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A B S T R A C T

Water flow and pressure measurements play essential roles in the operation of hydropower plants. For all
methods of measuring flow and pressure, there is a level of uncertainty with regards to sensor noise and sensor
failure. In addition, measurements in key locations are hard to obtain. A combination of measurements with a
mathematical model of a hydropower plant can be used to improve information about and operation of the
hydropower system.

This paper describes the possibility of using nonlinear estimators such as Ensemble or Unscented Kalman
filters in order to estimate the states of the hydropower system based on water flow and/or pressure mea-
surements. The implementation of the estimators is done in Python using a Python API for operating
OpenModelica simulations, where the hydropower system is modeled using an in-house hydropower Modelica
library — OpenHPL.

1. Introduction

1.1. Background

A transition towards more renewable energy sources is currently
taking place in Europe and elsewhere. This situation leads to an in-
crease in the use of flexible hydropower plants to compensate for the
profoundly changing production from intermittent energy sources such
as wind and solar irradiation. For this reason, the maintenance and
optimal management of existing hydropower plants has become a
crucial task.

Optimal operation strongly depends on accurate knowledge and
monitoring of the ongoing processes via measuring critical quantities of
a hydropower system. However, in many cases, some of these quantities
of interest cannot be directly measured. Therefore, it is of interest to
consider a combination of available measurements with a mathematical
model to estimate the needed quantities and improve the quality of
information in hydropower plants.

Popular state estimation methods include the Kalman filter (KF)
with a wide range of extensions that apply depending on model type,
computational effort, etc. Due to nonlinearities in the hydropower
model, nonlinear types of KF such as Unscented (UKF) and Ensemble
(EnKF) Kalman filters are considered in this study. The classical non-
linear estimator, the Extended Kalman filter (EKF), is widely used, too.

However, the EKF assumes the existence of the model state Jacobian,
and has relatively poor accuracy due to the linear approximation used
in the Kalman gain computation. On the other hand, the UKF and EnKF
take more advantage of the nonlinear model in the Kalman gain com-
putation, and theoretically leads to better performances.

1.2. Previous work

Modern state estimation theory appeared in the middle of the 20th
century, and since then the data assimilation idea has spread to almost
all areas of engineering and science. The basic presentation of a variety
of state estimation techniques (standard KF, EKF, UKF, etc.) for a
general system is provided in Simon [1]; Julier and Uhlmann [2]. The
EnKF is a technique for state and parameter estimation, Evensen [3]. An
implementation of the UKF to estimate states of a hydropower plant
that balances the uncertainty in pressure measurements, has been de-
monstrated in Zhou and Glemmestad [4]. The use of the EnKF to predict
runoff or groundwater flow for hydrology models that are slightly re-
lated to hydropower systems is given in Zou et al. [5] and Shi et al. [6].

State estimation is traditionally used with mechanistic models.
However, state estimation can also be used with data driven models,
e.g., artificial neural networks (ANN). See, e.g., Murphy [7]; Farrell and
Polycarpou [8]. An application of ANN for estimation of hydropower
plant water inflow is provided in, e.g., Stokelj and Golob [9]; Sacchi
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et al. [10]. However, data driven models provide a physical inter-
pretation only for the inputs and outputs of the system, while for me-
chanistic models, internal states and auxiliary variables also have a
physical interpretation. This means that with a mechanistic model, it is
possible to find internal quantities in the system with some certainty. In
data driven models, internal quantities have no physical interpretation
unless they are calibrated during an extended and complex experi-
mental phase.

Vytvytskyi and Lie [11,12] discuss work on modelling a waterway
for high head hydropower systems together with a generator, the
Francis turbine, and a governor using OpenModelica.1 Unit models
have been assembled in our in-house Modelica2 library OpenHPL.

A Python API3 for OpenModelica already exists which provides
possibilities for controlling simulations of the OpenModelica models via
Python,4 Lie et al. [13]. Python in turn, gives much broader possibilities
for plotting, analysis, and optimization compared to what is possible in
OpenModelica.

1.3. Overview of paper

The main contribution of this paper is an investigation of the pos-
sibility of state estimation for a hydropower system using nonlinear
Kalman filters. Model implementation is done in OpenModelica using
the OpenHPL library. The estimators are implemented in Python and use
the Python API for OpenModelica.

