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A B S T R A C T

We report fabrication and photovoltaic properties of flexible dye-sensitized solar cells (FDSSCs)
based on stainless steel mesh (SSM)-supported core-shell ZnO/TiO2 nanorods photoanode and Pt
nanoparticles- coated SSM counter electrode (Pt/SSM CE). The core-shell ZnO/TiO2 structures
were prepared via simple chemical bath deposition, and optimal conversion efficiency of 2.84%
was achieved. When aluminum foil membrane was introduced on the back of the FDSSCs as
reflecting film (Rf) for improving utilization of sunlight, the conversion efficiency of FDSSCs was
increased from 2.84% to 3.12%. The relative improvement of 218% was achieved in conversion
efficiency compared with similar device without TiO2 buffer layer and reflecting film (0.98%).
Meanwhile, the Pt CE based on SSM possessed of higher catalytic ability and longer stability
compared with ITO/PET-based Pt CE.

1. Introduction

Flexible dye-sensitized solar cells (FDSSCs) have been considered as promising device in the field of portable power [1–6].
Nowadays, TiO2 is the most effective material for photoanode due to its excellent electron mobility, good acid resistance and re-
markable adsorption with dye molecules [7–12]. However, the application of TiO2 in flexible DSSCs has been limited due to the
extreme condition for growing TiO2 nanostructures [13]. Moreover, low heat-proof temperature of plastic conductive substrates also
constraints fabrication and post-treatment process of flexible photoanode [14–17]. Meanwhile, the Pt counter electrode based on
plastic substrate often suffers from non-uniform distribution of Pt particles and poor mechanic stability [18–20]. These obstacles
above result in high cost and complicated process, thus hindering FDSSCs’ development.

Hence, the FDSSCs based on ZnO and flexible metal substrate has attracted wide attention due to their characteristics, such as
ZnO’s approximate band gap energy with TiO2, high electron mobility (115–155 cm2.V−1.s−1), large excitation binding energy
(60 eV), high availability at low-cost and richer morphologies [21]. In particular, the ZnO FDSSCs based on SSM has been a research
hotspot for economic and easy-manufacture FDSSCs because of its low cost, excellent flexibility, less technical requirement and stable
interconnection between ZnO NRs and SSM [22,23]. For instance, Lu et al. prepared the FDSSCs consisting of a SSM-supported ZnO
NRs photoanode and yielded a conversion efficiency of 1.11% [24], Dai et al. fabricated the FDSSCs based on SSM-supported ZnO
nanowire array and attained a conversion efficiency of 1.87% [25]. Unfortunately, the FDSSCs with ZnO/SSM photoanode always
achieve low conversion efficiency, which results from the dissolution of ZnO to Zn2+ by the acidic dye (such as N3, N719, and black
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dye), the formation of insulating layer consisting of agglomerates of Zn2+ and dye molecules (blocking the electrons injection to the
semiconductor) and high light loss from mesh pore [26,27].

It is worth mentioning, Dai et al. confirmed that TiO2 buffer layer prepared via atomic layer deposition (ALD) is an effective
strategy for improving performance and weakening acidic corrosion [28]. To increase cost-efficiency of FDSSCs based on ZnO/SSM, a
simplified method ((NH4)2TiF6 treatment) was introduced to prepare TiO2 buffer layer on ZnO NRs for improving conversion effi-
ciency. Meanwhile, the Pt CE with uniform distribution is prepared on SSM for high performance. In order to an improvement further,
aluminum foil also was employed to decrease the loss of sunlight from mesh pores. Thus, the performance of ZnO-based FDSSCs is
improved significantly under low cost and easy process, which will promote its development.

2. Experiment

2.1. Materials and reagents

All chemical reagents were of analytical grade, including sodium hydroxide (NaOH), zinc acetate dehydrate
(Zn(CH COO) . 2H O3 2 2 ), boric acid (H BO3 3), lithium iodide (LiI) ammonium hexafluorotitanate ((NH ) TiF4 2 6), hydrochloric acid (HCl),
iodide (I2), chloroplatinic acid (H PtCl2 6), 4-tert-butylpyridine (TBP), 1-Methyl-3-propylimidazolium Iodide (MPII), absolute ethyl
alcohol and acetonitrile, purchased from Sinopharm Chemical Reagent Co., Ltd. The sensitizer (N719) had bought from Chinese
YingKou OPV Tech New Energy Co., Ltd. And other materials which will be employed contain SSM (model of 304, 25 μm wire
diameter and 20 μm screen opening), ITO/PET (6 Ω/cm2) and PET film.

