
Controller Design for a Magnetic Levitation Kit using OpenModelica's Integration with the Julia Language

DOI Proceedings of the 13th International Modelica Conference 303
10.3384/ecp19157303 March 4-6, 2019, Regensburg, Germany

Controller Design for a Magnetic Levitation Kit using OpenModelica's Integration
with the Julia Language
Thiele, Bernhard and Lie, Bernt and Sjölund, Martin and Pop, Adrian and Fritzson, Peter

303

Controller Design for a Magnetic Levitation Kit using
OpenModelica’s Integration with the Julia Language

Bernhard Thiele1 Bernt Lie2 Martin Sjölund3 Adrian Pop3 Peter Fritzson3

1Institute of System Dynamics and Control, DLR, Germany, bernhard.thiele@dlr.de
2University of South-Eastern Norway, bernt.lie@usn.no

3PELAB, Linköping University, Sweden, {martin.sjolund,adrian.pop,peter.fritzson}@liu.se

Abstract
This paper presents a practical application of computer
aided control systems design using a new OpenModelica
API (OMJulia) which allows to conveniently operate on
Modelica models from the Julia language. Julia is a rather
young language (Julia 1.0 was released in August 2018)
designed to address the needs of numerical analysis and
computational science, in particular it already has decent
support for the control community. The magnetic levita-
tion application at hand demonstrates how control system
design can benefit from a suitable integration between Ju-
lia and Modelica. It is based on a commercially avail-
able control education kit in which the original controller
is replaced by our own digital controller developed in this
work. There exists an accompanying but independent pa-
per which introduces the complete OMJulia API.
Keywords: OpenModelica, OMJulia, control, magnetic
levitation, Arduino, Julia, Modelica

1 Introduction
Modelica is a well established language for modeling
complex technical systems supported by several conve-
nient and powerful modeling and simulation environ-
ments. Distinguishing language characteristics are the fo-
cus on declarative system descriptions using mathemati-
cal equations and a specific approach to object orientation
which allows encapsulating component behavior (given
by data + equations) into reusable units which can be con-
nected by suitable constraints (connect equations) to build
complex systems from manageable building blocks, see
e.g., (Modelica Association, 2017; Fritzson, 2015).

However, for many numerical analysis tasks an impera-
tive language is well suited and suggests itself. Indeed,
the most prevalent software for computer aided control
systems design on the market, MATLAB/Simulink1, has
two parts: MATLAB, a numerical computing environment
built around the imperative MATLAB scripting language,
and Simulink, a primarily graphical block diagram lan-
guage which is tightly coupled to MATLAB, for modeling
and simulation.

Although the Modelica language also has an imperative
part for writing algorithms, its support in tools as scripting

1The MathWorks, https://mathworks.com.

language has so far remained limited and rather tool spe-
cific. Consequently, no rich ecosystem for typical numer-
ical computing tasks like data analysis and advanced data
visualization was developed within the community. There
are notable exceptions like the LinearSystems library for
linear system analysis and controller design (Baur et al.,
2009). However, as of the latest release of the library
(Modelica_LinearSystems2 v2.3.42) full support of the li-
brary is still limited to the Dymola3 tool.

OpenModelica4, similarly to other Modelica tools, pro-
vides interfaces to dedicated scripting languages which
provide the desired advanced scripting support, inclusive
a rich ecosystem for numerical analysis and advanced vi-
sualization. Based on OMPython (Ganeson, 2012; Gane-
son et al., 2012) an API was developed for simple opera-
tion on Modelica models from within Python (Lie et al.,
2016). However, in the meantime the rather young lan-
guage Julia5 has matured (Julia 1.0 was released in Au-
gust 2018) and has attracted a growing user base in the
scientific computing community. The Julia language was
originally designed to address the needs of numerical anal-
ysis and computational science, in particular it already has
decent support for the control community. This motivated
the development of OMJulia, an API for interacting with
Modelica models from the Julia language. The OMJulia
API is described in detail in an accompanying but inde-
pendent paper (Lie et al., 2019).

