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The Constitutive Equations of Piezoelectric Layered

Beams with Interdigitated Electrodes
Cuong Hung Nguyen, Ulrik Hanke, Einar Halvorsen

Abstract—This paper establishes constitutive equations, or
linear two-port models, of piezoelectric layered beams with
interdigital electrodes (IDE). The effect of the non-trivial field on
the transduction is analyzed. Based on conformal mapping tech-
niques, we derive a new analytic expression for the capacitance,
the electric field and the electromechanical coupling factor of an
anisotropic dielectric with the IDE configuration on top. The IDE
capacitance with an anisotropic permittivity can be treated as
the one with an isotropic permittivity. The complexity expression
of the non-uniform field is simplified to a quadratic form. A
correction is required for the transducer’s coupling constant.
All modifications are expressed analytically. The analytic models
are verified against the finite element method. Finally, the two-
port models help to compare to devices with other electrode
configurations such as beams with a top and bottom electrode
(TBE).

Index Terms—constitutive equations, piezoelectric, electrome-
chanical coupling, IDE, conformal mapping, thin-film.

I. INTRODUCTION

MANY solid state devices ultilize piezoelectric sensors,

actuators, and transducers in their designs, e.g. energy

scavengers [1], accelerometers [2], switches [3], micromirrors

[4] and ultrasonic biomedical probes [5]. For some of these

applications, a layered beam which consists of many layers

of piezoelectric, elastic, insulating or conducting materials is

often exploited. In operation, there is an electromechanical

coupling process in the piezoelectric layers that depends on

the whole beam configuration and the material choice of each

layer. An obvious question to raise is then how to design the

device to achieve the highest coupling.

The constitutive equations or two-port model are a mathe-

matical representation of an electromechanical transducer. For

a linear system it can be denoted by a matrix of coefficients

relating stimulus and response of the transducer. The stimulus

can for example be efforts such as force F and voltage V .

The responses are then the generalized displacements charge

Q and deflection δ.

A piezoelectric two-port can be specified by three param-

eters: a beam stiffness Ks, a free capacitance C, and an

electromechanical coupling factor κ. The squared electrome-

chanical coupling factor is defined as the ratio of the output

energy to the maximum input energy during a conversion

cycle. Hence, κ2 is a figure of merit saying how effective

the piezoelectric transducer is in converting energy. Early
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works establised the two-port model of unimorph and bimorph

piezoelectric benders [6], [7]. Those constitutive equations

were later used to evaluate the electromechanical coupling for

piezoelectric actuators [8].

With modern thin film technology, piezoelectric devices

can be miniaturized while retaining excellent piezoelectric

properties [9]. The thin-film technology allows a multitude of

potential surface electrode configurations. Since different con-

figurations lead to different field distributions, not necessarily

uniform inside the piezoelectric films, they exploit the material

differently and their performance cannot easily be compared

without also taking geometry into account. Typically, the elec-

trodes are arranged such that either of two different couplings

are exploited to drive the transducer: the transversal coupling

with top and bottom electrode (TBE) configuration which is

governed by the piezoelectric constant d31 and the longitudinal

coupling with interdigital electrode (IDE) configuration which

is governed by the piezoelectric constant d33. The strongest

transduction may be expected in the IDE transducers because

the d33 piezoelectric constant is about twice the d31 constant

in common materials [10], [11]. Therefore, the d33 concept

has attracted much attention for use in, e.g., energy harvesters

[12], switches [13], accelerometers [14] and tunable lenses

[15].

The well-established two-port model of unimorph bender

[6], [8] can apply directly for the transversal coupling trans-

ducer. Currently, researchers concentrate on the longitudinal

coupling transducer with the IDE configuration. By using

energy methods, analytical formulas for the IDE capacitance,

total charge and total electrical energy was derived in [16]. The

effect of multiple layers of materials was taken into account

by modifying the simple parallel plate model. Similarly, the

paper [17] treated the stress and capacitance formulas in the

simplest forms. In [18] this weakness was recognized and

the two-port model was improved with a capacitance model

based on conformal mapping [19]. However, the conformal

mapping method, as it is normally applied, is limited to

isotropic dielectric materials. Hence, the model cannot be di-

rectly applied to piezoelectric materials such as lead zirconate

titanate (PZT). In [20] the effect of beam width on the effective

material constants was discussed. However, the same simple

capacitance formula as in [16] and [17] was used. In addition,

all these works neglect the fringing effect around the tip of

the IDE finger.

In this paper, we make further efforts in completing the

two-port model for the IDE transducer. The dependence of

effective material constants on width is discussed. We present

models that take into consideration the effects of the multilayer

c©2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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(a) TBE

(b) IDE

Fig. 1. Piezoelectric cantilever beam with (a) d31 and (b) d33 coupling. The
arrows in the grey areas denote polarization direction.

Fig. 2. Cross section of layered beam structure. An example of the TBE
device with M layers.

structure. The conformal mapping method is adapted to the

anisotropic dielectric by a coordinate transformation [21]. This

approach enables a new model based on analytical expressions

for the fringing capacitance at the tips of the IDE fingers, the

non-uniform electric field and its effect on the transduction. All

analytical results are validated against finite element models.

Finally, the two-port model enables us to make a comparison

between the IDE and TBE transducers.

II. TWO-PORT MODELLING

A. The general form of two- port model

In this study, we investigate multilayered cantilever beams

like the one shown in Fig.1. A potential difference V is applied

across the electrodes. An external force F acts at the tip of the

beam. Here, x-y-z coordinate-system axes are device oriented

and are different from the crystallographic axes 1-2-3 of the

piezoelectric material which are determined by the polarization

direction (3 axis) and therefore may vary throughout the

device. In general, the layered beams can include arbitrary

number of layers of different materials as shown in Fig.2

i.e., an elastic structural material, a piezoelectric layer, some

diffusion barriers and/or seed layers, and the IDE or TBE metal

electrodes.

Under ideal conditions, the device has no loss or leakage.

