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Abstract The need for a time-shift invariant formulation of quantum theory
arises from fundamental symmetry principles as well as heuristic cosmologi-
cal considerations. Such a description then leaves open the question of how to
reconcile global invariance with the perception of change, locally. By introduc-
ing relative time observables, we are able to make rigorous the Page-Wootters
conditional probability formalism to show how local Heisenberg evolution is
compatible with global invariance.

Keywords Quantum Time · Symmetry

1 Introduction

A basic question in physics is how to reconcile fundamental symmetries with
the perceived asymmetry in the physical world. More precisely: under the pos-
tulate that all observed quantities are invariant under a relevant fundamental
symmetry group, how can one explain the extraordinary effectiveness of the
commonly used, very convenient description of physical phenomena in terms
of non-invariant observables?

In quantum theory, for example, one describes position measurements very
accurately in terms of the space-translation-covariant position observable, while
it is obvious that operationally what we call “the position” of a particle is
its position relative to a reference object or frame. The relative position is
the translation-invariant fundamental quantity, but physicists routinely sub-
stitute absolute position for it, with impunity. The resolution is found in the
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fact that it is generally possible to externalise the (quantum) reference system,
thereby ignoring its degrees of freedom, or effectively treating it as a classical
reference frame. The work [1] reviews the history and development of this so-
lution, presents a formal framework for its rigorous formulation and a precise
specification of the conditions under which such externalisation is possible.

Here we consider the analogous problem for time: how can the time trans-
lation invariance, and hence stationarity, obeyed by a closed system, be rec-
onciled with the observed non-stationary Schrödinger (or Heisenberg) time
evolution displayed by (some of) its subsystems? An answer to this question
was presented in a paper by Page and Wootters in 1983 [2] in a cosmologi-
cal context. The idea is that a subsystem identified as a quantum clock pro-
vides time readings in terms of the values of a suitable dynamical variable,
conditional upon which the expectation values of another subsystem evolve
in line with the Heisenberg equation of motion, all whilst maintaining the
time-translation-invariance at level of the full system. While this idea appears
natural, its implementation has been criticised in the literature.

In [3], for example, Kuchař pointed out a mathematical subtlety in the
Page-Wootters construction of invariant observables (Dirac observables) - they
employed an integral of a time-evolved operator, the result of which is typically
trivial. Indeed, for a one-particle system with a Hamiltonian H = P (the mo-
mentum operator) the long-time integral of a spectral measure of the position
operator Q(∆) becomes an operator proportional to the identity. Rephrased
in the Schrödinger picture, there is no time-invariant normal state.

In this paper we offer a mathematically precise alternative to the Page-
Wootters proposal, presenting a derivation of “local” Heisenberg evolution
under the constraint of global time translation invariance, using the methods
developed in [4,5,1]. The key observation is to replace the naive long time
integral by relativisation, introduced in previous work. Thus we can introduce
well-defined non-trivial invariant observables. Much in the spirit of [2], we
will proceed by studying a number of idealised scenarios, which allows us to
highlight the conditions under which this free evolution law emerges.

2 Time and Relative Time Observables

2.1 Absolute time observables

Time appears as a parameter t in the Schrödinger (or Heisenberg) equation.
It is therefore often understood as a given “classical parameter”, whose inter-
pretation is firmly rooted in classical physics and has no quantum description.
Already at this level, some interesting and controversial discussions have ap-
peared (e.g., [6,7,8,9]). However, examination of physically realistic scenarios
shows that time must be represented quantum mechanically. The current time
is inferred from systems behaving as “clocks”, which are physical objects in
the world, and according to the universality of quantum theory, any physical
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system must have a quantum description if we shift the so-called Heisenberg
cut so that the quantum system contains the clock.

A concrete example follows from considering free-falling particles. Suppose
we set HC = P 2

C /2m − QC acting in HC := L2(R). The momentum operator
PC works as a hand of the clock. This operator TC := PC is conjugate to HC
and it satisfies

eiHCtTCe
−iHCt = TC + t✶.

For later use, we may consider a one-particle system whose Hamiltonian is
HC = PC . In that case, the position QC of a particle plays the role of the hand
of a clock.