The paper is structured as follows: Section 2 gives a description of
the hydropower system. Details of the Ensemble and Unscented Kalman
filters are presented in Section 3. Section 4 gives an overview of the
OpenHPL library and a presentation of the hydropower model. The re-
sults of combining the measurements and models for the hydropower
system are described in Sections 5. Finally, discussion and conclusions
are given in Section 6.

2. System description

A high head hydropower system is considered for this study, due to
its significance in Norway. High head hydropower systems are also
more useful for compensating intermittent power than run-of-river
systems are, due to their larger buffer capacity from their reservoir.

2.1. System geometry

High head plants typically collect and store water in reservoirs in
mountains, with tunnels leading the relatively small flow of water down
a considerable height difference to the aggregated turbine and gen-
erator. The electricity produced by the generator is then transferred
through power lines to consumers. A typical structure for a high head
hydropower plant is depicted in Fig. 1, Vytvytskyi and Lie [11].

For simulations in this paper, data from the Sundsbarm hydropower
plant in Telemark, Norway is used with data taken from Vytvytskyi and
Lie [11]; see Tables 1 and 2.

2.2. Typical measurements

Typically, measurements from the electric part of hydropower
plants are readily available in control systems. Also, water levels (main
reservoir and tail water, surge tank) are often available.

In this study, a hydropower model of the waterway is considered,
assuming constant water level in reservoirs and with additional sim-
plifications introduced in a later section. Water flow and pressure
measurements in the waterway units are of interest. In real hydropower
plants, only a few of these quantities are measured, e.g., pressure
measurements before or after the turbine, water flow rate before the

Fig. 1. Overview of the structure of a high head hydropower plant.

Table 1
The waterway geometry of the Sundsbarm hydropower plant.

Waterway unit Height difference, [m] Length, [m] Diameter, [m]

Reservoir 48 – –
Intake race 23 6600 5.8
Penstock 428.5 600 3
Surge tank 120 140 3.4
Discharge 0.5 600 5.8
Tail water 5 – –

Table 2
The turbine geometry of the Sundsbarm hydropower plant.

Turbine type Nominal head,
[m]

Nominal flow rate,
[m /s3 ]

Nominal power,
[MW]

Francis 460 24.3 104.4
1 https://openmodelica.org.
2 https://www.modelica.org.
3 https://goo.gl/Qyjqq2.
4 https://www.python.org.
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turbine, etc. The turbine flow rate can sometimes also be approximated
from the turbine characteristics.

Typically, the accuracy of the pressure measurements in hydro-
power plants is in the order of 1%. The flow rate measurement errors
can be less precise and are in the range of 1 10%, depending on how
the measurements are done. For simplicity, an accuracy of 1% is as-
sumed for both pressure and flow rate measurements in this work.

We consider three cases of measurements: the turbine flow rate only
is measured for one case, the inlet turbine pressure or the manifold
node pressure only is available for the second case, and for the third
case, both the flow rate and the inlet turbine pressure are measured. It
should be noted that for the last case with a combination of two mea-
surements, the “less expensive” solution of two measurements at the
same position is chosen, — less expensive in the sense that these will be
cheaper to install and maintain.

3. State estimation methods

3.1. Overview

As mentioned above, the hydropower plant model can be highly non-
linear, and use of the widely applied EKF can lead to difficulties in Jacobian
computation. Moreover, the EKF rely on a linear approximation to propa-
gate the mean and covariance of the states and this can cause unreliable
estimates, Simon [1]. At the same time, the UKF and EnKF are much simpler
to use as no Jacobian needs to be computed. Also, they avoid the linear-
ization problem due to use of the unscented transformation and Monte
Carlo simulations of the nonlinear model, respectively. These two methods
allow approximating the variation of the mean and covariance of random
variables that propagate through the nonlinear model.

In Modelica, models are described as differential and algebraic
equations (DAEs), with differential and algebraic variables.
OpenModelica by default transforms the DAEs into state space form
with auxiliary variables: states are typically a subset of the differential
variables, while the auxiliary variables are the remaining variables.

Below, a more detailed description of both the UKF and EnKF are
given for a nonlinear dynamic system of the form:

=
=

x f x u w
y g x u v

( , , )
( , , )

k k k k

k k k k

1 1 1

(1)

where, Nw w W~ ( , )k k k , Nv v V~ ( , )k k k , Nx x X~ ( , )1 1 1 .
Here, x nx is the state vector with initial state x1 which is nor-

mally distributed. u is a deterministic input signal vector, and y ny is
a measurement vector. w and v are vectors of random disturbance and
measurement noise, respectively. The disturbance and noise are also
assumed normally distributed.

