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Abstract
A large fraction of the world’s energy production is used
for HVAC in buildings. It is therefore important to develop
improved strategies for the efficient use of energy in
buildings. Storage of intermittent energy production is
important; storage as hot water in water tanks is the
most common way to store energy in private homes/
smaller apartment complexes. Finding good models for
building thermal behavior is an important part of devel-
oping building energy management systems (BEMS)
that are capable of reducing energy consumption for
space heating through model predictive control (MPC).
In this paper, previous models of temperature dynamics
in hot water tanks are considered, and a simple well
mixed tank model is compared with a model describing a
more realistic stratified temperature distribution. Two
models are fitted to experimental data from a hot water
tank. Description of temperature stratification requires
a distributed model, but a relatively low order
discretized model suffices to describe the important effect
while simultaneously being useful for BEMS. A suitable
hot water tank model in combination with weather fore-
cast enables temperature estimation and prediction in
MPC, and allows for finding a suitable water temperature
at minimal energy consumption.

Keywords: Energy in buildings, energy storage, hot wa-
ter tank model, well mixed tank model, stratified flow
model, experimental data, model fitting.

1 Introduction
1.1 Background
A large part of the world’s energy production is used for
heating/cooling, ventilation, and air conditioning of build-
ings (HVAC), (Pérez-Lombard et al., 2008), and this frac-
tion is increasing. Even though modern building tech-
niques make it possible to reduce the energy used for heat-
ing, the renewal rate of buildings is low. Berthou et al.
(Berthou et al., 2014) report renewal rates of 1% per year
in France, with similar rates for other European countries.
This illustrates the need for good building energy manage-
ment systems (BEMS) also in existing buildings.

Model predictive control (MPC) is an attractive ap-
proach for use in BEMS. Models of the building thermal
behavior can be used to predict the heating and cooling
time, and the usage of energy. In an MPC system, a model
is used to simulate the system ahead in time in order to

find a sequence of inputs that controls the system to the
desired state. In a BEMS, the use of MPC will allow for
improved control of the indoor climate as well as min-
imization the energy consumption (Berthou et al., 2014),
(Fux et al., 2012). Predictions of future system inputs such
as outdoor temperature, irradiation, precipitation, etc., are
readily available from internet services, which helps to fa-
cilitate the use of MPC.

An important problem in BEMS involves the possibility
to store surplus energy for later use. Energy storage as
sensible heat in a water tank is a widespread strategy. A
simple, yet reasonably accurate water tank model, which
can be integrated in a complete building model, is required
for successful MPC.

1.2 Previous work
In (de Oliveira et al., 2013), a house heating system is opti-
mized wrt. fluctuating energy prices. In (Lie et al., 2014),
a related heating system with irradiation prediction, so-
lar collector, and a simple water storage tank is consid-
ered. (Lie, 2015) discusses a more detailed model of the
water storage tank. (Xu et al., 2014) discuss a more re-
alistic water storage tank, using a simplified description
of water buoyancy presented in (Viskanta et al., 1977).
(Koch, 2012) discusses both a concentrated and a dis-
tributed water tank model, while (Vrettos, 2016) extends
on Koch’s work with a buoyancy description model. (Jo-
hansen, 2019) adjusted the model from (Xu et al., 2014),
and fitted the model to experimental data. The results of
(Johansen, 2019) are discussed in this paper.

1.3 Outline of paper
Section 2 provides a discussion of the system discussed,
Section 3 gives an overview of the dynamic model of the
water tank, Section 4 gives results from model simulation
and fitting of the model to experimental data, with vali-
dation. The results are discussed in Section 5, with some
conclusions and indications of future work.

2 Experimental Rig
2.1 System Description
The building under study is a two floor residential build-
ing located in the eastern part of Norway, built in 2017.
The building was build based on the Norwegian TEK17
regulation and contains a BEMS based on a web based
Programmable Logic Controller (PLC). The PLC uses an
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Table 1. Summary of instruments in Figure 1.

