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Abstract

In control theory for dynamic systems, the information
about observability and controllability of states plays a
key role to evaluate the possibility to observe states
from outputs, and use inputs to move states to a de-

sired position, respectively. Th automatic determination
of observability and controllability is possible, in partic-
ular for linear models where typically observability and
controllability grami-ans are considered. In the case
of large scale systems, e.g., complex models of regional
energy systems, standard analysis becomes challenging.
For large scale systems, structural analysis based on
directed graphs is an interesting alternative: structural
observability (or: controlla-bility) is a necessary require-
ment for actual observability (or: controllability). Di-
rected graphs can be set up directly for linear models, but
can also be extracted from nonlinear models.

Modelica is a suitable language for describing large
scale models, but does not support graph algorithms. One
possibility is to integrate the Modelica model into a lan-
guage supporting graph algorithms, e.g., Julia: this inte-
gration can be done using package OMJulia which works
with the free tool OpenModelica. OMlJulia does not give
direct access to the nonlinear model in Modelica, but a
linear model approximation can be extracted and used for
setting up the system graph. In this study, an experimental
implementation of automated structural analysis is done
in Julia using the LightGraphs.jl package. As an exam-
ple, this structural analysis is tested on hydropower mod-
els of different complexity that are modelled in OpenMod-
elica using our in-house hydropower Modelica library —
OpenHPL, where different models for hydropower sys-
tems are assembled.

Keywords: observability, controllability, structural analy-
sis, graph theory

1 Introduction

1.1 Background

Modelling and simulation of dynamic systems (e.g., a hy-
dropower system in this paper) plays an important role as
efficient analysis tools for control analysis and design. As
an example, tools for designing a new or testing an ex-
isting controller for stability and performance in different
operating regimes might be of interest.

Model based analysis of state observability and control-
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lability is important for control design, and it is of interest
to consider tools for aiding such analysis. Classically, ob-
servability and controllability properties might be checked
using the well known tests based on rank conditions, (Si-
mon, 2006; giljak, 2011). However, numerical problems
can arise for the rank computations in complex, large scale
systems. Still, structural observability and controllability
based on the system structure can be used in such cases
due to the simplicity of these methods. In addition, a rel-
ative degree of the system indicates how directly control
inputs affect outputs, and can also be defined based on the
system structure. Assuming linear models, analysis tools
based on graph theory can be implemented in Julia!, e.g.,
using the LightGraphs.jl package.

Models of various dynamic systems might be di-
rectly modeled in Julia using the Differential Equations.jl*
(Rackauckas and Nie, 2017) and ControlSystems.jI> pack-
ages. However, an object-oriented language such as Mod-
elica* has richer support for describing complex, large
scale systems with inputs and outputs. One such Mod-
elica based tool is OpenModelica® which offers an open-
source modeling and simulation environment. OpenMod-
elica also comes with the OMJulia.jl package which offers
integration of Modelica models in Julia.

1.2 Previous Work

Basic graph theory for different engineering applications
is provided in (Deo, 2017). Structural modeling and
analysis of complex systems are described by (Siljak,
2007, 2011; Lunze, 1992; Boyd and Vandenberghe, 2018).
Based on this graph theory, large scale systems can be fur-
ther tested and analyzed for control and parameter estima-
tion purposes; see, e.g., (Perera, 2016) who used structural
analysis of Modelica models in JModelica® and Python to
analyze an industrial copper electrowinning process.

The OMJulia package® (Julia API) for OpenModelica
provides possibilities to run simulations and carry out lin-
earization of OpenModelica. Julia in turn gives rich possi-
bilities for plotting, analysis, and optimization (e.g., using
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Julia packages Plots.jl, LightGraph.jl, JuMP,jl, etc.).
Some work on modeling a waterway for high head hy-
dropower system together with a generator, a Francis tur-
bine, and a governor, has already been carried out using
OpenModelica (Vytvytskyi and Lie, 2017, 2018a). Unit
models have been assembled in our in-house Modelica li-
brary OpenHPL®. Similarly to Julia, a Python API'? for
OpenModelica already exists and a use of this API for the
OpenHPL is presented in (Vytvytskyi and Lie, 2018b).

