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Preface

This PhD thesis tackles the problem of designing piezoelectrically actuated MEMS
tunable lenses using energy principles. Throughout the thesis, different models
are proposed to reach decent accuracies for both the electromechanical and opti-
cal performances. The proposed models are progressive in their complexity. First,
the linear regime has been considered and then the nonlinear regime. Based
on the gained understanding of the models, design insights become obvious and

have been used to push further more than the current design.

This PhD thesis has been conducted as a part of the project 'beat the human
eye' under the (Grant no. 235210) from the Research Council of Norway (Norges
forskningsrardet). In addition, a part of the numerical calculations have been per-
formed as a part of (Grant no. NN9344K) from the Norwegian Metacenter for
High Performance Computing (NOTUR). The thesis models the Piezoelectrically
actuated MEMS tunable lenses through having numerical models implemented
in MATLAB to calculate the lens performance with low number of degrees-of-
freedom and in less time when compared to FEM programs. This effectively re-
duces, for lens-system designers, the overall time needed to simulate the lens in
an optimization scheme when considering large combinations of material param-
eters and residual stresses in different layers. As an example with one variables
combination, a static simulation in FEM for the lens takes 1.5 min and a dynamic

analysis takes roughly 1 hour. Then, the displacement profiles are to be numer-
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ically processed and exported in a form suitable for an optical program (Zemax)
to simulate the lens or combine it with a fixed-focal-length lens system. The pro-
posed models are proven to reduce the time to 1.3 seconds for static simulations
and roughly few minutes for dynamic simulations. Implementing the models in
MATLAB eases calling Zemax through a Dynamic Data Exchange (DDE) and auto-
mate the whole simulation chain. Moreover, if the the variational formulation
is modified as needed, the proposed models have the potential to model other
piezoelectric actuators such as pumps.

Finally, a notification for the readers is that this thesis directly dives into ad-
dressing the search problem and proposing solutions. Thus, the readers are ex-
pected to be familiar with basics of piezeoelectric materials and frequency anal-
ysis of optical systems. If not, | recommend the readers to refer to chapters (4, 5

and 10) from [1] and chapters 1-6 from [2].

Vi
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Abstract

Autofocus is a crucial feature in cameras, especially when photographing objects
at different distances and having them in sharp focus without any quality loss in
the captured image. Over the last decade, several research efforts have been
made to incorporate tunable focus for mobile-device cameras using micro-scale
components. Qualitatively, this would enable miniaturized cameras with lower
power consumption, much faster response in scanning focus range and higher re-
liability. The microelectromechanical-systems-(MEMS)-based tunable focus lenses
are promising alternatives as autofocus mechanisms when compared to the con-
ventional macro-scale approaches such as the Voice Coil Motor (VCM) [3] or ul-
trasonic motor [4]. Moreover, such MEMS autofocus lenses would achieve higher
resolution smartphone cameras without having any moving parts within the cam-
era housing, which consumes power during focus adjustment and causes a loss

in the Field-of-View (FoV) as for the VCM.

The research reported in this thesis is to construct a modeling framework
for the piezoelectrically actuated MEMS tunable lenses on the electromechani-
cal domain by finding an approximation for the lens displacement, and using it
afterwards in the optical domain to find the lens' optical performance. Given the
modeling framework, two design concepts have been proposed. The first one
is to achieve larger lens apertures while having a tradeoff between focal length

and RMS-wavefront error (RMSWFE), while the second is to increase lens' tunable

iX
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range of focal lengths by controlling layers' stresses during fabrication.

To approximate the lens displacement, we have used Hamilton's principle to
deduce a variational formulation that can be easily solved in MATLAB [5]. This
has resulted in taking less calculation time than the time is taken by finite element
method (FEM) programs such as COMSOL [6]. The proposed displacement ansatz
(weighted Gegenbauer polynomials) to approximate the lens displacement, has
been chosen because they can be mathematically expressed in terms of Zernike
polynomials. Those polynomials are suitable for representing the lens' wavefront
when it comes to optical performance, which allows an exact mapping of the lens
displacement profile to optical programs (e.g. Zemax [7]). Without this proposed
framework, lens designers would have to use FEM simulations and over-mesh
the pupil area before exporting the lens sag to optical programs; which is time-

consuming with dense meshing.

Less calculation time, with our modeling framework, for the lens displace-
ment originates from the pre-calculations of (linear and nonlinear) variational
integrals in terms of the actuator's geometrical parameters. This has enabled
storing mathematical expressions for the variational integrals that can be called
once needed. For a new actuator's geometrical parameter, we can use a simple

substitution to calculate the new displacement profile.

Chapter 3 describes the proposed modeling framework for these type of lenses.
We have considered different polygonal pupil geometries to explore if a design
tradeoff can be gained in the optical performance. We have found out the first
design concept called as pupil masking. With a 45-rotated square opening in the
piezoelectric actuator, while keeping the lens pupil circular, it gives a tradeoff be-
tween the lens' optical parameters,e.g., lower RMSWFE at the expense of having

larger focal length f allowing having large lens apertures.

The proposed modeling framework (in Ch. 3) has a weakness that it has not
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accounted for the discontinuity of the lens layered structure around the pupil
boundary. This required an increase of the model's degrees of freedom upto
120 in order to converge to a solution with a decent accuracy. Thus, in chap-
ter 4, we have proposed having two new ansédtze that use the aforementioned
weighted Gegenbauer polynomials and, in addition, the exact solutions of the cir-
cular plate's differential equations. This has improved the speed of convergence
to a solution and enabled having reduced-order models, which provide system-
level designers with computationally efficient models. Yet, the new ansatze can
be mapped to Zernike polynomials as well.

Chapters 3 and 4 have dealt with the linear performance that is less accurate in
case of large actuation voltages. The linear model also neglects residual stresses
resulting from fabrication. Thus, we have proposed in chapter 5, to use von Kar-
man's plate theory instead of Kirchhoff theory. As a result, we have been able to
consider the effect of having different residual stresses within the lens' layered
structure and larger actuation voltages. Through the understanding of the model
parameters, we have been able to propose the second design concept. By con-
trolling the residual stresses during fabrication, the lens' tunable range of focal
lengths can be increased by having the lens operating, depending on the driving
voltage, as a plano-convex or a plano-concave lens.

The proposed modeling frameworks have been verified versus FEM simula-
tion as a reference point and moreover the nonlinear model has been verified
versus measurements as well. In practice, these developed models can be uti-
lized for optimization of different material choices and layers thicknesses to find
the optimum geometrical parameter of the piezoelectric actuator. Finally, we
provide conclusions and proposals for future work to build a dynamic model for

the lens.

Xi
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1 Introduction

The following chapter provides a literature review of the tunable focusing mech-
anisms that are sold in the market, and under research with an emphasis on the
piezoelectrically actuated MEMS tunable lenses and their fabrication process. It
also presents thesis motivation in Sec. 1.3, area of research in Sec. 1.4 and thesis

layout in Sec 1.5.

1.1 Tunable focusing mechanisms in litera-

ture

Tuning focal length in miniaturized cameras is currently done at macro-scales at
the expense of large power dissipation and slow response during focus scanning,
as shown in Tab. 1.1. The large power dissipation does not align with the long-
life of batteries in digital cameras or smartphones. Therefore, there are other
technologies, in evolving phase, that could potentially solve these problems by
having weak lenses at micro-scale. Whether the mechanism is at micro or macro
scale, the tunable lens could be attached to a fixed-focal-length optical system

for adjusting the overall focal length based on the object distance from the pho-
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tographing device.

Table 1.1: Polight AS’ micro tunable lens versus the macro-scale mechanism
VCM (adapted from [8]).

Parameter Polight AS VCM
Focus response 1 ms 5-15 ms
Power consumption < bmW 220 mW
Field-Of-View(FoV)*  no auto-focus pumping auto-focus pumping
Magpnetic interference No Yes

* FOV is reduced for VCM during focus adjustment due to the relatively large
movement of tunable lens within the system, while micro-lenses displacement is in
the order of a few micrometers. This cause almost no auto-focus pumping when
compared to VCM.

1.1.1 Macro-scale approaches

In conventional macro-scale focusing systems sold in the camera market nowa-
days, for example VCM [3] and ultrasonic motors [4], tunable focus is achieved
through changing the relative positions of lenses mounted inside a barrel in front
of a fixed lens. Each technology moves that barrel differently within the camera
housing. The VCM, shown in Fig. 1.1a, effectively uses Lorentz forces on cur-
rent carrying coils wrapped around the barrel to move it forwards or backwards.
Ultrasonic motors, shown in Fig. 1.1b, use piezoelectric actuators to generate
a traveling wave rotating along the circumference of a circular disk and couple
the resultant circular movement through a gear system to an axially moving lever

attached to the barrel.
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Pre-pressure

()

Figure 1.1: (a) The VCM focusing mechanism, which shows two thick-lenses
mounted in a barrel surrounded by coils to generate Lorentz forcing and results
in vertical movement of the lenses (Adapted from [3]). (b) The Ultrasonic motor
mechanism in which the rotor, representing the lower part, has a traveling wave
and causes the stator to move rotational movement (Adapted from [4]).

1.1.2 Micro-scale approaches

Tunable focus in micro-scale systems is generally achievable by two approaches.
The first approach is to change the effective refractive index as in a liquid crystal
(LC) lens [9]. An LC lens, shown in Fig. 1.2a, can converge or diverge light beams
by controlling the electric field that reorients LC molecules causing a spatially de-
pendent refractive index within LC layers. The second approach is to change the
interface slope through which the light rays pass between two media with differ-
ent refractive indices. Tunable microfluidic lenses [10, 12], shown in Fig. 1.2b,
uses a pump to control the pressure of a liquid trapped inside a fluidic cavity to
deform the cavity's top surface. A tunable liquid lens, shown in 1.2c, changes the

interface curvature between two polar liquids by electrowetting [11].

The MEMS tunable lenses, that are the focus of this thesis, are based on piezo-
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Figure 1.2: (a) LC lens (Adapted from [9]). (b) Microfludic lens (Adapted from
[10]). (c) Electrowetting-based lens (Adapted from [11]).

electric actuation as a bending mechanism of a diaphragm to provide a voltage
dependent curvature at the interface between air and a polymer [13]. In the
paraxial approximation for a thin plano-convex lens with radius of curvature R
and refractive index npmegium, the focal length is f = R/(nmedium — 1)- The lens
shown in Fig. 1.3 consists of four elements: a piezoelectric actuator, a thin trans-
parent glass layer, a soft polymer gel and a transparent thicker glass layer as sub-
strate. A DC voltage V,, is applied to the piezoelectric actuator to set an electric
field E3 having the same alignment as the polarization within the piezoelectric

material. This causes an in-plane contraction in the piezoelectric stack and the

4
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flexible thin glass layer bends upwards. The upper surface of the soft polymer (or
fluid) is shaped by this bending, forming a complicated refractive surface for light
rays, as shown in Fig. 1.3. Thus, controlling the actuation voltage V}, makes the
lens's focusing-power tunable and enables focusing at objects located at different

distances from the camera.

Piezoelectric stack 7

v, % / H H \ é’ v, Mid-plane a2

e BT I I e

T

Soft polymer/"‘v,
n>1 i

V,=0 state Focal point

(@) (b)

Figure 1.3: (a) Schematic view showing tunable lens's principle of operation; both
at rest position when V}, = 0 and at focus when V;, is nonzero. (b) Cross-sectional
view of tunable lens showing dimensions.

1.2 Fabrication process of piezoelectric thin
films

The thin-film PZT stacks are either fabricated by sputtering [14], laser ablation
[15], chemical vapor deposition [16] or sol-gel [17--19]. However, the sol-gel
technique when combined with spin coating, has become the most widely used
fabrication technique. Spin coating and multiple rapid thermal annealing (RTA)
steps improve the film quality by provinding control over densification to have
crack-free thin films, and crystallization into the desired perovskite [17]. Thus,

the fabrication process involves heating treatment, which leads to the impossi-
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bility of having a PZT stack free from residual stresses after being cooled down.

Such piezoelectric lenses are fabricated by sol-gel technique [17--19] with spin
coatings. This fabrication process involves many steps of thermal annealing fol-
lowed by a hot-polling step to ensure the orientation of piezoelectric domains in
the favored direction. The piezoelectric stack is composed of layers with differ-
ent thermal expansion coefficients [20--23], which builds in-plane stresses inside

these layers after being cooled down to the room temperature.

For example, a 1um thin-film PZT stack is formed layer-by-layer through mul-
tiple spin coating [19]. Each layer is 60nm thick and is pyrolyzed at 350°C for 15s
using slowly ramp of 20°Cs~!. To reduce residual stresses, the process is splited
into four steps of RTA ranging from 15 to 30 °Cs~! that are employed after ev-
ery 250um. At the end, the wafer would have faced 16 spin coatings and 4 RTA
steps. Afterwards, the PZT thin film is hot poled at 150 °C with a voltage source
setting electric field of 50-250 kVem ™! for 10 min. The final layer structure of the
PZT stack form the process in [19, 24] is Si/SiO,/Pt/PZT/Au. These layers differ
in their thermal expansion coefficient, which results in having residual stresses
in these layers. For example, the residual stress for that 1um PZT film amounts
respectively to 110 MPa and 180 MPa before and after the poling step [18]. The
thermal treatments, during fabrication and poling, determine the value of resid-

ual stresses.

Forthe linear performance of piezoelectrically-actuated lens, discussed in chap-
ters 3 & 4, we neglect the effect of residual stresses because of the linear assump-
tion. However, in chapter 5, we consider their effect as a part of modeling the

nonlinear behavior of this lens.
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1.3 Motivation

This thesis is a part of a project called 'beat the human eye' that focuses on re-
search and development of the piezoelectrically actutated MEMS tunable lens
(shown in Fig. 1.3) in order to find novel actuator designs to enlarge the tun-
able range of focal length while maintaining the RMS-wavefront error (RMSWFE)
below A/14; as recommended by Maréchal's criterion [25]. In this way, the tun-
able lens is diffraction-limited lens that can be added to a fixed-focal-length lens
system resulting in an overall tunable optical system.

The objective of this thesis is to develop semi-analyatical models for the tun-
able lens, which has a complex structure of a square diaphragm with a hole run-
ning only through the piezoelectric actuator layer. Through these models, we
could investigate different design concepts based on the understanding gained

through the models' parameters.

1.4 Area of research

Previous research [26--29] has dealt with pure elastic (circular and rectangular)
plates, with no piezoelectric elements, taking the approach of constructing FEM
elements derived from the solutions of the biharmonic differential equation of
the circular plates. Also, this research has mostly concentrated on finding the
eigen frequencies and their mode-shapes that are of great importance in the
field of aerospace. However, research from [30, 31] has solved the static case of
piezoelectrically-actutated pump that is composed of a clamped circular piezo-

electric plate with a hole running only through the piezoelectric actuator; which

7
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is similar to the lens structure under study. Difficulties, from the modeling aspect,
are the discontinuity at the lens layered structure and having circular symmetry
in the pupil region in addition to square symmetry of the diaphragm. This diffi-
culties has not been yet solved in the previous literature through semi-analytical
expressions. In this thesis, we deal with these difficulties in two different manners
in chapters 3 and 4.

Not only that we want to approximate the lens displacement, but alsoto find a
suitable displacement ansatz suited to simplify the mapping to optical programs
without any accuracy lost in the mapping. Yet, the most challenging job is to
have at the end a reduced-order model through which the lens displacement is
obtained through a simple substitution of the driving voltage value and the lay-
ers' elastic and piezoelectric coefficients. With such reduced-order models, the
system-level lens designers can manage to get the new lens profile without the
burden to run FEM simulations.