Label Description
P1 Pump driving water flow in external loop
F1 Volumetric flow rate sensor in external loop
V1 Three way shunt valve for directing water

through water tank
V2 Valve for directing external loop water

through room
T1 Temperature of mixture after valve V1
T2 Upper temperature sensor in hot water tank
T3 Lower temperature sensor in hot water tank
T4 External loop temperature at entrance to hot

water tank
T5 Ambient temperature, not shown in

Figure 1
H1 Heating element for hot water tank, 15kW

internet based weather service for prediction of outside
temperatures and solar radiation parameters. The heat-
ing system consists of floor pipes with hot water in each
room, and the temperature is adjusted individually by a
valve controlling the flow of how water in a specific sec-
tion. The valves are controlled by the PLC. The floor ma-
terial in both floors is concrete. A pump, common for all
the pipe sections, provides the circulation of hot water in
the pipes. An overview of the heating system is shown in
Figure 1.

Figure 1. Overview of heating system in building, with hot wa-
ter buffer tank for heating the water, and floor heating pipes for
each room in the building. Each pipe has a valve controlled by
the BEMS. The hot water tank is to the left in the figure.

Elements in Figure 1 are summarized in Table 1.

2.2 Experimental Data
The PLC system provides measurements of temperatures
in the hot water tank (T2, T3), the loop circulation hot
mixture temperature (T1), and loop return temperature
(T4) once per minute together with control signals for
the heating valve (H1) and the three-way valve actuator
(V1). Other data such as ambient temperature (T5) and
loop flow rate (F1) are sampled more rarely, but have been
re-sampled to once per minute. The data have been col-
lected in CSV files with one line for each sample with a

time stamp and the measured values. The data set con-
tains data for the period February 5, 2019 to February 21,
2019. Python was used as the software for preprocessing
the data, calibration of the models, and validation checks.

3 Model Description
3.1 Model overview
A model of the buffer tank that can be used in the PLC
system is wanted so a model that is adjusted to the com-
putational power of this control system. An overview of
the buffer tank is shown in Figure 2.

Figure 2. The buffer tank with the heating element, the temper-
ature sensors inside the buffer tank, the temperature sensors on
the outlet an inlet pipes and the three way shunt valve for mixing
the water from the buffer tank and the return water flow.

Two approaches are used, one model for the tank as a
mixed storage tank and a model of the tank as a stratified
storage tank where each layer is modeled. Both models
are developed based on the macroscopic thermal energy
balance, and assuming constant mass/constant mass den-
sity. Constant mass m in the system implies that

ṁ = ṁi = ṁe (1)

where ṁ is mass flow rate through the system, while ṁi
and ṁe are influent and effluent mass flow rates, respec-
tively. The thermal energy balance can be posed as

dU
dt

= Ḣi − Ḣe +Ẇf −Ẇv + Q̇, (2)

where U is internal energy, H is enthalpy, W is work, and
Q is heat. A dot decoration on a symbol indicates a flow
rate, thus Ḣ is enthalpy flow, Ẇ is mechanical power, and
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Q̇ is heat flow rate. Ḣi and Ḣe are influent and effluent en-
thalpy flow rates, respectively. Ẇf and Ẇv are friction work
rate (heating) and power due to volume change (p dV

dt ), re-
spectively; we will neglect friction work, and with con-
stant volume, there is no volume work. Heat flow might
be due to added electric heating Q̇el, heat diffusion Q̇d, and
heat loss to the ambient Q̇a.

Enthalpy is an extensive quantity, hence for a pure sub-
stance,

H = mĤ (3)

where Ĥ is specific enthalpy. Likewise, enthalpy flow for
a pure substance is related to mass flow as

Ḣ = ṁĤ. (4)

For an in-compressible liquid, Ĥ can be posed as

Ĥ = Ĥ (T ◦)+ ĉp,w (T −T ◦)+
1
ρ
(p− p◦) (5)

where T ◦ and p◦ are standard state temperature and pres-
sure, respectively, and ρ is the water density. Under nor-
mal conditions, we can neglect the pressure effect. Also,
for a pure substance (non-reacting) system, the standard
state specific enthalpy Ĥ (T ◦) can be neglected.1 We will
also utilize that for water in liquid form, dU ≈ dH.