1.3 Overview of Paper

In this paper, the main contribution is the prototyping
and testing of automated structural analysis for dynamic
systems in Julia using directed graphs from the Light-
Graphs.jl package.

The paper is structured as follows: Section 2 gives
an overview of the graph and structural analysis theory.
The Julia implementation of these analysis methods is
discussed in Section 3. Applying the structural analysis
methods on hydropower models is presented in Section 4.
Finally, discussion and conclusions are given in Section 5.

2 Structural analysis

Structural analysis of models is the evaluation of model
behavior base on a model structure. In this study, the

model structure is represented by graphs. That is why,
the graph theory is described first.

2.1 Graph theory

A graph G connects nodes (vertices, points) N =

{n1,na,...,ny} via edges (lines) E = {ej,e2,...,e}.
Here, we will consider a directed graph (digraph); a di-
graph may be defined by a relation R consisting of a set of
ordered pairs (n;,n ;) with unidirectional information flow
between these nodes.

As examples, Fig. 1 shows the undirected graph G
(left) and the directed graph G, (right). Observe that each
pair corresponds to an edge; G has 5 edges because its re-
lation R; holds 5 (unordered) pairs, while G, has 6 edges
because R, holds 6 (ordered) pairs.

Instead of describing the graph via a relation, it can be
described via either an adjacency matrix A or an incidence
matrix /. The incidence matrix description / with dim/ =
ng X ny relates edges and nodes. The incidence matrix is
not suitable for describing self edges, and is not discussed
further here.

The adjacency matrix relates unidirectional flow be-
tween two nodes, and is defined by A; ; = 1 for (i, j) €R,
or A; ; = 0 for (i, j) # R The adjacency matrix is square,
dimA = ny X ny, with nodes represented by both rows

and columns. Adjacency matrix A, for G; in Fig. 1 is
1100

Ay = [(1) (1) (1) 8]. Observe that nonzero diagonal elements
0100

90Open Hydro Power Library is developed by the first author within
his PhD study.
Onttps://goo.gl/Qyiqqa2
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Figure 1. Examples of (a) undirected graph, and (b) directed
graph.

in the adjacency matrix implies self edges, i.e., edges that
emanates from the node and returns to the node.

An important concept in graph theory is the length ¢
between two nodes: the length is the number of nodes tra-
versed to go from node #; to node ;. In G, of Fig. 1, the
length in going from n; to n; is £ = 1 because of the self
edge. The length in going from n; to n3 is £ = 1 because
there is an edge from n; to n3. The length in going from
ny to ny is £ = 2: it is necessary to first go from n; to n3,
and then from n3 to ny.

The same principal can be used to represent a model
structure of linear models with inputs and outputs, (Siljak,
2011). These models can be represented by Eq. 1:

X =Ax+Bu )
y=Cx+Du

Here, x € R™ is the state, u € R™ is the input/control sig-
nal, and y € R is the output. A € R B ¢ R™*M
C e R»*™ and D € R"™*"™ are constant matrices and con-
sist of elements a; ;, b; j, ¢; j and d; j, respectively.

In order to represent a structure of this system, the in-
terconnection square matrix M should be created, (Siljak,
2007). This interconnection matrix M combines informa-
tion from all the constant matrices, A, B, C, D, and repre-
sents the relationships between states, inputs and outputs.
The matrix M is found as follows:

A B O
M=1{0 0 O (2)
C DO

In M, the second block row is zero because uy, is an input
and not a response variable, while the third block column
is zero because yy is a response variable and not an input.

2.2 Structural controllability

In control theory, the mathematical duals observability
and controllability are important properties of control sys-
tems. Using controllability, it is possible to evaluate the
capability of the external input capability to influence the
internal state. Observability, on the other side, gives an
understanding of the possibility of a system state to be in-
ferred from an external output.
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Figure 2. Examples of (a) structurally controllable, and (b)
structurally observable systems.

As mentioned above, numerical problems can arise in
the classical methods for observability and controllability
computations in complex, large scale systems. As an alter-
native, structural observability and controllability are con-
sidered in this study due to the simplicity of these meth-
ods. In addition, structural observability and controlla-
bility provide necessary conditions for observability and
controllability. This means that if the complex system is
not structurally observable or not controllable, then it is
not observable or not controllable. On the other hand, the
system may be structurally observable/controllable, while
in reality the system is not observable/controllable, (Sil-
jak, 2011).

