed videos and to overcome the above-mentioned problem
is described in the following subsections.

3.1 Image filtering

Background noise in the images comesmainly from the film-
ing technology, i.e., the camera, the experiment equipments
and ongoing changes in gas properties. The filtering of an
image in the current framework consists of a background
subtraction followed by a low-pass frequency filtering. For
background subtraction, a background image was generated
from each high-speed video by averaging all images without
a front. The number of images without fronts varies within
each video, and sometimes theremight be several images and
sometimes just one. The background image was constructed
with a prior study of the images and manually choosing the
images without shock fronts. The constructed background
image was then successively subtracted from all the images
with a visual front. The result of background subtraction in
one of the images from each experiment is shown in Fig. 4.

Filtering of an image can be defined as an operation in
which the value of the any output pixel is determined by the
combination of the values of the pixels in the neighborhood
of the corresponding input pixel. Convolution is a filtering
algorithm which takes a weighted sum of the neighboring
input pixels, and the matrix defining the weights is known
as convolutional kernel. Filtering using the convolution of a
kernel matrix with the original image in the spatial domain
is operationally costly, when the image size is too large. In

Fig. 5 Low-pass frequency filtering corresponding to Fig. 4b; a fre-
quency spectrum; b frequency spectrum of filtered image; c filtered
image in spatial domain after IFFT; d result of edge detection ’prewitt’
corresponding to Fig. 5c

such cases, filtering can be done in frequency domain where
the multiplication is identical to the convolution in spatial
domain.

For filtering in frequency domain, at first the original
image (spatial) was transferred into frequency domain by
using fast Fourier transform (FFT). Then, multiplied the
transferred image with the filter function and thereafter, re-
transformed back to the spatial domain by using inverse
Fourier transform. A low-pass filter (LPF) attenuates high
frequencies greater than a cutoff frequency, resulting a
smoother image in the spatial domain. A low-pass filter of
order 3, having a cutoff frequency of 50 Hz, was used for fil-
tering the images. The frequency spectrum of Fig. 4b can be
seen in Fig. 5a and Fig. 5b is the result after multiplication of
Fig. 5a with LPF, whereas Fig. 5c is the final filtered image.
Further details regarding fast Fourier transform and filtering
of images in frequency domain can be read in [12]. Figure 5d
shows the result of using ’prewitt’ edge detection method
from MATLAB image processing toolbox corresponding to
Fig. 5c. Some of the available edge detection methods in
various processing toolboxes were able to detect the edges;
however, they did not provide the required clarity of front
position. This suggested further processing of the filtered
images in order to track the exact front position.

3.2 Segmentation

The term image segmentation refers to the partition of an
image into a set of regions that cover the entire image. For
our application, this implies separating the shock front from
the background. To do so, all images were normalized to
intensity values in range [0–1]. The images were segmented
into a background (black) and the shock wave (white) based
on a thresholding technique suggested by Otsu [13]. The
Otsu’s algorithm assumes that the image contains two classes
of pixels following bi-modal histogram (foreground pixels
and background pixels). The algorithm then calculates the
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Fig. 6 The result of segmentation (after low-pass filtering) performed
in; a Fig. 4a; b Fig. 4b; c an example of segmentation where filtering
did not suppress all noise; d a template consists of two 5 × 5 matrices
for the considered pixel

Fig. 7 a A segmented image from high-speed video of Exp. 2558 with
the front tracked by template matching. The tracking misplaced some
points in the lower part of the front; b second tracking done only till
median of first tracked front(yellow line) shown in the corresponding
raw image (color figure online)

optimum threshold separating the two classes with minimum
variance. For example, a threshold value given by Otsu’s
method corresponding to Fig. 5cwas 0.25. All the pixels with
an intensity level below 0.25 are labeled as background, and
all pixel values equal to or greater than 0.25 are labeled as
foreground. The result of applying Otsu’s algorithm (after
low-pass filtering) in Fig. 4a and b is shown in Fig. 6a and b,
respectively.