3.2 Mixed tank model
The first model is a simplified model assuming that the
entire volume of the tank is well mixed. The assumptions
for the mixed tank model are (1) the top and bottom of the
tank are assumed to be horizontal, (2) water flows only
from the bottom to the top of the tank, (3) constant den-
sity of the water, (4) temperature independent heat capac-
ity, (5) a proportional relationship between the inflow and
outflow of the tank and the valve openings, (6) the temper-
ature is homogeneous along the height of the tank.

Based on the assumptions indicated in Section 3.1, we
have

dU
dt

≈ dH
dt

=
d
dt

(
mĤ

)
= m

dĤ
dt

= mĉp,w
dT
dt

(6)

Ḣi − Ḣe = ṁĉp,w (Ti −T ) (7)

where we have used that for a perfectly mixed tank, Te =
T . For a well mixed tank, there is no heat diffusion. Added
electric heating is

Q̇el = P◦uP (8)

where P◦ [kW] is the maximum electric heating power,
and uP ∈ [0,1] is a control signal. Heat added from the
surroundings is

Q̇a = U As (Ta −T ) (9)

1Ĥ (T ◦) is mainly needed for finding heat of formation in chemical
reactions.

where U is the overall heat transfer coefficient and As is
the total surface areas, while Ta is the ambient tempera-
ture. The mass flow rate ṁ through the hot water tank is
given by ṁ = ρV̇ where the volumetric flow rate, V̇ , is
given by a split-range control signal uv as V̇ = V̇ℓuv, with
V̇ℓ being the volumetric flow rate in the external loop. The
mass flow rate can thus be expressed as

ṁ = ρV̇ℓ ·uv (10)

where ρis water density, while uv ∈ [0,1] is the valve sig-
nal.

With m = ρV and V the tank volume, the model can
thus be summarized in state space form as

mĉp,w
dT
dt

= ṁĉp,w (Ti −T )+P◦uP +U As (Ta −T )

⇓
dT
dt

=
V̇ℓ ·uv

V
(Ti −T )+

P◦uP +U As (Ta −T )
ρV ĉp,w

.

(11)

3.3 Stratified tank model
3.3.1 Distributed parameter model
We consider a well mixed volume ∆V = A ·∆z in the wa-
ter tank, where A is the cross sectional area and ∆z is the
height of the volume, with z = 0 at the bottom of the tank
and z = h at the top of the tank. For this volume and with
dU ≈ dH, influent at position z, effluent at position z+∆z,
the energy balance is

dHz+∆z

dt
≈ Ḣz − Ḣz+∆z + Q̇el,∆z + Q̇d,z − Q̇d,z+∆z + Q̇a,∆z.

(12)
The following expressions are valid except at the bound-
aries, i.e., they are valid for z ∈ (0,h):

Hz+∆z = m∆zĤz+∆z = ρA∆z · ĉp,w (Tz+∆z −T ◦) (13)

Ḣz − Ḣz+∆z = ṁĉp,w (Tz −Tz+∆z) (14)

Q̇el,∆z = P◦ ·1P (z) ·uP (15)

Q̇d = AQ̇′′
d (16)

Q̇a,∆z = U A∆z (Ta −Tz+∆z) . (17)

In these expressions, we have assumed that the heating
element is located at a point position zP, and 1P (z) is the
indicator function defined as

1P∆z (z) =

{
1, z ∈ P∆z

0, z /∈ P∆z,
(18)

with heating element location set P∆z given as

P∆z = (zP,zP +∆z] . (19)

Furthermore, Q̇′′
d is the heat diffusion per unit cross sec-

tional area (the heat flux), while A∆z =℘∆z and ℘ is the
perimeter of the tank.
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By combining these terms into the thermal energy bal-
ance, dividing by ∆z and letting ∆z → 0, we find that for
z ∈ (0,h):