In order to begin with approximating the lens displacement, we have started
with a variational formulation (discussed in details in ch. 2) resulted from Hamil-
ton's principle. After simplifications suiting the lens under study, we have ended
up with two system of equations; the first is for the linear case while the second
is for the nonlinear case considering only the geometric nonlinearity.

In order to fill the knowledge gaps discussed above, we have followed the

following steps:

1. Expressing the stress resultants from (refer to Eq. 2.18) in terms of zero
and first order strains, material parameters, driving voltage and residual
stresses. It is of interest to end up with a correction factor to the membrane
flexural stiffness (Eq. (2.19)) due to the piezoelectric coupling within the
piezoelectric material, similar to what has been discussed for piezoelectric

beams in [32].
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. Deducing two equations of motion; one for the linear case and the other
for the nonlinear one. As a result of the pupil opening, we have found out
that the nonlinear system of equations has non-zero quadratic stiffnesses
that result in having a favorable bending direction for the lens (hardening
and softening effects) depending on the relation between layers' elastic co-
efficients. This affects the lens performance depending on the values of the

driving voltage and the residual layers' stresses.

. Choosing the displacement ansatz as a sum of the weighted Gegenbauer
polynomials because they satisfy the clamped boundary conditions and are
orthogonal to eliminate the possibility of a numerically ill-conditioned sys-
tem of equations arising from the variational treatment. Yet, these poly-
nomials are easy to be mapped to Zernike polynomials, which suits optical

representation of the lens sag for optical programs such as Zemax.

. Considering different polygonal pupil geometries and to move around the
difficulty of calculating the variational integrals, we have presented the idea
of complementary pupil function é(X,Y) in [33] that has simplified numer-

ical calculations of the equivalent stiffness matrix Ry, .

. Calculating analyatical expressions for the linear stiffnesses using the sym-
bolic toolbox in MATLAB in terms of the circular pupil opening ratio y. How-
ever, for other polygonal shapes, the pupil area was divided into small square
elements over which the variational integrals have been evaluated. Then,
the final linear stiffness matrix, with the help of the complementary pupil
function, has been evaluated by subtracting the sum of the integrals over

those square elements.

. Obtaining variational solutions in a time of 1.3 seconds while it has taken

FEM 1.5 minutes using the same computer. Also, we have validated the
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linear variational solutions versus FEM and have obtained less than 10%

displacement relative error for the different pupil geometries.

7. Proposing a novel actuator design (i.e. pupil masking) that having a 45-
rotated opening in the piezoelectric actuator while maintaining a circular
pupil provides a tradeoff between the dioptric power and RMSWFE allow-
ing larger apertures when compared with the original design shown in Fig.

1.3.

8. Performing system-level simulations such that when the tunable lens is com-
bined with a fixed lens, the overall performance is not degrading through-
out the whole focusing range despite changing object distances from the

lens.

9. Reducing the number of Degrees-Of-Freedom (DOFs) of the linear model
from 120 to 10 by introducing new analytical ansatze that are not neglect-
ing the discontinuity at the circular pupil boundary. This has resulted in
speeding the convergence to a solution with respective accuracies of 11.4%

and 6.2% for RMSWFE and 1/F# with only 10 DOFs.

10. Calculating analyatical expressions for the nonlinear stiffnesses. The weighted
Gegenbauer polynomials have been written on the form of a Fourier trigono-
metric series. By using the orthogonality property of the trigonometric
functions, the number of nonlinear variational integrals has been tremen-

dously reduced.

11. Validating the nonlinear model versus FEM and measurements. Based on
the understanding of the model parameters, we have been able to provide
the second design insight on how to enlarge the tunable focusing range

through controlling the layer stresses during fabrication. This is done by

10
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operating the lens simultaneously as a plano-concave and a plano-convex
lens. In this manner, RMSWFE values are kept low to still have a tunable
diffraction-limited lens while the focal length changes from being negative

to positive.

1.5 Thesis layout

Chapter 2 presents in details the variational formulation beginning from energy
methods that ends with two equations of motion; one is linear for the linear
performance and the second is cubic system for the geometric nonlinear per-
formance. In chapter 3, the modeling framework has been used to compare be-
tween the optical performance of various pupil geometries, then we have per-
formed system-level simulations for the tunable lens combined with a fixed lens,
and have examined the design concept of pupil masking versus the original de-
sign. Chapter 4 presents the reduced-order linear models resulted from using
a piece-wise ansatze; each approximating the lens displacement at different re-
gions. Also, we have presented a comparison between the different models ac-
curacies in terms of the displacement and optical parameters. In chapter 5, the
nonlinear model is fully developed and validated versus FEM and measurements.
At the end, chapter 6 represents the conclusion and proposal for future research.
The appendix includes expressions of Zernike polynomials, examples of expand-
ing weighted Gegenbauer polynomials in terms of Zernike polynomials, starting
ground expressions for the lens' dynamic model and all the scientific publications

resulted from this thesis.

11
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2 Variational formulation for piezo-

electric plates

The variational formulation is an essential part of the electromechanical model-
ing framework developed for the piezoelectrically actuated MEMS tunable lenses.
It is based on Hamilton's principle that is a general energy method to deduce
equations of motion. This chapter introduces mathematically the variational for-
mulation and the simplifying assumptions related to gemeotry, strains, material
symmetry and electric fields. The variational formulation finally produces a linear
(or nonlinear) system of equations that can be solved in MATLAB [5] taking calcu-
lation time less than that is taken by Finite Element Methods (FEM) programs i.e.
COMSOL [6].

This chapter starts in sections 2.1-2 with introducing different thermodynamic
functions under isothermal conditions and Hamilton's principle for piezoelectric
media. Then, throughout sections 2.3-7, the variational formulation is mathemat-
ically expressed starting from the electrical enthalpy after introducing the simpli-
fying assumptions and their reasoning. Finally, section 2.8 closes with linear and
nonlinear equations of motion that are used for determining the lens' displace-

ment through the whole thesis.

13
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2.1 Thermodynamic character functions for
piezoelectric media under isothermal condi-

tions

A thermodynamic function has energy units and depends on sets of conjugate
pairs called state variables such as (stress T, strain S) , (electric field intensity
E, electric field displacement D) and (temperature, specific entropy). We will
drop the later pair since we are here more concerned about the electromechan-
ical coupling under isentropic conditions (for thermodynamic functions with the
later pair, the reader may refer to Ref. [34]). With the left four state variables
(T,S)and (E, D), one can possibly formulate four thermodynamic functions based
on choosing which two of the state variables are the independent ones. Table
2.1 lists these four thermodynamic functions, their formulas and the correspond-
ing constitutive equations * [1,35]. All four functions are related to each others

through Legendre transformation?.

In our development of the variational formulation for piezeoelectric media,
we have chosen the strain and the electric field intensity as the independent vari-
ables. As a result, the thermodynamic character function is the Electric Gibbs
energy G,. Afterwards, we use a modified Lagrangian for the piezeoelectric me-

dia to end up with the electric enthalpy H as it is often done in literature [37,38].

lare set of equations relating the dependent state variables to the independent ones.
2 is a mathematical transformation of a function with certain state variables to another func-
tion with new state variables [36].

14
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Table 2.1: Thermodynamic character functions and their corresponding constitu-
tive equations. The constitutive equations and the thermodynamic functions are
written in Einstein's notation. Superscripts D, E, S or T denote that matrix com-
ponents are measured at zero displacement field, electric field, strain or stress,
respectively. In literature, the internal energy function F is often referred to as

U.
Independent constitutive Thermodynamic
variable equations function
S,D T, = ij).lekl — hy ;D Internal energy
Ei = —haSu+BjDx | F = 3CHSiiSu— hijEiSix+ 5B5DiD;
TE Sij= sg.lekl + dij Ex Gibbs free energy
D =diTy + €L Ex G= —%Sg'lei T — di ik EiTjx — %SiTjEiE j
T,D Sij = Sgszkl + 8ki D Elastic Gibbs energy
Ei = —giTu+BjDr | Gi = —%Sﬁleikal — gikDiTj+ 5BL,DiD;
S, E T;j = Cl S — exiEx Electric Gibbs energy
D; = ey Sy + E}S;CEI( Gy = %Cg.leijSkl —e;jkEiS jx — %E;QJ.E,‘E]‘

Relation between the thermodynamic functions
G=F—-TS—ED,Gi\=F—-TS,G,=F—ED

15
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2.2 Hamilton's principle for piezoelectric me-
dia

Hamilton's principle is more general than Newtonian theory in deducing equa-
tions of motion for a mechanical system. It is a general postulate starts with for-
mulating a scalar function called the Lagrangian and is followed by minimizing
the time integral of its variation with respect to the independent variables. This
integral minimization consequently leads to equations of motion that are called
Euler-Lagrange equations. Hamilton's principle is stated as [39]:

" Of all the possible paths along which a dynamical system may move form one
point to another within a specified time interval (consistent with any constraints),
the actual path followed is that which minimizes the time integral of the difference
between the kinetic and potential energies".

From the calculus of variation [39, 40], the Hamilton's principle for a conser-

vative system with no constraints can be expressed as

t
5 / "L(q,q)dt =0, (2.1)
n

where § is the variation operator®. q and { are respectively the independent
state vector and its time derivative. L = K — U is the Lagrangian function where
K and U are the kinetic and the potential energies. Applying calculus of variations

lemmas [39, 40] leads to Euler-Lagrange equations of motion that are given by

d (oL oL
ai (@) “3q (22)

3is similar to differetial operator with respect to the independent variables.

16
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These Euler-Lagrange equations are solved to determine the system new state
vector.

For piezoelectric media, it is more convenient to transform the potential en-
ergy in the Lagrangian into the electric enthalpy H = U — ED (refer to Tab. 2.1)
through Legendre transformation since the independent pair of variables consid-
ered are (S, E). The Hamilton's principle from Eq. (2.1) is then modified to include

the virtual work due to external forces [38,41] and it becomes

15}
o Ldr+ 8Wdr 0/ Ildtr =0, (2.3)

n 131

where L, = K — H is the Lagrangian of piezoelectric media written as the dif-
ference between the kinetic energy and the electrical enthalpy rather than the
difference between the kinetic energy minus the potential energy [38]. The term
OW is the virtual work due to external mechanical and electric forces. ITis a math-
ematical function equals to L, +W. Expressions for 6K, 8H and W are discussed

thoroughly in section 2.7.

2.3 Strains

The tunable lenses under consideration compose of a square elastic membrane
and a piezoelectric stack that their total thickness (e.g. 22um) is less than 100
times the in-plane dimension (e.g. 3mm). Thus, the 3-dimensional elasticity
equations can be replaced by a simpler 2-dimensional classical plate theories such

as von Karman* or Kirchhoff > plate theories. These classical laminated plate the-

4is a nonlinear 2-D plate theory as it includes the dominant term of stretching strains due to

the transverse displacement wy.
5it fully neglects the mid-plane stretching and shear strains due to the the transverse displace-

ment wy in expressions of $9,, 59 and ¥, from von Kérman strains.

17
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ories have the following assumptions [42]

1. Straight lines perpendicular to the mid-surface before the deformation re-

main straight after deformation.

2. The transverse normals do not experience elongation (i.e., they are inexten-

sible)

3. The transverse normals rotate such that they remain perpendicular to the

middle surface after deformation.

These assumptions amount that the plate displacements (u, v, w) in cartesian

coordinates can be expressed as

0
u(x,y,z,t)zuo(x,y,t)—z%, (2.4a)
d
v(x,y,2,1) = vo(x, ;1) —Z$, (2.4b)
y
W(x7y7zvt) :WO(x7y7t)a (24C)

where ug, vo and wy are respectively the mid-plane displacements in x, y and z

directions. As a result, the normal and shear von Karman strains can be written

as
dug 1 /0wo\2  *wy
Sa= g0 +3(5e) T St Sk (2:52)
dvg 1 /0wp\2 8 wo 0 1
Sw=13, E(a_y> 57 =Sh S, S==0, (25
dug dvg Idwy awo a wo
= — 2.5
W= oyt o e gy Famy et (2:5¢)
Yv: =0, Y:=0, (2.5d)
where (Sg,'yo )and (S”,'yl]) are the membrane stretching strains at middle surface

and bending (flexural) strains. The terms depending on the transverse displace-

18
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ment wy in the strains (Sg.?y?j) reflect the geometric nonlinearity. The variational

non-zero strains become

00ug Iwgy Adw, 028w

0 0 0 0 1 _ 0
080 = ox | ox ox O8ex = ox? ' (2.62)

ddvy  dwp IdwW 028w

0 0 0 0 1 _ 0
3 =5t 3y 3y =g (2.6b)

B dduy  Advy 00wy dwgy  dwp ddwy o 928wy

Oy = dy + ox +( ox dy + ox dy )’ My =2 oxdy (2.6c)

2.4 Material symmetry

Due to the PZT material symmetry [1], the constitutive equations referred to the

middle plane as a reference plane can be reduced to

Ty O Op O —e3)
il (o 0 0|0 |-e
12 O» —e3
= S|+ E; (2.7a)
7;cy 0 0 Q66 0
_ _ Yxy _
D3| | @31 ex 0 | I £, |
D] o5 0 8 0l |E
L _ e Yyz N 11 . 1 ’ (2.7b)
D2 |0 e | 0 &, |k

where T3}, S;j, Vij, Di and E; are components of stress, normal strain, shear strain,
electric displacement and electric field respectively. The material axes (1, 2 and
3) coincide with the coordinate axes (x, y and z). D; and D, can be neglected
due to negligible transverse shear strains (Yy; and vy,;) and zero Ej and E; from

the electrode configuration (refer to Fig 1.3). (Qj, ¢ij, E;gj) are effective material
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properties (due to plane stress condition °), defined as

o = = SIIEI = _31152
Q;j=0Cij, Cn= Cip=
E L EN(E _EY’ E | .k )
(st +512) (5T, —s12) (st +512) (571 —sT2)
(2.8a)
_ 1 3 _ d31 s T 245,
Coo=—7F, @1=€0="FF, &3=83— F 5, (2.8b)
566 ST1 512 S11HS12

where sfj is the ij-th elasticity coefficient at zero electric field; (i, j) = 1,2,---6.
ds3; is the longitudinal d-form piezoelectric coupling coefficient. 8§3 is the dielec-
tric constant in the third material axis under zero stress while §§3 is the effective

one under zero strain.

2.5 Voltage and electric field in terms of strains

From Gauss's law and electric boundary conditions, we can formulate expressions
for E5 and the voltage v in terms of the bending strains, the DC actuation voltage
V, and layers dimensions. Since the piezoelectric layer is a charge free region and
the in-plane components of the electric displacement are negligible, Gauss's law

is simplified to
~ 8D3(x,y,z)

V-D
0z

=0. (2.9)

5Having zero S, results in neglecting the transverse normal stress 7. in the vairational formu-
lation. Thus, we have plane strain and plane stress conditions.

20



Farghaly: Modeling and design of piezoelectrically actuated MEMS ...

By substituting with D3 expression from Eq. (2.7a), the electric field and voltage

can be given by

1
E3(x,y,z) = _éT (E3|S;x+é325;y)z+cl, (2.10)
33
7 L/ o zZ
V(x,y,Z)=—/E3(x,y,Z)dZ =5 (@dutensy, |5 —azta, (211
33

where the integration constants ¢; and ¢, are determined from the electrical

boundary conditions (v = 0 at z = h; and v =V, at z = h3) (refer to Fig. 1.3) as

follows
-V 1
cl1 = —p—l—T(Eg]S)lcx—i—Eg,zS}l,y)Zp, (2.12a)
hy &5
L = a5
c) =crhy — o €315, + 6325yy ? (2.12b)
€33

The final expressions of the electric field and the voltage in terms of bending

strains are
Ve I _
E3(x.y,2) = 7= — = | Sut Sy ) (2= %), (2.13a)
P €33
V. e ZZ _hZ
v(x,y,2) = h—p(z— ho) + =3 <S}m +S;y) (% +2p(l2 —z)> , (2.13b)
p €33

where Z, = (h2 +h3)/2. The first term on the right hand side of Egs. (2.13) is the
field one would have without deformation and the second term is a result of the

deformation through the piezoelectric coupling.