The energy-conserving transducer is assumed to work in the

linear regime. Regardless of whether the configuration is a

TBE Fig.1a or an IDE Fig.1b in static equilibrium, the tip

deflection δ and electrical charge Q can be expressed as

(
δ
Q

)
=

(
1
Ks

ζ

ζ C

)(
F
V

)
(1)

where C is the free capacitance and is defined as the ca-

pacitance of the structure in the mechanically unloaded state

(F = 0), Ks is the beam short-circuit stiffness, and ζ is the

transducer’s coupling constant and is defined as the free tip

deflection per unit voltage or the short-circuit charge per unit

force [6], [22]. The electromechanical coupling factor κ is

κ = ζ

√
Ks

C
, 0 ≤ κ2 ≤ 1. (2)

B. Governing equations

The governing equations are a starting point in establishing

the constitutive equations for the beam. First, some assump-

tions should be addressed [23] :

1. Each layer is purely linear elastic or piezoelectric.

2. All parts of the structure are in static equilibrium.

3. There is no slip at interfaces between layers.

4. Beam thickness is always much smaller than the beam

radius of curvature.

As in [24], we distinguish two special cases: a narrow beam

i.e., a beam with width much smaller than its length and a

wide beam i.e., a beam with width much larger than its length.

These two cases are treated respectively with plane stress and

plane strain constitutive equations. As mentioned in [24], this

distinction is motivated by the small Searle parameter [25]

and by Swansons conclusion for homogeneous beams [26]

that the wide-to-narrow beam transition is independent of the

thickness. Intermediate cases of width to length do of course

occur, but would have to be treated by plate theory if the

limiting cases are not accurate enough.

The effective Young’s modulus Y , the piezoelectric cou-

pling constants d, and the dielectric constant ε for d31 (3,4)

[27] and d33 (5,6) coupling are defined as

Y =





1
sE11

narrow beam

1
sE
11,eff

=
sE22

sE11s
E
22−(sE12)

2 wide beam,
(3)

d =

{
d31 narrow beam

d31,eff = d31 − d32
sE12
sE22

wide beam.
(4)

Y =





1
sE33

narrow beam

1
sE
33,eff

=
sE22

sE22s
E
33−(sE32)

2 wide beam,
(5)

d =

{
d33 narrow beam

d33,eff = d33 − d32
sE32
sE22

wide beam.
(6)

ε =

{
εT33 narrow beam

εT33,eff = εT33 −
d2
32

sE22
wide beam.

(7)
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where sEij is the compliance at constant electric field, dij is

the piezoelectric coupling constant and εTij is the dielectric

constant at constant stress. The Voigt notation [28] is used.

In our analysis, we assume that the piezoelectric material has

zero shear-tension coupling, i.e. sEij = 0 for i = 1, 2, 3 and

j = 4, 5, 6. This assumption applies to many materials such

as those with orthorohombic, cubic, isotropic or hexagonal

symmetry [29].

From the assumptions, the normal x-axis strain in the beam

is

S(x, z) = u′(x)− zw′′(x) (8)

where u(x) and w(x) are the longitudinal displacement and

the transversal deflection of a point at position x along the

beam axis.

Let zm denote the lowest coordinate of the mth layer

along the z-axis as shown in Fig.2. Ym, dm, and εm are the

material parameters of this layer. Starting from the d-form of

the piezoelectric constitutive equations and using the effective

constants in (3-7), simplified constitutive equations within a

layer can be written

Tm(x, z) = Ym(S(x, z)− dmEm(x, z)) (9)

Dm(x, z) = εm(1− κ2
m)Em(x, z) + dmYmS(x, z) (10)

where κ2
m = Ymd2m/εm is an electromechanical coupling

factor for the material.

The general scheme is to use (8-10) to express the electric

displacement Dm(x, z), the stress resultants bending moment

per unit width

M(x) =

M−1∑

m=0

∫ zm+1

zm

Tm(x, z)zdz, (11)

and axial force per unit width

P (x) =

M−1∑

m=0

∫ zm+1

zm

Tm(x, z)dz (12)

in terms of V , u′ and w′′ for a section of the beam. Together

with beam equilibrium equations, these results can be used to

obtain expressions for the parameters of the two-port model

stated in (1).

C. Analysis of the TBE transducer

Similar to the analysis of layered beam bender [27], it is

possible to choose the coordinate system such that bending

moment does not depend on the axial strain and axial force

does not depend on the bending strain. One can show that this

decoupling is achieved when

∑

m

z̄mYmtm = 0 (13)

where tm = zm+1 − zm is the thickness of the mth layer and

z̄m = (zm+1 + zm)/2. This choice enforces the origin of the

coordinate system to be located at the neutral axis of the beam

and leads to

M(x) = −K̂
∂2w

∂x2
+ Γ̂

V

tp
(14)

or
∂2w

∂x2
= −M(x)

K̂
+

Γ̂

K̂

V

tp
(15)

where the tp is the thickness of the piezoelectric layer and

K̂ =
∑

m

Ym

[
Im

1− κ2
m

+ tmz̄2m

]
, (16)

Γ̂ =
∑

m

z̄mYmtmdm. (17)

Here, Im = t3m/12 is the area moment of inertia per unit width

of the mth layer.

As the force F acts at the tip of the cantilever beam,

M(x) = −F (L− x). (18)

The derivation of the tip deflection is as follows. First, we

substitute (18) into (15). Then, the new equation is integrated

across the beam length. Finally, boundary conditions, no

deflection and no slope at the clamped end, are applied to

find all integral constants.

From Gauss’s law, the electric displacement within the

piezoelectric layer at any cross-section is constant. Hence, the

electric displacement can be obtained from (10) for any value

of z. However, since the electric field expression has not been

derived yet, calculation of the electric displacement from the

average value is more convenient. This average value is found

by integrating (10) along the z-axis:

Dz(x) =
1

tp

∫ zp+1

zp

Dz(x, z)dz. (19)

The total electric charge per unit width is

Q =

∫ L

0

Dz(x)dx. (20)

Neglecting the small contribution to charge from the axial

strain, we arrive at a TBE two-port-model with narrow-beam

parameters

Ks =
3K̂

L3
, (21)

ζ =
z̄pd31

sE11K̂

L2

2
, (22)

C = εT33
[
1 + (α31 − 1)κ2

31

] L
tp
, (23)

and

κ2 =
3

4

α31κ
2
31

1 + (α31 − 1)κ2
31

(24)

where α31 = tpz̄
2
p/(s

E
11K̂), κ2

31 = d231/(s
E
11ε

T
33). Note that

tpz̄
2
p/s

E
11 is a contribution of the piezoelectric layer to the

flexural rigidity of the beam (16). The quantity α31 therefore

quantifies the relative contribution of the piezoelectric layer to

the flexural rigidity. We will refer to it as a flexural rigidity

ratio.
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Fig. 3. Homogeneous field distribution assumption inside active regions.

The formulas (23) and (24) show that all the dependence of

C and κ2 on the other materials of the stack and their relative

positions, i.e. the detailed multilayer structure, is through this

flexural rigidity ratio.