ρAĉp,w
∂T
∂ t

=−ṁĉp,w
∂T
∂ z

+P◦δ (z− zP) ·uP

−A
∂ Q̇′′

d
∂ z

+U ℘(Ta −T ) , (20)

where we have introduced Dirac’s delta function δ (z− zP)
by observing that

lim
∆z→0

1P∆z (z)
∆z

→ δ (z− zP) . (21)

The heat flux Q̇′′
d consists of two terms:

1. Thermal diffusion flux Q̇′′
d,d given by Fourier’s law,

Q̇′′
d,d =−kt

∂T
∂ z

(22)

where kt is thermal conductivity and is assumed con-
stant here, and

2. Buoyant turbulent mixing flux Q̇′′
d,b given as (Xu

et al., 2014)
∂ Q̇′′

d,b

∂ z
=−kb

∂ 2T
∂ z2 (23)

where kb is buoyant conductivity given as

kb =

cbκ2d2
√

gαp

∣∣∣ ∂T
∂ z

∣∣∣, ∂T
∂ z < 0

0, ∂T
∂ z ≥ 0

(24)

where κ is the von Karman constant (κ ≈ 0.4), d
is some characteristic length — the diameter in this
case, g is the acceleration of gravity, αp is the ther-
mal expansion coefficient at constant pressure, and
cb ∼ 1 is a tuning factor. Because hot water has lower
density than cold water, the normal steady situation
is that T is higher at larger z (with the given direc-
tion of z), hence with ∂T

∂ z > 0 this is the normal sit-
uation and there is no buoyancy. On the other hand,
with ∂T

∂ z < 0, the temperature profile is reversed, and
buoyancy kicks in. (Vrettos, 2016) gives an alterna-
tive expression for buoyancy mixing.

In summary, for z ∈ (0,h), the model can be simpli-
fied to

∂T
∂ t

=−V̇ℓ ·uv

A
∂T
∂ z

+
kt + kb

ρ ĉp,w

∂ 2T
∂ z2

+
P◦δ (z− zP) ·uP +U ℘(Ta −T )

ρAĉp,w
. (25)

Because of the second derivative in the z-direction,
we need two boundary conditions. These are

Tz=0− = Ti (26)
Tz=h+ = Tz=h. (27)

There is also an additional ambient heat loss surface
at the bottom and the top.

The water tank is encased by an insulator of unknown ther-
mal conductivity ki and unknown thickness di. Thermal
conductivity of insulator typically has a value in the range
ki ∈ [10,50] mW/mK with air at kair = 25mW/mK. The
overall heat transfer coefficient U typically is described
by

U =
1

1
hw

+ ki
di
+ 1

ha

(28)

where hw is the heat transfer coefficient between wa-
ter and the metal surface, while ha is the heat transfer
coefficient between ambient air and the metal surface.
The ambient side will exhibit free convection with typi-
cal values for ha being ha ∈ [2.8,23] W/m2 K. The wa-
ter side, will however vary between free convection with
stagnant water when uv ≡ 0 and typical values of hw ∈
[50,3000] W/m2 K, and forced convection when uv ̸= 0
with hw ∈ [280,17000] W/m2 K. Typically, if the insula-
tion is 5cm thick, ki

di
∈ [0.2,1] W/m2K.

3.3.2 Semi-discretized model
Because the flow of water is specified, it suffices with a
simple finite difference discretization of the spatial deriva-
tives. If the water tank height h is divided into n equal
height slices, ∆z = h

n with the bottom slice numbered
k = 1 and the upper slice numbered k = n, we have for
k ∈ {2, . . . ,n−1}:

dTk

dt
=−V̇ℓ ·uv

A
Tk −Tk−1

∆z
+

kt + kb

ρ ĉp,w

Tk+1 −2Tk +Tk−1

∆z2

+
P◦ 1P∆z

(k·∆z)
∆z ·uP +U ℘(Ta −Tk)

ρAĉp,w
. (29)

Here,

kb

ρ ĉp,w
=

cbκ2d2
√

gαp

∣∣∣Tk+1−Tk
∆z

∣∣∣, Tk > Tk+1

0, Tk ≤ Tk+1

(30)

where cb ∼ 1 is a tuning factor.
At the boundaries, the scheme of 29 is invalid, and is

modified to:

k = 1: For the advection term, T0 becomes Ti, while for
the diffusion term, T0 equals T1,

dT1

dt
=−V̇ℓ ·uv

A
T1 −Ti

∆z
+

kt + kb

ρ ĉp,w

T2 −T1

∆z2

+
P◦ 1P∆z

(∆z)
∆z ·uP +U

(
℘+ A

∆z

)
(Ta −T1)

ρAĉp,w
.