The goal of this paper is to demonstrate the interac-
tion between Julia and Modelica models using one of the
most popular applications in control education: A mag-
netic levitation system; see, e.g., (Yoon and Moon, 2016;
Lilienkamp and Lundberg, 2004; Craig et al., 1988; Wong,
1986). The intention is to present available tool support
using a tangible example, it is not in the scope of the pa-
per to propose and validate a controller that improves on
existing designs.

2Modelica_LinearSystems2 library, https://github.com/
modelica/Modelica_LinearSystems2.

3Dassault Systèmes, https://www.3ds.com.
4Open Source Modelica Consortium (OSMC), https://www.

openmodelica.org.
5Julia language, https://julialang.org.

Controller Design for a Magnetic Levitation Kit using OpenModelica's Integration with the Julia Language

304 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157303

2 Digital Control for a Magnetic Levi-

tation Kit
Magnetic levitation is a popular application for teaching
control theory. A levitating object which apparently de-
fies the law of gravity is an attractive gadget and the un-
derlying physics (unstable plant dynamics) convincingly
demonstrate the importance of feedback control. The ap-
plication is based on a commercially available electromag-
netic levitation kit6 from Zeltom which is targeted at ed-
ucational applications. The fully assembled unit is shown
in Figure 1. The vertical position of the levitating magnet

Figure 1. Zeltom’s electromagnetic levitation kit.

is measured using a linear Hall effect sensor which is di-
rectly attached below the electromagnet. The kit includes
a black box microcontroller for controlling the current in
the electromagnet.

The goal is to replace Zeltom’s controller by our own
design.

3 Plant Model
A behavioral model describing the dynamics of the phys-
ical system is provided in a technical report by Zeltom
(Zeltom LLC, 2009). A schematic diagram of the system
is shown in Figure 2, where v is the voltage across the
electromagnet, i is the current flowing through the elec-
tromagnet, R is the resistance and L the inductance of the
electromagnet, e is the voltage across the Hall effect sen-
sor, d is the distance between the Hall sensor and the levi-
tating magnet, m is the mass of the levitating magnet, and
f is the force on the levitating magnet generated by the
electromagnet.

The nonlinear dynamic equations as described in (Zel-
tom LLC, 2009) are reproduced below.

6Zeltom Electromagnetic Levitation System, http://zeltom.
com/product/magneticlevitation.

X

+

-
v

+

-
e

d

mg

f

i

L

R

Figure 2. Schematic of the magnetic levitation system.

Approximated force from the electromagnet on the levi-
tating magnet:

f = k
i

d4
, (1)

approximated voltage across the Hall effect sensor:

e = α +β
1

d2
+ γi, (2)

Newton’s second law:

m
d2d
d t2

= mg− f , (3)

Kirchhoff’s voltage Law:

v = Ri+L
di
d t

, (4)

where k is a geometry dependent constant, α , β , γ are
constants that depend on the Hall sensor and the geome-
try, and g is the standard gravity constant. The system’s
parameters are listed in Table 1; the values are from (Zel-
tom LLC, 2009) and from own measurements.

Table 1. System parameters.

Parameter Value Unit

k 17.31 ·10−9 kg ·m5/A · s2
α 2.44 V

β 1.12 ·10−4 V ·m2

γ 0.26 V/A
R 2.41 Ω
L 15.03 ·10−3 H

m 3.02 ·10−3 kg

Letting v be the control input and e be the measured out-
put, these nonlinear equations can be readily transcribed
into a Modelica model (condensed for saving space):

model MagLevNL
parameter Real R=2.41, L=15.03e-3,

m=3.02e-3, k=17.31e-9, alpha=2.44,
beta=1.12e-4, gamma=0.26;

Controller Design for a Magnetic Levitation Kit using OpenModelica's Integration with the Julia Language

DOI Proceedings of the 13th International Modelica Conference 305
10.3384/ecp19157303 March 4-6, 2019, Regensburg, Germany

input Real v;
output Real e;
Real i, d, d_der, f;
constant Real g=9.81;

equation
f = k*i/d^4;
e = alpha + beta/d^2 + gamma*i;
der(d) = d_der;
m*der(d_der) = m*g - f;
v = R*i + L*der(i);

end MagLevNL;