"E3(x,y,7) = —Vv(x,y,z) is also valid for time varying fields as an electrostatic approximation,
because piezoelectric materials are dielectrics with low loss tangent such that conduction currents
can be neglected.
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2.6 Stress resultants

It is useful to integrate stresses from Eq (2.7a) over the thickness and to include
the layers residual stresses to get expressions for the stress resultants as follows

[42,43]

[ 3 NEO]
S - 1Tl T[op =1
Nxx Ain Aip 0 By B 0| |8 Ni 3 MR
Nyy Ay Ap 0 By Byp 0| |S) NE =
© AR
Nyy B 0 0 Ag¢ O 0 Bes Y)Ocy B ny n 1§1ny
- nj Y
M By B 0 Dy Dz O Sk ME, ZM)I;C’(I)
=1
My, By By 0 Dy Dyp 0 Syly Mfy %M)I;;(l)
My| [0 0 Bes 0 0 Des]|m] [Mp] |%' Lo
12 M,y
i (2.14)
where

l] — Z Qz] hl+1 hl l] Z Qlj hl—H )

ZQU hl+1 ) (215)

Q(l) are the effective stiffness coefficients for the /' layer and (i, j=1, 2, 6). (S0

ij i’

ygy) and (S”, yxy) are membrane stretching strains at middle surface and bend-
ing (flexural) strains [42]. N;; and M;; are the thickness integrated forces and
moments, respectively. Ng and Mlb; identified by a superscript E are terms that
originate from the piezoelectric coupling [43]. The other terms NS’U) and ij.’(l)

identified by a superscript R originate from fabrication residual stresses in the /"

22



Farghaly: Modeling and design of piezoelectrically actuated MEMS ...

layer. The stress resultants are given by

(NmeyyanyaMxxaMyyaMxy) = /(Txxa];yany7ZY}X7Zn)yazE)v)dZm

E NE AE agE E E
(Nxx7Nyy7ny7MxvayyaM

l l l l [

R(I) +R,(I) R,k
/(Txx()yTyy()yny()

') =

(2.16a)

)= /(?31,?32,?36,1531,ZE32,Z?36)E3C117

(2.16b)

2T k0 R Dyg,,

(2.16¢)

Using Eqgs. (2.13), we can express the stress resultant originating from piezoelec-

tric coupling as

E E P E
N, :Nyy = —e31Vp, ny 0,

3 (h3 — ha)?
Mg:Mfy —e31 [833 (Sl —l—Sl ) (T

Y

(2.17a)

ME, =0. (2.17b)

By backsubstituting from Egs. (2.17) into Eq. (2.14), we get the stress resul-

tants

-Nxx- -All A 0 By
Ny, Aip An 0 By
Noy| [0 0 Ag 0
M, N Bii By 0 1
My| |Bn Bn 0 D3
My| [0 0 Beg O

B 0
Bn O

0 B

0
D;, 0

0 Dy

+e31Vp
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where

(D)

2
x _ el b _vAab| ] (0 3| (1) €3i¢€3
= ij

Dl’-‘j are modified membrane flexural stiffnesses, D?} is for the glass layer only, Df.)j
for the piezoelectric layer only and x;; is a correction factor to the membrane flex-
ural stiffnesses due to the piezoelectric coupling within the piezoelectric material,

as discussed for piezoelectric beams in [32].

2.7 Variational formulation

In this section, we describe mathematically the variational formulation, that is
the core for electromechanical modeling of the piezoelectrically actuated MEMS

tunable lenses. It has the following assumptions

1. Classical laminate plate theory which takes into account first order bending
strains and neglects the normal strain S,z and the transverse engineering

strains Yy, and y;.

2. Linear theory of piezoelectricity that assumes a linear coupling between

electric field components and strains.

3. The piezoelectric layer is a charge free region so that Gauss's law is simpli-

fiedtoV-D =0.

4. A thin film approximation which neglects the lack of smoothness at the
transitions between areas that are covered by a piezoelectric thin film and
those that are not. This approximation is made by using displacement an-

satz that are continuous and differentiable over the whole diaphragm plane.
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5. The soft polymer that is deformed by actuation of the diaphragm and is

assumed to be weightless and do not to affect the diaphragm bending.

6. The deformation is mainly dominated by the transverse mid-plane displace-

ment and the in-plane displacements vy and ug are negligible.

7. Electrostatic approximation of time-varying electric fields, which neglects
electric fields originates from conduction currents. The identity —VV =E
holds valid for time varying fields, because piezoelectric materials are di-

electrics with very low values of loss tangent.

8. The effect of platinum and adhesion layers on the lens displacement is ne-

glected, because of their small thickness relatively to the PZT layer.

The Hamilton's principle for piezoelectric media from Eq. (2.3) can be rewrit-
ten as

11 11
dIldr = / (SK— (8U — 8F) +8W) dr = 0. (2.20)
1 fo —

OH
The electric enthalpy, as previously discussed, has been replaced by U — E [44].
0K ,0U and OF are the virtual variation of kinetic, strain (or internal) and electric

energies while 8W is the virtual variation of external work applied to the system.
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They can be defined as [42, 44]

SU:/ Tl'jSSijdxdde
Q

_ /Q (NS, -+ MBSk + Ny 880, + My 8L, + Ny Sy, + My S, ) dady,

(2.21a)
5K — /Q p (itdii + Vv + i) dxdydz, (2.21b)
W — /S (1:8u; — gv) dS, (2.21¢)
SE — /Q (D1SE1 + DySE; + D3OE3) dxdydz, (2.21d)

where p, g and ¢; are the mass density, the surface charge per unit area and the
surface traction (i=1,2,3) against the displacement field. By following the varia-
tional formulation assumptions and substituting with developed expressions for
the stresses resultant and the variational strains, Egs. (2.21) can be expressed as

below in terms of mid-plane transverse displacement and voltage only.
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where

(Io, ) = / (1,2)pdz. (2.25)

M,,, and M,,; are normal and tangential external stress moments applied over
the domain Q's outer boundary I'g, respectively. They depend on the type of
supports that hold the tunable lens. For the clamped case, the first integral van-
ishes because of zero displacement and zero slope conditions at the edges. i and
S are the normal and tangential unit vectors along the outer boundary I'g, re-
spectively. p is the transverse pressure. The second integral is the external work
due to a pressure force p, which vanishes based on having no external pressure
and the assumption previously made that the polymer don't affect the membrane

displacement.

SE — —/D-V(Sv)dxdydz — —/st-ds+/5v(v-1)) drdydz
S ——
=0
— / Dév-dS, (2.26)
S

where S is the unit vector normal to the surface S. At either the top or the bot-
tom surfaces of the piezoelectric layer, the electric displacement field D3 must
be equal to the surface charge density to satisfy the electric boundary conditions
of zero normal component of the electric field inside the Pt electrodes. Thus, the

variation in electric energy becomes
SE = — / gSvdxdy, (2.27)
S

and it cancels the electric term in W expression. This cancellation is neces-

sary and appears naturally from the variational formulation as discussed in [37].
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Therefore, the variational formulation can be reduced to

/Q {10W05W0 + I (W x&Wo x + 1o,y OV y) }dxdy

By /9wy Bio /0w 2 N %wo N *wo 923wy
+/Q{< (ax> +T(§> ST T2 g2 < ox? )

(PR e o) ()
(o (3e%) -2 <za§fat°>
(GO (%)
N %(aw())z A22<E)alyo> Blzaa;vo Bzzaa;\;o> <_8g;oagvyvo)

owp Iwg o0“w 00wy dwg  dwg ddwy
a (A66( ox dy ) *Bss axay) ( ox dy * ox dy )+/ powods
owg 90w dwg ddwy
- eSIV + ZNxx ) W <632V "‘kZN)’y ) ay ay
_ 636‘/ + Zny ) (
8 ) 9%3
+ | @31 Vpzp + Z MR ) Wo <e3zvpzp + Z My)( )) (TVZVO>

8 Swo B
axay } dxdy = 0. (2.28)

d0wg Ow awo 20wy
ox ay ox dy

+ 636Vpr + Z

The above formulation is the typical one would have for pure elastic media
except for the last six additional terms that depend on the piezoelectric coupling
and residual stresses. The first three of these six terms modify the equivalent

linear stiffness matrix while the last three form the equivalent force matrix.
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2.8 Displacement ansatz and equation of mo-

tions

All energies are currently expressed in terms of the mid-plane displacement in z—
direction. To solve the variational formulation for wg, we write an approximate

solution wy as a finite linear combination of basis functions

N,

wo(X,Y) =~ wy(X,Y) = ];lck(r)cpk(x,y), (2.29)
where @ (X,Y) are the basis functions and Cy, are their coefficients that depend
on time and to be determined. X and Y are the normalized cartesian coordinates.
N, is the number of basis functions and is increased until convergence is attained
over mechanical and optical parameters. The choice of basis functions is an im-
portant part of the ansatz. They must satisfy the mechanical boundary conditions.
By substituting with Eqg. (2.29) in the variational formulation, the Euler-Lagrange

equations of motion become

d (ol dIl_ (2.30)
dt \ oC oc '

where C is a vector of the coefficients Cy, (i.e. the state vector). In Einstein nota-
tion, the resultant system of equations due to von Karman strains can be written

as

<Rklk2 +Rlljlk2) Ck1 +Rk1k2k3Ck1Ck2 +Rk1k2k3k4ck1 Ck2Ck3 +Mk1k2(jk1 - sz =0.
(2.312)
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It is obvious that the equations of motion are cubic in terms of the basis function
coefficients. The linear stiffness has two term; the first term Ry, is the linear
stiffness one would have without geometric nonlinearity and the second term
R,ljlkz is modifying the linear stiffness as a contribution of the residual stresses
and the piezoelectric coupling due to the nonlinear deformation. The Ry, x,x, and
Ry, kyksk, are the quadratic and cubic stiffness terms resulting from including the
dominant term of stretching strains due to the transverse displacement wg. The
term My, x, represents the equivalent mass while the last term Fj, represents the
equivalent force due to piezoelectric coupling and residual stresses. For modeling
the lens dynamics, a damping term Cklszkl will be added to Eq. 2.31 to represent
a damping mechanism. The terms from Eq. 2.31 are respectively defined below

for the cartesian and polar lens's subdomains.
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(2.33f)

If Kirchhoff plate theory is considered to approximate strains, Eq. ( 2.31) is

reduced to the following linear system of equation
Rk1k2Ck1 +Mk1kzék1 —Fk2 =0. (2.34)

Based on the next chapters' context, static and dynamic versions of Eqgs.(2.31)
and (2.34) are used in the electromechanical part of the modeling framework
that predicts the optoelectromechanical performance of the piezoelectrically ac-

tuated MEMS tunable lenses.
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3 Modeling framework for piezoelec-
trically actuated MEMS tunable lenses

with various pupil geometries

This chapter investigates the effect of having different shapes of piezoelectric ac-
tuators on the lens optical performance. A search has been conducted for a de-
sign space of the actuator's geometrical parameters, that could achieve higher
focusing capability without increasing RMS-wavefront error that reduces image
guality. Thus, a modeling framework has been developed for evaluating the per-
formance of piezoelectrically actuated MEMS tunable lenses. It models the static
optoelectromechanical coupling for symmetric configurations of d3; piezoelec-
tric actuators. This helps finding geometrical parameters for actuators that give
a diffraction limited tunable lens with minimum F-number. The modeling frame-
work has two major parts. Its first part is to model the static electromechani-
cal performance and is verified against FEM with an error criterion. The second
part is to investigate quantitatively the tunable lens's optical performance using
ray tracing by analyzing its F-number (F#), RMS wavefront error (RMSWFE) and
Modulation Transfer Function (MTF). The tunable lens' optical performance and

its focusing capability, alone and in combination with a fixed lens, have been cal-
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culated in terms of object distance and actuation voltage. Using the modeling
framework, we have confirmed that the MTF for objects located at different dis-
tances remains the same within a limited Field of View (FoV) after voltage adjust-
ment to refocus at near objects.

Section 3.1 introduces the linear variation formulation and discusses the inte-
gration mask (the complementary pupil function) that allows moving around the
difficulty of calculating the variational integrals over lens' subdomains. Then, sec-
tion 3.2 presents the displacement ansatz and reasons for their suitability in the
optoelectromechanical modeling of the tunable lens. Section 3 investigates the
variational and FEM solutions for tunable lenses with various polygonal pupil ge-
ometries. At the end, it discusses the optical performance of the different lenses

and investigates the design concept of pupil masking.

3.1 The linear variational formulation

The core of our modeling framework for square diaphragms is a weak formulation
(i.e. Eg. (2.32)) based on the assumptions mentioned in Sec. 2.7. In addition, we
here assume quasi-static conditions such that there is no time dependence. Thus,

the weak formulation can be reduced to

. 9%wo . 9%wy 9%dwy . 9%wo ., 9%wo 928wy
/Q 1 9x2 D1 dy? ox? P ox? +Dx 0y? dy?

. 0wo [, 9*dwg - 2
+ <2D66 axay) (2 33y ) dxdy =e31Vp2p /Qp Vwﬁwodxdy, (3.1)

where Q = Q. UL, Qg and £, are domains for glass and piezoelectric lay-

ers, respectively. Viy is the 2-D Laplace differential operator, which can be ex-
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pressed in normalized cartesian or polar coordinates according to the shape of
the domain.The quantities D;-"j expression vary over the plate due to the differ-
ence in layer structure between the lens pupil and the actuator area. To simplify

numerical integration, they can be expressed in a more general form
) _
Dj;=Dj; +D}; {(X,Y) (3.2)

where Dlg; is the flexural rigidity for the glass layer only, D?j is for piezoelec-
tric layer including the piezoelectric coupling within the piezoelectric material.
X =x/(a/2) and Y = y/(a/2) are the normalized Cartesian coordinates. The
complementary pupil function é(X,Y) is 0 over the opening and 1 elsewhere.
From Eq. (3.2), the quantities D;f]. vary over the plate due to the difference in layer
structure between the lens pupil and the actuator areas. The function é serves
as an integration mask in Eq. (3.2) allowing numerical calculations of the varia-
tional integrals to treat various pupil geometries on the same footing. This would
be equivalent to calculating the energy terms for a square diaphragm, then, sub-

tracting the energy terms for the pupil domain.