In addition, the notations x̂k k| 1 and x̂k k| are introduced. Here, x̂k k| 1
is the best possible estimate of xk when information (i.e., sensor signal
values) up to and including time index k 1 is used, i.e., x̂k k| 1 uses
measurements …y y y, , ,k k1 2 1; x̂k k| 1 is denoted the a priori estimate.
Likewise, x̂k k| is the best possible estimate of xk when information up to
and including time index k is used, i.e., x̂k k| uses the measurements

…y y y, , ,k k1 1 ; x̂k k| is denoted the a posteriori estimate. It follows that
estimate x̂k k| should be better/more accurate than estimate x̂k k| 1.

The covariance estimate of the states is indicated with symbol Xk,
thus Xk k| 1 is the covariance of x̂k k| 1, while Xk k| is the covariance of
x̂k k| . It follows that X Xk k k k| 1 | .

3.2. Ensemble Kalman filter

The Ensemble Kalman filter is based on the use of Monte Carlo si-
mulation of the nonlinear system in order to calculate the cross and
innovation covariances. Contrary to the EKF, the EnKF does not need
Jacobians in the computation.

First, the initial state is assumed to be normally distributed. Hence,

realizations/particles of the state are randomly generated in the form of
Nx x X~ ( , )i

1|1 1 1 , …i n{1, , }p where np is the number of these realiza-
tions/particles. Next, np realizations/particles of the state propagates,
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i

k k
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i
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1| 1 1 1 are similarly computed. Disturbance wk
i and

measurement noise vk
i are also randomly generated.

The complete EnKF algorithm is given by the following steps:

1. EnKF initialization, =k 1:
• draw random initial particle values, …i n{1, , }p :

Nx x X~ ( , )i
1|1 1 1 (2)

• a posteriori state estimate:
=

=
x

n
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n
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2. Propagation step, = …k 2,3, :
• a posteriori covariance estimate:

=
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• draw random disturbance, …i n{1, , }p :

Nw w W~ ( , )k
i

k k (5)

• a priori state estimate, …i n{1, , }p :
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• a priori covariance estimate:
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3. Information update, = …k 2,3, :
• draw measurement noise, …i n{1, , }p :

Nv v V( , )k
i

k k (8)

• measurement and innovation, …i n{1, , }p :
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• cross and innovative covariances:
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• Kalman gain:
E=K Zk k k k k| 1 | 1

1 (12)

• a posteriori state estimate, …i n{1, , }p :
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• a posteriori covariance estimate:
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Based on the similarity to bootstrap statistics, Efron [14]; the number of
realizations/particles should be equal to, or greater than 50 in order to pro-
vide reasonably accurate estimates of mean and covariance. Obviously, it is
required that n n nmin( , )p y x to avoid rank loss in the innovation covar-
iance matrix Ek k| 1 and the state covariance matrices Xk k| 1 and Xk k| .

3.3. Unscented Kalman filter

The main idea of the UKF is closely related to the EnKF in the point
that a set of realizations/particles are transformed through the nonlinear
system, then their results are collected to estimate state mean and
covariance. However, in the EnKF the set of np realizations/particles is
randomly generated, whereas in the UKF these points are created based
on certain deterministic rules and denoted sigma points, Simon [1].

The sigma points for state vector x nx could be defined based on
the mean x and covariance X of the states by the following algorithm:

= + …x x x i n˜ , {1, , 2 }i i
x (15)

where
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where n Xx is the Cholesky root5 of n Xx , i.e., × =n X n X n X( )x
T

x x ,
while n X( )x i is the ith row of n Xx .

In addition to the unscented transformation, other possible trans-
formations exist, e.g., the simplex transformation, the spherical trans-
formation, and others, Simon [1]; Julier and Uhlmann [15]. These
additional transformations might be applied when computational sav-
ings are of interest, or if there are more statistics of the noise, etc.