3.3 Front tracking using template matching

Toget an algorithm to track the front in an image like Fig. 6a,b
is rather simple, just slide through all pixels and mark the
first white pixel (from left) in each row. However, the out-
put from the segmentation step, i.e., Otsu’s algorithm, does
not always work that perfect. The amount of noise varies
from image to image, video to video, and can affect the seg-
mentation result shown in Fig. 6c. Thus, to overcome these
situations, a template matching technique was designed for
automatic track of the fronts. A template matching technique
is a well-known method for image classification and seg-
mentation. In short, with this approach, the aim is to find the
position/object in the scene which match best with a prede-
fined template [14]. For the present work, a template which
consists of two 5 × 5 matrix is created as shown in Fig. 6d.
As it can be seen in Fig. 6d, the matrices are shifted such
that a single template can be used for tracking both the nor-
mal (straight) and oblique (tilted) shock. The element values
for the left-hand matrix of the template are set to 0 (black),
while for the right-hand matrix to be 1 (white). The frame-
work matches the template pixel by pixel, row by row, and
calculates a matching error for each location. The matching
error is the sum of the differences between the pixel values
of the template and the footprint template created around the
considered pixel in the image. For example, in Fig. 6a–c,
around the top left of the image where only background is
present, the left-side matrix of the template will match per-
fectly. However, the right-side matrix will not match at this
location, thus resulting a huge error. Moving further along
the columns, the template will give minimum error around
the front where both the matrices seem to match perfectly.
To eliminate the loss of result due to boundary pixels in the
lower boundary, the last row was replicated for five more
rows than the actual data. After the matching process, the
pixel in each row where the template matches the best, i.e.,
the point with theminimum error was chosen. Formost of the
images, the tracking was accurate; however, for a few images
in Exp. 2558, somemistracked points were observed, as seen
in Fig. 7a. To overcome this problem, the following a priori
information was incorporated:

1. The oblique shock wave is ahead of the normal shock.
2. The position of triple point does not goes above row no.

150.

The median of the normal shock (row 50:150), tracked at the
first (green curve in Fig. 7a) was calculated which is shown
by the yellow line in Fig. 7b. Later, during the second track-
ing, the framework tracks the front only till the calculated
median, such that the noise present beyond the median will
be excluded. The median line with the final front is shown in
Fig. 7b.
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3.4 Estimating triple points based on segmented
regression

To estimate the triple point and the shock angle, the tracked
front was divided into a normal shock and an oblique
shock, by using a segmented regression technique. Seg-
mented regression is a method of fitting multiple lines from
a single dataset [15]. In case of fitting two lines from a single
dataset, it requires only one break point BP, and the model
can be written as,

y = a1x + b1 for x ≤ BP (1)

y = a2x + b2 for x > BP. (2)

In our case, the x-y points of the tracked front served as a
dataset from which two straight lines were fitted: one for the
normal shock and one for the oblique shock, as illustrated
in Fig. 8. Please note that, the segmented regression process
was conducted in the x-y coordinate system. Figure 9 sum-
marizes the segmented regression process of determining the
optimum BP by consecutively fitting two lines to the under-
lying dataset. For the sake of understanding, the process is
demonstrated in the images. The blue curve represents the
tracked front, and the yellow mark yields the breaking point
BP, while the orange line represents the first line fitted as in
(1). Thewhite line is then fitted to the remaining points below
BP as in (2). The process follows a brute force approach, from
top to bottom, starting BP at row no. 10 and for each itera-
tion, the BP moves down by one row. After each iteration,
the least square error is calculated for both fitted lines with
their respective location and the errors are summed up and
stored. For example, in Fig. 9a the orange line will give a
small amount of error as it almost coincides with blue curve
above the yellow point, while the white line is misplaced and
causes large errors. Figure 9b shows the fitted line when the
separating point is located near the triple point and thereby
the fitted lines representing the normal and the oblique shock
are rather accurate. The total error gathered from both lines
seems to be at a minimum with this location. Further down,
see Fig. 9c, the error increases. For each image, after the
process was finished, the BP that gave the minimum error
was considered as the separating point between the normal
and the oblique shock. A close look around the triple point is
presented in Fig. 9d, where the point which gives the mini-
mumerror between twofitted lines is visualizedwith a yellow
mark. Now, based on the selected point (yellow), two straight
lines are refitted, the red line with respect to points from the
tracked front below the yellow point, whereas the green one
is fitted with respect to 100 points above it. (By trial and
error 100 points were used in this study, but other selections
may be used). The white circular point shows the crossover
between the two fitted lines, i.e., the triple point, while the
slope of the red line gives the shock angle.
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Fig. 8 The position/height of a BP with respect to the lower boundary
in x-y coordinate system