For the wide beam, the effective values (3), (4) and (7)

should be used instead to obtain its parameters by exactly the

same route.

For the specific case of a beam with only one structural

elastic layer and one piezoelectric layer, the two-port param-

eters can be found in [6] and [8]. Our general results (21),

(23) and (24) agree with these previous results when setting

M = 2.

III. IDE TRANSDUCER WITH UNIFORM FIELD

We now consider the IDE structure shown in Fig.1b. We first

assume that the electric field has a homogeneous distribution

within the active regions between the electrode fingers and

is zero in the passive regions beneath each finger as shown

in Fig.3. We choose the origin of the coordinate system so

that the desired decoupling between axial strain and bending

moment is achieved in the active regions. With this choice,

there will be a small such coupling due to the different

orientation of the piezoelectric polarization and due to the

presence of a very thin metal-electrode film. We neglect this

tiny coupling. Following [24], the governing equation of the

cantilever is

∂2w

∂x2
=

{
−M(x)

K̂
Passive region

Γ̂2

K̂2

V
a − M(x)

K̃2

−Mn

(
1
K̂2

− 1

K̃2

)
Active region

.

(25)

The passive and active regions are respectively corresponded

to x ∈ [nT, nT+b) and x ∈ [nT+b, (n+1)T ) for integer n.

The flexural rigidity in the passive regions K̂ is given in (16).

In active regions, the flexural rigidity is

K̂2 =
∑

m

Ymtm
(
z̄2m + t2m/12

)
. (26)

Mn =
1

a

∫ (n+1)T

nT+b

M(x)dx, (27)

is the average moment per unit width and

Γ̂2 =
∑

m

z̄mYmtmdm, (28)

K̃2 = K̂2 + K̂2,ξ −
Γ̂2
ξ

K̂p + K̂p,ξ

, (29)

where K̂p =
∑
m
tmYm, K̂p,ξ =

∑
m
tmYmξm, ξm =

κ2
m

1−κ2
m

,

K̂2,ξ =
∑
m
tmYmξm(z̄2m + t2m/12), and Γ̂ξ =

∑
m
z̄mYmtmξm.

Fig. 4. The total electric charge on an electrode is found by integrating the
normal component of the electric displacement vector around the contour.

By inserting (18) into (25), integrating the resulting relation

across the beam length, and applying boundary conditions, the

tip deflection of the beam is found. From (1), the short-circuit

compliance 1/Ks is the ratio of this deflection to the force at

zero voltage, i.e.

1

Ks
=

L(N + 1)

K̂2

[
a2

2
− a3 + 3a2b

6L
+

NTa

2
− N(N + 2)T 2a

6L

]

+
L(N + 1)

K̂

[
b2 + 2ab

2
− b3 + 3ab2

6L
+

NTb

2
− N(N + 2)T 2b

6L

]

− (N + 1)a3

12

(
1

K̂2

− 1

K̃2

)

(30)

where N is the number of active regions and L = (N + 1)T .

The coupling constant is the ratio of the deflection to the

voltage for zero force, and can be written

ζ =
z̄ptpd33

sE33K̂2

N2a

2

(
1 +

(
1 +

1

N

)
b

a
+

2

N

)
(31)

as shown in [24].

Similar to reference [30], the total electric charge per unit

width on an electrode of the IDE cantilever can be found

from Gauss’ law by integrating the normal component of the

electric displacement vector around a contour as shown in Fig.

4 and summing over all fingers of the electrode. Neglecting

the electric flux outside the piezoelectric material, the contour

integral reduces to two integrals across the piezoelectric layers

on each side of the finger. Choosing the contour to cross in the

middle of the active regions, i.e. at x = x̄n = (n+1/2)T+b/2,

ensures that the electric displacement field is x-directed and

aligned with or against the normal on those parts of the

contour. Hence with N active regions, the charge is

Q =

N−1∑

n=0

∫ zp+1

zp

Dx(x̄n, z)dz. (32)

In evaluating this charge, we assume that the electric field

is a constant, i.e. E(x, z) = Ex = V/a. From the charge

expression, we can then extract the free capacitance C as the

coefficient of voltage dependence when the force is equal to

zero. It is

C = ε33,eff
Ntp
a

(33)

where we defined an effective permittivity

ε33,eff = εT33
[
1 + (α33 − 1)κ2

33

]
. (34)

and α33 =
tpz̄

2
p

sE33K̂2
, κ2

33 =
d2
33

sE33ε
T
33

.
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Fig. 5. Inhomogeneous field distribution inside piezoelectric layer.

Since we know C, Ks, and ζ the coupling is conveniently

quantified in terms of the two-port electromechanical coupling

factor (2) which becomes

κ2 =
3

4

α33κ
2
33

1 + (α33 − 1)κ2
33

N3a3

L3

[
1 +

(
1 +

1

N

)
b

a
+

2

N

]2

(35)

where we made the simplification

K̂ ≈ K̂2 ≈ K̃2 (36)

When N is large enough, we can further simplify to

Ks =
3K̂2

L3
(37)

and

κ2 =
3

4

α33κ
2
33

1 + (α33 − 1)κ2
33

a

T
. (38)

Similarly to the TBE device, equations (33), (38) show that

C and κ2 in the IDE device also depend on the detailed

layer structure through a flexural rigidity ratio, here called

α33. Equation (38) state that the electromechanical coupling

factor of the IDE device also depend on the gap to pitch ratio.

Note that all analysis apply for the narrow structure. For the

wide beam, the effective values (5, 6, 7) should be used.

IV. IDE TRANSDUCER WITH NON-UNIFORM FIELD

In Section III, the analysis of the second derivative (25)

and the capacitance (33) assumes that the electric field has

uniform distribution. However, in reality, the field is distributed

inhomogeneously [31] as shown in Fig.5. Hence, the parallel-

plate capacitance model is poorly justified. The conformal

mapping technique (CMT) [32] can be a solution to this

problem. The origin of the CMT is that the real and imaginary

parts of an analytic function both fulfill the Laplace equation

in the complex plane. With an analytic mapping, an analytic

function will be mapped to another analytic function on

another complex plane. The Laplace equation is then solved in

the new plane with simpler standard geometries and boundary

conditions. Currently, most available techniques [19], [33]

solve the problem for isotropic dielectric materials. However,

piezoelectric materials are not isotropic. Hence, Section IV-A

will focus on adaption of available CMTs to anisotropic

piezoelectric materials in a parallel-strip structure. Section

IV-B discusses the non-uniform field and how it affects the

transducer coupling constant. Section IV-C presents a new

analytic approach to handle the further complexity that arises

for the IDE structure when both end-effects and the anisotropy

of piezoelectric material are taken into account.