A drawback of the above examples is the two-sided unboundedness of the
Hamiltonians. They do not have a vacuum and are therefore “too ideal”, or
unphysical. It has long been known that in quantum theory time does not, in
general, admit an expression as a self-adjoint operator canonically conjugate to
a lower-bounded Hamiltonian [10]. The perspective that quantum observables
are properly represented by positive operator valued measures re-opens the
possibility of having a quantum description of time [11,12,13] in formal anal-
ogy, for instance, to unsharp space-translation-covariant POVMs representing
position observables subject to some intrinsic imprecision.

Let us consider a (clock) system described by a Hilbert space HC with
Hamiltonian HC acting on HC . We denote by L(HC) the set of all bounded
operators on HC . Rather than seeking a self-adjoint operator canonically con-
jugate to the Hamiltonian, one may rather demand covariance under time
translations, that is, a positive-operator-valued measure (POVM) EC : B(R) →
L(HC) for which

eiHCtEC(X)e−iHCt = EC(X − t); (1)

here t ∈ R, B(R) denotes the Borel sets and t 7→ eiHCt constitutes a unitary
representation of the time translation group. We call a POVM satisfying (1) an
absolute time observable. The operator TC :=

∫

R
tEC(dt) is symmetric, and in

general not self-adjoint and admits no self-adjoint extension. TC is self-adjoint
exactly when EC is projection-valued, in which case the above integral expres-
sion corresponds to the familiar spectral resolution of TC . Many examples of
absolute time observables are given in [14].

2.2 Relative time observables

In this paper, we consider also relative (or relational) time observables. In [4,5,
1], we argued that genuinely observable quantities in a fully quantum setting
are those which are invariant under the action of some symmetry transforma-
tion. For instance, the absolute position operator QC of a particle implicitly
assumes a classical reference frame external to the quantum system. Thus a
more precise formulation must have a quantum description of the reference
system. QC is obtained as a sort of approximation of a relative observable
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QC −QR, where QR is a position operator of a reference object, under a cer-
tain condition which enables the reference object to be regarded as classical. In
[4,5,1] it was observed in general that the ordinary absolute description func-
tions as an adequate shorthand for the true, relative description, when the
absolute quantities are understood not in reference to single systems, but to
compound systems, with the suppressed system playing the role of a reference.

Let us recall an example of an absolute time observable. A clock system
has a Hamiltonian HC = PC and an absolute time observable, a “clock hand”,
is the position of the particle TC = QC . According to the above argument,
the position QC itself, however, implicitly assumes the existence of a reference
system and is not the most precise/fundamental description. Therefore TC is
not either; a reference system is required to give it precise meaning. In our clock
example, the position of the clock hand becomes meaningful only relative to
the clock face. This example indicates that as well as the position of a particle,
time must be understood as a relative quantity. In the last section we put the
Heisenberg cut just outside the clock system. We now shift the Heisenberg cut
further so that a reference system is also on the quantum side. We assume
that there exists a one-parameter symmetry transformation on the composite
system of a clock and its reference system. Any observable on the composite
system is assumed to be invariant with respect to the transformation.

Here, we therefore impose the time-shift invariance requirement at the level
of compound systems. We introduce clock C and reference R, with associated
spaces HC and HR respectively.

We now construct relative time observables on HC⊗HR, noting that these
may in principle be defined for any compound system. Let Z : B(R) → L(HC⊗
HR) be a POVM. Consider HamiltoniansHC andHR acting in (dense domains
of) their respective spaces, defining the respective unitary groups VC(t) =
e−iHCt and VR(t) = e−iHRt.

Definition 1 Z is called a relative time observable if:

1. (VC(t)⊗ VR(t))
∗
Z(∆) (VC(t)⊗ VR(t)) = Z(∆) for all ∆ ∈ B(R) (Invari-

ance)
2. VC(t)

∗Γρ(Z(∆))VC(t) = Γρ(Z(∆ − t)) for all ∆ ∈ B(R) and ρ ∈ S(HR)
(Covariance), where Γρ : L(HC ⊗ HR) → L(HC) is a partial trace with
respect to a state ρ.