2.2. Preparation of ZnO nanorod and TiO2 coated ZnO nanorod on SSM

At first, SSM is tailored to 2×2cm2 size, submerged in HNO3 (4M) at 70℃ for 4 h to remove surficial impurity and then cleaned
through ultrasonic bath in ethyl alcohol, deionized water for 10min respectively. The ZnO seed layer is vital to grow ordered ZnO
nanorods on SSM. Therefore, ZnO seed layer was prepared on SSM via submerging SSM in ethyl alcohol solution of zinc acetate
(0.01M) for 30 s and annealing at 300℃ for 10min, repeated 3 times.

Then SSM supported ZnO NRs (ZnO NRs/SSM) was prepared by hydrothermal method. Namely, SSM with seed layer were putted
in autoclave with 60ml solution included 0.05M zinc acetate and 1M NaOH, kept at 95℃ for 18 h. Next, samples were washed in
deionized water and dried at 60℃ for 30min. Subsequently, the ZnO NRs/SSM was placed in closed flask contained (NH4)2TiF6
(0.75M) and H3BO3 (0.2M) mixed solution of 50ml, subjected for different duration of time (0, 3, 6, 9, 12min) to prepare TiO2

buffer layer-coated ZnO/SSM (TiO2/ZnO NRs/SSM) [29]. Finally, these samples were washed in deionized water and then sintered at
450℃for 2 h.

2.3. Assembly of FDSSCs

TiO2/ZnO NRs/SSMs were placed in dye solution, which attained by dissolving 18mg N719 in 50ml ethyl alcohol, and then kept
in dark at 40℃ for 24 h. The sensitized samples were rinsed with deionized water and dried at 60℃ for 30min.

The Pt/SSM and Pt/ITO/PET CE were fabricated via cyclic voltammetry which is implemented in the aqueous electrolyte con-
sisted of H2PtCl6 (0.75 wt%) and HCl (1.43 vol%). In this process, the applied potential, scan rate and cycles were set as between
−0.4 V and 0.5 V, 10mV/s and 5 cycles, respectively. Moreover, clean substrates (SSM and ITO/PET), platinum mesh and saturated
calomel electrode (SCE) were used as working, counter and reference electrode separately. After that, the samples were rinsing with
deionized water, dried at 80℃ for 30min, and then tailored to suitable size. Finally, as-prepared photoanode was assembled with CE
in a sandwich structure, and then the electrolyte (LiI of 0.1M, I2 of 0.05M, TBP of 0.5M and MPII of 0.6M in acetonitrile.) was
injected in these devices.

2.4. Characterization and measurement

The morphology and structure of the ZnO NRs/SSM and TiO2/ZnO NRs/SSM were studied by field-emission scanning electron
microscopy (FE-SEM, SU-3500) and transmission electron microscope (TEM, Tecnai G2-F20). The crystalline phase of the samples
was examined through X-ray diffraction (XRD, Bruker-D8 ADVANCE) with a monochromatic Cu Ka irradiation (λ=0.154145 nm).
The photocurrent-voltage (J–V) curve of the SSM-based FDSSCs were measured by a source meter (Keithley 2400) under AM 1.5 G
illumination (100mW/cm2) from a Newport Oriel solar simulator in ambient atmosphere. In terms of FDSSCs’ active area of
1.46 cm2, four major indexes of the FDSSCs, such as photocurrent density of short circuit (Jsc), voltage of open circuit (Voc), fill factor
(FF) and conversion efficiency (η), were obtained.

3. Result and discussion

3.1. TiO2 buffer layer

ZnO NRs were synthesized on ZnO seed layer-coated SSM by a simple hydrothermal method. Fig. 1(a) shows morphology of pure
ZnO NRs at different magnification. Fig. 1(b–d) present the cross section of pure ZnO NRs/SSM. From Fig. 1(b), it can be observed
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that the length of ZnO NRs is about 5.46 μm, and vertically grow on SSM. The morphology of ZnO NRs/SSM after (NH4)2TiF6
treatment of 12min is exhibited in Fig. 1(d). The chemical reactions occurring in treatment process might follow next three EQs [30]:

+ → + +
− + −TiF 2H O TiO 4H 6F6

2
2 2 (1)

+ + → +
− − + −BO 4F 6H BF 3H O3

3
4 2 (2)

+ → +
+ +ZnO 2H Zn H O2

2 (3)

In this treatment, the surface of ZnO NSs was dissolved into the solution. Meanwhile, the TiO2 was grown in situ on the ZnO NRs
surfaces. As a result, a thin TiO2 layer was coated on the ZnO NRs, and the surface of TiO2/ZnONRs gets rough (Fig. 1(e)). And
Fig. 1(f) exhibited the uniform distribution of Pt nanoparticles on the SSM surface. Fig. 2(a) shows EDS spectrums of the (NH4)2TiF6-
treated ZnO NRs film. The peaks at 4.49 and 4.92 keV correspond to the Ti, which verifies the formation of TiO2 on ZnO NRs surfaces.
The peaks at Ca. 6.38 and 7.14 keV represent Fe, Ni, respectively. The Fe and Ni derive from SSM.