Consider a linear system with an external input, see
Eq.1,e.g,A=[]}] and B=[}]. First, the system struc-
ture based on the digraph G should be created with the in-
terconnection matrix, M = [% éé], see Fig. 2 (a). Then,
structural controllability of the system can be demon-
strated if there is a directed path in the digraph G from
(at least one) input-node to every single state-node. As
seen in Fig. 2 (a), the system is structurally controllable,
because there are paths from the input-node u; to the state-
node x; with the edge b; and to the state x; with the edges
b1 and a.

2.3 Structural observability

Similarly to structural controllability, structural observ-
ability requires that there is a directed path from every
single state-node to (at least one) output-node in the di-
graph G. Let us suppose a linear system with an external
output, see Eq. 1, e.g., A= [1l] and C= [0 1]. The in-

terconnection matrix is then as follows, M = [ (1) (1) 8]. The

system structure based on the digraph G is created using
the matrix M and is show in Fig. 2 (b). Here, the structural
observability of the system is proven due to state-nodes x|
and x; with directed paths (as 1,c2) and (c;) to the output
node y;, respectively.

2.4 Relative degree of system

Another property that can be found from structural analy-
sis is the relative degree of the system, which shows how
the input affects the system output. More precisely, the
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relative degree r represents the number of differentiations
of the output y needed for the input u to appear, (Slotine
and Li, 1991). From the digraph structure of the system,
this relative degree can be found as the smallest number of
state-nodes through which a directed path from an input-
node to output-node goes.

Combining the two previous examples with one input
and one output, e.g., A = H (1)] B= [(1)] and C = [0 1],
it can be shown that the relative degree of the system
equals two, see Fig. 2 (a) and (b) together. This is because
the path from the input-node u; to the output-node y; is
(b1,a2,1,c2) and this path goes through two state-nodes x;
and x,. This statement can be also shown by the condition
for relative degree r from (Slotine and Li, 1991):

r:mpin{LgLf”‘lh(x) ;Ao} 3)
Here, we consider the system % = f (x) + g(x)u and y =

h(x). Symbols L, and Ly are the Lie derivatives of / (x)
. . dh

along g (x) and f (x), respectively, i.e., Lgh (x) = agf) g(x)

and Lh(x) = % f(x). Hence, in our example it is

proven by Eq. 4 that the relative degree r equals two:

for p=1: Leh(x) =[01
for p=2: LeLeh(x)={[01]

l[ﬂ o @

10JL0

In the case of multiple inputs or outputs, a set of relative
degrees appears for each output-node. In such cases, in
addition to this set of relative degrees, a total relative de-
gree of the system is defined. The total relative degree is
nothing but sum of the set of relative degrees, (Slotine and
Li, 1991).

3 Julia implementation

For the prototype tools in this paper, a linear model in
state space form as in Eq. 1 is assumed. Such a repre-
sentation might be found in two ways. In one case, a
dynamic system is modeled directly in Julia with Differ-
entialEquations.jl package, (Rackauckas and Nie, 2017),
and then can be linearized using the ForwardDiff.jl pack-
age'!, (Revels et al., 2016). Alternatively, the model
can be represented in Modelica, and OpenModelica with
OMlJulia can be used for the model linearization. The Ju-
lia API of OpenModelica with OMJulia is similar to the
Python API of OpenModelica with OMPython which has
been discussed in previous work, (Vytvytskyi and Lie,
2018b).

In order to work with graphs in Julia the LightGraphs.jl
package'? and GraphPlot.jl package!? can be used for
graph creation and plotting, respectively. In addition to
these packages, other Julia packages for this study are also
required, i.e., Plots.jl'* and DataFrames.jl'> packages.
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It should be noted that examples with results of using all
functions presented in this section, are given in Section 4.