Similarly to the EnKF, the UKF algorithm can be described as fol-
lows:

1. The UKF initialization, =k 1:
• a posteriori state estimate:

=x x1̂|1 1 (17)

2. Propagation step, = …k 2,3, :
• a posteriori covariance estimate:

=X X1|1 1 (18)

• find sigma points:
= + …x x x i nˆ ~ , {1, ,2 }k k

i
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i
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• a priori state estimate, …i n{1, , 2 }x :
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3. 3. Information update, = …k 2,3, :
• a priori covariance estimate:
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• measurement and innovation, …i n{1, , 2 }x :
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• cross and innovative covariances:
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• Kalman gain:
E=K Zk k k k k| 1 | 1

1 (26)

• a posteriori state estimate:
= +x x K y yˆ ˆ ( ˆ )k k k k k k k k| | 1 | 1 (27)

• a posteriori covariance estimate:
E=X X K Kk k k k k k k k

T
| | 1 | 1 (28)

It is seen that the number of sigma points equals twice the number
of states. This means that for systems with few states, the UKF needs
lower computation effort than the EnKF does. It is clearly assumed that
n n2y x to avoid rank loss in Ek k| 1.

It should be noted that in the measurement update, Eq. (23), the
previously defined sigma points xk k

i
| 1 from Eq. (21) have been used for

similarity with the EnKF algorithm and to save computational effort.
However, the unscented transformation, based on the defined a priori
state, x̂k k| 1, and covariance, Xk k| 1, estimate, can be used to create new
sigma points for the measurement update. The use of these new sigma
points can increase the performance of the estimator for nonlinear
measurements, Simon [1].

Both the EnKF and UKF algorithms have been implemented in
Python for further use with the model of the hydropower system.

4. Modelling

As mentioned above, a dynamic model of the waterway of a hy-
dropower plant is used in this study. All modelling is done in
OpenModelica, which is an open source Modelica-based modelling and
simulation environment intended for industrial and academic usage.6

5 Using Python package numpy, the Cholesky decomposition can be found by
the numpy.linalg.cholesky() function.

6 Some tutorials exist for Modelica — http://book.xogeny.com, and
OpenModelica — https://goo.gl/76274H.
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4.1. Hydropower library

For modelling the hydropower system, library OpenHPL is used. This
is an in-house hydropower library, where different parts of the wa-
terway components such as reservoir, conduit, surge tank, and turbine
have been assembled. In this library, different waterway components of
the hydropower system are described by both mass and momentum
balances, and could include compressible/incompressible water or
elastic/inelastic pipe walls. A more detailed overview of the mathe-
matical models and methods used in this library is given in Vytvytskyi
and Lie [11]; Splavska et al. [16].

4.2. Model presentation

In this study, a simplified system with incompressible water and
inelastic pipe is considered. A block diagram that is relevant for this
hydropower model is presented in Fig. 2. Here, the block diagram
consists of drag and drop elements from OpenHPL that are structured in
the same way as in the hydropower plant, compare with Fig. 1. These
elements are also specified with appropriate geometry from Tables 1
and 2. Connectors that join each element hold information about the
pressure in the connector and mass flow rate that flows through the
connector — similar to the connection in the electrical circuit with
voltage and current.

For simplicity, the water levels in the reservoir and tail water are
assumed to be constant. Regarding the model states, they consist of
volumetric flow rates in the penstock, Vp, and surge tank, Vs, and the
water height in the surge tank, hs. The model has one input — turbine
gate opening utr , and a few variables might be considered as measured
outputs — turbine volumetric flow rate, Vtr (equals the flow rate in the
penstockVp), pressure before the turbine (end of the penstock), ptr1, and
pressure in the manifold node (beginning of the penstock), pn.

This hydropower model can be further used for assimilation with
measured data. Using the Python API for OpenModelica, state estima-
tion of this hydropower model is carried out in Python.

5. Results

5.1. Simulation overview

A number of cases for the measured output signal of the model are
considered. In two cases, the output is described by only one measured
variable. For a third case, two measured outputs are used in order to see
if the combination of several measurement can improve the perfor-
mance of the estimators. The following three cases are considered:

1. Measuring flow — using turbine volumetric flow rate, Vtr , as the
measured output, which means that one of the states is measured
(turbine volumetric flow rate is the same as the flow rate in the
penstock).

2. Measuring pressure — using either pressure before the turbine, ptr1,
or pressure in the manifold node, pn.

3. Measuring both flow and pressure — using turbine volumetric flow
rate, Vtr , together with the inlet turbine pressure, ptr1.