3.2 Displacement ansatz and its suitability for

the optoelectromechanical modeling

To solve Eq. (3.1) for the deflection wg , we write an approximate solution wy as

a finite linear combination of basis functions

N N
WO<X7Y70)%WN(X1Y7O): Z ZCmnq)mn(va), (3.3)

m=1n=1
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where ®,,,(X,Y) are the basis functions and C,,, are coefficients to be deter-
mined. The choice of basis functions is an important part of the ansatz. They must
satisfy the mechanical boundary conditions. In addition, they should preferably
be orthogonal and easy to be mapped to Zernike polynomials [45]. Zernike poly-
nomials are orthogonal polynomials over a disc and are convenient for optical rep-
resentation of wavefronts. Orthogonality of the basis functions helps eliminating
the possibility of a numerically ill-conditioned system of equations arising from
the variational treatment. There are many options for the bases, such as products
of trigonometric and hyperbolic functions [46] known for doubly-clamped beam
or products of squared cosines [47]. The disadvantage of the latter functions is
that they are not orthogonal. Moreover, for either of these choices, power se-
ries expansions of the basis functions in terms X and Y must be made in order
to map to Zernike polynomials. This expansion increases the calculational bur-
den necessary to avoid significant errors from the mapping. Thus, we propose a
weighted product of Gegenbauer [48] polynomials on the interval [—1,1]. They
are orthogonal and have a simple mapping to Zernike polynomials as will be dis-
cussed later. By using projection, these basis functions can be written in terms of

Zernike polynomials as

Bpn(X,¥) = 0(X)0n(¥) = (1—X2)“ZZ (112

N J/

Weight factor enforcing BC

(a=1/2)
2

(3.4)
where G,(f) (X) is a Gegenbauer polynomial of order m and the parameter o in
the weighting factor should equal 9/2 to force the basis functions to satisfy the
clamped boundary conditions of zero deflection and zero slope along the edges.
Due to the symmetry, we have considered even polynomials, i.e. only functions

with both indices m and n even. Figure 3.1 shows the x-cross section of the first

six even basis functions of weighted Gegenbauer polynomials ¢,,(X). By back-
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substituting from Eq. (3.3) in Eg. (3.1), we get a linear system of equations for
Cyun On the form [42]:
[Rinnpq) [Cinn] = [Fpql, (3.5)
——
N2xN2 NZx1 N2x1

where [Rynpg] and [F,] are calculated using the decomposition described above.

The products of finite order Gegenbauer polynomials inside a circle of radius
Y = 2c/a can be expressed as a linear combination of Zernike polynomials with
coefficients depending on the geometrical parameter y. The basis functions can

be put on the form

N, N,
Dy (1,0) = Z Z knnij(Y)Z; (1,9),
i=0j=0
(3.6)
where
1 2n 1
2 . j
G = o / / @y (yrcos(8), yrsin(8))Z! (1, 0)rdrde. (3.7)
00

Zl.] are Zernike polynomials of the order (i,j). Ny = m+n+ 8 is the order of
Zernike polynomials sufficient for mapping exactly, where m,n are the orders of
the basis function ®,,,. u; is Neumann factor that equals 2 if j = 0 and 1 oth-
erwise. Appendix B lists few examples on how are the Weighted Gegenbauer
polynomials being expanded by Zernike polynomials. Moreover, based on the
mirror symmetries of the problem under study, we note that we have only even
Zernike-polynomial terms in the expansion. Due to this feature, we have an exact

representation of the lens surface in terms of Zernike polynomials.
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Figure 3.1: Even Gegenbauer-polynomial basis functions ¢,,(X) on [—1,1].

3.3 Variational solutions versus FEM

3.3.1 Circular pupils

Figure 3.2 shows a planar view of two possible study cases for the tunable lenses.
For all cases, light should only pass through the circular opening. Thus, case Il
with ring actuators has an additional opaque area (i.e. the lower Pt electrode of
the piezoelectric stack) covering the diaphragm outside the actuator perimeter

till the diaphragm edge in order to block out light.

In the analyzed study cases, we have used the same material and structure
dimensions for the square diaphgram and the piezoelectric actuator stack as in

Ref. 49.

Figure 3.3a shows how the variational solutions for case | match with FEM sim-

ulations. To check the convergence of the variational solution to the FEM solution
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Figure 3.2: Planar view of possible study cases of piezoelectrically actuated MEMS
tunable lenses. A clamped square diaphragm with circular opening: (a) case l and
(b) case Il ring actuator with opaque covering outside the ring till the diaphragm
edges.

WEEM, We choose to monitor the [, relative error norm

_ \/Z(WFEM —wn)? _ (3.8)

2
Y WEEM

As shown in Fig. 3.3b, the error and convergence speed both depend on the ratio
Y. Itis evident from Fig. 3.4 that the variational solutions in case Il have similar
behaviour as the FEM results, but the error is larger than for case I. The thin-film
approximation allows us to use one set of continuous basis functions over the
entire square diaphragm.

For the case-l actuator, this basis is artificially smooth at the rim of the glass
opening where the layer structure changes from glass only to glass and piezo-
electric. For the case-Il actuator, we have this feature both at the inner and outer
perimeter of the piezoelectric ring. The basis here do not account for the struc-
ture discontinuity which mandates having very large N to reach a decent accuracy
for optical representation of the lens sag for optical simulations. Consequently,

these basis are to be modified in chapter 4 in a way to account for this disconti-
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nuity.

As shown in Fig. 3.4b, it is apparent that having v, < 0.5 for case I, the dis-
placement in the circular aperture area becomes nearly flat and it becomes a
poor refractive surface unable to add any optical power to the passing light. Such

behaviour is suitable to operate the structure as a piston micromirror as in [50].

"
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Figure 3.3: (a) Displacement profiles in xz—plane from FEM and the variational
tool (N = 28) for square diaphragm with case | actuator at different values of
ratio y for piezoelectric material at V, = —10V'. (b) [, relative error norm versus
polynomial order NN.
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Figure 3.4: Displacement profiles in xz—plane from FEM and the variational tool
(N = 28) for square diaphragm with case Il actuator at different values of ratio
Y1 = 2c1/awhen ¥, = 2c;/a equals (a) 0.9 and (b) 0.5 at V, = —10V..
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3.3.2 Various pupil geometries

The variational formulation for tunable lenses can be amended to account for ac-
tuators with more complicated geometries than those in section 3.3.1. It can pre-
dict the deformation caused by piezoelectric actuators with arbitrary openings;
but symmetric. Testing the advantages of non-circular pupil geometry, we have
investigated the optical performance of polygon-shaped openings taking case |
(from Sec. 3.3.1) as a reference for comparison. However, case | is named here
as case 6. Figure 3.5 shows a planar view of symmetric actuator configurations
for tunable lenses with different pupil geometries. The geometrical parameter 7y
for each pupil's actuator is here redefined as the ratio L, /a, where L, is the refer-
ence dimension marked by red arrows in Fig. 3.5. Specifically in case 6, L, equals
its circular opening diameter 2¢. For all study cases, the light passes only through

the pupil opening area.

Figure 3.6 shows how the variational solutions (with N=28) for all cases match
with FEM simulations. For all cases, with all y values of interest, N = 28 is suffi-
cient to obtain less that 10 % [, relative error norm when comparing the dis-
placement from the variational solution with FEM. Thus, they qualitatively pro-

vide good prediction for deflection to be used subsequently in optical simulations.

The presented modeling framework provides a fast tool, compared to FEM,
to perform optimization and exploration of different materials, layer thicknesses
and pupil geometries. For example, on our computer (Intel i7-4940MX, 3.1 GHz,
64-bit OS) the software package MATLAB [5] solves Eq. (3.5) in 1.3 seconds while
it takes 1.5 minutes to solve the corresponding problem with FEM (using COMSOL
Multiphysics v4.4 [6]).
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y Clamping y Clamping y Clam_ping
Case 1 condition Case 2 condition Case 3 condition
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stack stack stack
Z X 7 x Z x
Transparent Transparent Transparent
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Figure 3.5: Planar view of possible study cases of piezoelectrically-actuated tun-
able lenses. A clamped square diaphragm with: (a) square, (b) 45° rotated square,
(c) hexagonal, (d) octagonal, (e) 22.5° rotated octagonal and (f) circular pupils.
The red arrows indicate the reference dimension L, for each pupil.
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Figure 3.6: Displacement profiles in xz—plane from FEM simulations and the vari-
ational solutions (N = 28) for a clamped square diaphragm with (a) square, (b) 45°
rotated square, (c) hexagonal, (d) octagonal, (e) 22.5° rotated octagonal and (f)
circular pupils at different y ratios with Vj, = —10V.
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3.3.3 Optical performance using ray tracing analysis

The lens sag from both the variational solutions and FEM simulation have been
exported to Zemax [7] in which optical simulations are done using ray tracing
analysis [33, 49]. The geometrical parameters of the lens' actuator have been
optimized to achieve the minimum achievable F# while having an acceptable
RMS-wavefront-error (RMSWFE) to have a diffraction-limited performance. Ac-
cording to Maréchal's criterion [25], the RMSWFE should be < A/14 to avoid the

deviation from diffraction-limited performance.

F-number is defined as F# = f/(\/%j), where f is the focal length and A is
the pupil area. The on-axis wavefront error (WFE) is the optical path difference
between the constant phase surface of the wave coming out of the lens and a
reference sphere having its center at the image plane and its radius equal to the

seperating distance between lens exit pupil and the image plane [7].

The optical performance of case Il actuator has not been superior to case |
( or case 6) which achieves the minimum F#; the reader may refer to [49]) for
the optical performance of case Il. Among different actuator geometries [33,49],
case 6 with the circular pupil has the widest aperture area with an area factor
0.26 compared to the square diaphragm area ( refer to Fig. 3.7 and Tab. 3.1). It
achieves nearly 4.5 diopters with a 10-V voltage source and has an RMS wavefront

error less than the Maréchal's criterion.

To study the tunable lens at the system level, such as for smartphone camera
application, we combine it with a fixed lens [33] as shown in Fig. 3.8a. Their com-
bination enables us to put an object at different focus positions from the camera,
refocus by adjusting the actuation voltage on the tunable lens, and calculate the

overall MTF at the image plane. Over the focusing range, the overall MTF is de-
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Figure 3.7: (a) Tunable lens arrangement for on-axis optical simulations. (b) Re-
ciprocal F# and (c) RMSWFE versus the area factor A for different pupils using
variational solutions and FEM simulations, all with V,, = —10V and A = 550nm.
The numbers 1 to 6 respectively represent lenses with square, 45-rotated square,
hexagonal, octagonal, 22.5-rotated octagonal and circular pupils, respectively.
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Table 3.1: Optimum 7, and gy ratios corresponding to minimum F# for vari-
ational solutions and FEM simulations, respectively. The Ay, F# and RMSWFE
corresponds to Vg, Values for tunable lens with polygonal and circular pupils at
Vp = —10W.

Pupil v, Yeem Ay F# RMSWEFE [waves]

1 051 0.5 0.25 143.96 0.1183
2 0.5 049 0.24 146.93 0.1009
3 0.64 0.61 0.24 13451 0.0505
4 0.57 055 0.25 129.43 0.0155
5 0.58 0.55 0.25 129.35 0.0168
6 0.59 0.57 0.26 129.04 0.0137

sirably not to be degraded from the MTF of the fixed lens alone. The resolution
of the captured image would be consequentially independent of the object dis-
tance.

Figure 3.8b shows the MTF of the fixed lens alone both when the object is at
infinity and when it is 368mm away. The MTF has dropped significantly for the
closer object because of the larger defocus term Zg in the wavefront error. Com-
bining the fixed lens with the circularly-shaped tunable lens preserves the MTF
performance from significant degradation over a range of object distances after
refocusing, as shown in Figs. 3.8c to 3.8e. The tunable lens keeps the MTF nearly
the same at different object positions. However, a closer look at the combined
MTF shows that the performance is diffraction limited up to the field point (O,
0.6839mm) that corresponds to a £10° FOV. Beyond that angle, the MTF drops
due to the tunable lens' off-axis aberrations. For a larger FOV, a simultaneous
redesign of the tunable and fixed lens would be helpful to compensate for the
dominant aberration.

Pupil masking, as a design degree of freedom, can affect lens figure of merits

such as: RMSWFE, dioptric lens power 1/ f, pupil area, resolution and contrast.
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Figure 3.8: (a) Arrangement of the tunable lens with a fixed lens in Zemax for opti-
cal simulations. Sagittal and (tangential) MTF for (b) the fixed lens alone without
movement when the object is located at infinity and 368mm at different field
points on the image plane (coordinates are given in mm in legends). MTF for the
tunable lens with circular pupil and the fixed lens when the object is located away
(c) 1103mm, (d) 552mm and (e) 368mm. 49
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Figure 3.9: (a) Planar view of pupil-masked case 2. (b) Cross-sectional view show-
ing the 45°-rotated square actuator with its circular lower Pt electrode etched to
form a circular pupil. The red arrow indicates the reference dimension L, for each
pupil. The blue arrow indicates the diameter 2¢ for the circular pupil opening in
the lower Pt electrode.

This can be done during device fabrication by having the PZT stack's lower Pt elec-
trode as a circular opening instead of having the same polygonal shape as the rest
of the PZT actuator layers such as in cases 1-6. Figure 3.9 shows a pupil-masked
case 2 as an example. Light only passes through the transparent circular opening
in the lower Pt electrode layer. The pupil-masked case 2 is now geometrically pa-
rameterized by two parameters: v for the piezoelectric actuator and Y, for the
circular opening in the lower Pt electrode. Yoy in this pupil-masked case 2 follows
the circular pupil definition , which equals 2¢/a (refer to Fig. 3.9).

For optical simulations, we conduct a parametric sweep on Y, for each y
value. The Y,p values are kept below L, /(atan(w/p)), which corresponds to the
polygon's inscribed circle. As a result of this parametric sweep, we get the scat-
tering plots for RMSWFE and 1/ f in Figs. 3.10a and 3.10b.

We have picked case 6 as a reference since it achieves the minimum F#, as
previously discussed. We compare pupil-masked cases 2 versus case 6 with the

same pupil opening diameter in Figs. 3.10a and 3.10b. It is evident that pupil-
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Figure 3.10: Scattering plots of (a) RMSWFE and (b) lens dioptric power 1/ f with
varying the ratios Yop and vy, all with V,, = —10V and A = 550nm.

masked case 2, compared to case 6, provides a tradeoff between dioptric power
and RMSWEFE, specifically for large apertures marked as red dots. They offer lower
RMSWEFE but less dioptric power for large apertures when compared to case 6. An
example on tradeoff points is case 2 with y=y,, = 0.7 that achieves f = 389mm
and RMSWEFE of 0.0133 waves. A comparable case 6 with Y= 0.7 has the same
pupil diameter, achieves f = 293mm and RMSWFE= 0.0395 waves, which is 1
diopter better 1/f but 3.4 times worse RMSWFE.
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4 'Trial functions for reduced-order

modeling of piezoelectrically actuated

MEMS tuneable lenses

This chapter is motivated by the need to further lower the number of Degrees-of-
Freedom (DOFs) of the linear model presented the previous chapter. It is named
here as model 0 and has been using an ansatz that is solely formed from the
weighted Gegenbauer polynomails. Section 4.1 emphasizes on the need for a
reduced-order model and discusses how the approach of using a piece-wise an-
satze with subfunctions is expected to improve the linear model's speed of con-
vergence to a solution with low DOFs. Section 4.2 presents the new normalized
coordinates and how the lens' planar area is partitioned in a way suits applying
the new analyatical models that are to be presented in section 4.3. Then, sec-
tion 4.4 displays the linear system of equations for the two new models except
that the mathematical derivation has been left out for the reader to check in [51].
Afterwards, section 4.5 compares between three variational models in terms of
displacement, optical parameters and more importantly the model order. Finally,
this chapter closes with section 4.6 in which an emphasis on that the subfunctions

in the pupil area of the new models can still be mapped to Zernike polynomials;
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which opens a research possibility to have a reduced-order dynamic model, as

will be discussed in Ch. 6.

4.1 The need for reduced-order models

For system-level designers to have computationally efficient models, it is neces-
sary to develop reduced-order models that can be implemented by e.g. using
MATLAB or a circuit simulator yet faithfully representing the device physics.

Low order models can in principle be obtained by analytical or semi-analytical
(series expansion) solutions. In the previous chapter, the diaphragm deflection
has been represented by an expansion in a weighted Gegenbauer basis [49]. In
this case, each basis function is extended continuously over the entire diaphragm
and 120 DOFs were necessary to reach a satisfactory representation of the lens
optical performance. Although this is a major improvement in computational ef-
fort compared to FEM, it is still quite a large number of DOFs for lumped-model
system simulations and too large to be tractable by purely analytical means.