(a) Symmetric configuration

(b) Asymmetric configuration

Fig. 6. Two configuration of the IDE (a) without interconnection lines and
(b) with interconnection lines. The dark areas are metal electrodes.

A. Capacitance model in an anisotropic piezoelectric material

In the IDE device, the electromechanical coupling mostly

originates from the active regions because these regions oc-

cupy the largest portion of the piezoelectric structure and have

the largest electric field. For the same reason, the capacitance

of these regions dominates the total capacitance of the device.

Hence, for simplicity, we assume that the passive regions

have the same polarisation as the nearest active region. In

this section, the top surface of the IDE device Fig.1b has

the symmetric configuration without busbars that is shown

in Fig.6a. If the beam width W is not much larger than the

gap, the fringing capacitance around the tips of the electrode

fingers can be important. The asymmetric configuration Fig.6b

should be taken into account. This configuration is analyzed

in Section.IV-C

Starting from Gauss law ∇ · ~D = 0, the piezoelectric

constitutive equations and thin beam simplification, the Gauss

law equation in the active regions of the piezoelectric layer

with narrow-beam parameters is

εT33
∂Ex

∂x
+ εT11

∂Ez

∂z
+ d33

∂Tp(x, z)

∂x
= 0. (39)

For the wide beam case, εT33 and d33 should be replaced by

εT33,eff and d33,eff in (6) and (7).

If d33 equals zero or the stress is constant along the x direc-

tion, the last term in (39) is zero. This simpler problem can be

found in the literature [21], [34]. Without this simplification,

(39) is rewritten using (9) to yield

εT33(1− κ2
33)

∂Ex

∂x
+ εT11

∂Ez

∂z
+

d33
sE33

∂S(x, z)

∂x
= 0. (40)

Neglecting the contribution of the axial strain, the strain

term in (40) can be replaced by the second derivative using

(8), i.e.

S(x, z) ≈ −z
∂2w

∂x2
. (41)

Inserting this simplified strain expression into (9), we get

Tm(x, z) = −Ym

(
z
∂2w

∂x2
+ dmEm(x, z)

)
. (42)
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For mechanically free boundary conditions, the resultant bend-

ing moment (11) is zero. Hence, inserting (42) as the stress

terms in (11), we obtain an equation for the second derivative

whose solution is

∂2w

∂x2
= − 1

K̂2

∫ zp+1

zp

d33
sE33

zExdz. (43)

From (43) and (41), (40) is

εT33(1−κ2
33)

∂Ex

∂x
+εT11

∂Ez

∂z
+

zd233

K̂2(sE33)
2

∂

∂x

∫ zp+1

zp

zExdz = 0.

(44)

We now treat the electric field Ex as z-independent in the

integral. This approximation is valid when the thickness of

the piezoelectric film is much smaller than the active gap.

Equation (44) then becomes

εT33

[
1 +

(
z

z̄ptp

K̂2sE33
− 1

)
κ2
33

]
∂Ex

∂x
+ εT11

∂Ez

∂z
= 0. (45)

This equation has the appearance of a two-dimensional Gauss

law with spatially varying permittivity. However, since the

thickness of the piezoelectric layer is much smaller than the

supporting layer, this variation is negligible. We therefore

make the further approximation z = z̄p in the bracket and

(45) becomes

ε33,eff
∂Ex

∂x
+ εT11

∂Ez

∂z
= 0. (46)

Note that the effective permittivity ε33,eff here is the same

quantity (34) that we encountered when analyzing the free

capacitance (33) using a simpler field assumption. With (46),

the capacitance can now be calculated more accurately.

From the field-potential relation Ei = −∂ϕ/∂xi, (46)

becomes
∂2ϕ

∂x2
+

εT11
ε33,eff

∂2ϕ

∂z2
= 0. (47)

We make a change of coordinates from (x, z) to (x, ẑ) such

that ẑ = ẑm+
√
ε33,eff/εT11(z−zm) within layer no. m and ẑm

are constants that make the transformation continuous. With

ϕ(x, z) = ϕ̂(x, ẑ), (47) becomes

∂2ϕ̂

∂x2
+

∂2ϕ̂

∂ẑ2
= 0 (48)

within each layer.

The continuity condition on the normal electric displace-

ment at the interfaces between the piezoelectric and other

layers should be valid before and after transformation. Hence,

εT11
∂ϕ

∂z
=
√
ε33,effεT11

∂ϕ̂

∂ẑ
(49)

must be continuous at zp (ẑp) and zp+1 (ẑp+1). The quantity

εeq =
√

ε33,effεT11 is treated as an equivalent relative per-

mittivity inside the piezoelectric layer. This means that the

anisotropic dielectric material in the (x, z) coordinate systems

can be treated as an isotropic dielectric in the (x, ẑ) coordinate

system. The equivalent parameters are the relative permittivity

εeq, and the dielectric thickness t̂p = tp
√

ε33,eff/εT11. Once

this transformation is made, the capacitance can be calculated

by a CMT approach, e.g., Igreja’s [19] or Gevorgian’s models

[33], [35], and [36].

Fig. 7. A representative segment of IDE.

B. Electric field and coupling constant for the symmetric IDE

configuration

By using the same conformal mapping transformations as

in [19] for our problem (48), we can derive the electric

field in a representative segment of the IDE structure, Fig.7.

Representing the two-dimensional electric field by a complex

number, it becomes

E = j
V

a+ b

K(k)

K(k′I)

√
1− k2q(X2)2√

q(X2)2 − q(X)2
(50)

where

q(X) = sn

(
2K(k)X

a+ b
, k

)
(51)

with X is a complex variable in the X-plane of Fig.7 and sn
is the Jacobi elliptic function. The elliptic moduli kI and k′I
are given by

kI =
√

1− k′2I =
q(X2)

√
1− k2√

1− k2q(X2)2
(52)

and the other elliptic moduli k =
√
1− k′2 can be found from

the relation
K(k′)

K(k)
=

2t̂p
a+ b

. (53)

In (50), the signs of the square roots are chosen so that

the electric field lines follow the decreasing direction of the

electric potential. As the electric field inside the representative

segment is known, the electric field at other position of the

piezoelectric layer can be found by symmetry.