In other words, relative time observables are invariant at the composite level
and covariant under restriction. We note that the invariance requirement per-
tains to Hamiltonians which are additive over the composite system, i.e., we
do not consider any dynamical coupling. The existence of relative time observ-
ables is established through relativisation [1]. Suppose that we have absolute
time observables EC and ER acting onHC andHR respectively. A relativisation
of some operator A acting in HC with respect to ER is defined by

A 7→ U(A) :=

∫

R

e−iHCtAeiHCt ⊗ ER(dt). (2)
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In particular, (U ◦ EC)(X) := U(EC(X)) becomes

(U ◦ EC)(X) =

∫

R

EC(X + t)⊗ ER(dt). (3)

This quantity is invariant, given that ER is covariant, and the covariance of
(Γρ ◦ U)(EC) for all ρ ∈ S(HR) follows from a simple calculation. In addition
we may note that this can be rewritten as

(U ◦ EC)(X) =

∫

R

EC(du)⊗ ER(u−X), (4)

which implies that the relativisation is essentially same with the relativisation
of ER with respect to EC , except for the unimportant sign.

A concrete example follows from considering free-falling particles. Suppose
we set HC = P 2

C /2m−QC and HR = P 2
R/2m+QR, both acting in (separate

copies of) L2(R). It can be readily verified that a relational time observable
for C + R is provided by the total momentum: the spectral measure EP de-
fined by the self-adjoint operator P = PC + PR is manifestly invariant due to
the differing signs on the potential terms in the total Hamiltonian, and the
covariance of the restriction follows from the additivity of P .

3 Recovering the equation of motion

3.1 Conditional probability formalism

In the last section, we introduced relative time observables Z which are re-
garded as genuine quantum descriptions of time. For this new description to
be valid, there should be a regime in which we can regain the normal descrip-
tion of time as an external parameter. In the normal description, observables
evolve, as time elapses, according to the Heisenberg equation of motion. Sup-
pose that we have a system described by a Hilbert space HS with Hamiltonian
HS . Then the normal description claims that each operator A evolves in time
as αS

t (A) := eiHStAe−iHSt. The purpose of this section is to show how this
equation of motion is recovered in our formalism in which all the observables
are invariant with respect to time shifts, and thus apparently nothing evolves.

A key observation, inspired by [2], is to use the formalism of conditional
probabilities. In realistic physical situations, when we claim that at time t an
observable A shows some value x, we measure both a clock and the observable.
Therefore a more precise description of this statement is “when we observe a
clock and obtain a value t, we obtain x as a result of measuring A”. Thus
it needs conditioning on time. In the following we study two examples em-
ploying such a conditional probability statement to examine the relative time
formalism.
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3.2 Discrete Time

The definitions in the previous sections are naturally extended to discrete
periodic absolute and relative time observables by replacing R by Zd. We
construct a model where both the clock and reference have discrete periodic
(and sharp) time observables. Ordinary clocks have only 12× 60× 60 seconds
to be distinguished, and thus it is in a sense realistic. These are represented as
the cyclic time in C

d, with eigenstates |n〉 and eigenvalues n = 0, 1, . . . , d− 1
counted cyclically, i.e., understood as elements of Zd. Then the self-adjoint
absolute time operator is TC =

∑

n|n〉〈n| ≡ QC . In addition to the clock and
reference, there is a system S in which we are interested, whose Hamiltonian
is denoted by HS . It defines an action of the shift group (k ∈ Zd), given by
αS
k (A) = eiHSkAe−iHSk for S. Note that while we treat three systems and call

the second and the third system a clock and a reference system, their names
can be exchanged (see (4)).

Let the total Hamiltonian be of the form

H = HS + PC + PR.

Here, e.g., PC is the shift generating “momentum” operator, P =
∑

m|fm〉〈fm|,
withm ∈ Zd and |fm〉 = 1√

d

∑

n e
2πimn/d|n〉. It defines an action αC

k(|n〉〈m|) =

eiPCk|n〉〈m|e−iPCk = |n − k〉〈m − k|. An action on the reference system is
αR
k (|n〉〈m|) = eiPRk|n〉〈m|e−iPRk = |n − k〉〈m − k|. Note that {|n〉〈n|} on

each space is an absolute time observable. Any relative/relational observable
must be invariant with respect to this total Hamiltonian. A relative time ob-
servable is obtained by relativising a POVM {|n〉〈n|} ⊂ L(HC) as,

U(✶⊗ |n〉〈n|) =
∑

m

✶⊗ |n+m〉〈n+m| ⊗ |m〉〈m|.

Now let us consider a POVM A = {A(k)}k on the system, which is an
absolute observable we are interested in. As its relativised object with respect
to the absolute time observable in the reference system, we introduce

U(A(k)⊗ ✶) =
∑

m

αS
−m(A(k))⊗ ✶⊗ |m〉〈m|.