(b)(a)
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Fig. 9 a–c Segmented regression process. The yellow marks represent
different separating points for line fitting. The blue curve represents the
tracked front. The orange line yields a line fitted for the normal shock,
while the white line gives the line fitted for the oblique shock; d a close
look at the triple point area (color figure online)

4 Results and discussion

In this work, an image processing framework including
frequencyfiltering, templatematching and segmented regres-
sion was developed to track the wave front in multiple high-
speed videos from shock experiments. The fronts tracked in
Exp. 2516 are presented in Fig. 10. Figure 11 shows the com-
parison between the proposed algorithm with previous work
[8,9]. The segmented images in Fig 11a and b demonstrate
that the segmentation with FFT filtering performs better than
median filtering used in the segmented images demonstrates
that the segmentation with FFT filtering performs better than
median filtering used in [8,9]. In addition, the average time
taken by the proposed method to track the front is about 4 sec
per image, which is a second less than by [9] and around 20
sec (45 iterations) less than [8]. It can be observed in Fig 11d
that the front tracked by the proposed method is closest to
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(a)

(b)

Fig. 10 Collection of the tracked fronts in the Exp. 2516; a incident
shock (fronts plotted in each time step); b reflected shock (fronts plotted
in every five time step)

(a) (b)

(c) (d)

Fig. 11 Comparison between results from proposed framework with
results from [8,9]; a the segmented image and a tracked front by [9]; b
the segmented image and the front tracked by proposed method; c the
fronts tracked by all three methods (blue— [8], green—[9] and red—
proposed method; d enlarged around triple point (color figure online)

the actual front. However, the differences are small and is a
subjective matter.

The first few frames are excluded while calculating pre-
senting the heights of triple points and shock angles as
the number of points representing the oblique shock was
too sparse to have a valid calculation. The heights of the
triple points from the lower wall have a likewise behavior in
both experiments as can be observed in Fig. 12. The height
increases as the front moves away from the reflecting wall,
however at the later part beyond 50mm from reflecting wall,
and the height flattens out. A similar behavior has earlier been
observed by [16]. The shock angles calculated for both exper-
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Fig. 12 The estimated height of the triple point from the lower bound-
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figure online)
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Fig. 14 Ashock polar plotted for Exp. 2516with shock angle 50 degree,
and the pressure reading in a pressure transducer (channel 17)

iments are plotted in Fig. 13. The black diamond shapemarks
in Fig. 13 represent the manual measurement performed on
the images of Exp. 2516. The images were selected such
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that the position of foot of shock lies around 10,20,30…mm
from the reflecting wall. The comparison with the manual
measurements shows that the shock angle calculations are in
good agreement.

Further, to compare the results derived from the image
processing with actual pressure recording, a graphic method
known as the shock polare [11] was used. Basically, it makes
possible to find the shock strength, i.e., pressure ratio across
the shocks (both normal and oblique), from knowing the
Mach number (speed) of the incident shock and the angle of
the oblique shock. The incident shock speed was calculated
by using nonlinear regression for line fitting on the position
of the incident shock [2]. The shock polare for Exp. 2516 is
shown in Fig. 14 (left). The blue curve in Fig. 14 (left), gives
the relation between deflection angle (theta) and the pressure
ratio across the oblique shock (p/p1). When the shock angle,
as shown in Figs. 2 and 13, is known, the deflection angle
can be calculated with shock equation [11].

Figure 14 (right) shows the pressure recordings of the
transducer located 50mm from the reflectingwall.Wemanu-
ally select the image from the high-speed video in which the
foot position of the wave was located closest to the selected
transducer. The corresponding shock strength in the shock
polare agrees with the shock strength recorded in the pres-
sure recording as shown by red marks. Another shock polare
(red curve) originated at shock strength point in the blue curve
is the shock polare for the rear shock (see Fig. 2). Behind the
normal shock and the rear shock, deflection angle and pres-
sure will be the same [11]. Therefore, the upper crossing of
the blue and the red polare represents this solution for these
parameters.