For the purpose of controller design it is typically nec-
essary to work with a linearized version of the plant dy-
namics. The goal for the magnetic levitation system is to
design a controller which stabilizes the plant in an equi-
librium position. Therefore, the system needs to be lin-
earized around an equilibrium position of the nonlinear
plant. Hence, the first step is to determine an equilibrium
position. It would be convenient to have a direct OMJulia
API function for this task, similar to

mlNL = OMJulia.OMCSession()
mlNL.ModelicaSystem("MagLevNL.mo",

"MagLevNL")
state_e, u_e, y_e =

mlNL.findEquilibrium(["d=0.02",
"d_der=0"])

where findEquilibrium(..) would search for an
equilibrium position under constraints that can be set as
function arguments. The function would return the value
of the state variables, as well as the value of the inputs and
outputs at the equilibrium position. Here, an equilibrium
is sought under the constraints that the levitating magnet,
levitates at a distance of 2cm below the sensor.

Unfortunately, such a function is not (yet) available in
OMJulia7. However, it is possible to modify the Model-
ica model and impose the equilibrium constraints within a
steady-state initialization problem as shown in the listing
below. Notice that input v was turned into a parame-
ter with unknown value (fixed=false) which has the
effect that the value is determined during initialization8.
This is needed since in Modelica a variable which is de-
clared as input is treated as a known, which would result
in an overspecified initialization problem below. In order
to search for the (unknown) voltage input at which the
system stays at an equilibrium with the prescribed con-
straints the Modelica tool needs to treat the voltage input
as an unknown.

model MagLevNL_SteadyState
parameter Real R=2.41, L=15.03e-3,

m=3.02e-3, k=17.31e-9, alpha=2.44,
beta=1.12e-4, gamma=0.26;

7Tools like Wolfram Mathematica (Wolfram Research) or Maple
(MapleSoft) support functions for finding local equilibrium points of
nonlinear systems. For example Wolfram Mathematica 11.3 introduced
a function named “FindSystemModelEquilibrium” which works with
(imported) Modelica models and provides respective functionality.

8Alternatively, it is possible to declare v as
“Real v(start=0.5, fixed=false)” and add an equa-
tion “der(v) = 0”.

parameter Real d0 = 0.02 "Prescribed
equilibrium position";

parameter Real v(start=0.5, fixed=false)
"Unknown equilibrium voltage across
the electromagnet";

output Real e;
Real i, d, d_der, f;
constant Real g=9.81;

equation
f = k*i/d^4;
e = alpha + beta*1/d^2 + gamma*i;
der(d) = d_der;
m*der(d_der) = m*g - f;
v = R*i + L*der(i);

initial equation
d = d0;
der(d) = 0;
der(d_der) = 0;
der(i) = 0;

end MagLevNL_SteadyState;

With this model the OMJulia API can be used to re-
trieve the plant’s values at the equilibrium position and
use them for linearizing the plant at this equilibrium posi-
tion. Since the OMJulia API does not (yet) allow to con-
veniently set start values, the following small modification
to the MagLevNL model is introduced, in order to set the
start values as parameters:

model MagLevNL
// ... same as previously
parameter Real i0, d0, d_der0;
Real i(start=i0,fixed=true),

d(start=d0,fixed=true),
d_der(start=d_der0,fixed=true), f;

// ... same as previously
end MagLevNL;

Using this modified model the OMJulia API allows to
retrieve the linearized representation of the plant model as
shown in the listing below.

mlNLe = OMJulia.OMCSession()
mlNLe.ModelicaSystem(

"MagLevNL_SteadyState.mo",
"MagLevNL_SteadyState")

mlNLe.setParameters(["d0=0.02"])
mlNLe.simulate()
sol = mlNLe.getSolutions(["v", "i", "d",

"d_der"])
v_e = sol[1][1] # input v at equilibrium
i_e = sol[2][1] # state i at equilibrium
d_e = sol[3][1] # must be equal to d0
d_der_e = sol[4][1] # must be 0

mlNL = OMJulia.OMCSession()
mlNL.ModelicaSystem("MagLevNL.mo",

"MagLevNL")
mlNL.setInputs(["v=$v_e"])
mlNL.setParameters(["i0=$i_e", "d0=$d_e",

"d_der0=$d_der_e"])
A,B,C,D = mlNL.linearize()