To study conditional probability, we have to introduce a joint measure-
ment of relational observables {U(✶ ⊗ |n〉〈n|)} and {U(A(k) ⊗ ✶)}. Since
they commute with each other, they are jointly measurable. Moreover, since
{U(✶⊗ |n〉〈n|)} is sharp, their jointly measuring observable is uniquely deter-
mined [14] as

M(k, n) =
∑

m

αS
−m(A(k))⊗ |n+m〉〈n+m| ⊗ |m〉〈m|.

To examine the joint probability, we assume the total state is

ρ = |Ψ〉〈Ψ | = |ψS〉〈ψS | ⊗ |0〉〈0| ⊗ |ξ〉〈ξ|.
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Then the expectation value (probability) is

P (k, n) =
∑

m

〈

ψS ∣
∣αS

−m(A(k)
∣

∣ψS〉 ∣

∣〈0|n+m〉|2 |〈m|ξ〉|2

=
〈

ψS ∣
∣αS

n(A(k)
∣

∣ψS〉 |〈−n|ξ〉|2. (5)

As its marginal probability for time, we obtain

P (n) =
∑

k

P (k, n) = |〈−n|ξ〉|2.

Assume these probabilities all to be non-zero, then the conditional probability
becomes

P (k|n) =
〈

ψS ∣
∣αS

n(A(k))
∣

∣ψS〉 .

This is the expectation of the ‘Heisenberg-evolved’ observable A. Several re-
marks are in order. First, we observe that this result holds for arbitrary A.
Second, it is of course crucial that the expression |〈n|ξ〉|2 is non-vanishing for
all n ∈ Zd, which demands that |ξ〉 is broadly spread out in time. The sim-
plest choice for such a state is |ξ〉 = |fm〉 for some m, i.e., an eigenstate of the
reference Hamiltonian. It is thus an invariant state.

We also observe that the state |Ψ〉 is unentangled. We may also consider
the entangled state

|Ψ ′〉 =
∑

ℓ

λℓ|ϕℓ〉 ⊗ |ℓ〉 ⊗ |ξℓ〉,

and compute

P ′(k, n) =
∑

m,ℓ,ℓ′

λℓλℓ′〈ϕℓ′ |α
S
−m(A(k))|ϕℓ〉 〈ℓ

′|n+m〉〈n+m|ℓ〉 〈ξℓ′ |m〉〈m|ξℓ〉

=
∑

m

|λn+m|2〈ϕn+m|αS
−m(A(k))|ϕn+m〉 |〈m|ξn+m〉|2.

With the choices

|ϕl〉 = e−iHS l|ψS〉 and |ξl〉 = eiHRl|ξ〉,

one obtains (noting that
∑

m |λm|2 = 1)

P ′(k, n) = P (k, n).

Thus the same distributions can be obtained also in this entangled state. How-
ever, as shown above, entanglement is not necessary in our argument. Because
normally a clock and a reference system are macroscopic systems and they are
spatially separated, we think the product state is easy to be realized and more
reasonable. The possibility of achieving this result using unentangled states
is of independent interest, given claims in the literature that entanglement is
responsible for subsystem quantum dynamics (e.g., [15],[16]) which would now
seem to require further scrutiny.1

1 It is worth pointing out also that the state in the Page-Wootters spin model is also
unentangled.
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3.3 Continuous Time

Let us consider a system HS , a clock HC and a reference frame HR, with
HC ≃ HR ≃ L2(R). A model Hamiltonian for the combined system is provided
as a direct generalisation of the Hamiltonian for the discrete time model,
namely

H = HS + PC + PR,

again with HS an arbitrary Hamiltonian of the system S. Suppose we fix a
state ρC of C, which for simplicity we presume to be pure, and localised around
the origin with respect to the position. Hence ρC = |ψC〉〈ψC | with supp(ψC) ⊂
[−ǫ, ǫ], and ǫ > 0. The combined state is then of the form ρ = ρS ⊗ ρC ⊗ ρR.

Now let QC and QR denote the spectral measures of the position operators
QC and QR, which respectively satisfy the following covariance conditions:

eiPCtQC(∆)e−iPCt = QC(∆− t)

and

eiPRtQR(∆)e−iPRt = QR(∆− t).

Relativizing QC with respect to a covariant POVM QR we obtain a relative
time observable:

Z(∆) :=

∫

QC(∆+ t)⊗ QR(dt).