So, from image processing we are able to predict the pres-
sure and the state in the triple point configuration (above the
boundary layer). This information will not be available from
a pressure recordings, since pressure will be influenced by
boundary layer interactions as theyweremounted in thewall.
To this end, it can be concluded that the high-speed videos in
combination with image processing can enrich and give new
detailed insight to shock wave boundary layer interactions.

5 Conclusions

In this paper we have used high-speed video in combination
with image processing as a framework for studying reflected
shock wave and shock wave boundary layer interactions in
detail, within time intervals of 300µs. Frequency filtering
showed an overall accurate performance both with respect
to robustness and precision for the application at hand. Tem-
plate matching is a simple, but still powerful technique for
identifying specified features in an image. In case of front
tracking, misplacements of the front was seldom observed
in this study. Segmented regression proved to be an efficient

tool for dividing the tracked wave front into two parts: the
normal and the oblique shock. However, the template match-
ing and the segmented regression took almost 80 percent of
total processing time. Hence, further work can be done to
obtain a speed-up concerning these steps. The pressure ratio
across the shock wave was calculated with a shock polare,
which thenwas comparedwith themeasurements fromactual
pressure transducers. The comparison revealed that our esti-
mates are in good agreement with the pressure recordings.
The overall processing of one high-speed video takes less
than an two hour to complete which is comparatively lesser
than any small computer simulation done for the same study.
With the proposed framework, we were able to identify and
study shock wave properties that occurred within less than
300µsec and to track evolvement over a distance of 100mm.
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Machine learning

Introduction

Figure 6.1: An example of DNN architecture.

If there is one field that has developed leaps and bound in the past decade, it should be
Machine Learning. Machine learning essentially deals with the problem of automatically
finding a decision, for example, separating cats from dogs, but by training the machine.
During a training phase, the so-called training data set is pre-processed and meaningful
features are extracted (Maier et al., 2018). In this context, one way of achieving is by
implementing a neural network. The neural network consists of interconnected neurons
that takes input and perform some processing on the input data, and finally forward the
current layer output to the coming layer. Each neuron in the network sums up the input
data and applies the activation function to the summed data and finally provides the
output that might be propagated to the next layer. A single neuron itself can already be
interpreted as a classifier if the activation function is chosen such that it is monotonic,
bounded, and continuous for example sign function, sigmoid function (Cybenko, 1989).

A neural network that consists of multiple hidden layers is known as Deep Neural network
(Schmidhuber, 2015). In the literature, many arguments are found why a deep structure
has benefits for feature representation (Bengio et al., 2013). The general architecture of
DNN is shown in Figure 6.1.

CNNs purposed by Farabet et al. (2013) has become the leading architecture for most
image recognition, classification, and detection tasks from the early 90s. CNN is a type
of deep learning neural network which is specially designed for processing the data in the
form of images. A general structure of CNN is presented in Figure 6.2. CNNs differs from
the usual neural network as it consists of a convolution layer which only consider a local
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Figure 6.2: An example of CNN architecture 1.

neighbourhood for each neuron and that all neurons of the same layer share the same
weights, which dramatically reduces the number of parameters and therefore memory
required to store such a layer. Convolution is usually followed by pooling to reduce the
scale of the input. The end of the network consists of a fully connected layer for output
and the layer that defines the job of the network for example classification, regression,
etc. CNNs have obtained great successes for various applications in computer vision, such
as image classification (Krizhevsky et al., 2012), object detection (Girshick et al., 2014),
image labelling (Farabet et al., 2013).

The possibilities of implementing machine learning to track the wave front in the high
speed videos and subsequently calculating the primary and secondary information were
studied. Due to time bound the algorithm cannot be completed. However, a simple 1-D
deep neural network (DNN) and a 2-D convolutional neural network (CNN) model was
designed.

Figure 6.3: Manually plotting the front positions by choosing some points.