(31)

k = n: We assume that the temperature of the metal above
cell n has the same temperature as cell n because of
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Figure 3. Stratified model simulation. Model parameters are
taken from Table 2. Dotted lines indicate simulated temperatures
at temperature sensor locations; temperature at inlet layer (T1) is
indicated with ◦ markers, and temperature at exit layer (Te) is
indicated with × markers.

good thermal conduction in the metal and good insu-
lation, thus Tn+1 = Tn. We then have

dTn

dt
=−V̇ℓ ·uv

A
Tn −Tn−1

∆z
+

kt + kb

ρ ĉp,w

Tn−1 −Tn

∆z2

+
P◦ 1P∆z

(n·∆z)
∆z ·uP +U

(
℘+ A

∆z

)
(Ta −Tn)

ρAĉp,w
.

(32)

3.4 Model parameters
Table 2 lists nominal model parameters for the water tank.

In Table 2, it should be observed that ha and ki
di

dom-
inates total over hw, so that U ≈ 1/(1/ha +di/ki) with
both free and forced water convective heat transfer, and
U ≈ 0.43W/m2K.

3.5 Operating conditions
Typical operating conditions for the water tank are given
in Table 3.

3.6 Basic simulation of stratified tank model
Figure 3 shows the temperature response at n = 20 posi-
tions of the stratified model; T1:n (0) = [30 : 40]◦C, Ta =
25 ◦C, Ti = 28 ◦C, V̇ℓ = 10 ·H0 − 6 ·H1.2hL/min, uv =
0.75 ·H0 −0.75 ·H2h and uP =H0 −H3h where Ht is the
Heaviside function.

Observe that with default values, the buoyant conduc-
tivity is very large if the initial profile of Tk (0) is reversed;
in Figure 3, cb = 10−2 has been used. With the posi-
tive initial temperature gradient in Figure 3, there is no
buoyancy. With the geometry of the tank and uv = 0.75,
a “plug” of water entering the tank takes 40min to pass
through the tank with V̇ℓ = 10L/min, and 100min with
V̇ℓ = 4L/min.

Figure 4. Experimental values of temperatures.

Figure 5. Experimental values for control signals.

4 Model fitting
4.1 Sensor signals and experimental data
The available sensors for the water tank are listed in Ta-
ble 4.

Here, it should be observed that the lower temperature
sensor T s

2 gives rather uncertain results due to poor insu-
lation from the external metal of the water tank.

The heated loop temperature T ℓ
i (T1) in Table 4 is the

temperature of the mixture of the effluent water from the
water tank and the by-passed water. Thus, using steady
energy balance for the 3-way mixing valve, we have

T ℓ
i = (1−uv)Ti +uvTe (33)

where Te is the effluent temperature from the tank, i.e.,
Te = T for the well mixed tank model, and Te = Tn for the
stratified tank model.

Figures 4–6 display typical values for the sensor sig-
nals, with resolution in 1min. It should be observed that
with uv ≡ 0, according to 33, T ℓ

i should equal Ti. Instead,
Figure 4 indicates a bias of ca. 1.1 ◦C under that condition.

4.2 Measure of model fit
From a system theoretic point of view, Ta, Ti, uP, and uv
are inputs to the dynamic model, while T s

1 , T s
2 , and T ℓ

i
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Table 2. Nominal parameters for water tank.