It is nothing but a spectral decomposition of a relative position observable
QC −QR.

Take a discrete POVM A = {A(k)} of S. Its relativisation with respect to
QR is written as

U(A(k)) =

∫

e−iHStA(k)eiHSt ⊗ QR(dt).

Now we consider a joint measurement of the relative time Z and a relative
observable U(A(k)). As Z is a sharp observable, their jointly measuring ob-
servable is uniquely determined as,

M(k,∆) :=

∫

e−iHStA(k)eiHSt ⊗ QC(∆+ t)⊗ QR(dt),

which is invariant under time translation. The expectation of M(n,∆) in the
state ρ is

〈M(k,∆)〉ρ := tr[ρM(k,∆)] =

∫

tr[ρSe
−iHStA(k)eiHSt]〈ψC |QC(∆+ t)|ψC〉tr[ρRQR(dt)].
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Informally putting tr[ρRQR(dt)] = fR(t)dt (which is justified due to the ab-
solute continuity of X 7→ tr[ρRQR(X)]), and setting ∆ = [t0 − δ, t0 + δ], we
obtain

〈M(k,∆)〉ρ =

∫

tr[ρSe
−iHStA(k)eiHSt]〈ψC |QC(∆+ t)|ψC〉fR(t)dt

=

∫ −t0+δ+ǫ

−t0−δ−ǫ

tr[ρSe
−iHStA(k)eiHSt]〈ψC |QC(∆+ t)|ψC〉fR(t)dt

=

∫ t0+δ+ǫ

t0−δ−ǫ

tr[ρSe
iHStA(k)e−iHSt]〈ψC |QC(∆− t)|ψC〉fR(−t)dt,

where we used the support property of ψC , and

∑

k

〈M(k,∆)〉ρ =

∫ t0+δ+ǫ

t0−δ−ǫ

〈ψC |QC(∆− t)|ψC〉fR(−t)dt,

which does not vanish for broadly extended fR(·). Thus we obtain a conditional
probability

P (k|[t0 − δ, t0 + δ]) =

∫ t0+δ+ǫ

t0−δ−ǫ
tr[ρSe

iHStA(k)e−iHSt]〈ψC |QC(∆− t)|ψC〉fR(−t)dt
∫ t0+δ+ǫ

t0−δ−ǫ
〈ψC |QC(∆− t)|ψC〉fR(−t)dt

≃ tr[ρSe
iHSt0A(k)e−iHSt0 ]

for sufficiently broad fR and small δ, ǫ. It is nothing but the Heisenberg equa-
tion of motion.

To study the quality of approximation, it is useful to introduce the charac-
teristic function χ∆(·) (and to replace it by a general function h) and take
the Fourier transform. Let us examine the limit procedure in the Fourier
transformed form. We introduce a smooth positive function h(·) which has
a compact support and satisfies 0 ≤ h(s) ≤ 1. It defines an effect

∫

h(s)Z(ds)
whose “click” means that the clock shows time in the support of h. Instead of
M(n,∆), we consider

M(k, h) :=

∫

h(s)αS
−t(A(k))⊗ QC(ds+ t)⊗ QR(dt)

=

∫

h(τ − t)αS
−t(A(k))⊗ QC(dτ)⊗ QR(dt).

Putting h(s) = χ∆(s), we regain the original M(n,∆). We again introduce a
function fC formally by fC(τ)dτ = tr[ρCQC(dτ)]. The conditional probability
is written as

〈M(k, h)〉ρ
〈E(h)〉ρ

=

∫

dτ
∫

dth(τ − t)tr[ρSα
S
−t(A(k))]fC(τ)fR(t)

∫

dτ
∫

dth(τ − t)fC(τ)fR(t)
.

In the energy representation, ρS is written as ρS =
∑∑

|ǫm〉〈ǫm|ρS |ǫn〉〈ǫn|.
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Thus the conditional probability is written as

〈M(k, h)〉ρ
〈E(h)〉ρ

=

∑

〈ǫm|ρS |ǫn〉〈ǫn|A(k)|ǫm〉
∫

dωf̃C(ω)f̃R(ǫm − ǫn − ω)h̃(−ω)
∑

〈ǫn|ρS |ǫn〉
∫

dωf̃C(ω)f̃R(−ω)h̃(−ω)
,

where f̃ is defined by f̃(ω) = 1√
2π

∫

f(t)eiωt.