For the coupling constant ζ, (43) shows that only the x-

component of the electric field is of concern. In Section, IV-A,

the effective permittivity was approximated by the value at

z = z̄p. Hence, the electric field at z = z̄p is of interest. In

the representative segment, this field is expressed as

Ex = Re{E
[
real(X) + jt̂p/2

]
}. (54)

Following the same approach as in [24], a phenomenological

quadratic model (PQ model) can be fitted to Ex, i.e.

Ex = γ

[
1− 4β

a2

(
x− (nT + b)− a

2

)2]
× V

a

for nT + b ≤ x < (n+ 1)T

Ex = 0 elsewhere (55)

where n is a positive integer. The dimensionless quantity β
parametrizes the flatness while γ parametrizes the mid-gap

electric field value. These quantities can be found by fitting
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(55) at x = nT + b + a/2 and x = nT + b with the CMT

model (54) at X = (a+ b)/2 + jt̂p/2 and X = b/2 + jt̂p/2.

The result is

γ = Re

[
E

(
a+ b

2
+ j

t̂p
2

)]
× a

V
, (56)

β = 1−Re

[
E

(
b

2
+ j

t̂p
2

)]
/Re

[
E

(
a+ b

2
+ j

t̂p
2

)]
. (57)

Since the PQ model (55) is z-independent, taking this term

out of the z-integration (43), integrating twice along the x-

direction and dividing the result by the applied voltage V , the

transducer’s coupling constant ζ is expressed as

ζ = γ

(
1− β

3

)
z̄ptpd33

sE33K̂2

N2a

2

(
1 +

(
1 +

1

N

)
b

a
+

2

N

)
.

(58)

Finally, the electromechanical coupling factor can be calcu-

lated since the short-circuit stiffness (37), the free capacitance

(Section IV-A) and ζ (58) are known.

C. Capacitance model for the the asymmetric IDE configura-

tion

In IDE devices that are asymmetric due to interconnection

lines as shown in Fig.6b, the electrostatic field is compli-

cated around the tip regions of the electrode fingers. The

parasitic capacitances contributed from these regions are very

different from the values calculated by the parallel plate

model. An accurate capacitance calculation should include

both field distributions on the IDE surface and inside into

the dielectric. This three-dimensional (3D) problem is out of

reach of the CMT because the mapping theory only applies

to two-dimensional (2D) problems. Therefore, for simplicity,

a uniform electrostatic field distribution across the dielectric

thickness is assumed. The assumption is suitable for a structure

with dielectric thickness much smaller than the IDE pitch.

Then the 3D problem is simplified to a 2D problem which

can be solved by the CMT.

From Fig.6b, if we know the capacitance Cn of the small

part shown in the inset, the positive integer n indicates the nth

active region, the total capacitance C of the IDE device with

N active regions is

C = 2NCntp. (59)

To transform the complicated polygonal shape around a corner

to a simple rectangle, we apply the conformal transformation

in Fig.8 transforming the small part to a parallel plate capaci-

tor. Then, Cn can be calculated by applying the parallel-plate

formula to the rectangle.

The transformation flow in Fig.8 requires two transform

steps. First, the polygon in z-plane is mapped to the upper

half-plane in θ-plane via the Schwartz-Christoffel (SC) [32]

derivative
dz

dθ
= c0

√
θ − 1

θ
√
θ + p

(60)

where the origin z = 0 is chosen at the corner of the IDE

finger and is mapped to θ = 1. The constants c0 = g/π and

Fig. 8. Conformal mapping flow to transform a polygon into parallel strip
lines.

p = g2/a2 are found by mapping relations given in equations

(27.17) and (27.22) of [32]. The integral of (60) is

z = c0


2 sinh−1

√
θ − 1

p+ 1
−

2 tan−1
√

p(θ−1)
θ+p√

p


 . (61)

In the second step, the upper-half θ-plane is mapped to a

strip between two parallel lines in the η-plane via a mapping

function η = ln(θ). Hence, the capacitance is

Cn =
εrε0(η1′ − η3′′)

π
=

εrε0
π

ln
θ1′

θ3′′
(62)

where θ1′ , θ3′′ respectively are images of z1′ , z3′′ in the θ-

plane. These values can be found in (61). εr is the relative

permittivity of the dielectric layer while ε0 is the vacuum

permittivity.

Equation (62) only applies directly to an isotropic material.

For an anisotropic material that is homogeneous and has the

principal directions of the permittivity orthogonal or parallel

to the polygonal faces, we can first use the transformation

in Section IV-A, introducing an effective permittivity and

effective dimensions, to make the problem isotropic.

For the IDE, the polarization direction (3-axis) changes

around the corner of a finger as indicated in Fig.9a. The

orientation of the permittivity tensor follows the direction of

polarization. In order to apply the transformation we therefore

split the problem of calculating the capacitance Cn into two

simpler capacitance problems as indicated in the figure. That

is, we approximate Cn ≈ Cn1 +Cn2 where Cn1 and Cn2 are

the contributions to Cn related to charges on the thick black

lines in Fig.9b and Fig.9c respectively.

When calculating each of the partial capacitances Cn1

and Cn2, we treat the spontaneous polarization as uniform

as shown in the figure. The largest deviations in assumed

permittivity from the stated problem are then found in the

regions of the corner with the smallest electric flux density.

By this, we expect to have included the dominant contributions

to the capactiance and some of the fringing-field effects.

To summarize: each of the partial capacitances is calculated

by a transformation to an isotropic problem as in Section IV-A

followed by the mapping flow in Fig.8. The capacitances Cn1

and Cn2 correspond to the two parallel capacitances on the

left and the right half-plane of the η-plane separated by the

imaginary axis. These capacitances can be calculated using

(62)

Cn1 =
εn1
π

ln
1

θn1,3′′
; Cn2 =

εn2
π

ln θn2,1′ (63)
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Fig. 9. Capacitance Cn is split into two different partial capacitances Cn1

and Cn2. Each of these has uniform polarization direction as it is shown.