Measurement data from a real hydropower plant has not been
available. Instead, synthetic/artificial measurements from hydropower
model simulations are used. Hence, for all cases below, the hydropower
model is first simulated separately to get appropriate synthetic mea-
surements. Next, measurement noise, vk, is added to the uncorrupted
simulated measurement signal and then these synthetic measurements
are used for the estimator simulations. Here, the measurement noise
covariance is assumed from the accuracy of the measurements and
depends on the nominal value of the measured variable. The mean of
the measurement noise vk is the same for all the cases, =v 0k , but the
noise covariances Vk are different for each case and are as follows:

• Turbine volumetric flow rate, Vtr , measurement — with nominal
value approximately 20 m /s3 and accuracy 1%; the measurement
noise covariance is =V 0.004k , and Nv ~ (0,0.004)k .

• Inlet turbine pressure, ptr1, measurement — nominal value is ap-
proximately 50 bar and the accuracy is 1%; the measurement noise
covariance is set to V 0.03k , and Nv ~ (0,0.03)k .
• Manifold node pressure, pn, measurement — nominal value is ca. 8

bar and the accuracy is 1%; the measurement noise covariance is set
to V 0.0007k , and Nv ~ (0,0.0007)k .

Additive random disturbance, wk, is used in selected simulations to
create the synthetic measurements. For simplicity, this random dis-
turbance is given zero mean =w 0k and covariance =W 0.0001k for all
states, i.e. Nw ~ (0,0.0001)k — when used. When not used, w 0k .

Assumed covariances are important design choices in the estimator.
For optimal estimates, the covariances in the estimator should be equal
to the covariances in the real, but unknown, random disturbances and
noises. Here, synthetic measurements are used, and for that (un-
realistic) case, the true covariances to use in the estimator are known.
To test the robustness of the estimator, disturbance covariance in the
estimator is set to either zero or =W 10k

4 — thus, the disturbance
covariance used in the estimator may deviate from that used for
drawing random disturbances for the synthetic measurements. Random
measurement noise is always present, and perfect assumption of mea-
surement covariance is used.

Fig. 2. Block diagram of the model of the hydropower system in OpenModelica. Modeled using OpenHPL.
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For all cases, the simulations start from steady state and last for 60 s
with a sample time of 0.5 s. A disturbance occurs at time 20 s with a closing
of the turbine valve: in real systems, the turbine valve is ramped up and
down to avoid excessive water hammer effects; in this study, we have used a
more informative step change. To limit the damaging effect of water
hammer, we have used a 3% step change. The initial state covariance is the
same for all states, =X 0.011 . Results of state estimation for all cases are
shown below, and Table 3 in Section 6 gives a description of all of the
simulations with a summary of the estimation results.

The number of realizations/particles for the EnKF is set to =n 50p for
all EnKF simulations in this study. The number of UKF sigma points is
known from the number of the model states and equals 6. The differ-
ence between the number of sigma points for the UKF and the number
of realizations/particles for the EnKF leads to approximately ten times
faster simulation time for the UKF.

5.2. Flow measurement

First, a comparison of estimates from the two KF algorithms (UKF
and EnKF) and the model simulations is done for the hydropower
system with correct knowledge of zero random disturbance, see Fig. 3.
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Fig. 3. State and auxiliary variable comparisons for the UKF and EnKF without
random disturbance in the synthetic data, and with correct assumption of dis-
turbance covariance in the estimators. Turbine flow rate is measured.
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Note that the information about the measurement noise is used in
the estimators, for more details see Table 3. The results from the
auxiliary variables (pressures ptr1 — before the turbine and pn — in the
manifold) are also shown in the figure for clarity. These auxiliary
variables reflect the states because they are functions of the states.
Furthermore, uncertainty ranges for the state estimates for both the
UKF and EnKF are demonstrated by the filled area between two
boundaries with the same but transparent color as for the related state
estimates. These boundaries are calculated as two standard deviations
of the state estimates, where the standard deviation is found as the
square root of the diagonal element (variance) of the covariance ma-
trix Xk k| .

Fig. 3 shows that the UKF provides better estimates than the EnKF
for two states (surge tank flow rate Vs, and water height hs) that are not
measured. It is also seen that the uncertainty range for the state esti-
mates converges faster for the UKF than the EnKF, which might be a
reason of the UKF's better performance.