The final call to the linearize() function retrieves a
tuple of 2D arrays (matrices) which encode the linearized
model in a state space representation (ẋ = Ax + Bu,y =
Cx + Du). The values can be easily inspected, e.g., by

Controller Design for a Magnetic Levitation Kit using OpenModelica's Integration with the Julia Language

306 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157303

printing them to the console window (number of digits
truncated for readability):

julia> println("v_e=$v_e, i_e=$i_e,
e_e=$e_e")$

v_e=0.66, i_e=0.27, e_e=2.79
julia> println("A=$A\nB=$B\nC=$C\nD=$D")
A=[0.0 1.0 0.0; 1962.0 0.0 -35.8237; 0.0

0.0 -160.346]
B=[0.0; 0.0; 66.5336]
C=[-28.0 0.0 0.26]
D=[0.0]

4 Control Design
The Julia ecosystem provides various packages which can
support a control design process. The OMJulia bridge to
OpenModelica allows to combine the strength of those
packages with the powerful modeling and simulation in-
frastructure of a Modelica tool. This section will demon-
strate some possibilities.

The magnetic levitation system is open-loop unstable,
which can be quickly checked using the ControlSystems.jl
package9. Function mlLin=ss(A, B, C, D) creates
a state-space model from the previously retrieved matri-
ces of the linearized magnetic levitation model. Function
pole(mlLin) returns its poles.

julia> using ControlSystems
julia> mlLin = ss(A,B,C,D)
julia> pole(mlLin)
3-element Array{Float64,1}:

44.294469180700204 -44.2944691807002
-160.346

It is known that a PD controller is capable of stabiliz-
ing a magnetic levitation system. Indeed, Yoon and Moon
have shown in (Yoon and Moon, 2016) that the system at
hand can be stabilized by a simple PD analog controller.
A particular challenge in respect to stabilizing a magnetic
levitation system is designing a reasonable robust con-
troller. A measure for the robustness of a design is the
sensitivity function S, which describes the transfer func-
tion from an external disturbance to the process output.
Lower values of |S| suggest further attenuation of the ex-
ternal disturbance (hence, lower is better). The following
paragraphs briefly introduces the Julia code used for sen-
sitivity analysis of the controlled system.

A PD controller is described by the transfer function

CPD(s) = Kp(Tds+1), (5)

where Kp is the proportional gain, and Td is the deriva-
tive time parameter. The listing below uses the construct
s = tf("s") to create a continuous-time transfer func-
tion s, which enables a convenient notation for creating
transfer functions using standard mathematical operators
like PD = Kp*(Td*s + 1).

9ControlSystems.jl, https://github.com/
JuliaControl/ControlSystems.jl.

The plant’s state space representation from above can
be converted into a transfer function representation G(s)
using function tf(..), e.g., G = tf(mlLin). Using
the plant’s transfer function G(s), the open-loop transfer
function is given by a serial connection of controller and
plant,

PPDol(s) =CPD(s)G(s), (6)

which can be achieved using the series(..) function
in Julia. The sensitivity function is then given by

S(s) =
1

1+PPDol(s)
. (7)

Since poles are not canceled automatically, the function
minreal(..)10 is used to obtain a minimal transfer
function representation.

Function bodeplot(..) is used for plotting the
magnitude of the sensitivity function. Using the Julia In-
teract.jl package11 together with functions from Control-
Systems.jl allows for interactive plots in which the con-
troller’s parameters can be tuned experimentally. The
Interact package provides means to create small GUIs
in Julia based on web technology. It defines the macro
@manipulate which sets up sliders for varying the pa-
rameters within the specified range.

using Interact
s = tf("s")
@manipulate for Kp=3:.5:20, Td=0.01:.01:0.1

PD = Kp*(Td*s + 1)
mlLinPDol = series(PD,tf(mlLin))
mlLinPDSensitivity =

minreal(1/(1+mlLinPDol))
bodeplot(mlLinPDSensitivity,

plotphase=false, yscale=:identity,
yticks=0:0.1:2, title="Sensitivity")

end

Evaluating the above code in an IJulia/Jupyter session
gives a result as depicted in Figure 3. The two sliders at
the top allow to change the PD controller’s parameters.
When the parameters are changed, the plot is immediately
updated.