TABLE I
PB(ZR0.53TI0.47)O3 PARAMETERS CALCULATED FROM [10], [37], [38]

Parameters and unit Notation Value

sE
11

= sE
22

13.8

Compliance ((TPa)−1) sE
12

-4.07

sE
32

= sE
31

-5.8

sE
33

17.1

Piezoelectric coupling (pm/V) d31 = d32 -116.7
d33 224.2

Permittivity ǫT
11

1290ε0
ǫT
33

1180ε0
Material electromechanical κ2

31
0.09

coupling factor κ2

33
0.28

TABLE II
PB(ZR0.53TI0.47)O3 EFFECTIVE PARAMETERS IN WIDE BEAM CASE

Parameters and unit Notation Value

Compliance ((TPa)−1) sE
11,eff

12.6

sE
33,eff

14.7

Piezoelectric coupling (pm/V) d31,eff -151.1
d33,eff 175.2

Permittivity ǫT
33,eff

1067ε0

Material electromechanical κ2

31,eff
0.19

coupling factor κ2

33,eff
0.22

where θn1,3′′ is the image of z3′′ in the θ-plane of Cn1, θn2,1′

is the image of z1′ in the θ-plane of Cn2. The permittivity

εn1, εn2 correspond to the different polarization orientations

for Cn1 and Cn2 respectively.

Finally, necessary formulas to calculate the two-port param-

eters for different configurations are summarized in Table III

of the Appendix.

V. NUMERICAL STUDY

A. Device description

IDE and TBE cantilever beams as shown in Fig.1 are

investigated. The analytical and finite element models are

compared. We choose a length L = 1mm for all the nu-

merical calculations. The cross section of the beam includes

a structural elastic layer, a piezoelectric sheet and electrode

layers. For the structural layer, we choose tb = 20µm thick

glass with Young’s modulus and Poisson’s ratio 74GPa and 0.3

respectively. Glass can be interesting for optical applications.

The electrode is 200nm thick platinum with Young’s modulus

and Poisson’s ratio 169GPa and 0.38 respectively. The piezo-

electric is PZT 47/53 [37]. The effective transverse and the

longitudinal piezoelectric coefficients are respectively e31,f =

12C/m2 and d33,f = 85pm/V. Other details of the piezoelectric
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0

0.02

0.04

0.06

0.08

0.1

tp/tb

κ
2 T
B
E

2D-FEM – wide beam
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2D-FEM – narrow beam
Analytic – narrow beam

Wide beam

Narrow beam

Fig. 10. Electromechanical coupling factor of the TBE device with respect
to the film thickness.
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Fig. 11. Electromechanical coupling factor of the TBE device with respect
to the beam width for tp/tb = 0.1.

material are calculated and listed in Table I. The effective

piezoelectric parameters in the wide beam case are shown in

Table II.

B. Electromechanical coupling of TBE transducer

Figure 10 compares the electromechanical coupling factor

of the TBE transducer calculated by 2D FEM and (24).

Analytical and FEM results are nearly equal. The wide beam

case has larger electromechanical coupling factor than the

narrow case. This is because the y-deformation restriction from

narrow to wide beam increase the effective electromechanical

coupling factor of the material κ2
31 as shown in Table I and

Table II.

In Fig.11 we consider a finite beam width using 3D FEM.

The numerical electromechanical coupling factor increases

monotonically with W from a value near the analytical

narrow-beam result and approaches the analytical wide-beam

result.

C. Two-port model of the symmetric IDE device

We now apply the CMT [19] to calculate the capacitance

in our transformations (48) of the symmetric IDE structure

Fig.6a. We choose a = 3T/4 = 30µm. We use the Hilberg

transformation [39], [40] to calculate the eliptic integral ratio

(K(k)/K(k′) in standard mathematical notation).

Influence on the capacitances of other layers i.e., glass and

air, can be taken into account using the partial capacitance
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Fig. 13. The normalized electric field along the inset’s dotted line at the
middle of the piezoelectric layer. All dij coefficients are artificially set to
zero.

method as mentioned in [19]. With our numerical values,

including the high relative permittivity of the piezoelectric

material, the total parasitic capacitance from the air and

glass layer is less than 10% of the piezoelectric contribution

to capacitance if the piezoelectric layer thickness is more

than 2.5% (500nm) of the glass thickness. In typical thin-

film applications with piezoelectric layer thickness ranging

from 1 to 4 µm, the total parasitic capacitance accounts for

only 1.25% to 5% of the capacitance. Hence, these parasitic

capacitances are neglected.

Figure 12 presents the capacitance of the symmetric IDE

structure calculated with different methods: the layered model

(33), the parallel plate model ((33) with α33 = 0), the CMT

model- Section IV-A, and a 2D FEM model for the narrow-

beam parameters. Here, all piezoelectric coupling constants dij
are artificially set to zero in order to first understand the elec-

trostatics. In the CMT model, the piezoelectric layer is treated

as isotropic with εeq =
√
ε33,effεT11 and t̂p = tp

√
ε33,eff/εT11.

In Fig.12, no differences are observed between the layered

model and the parallel plate model because of the lack of

coupling. These simple models predict a linear relationship

between the capacitance and the dielectric thickness because

of the assumptions of a uniform field distribution (Fig.3). The

CMT and FEM results are almost identical. The two models

predict smaller capacitances than the layered model. The dif-

ferences increase with piezoelectric thickness and deviate from

the simple linear relationship due to nonuniform electrostatic
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Fig. 14. Capacitance per unit width of the symmetric IDE piezoelectric narrow
beam.
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Fig. 15. The normalized electric field along the inset’s dotted line at the
middle of the piezoelectric layer.

field.

The x-component of the electric field along the longitudinal

direction at the middle of the piezoelectric layer is shown

in Fig.13 for zero coupling. The CMT and FEM results are

similar. The uniform field model overestimates the electric

field strength in the active regions. The overestimation increase

with piezoelectric film thickness.

In Fig.14 and Fig.15, we reinstated the correct values of

the piezoelectric coupling constants dij . In Fig.14, we observe

smaller capacitances than in Fig.12. The effect is contained in

ε33,eff (34) which also appears in (46). For nonzero coupling

it differs from εT33 and depends on the flexural-rigidity ratio.

The capacitance result for the parallel plate model have a

manifestly different slope from the layered model whose slope

agrees with the other two for small piezoelectric thickness.

This is because the flexural rigidity ratio α33 is not taken into

account in the parallel plate model.

The x-component of the electric field is shown in Fig.15. In

the active regions, the electric field calculated by the uniform

field model is higher than the CMT and the FEM results.

The parameters γ and β for the phenomenological quadratic

model (PQ model) (55) can be extracted from the CMT or

FEM curves in this figure using field values at the center

and boundary of the active region as previously described

for the CMT in (56) and (57). The results are shown in

Fig.16 for different piezoelectric thicknesses. The coefficient

γ parametrizing the field at the center of the active regions

is always less than one and decreases with the piezoelec-
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Fig. 18. The coupling constant of the symmetric IDE piezoelectric narrow
beam with different electric field model.

tric layer thickness. Hence, the uniform field model always

overestimates the electric field. The overestimation increases

with the thickness of the piezoelectric layer. The coefficient β
parametrizing the flatness increases with the piezoelectric layer

thickness. Hence, the quadratic term becomes more important

for the thick piezoelectric layer.