1https://www.frontiersin.org/articles/10.3389/fpsyg.2017.01745/full.
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Training dataset

One of the high speed videos was selected to begin with and to reduce complexity only
images with the reflected shock wave were considered. From the images with reflected
shock, 14 images (10 percent), ranging from first to last every 10 frames apart was selected
and the fronts were plotted manually. The fronts were plotted by picking a few points
from top to bottom of the image, as shown in Figure 6.3 by yellow dots and a red line
connecting them. By using extrapolation on the top boundary, it was made sure that the
size of the front is always [400 × 1] , so that each row in the image have the front value.
To generate more images for training, 56 training images generated from the original 14
by adding random noise.
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Figure 6.4: Some of the training data for DNN.

1-D dataset for DNN:

Due to the large size of the image [400 × 924], the images were cropped into [400 × 200]
as shown by the cropping window in Figure 6.3 by a black rectangle. To make these
2-D images into a 1-D dataset, each row in training images was considered as one input
and the position of the front in that row as an output. Such that an input is a vector
of grayscale value of a row i.e. [1 × 200], and the output is the column number where
the front is located. In total from 56 training images provides 22400 pairs for training.
Among these randomly selected 10000 pairs were used as a training data set and 1200 for
validation. Some of the examples of 1-D input data are shown in Figure 6.4 where the
output is pointed by a red dot. After many combinations, the efficient one was a DNN
with three layers each with 50 neurons and trained with 5000 epochs.
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2-D dataset for CNN:

Figure 6.5: Generating multiple training images by sliding cropping window of size [200 × 200].

The most challenging part with CNN was creating a training database. Unlike some other
types of images like numbers, real objects like cats and dogs, there was no training dataset
available. To make image size trainable, we decided to work with an image size of [200 ×
200], such that an entire oblique shock which spreads around 200 columns can be trained
as well. A training set of 10000 images was made by cropping each training image into
multiple [200 × 200] images by moving the cropping window left right and down as shown
in Figure 6.5. Some of the training data are presented in Figure 6.6 and Figure 6.7. To
reduce complexity, two CNN each for normal and oblique shock were trained. The best
and efficient network architecture consists of an input layer at the beginning, three sets of
convolution layer followed by normalization layer, relu layer, and max pooling layer and
fully connected layer at the end. All the convolutional layers contained a filter of size [10
× 10] and the number of the filter was 8,16 and 32 respectively. The pooling layer is with
a pool size of [2 × 2].
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Figure 6.6: Some of the normal shock training data for CNN.

Figure 6.7: Some of the oblique shock training data for CNN.

Results

The mean square error for the validation of 1200 data was 2.2432. The result of the DNN
on a few of the images excluding 14 training images, is shown in Figure 6.8. As it can be

140



Figure 6.8: The result of DNN in three images (excluding training images) from the same training high
speed video.

observed, there are some errors in the first image around the small oblique shock. The
network tracks fairly better in later images. Considering the simple network, the output
was satisfactory. The same network was used for tracking fronts in other high speed
videos, an example is shown in Figure 6.9. The network tracks properly in the straight
shock, however it was not able to track oblique shock. The initial reason assumed is the
difference between the oblique shock structure in two high speed videos.

Figure 6.9: The result of DNN in the images from other high speed video.

Figure 6.10 shows the test results from CNN in some of the images from the training high
speed video. The fronts in the upper halves are tracked by network trained with normal
shock and the lower halves by network trained with oblique shock. As can be seen in the
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lower boundary, even in the first pic where the oblique shock is very small the tracking is
good. However, there is some misplacement in normal shock.

Figure 6.10: The result of CNN in three images (excluding training images) from the same training high
speed video.

Figure 6.11: The result of CNN in the images from other high speed video.

Similar to DNN, the trained network shows some misplacement of oblique shock, while
used in another high speed video as shown in Figure 6.11. At this time, the initial
assumption for mis-tracking in normal shock is, the wave fronts used for training straight
not curve however, the actual front is little curved.
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Initial observation

1. A simple ANN works fairly good but only for the images from the training high
speed video.

2. If the wave front is different from the training one, the accuracy of the network
deteriorates massively.
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