Parameter Value Comment
g 9.81m/s2 Acceleration of gravity
κ 0.41− von Karman constant
ρ 103 kg/m3 Water density

ĉp,w 4.19kJ/kgK Specific heat capacity, water
αp 303 ·10−6 1/K Thermal expansion coefficient
kt 0.6W/mK Thermal conductivity, water
h 1.5m Height of water column
d 0.5m Internal diameter, tank
℘ πd Perimeter of water tank
A π d2

4 Cross sectional area, tank
As 2A+℘·h Surface area, tank
V Ah Water volume
ha 3W/m2K Heat transfer, air

hw,free 50W/m2K Heat transfer water, free convection
hw,forced 1000W/m2K Heat transfer water, forced convection

ki
di

0.5W/m2K Typical value for a 5 cm thick insulator

Ufree 1/
(

1
ha
+ ki

di
+ 1

hw,free

)
Overall heat transfer coefficient, free

Uforced 1/
(

1
ha
+ ki

di
+ 1

hw,forced

)
Overall heat transfer coefficient, forced

P◦ 15kW Maximum power of heating element
zP 1.15m Position of heating element

Table 3. Typical operating conditions for water tank.

Variable Value Comment
T [25,45] ◦C Water tank temperature
Ti [27,33] ◦C Tank influent

temperature
Ta [4,27] ◦C Ambient temperature
V̇ℓ [1,13] L/min Volumetric flow rate in

loop
uP [0,1]− Electric power control

signal
uv [0,1]− Water valve control

signal

Figure 6. Experimental values for volumetric loop flow rate.

represent measured responses (outputs). Here, T s
2 is the

lower temperature sensor in the tank, which is reported to
be unreliable. Conceptually, we will still include it in the
description. To this end, let

u =
(

Ti Ta uP uv
)

(34)

be the vector of known inputs to the system, while

y =
(

T ℓ
i T s

1 T s
2

)
(35)

is the vector of output (response) observations. Assume
that we have a state space model

dx
dt

= f (x,u;θ) (36)

y = g(x,u;θ) . (37)

In principle we can solve this model such that

yt = G(uτ ,x0,θ) (38)

where yt is the model output at time t, while uτ is the in-
put sequence in the interval [0, t]. Normally observations
are available at discrete time instances t; in that case yt is
found in discrete time instance t by using a numeric ODE
solver.

In general, measured signals have superscript m, i.e.,
um and ym. Introducing the extended parameter set
θ̃ =

(
θ x(0)

)
, we can measure the model fit by cost

function V
(
θ̃
)

given as

V
(
θ̃
)
=

N

∑
t=1

∥yt − ym
t ∥

2
Wy

+λ ·
∥∥θ̃ − θ̃ ◦∥∥2

Wθ
(39)
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Table 4. Available sensor signals for water tank. Sensor labels (T1–T4, F1) refer to Figure 1.

Variable Unit Comment
Ti

◦C Influent water temperature to tank (T4)
T ℓ

i
◦C Heated temperature influent to loop (T1)

Ta
◦C Ambient temperature

T s
1

◦C Water tank temperature at zs
1 = 1.3m (T2)

T s
2

◦C Water tank temperature at zs
2 = 0.23m (T3)

V̇ℓ L/min Volumetric flow rate in loop (F1)
uP

V
10V Electric power control signal

uv
V

10V Water valve control signal

where ∥·∥W denotes the weighted 2-norm. Here, Vλ=0
is the standard least squares cost function, while λ > 0
regularizes the problem by emphasizing a prior parame-
ter “guess” θ̃ ◦ which can be based on physical considera-
tions. It is also possible to add hard constraints in the form
θ̃ ⊆ Θ̃. Typically Wy and Wθ are chosen such that the in-
dividual elements of vectors have comparable values, e.g.,
normalized to [0,1] or [−1,1], or standardized to have unit
standard deviation.2

To assess how well the model with parameters ˆ̃θ gen-
eralizes from training data to validation, it is common to
compare the root mean squared error (RMSE) εRMS for
the parameter estimate ˆ̃θ applied to the training data, com-
pared to the RMSE for the parameter estimate applied to
independent validation data;

εRMS =

√
1
N

V
(

ˆ̃θ
)
. (40)

In 39, λ is a user selected hyper parameter, usually chosen
such that the model generalizes well.