To ensure that both the UKF and EnKF provide proper steady state
results, a steady state simulation (with constant input signal utr) for an
extended period of 800 s is performed for this case only, with the flow
measurement, and without random disturbance, see Fig. 4. Here, the
initial value for one of the estimator states deviates slightly from steady
state in order to show that estimators results converge to the correct
steady state values. From Fig. 4 it is seen that the EnKF needs a shorter
time to converge to the steady state than the UKF.

Fig. 4. Steady state simulation. State and auxiliary variable comparisons for the
UKF and EnKF without random disturbance in the synthetic data, and with
correct assumption of disturbance covariance in the estimators. Turbine flow
rate is measured.

Fig. 5. State and auxiliary variable comparisons for the UKF with too large
disturbance covariance and UKF1 with correct disturbance covariance. Turbine
flow rate is measured.
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In order to show the impact of the random disturbance on the UKF
and EnKF, the estimators have been run with the same synthetic mea-
surements, but with incorrectly assumed disturbance covarianceW 0k
in the estimator, see Table 3. The comparison of the estimators with and
without disturbance covariance is shown in Fig. 5 for the UKF and in
Fig. 6 for the EnKF. In both figures, the estimators with disturbance
covariance >W 0k are marked as “UKF” or “EnKF” and labels “UKF1” or
“EnKF1” are used for the estimators with disturbance covariance
W 0k .

Both Figs. 5 and 6 show that assuming too large disturbance cov-
ariance in the UKF and EnKF makes the estimates more noisy; essen-
tially, assuming larger disturbance covariance is equivalent to assuming

lower measurement covariance, thus trusting the measurement too
much, with more measurement noise “bleeding” through to the esti-
mates. An interesting side result is that the estimation results of the UKF
assuming incorrect disturbance covariance are much poorer than for
the UKF with correct disturbance covariance.

Next, estimates of the UKF and EnKF are compared together with
the model simulation for the hydropower system when the synthetic
measurements include random disturbance wk and correct disturbance
covariance Wk is used in the estimators. For more details see Table 3.
The results of this comparison are shown in Fig. 7. It is seen from the
figure that the state estimates from the EnKF are close to the model

Fig. 6. State and auxiliary variable comparisons for the EnKF with too large
disturbance covariance and EnKF1 with correct disturbance covariance.
Turbine flow rate is measured.

Fig. 7. State and auxiliary variable comparisons for the UKF and EnKF with
measurement noise and random disturbance in the synthetic measurements,
and correct assumption of disturbance covariance in the estimators. Turbine
flow rate is measured.
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results, while the UKF estimates have more deviation in comparison to
the model results.

5.3. Pressure measurement

In addition to the use of the flow rate measurement for the esti-
mators, it is of interest to see how the UKF and EnKF behave when a
pressure measurement is used. Both the inlet turbine ptr1 and the
manifold node pn pressures are of interest as measurements. The same
set of dynamic simulations that have been done for the flow rate
measurement case are performed for the case with pressure measure-
ments. The use of the measured inlet turbine pressure for state esti-
mation is first presented, and then the same state estimates are found
based on the manifold node pressure measurement.

5.3.1. Measuring the inlet turbine pressure
Initially, the comparison of estimates from the UKF and the EnKF

are done for the hydropower system without random disturbance in the
synthetic measurement and with correct assumption of disturbance
covariance in the estimators, see Fig. 8. As when measuring the flow
rate, information about the measurement noise is also added to the
estimators, see Table 3.

Fig. 8 shows that the UKF provides a bit better estimates with lower
variation with the model simulations than the EnKF for the statesVs and
hs. The estimates of the penstock flow rate look promising for both
estimators.

Similarly, as for the case with measuring the flow rate, it is of in-
terest to see the impact of incorrectly assumed disturbance covariance
on the UKF and EnKF; the estimators have been run with the same
pressure measurement as in the previous simulation, but with too large
assumed disturbance covariance, see Table 3. The comparison of the
estimators with too large assumed disturbance covariance (UKF/EnKF)

Fig. 8. State and auxiliary variable comparisons for the UKF and EnKF with
measurement noise and without random disturbance + correctly assumed
disturbance covariance in estimators. Inlet turbine pressure is measured.

Fig. 9. State and auxiliary variable comparisons for the UKF with too large
disturbance covariance and UKF1 with correct disturbance covariance. Inlet
turbine pressure is measured.
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and with correct disturbance covariance (UKF1/EnKF1) are shown in
Fig. 9 for the UKF and Fig. 10 for the EnKF.