Let us introduce a time-displaced h by hs(t) = h(t− s). Its Fourier trans-
form becomes h̃s(ω) = eiωsh̃(ω). Thus we have

〈M(k, hs)〉ρ
〈E(hs)〉ρ

=

∑

〈ǫm|ρS |ǫn〉〈ǫn|A(k)|ǫm〉
∫

dωe−iωsf̃C(ω)f̃R(ǫm − ǫn − ω)h̃(−ω)
∫

dωe−iωsf̃C(ω)f̃R(−ω)h̃(−ω)
.

Let us control the broadness of fR by introducing a parameter λ as

fλR(t) :=
1

λ
fR(t/λ).

Then its Fourier transform becomes f̃λR(ω) = f̃R(λω). Thus for reference states
parametrized by λ, we have

〈M(k, hs)〉λ
〈E(hs)〉λ

=

∑

〈ǫm|ρS |ǫn〉〈ǫn|A(k)|ǫm〉
∫

dωe−iωsf̃C(ω)f̃R(λ(ǫm − ǫn − ω))h̃(−ω)
∫

dωe−iωsf̃C(ω)f̃R(−λω)h̃(−ω)
.

One can see by changing variables properly that for large λ this converges to

lim
λ→∞

〈M(k, hs)〉λ
〈E(hs)〉λ

=

∑

m,n〈ǫm|ρS |ǫn〉〈ǫn|A(k)|ǫm〉e−i(ǫm−ǫn)sh̃(−(ǫm − ǫn))f̃C(ǫm − ǫn)

h̃(0)f̃C(0)

= tr[ρSe
iHSsA(k)h,fCe

−iHSs],

where A(k)h,fC is defined by

A(k)h,fC :=
∑

|ǫn〉〈ǫn|A(k)|ǫm〉〈ǫm|f̃C(ǫm − ǫn)h̃(−(ǫm − ǫn))/f̃C(0)h̃(0).

Again in the limit of narrow support of h, it converges to

A(k)h,fC → A(k)fC =
∑

|ǫn〉〈ǫn|A(k)|ǫm〉〈ǫm|f̃C(ǫm − ǫn)/f̃C(0).

Thus we found that in the limit of broadly extended reference state the Heisen-
berg equation for an effective operator A(k)fC is recovered. This A(k)fC has
a cutoff in the high-frequency part depending on the sharpness of the clock
state.

This can be interpreted in terms of [4,1]. A measurement of the relative
time observable essentially reduces a state of the reference system to a local-
ized one with unsharpness of the clock state. We then measure a relativised
observable of an absolute observable in the system. It was shown in [4,1] that
for this result to be close to the ideal one the unsharpness of the reference
state is required to be small.
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4 Discussion

In this paper we introduced a formulation, an extension of the Page-Wootters
formalism, which shows how dynamics emerges out of a “frozen”, time invari-
ant theory. Two observations played crucial roles. One is the introduction of a
relative time observable, which shows essentially a “difference” between abso-
lute time observables in a clock and a reference system. The relative observable
is invariant and is covariant with respect to the time translation on the clock.
Another is a formulation of the theory based on conditional probabilities. It
naturally made us treat a joint measurement of the relative time observable
and a relativized system observable. We examined two simple examples to show
that our formulation recovers the ordinary Heisenberg equation of motion. In
both discrete time and continuous time examples, we needed broadness (large
uncertainty) in reference system states. Therefore the state on the reference
system close to an energy eigenstate (or mixtures thereof) is found to work. In
addition, in the continuous time example, we showed that a sharp clock state
with respect to an absolute time observable is preferable. Its unsharpness in-
troduces high-frequency cut-off effective observables. As mentioned, contrary
to some existing formulations, our theory does not need any entanglement
among the systems. Thus it works also in the classical theory. As maintain-
ing entanglement among systems is difficult task, and normally our clock is
a macroscopic object, we think that the irrelevance of the entanglement is
reasonable.

Still there remain some issues to be addressed in our proposal. In addition
to the subtlety of the definition of Dirac observables, Kuchař [3] has pointed
out that Page-Wootters’ formulation gives incorrect propagators (see, however,
[15] for a recent proposal). A naive application of the sequential measurement
machinery seems to show that our model also suffers from this issue. We think,
however, that our model in a certain limit may give another conditional prob-
ability formulation proposed by Gambini et al. [17], which overcomes such
criticisms. We hope to address the problem elsewhere.
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