5 Nonlinear Closed-Loop Model
After an acceptable design (based on the linearized model)
has been found, the controller can be tested and further
tuned by plugging it into the nonlinear Modelica model.

In the present example the PD controller can be easily
transcribed intoModelica code and can be added appropri-
ately to the MagLevNL model in order to close the loop
between controller and plant. Let the resulting model be
named “MagLevNLPD” (the complete listing is given in
Appendix A).

10Function minreal(..) creates a minimal transfer function rep-
resentation by canceling pole-zero pairs.

11Interact.jl, https://github.com/JuliaGizmos/
Interact.jl.

Controller Design for a Magnetic Levitation Kit using OpenModelica's Integration with the Julia Language

DOI Proceedings of the 13th International Modelica Conference 307
10.3384/ecp19157303 March 4-6, 2019, Regensburg, Germany

Figure 3. Interactive sensitivity plot for the magnetic levitation
system in which the controller parameters can be varied using
sliders.

Combining OMJulia with the Interact package allows
to quickly create small GUIs for interactive experimenta-
tion with a Modelica model. The Julia code below cre-
ates sliders for varying the controller parameters, as well
as to vary the initial distance d0 of the levitating magnet.
Since the controller is designed for keeping an equilib-
rium position at d = 0.02m, it is interesting to explore
how the closed system behaves for small displacements,
where d0 �= 0.02m.

using OMJulia, Plots, Interact
mlNLPD = OMJulia.OMCSession()
mlNLPD.ModelicaSystem("MagLevNLPD.mo",

"MagLevNLPD")
@manipulate for Kp=7:0.5:23,

Td=0.01:0.01:0.1, d0=0.015:0.0002:0.025
mlNLPD.setParameters(["Kp=$Kp",

"Td=$Td", "d0=$d0"])
mlNLPD.simulate()
sol = mlNLPD.getSolutions(["time", "d",

"v"])
time, d, v = sol[1], sol[2], sol[3]
p1 = plot(time, d, label="",

xlabel="time [s]", ylabel="d [m]")
p2 = plot(time, v, label="",

xlabel="time [s]", ylabel="v [V]")
plot(p1, p2, layout=(1,2))

end

Figure 4 shows a screenshot of the resulting GUI when
evaluating the above code in an IJulia/Jupyter session. The
start value of d is set to d0 = 18mm, hence two millimeters
closer to the electromagnet than the set reference distance
of 20 millimeters. The left plot shows how the distance d
starts at the prescribed start value and is regulated to the
reference distance of 20 millimeters. The right plot shows
the voltage v (the actuating variable) that the controller
sets to the electromagnetic actuator. Notice that the volt-
age remains in reasonable limits (no actuator saturation).
However, further exploration (using the same controller
parameters) showed that the closed loop stabilization for
the nonlinear model fails quickly when choosing start val-

Figure 4. Simple interactive GUI with sliders for setting param-
eters of the closed-loop nonlinear magnetic levitation Modelica
model using the OMJulia interface. Changing a slider will im-
mediatly trigger a new simulation and update the plots.

ues d0 which are greater than the reference distance of 20
millimeters.

6 Digital Control
For a practical implementation of the presented PD con-
troller, the derivative “D” part is first approximated by
a “DT1” element before the controller is discretized in a
second step. Finally, hardware characteristics of the tar-
get controller are considered in a nonlinear closed-loop,
sampled-data model.

The “D” part can be approximated by sTd ≈ sTd
1+sTd/Nd

,

where Nd limits the gain at high frequencies (typically:
3 ≤ Nd ≤ 20). Therefore, the structure of the controller
becomes

CPDT1(s) = KP

(
Tds

Td
Nd

s+1
+1

)
. (8)

6.1 Discrete-Time Approximation
Using backward differences for approximation, transfer
function (8) can be transformed into a pulse-transfer func-
tion by substituting s by s′ using the formula

s′ =
z−1

zh
, (9)

where h is the sampling period and z is the Z-transform
variable, resulting in the pulse-transfer function

CPDT1(z) = Kp

(
TdNd(z−1)

(Td +Ndh)z−Td
+1

)
. (10)

The pulse-transfer function can be readily transformed
into a recurrance relation which directly translates into
Modelica code. The listing below shows a condensed ver-
sion of the discretized controller using Modelica’s clocked
synchronous language elements.