One weakness in the previous formulation is that the basis functions did not
account for the discontinuity of the layered structure at the lens opening. There
are good reasons to expect that animprovement in convergence could be achieved
by taking this discontinuity into account. An approach to significantly improve
model accuracy for the piezoelectrically actuated lens is using basis functions that
account for the discontinuity in the layered structure at the lens opening. This ap-
proach uses the exact solution of the biharmonic equation in the circular regions
and fulfills the boundary conditions at the diaphragm edges.

We have chosen analytical ansatze that have Gegenbauer-polynomial-based

subfunctions with rectangular symmetry satisfying the plate's boundary condi-
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tions and yet can be expanded on the form of Fourier trigonometric series along
the circular discontinuity to be matched term-by-term with the exact solutions of
the plate's differential equation. For our lens application, the approach succeeds
in reducing the model down to 10 DOFs as opposed to 120 for the same accuracy

in the previous approach.

4.2 Normalized coordinates

Figure 4.1 shows planar views of the lens marked with definitions used by dif-
ferent models. Models 0 and 1 break the lens domain Q into two subdomains
Q1 and Q, while model 2 breaks it into 3 subdomains Q;, Q;; and Q;;; (we have
assigned new labels for subdomains in model 2 to simplify the mathematical rep-
resentation of variables later on). The lens diaphragm extends over a square with
cartesian coordinates x,y € [—a/2,a/2] and it is convenient to introduce normal-
ized coordinates X = 2x/aand Y = 2y/a. Thus, the locus of the lens pupil bound-
ary (I'q, in Fig. 4.1a or I'q, in Fig. 4.1b) and the fictitious boundary I'g,, in these
normalized cartesian coordinates are given by vX2 + Y2 = Y1 and VX24+Y2= Y2
where Y] and Y, respectively are the ratio of the lens pupil and the fictitious circle

diameters to the diaphragm side length a.

The lens' circular and annular subdomains Q;, Q; and Q7 can be further nor-
malized to a radial coordinate, as shown in Fig. 4.2. For these subdomains, we
use the normalized radial coordinate r = \/m/y() with Yo =71 for models O
and 1 and to Yo = Y» for model 2. As shown in Fig. 4.2, the lens pupil boundary

for the different models is either of the circles r = 1 or r = ot where o = v, /7».
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Figure 4.1: Planar views of the piezoelectrically actuated MEMS tunable lens
showing decomposing its structure into subdomains. (a) Model 1 break the lens
into two subdomains: ©; and Q,. (b) Model 2 breaks it into three subdomains:
Qg, Qi and Q7. Subdomains ;7 and € are separated by a fictitious circular
boundary I'q,,.
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Figure 4.2: Planar views showing the normalized radial coordinates in the circular
and annular subdomains for (a) models 0 and 1, and (b) model 2.
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4.3 New ansatze for model order reduction

4.3.1 Model1l

Model-1 deals with the lens as a two subdomain problem similar to model 0, but it
uses a piecewise expansion of two different basis functions for the displacement
approximation in the pupil and actuator regions. Its displacement ansatz in the

lens subdomains is

Qp: w(()l) :A{) —|—B{)r2

NF
+ Y (A 4B cos(nb), (4.1)
n=2.4,6---
Ng
.Q.z: W(()z) = Z qu)k(X,Y), (4.2)
k=1

(1)

where w;, " is the subfunction of the displacement ansatz in the subdomain Q;.

The ansatz part w(()l) is equivalent to having a circular FEM element with interpola-

tion functions formed as a product of two polynomials: one is an even polynomial

in r for the radial direction and the other a cosine function for the circumferential
(2)

direction [29]. For the subdomain Q,, the subfunction w; is the same Gegen-

bauer basis used in model 0 to enforce the clamped boundary conditions.
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4.3.2 Model 2

Model 2 deals with the lens as a three subdomain problem (refer to Fig. 4.1b).
To further improve the model accuracy over model 1 at low DOFs, this model
enlarges the membrane area over which the homogeneous solution of the plate
equation is used beyond the pupil area. Therefore, it adds a fictitious boundary
I'q,, that amounts to having a new annular subdomain Q. Its displacement

ansatz in the lens subdomains becomes

Qr: w(()l) = A%) + B{)r2
Np
+ ) (Apr" -I-BLI”"JFZ) cos(n0), (4.3)
n=2,4,6,

Qu: wgl) zA%)I +Bgr2 —I—C(I)Iln(r) +Dgr2 In(r)

Ni I 11 12
+ (A 4+ BT
N I !
+Cllpn —I—Dgr_"”) cos(n8), (4.4)
m 8
Qui: wy =Y GP(X,Y), (4.5)
k=1

(I1)

where w,, * is the subfunction of the displacement ansatz over the new annu-

lar subdomain Q. Its coefficients are AL, BY, CI! and D! where i = 0,2,---NF.

1
wén) uses even terms of the full homogeneous solution to the plate equation in-

cluding logarithmic and negative-power terms, because the subdomain Qp; does
not enclose the origin. To maximize the membrane area over which w(()H) is used,
we have chosen the fictitious circle's ratio Y, = 1 in the model-2's computation.
This choice means that the homogeneous solution is used over the area of the

(In)

inscribed circle of the square diaphragm. The subfunction w;, " is equivalent to
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(D

having an annular FEM element similar to [29]. The subfunction w" is used for

(1)

the pupil subdomain as in model 1 while w;; " is used over the subdomain Qyj to

enforce the clamped conditions, as discussed earlier.

4.4 Variational formulation

We use the linear variation formulation developed in chapter 2. By substituting

with the new ansatze, the linear system of equations becomes, for each model,

Model 1: (T/HYT +R(3,)C = Fy, (4.6)

Model 2:  (TVHT;+ ThH Ty + RYY ) C=TiFy+F,,. (4.7)

VRS

For the mathematical construction of the matrices in Eqgs. (4.6) and (4.7), the

reader may refer to Ref. [51].

4.5 Comparison between variational models

In this section, we compare the three variational models taking FEM simulations
as a reference. In addition, we have carried out a convergence analysis of these

models over the displacement and the optical parameters (F'# and RMSWFE).
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4.5.1 Variational solutions versus FEM simulations

Figure 4.3 shows displacement profiles from variational solutions for the three
models, and FEM simulations for various pupil opening ratios. Models 0 and 1
show similar behavior when pupil opening ratios are small and the Gegenbauer
basis is used for most of the membrane area in model 1. Thus, for these ratios, the
contribution of the Gegenbauer-basis terms to the electrical enthalpy of model 1
dominates other contributions and the curves resemble those of model O which
uses this basis only. This is evident for displacement profiles with y; < 0.6, as
shown in Fig. 4.3. The larger the value of vy; is, the more dissimilar are the dis-
placement curves of the two models and the better is the agreement between

model 1 and FEM.

Model 2 with N = 3 has the worst displacement approximation of all models
for most pupil openings, but this improves with increasing N value. Model 2 with
N = 7 provides better displacement approximations than the other models for
all pupil openings of interest. In Fig. 4.3, this becomes particularly clear for the
displacement curves of model 2 with y; < 0.3 when compared to models 0 and
1.

To compare the variational solution for wy,, of the different models to the FEM
result wggm, we monitor the [, relative error norm named here as (,,. {,, curves
for different models and various 7y; values are shown in Fig. 4.4. It is evident that
model 0 shows decreasing, in most cases, nonmonotonic trends for increasing
N. However, model 1 shows smoothly decreasing trends and even reaches the
highest accuracy at certain N values for y; ratios > 0.4.

Model 2's approximations appear to be worse with lower order N, but they

improve with increasing N. After N = 7, the error flattens for all pupil opening
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Figure 4.3: Displacement profiles in xz—plane from FEM and different models
at N =3 and N = 7 for different values of ratio y; with piezoelectric material at
Vo = —10V.
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ratios of interest and model 2 reaches the highest accuracy. Thus, model 2 can

outperform the other models with only 10 DOFs.
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1 N 1 10 N 10
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—a— 'y1=0.2 —a— ’y1=0.4 71=0.5 71:0_8

Figure 4.4: [, relative error norm for the displacement versus number of polyno-
mials N for different models.

4.5.2 Optical Simulations

Figure 4.5 shows the optical parameters from different models with various N
compared to those from FEM simulations. Model Q's approximations show os-
cillatory behavior for the optical parameters with increasing N similar to the {,,

curves. Model 1's approximations approach the optical parameters from FEM in
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a more uniform way. For y; < 0.3, approximations from models 0 and 1 become
similar for the same reason mentioned earlier for their displacements.

For model 2 with N = 1, {,, is greater than 0.8 for most y; values of interest.
Thus, we have omitted optical parameters at that particular value of N. The op-
tical parameters from Model 2 rapidly approach those of FEM and increasing the
value of N above 7 does not add any further improvements.

To asses the ability of the variational models in approximating the optical pa-
rameters over various pupil openings, we monitor the [, relative error norms of

1/F# and RMSWEE expressed as

Z (I/F#FEM—I/F# odel)2 1/2
Ciyre = [ ! 2M & } , (4.8)
Yy, (1/F#eEm)
Y (RMSWFEFEM —RMSWFE oden)271/2
CRMSWEE = [ " Model) } . (4.9)

The sums in the above equations are over a set of lenses with y; values ranging
from 0.1t0 0.9 in steps of 0.02. In this aspect, the parameters Cl/F# and CRMSWEE
will indicate the effectiveness of each variational model to approximate the lens'
optical performance over a wide range of pupil openings. Figure 4.6 shows these
norms versus N for the three models. Model 0 and 1 show similar behaviors for
1 /F# curves, but model 1 shows an improved performance for RMSWEFE curves.
Model-1's CrmsweE curve is lower than the one for model 0 by nearly 50% at all
N values. Model 2 starts on the wrong foot, but it becomes more accurate as N
is increased. When N reaches 7, it becomes the most accurate among the other
models. For N > 7, model 2 achieves accuracies of 5.1% and 2.1% respectively
for RMSWFE and 1/F#.

For a certain polynomial order, the three models have the same Ng DOFs but
their accuracy varies depending on the type of basis functions. Model 2 has re-

duced these DOFs to only 10 as it uses the homogeneous solution of the plate

63



Farghaly: Modeling and design of piezoelectrically actuated MEMS ...

Model 0
0.01;
~
0.008} §
2
E 0.006 <
g :
0.004¢ N
A
0.002} §
0
0 1 1
. (a) Model 1
810 0.16
7 ~ 014
6 § 0.12
5 § 0.1
I+ <
< 4 KN 008
~ &
™~ 3 N 006
2 E 0.04
1 & o002
0 0
0 0.2 0.4 0.6 0.8 1
4 1 Y I
(b) Model 2 ( ¥,=1) (d)
8 X 10° 0.14
7 = 0.12
6 § 0.1
5 2 o0
3 < ¢
Lﬁ 4 R 06
2 0.04
: 2
; > 0.02
0 ‘ o . ‘ ;
P 02 0.4 0.6 0.8 Y 0 0.2 0.4 0.6 0.8 1
Y1 71
(c) ()

—~—FEM —N=3 —N=7 —N=11 —N=15
—N=1 —N=5 N=9 —N=13

Figure 4.5: Reciprocal F# and RMSWFE versus the ratio v;, all with V, = —10V
and A = 550nm for the three models.
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Figure 4.6: [, relative error norm of (a) reciprocal F# and (b) RMSWEFE versus
order N for three models.

differential equation over most of the membrane area. With the same DOFs,
model 0 predicts RMSWEFE and 1/F# with the respective accuracies of 11.4%
and 66.2%, as shown in Fig. 4.6. It has needed as much as 120 DOFs to bring the
accuracies down to those of model 2 in order to provide an acceptable represen-

tation of the lens' optical performance [49].

4.6 New ansatze relation to Zernike polyno-

mials

Models 1 and 2 use crafted problem-specific trial functions to yield accurate solu-
tion starting with a low-order ansatz. Models 1 and 2 are also powerful tools for
optical wavefront representations because they can analytically yield the Zernike
coefficients to represent the lens surface. Since the displacement ansatz inside
the pupil region has the form of Fourier cosine series, it can be easily mapped to

Zernike polynomials ZZ,’/ [45]. The squared value of Zernike coefficients is calcu-
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lated through projection from

Model 1:

) 1 pr2m (1) o

Aty :/0 /0 wy ' (r)Zy (r,0)rdrde, (4.10)
Model 2:

) 1 pr2m ) o

an/m/:/o /0 wy (or)Zy (r,0)rdrd® (4.11)

where

ZI7 =R (r)cos(m')

n
= Y N HFcos(m'0), (4.12)
k=0

k(MK =2k
’nn/m/k—( 1)( k )(nl_zml—k (413)

and n’ and m’ are nonnegative even integers due to the lens symmetry. Their re-
spective maximum values are Nr + 2 and N from the w(()l) (or wg)) expression
and according to the definition of Zernike polynomials. In Eq. (4.11), the radial
variable is scaled by the factor o since Zernike polynomials are defined on a ref-

erence unit circle that is usually taken as the lens pupil.

From Egs. (4.12) and (4.13), and substituting of w(()l) into Egs. (4.10) and
(4.11), it equals

n —m!

2 AI/TA
2 m m!
;o= /T 1ol
S = b ;;on”m"<n'—2k+m'+2
B! 15,
M 4.14
+n’—2k-i—m’—i—4) ( )

where A! and B! are the coefficients of the displacement ansatz' subfunction in
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the pupil area. {,, is the Neumann factor that equals 2 if m' = 0 and 1 otherwise.

Due to scaling of the radial variable, the correction factors T are defined as

Model 1: TAy = TBy = ’CAm, = ’CBm, = 1, (4.15)

ml

Model 2: 14, = 1,13, = OCZ,TAM/ =,

T, = o2, (4.16)

In that manner, the reduced models can substitute the FEM mechanical simu-
lations of the lens and directly provide the Zernike coefficients representing the

lens sag.
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S Modeling piezoelectrically actuated
MEMS tuneable lenses with geomet-

ric nonlinearity

In the previous chapters, residual stresses due to fabrication processes, as dis-
cussed in Sec. 1.2, have been neglected and also the actuation voltage has been
kept low enough to stay within the linear regime. Accordingly, the linear model,
under those assumptions, has been accurate to model the lens performance. The
following chapter, in section 5.1, presents a variational model for the geometri-
cally nonlinear behavior of the piezoelectrically actuated MEMS tunable lenses.
This model can explain the softening and hardening effects exhibited by the lens
during its operation affecting its optical performance. Thus, in the view of von
Karman's plate theory, the presented nonlinear model predicts the lens displace-
ment after solving a cubic nonlinear system of equations and shows good agree-
ment with FEM simulations over various combinations of tensile and compressive
residual stresses. Then, section 5.2 presents a quantitative optical performance
of the lens showing how the lens focus range is enlarged for a certain combination
of layers' residual stresses. Finally, in section 5.3, the model succeeds in fitting

experiment when used in a constrained optimization scheme in which the layers'
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residual stresses and the effective e3; piezoelectric coupling coefficient are the
fitting parameters.

A difficulty arises, specifically, from the burden of calculating the variational
integrals for higher order stiffnesses of the lens' circular pupil. Those integrals are
needed to solve the nonlinear equations of motion. To fix that, we have written
the ansatz on the form of a Fourier trigonometric series and by using the orthog-
onality property of the trigonometric functions, the number of these integrals
has been significantly reduced. For the mathematical treatment, the interested

reader may consult Ref. [52].