Fig. 2(b) shows the XRD pattern of the ZnO NRs before and after a (NH4)2TiF6 treatment of 6min. In the image, green and red line
exhibits untreated ZnO NRs, (NH4)2TiF6-treated ZnO NRs respectively. Compared with green diffraction peaks, red diffraction peaks
appear in (101), (200) and (204) peak, which confirmed that ZnO NRs/SSM is coated with TiO2 layer. There is no notable change
among red and green (111), (200) and (220) peaks, which illustrates substrate has no obvious variation before and after (NH4)2TiF6
treatment. However, obvious weakness can be observed in red (100), (101) and (110) peak compared with corresponding green
peaks. This phenomenon also verifies that the growth of TiO2 layer is based on the sacrifice of ZnO. Meanwhile, the slight decline of
(002) peak and the disappearance of (103) peak indicates non-uniform growth of TiO2.

Fig. 3(a) shows SEM image of (NH4)2TiF6-treated ZnO NR. It can be observed that the (NH4)2TiF6-treated ZnO NR exhibits
unsmooth surface, which is possibly result from nonuniform growth of TiO2. Fig. 3(b) presents element mapping of major elemants

Fig. 1. (a) SEM images of SSM-supported pure ZnO NRs, (b–c) cross section of SSM supported pure ZnO NRs at different magnification, (d) cross
section of SSM-supported ZnO NRs with (NH4)2TiF6 treatment of 12min, (e) TEM image of the ZnO NR with (NH4)2TiF6 treatment for 12min,(f)SEM
image of Pt/SSM CE.

Fig. 2. (a) EDS of ZnO NRs/SSM with (NH4)2TiF6 treatment and (b) XRD of ZnO NRs/SSM with (NH4)2TiF6 treatment for different time.
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(O, Zn, Ti) corresponding to arae 1, which TiO2 is fully coated on the surfce of ZnO NRs. TEM (Fig. 3(c)) and HRTEM (Fig. 3(d)) also
confirm that TiO2 is coated on ZnO NRs completely, but coated layer isn’t uniform (namely rough surface). In certain degree, this
rough surface of TiO2-coated ZnO NRs can increase surface area and dye-adsorbing capacitiy, thus improving photocurrent intensity
[31,32].

Fig. 4(a) shows the photocurrent intensity-voltage curves of the FDSSCs consisted of Pt/SSM CE and TiO2/ZnO NRs/SSM pho-
toanode which was treated in (NH4)2TiF6 solution for 0, 3, 6, 9, 12min respectively. Those characteristic parameter (Jsc, Voc and FF)
corresponding to the performance curves of FDSSCs are listed in the Table 1. The FDSSCs based on pure ZnO NRs/SSM photoanode
exhibited conversion efficiency of 0.98%, Jsc of 4.61mA/cm2, Voc of 0.49 V and FF of 0.43. After (NH4)2TiF6 treatment of 3min, the
Voc, Jsc and FF of the FDSSCs were improved to 0.59, 6.32mA/cm2 and 0.52, respectively. The Jsc of device increased to the 7.22mA/
cm2 after treatment of 6min. And the Voc and FF reached to 0.61 V, 0.64 respectively. Thus, the conversion efficiency also increased
to 2.84% from 0.98%, which confirms that TiO2 buffer layer is effective to enhance performance of ZnO FDSSCs. It is possible that
this improvement results from the suppression of the photoexcited electron recombination and promotion of electron collection [33].
Fig. 4(b) shows the dark current curves of various FDSSCs. compared with the device without (NH4)2TiF6 treatment, the devices with
(NH4)2TiF6 treatment exhibit smaller dark current, which suggests effectively that TiO2 buffer layer can suppress the electron re-
combination at the interface between nanorod and electrolyte.

With treatment of 6min, the Voc, Jsc and FF of the FDSSCs reach to maximum. Subsequently, the Jsc shows slight reduction with
the increase of treatment time. Fig. 4(c) exhibits IPCE curves of the devices with deferent treatment time, which also confirm this
situation. The slight reduction of Jsc possibly results from the increase of TiO2 thickness. Namely, TiO2 thickness increased with
increasing treatment time due to TiO2 deposition effect, thus reduce and block the space which is likely to anchor dye molecules
among nanorods. Moreover, thick TiO2 layer hindered electron collection [34,35]. Therefore, the conversion efficiency shows slight
decline.