The comparison between the PQ model (55) with the CMT

is shown in Fig.17. For both cases, especially with the thinner

piezoelectric layer, the electric field curve is flat in most of

the active region and there is a sharp drop around the edges of

the electrode. Hence, the quadratic form does not fit well. We

observed that the PQ model (55) without the quadratic term,

or β = 0, fits better with the CMT results.
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Fig. 19. The stiffness per unit width of the symmetric IDE piezoelectric
beam.
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Fig. 20. The electromechanical coupling factor value of the symmetric IDE
piezoelectric beam.

Figure 18 shows how the electric field affects the coupling

constant ζ. The phenomenological model (58) with β equal

to or different from zero is closest to the FEM results. In

the most interesting thickness range, i.e., tp ≤ 0.2tb = 4µm,

(58) with β = 0 is closest to the FEM results. Because the

uniform field model always overestimates the electric field, it

also overestimates the coupling constant ζ. However, in the

thickness range tp ≤ 0.1tb = 2µm, since γ is approximately

one in Fig.16, the results of the uniform field and the fitted

model (58) with β = 0 are both good approximations. For

thicker piezoelectric layer i.e., tp > 0.3tb, the electric fields

are less uniform, indicated by the increasing of β in Fig.16,

hence, the full PQ model (58) could be a better approximation

for the coupling constant ζ as shown in Fig.18.

Since all two-port parameters e.g., the free capacitance in

Fig.14, the stiffness (37) in Fig.19 and the coupling constant

(58) Fig.18 are known, the electromechanical coupling factor

can be found. In contrast with the TBE case, the electrome-

chanical coupling factor of the symmetric IDE is larger for

a narrow beam than for a wide beam as shown in Fig.20.

The reason is the differences in effective electromechanical

coupling factor for the material shown in Table I and Table II.

In Fig.20, the electromechanical coupling factor calculated

by the layered model with the uniform field assumption is

always larger than the FEM and CMT results. The reason

is the overestimation of the uniform field model in Fig.15.

For the thick piezoelectric layer, even with an undesired

compensation made by the capacitance overestimation Fig.14,
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Fig. 22. Capacitance per overlap width B of the asymmetric IDE device with
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the electromechanical coupling factor of the layered model is

still higher than the FEM and the CMT results. For the thin

piezoelectric layer i.e., tp ≤ 0.1tb = 2µm, the overestimate is

very small so the results of the two analytic (layered model

and CMT with β = 0) and the FEM models are almost equal.

Note the difference between narrow and wide beam results

in Fig.10 and Fig.20. In Fig.10 for the TBE beams, the

electromechanical coupling factor is higher for the wide beams

while in Fig.20 for the IDE beams, it is higher for the narrow-

beam case. This is consistent with the opposite change of

effective electromechanical coupling factor in 31-coupling and

33-coupling from narrow-beam case in Table I to wide-beam

case in Table II.

D. Two-port model of the asymmetric IDE device

The IDE beam studied in this Section has an asymmetric

eletrode structure due to the interconnect lines shown in

Fig.6b. As we discussed in Section IV-C, the CMT is appli-

cable if the electrostatic field is uniformly distributed across

the piezoelectric layer thickness. We observed in Section V-C

that the field distribution can be assumed uniform if the

piezoelectric layer thickness is in the range tp ≤ 0.1tb. We

choose the beam with dimensions tp = tb/10 = 2µm and

keep the gap and the pitch values, i.e. a = 3T/4 = 30µm.

Adapting the results of Section IV-A, the modified dielectric

constant ε33,eff is used instead of εT33. Hence, the nonzero

flexural-rigidity ratio α33 is taken into account. For the CMT

model, the partial capacitances Cn1 and Cn2 in Fig.9 are
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Fig. 23. The IDE beam’s short circuit stiffness K per unit width.
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Fig. 24. The coupling constant of the IDE beam.

calulated with the equivalent permittivity εn1 and εn2 and

effective dimensions â and ĝ as given in the Appendix.

Figure 21 compares the capacitance per overlap width B of

the layered model to the FEM result for IDE devices with and

without interconnect lines. For the symmetric IDE beam, the

two layered-model capacitances with narrow and wide beam

parameters set respectively the upper and lower limits of the

FEM results. The capacitance of the FEM model decreases

asymptotically towards the wide-beam limit as the beam width

is increased. This is because the effective dielectric constant

decreases from εT33 to εT33,eff as shown in Table I and Table II.

For the asymmetric IDE beam, additional capacitance

around the end gap of the IDE fingers contributes. This

explains why the capacitance per overlap width is higher with

the asymmetric than with the symmetric IDE.

In order to improve the layered model, we have added the

capacitance between the end of each electrode finger and the

interconnect line using the same approach as for the inter-

electrode capacitance. The result is compared to CMT and

FEM in Fig.22. The layered model with narrow-beam param-

eters is not shown because it is visually indistinguishable from

the wide-beam result. The total capacitance per overlap width

is still smaller than the FEM results especially if W/L < 1.

This means there are additional contributions caused by the

fringing effects at the corners of the IDE fingers. By applying

the CMT technique, these fringing capacitances are taken into

account. The CMT model is in a better agreement with the

FEM results. Therefore, the CMT model is more accurate than

the layered model.
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Fig. 25. Electromechanical coupling factor of the IDE beam with g = 5µm.

Using the capacitance C of the layered model with end-gaps

in Fig.22 or without end-gaps in Fig.21, the stiffness Ks (37)

in Fig.23, and the coupling constant ζ (31) in Fig.24, we can

find the electromechanical coupling factor of the symmetric

and asymmetric IDE beams. The results are shown in Fig.25.

The asymmetric IDE beam has smaller electromechanical

coupling factor than the symmetric one. The reason is the

parasitic capacitance around the end gaps of the asymmetric

IDE configuration. For the symmetric IDE beam, the FEM

results are bracketed between the narrow- and wide-beam

results. The situation is more complex for the asymmetric

IDE beam. For this configuration, if W is small, i.e. W < L,

the FEM results increase significantly with the width W . The

dramatic change comes from the change in the capacitance.