5.1 Variational formulation

Considering von kdrman strains, the nonlinear system of equations minimizing

the energy can be written in Einestein notation as

(Rklkz + Rkle2> C’Q + Rk1k2k3Ck1Ck2

+Rk1k2k3k4cklckzck3 - F/Q = 07 (51)

where all the indices ky, k3, k3 and k4 enumerate from 1 to Ng. The linear stiffness
has two terms; the first term Ry i, is the linear stiffness one would have without
geometric nonlinearity, while the second one Rkle2 is the contributing stiffness
due to the geometric nonlinearity to the linear stiffness, and strongly depends on
the residual stresses and the piezoelectric coupling factor. The terms Ry, ik, and
Ry, kyksk, are the quadratic and cubic stiffnesses resulting from contributing the
transverse displacement wy to the stretching strains. The term Fj, represents the

equivalent forces due to piezoelectric coupling and residual stresses. To numer-
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ically solve Eq. (5.1), Newthon-raphson method with an analyatical jacobian has

been used [52].

5.1.1 Variational solutions versus FEM

In the analyzed cases, we have assumed bi-axial residual stresses in the xy-plane
and zero residual shear stress in each layer such that 7}56’(1) = Tyl;’(l) = TR and
Txlye’(l) = 0. Under various combinations of tensile and compressive stresses, Fig.
5.1 shows that the variational solutions (N = 13) are in a good agreement with
FEM simulations.

The horizontal subfigures with similar stress TR(2) in the PZT layer, show that
the amplitudes of counterpart displacements at the same voltage, decrease with
increasing the stress in the glass layer TR, This indicates that 7%-(1) only affects
the stiffness terms R]k\ikz not the force ones F;, (refer to ( Egs.2.32 ) and (2.33)).
The effect of T7®(1) becomes crystal clear for the curves with T%(2) = 0. No effect
of TR() on Fy, integrals occurs as a result of integrating @y, xx and @y, yy in the
expression Mﬁg(l)cpk%xx +M§y’(1)<bk27yy (refer to Eq. (2.32)) over the whole glass
layer, which leads to zero due to the clamping condition of zero slope. However,
this is not the case for the 7%(2) since the PZT layer has a central hole causing the
resultant Fy, integrals to be nonzero. By looking at the vertical subfigures with
the same TR () value, we can infer that T7%(2) changes both the terms RkN]kz and
Fy,. Hence, the changes in the initial bending profile whether it is upwards with
(zero or tensile TR(2)), or downwards with compressive T®(2). Another evidence
is the variance in the displacement-to-voltage sensitivity when comparing groups
of two displacement profiles at two alike voltages at different values of TR(2)
(refer to the vertical subfigures in Fig. 5.1).

The value of the stress T%:(2) drastically changes the lens optical performance,
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Figure 5.1: Displacement profiles in xz—plane from FEM (dashed) and the varia-
tional tool (N = 13) for ygp = 0.5 at different layer stresses and voltages. They are
at different voltages ranging from -4V (colored blue) to -28V (colored dark green)
with a constant step of -4V.
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as shown in Fig. 5.1. Its value determines the course of the nonlinear behavior
to be either softening, hardening or both; similar to the laminated plate loaded
by a pressure in [53]. With a compressive TR(2) the membrane is initially bent
downwards exhibiting a softening effect such that the membrane shows less stiff-
ness, allowing high displacement-to-voltages sensitivity. As the voltage is modi-
fied from -4V to -28V with constant steps of -4V, this softening effect swaps to be a
hardening effect once the membrane bending profiles change from being down-
wards to upwards and the displacement-to-voltage sensitivity decreases. In that
scheme with compressive TR(2) the lens possibly would have a wider tunable
range of focal lengths due to being operated both as a plano-concave and plano-
convex lens, based on the biasing voltage value. Differently, with zero and tensile
TR(2), the membrane exhibits only a hardening effect with varying the biasing
voltage values and the initial profiles are bent upwards with slowly increasing
amplitudes not matching the increase in voltage values when visually compared
to their counterpart curves but with a compressive TR(2) The more tensile TX-(2)
becomes, the stronger the hardening effects and the lower the displacement-to-
voltage sensitivity. This can be noticed from the counterpart curves with the same
value of T®2) in the last two rows in Fig. 5.1. Therefore, larger tensile stresses
will limit the lens' tunable range of focal lengths and consequently the optical

power swing that could be achieved by the lens.

5.2 Qualitative optical performance

We dedicate this section to qualitatively discuss the lens' optical performance us-
ing FEM solutions in terms of RMS-wavefront-error (RMSWFE), and optical power

swing (OPS). OPS is defined as the difference between the largest and the lowest
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Figure 5.2: Displacement profiles in xz—plane from FEM (dashed) and the vari-
ational tool (N = 13) for other 7y, values at different layer stresses and voltages.
They are at different voltages ranging from -4V (colored blue) to -28V (colored
dark green) with a constant step of -4V.
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optical powers obtained by the lens for a certain voltage range; where (1/f) is the
optical power and f is the lens' focal length. The mentioned optical parameters
are the tunable lens' performance metrics that are to be used for system-level
simulations when the lens is to be combined with a fixed-focal-length lens. The
higher the optical power swing and the lower the RMSWEFE, the better this tun-

able lens.

Based on the residual stresses values, the bending profile at Vp = 0 may be not
flat and the tunable lens alone has a non-zero initial optical power. If this lens is
directly combined with a fixed-focal-length lens, the on-axis rays from an object at
infinity would be focused at a distance either in front or behind the image plane
(i.e the image sensor). However, this situation can be remedied by modifying
the curvature of the first surface of the fixed-focal-length lens and the distance
separating it from the tunable lens until the on-axis rays from an object at infinity,
are in focus at the center of the image plane. In that manner, the combination of

the two lenses has no optical power at OV.

Figure 5.3 shows optical metrics using the lens sag from FEM simulations for
Yo = 0.6. In the view of the displacement profiles from Fig. 5.1 and the opti-
cal simulations, if 782 js compressive, the lens can be operated as a plano-
convex/plano-concave lens and can possibly achieve the highest optical power
swing with the lowest RMSWFE for a certain PZT stack. For TR(2) = _100 MPa,
OPS is 11.9 diopters, which is higher when compared to other stress values as
shown in Tab. 5.1. However, if the stress TR(2) becomes tensile, the initial bend-
ing profile is upwards and the sensitivity of the displacement-to-voltage becomes
less than the situations in which T%(2) is zero or compressive. In this case, the
lens has a large initial optical power that slowly changes with increasing voltage,
which results in having smaller optical power swings and higher RMSWFEs. For

TR.(2) = 100 MPa, OPS is reduced to 5.5 diopters and the optical power is slowly
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varied with voltage which matches with slowly varied displacement in Fig. 5.1.

0.02 —v— -100MPa
—v— OMPa
100MPa

0.3 —v— -100MPa
—o— OMPa
100MPa

%0 25 20 a5 0 5 0
Vp V]

Figure 5.3: Ypa/f and RMSWFE versus actuation voltage V) for different TR(2)
values at T®(1) = 0, yp = 0.6 and A = 550nm.

Table 5.1: Optical power swing for a 30-V source.
TR [MPa] -100 0 100
OPS [diopter] 11.9 83 55

The residual stresses can be controlled through engineering the fabricational
process of the PZT stack and the layers on which it is mounted, through optimizing
the layers' thicknesses and thermal expansion coefficients. These stresses could

be adjusted in a manner that improves the lens' optical performance metrics.
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5.3 Model versus Measurements
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Figure 5.4: (a) Measured displacement profile at OV. (b) Measured displacement
profile at O V after numerical treatment to remove tilt, rotational misalignment
and distorted data around the electrode's inner edges. (c) Cross-sectional profiles
from the measurements and model fittings at three voltages.

To assess the model's effectiveness in modeling the piezoelectric coupling in
such lenses, we try to validate the model versus experiment. The measured de-
vice is fabricated using Silex-Microsystem's Piezo-MEMS process [24]. The device
stack is Si/SiO,/Ti/TiO,/Pt/PZT/Au, but the silicon layer is dry etched leaving a lay-
ered structure. After etching, a silicon frame is left to mechanically hold the lens
and provide clamping conditions at its four edges. When the lens is fabricated,
there are uncertainties in determining the exact values of layer stresses (TR7(1),
TRv(z)) and the effective piezoelectric coupling factor e3;. Thus, these parameters
are the model's fitting parameters whose values are to be optimized until a good
agreement is reached between the model and the measurements.

Differently from the simulated devices, the measured device has the struc-
tural parameters a = 3.2mm and Yy =0.41. The 2-D displacement profiles have

been measured using a WYKO white light interferometer NT9100 (Bruker Corp.)
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[54] in air and the piezo-stack was biased through two pairs of metal pins touch-
ing the device' electric pads that were placed at the clamped silicon frame such
that probing would not affect the membrane displacement. To have good resolu-
tions, we have only monitored a rectangular part of the diaphragm area defined
by 3.2mmx 2mm. The measured displacement profiles have asymmetry that can
not be captured with the basis functions used in fitting that are forced to have
90°-fold symmetry. Therefore, before fitting, the measured data has been nu-
merically treated to remove tilts, rotational misalignment and the distorted data
along the boundary separating the actuator and the pupil, as shown in Figs. 5.4a

and 5.4b.

The variational model is used in a constrained optimization scheme such that
the fitting parameters are trimmed until a match between the experimental mea-
surement and the model is reached. This matching happens through the follow-

ing minimization criterion

m1n H Cokes (5.2)

R, TR () &3 j—

where the index k enumerates from 1 to 3 denoting three voltage measurements
of 0, 20 and 30 volts, and ,,x is the l,-relative error norm for the k™" measure-
ment. However, {,,x here was calculated for the 2-D surface displacement and
not just for the cross-sectional profiles as in the simulations part. The objective
function is formulated as a product in order not to favor one of the measured
profiles based on amplitudes, which happens if the objective function is simply
the sum of errors. In that manner, our fitting criterion simultaneously provides

good fittings for the three measured voltages.

The process [24] provides a bulk piezoelectric coupling coefficients larger than

-15 C¢/m?, which corresponds to e3; of -21 C/m? and has been used as an initial
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value of the coefficient e3;. However, the initial values of the stresses are ex-

tracted from measuring test structures on the same wafer as the measured de-

vice. These test structures have stacks as Si/SiO», Si/SiO,/Ti/TiO,/Pt and Si/SiO,/Ti/TiO,/Pt/PZT.
These stacks have been progressively simulated in COMSOL as a new layer is

added and the biaxial stresses in the added layer are finely tuned until a good

match is reached between simulations and the measured profiles. However, in

our modeling approach, we here have neglected the adhesion and electrode lay-

ers. Thus, this leaves us with only two layer stresses TR (=11 MPa and T® =26

MPa.

The variational model has been used in a constrained optimization scheme
using the the MATLAB function "fmincon". The lower and upper bounds of the
fitting parameters are set to freely vary as a percentage of 50% from their initial
values. The initial and fitting values are listed in Table 5.2. The fitting value of e3;
is -20C/m? corresponds to a bulk piezoelectric coefficient e3; of -14 C/mZ2, which
is close to the value reported by [24]. Figure 5.4c shows that the fittings from the
model (N = 13) are in good agreement with the measurements for all the three

voltages.

Table 5.2: The fitting parameters.

Parameter initial value fitted value

TR -11 MPa -15 MPa
TR(2) 26 MPa 29 MPa
3 21 C/m*  -20 C/m?
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6 Conclusions and proposal for fu-

ture research

6.1 Conclusions

Modeling frameworks for the linear and geometrically-nonlinear performance of
piezoelectrically actuated MEMS tunable lenses are reported in this thesis. Start-
ing with Hamilton's principle, variational formulations have resulted in obtaining
equations of motion, which can be solved in MATLAB in a time less than it takes
a FEM program to solve the same problem. The presented models have been

verified versus FEM and measurements.

We have constructed a modeling framework that has two major parts. Its
first part is to model the static electromechanical performance, while the sec-
ond part is to investigate quantitatively the tunable lens's optical performance
using ray tracing by analyzing its F-number (F#), RMS wavefront error (RMSWFE)
and Modulation Transfer Function (MTF). Different symmetric configurations of
dz| piezoelectric actuators have been investigated. In this way, we have found

optimal sets of actuators' geometrical parameters that would give a diffraction-
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limited tunable lens.

A key pillar in the success of our modeling framework is the choice of suit-
able displacement ansatze (the weighted Gegenbauer polynomials in Ch. 3 and
the new ansatze in Ch. 4). They satisfy the mechanical boundary conditions, and
more importantly the lens displacement within the pupil area can be analyati-
cally expressed in terms of Zernike polynomials; which are suitable for the optical
representation of the lens' wavefront. In this manner, this has helped in having
an error free transformation of the lens sag without the need to export a fine
grid-points of the displacement at the pupil area in case of using FEM solutions.
Another key pillar is the pre-calculation of the (linear and nonlinear) variational
integrals in terms of the actuator's geometrical parameters, which have enabled
the modeling framework to be faster compared to FEM especially during an op-

timization search for an optimum parameter sets.

First, we have investigated linear model for lens with different polygonal pupil
shapes. It has been proved to be in agreement with FEM simulation with a relative
error norm less than 10%. Among different pupil shapes, the circularly shaped
pupil has been proved to achieve a diffraction-limited lens with the widest aper-
ture area with an area factor 0.26 compared to the square diaphragm with nearly
4.5 diopter for a 10-V swing. Second, and through optical simulation, when the
tunable lens is combined with fixed lens, the overall MTF has been preserved from
degradation over a range of object distance after refocusing. However, a closer
look at the combined MTF shows that the performance is diffraction limited up
to the field point (0, 0.6839mm) that corresponds to a £10° FOV. Beyond that
angle, the MTF drops due to the tunable lens' off-axis aberrations. For a larger
FOV, a simultaneous redesign of the tunable and fixed lens would be helpful to

compensate for the dominant off-axis aberration.

Third, we have investigated a design idea called pupil masking in which the
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lens pupil is kept circular while investigating different polygonal openings in the
piezoelectric actuator. As a result, the 45-rotated square opening in the piezeo-
electric actuator is found to give a trade-off between the focal lens and the RM-
SWEFE allowing having larger apertures. In addition, such design idea allows hav-
ing lenses with lower RMSWFE at the expense of the dioptric power when com-
pared with the original design of the circular-shaped pupil with the same pupil
opening. For example, with y=",, = 0.7, the 45-rotated square opening achieves
f = 389mm and RMSWFE of 0.0133 waves, while the circular-shaped pupil with
the same ratio y= 0.7 achieves f = 293mm and RMSWFE= 0.0395 waves, which
is 1 diopter better 1/f but 3.4 times worse RMSWFE.

Fourth, a weakness in the previous ansatz has been identified and there is a
room for further improvement of the model. This weakness has been the inability
of the weighted Gegenbauer polynomials alone to account for the discontinuity
of the lens' layered structure at the pupil opening, as well as the high order (i.e.
120 DOFs) needed to have higher accuracies. Hence, we have been motivated to
investigate new analyatical ansatze that are piecewise subfunctions; one is the
weighted Gegenbauer polynomials to enforce the lens boundary conditions, and
the others are the exact solutions of the circular plate's differential equations. To
be redundant, the new models' subfunction within the pupil can still can mapped
to Zernike polynomials. Consequently, we have investigated two other models
and fully deduced their variational formulation. The new two models have been
proven to achieve less order and higher accuracies than those achieved by us-
ing solely the weighted Gegnenbauer polynomials. For example, model 2 with
10 DOFs achieves accuracies of 5.1% and 2.1% for RMSWFE and 1/F# while
model 0, with the same number of DOFs, can only achieve respective accuracies
of 66.2% and 11.4%. Model 2 has been a success because the larger this area

over which the exact solution for the elastic plate differential equation is used,
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the lower is the number of DOFs needed to reach high accuracy in terms of me-

chanical and optical parameters.