3.1 Graphical structure of system

The LightGraphs.jl package'6 can be used to create a di-
graph of the linear system structure in Julia. Using inter-
connection matrix M (described in eq. 2) as an input to the
DiGraph() command, the digraph G can be created and
then plotted with the gplot() command from the Graph-
Plot.jl package!”. An example, Julia code for creating and
plotting the digraph of a simple three by three interconnec-
tion matrix M previously presented for the controllability
example (see Fig. 2 (a)) looks as follows:

M=1]1.01.0 1.0;

1.0 0.0 0.0;

0.0 0.0 0.0] // intercon. matrix
G = DiGraph (M) // create the digraph
gplot (G, layout=spring_layout,

NODESIZE = 0.1,
nodefillc=colorant"turquoise",
NODELABELSIZE = 5,
nodelabel=["x1", "x2","ul"],
nodelabelc = colorant"black",
EDGELINEWIDTH=0.5,
edgestrokec=colorant"grey",
arrowlengthfrac=0.08,

arrowangleoffset = pi/10)) // plotting

Here, plotting of the graph with gplo#() command has var-
ious options:

e various possibilities for graph layout (random, cir-
cular, spring, shell, stressmajorize, and spectral lay-
outs);

e setting size and color for nodes (NODESIZE, node-
fillc), nodes’ labels (NODELABELSIZE, nodela-
belc), or edges (EDGELINEWIDTH, edgestrokec);

e specifications of nodes’ labels names (nodelabel);

e setting edges’ arrows shape (arrowlengthfrac, ar-
rowangleoffset).

It should be noted that all color settings in the gplot() com-
mand might be specified with a vector of colors, one for
each nodes/edges, similarly to the presented name vector
for the nodes’ labels. All the discussed options can be
specified by the user according to their choice.

The results of running the presented code is shown in
Fig. 3, where the simple digraph of three nodes is pre-
sented. Hence, using the presented commands for graphs
creation and plotting, our own functions for system struc-
ture construction can be developed. The first function
is named obtain_graph_structure() and provides digraph
G together with interconnection matrix M and a data ta-
ble, where the nodes’ labels are structured with respect

Onttps://goo.gl/tveMxl
https://goo.gl/ifVwlp
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Figure 3. Digraph from the simple example of Julia code for the
system in Fig. 2 (a).

to state/input/output names. This function also gives spe-
cific color arrays for nodes, nodes labels and edges. All
nodes are colored according to their type, i.e., individual
colors for states (turquoise), inputs (light blue), and out-
puts (light green). Edges in turn are colored based on their
connection, i.e., individual color for self loops (red), state
interactions (grey), connections from input (blue), and to
output (brown). The inputs to this function are the con-
stant system matrices A, B, C, and D. Three string arrays
with the variables’ names of state, input and output are
inputs as well.

An example of the obtain_graph_structure() function
calling is provided below. Here, commands for display-
ing of the graph G and the data table df are also used.
As it is seen, the gplot() command for the graph plot-
ting is specified with different options found with the 0b-
tain_graph_structure() for the names of nodes and color
vectors for nodes, labels and edges.

G,M,df,Node_c,Edg_c,Nodelable_c,Nodelble =
obtain_graph_structure(A,B,C,D,
StateName, InputName, OutputName) ;

println(df) // display the data table

gplot (G, layout=circular_layout,
NODESIZE = 0.05,
NODELABELSIZE = 5,
nodefillc=Node_c,
EDGELINEWIDTH=0.3,
edgestrokec=Edg_c,
nodelabel=Nodelble,
nodelabelc = Nodelable_c,
arrowlengthfrac=0.08,
arrowangleoffset = pi/10)

In cases when the user does not want to display (print/-
plot) the results, another function system_structure() can
be used. The function gives the possibility to show the
structure of the system directly after execution. The use
of this function is provided below:

system_structure (A,B,C,D,
StateName, InputName, OutputName)
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3.2 Structural observability and controllabil-
ity

As presented above, structural digraph paths should be
checked in order to show the structural observability or
controllability of the system. To be structurally observ-
able, there should be a directed path from every state-node
to at least one output-node. Similarly, there should be a
directed path from at least one input-node to every state-
node in order to be structurally controllable.