4.3 Model fitting results
The parameters U , kt, and cb are used as fitting param-
eters together with the unknown initial conditions of un-
measured temperatures. Tuning kt is related to adding a
“heuristic circular mass flow term” in (Koch, 2012). It
should be added that numeric discretization in space in-
troduces artificial mixing, with the extreme case of a con-
centrated model having complete mixing. The parameter
θc for the concentrated (well mixed) tank model is

θc = U (41)

while for the distributed (stratified) model, the parameter
is θd given as

θ̃d = [U ,kt,cb,T1 (t = 0) , . . . ,Tn (t = 0)] . (42)

The cost function is V given by 39, with λ ≡ 0.
For the concentrated model, parameter U is estimated

to U ∈ [2.9,62], depending on the initial temperature dis-
tribution in the tank. This variation in U depending on

2If the measurements are pre-scaled, then W = I.

Table 5. Bounds Θ̃ and initial guess θ̃ (0) for parameters during
calibration of distributed model.

U kt cb Tk (t = 0)
Θ̃ [0.1,4] [0.1,4] [0.1,2] [17,47]

θ̃ (0) 1 0.6 1 17–47

Table 6. Estimated parameters for distributed (stratified) model.
Calibrated and validated RMSE data are taken for T s

1 .

n U kt cb RMSEcal RMSEval
3 3.72 0.1 2.0 1.47 1.5
10 4 .0 0.1 2.0 1.51 1.53
20 2.63 3.99 0.1 1.74 1.8
50 0.94 4.0 0.1 3.22 2.76

the initial state of the system indicates that the well mixed
model is not very good.

For the distributed model, the parameters have been
bounded as in Table 5.

The estimated parameters for the distributed model are
given in Table 6.

Figure 7 shows how the calibrated model fits the exper-
imental data.

Validated model fit is shown in Figure 8.

5 Discussion and Conclusions
Suitable models for hot water tanks are important for suc-
cessful advanced management and control of energy us-

Figure 7. Calibrated model fit for the distributed model. Sensor
signals (T s

1 , T s
2 ): dashed lines. Simulated result: solid lines.

Black color: T s
1 , blue color: T s

2 .
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Figure 8. Validated model fit for the distributed model. Sensor
signals (T s

1 , T s
2 ): dashed lines. Simulated result: solid lines.

Black color: T s
1 , blue color: T s

2 .

age in buildings. This paper discusses a well mixed tank
model, and a distributed model which includes the effect
of stratification. A buoyant conductivity term is included
to handle buoyancy, as in (Xu et al., 2014); this model is
hardly perfect, though.3 An alternative description would
be that of natural convection as in (Vrettos, 2016).

Experimental data from a well instrumented new build-
ing is used to tune model parameters and validate the mod-
els. Initial results indicate that the well mixed model is too
simple, in that model parameters depend considerably on
the initial temperature distribution in the tank. The dis-
tributed model is discretized in n slices (hyper parame-
ter4), where n ∈ {3,10,20,50}, and these are fitted to the
data. The estimated parameters for the various values of n
are somewhat strange, in that between n = 10 and n = 20,
parameters kt (water conductivity) and cb (buoyancy scal-
ing parameter) switch values. However, remembering that
coarse discretization in space gives an added mixing effect
(adds to kt) while a finer discretization gives less such mix-
ing, this may partially explain the variation in kt estimates.
Also, somewhat surprisingly, the root mean squared error
(RMSE) increases with the number of slices for the cali-
brated model, which is contrary to what is expected. This
could be due to numeric problems with solving and fitting
larger models. Similarly, the RMSE values for the vali-
dated models also vary somewhat unexpectedly. Still, for
n ∈ {3,10} the model fit is decent.

In future work, the buoyancy model should be reconsid-
ered, sensor signals should be checked/re-calibrated, with
a revisit of how to handle data at different sample frequen-
cies. Then, parameter estimation should be checked, pos-
sibly also introducing regularization in the model fitting.
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