The CMT model (darker solid and dashed line) is capable

of capturing this feature. We note that the CMT result with

wide-beam parameters is significantly closer to the FEM result

than the CMT with narrow-beam parameters, also for rather

small W/L. This observation suggests that the CMT-model

with wide-beam parameters is preferable.

E. Comparison between TBE and IDE transducers

The ratio between the electromechanical coupling factor

of the IDE beam in Fig.25 to that of the TBE beam in

Fig.11 is shown in Fig.26. We first consider the symmetric

configuration. In this case the layered model without end-gap

effects, brackets the ratio from the FEM calculation. The wide-

beam parameters give a lower bound and the narrow-beam

parameters give an upper bound. This is similar to what we

observed for the electromechanical coupling factor of the IDE

beam in Fig.25 and the TBE beam in Fig.11.

In our case, the lower limit of the ratio is approximately one

as shown in Fig.26. Hence, the IDE beam always has higher

electromechanical coupling factor than the TBE counterpart.

The conclusion is confirmed by FEM results. The symmetric

IDE beam always has larger electromechanical coupling factor

than the TBE beam and is therefore preferable if coupling is

the decisive parameter. However, if one instead considers tip-

deflection, one finds instead that the TBE is preferable [24],

[41].

The same conclusion is arrived at for the asymmetric IDE

beam with W/L > 0.15. The maximum ratio of electrome-
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Fig. 26. Electromechanical coupling factor ratio of the IDE device to the
TBE ones.

chanical coupling factors is found for W/L ≈ 0.4, i.e.

L = 1000µm and W = 400µm, which gives a ratio of 1.5.

VI. CONCLUSION

The linear two-port models of piezoelectric layered beams

with transversal and longitudinal coupling were investigated.

Because theory for the TBE beam is well-established, this

paper made further effort in completing the two-port model

for the IDE beam. While the short-circuit stiffness of the

IDE beam can be approximated by layered-beam theory, the

capacitance and the transducer coupling constant required new

theory.

First, the conformal mapping technique was adapted to

apply to anisotropic dielectric materials. We found that the

capacitance of the piezoelectric structure, like a structure

with merely an anisotropic dielectric, can be treated as an

isotropic dielectric structure with an equivalent permittivity

and equivalent dimensions without neglecting the piezoelectric

coupling. The effective, relative permittivity of the piezoelec-

tric material depends on the electromechanical coupling factor

of the material and a ratio of flexural rigidities.

Based on the transformation of the original problem to the

effective isotropic problem, formulas for the capacitance and

the electric field were derived. The electric field formula was

simplified to a quadratic form. Then, the transducer coupling

constant was found directly.

By this, we achieved analytical results for all parameters

of the linear two-port model of an IDE beam despite the

complexity brought on by the anisotropic material parameters

and complicated electrode structure. All analytical results were

compared to finite element calculations.

The two-port model was used to compare the device elec-

tromechanical coupling factors of the piezoelectric beams with

IDE and TBE configurations. Judging by this performance

figure, we found that the IDE is favourable except for very

narrow beams. This is the different conclusion from what

one obtains if the device is instead judged only by its free

tip-deflection. In our particular example, we found that the

IDE beam can be designed with up to 1.5 times higher

electromechanical coupling factor than the TBE beam.
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APPENDIX

ANALYTIC MODEL SUMMARY

Table III contains necessary formulas to calculate the two-

port parameters for the piezoelectric narrow beam. For the

wide beam, the effective values (3), (4) and (7) should be

used instead. Table IV classifies and summaries all physical

models for the IDE beam.
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TABLE III
ANALYTIC MODEL SUMMARY

TBE Symmetric IDE Asymmetric IDE

Short-circuit stiffness Ks

Layered model 3WK̂
L3

3WK̂2

L3
3WK̂2

L3

Definition K̂ =
∑
m
Ym

[
Im

1−κ2
m

+ tmz2m

]
, K̂2 =

∑
m
Ym
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Im + tmz2m

]
, K̂2 =

∑
m
Ym

(
Im + tmz̄2m

)
,

Yp = 1
sE11

, κ2
p = κ2

31 =
d2
31

sE11ε
T
33

, Yp = 1
sE33

, Yp = 1
sE33

,

z̄m = zm+1+zm
2 ,

∑
m
z̄mYmtm = 0, z̄m = zm+1+zm

2 ,
∑
m
z̄mYmtm = 0, z̄m = zm+1+zm

2 ,
∑
m
z̄mYmtm = 0,

Im = t3m/12 and tm = zm+1 − zm. Im = t3m/12 and tm = zm+1 − zm. Im = t3m/12 and tm = zm+1 − zm.
Free capacitance C

Parallel plate model NεT33
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1− κ2

33

) Wtp
a

Layered model εT33
[
1 + (α31 − 1)κ2

31
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WL
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a N
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2 εeq

K(kI)
K(k′

I
)

2Ntp
π (εn1 ln

1
θn1,3′′

+ εn2 ln θn2,1′)

Definition ε33,eff = εT33
[
1 + (α33 − 1)κ2

33

]
, ε33,eff = εT33

[
1 + (α33 − 1)κ2

33

]
,

α31 =
tpz̄

2
p

sE11K̂
. α33 =

tpz̄
2
p

sE33K̂2
, κ2

33 =
d2
33

sE33ε
T
33

, α33 =
tpz̄

2
p

sE33K̂2
, κ2

33 =
d2
33

sE33ε
T
33

,

ε31,eff = εT33
[
1 + (α31,n2 − 1)κ2

31

]
,

α31,n2 =
tpz̄

2
p

sE11K̂2
, κ2

31 =
d2
31

sE11ε
T
33

,

εeq =
√

ε33,effεT11, εn1 =
√
ε33,effεT11, εn2 =

√
ε31,effεT11,

kI =
√
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π


2 sinh−1

√
θ−1

pn2+1 −
2 tan−1

√
pn2(θ−1)

θ+pn2
√
pn2




with pn2 = ĝ2
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Coupling constant ζ
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TABLE IV
MODEL SUMMARY FOR THE IDE BEAM

Physical quantities Notation Equation

Material properties
Young modulus Y (5)

Piezoelectric coupling constant d (6)
Dielectric constant ε (7)

Mechanical quantities

Flexural rigidity K̂, K̂2 (16), (26)
Short-circuit stiffness Ks (30), (37)

Second derivative of deflection ∂2w/∂x2 (25), (43)

Electrical quantities
Free capacitance C (33), (59), [19], [40]

Electric field E, Ex (50), (54), [40]

Electromechanical quantities
Coupling constant ζ (31), (58)
Electromechanical κ (2), (38)
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