Finally, we have been motivated to extend the variational model to include
geometric-nonlinearity, since in reality there is impossibility to have such lens
structure with zero residual stresses and to limit actuation voltage values to the
linear regime. Therefore, we have considered von Karman's strains and devel-
oped the cubic equations of motion to solve for the displacement. Because of the
discontinuity at the lens pupil, the quadratic stiffness terms in the cubic equation
of motion are nonzero. This consequently affects the lens during operation and
causes hardening and softening effects that can be utilized in increasing the lens
tunable range of focal length. For a certain combination of layer stresses dur-
ing fabrication, the lens can be operated simultaneously as a plano-convex and a
plano-concave lens, which has extend the optical power lens from 8.3 diopters
(no stresses) to 11.9 diopters for a 30-V voltage source. To verify the nonlin-
ear model versus measurements, it has been used in a constrained optimization
scheme with fitting parameters (layer stresses and piezoelectirc coupling coeffi-
cient e31), which has resulted in showing good agreement of the model with the

measurement.

In practice, the developed models can be utilized for optimization of different
material choices and layers thicknesses to find the optimum geometrical parame-
ter of the piezoelectric actuator. In addition, these developed models can be used
by system-level lens designers. Accordingly, they can avoid the burden of simulat-
ing different actuators of the lens firstly using FEM, then export the lens displace-
ment profiles to optical program to calculate the optical performance. Neverthe-
less, the presented models can be generally used for any similar structures after
reformulating the variational formulation to include the actuating forces due to

e.g. pressure or thermoelasticity.
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6.2 Proposals for future research

The next logical step is to extend the variational model to be a dynamic model in

which the displacement ansatz can be written on the form
Ng
wo R=WnN; = Z Ck1 (l‘)‘bkl (X,Y), (6.1)
k=0

which leads to having the following equation of motion, after adding damping

terms, in Einstein notation to be written as
Rklkzckg + Cklkzckz +Mk1kzék2 = Fkgy (62)

where

Ckyky = ORRK &, + O M iy (6.3)

such that oy and oy are Rayleigh damping coefficients.

A dynamic model allows building an equivalent circuit as shown in Fig. 6.1,
which its parameters can be fetched from Eq. (6.2). This enables system-level
simulations of the lens dynamics that are of importance when it comes to focal
length adjustment during focusing at different objects inside an image frame.

Figure 6.2 shows step response resulting form dynamic simulations using the
models from Ch. 4 and with a comparison with FEM solutions. To emphasize on
the usefulness of our model, our dynamic model has taken 3 minutes while FEM
has taken 1.5 hour for the same transient simulations.

Up to this point, the polymer has been assumed to be weightless and to have
low Young modulus such that it does not affect the membrane bending. However,

this in reality would depend on its thickness. Accordingly, Eq. (6.2) paves the way
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Figure 6.1: Equivalent circuit of the tunable lens.

to include a model for the polymer and allow system-level simulations such as
sweeping focus range in the process for the camera to focus on different objects to

be captured in images. This will allow monitoring the change of RMSWFE versus

time until the lens movement reaches steady state.
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Figure 6.2: Step response of the lens using the ansatz of (a) model 0 (b) model 1,
and (c) model 2 with Rayleigh parameters og = 10~ 6 s and oy = 1074 s~ 1.

87






Farghaly: Modeling and design of piezoelectrically actuated MEMS ...

6

[1]

[2]
3]

[4]

[5]
[6]
[7]

[8]

[9]

(10]

Bibliography

J. F. Nye, Physical properties of crystals: Their representation by tensors and

matrices. Oxford university press, 1985.
J. W. Goodman, Introduction to Fourier optics. McGraw-Hill, 1996.
Y. Tseng, “"Voice coil motor apparatus," July 15 2008. US Patent 7,400,068.

C. Zhao, Ultrasonic motors: Technologies and applications. Science Press

Beijing and Springer-Verlag Berlin Heidelberg, 2011.
“https://www.mathworks.com/products/matlab.html."

COMSOL AB, COMSOL Multiphysics Reference Manual, November 2013.
Zemax LLC, Washington, USA, Zemax 13 Optical Design program, JUNE 2015.

PolLight, “https://www.polight.com/technology-and-products/

tlens-compared-to-vcm/default.aspx," March 2019.

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is
variable in a wide range," Appl. Opt., vol. 43, pp. 6407--6412, Dec 2004.

N. Chronis, G. Liu, K.-H. Jeong, and L. Lee, “"Tunable liquid-filled microlens
array integrated with microfluidic network," Opt. Express, vol. 11, pp. 2370-
-2378, Sep 2003. [10.1364/0E.11.002370].

89


https://www.mathworks.com/products/matlab.html
https://www.polight.com/technology-and-products/tlens-compared-to-vcm/default.aspx
https://www.polight.com/technology-and-products/tlens-compared-to-vcm/default.aspx

Farghaly: Modeling and design of piezoelectrically actuated MEMS ...

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

90

S. Kuiper, B. H. Hendriks, L. J. Huijbregts, A. M. Hirschberg, C. A. Renders,
and M. A.van As, “"Variable-focus liquid lens for portable applications," Proc.

SPIE, vol. 5523, pp. 100--109, 2004.

A. Werber and H. Zappe, Tunable microfluidic microlenses," Appl. Opt.,
vol. 44, pp. 3238--3245, Jun 2005.

K. Haugholt, D. Wang, F. Tyholdt, W. Booij, and I|. Johansen, “*Polymer lens,"
June 12 2012. US Patent 8,199,410.

K. Tsuchiya, T. Kitagawa, and E. Nakamachi, “'Development of rf magnetron
sputtering method to fabricate pzt thin film actuator," Precision Engineering,

vol. 27, no. 3, pp. 258 -- 264, 2003.

G. Malyavanatham, D. T. O'Brien, M. F. Becker, W. T. Nichols, J. W. Keto,
D. Kovar, S. Euphrasie, T. Loué, and P. Pernod, “"Thick films fabricated by
laser ablation of pzt microparticles," Journal of Materials Processing Tech-

nology, vol. 168, no. 2, pp. 273 -- 279, 2005.

M. Okada, K. Tominaga, T. Araki, S. Katayama, and Y. Sakashita, “"Metalor-
ganic chemical vapor deposition of c -axis oriented pzt thin films," Japanese

Journal of Applied Physics, vol. 29, no. 4R, p. 718, 1990.

R. W. Schwartz, T. J. Boyle, S. J. Lockwood, M. B. Sinclair, D. Dimos, and C. D.
Buchheit, “"Sol-gel processing of pzt thin films: A review of the state-of-the-
art and process optimization strategies," Integrated Ferroelectrics, vol. 7,

no. 1-4, pp. 259--277, 1995.

N. Ledermann, P. Muralt, J. Baborowski, S. Gentil, K. Mukati, M. Cantoni,
A. Seifert, and N. Setter, **1 0 O-textured, piezoelectric Pb(Zr,Tij—,)O3 thin
films for mems: integration, deposition and properties," Sensors and Actu-

ators A: Physical, vol. 105, no. 2, pp. 162 -- 170, 2003.



Farghaly: Modeling and design of piezoelectrically actuated MEMS ...

(19]

(20]

[21]

[22]

(23]

(24]

[25]

N. Ledermann, P. Muralt, J. Baborowski, M. Forster, and J.-P. Pellaux, “"Piezo-
electric Pb(Zr,Tij—,)O03 thin film cantilever and bridge acoustic sensors for
miniaturized photoacoustic gas detectors," Journal of Micromechanics and

Microengineering, vol. 14, no. 12, p. 1650, 2004.

E. Hong, R. Smith, S. Krishnaswamy, C. Freidhoff, and S. Trolier-McKinstry,
“Residual stress development in Pb(Zr,Ti)O3/Zr0O,/SiO, stacks for piezoelec-

tric microactuators," Thin Solid Films, vol. 510, no. 1, pp. 213 -- 221, 2006.

M. Olfatnia, T. Xu, L. S. Ong, J. M. Miao, and Z. H. Wang, “Investiga-
tion of residual stress and its effects on the vibrational characteristics of
piezoelectric-based multilayered microdiaphragms," Journal of Microme-

chanics and Microengineering, vol. 20, no. 1, p. 015007, 2010.

G. A. C. M. Spierings, G. J. M. Dormans, W. G. J. Moors, M. J. E. Ulenaers,
and P. K. Larsen, “'Stresses in Pt/Pb(Zr,Ti)O3/pt thin film stacks for integrated
ferroelectric capacitors," Journal of Applied Physics, vol. 78, no. 3, pp. 1926-
-1933, 1995.

S. Corkovic, R. W. Whatmore, and Q. Zhang, “'Development of residual stress
in sol-gel derived Pb(Zr,Ti)O3 films: An experimental study," Journal of Ap-
plied Physics, vol. 103, no. 8, p. 084101, 2008.

M. Rimskog, T. Ebefors, J. Liljeholm, and N. Svedin, “Introducing new
materials in a foundary environment with a focus on pzt." http://www.

smart-memphis.eu/publications, 2015.

A. Maréchal, Etude des influences conjuguées des aberrations et de la
diffraction sur I'image d'un point. PhD thesis, Faculté des Sciences des Paris,

1947.

91


http://www.smart-memphis.eu/publications
http://www.smart-memphis.eu/publications

Farghaly: Modeling and design of piezoelectrically actuated MEMS ...

[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]

92

K. Torabi and A. Azadi, “"A new approach to the study of transverse vibra-
tions of a rectangular plate having a circular central hole," Journal of Solid

Mechanics, vol. 6, no. 2, pp. 135--149, 2014.

M. K. Kwak and S. Han, “Free vibration analysis of rectangular plate
with a hole by means of independent coordinate coupling method,"
Journal of Sound and Vibration, vol. 306, no. 1, pp. 12 -- 30, 2007.
[d0i:10.1016/j.jsv.2007.05.041].

G. M..T. H. A. Olson, Mervyn D. ; Lindberg, “Finite plate-bending elements
in polar co-ordinates." NATIONAL AERONAUTICAL ESTABLISHMENT OTTAWA
(ONTARIO), OCT 1968.

G. C. Pardoen, “Asymmetric bending of circular plates using the finite ele-

ment method," Computers & Structures, vol. 5, no. 2, pp. 197 -- 202, 1975.

M. Deshpande and L. Saggere, ““An analytical model and working equations
for static deflections of a circular multi-layered diaphragm-type piezoelectric
actuator," Sensors and Actuators A: Physical, vol. 136, no. 2, pp. 673 -- 689,
2007.

S.I.E. Lin, “Investigation on packaging parameters of a circular multi-layered
diaphragm-type piezoelectric actuator," Computers and Structures, vol. 89,

no. 3--4, pp. 371 -- 379, 2011.

E. Tadmor and G. Kosa, Electromechanical coupling correction for piezo-
electric layered beams," Microelectromechanical Systems, Journal of,

vol. 12, pp. 899--906, Dec 2003.

M. A. Farghaly, M. N. Akram, and E. Halvorsen, “Optical performance of
piezoelectrically actuated mems tunable lenses with various pupil geome-

tries," Optical Engineering, vol. 56, no. 3, p. 035104, 2017.



Farghaly: Modeling and design of piezoelectrically actuated MEMS ...

(34]

(35]

(36]

(37]

(38]

Z.-B. Kuang, Theory of Electroelasticity. Springer-Verlag Berlin Heidelberg,
2014.

T. lkeda, Fundamentals of piezoelectricity. Oxford University press, New

York, 1996.

0. BUhler, A Brief Introduction to Classical, Statistical, and Quantum Me-
chanics. Amecian mathematical society, Counrant institute of mathematical

sciences, 2006.

J. Mitchell and J. Reddy, “"A refined hybrid plate theory for composite lami-
nates with piezoelectric laminae," International Journal of Solids and Struc-

tures, vol. 32, no. 16, pp. 2345 -- 2367, 1995.

H. F. Tiersten, “"Hamilton's principle for linear piezoelectric media," Proceed-

ings of the IEEE, vol. 55, pp. 1523--1524, Aug 1967.

[39] J. B. Marion and S. T. Thornton, Classical dynamics of particles and systems.

[40]

[41]

Cengage Learning India, 2012.

H. Goldstein, C. poole, and J. Safko, Classical mechanics. Addison wesley,

2001.

O. A. Bauchau, Flexible Multibody Dynamics. Springer Science+Business Me-

dia, 2011.

[42] J. N.Reddy, Mechanics of laminated composite plates and shells: Theory and

[43]

analysis. CRC press, 2" ed., 2004.

V. Birman, Plate Structures, vol. 178 of Solid Mechanics and its applications.

Springer Science+Bussiness Media, 2011.

93



Farghaly: Modeling and design of piezoelectrically actuated MEMS ...

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

94

H. F. Tiersten, Linear Piezoelectric Plate Vibrations: Elements of the Lin-
ear Theory of piezoelectriciy and the vibration of the piezoelectric plates.

Springer Science Bussiness Media New York, 1969.

V. N. Mahajan, “Zernike circle polynomials and optical aberrations of sys-

tems with circular pupils," Appl. Opt., vol. 33, pp. 8121--8124, Dec 1994.

B. Boyerinas, C. Mo, and W. W. Clark, ““Behavior of unimorph rectangular

piezoelectric diaphragm actuators," 2006.

R. L. Taylor and S. Govindjee, “"Solution of clamped rectangular plate prob-

n

lems," Communications in Numerical Methods in Engineering, vol. 20,

no. 10, pp. 757--765, 2004.

F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST handbook of

mathematical functions. Cambridge Univeristy press, New York, 2010.

M. A. Farghaly, M. N. Akram, and E. Halvorsen, “"Modeling framework
for piezoelectrically actuated mems tunable lenses," Opt. Express, vol. 24,

pp. 28889--28904, Dec 2016.

T. Bakke, A. Vogl, O. Zero, F. Tyholdt, 1.-R. Johansen, and D. Wang, A novel
ultra-planar, long-stroke and low-voltage piezoelectric micromirror," Journal

of Micromechanics and Microengineering, vol. 20, no. 6, p. 064010, 2010.

M. A. Farghaly, M. N. Akram, and E. Halvorsen, Trial functions for reduced-
order models of piezoelectrically actuated mems tunable lenses," To be sub-

mitted, 2018.

M. A. Farghaly, V. Karatshov, M. N. Akram, and E. Halvorsen, “Electrome-
chanical modeling of piezoelectrically actuated mems tunable lenses with

geometric nonlineariry," To be submitted.



Farghaly: Modeling and design of piezoelectrically actuated MEMS ...

[53] G. Singh, G. V. Rao, and N. lyengar, “'Some observations on the large de-
flection bending of rectangular antisymmetric cross-ply plates," Composite

Structures, vol. 18, no. 1, pp. 77 -- 91, 1991.

[54] Norfab, “https://www.norfab.no/technologies/

characterization/usn-mst-lab-2/interferometer-wyko-nt9100/."

[55] S. D. Senturia, Microsystem Design. Kluwer Academic Press, 2001.

95


https://www.norfab.no/technologies/characterization/usn-mst-lab-2/interferometer-wyko-nt9100/
https://www.norfab.no/technologies/characterization/usn-mst-lab-2/interferometer-wyko-nt9100/




Farghaly: Modeling and design of piezoelectrically actuated MEMS ...

Zernike polynomials

97



Farghaly: Modeling and design of piezoelectrically actuated MEMS ...