From Figs. 9 and 10, it is seen that too large assumed disturbance
covariance causes additional fluctuations in the estimates for both
the UKF and the EnKF. However, this too large disturbance

covariance assumption has less detrimental effect on the EnKF than
on the UKF.

Next, the estimates with the UKF and EnKF with correctly assumed
measurement noise and disturbance covariance are compared with the
synthetic model simulation for the hydropower system. The results of
this comparison are shown in Fig. 11. This figure shows that the EnKF

Fig. 10. State and auxiliary variable comparisons for the EnKF with too large
disturbance covariance and EnKF1 with correct disturbance covariance. Inlet
turbine pressure is measured.

Fig. 11. State and auxiliary variable comparisons for the UKF and EnKF with
correctly assumed covariances. Inlet turbine pressure is measured.
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estimates deviate less from the model simulation than the UKF esti-
mates. The estimates of the penstock flow rate is good for both esti-
mators.

5.3.2. Measuring the manifold pressure
Next, the use of the manifold node pressure as the measurement is

studied as an alternative to measuring the inlet turbine pressure. The
comparison of estimates from two KF algorithms (UKF and EnKF) is

done first for the hydropower system without random disturbance
and with correct assumption of the disturbance covariance. The re-
sults are shown in Fig. 12; for more detailed simulation description
see Table 3.

The UKF and EnKF estimates show low deviation from the model
simulations. Some variation between the EnKF and UKF results is

Fig. 12. State and auxiliary variable comparisons for the UKF and EnKF
without random disturbance in the synthetic data, and with correct assumption
of disturbance covariance in the estimators. Manifold pressure is measured.

Fig. 13. State and auxiliary variable comparisons for the UKF with too large
disturbance covariance and UKF1 with correct disturbance covariance.
Manifold pressure is measured.
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observed for the water height estimates of the surge tank, where the
EnKF is closer to the model simulations. In the next comparisons, a too
large covariance is assumed in the estimators, see Fig. 13 and Fig. 14.
Similarly to the previous simulations, assuming too large disturbance
covariance in the KFs leads to more deviation from the synthetic model
simulation and more fluctuating estimates for both UKF and EnKF. In
addition, the EnKF shows better results for the state estimates of the

hydropower system with random disturbance, see Fig. 15. This is si-
milar to the case with measuring the inlet turbine pressure.

5.4. Measuring both outputs

In addition to the presented cases with only one measured output,
it is of interest to see if the use of two measurements can improve the

Fig. 14. State and auxiliary variable comparisons for the EnKF with too large
disturbance covariance and EnKF1 with correct disturbance covariance.
Manifold pressure is measured.

Fig. 15. State and auxiliary variable comparisons for the UKF and EnKF with
measurement noise and random disturbance (both estimator and model).
Manifold pressure is measured.

L. Vytvytskyi and B. Lie Flow Measurement and Instrumentation 69 (2019) 101582

12



performance of the estimators. Thus, both the turbine flow rate and
the inlet turbine pressure are considered as measurements. The same
set of dynamic simulations that have been done for previous cases are
also performed for this case. A more detailed description of the si-
mulations is found in Table 3. The results of this case with two mea-
sured outputs, hydropower model without random disturbance as well
as correctly assumed covariance matrices in the estimators are given
in Fig. 16.

It is seen from the figure that both the UKF and EnKF estimators
provide good estimates and improve their results in comparison to the

cases with only one measurement.
Then, in the same way as has been done in the previous cases, the

impact of the assumed disturbance covariance on the UKF and EnKF is
considered. The estimators have been run with the same two mea-
surements, and with too large assumed disturbance covariance, see
Table 3. The comparison of the estimators with too large assumed
covariance (UKF, EnKF) and with correctly assumed disturbance (UKF1,
EnKF1), respectively, are shown in Fig. 17 for the UKF and Fig. 18 for
the EnKF.

Both figures show that the estimators reduce their performance
when assuming too large disturbance covariance: the state estimates

Fig. 16. State and auxiliary variable comparisons for the UKF and EnKF with
measurement noise, without random disturbance, and with correctly assumed
disturbance covariance in the estimators. Both pressure and flow rate are
measured.