Controller Design for a Magnetic Levitation Kit using OpenModelica's Integration with the Julia Language

308 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157303

block Controller

parameter Real Kp=15, Td=0.05, Nd=5,
h=0.0005, v_e=0.66, e_e=2.79;

input Real du_set "Setpoint delta
voltage (=0 for d=>0.02)";

input Real e "Measured voltage across
the Hall effect sensor";

output Real v "Output voltage to the
electromagnet";

protected
Real Dpart(start=0), de_e, du(start=0),

dy, ad, bd;
equation

// Measured delta voltage at OP
de_e = e - e_e;
// input to PD(T1) control law
du = du_set - de_e;

// Control law
ad = Td/((Td + Nd*h));
bd = Td*Nd/(Td + Nd*h);
Dpart = ad * previous(Dpart) + bd * (du

- previous(du));
dy = Kp*(du + Dpart);

// Output voltage to electromagnet
v = dy + v_e;

end Controller;

6.2 Target Hardware
The popular Arduino Uno board12 is used as implemen-
tation hardware for the control algorithm. It is based on
the Microchip ATmega328P microcontroller, has six ana-
log inputs supporting 10-bit analog-to-digital conversion
(ADC) for input voltages between zero and five volts, and
14 digital input/output pins of which six can be used as
pulse-wide modulation (PWM) outputs. The frequency of
the PWM outputs is configurable and a simple interface
exists in which the PWM duty cycle can be set with a res-
olution of 8-bit.

In our application the voltage across the Hall effect sen-
sor is read using one of the analog inputs. The voltage
to the electromagnet is set by a PWM output driving a
MOSFET which is connected to a DC voltage regulator
fed from an external power supply. A breadboard is used
for the implementation of the supporting electronics (see
Figure 8).

6.3 Sampled-Data Model
A model of the closed-loop, sampled-data system can be
built conveniently with the help of the Synchronous li-
brary (Otter et al., 2012). Figure 5 shows a diagram
view in which the nonlinear continuous-time magnetic
levitation plant model is connected to the discrete-time
(clocked) controller model using sample and hold blocks
from the Synchronous library. The controller is activated
by a periodic clock with a sampling period of 500μs. The
upper controller input specifies the setpoint of the con-
troller. The setpoint is 0V for the equilibrium position

12Arduino, https://arduino.cc.

magLevNL

periodicClock1

0.0005 s

control

h=0.0005 s 0.0

hold1

1/1

sample2

sample1
assignClock1

0

du_set

Figure 5. Closed-loop magnetic levitation system with clocked
controller model.

for which the controller is designed (i.e., in the presented
design the levitating object is at d = de = 0.02m, the Hall
effect sensor output is e = ee = 2.79V). Modifying the
setpoint allows to influence the position of the levitating
magnet.

The utilized sample and hold blocks allow modeling
additional real-world effects like noise, quantization ef-
fects of digital-analog and analog-digital conversions, sen-
sor and actuator limitations, and computational delays.
In the displayed model the sample and hold blocks are
parametrized so that they reflect the capabilities of the tar-
get hardware as described in Section 6.2. The measure-
ment variable e is limited between 0V ≤ e ≤ 5V using
10-bit quantization. The actuating variable v is limited be-
tween 0V≤ v≤ 1.3V using 8-bit quantization.

Simulating the sampled-data model given above us-
ing the same scenario as for the nonlinear continuous-
time model in Section 5 reveals a severe control degra-
dation for the considered digital controller. Further simu-
lation experiments reveal that this is mainly due to ADC
quantization effects of the Hall effect sensor output. Fig-
ure 6 shows results plots13 for simulating with different
ADC settings, while the other settings, e.g., computa-
tional delay of one sampling period and 8-bit quantiza-
tion of the actuating variable, are unchanged. The upper
plot shows the distance d of the levitating object. The
two lower plots show the sampled and quantized Hall sen-
sor output e (= sample1.y) and the quantized actuat-
ing variable v (= hold1.y) in a narrow time window
(t ∈ [4.00s,4.03s]).