Functions for checking structural observability and
controllability of the system have been developed:
check_sys_observ() and check_sys_control(), respectively.
The calling of these functions are the same as for the func-
tions presented in the previous subsection, and an example
is given below:

check_sys_observ (A,B,C,D,
StateName, InputName, OutputName)

check_sys_control (A,B,C,D,
StateName, InputName, OutputName)

Both functions operate in similar way, and in the case
that all states of the system are structurally observable/-
controllable, they return a message with the follow-
ing text: “All states are structurally observable/control-
lable”. Otherwise, these functions provide information
of which states are structurally unobservable/uncontrol-
lable. In both cases, the functions also display the di-
graph with a structure of the system. In addition, in the
case with some unobservable/uncontrollable states, some
transparency colors are used to display these state-nodes
and the edges connected to these nodes.

In some cases, it might be of interest to specifically
check some of the system states for observability or con-
trollability. Because of this, another two functions that
check structural observability/controllability of specified
states are developed. The use of these functions are simi-
lar to the previous two functions, but here the user should
also specify the state that will be checked. The state num-
ber from the node’s label (state_num) is used for this spec-
ification. An example looks as follows:

check_state_observ (A,B,C,D, StateName,
InputName, OutputName, state_num)

check_state_control (A,B,C,D, StateName,
InputName, OutputName, state_num)

Both functions return a message that shows if the spec-
ified state is structurally observable/controllable or not.
They also display the digraph with a structure of the sys-
tem where the specified state-node and a path (edges and
nodes) which shows its structural observability/controlla-
bility are highlighted. Colors of all other nodes and edges
are somewhat transparent.

3.3 Relative degree of system

In order to determine the relative degree of the system pre-
sented by digraph G, a smallest number of state-nodes
should be found through which a directed path from
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an input-node to output-node goes. For this task, the
sys_relative_degree() function is developed. This function
defines the relative degree of the system and then returns
a message that shows the value of the defined relative de-
gree. For a system with multiple inputs and outputs, infor-
mation about the total relative degree is provided together
with a set of the relative degrees of all outputs. Moreover,
a digraph is displayed with the structure of the system. In
this digraph, colors of all nodes and edges are a bit muted,
except for the path/paths (edges and nodes) that is/are the
basis for the relative degree.

The use of the function for checking the relative degree
looks as follows:

sys_relative_degree(A,B,C,D,
StateName, InputName, OutputName)

4 Results

The various hydropower models that are implemented
in OpenModelica using our in-house hydropower library,
OpenHPL, are used here for testing of the developed func-
tions for system structural analysis. Description and infor-
mation about these hydropower models already have been
presented previously, (Vytvytskyi and Lie, 2017, 2018b).
For use with the structural analysis code, these models are
first linearized in Julia using package OMJulia for Open-
Modelica. The constant A, B, C, and D matrices for the
linearized hydropower state space models together with
ordered lists (vectors) of state, input and output names are
then used for structural analysis.

4.1 Simple waterway model

First, a simple model of the hydropower system with basic
models for the waterway (incompressible water and in-
elastic pipes, (Vytvytskyi and Lie, 2017)) is used. This
model consists of 5 states and has one input and one out-
put. The system_structure() function provides the model
structure, see Fig. 4. Here, the states (x; —xs5) are col-
ored turquoise and consist of the volumetric flow rates
in the penstock and surge tank, and the water masses in
the surge tank, reservoir, and tail water. The input (u) is
the control signal for the turbine and is colored light blue.
The output (yp) is colored light green and represents the
flow rate in the turbine which is the same as the penstock
flow rate in this model. Figure 4 shows the digraph with
the model structure using the circular layout for the graph
plotting. This can be changed to another style in options
to the gplot() command.

Next, the hydropower model can be checked for
structural ~ observability and controllability using
check_sys_observ() and check_sys_control() com-
mands. The results for these studies are shown in Fig. 5
for observability and in Fig. 6 for controllability. It is
seen from Fig. 5 that the system is structurally observable
because all system states transmit information through
digraphs to the output. In the same way, there are two
uncontrollable states which make system structurally
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7x4 DataFrames.DataFrame

Row ' NodelLabel | state | Input ‘ Output '

1 x1 penstock.V_dot

2 x2 reservoir.m

3 X3 surgeTank.V_dot

4 x4 surgeTank.m

5 X5 tail.m

6 ul u

7 y1l dotv

3\

::::::3?;31

/
/

Figure 4. The digraph with the simple model structure deter-
mined by the system_structure() function.

uncontrollable, see Fig. 6. This uncontrollability for
the water masses in the reservoir and tail water is
caused by model simplification: these masses are kept
constant in the model, (Vytvytskyi and Lie, 2018b); the
uncontrollability is thus fictitious in this case.