The EIS of DSSC with different electrolytes (exhibited in Fig. 4(d)) are fitted with equivalent circuit (insert image of Fig. 4(d)), and
charge transfer resistance of DSSCs are summarized in Table 2. In EIS spectra, Rs refers to the series resistance of the electrolytes and
electric contacts in the DSSCs. R1 and R2 correspond to the charge transfer processes occurring at the counter electrode/electrolyte
(first arc), photoanode/electrolyte interface (second arc), respectively. Therefore, the values of R2 can evaluate the electron collection
and recombination of photoanode [36].

Fig. 3. (a) SEM of ZnO NRs/SSM treated with (NH4)2TiF6 solution for 6 min, (b) corresponding element mapping image of area 1, (c) TEM and (d)
HRTEM of single ZnO NRs with (NH4)2TiF6 treatment of 6min.
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It is found from Table 2 that, the FDSSCs without treatment have the highest R2 of 29.85Ω. The FDSSCs with treatment of 6min
show the lowest R2 (22.52Ω). The FDSSCs treated for 3min, 9min and 12min possess R2 of 26.21Ω, 25.88Ω and 27.08Ω, respec-
tively. The FDSSCs with TiO2 buffer layer exhibit lower R2 than that without buffer layer, which verified that the TiO2 buffer layer
can promote electron collection [37]. Meanwhile, the devices treated for 9min and 12min exhibit larger R2 than the device treated
for 6min, which verifies thick TiO2 layer hinders electron collection.

3.2. Reflecting film

Fig. 5(a) shows the photocurrent-voltage curves for the FDSSCs which employed TiO2/ZnO NRs/SSM photoanodes ((NH4)2TiF6
treatment of 6min) and different CEs with as well as without reflecting film. Characteristic parameters corresponding to those curves

Fig. 4. (a) Photocurrent density-voltage, (b) dark current and (c) incident monochromatic photon conversion efficiency (IPCE) curves of the flexible
DSSCs with the photoanodes based on ZnO NRs/SSM with different (NH4)2TiF6 treatment time, (d) EIS of FDSSCs with deferent treatment time.

Table 1
Photovoltaic characteristics of the DSSCs using the photoanodes based on ZnO NRs/SSM with different (NH4)2TiF6 treatment time.

Treatment time Voc (V) Jsc (mA. cm−2) FF Efficiency (%)

0 min 0.491 4.61 0.43 0.98
3min 0.592 6.32 0.52 1.93
6min 0.611 7.22 0.64 2.84
9min 0.624 6.95 0.62 2.70
12min 0.643 6.69 0.62 2.69

Table 2
Electrochemical parameters of FDSSCs with various treatment durations.

Treatment time RS/Ω R1/Ω R2/Ω

0min 5.91 8.55 29.85
3min 6.15 8.61 26.21
6min 5.39 8.91 22.52
9min 5.23 8.12 25.88
12min 6.08 8.01 27.08
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were summarized in Table 3. The FDSSCs with Pt/SSM CE, Pt/PET CE show conversion efficiency of 2.84%, 2.02%, respectively.
After utilization of Rf, the Jsc of FDSSCs employing different CE increased from 7.22mA/cm2, 6.43mA/cm2 to 7.94mA/cm2,

8.1mA/cm2, respectively. But corresponding Voc and FF almost have no change, possibly resulting from the improvement of the light-
absorbing and light-transferring capability under the utility of reflecting film. However, the improvement of FDSSCs with Pt/SSM CE
(9%) was lower than that of FDSSCs employing Pt/PET CE (21%). The corresponding IPCE (shown in Fig. 5(b)) also confirmed same
situation. The possible reason is that the Pt/SSM CE possesses worse transmittance than Pt/PET CE, so the incident light via mesh
pore of photoanode was weakened significantly after passing the mesh pore of Pt/SSM CE twice. Moreover, the incident light through
photoanode is small part of total incident light [38]. Therefore, the improvement is not notable.

3.3. Counter electrodes

According to Table 3, the FDSSCs with Pt/SSM CE harvest higher conversion efficiency (2.84%) than that using Pt/PET CE
(2.02%), which possibly results from higher conductivity, uniform distribution of Pt nanoparticles and higher catalytic ability.