Table A.1: Zernike polynomials Z".

i n|\m|ZzZ"

0 [0[0]1

1 |11/ rcos(6)

2 | 1]-1| rsin(0)

3 [2]0]27-1

4 | 2] 2| r*cos(20)

5 [ 2]-2] r%sin(20)

6 | 3] 1| —cos(0)(2r—3r)

7 | 3]-1] —sin(0)(2r—3r7)

8 | 3] 3 ] rcos(30)

9 [3]-3]rsin(30)
10[4]0]64—6r741

11 | 4 | 2 | —cos(20)(3r* —4r)

12 | 4 | -2 | —sin(20)(3r* —4r%)

13 | 4 | 4 | r*cos(40)

14 | 4 | -4 | r*sin(40)

15[ 5] 1 | cos(0)(107° —127° +3r)

16 | 5| -1 | sin(8)(10/° — 1217 4 3r)

17 [ 5| 3 | —cos(30)(4r° —5r)

18 | 5| -3 | —sin(30)(4r° —5°)

19 [ 5] 5 | rcos(56)

20 [ 5| -5 | rsin(50)

21 [ 6| 0 [ 20/°—30r* + 1217 -1

22 [ 6| 2 | cos(20)(15r° —20r* + 617)

23 | 6 | -2 | 5in(20)(15r° —20r* 4-617)

24 [ 6 | 4 | —cos(40)(5r* —6r°)

25 [ 6 | -4 | —sin(46)(5r* —61°)

26 | 6 | 6 | rPcos(60)

27 | 6 | -6 | rPsin(60)

28 | 7| 1 | —cos(8)(—35r7 4+ 60r° —30r° +4r)
29 | 7 | -1 | —sin(8)(—=35r" +60r° —30r° +4r)
30 | 7| 3 | cos(30)(21r" —30r° 4 1073)
31| 7| -3 | sin(30)(2177 —30r° +107°)
3275 | —cos(50)(6r° —7r")

337 ]-5] —sin(56)(6r —7r7)

34 | 7] 7 | rcos(70)

35 | 7| -7 | r'sin(70)

36 [ 8] 0 [ 70/% — 140/° +90/* — 2077 + 1
37 | 8] 2 | —cos(26)(—56r% +105° — 60r* + 10r%)
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i n | m|Z"

38| 8 | -2 | —sin(20)(—56r°+105r° —60r* +10r2)

39| 8 | 4 | cos(40)(28r% —42/° +15/%)

40 | 8 | -4 | sin(40)(28r° —42/° +15/%)

41| 8 | 6 | —cos(60)(7r°—8r%)

42 | 8 | -6 | —sin(60)(7r° —8r%)

43| 8 | 8 | rBcos(80)

44 | 8 | -8 | r3sin(80)

451 9 [ 1 | cos(8)(126r° —280r7 +210r° — 607> + 57)

46 | 9 | -1 [ sin(0)(126r7 —280r" +210° — 607> + 5r)

471 9 | 3 | —cos(30)(—84r7 +168r" — 105 +20r°)

48 | 9 | -3 | —sin(30)(—84r° +168r" — 105> +20r°)

49| 9 | 5 | cos(50)(36r° —56r" +21r°)

50 | 9 | -5 | sin(50)(36r° —56r" +217°)

51| 9 | 7 | —cos(70)(8r" —9/9)

52| 9 | -7 | —sin(70)(87" —9/°)

53| 9 | 9 | Pcos(90)

54 | 9 | -9 | rsin(90)

55 10| 0 | 252r19—630r°+560r° —210/* +30r° — 1

56 | 10 | 2 | cos(20)(210r™0 — 504, +420/° — 140r* 4+ 15/7)
57 | 10 | -2 | 5in(20)(21070 — 504+% + 4207° — 1407* + 15/?)
58 | 10 | 4 | —cos(46)(—120r"0 +252/% —1687° +35/%)

59 | 10 | -4 | —sin(40)(—120r'0 +252/% — 1687° 4-35r%)

60 | 10 | 6 | cos(60)(45r'0 —72/% +28/%)

61| 10 | -6 | 5in(60)(45r"0 — 728 +28/°)

62 | 10 | 8 | —cos(80)(9r® —10r10)

63 | 10 | -8 | —sin(86)(9r% —10r0)

64 | 10 | 10 | r'Ocos(100)

65 | 10 | -10 | r'%in(100)

66 | 11 | 1 | —cos(0)(—462r'" +1260r7 — 1260r" +560r° — 105r° + 6r)
67 | 11| -1 | —sin(8)(—462r"" +1260r° — 1260 4 560r° — 105r° + 67)
68 | 11 | 3 | cos(30)(330r'1 —840r° 4+ 756r" —280r° +35r°)
69 | 11 | -3 | 5in(30)(330r'" — 84077 475617 —280r° +3517)
70 [ 11| 5 | —cos(50)(—165r" +360r7 — 25217 4-561°)

71 [ 11 | -5 | —sin(50)(—165r1T +360r° — 25257 +561°)

72 [ 11| 7 | cos(70)(55r™ —90/° 4-36r7)

73 [ 11 | -7 | sin(76)(55r'T =90/ 4+-36/7)

74 [ 11| 9 | —cos(90)(107° —11r')

75 | 11| -9 | —sin(90)(1077 — 11-')

76 | 11 | 11 | r'lcos(1180)
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i n | m Z’”

77 | 11 | -11 | rMsin(116)

78 [ 12| 0 | 924 —2772/10 4+ 3150/% — 1680r° + 420/ — 4277 + 1

79 [ 12| 2 | —cos(20)(—792r"? 42310710 — 25207% + 1260r° — 2807* +217?)

80 | 12| -2 | —sin(20)(—792r"2 +2310r10 — 252078 + 1260r° — 280r* 4-217%)

81 | 12| 4 | cos(46)(495r"2 —1320r10 4 1260r% — 5041 4-70r%)

82 | 12 | -4 | sin(40)(495r"% — 1320710 +1260r% — 504r° +70r%)

83 [ 12| 6 | —cos(68)(—220r"? + 495,10 —360s° 4-84r°)

84 | 12| -6 | —sin(68)(—220r"% +495r1° —360r% + 84s°)

85 |12 ] 8 | cos(80)(66r7 — 110,10 4 45/%)

86 | 12 | -8 | sin(86)(66r'2 —110r10 +45,9)

87 |12 | 10 | —cos(108)(11r'0 —12/1%)

88 |12 | -10 —sin(loe)(nrlo —12r12)

89 | 12 | 12 | r'%cos(126)

90 | 12 | -12 | r'%sin(126)

91 [ 13| 1 | cos(8)(1716r"3 —5544r'1 1693077 —4200r + 1260r° — 16813 +7r)
92 [ 13| -1 | sin(0)(1716r"° — 55445 +6930r° — 420077 + 12601 — 1687 +7r)
93 [ 13| 3 | —cos(30)(—1287r"° +3960r'T —4620/° +2520r" — 630r° + 561°)

94 |13 [ -3 | —sin(30)(—1287r" +3960r"" — 46207° + 252017 — 630r° + 5617)

95 [ 13| 5 | cos(50)(715/"3 —1980r™ + 1980r° — 84017 + 1261°)

96 |13 | -5 | sin(56)(715r"% — 19807 +1980+7 — 84077 + 1261°)

97 [ 13| 7 | —cos(70)(—286r" +660r'" —495r° 4+ 120r7)

98 |13 | -7 | —sin(70)(—286r" +660r'" — 495/ + 120r7)

99 [ 13| 9 | cos(90)(78r" — 132/ +55/7)

100 | 13 | -9 | sin(96)(78r" — 1321 4-55/)

101 | 13 | 11 | —cos(110)(12/1 —13/13)

102 | 13 | -11 —sm(ne)(lzr“ —13r13)

103 | 13 | 13 | rPcos(136)

104 | 13 | -13 | r"sin(1380)

105 | 14 | 0 | 3432r™ —12012r"2 416632710 — 115507 4-4200/° — 7561* 4- 561> — 1
106 | 14 | 2 | cos(20)(3003r'* — 10296r' 4 13860r'0 —9240r% +3150/° — 504r* +28/2)
107 | 14 | -2 | sin(26)(3003r™* — 1029672 + 1386070 — 92401 + 31507° — 504/* +2872)
108 | 14 | 4 | —cos(40)(—2002r'* 4 6435r'2 — 792070 4- 462018 — 12607° + 126/%)
109 | 14 | -4 | —sin(40)(—2002r'* 4-6435r'% — 7920710 + 4620/® — 12601° + 126/%)
110 [ 14 | 6 | cos(60)(10017™ —2860r1% +2970r10 — 1320/% +210/°)

111 | 14 | -6 | sin(60)(10017™* —2860r2 42970710 — 1320/ +210r°)

112 [ 14 | 8 | —cos(80)(—364r™ +858r2 — 66070 + 165/°)

113 | 14 | -8 | —sin(80)(—364r"* +858r12 —660r'Y + 165r%)

114 | 14 | 10 | cos(108) (917 — 156/ + 66r10)

115 | 14 | -10 | sin(108)(91r'* — 1562 + 66r'0)
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i n | m|ZzZ"

116 | 14 | 12 | —cos(120)(13r12 — 14s1%)
117 | 14 | -12 | —sin(120)(13r"% — 147'%)
118 | 14 | 14 | r'*cos(140)

119 | 14 | -14 | r'*sin(140)
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Weighted Gegenbauer polynomials

For N =5, the double-indexed weighted Gegenbauer polynomials are

Do (X,Y) = (X2 —1)2(¥Y?—1)2, (B.1)
P (X,Y) = (X2 —1)2(Y2 —1)%(99Y2/2-9/2) (B.2)
Do (X,Y) = (X% —1)%(Y> —1)%(99x%/2-9/2) (B.3)
D (X,Y) = (X2 —1)%(Y> —1)%(99X%/2 —9/2)(99Y? /2 —9/2) (B.4)
Du(X,Y) = %(X2 —12(r2—1)%(195y* —78Y% +3) (B.5)
Dyo(X,Y) = %(X2 —1)2(Y2—1)2(195x* — 78X> +3) (B.6)
Doy (X,Y) = %(X2 —1D2(Y2—1)2(11X> = 1)(195Y* —78Y? +-3) (B.7)
Dy (X,Y) = 21%7()(2 — 122 —1)2(11Y% —1)(195x* — 78X% +3) (B.8)
Dyu(X,Y) = %(}(2 —1)2(r? —1)%(195x* — 78X 4-3)(195v* — 78Y?% + 3)
(B.9)
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B.1 Mapping weighted Gegenbauer polyno-
mials to Zernike polynomials

Do (r,0) = <27727f—6 yz+1> io (3v* — 36v* + 2007 — 320) 29
+1;% (97" — 84y* +280) z§3+6%( 157" + 140y* — 168) Z§
1280 (v -16)2 3Y86 (- Wz4“16)2“839180 z
¥ Y‘
5965 " 1257 (B.10)

N 99y'0 1611y* 5133(6 477 1357 9\
Dy = — + -= 12
1024 1280 64 8 8 2

825y — 10024v° + 57456y* — 109760y + 67200) z)

s
A (151(q — 2807 +3024v* — 67207 + 4480) 2
(

9
li 82570 — 8592y* + 38304y — 43904) 79
929y 2
e (5y‘) 80Y* + 6729 — 896)2
3”28 (1 1557° — 10800y* + 14560y* — 2688)24
3 4
+ Topa0 (2757 - 2148y +5472) Z¢
330 , 3 4
~5120 (5y* — 60" +288) Z5 — o (777" — 5409 + 416) Z
337 4 6, O 999
+ o0z (Y — 847 +96) Z8 + 1680 (165 —716) Z§ — 25800 (3v* —20) 23
27 998 9y
~ 35840 (779 —300) Z§ + 310 3y —20) Z§ + 3170 (99y* —20) Z§
33y10 33910, 33¢10 3310 o 9yl o 99y0 L,
T 14336710~ 35840710~ 51202”’+ 5120 210 5129210 ™ qg04 410 (B'll)
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D =

(B.12)

< (9% 1611y N 513y 147" 1359 9 20
“\ 1024 1280 64 8 8 270
_ A 0
+ 32040 5 0 (825y8 10024° + 574567* — 1097607 + 67200) 7
991(2 4 2
17 9 o (15y" —2807° +30247* — 67207 +4480) z
_ A _ 0
14336 <825y6 85927 + 38304y 43904) V4
99y*
oz <5y6 80Y* + 67297 — 896) 72
i (1155¢7 10800Y* + 1456077 — 2688) 7
T 7168
+ o (275Y* — 2148y +5472) 20
10240
3390 30
+3120 (5y* —60v* +288) Zg — o (77¥* — 5407 +416) Z¢
33 6, N 0. 99y
o (7v* 78472+96)Z6+m (1657* —716) Z§ + 35300 (3y* —20) 22
277 99y 6 k'l
~ 35340 (777 —300) Z§ + —~ <120 (3y* —20) ¢ + <120 (997> —20) Z§
3390 5 330, 330, 330 5 99y 5 99y
T 14336710 T 35830710 T 5120210 5120 410 T 512010 T 1028 410
490052 20493y'0 24437798 14337 N 8289y" 1053y + 2
28672 1024 2560 64 32 8 4
81
+ Ve (272257‘0 —3036007° + 1351616Y° — 2854656Y* + 27507207 — 931840) 73
573440
L (15125Y3—15180076+579264y4—95155272-&-550144) 79
114688 4
20 (21175\(8 2125207 +7824007* —1191680*{2—&-661248)2
T 57344 4
27y 4 o 21
+ 25565 (30251(6 — 253007* + 72408y 767968> Z- e (84776 7084y* + 1956077 — 17024) 7
+ 817 (2475v* — 15180y +24136) Zg — 817 (3465y* — 21252 +32600) Z§
286720 8 143360 8
729y3 4 g 29710 o 291" "
+ 5040 (1657 —1012y* +1080) Z§ + 11688 (55v* — 184) Z{, — 20960 (55v* —184) Z{,
891y10 1485y12 o 297912,  891y'2 o 9801y'?
* 20960 (557"~ 184) Zjy + 114688 7127 78192 7127 8192 i~ 8192 B

(B.13)
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. 643572 22737710 4147119%  25839y°  136297" 1485y
Doy = - - + + 7
8192 2048 5120 128 64 16 s

9P (20475«{10 —2756007® + 1876672y° — 4209408y* 4 37004807 — 1075200) 73

1146880

1287y 10 A 2

— Sroa (5257 — 98407® + 1052807° — 2634247* + 24192077 — 71680) 2

33y 4 0
+ 530376 (1 1375y — 1378007° + 804288Y* — 1403136y +74009e) V4

143y* 4 2

~ 114658 (875yg — 147607 + 1353607" — 263424y + 145152) z

11

T 42; s (73867578 +3603607° +72000y* — 1370880y + 1016064) 74

1190 4 o 143y 4 2

— ' (6825v°—6 1608Y> — 300672 ) 20 — 175¢° — 24 16920y — 18816 ) Z
+81920(8576 89007* + 301608y — 3006 ) 0 40960( VP — 24607 + 16920 — 18 6) 2

11y 4, 1437 4 6
+8192( 15479 + 12012y* +180072719584) Z+ 5105 (18976723241( +35287271152)ZG
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Dynamic Analysis

The variational integral of the equivalent mass is
Mpy(wo, &vo;Ig) =

// { (a/2) IoWoSWo—i—]z(WoxSWoX—l—WoySWoy))}dXdY. (C.1)

The state space representation of the system above can be written as [55]

X =Ax+Bu (C.2)
y =Cx+Du (C.3)
where
On, <N, Ing <, ]
A G G _G1 G (C4)
|: M/quRklkZ _M/qszklkZ
Ongx1 ]
B= f (C.5)
|:Mk1k2Fk2
C = I2Ng><2NG (C6)
D = 0y ¢1 (C.7)
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