Fig. 17. State and auxiliary variable comparisons for the UKF with too large
disturbance covariance and UKF1 with correct disturbance covariance. Both
pressure and flow rate are measured.
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become less accurate and noisier.
Finally, the estimates of the UKF and EnKF with correct assumptions

of covariance matrices, and synthetic measurements/variables with
random disturbance are compared. The results of this comparison are
shown in Fig. 19. It is seen from this figure that the EnKF estimates
deviate less from the model simulation than the UKF does.

5.5. Measurements from a more detailed model

It is of interest to see how the estimators behave when the synthetic
measurements are based on a more detailed/realistic model while the
simple model is used for the estimators. The detailed model used for the

Fig. 18. State and auxiliary variable comparisons for the EnKF with too large
disturbance covariance and EnKF1 with correct disturbance covariance. Both
pressure and flow rate are measured.

Fig. 19. State and auxiliary variable comparisons for the UKF and EnKF with
measurement noise and random disturbance, and with correctly assumed dis-
turbance covariance in the estimators. Both pressure and flow rate are mea-
sured.
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synthetic measurements is similar to the model presented above, but
includes water compressibility and pipe elasticity in the penstock, see
Vytvytskyi and Lie [11] for more information about this model.

Similarly to the final case above, both the turbine flow rate and the
inlet turbine pressure are considered as measurements. No random
disturbance is used in detailed model simulation, and random mea-
surement noise is added to create the synthetic measurements. The
estimators use correct assumptions about the covariance matrices. The
results of state estimation for this case are given in Fig. 20.

It is seen from the figure that the UKF provides a bit better estimates
than the EnKF for two states. However, the estimators' results do not
vary a lot from the case where the measurements have been provided
from the simple hydropower model.

6. Discussion and conclusions

Based on the simulations, the observations of the EnKF and the UKF
estimation results are structured in a table for better comparison and
analysis, see Table 3.

Regarding the presented estimation results from both the UKF and

EnKF, it is clearly observed that the UKF and EnKF estimates show good
results for the penstock flow rate. Specifically, the results are promising
for the cases where the flow rate is not measured. The estimates from
the UKF and EnKF for two other states (the surge tank flow rate and
water height) deviate more from the model simulations than the esti-
mates for the penstock flow rate; the results for these other states are
still useful, though.

In general, both the UKF and the EnKF appear to give good results
when the estimators use correct information about covariance matrices
— whether there is random disturbance or not. In real life, the “correct”
information about covariance matrices is not known.

When the estimator assumes a larger disturbance covariance than
the real system has, the estimates become noisy. This is to be expected:
assuming too large disturbance covariance is akin to assuming too low
measurement noise covariance, which will lead to too much trust in the
measurements, hence a too large Kalman gain, and “bleeding” of
measurement noise into the estimates. It is interesting to observe that
the UKF appears to give poorer estimates than the EnKF for this case. A
possible explanation for this is that since the EnKF uses more particles
than the number of sigma points in the UKF, the EnKF tends to smooth
out this noise in a superior way as to what the UKF does.

Both the UKF and the EnKF give good results with a single pressure
measurement (inlet turbine pressure or manifold node pressure); the
UKF works fine with either pressure measurement, while the EnKF
works best with the manifold node pressure measurement.

A case with two measurements, the turbine flow rate and the inlet
turbine pressure, has also been considered. Combining two measure-
ments leads to good performance for both estimators, and an im-
provement over using a single measurement. However, two measure-
ments at different locations may be more informative, and should be
also considered for a future study.

In almost all cases, the state covariance (uncertainty) converges
faster for the UKF than the EnKF.

Regarding the choice of estimator algorithm, it is hard to make a
final decision. The UKF has an advantage wrt. computational speed, but
both the UKF and the EnKF are straightforward to parallelize, and with
modern multicore/multi threading processors, this advantage is per-
haps not vital. The EnKF appears to handle incorrect assumption about
covariances better; this is also an important feature.

To summarize, it has been shown in this paper that state estimation
based on the assimilation of a mechanistic model and measured data,
might be used to improve the information for hydropower plants.
Moreover, the hydropower mathematical model can be modeled simply
by dragging, dropping, and connecting appropriate unit elements of the
hydropower system using a visual modelling tool, e.g., our in-house
hydropower Modelica library — OpenHPL in OpenModelica. For an
OpenHPL based model, the model can be operated on in Python, e.g.,
doing state estimation via the Python API for OpenModelica.
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