The relative degree of this simple hydropower model
can be found using the developed sys_relative_degree()
function. The result of running this command for the sim-
ple model is shown in Fig. 7. Here, it is seen that the rel-
ative degree, r, equals one, which means that the control
signal directly affects a state that influences the output.

4.2 Detailed waterway model

A more detailed model of the hydropower system is used
next. This model is similar to the previous simple model,
but here the penstock unit is described by a more de-
tailed pipe model instead of the basic pipe model (here,
compressible water and elastic pipes are considered in the
penstock, (Vytvytskyi and Lie, 2017)). This model con-
sists of 24 states and also has one input and one output.
The result of the system_structure() function provides the
model structure, see Fig. 8. Here, the states (x; — xp4)
consist of the pressures (U[1,..,10]) and mass flow rates
(U[11,..,20]) in the penstock segments, volumetric flow
rate in the surge tank, and the water masses in the surge
tank, reservoir, and tail water. The input (u) is the control
signal for the turbine and the output (y;) is the flow rate
through the turbine. The state, input, and output nodes
are colored in the same way as previously. It is seen from
Fig. 8 that for more complex systems (more nodes), it be-
comes harder to observe visually how the nodes are con-
nected. One way to study the system structure is to decom-
pose the system in smaller subsystems. This can easily be

DOI: 10.3384/ecp2017017

All states are structurally observable

7x4 DataFrames.DataFrame

| Row } NodeLabel | State

‘ Input ‘ Output '

Nk wN e

x1

penstock.V_dot
reservoir.m
surgeTank.V_dot
surgeTank.m
tail.m

dotv

A\

::::::%?:1

/
/

W
=x3=

Figure S. The results of checking the structural observability for
simple model by the check_sys_observ() function.

The uncontrollable states are: reservoir.m, tail.m

7x4 DataFrames.DataFrame

| Row } NodelLabel | State

‘ Input ‘ Output }

NV AW N e

x5

penstock.v_dot
reservoir.m
surgeTank.v_dot
surgeTank.m
tail.m

dotv

ul

Figure 6. The results of checking the structural controllability
for simple model by the check_sys_control() function.
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Relative degree of the system is: r =1

7x4 DataFrames.DataFrame

| Row | Nodelabel | State ‘ Input | output |

1 x1 penstock.V_dot
2 x2 reservoir.m
3 x3 surgeTank.V_dot
4 x4 surgeTank.m
5 x5 tail.m
6 ul u
7 y1l dotv
ul
y1
x5
x1
x4
x2
x3

Figure 7. The results of checking the relative degree for simple
model by the sys_relative_degree() function.

26x4 DataFrames.DataFrame

Row Nodelabel State Input Qutput
1 x1 penstock.U[1]

2 x2 penstock.U[2]

3 x3 penstock.U[3]

4 x4 penstock.U[4]

5 x5 penstock.U[5]

6 x6 penstock.U[6]

7 x7 penstock.U[7]

8 x8 penstock.U[8]

18 x18 penstock.U[18]

19 x19 penstock.U[19]

20 %28 penstock.U[28]

21 x21 reservoir.m

22 x22 surgeTank.V_dot

23 x23 surgeTank.m

24 x24 tail.m

25 ul u

26 yl dotV

Figure 8. The digraph with the detailed model structure deter-
mined by the system_structure() function.
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done by picking up the appropriate rows and columns in
the A, B, and C matrices with respect to interested states.
On the other hand, the structural analysis for observ-
ability, controllability, and relative degree of the sys-
tem may be still performed for the complete model.
This can be done by running the same functions for
the detailed model: check_sys_observ() — for observ-
ability, check_sys_control() — for controllability, and
sys_relative_degree() — for relative degree. The results
of these functions are not presented here to save space.
However, the resulting information is as follows:

e “All states are structurally observable”.

e “The uncontrollable states are: reservoir.m, tail.m”,
similarly to the case with simple waterway model.

e “Relative degree of the system is: r = 0, the input
signal directly affects the output, i.e., the constant
matrix D is not zero.