Although the levitating object can be stabilized in all
simulated cases, it shows persisting oscillations for the
case of an ADC with 10-bit resolution over the range
[0V,5V]. For this setting, the actuating variable exhibits
large, high frequency oscillations. Increasing the quanti-
zation resolution mitigates this adverse effect and restores

13 Apart from using OMJulia for controlling the complete simulation
(as shown in Section 5), it is also possible to use the Julia CSV package
for simply importing an OpenModelica (CSV-) result file into Julia for
postprocessing. For example, plotting variable magLevNL.d from a
CSV-result file can be achieved by:
using Plots, CSV
r = CSV.read("myresultfile.csv")
plot(r[Symbol("time")], r[Symbol("magLevNL.d"]))

Controller Design for a Magnetic Levitation Kit using OpenModelica's Integration with the Julia Language

DOI Proceedings of the 13th International Modelica Conference 309
10.3384/ecp19157303 March 4-6, 2019, Regensburg, Germany

Figure 6. Simulation results of the sampled-data model for dif-
ferent ADC quantization settings and an initial distance d0 =
0.019m.

a behaviour which is closer to the continuous-time con-
troller. Besides increasing the ADC resolution (e.g., to 16-
bit), the simulation results suggest that a 10-bit ADC reso-
lution is fine, if it is available within the (smaller) relevant
operating range of the sensor, e.g., [2.5V,3.5V]. This can
be achieved by using a suitable signal conditioning circuit
for mapping the signal’s operating range to the full-scale
voltage range of the ADC.

6.4 Real-Time Target Code
In a first approach, the Modelica code for the demonstra-
tor presented in Section 7 was hand translated to C in or-
der to compile and upload it to Arduino. This is rather
straightforward, since the control algorithm is short and
the Arduino environment is easy to use.

However, particularly for more complex models, it
would be beneficial to automatically generate the target
code, instead of manually converting the controller mod-
els to compact C code. This is quicker and less error prone
than manual translation. One big challenge is to produce
target code that fits into very small foot-print platforms.

For these reasons we have developed an experimental
version of an embedded target simple code generator14

for OpenModelica aimed at very restricted platforms such
as the Atmel AVR 8-bit microcontrollers. The regular C-
code generator creates huge data structures and contains
much debugging information while the run-time system
contains many numerical solvers and is around 6MB in
size (of which 0.5MB is textual strings for error mes-
sages). This regular C-code is intended to run on powerful
desktop CPUs where the code size does not matter much
and it proved difficult to try to strip out unnecessary code
when targeting embedded systems. The largest of the 8-
bit AVR processor MCUs (Micro Controller Units) have
16kB SRAM. One of the smaller ones (ATmega328P; Ar-

14The embedded code generation target for Open-
Modelica can be activated by passing the option
--simCodeTarget=ExperimentalEmbeddedC to the OMC.

duino Uno) has 2kB SRAM.

The embedded target code generator was designed to
generate code for constructs that are easy to compile.
For example, it does not support arrays, strongly con-
nected components, or initialization, but still works fine
for many models since the OpenModelica compiler will
convert many complex constructs into simpler ones dur-
ing the compilation process, e.g., make array equations
into scalar equations. Instead of having a big run-time
system that is linked in (as is the case for the regular code
generator), the code generator will generate the needed
C-functions corresponding to the Modelica and run-time
functions called.

As can be seen from Table 2, the experiment was so
far successful. The regular stripped-down code generator

Table 2. Code generator comparison. Regular vs Simple.

Regular stripped-down
source-code FMU tar-
geting 8-bit AVR pro-
cessor

Simple code genera-
tor targeting 8-bit AVR
processor

Minimal model

(0 equations)

43kB flash memory,

23kB variables (RAM)

130B flash memory,

0B variables (RAM)

Target sys-

tem including

controller

68kB flash memory,

25kB variables (RAM)

3350B flash memory,

169B variables (RAM)

with almost everything stripped out except the main sim-
ulation loop (it includes no solvers or numerical routines
except the used ones) already reduces the code foot-print
significantly compared to the standard desktop version.
However, it is still too large for very small foot-print plat-
forms like the Arduino Uno. The simple code generator
allows a further reduction in size which makes it suitable
for very small foot-print platforms.