Fig. 6(a) demonstrates the cyclic voltammetry (CV) curves of the Pt/SSM and Pt/PET CE at scan rate of 50mV/s with an applied
potential between -0.5 and 1.2 V in the acetonitrile solution composed of 9mM LiI, 1 mM I2 and 0.1M LiClO4. The Pt/SSM or Pt/PET,
Pt mesh and Ag/Ag+ electrode served as the working, counter, reference electrode respectively. From the CV curves it can observe
two pairs of redox peaks. And peaks obtained at positive side are considered as anodic peak as well as peaks obtained at negative side
are deemed as cathodic peak for Pt/SSM or Pt/PET. For the CV curve, cathodic peak refers to the reduction of tri-iodide and anodic
peaks correspond to the oxidation of iodide and tri-iodide. The Pt/SSM showed both a larger oxidation and reduction current density
than those of the Pt/PET electrode, suggesting a fast rate of tri-iodide reduction [39].

The EIS and corresponding parameters (insert image of Fig. 6(b)) of different CEs was exhibited in Fig. 6(b). In terms of EIS, Pt/
SSM CE (8.71Ω) shows lower R1 (transfer resistance at the CE/electrolyte interface) than that of Pt/PET CE (11.31Ω), which confirms
Pt/SSM CE has stronger capability for electrocatalytic reduction of −I3 to −I ions in electrolyte as compared to Pt/PET CE [40].

Tafel polarization measurement is used to reconfirm the catalytic activity of Pt/SSM and Pt/PET CE. Fig. 6(c) shows the Tafel
curves for symmetrical cells based on two electrodes (Pt/SSM and Pt/PET CE). The electrolyte in FDSSCs is employed to fabricate
symmetrical cells. In the Tafel polarization curve, the exchange current density (J0) is a direct measure of the electron transfer
kinetics at the CE/electrolyte interface under equilibrium conditions, which can be obtained from the intercept of the extrapolated
linear region of anodic or cathodic branch when the over potential is zero [41]. The higher J0 value indicates a better catalytic
activity. It can be observed that Pt/SSM CE has large value than Pt/PET CE, which means that Pt/SSM CE has better catalytic activity.
The higher J0 may result from the uniform distribution of Pt.

Fig. 7 demonstrates the tendency of the conversion efficiency generated from the FDSSCs which employed a Pt/SSM or Pt/PET CE
and a TiO2/ZnO NRs/SSM photoanode. After bend of 800 times with 90° bending angle, the Pt/SSM based device kept 70.1% of
original conversion efficiency, and the Pt/PET based device maintained 58.4% of initial conversion efficiency. Therefore, it can be
conformed that the Pt/SSM CE has better flexibility and stability than the Pt/PET CE.

Fig. 5. (a) Photocurrent density-voltage curves and (b) IPCE of the flexible DSSCs employing different CEs with and without reflecting film (Al foil)
on its back.

Table 3
Photovoltaic characteristics of the DSSCs using different CE before and after attaching a reflecting film on the back of CE. Photoanodes: the TiO2/
ZnO NRs/SSM ((NH4)2TiF6 treatment of 6min).

Type Voc (V) Jsc (mA. cm−2) FF Efficiency (%)

Pt/SSM 0.611 7.22 0.64 2.84
Pt/SSM@rf 0.616 7.98 0.63 3.12
Pt/PET 0.571 6.43 0.55 2.02
Pt/PET@rf 0.587 8.1 0.54 2.43

L. Sheng, et al. Optik - International Journal for Light and Electron Optics 184 (2019) 90–97

95



4. Conclusion

A full-SSM FDSSCs with a ZnO NRs/SSM photoanode and a Pt/SSM CE was fabricated by a simple process. But it failed to exhibit
satisfying conversion efficiency. Subsequently, a TiO2 buffer layer was introduced in situ on the surface of ZnO NRs via (NH4)2TiF6
treatment. Thus, the recombination reaction was weakened and the photoexcited electron injection was improved significantly. The
Jsc, Voc, FF of device increased from 4.61mA/cm2, 0.49 V, 0.43 to 7.22mA/cm2, 0.61 V, 0.64 respectively. This research confirmed
the TiO2 buffer layer formed by (NH4)2TiF6 treatment is feasible to reduce aggregation of dye molecule and improve conversion
efficiency of ZnO FDSSCs when the ZnO photoanode is treated in a short time. The Pt/SSM also exhibited higher catalytic capability
and longer stability under repeating bend. For a farther increase in conversion efficiency, a reflecting film also was introduced on the
back of FDSSCs for improving light-utilizing ability. As a result, Jsc was increased to 7.94mA/cm2 from 7.22mA/cm2. Finally, a
conversion efficiency of 3.12% was obtained. Although reflecting film accelerated the improvement in conversion efficiency, the
effect of reflecting film was not notable to a full-SSM FDSSCs.
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