4.3 Simple waterway model with generator

Here, the simple model presented above is studied with a
model of a synchronous generator that is connected to the
grid. The models of this electrical part (generator, grid,
etc.) are taken from the OpenIPSL18 library, and is used
in OpenModelica. OpenIPSL is the Open-Instance Power
System Library, where a wide variety of power system
components are available. The model of the simple hy-
dropower waterway and generator consists of 7 states and
has one input and 3 outputs. Here, the states (x; — x7) con-
sist of the generator shift angle and angular velocity, the
volumetric flow rates in the penstock and surge tank, and
the water masses in the surge tank, reservoir and tail water.
The input (u;) is the control signal for the turbine and the
outputs (y; — y3) are the generator power production and
angular velocity, and flow rate through the turbine. The
state, input and output nodes are colored in the same way
as previously.

The result of the system_structure() function provides
the model structure, Fig. 9. This structure is presented
with the digraph of another layout type (spring layout), in
order to demonstrate another structural view. The struc-
tural analysis for observability, controllability and rela-
tive degree of the system is also performed for this model
case. This can be done by running the same functions
as for the detailed model: check_sys_observ() — for ob-
servability, check_sys_control() — for controllability, and
sys_relative_degree() — for relative degree. The results
of executing these functions are not shown here, but the
results are summarized as follows:

e “All states are structurally observable”.

e “The uncontrollable states are: reservoir.m, tail.m”,
similarly to the two previous cases.

Bhttps://openipsl.readthedocs.io/en/latest/

Vasterds, Sweden, 13-16 August, 2019

23


https://openipsl.readthedocs.io/en/latest/

SIMS 60

11x4 DataFrames.DataFrame

Row ModelLabel State Input Qutput
1 x1 order2_1.delta
2 x2 order2_1.w
3 x3 penstock.V_dot
4 x4 reservoir.m
5 x5 surgeTank.V_dot
6 x6 surgeTank.m
7 x7 tail.m
8 ul u
a yl P
19 y2 dotV
11 y3 W
y3

Figure 9. The digraph of the model structure determined by
the system_structure() function. The model of the simple hy-
dropower waterway and generator is used.

e “The system have relative degree (2, 1, 1). Total rel-
ative degree of the system is: r = 4”: here is shown
first the relative degrees for each output and then the
total relative degree of the system.

5 Discussion and Conclusions

This paper has explored the possibilities of using graph
theory methods for structural analysis of dynamic system.
Although the chosen examples hardly qualify as com-
plex/large scale, graph methods scale well to huge sys-
tems. The presented methods have been implemented in
Julia using the LightGraphs.jl and GraphPlot.jl packages.
Using the OpenHPL hydropower library in OpenModel-
ica and OMJulia for OpenModelica, the structural anal-
ysis methods have been tested on hydropower models of
different complexity.

The results of testing the developed structural analysis
functions look reasonable and can be further used for anal-
ysis related to state estimation and control: observability
is a requirement for state estimators to work properly, con-
trollability is required for control design, and relative de-
gree is important in the design of nonlinear feedback con-
trollers. One experience with the developed tools is that
sometimes it can be hard to make a good visualization of
the graph structure of complex (large scale) system. It can
be hard to see the whole picture of the system structure
(small subsystems are not easily seen) using the circular
layout for the graph plotting. However, the user can do
some testing of different layout types for the graph plot-
ting to find the most appropriate one. Moreover, the graph
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can be stored in a picture with higher resolution and big-
ger size that can help to see the system structure in a better
way. In addition, developers of LightGraphs.jl and Graph-
Plot.jl packages are planning to improve the plotting pos-
sibilities of graphs in future, e.g., to improve the display
self loop edges, etc.

In summary, this paper has explored some possibilities
with structural analysis. Further work should be put into
streamlining the functions into a package, with better use
of Julia coding conventions, integration with other model-
ing tools, integration with control packages, etc.
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