The clocked controller model from Figure 5 needs to
be adapted in order to be suited as input to the experi-
mental embedded target code generator. The embedded
target code generator in the development branch for the
upcoming OpenModelica v1.14 release does not yet sup-
port the synchronous clocked language elements, nor does
it support when-equations for modeling sampled systems.
As a workaround the clocked controller equations can be
rewritten as an algorithm and placed into an algorithm sec-
tion. In the generated code this algorithm section is called
periodically using a base rate which can be specified dur-
ing translation15.

Figure 7 shows the input model for the code genera-
tor. The model uses blocks for interfacing to hardware
facilities of the Arduino Uno like ADC or PWM units.
These hardware interface blocks are available in the Mod-
elica_DeviceDrivers library (Thiele et al., 2017). The
model assumes that a signal conditioning circuit is used
for mapping the Hall effect sensor voltage around the op-

15For example, when using OpenModelica’s scripting interface the
base period can be specified by providing the stepSize argument to
the translateModel(..) function.

Controller Design for a Magnetic Levitation Kit using OpenModelica's Integration with the Julia Language

310 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157303

Back-calculation of conditioned Hall e ect sensor
voltage using slightly tuned parameters.

Conversion of desired electromagnet voltage to PWM input signalArduino board con guration

control

h=0.0005 s

AVR
ATmega328P

pwm

PWM Timer1
{TimerNumber.A}

adc

ADC A0
0..5 [V]

realToInteger

R I
limiter

uMax=v_max k=255/v_max

gain

Real-time:
mcu.desiredFrequency Hz

signalO set

k=2.43
ee

+
+1

+1

k=0.22

gain1

0.0

du_set

Figure 7. The input model for the code generator consisting of
the control algorithm and hardware related blocks.

erating point to the full-scale voltage range of the ADC.
Notice that the parameters for back-calculation of the con-
ditioned Hall effect sensor signal deviate slightly from the
theoretical values (k = 2.5 for the signal offset and k = 0.2
for the signal gain). This is the result of tuning the pa-
rameters for the actual demonstrator with its (non-ideal)
supporting electronics.

Most of the parameters in the hardware interface blocks
are at their default values. However, several interesting
parameter settings are not visible on the diagram layer.
The microcontroller block is set to the ATmega328P plat-
form and its internal parameter desiredPeriod is set
to 0.0005s. The real-time block is configured to use
Timer0 for the real-time synchronization. The PWM
block is configured to use Timer1 with a prescaler value
of “1/8”.

7 Demonstrator

Figure 8 shows a setup in which Zeltom’s controller has
been replaced by an Arduino Uno and supporting elec-
tronics.

It was possible to stabilize the levitating mass for sev-
eral minutes at a time using the presented controller and
the experimental hardware setup with a 10-bit ADC res-
olution in the range of [0V,5V], but the magnet showed
clearly visible oscillations around the equilibrium position
and was very sensitive to disturbances, e.g, a tiny push
against the table would destabilize the mass instantly. Mo-
tivated from the simulation results in Figure 6, a signal
conditioning circuit based on Texas Instrument’s INA333
instrumentation amplifier was developed to map the oper-
ating range [2.5V,3.5V] of the Hall effect sensor signal to
the full-scale voltage range of the ADC. As suggested by
the simulation results, this attenuated the oscillation and
lead to a greatly improved robustness in maintaining the
equilibrium position.

Figure 8. Arduino controlled electromagnetic levitation system.

8 Conclusion
The paper shows how computer aided control system de-
sign based on Modelica models can benefit from the new
OpenModelica OMJulia API which allows joint interac-
tion between theModelica and Julia ecosystems. For prac-
tical illustration a complete magnetic levitation applica-
tion is presented with sufficient details so that the exam-
ple can be readily reproduced, e.g., in the context of a lab
session in control education.

While Modelica excels in modeling and simulation of
complex technical systems, Julia can provide the numeri-
cal analysis, optimization and advanced visualization ca-
pabilities, including specialized packages for control engi-
neering. Simple web technology based GUIs can be cre-
ated in Julia in just a few lines of code, which allows inter-
active experimentation with Modelica simulation models
giving immediate feedback to the user, e.g., by updating
key performance plots. The magnetic levitation applica-
tion aims at illustrating how a carefully designed API has
the potential to leverage attractive synergies between the
two languages.

Acknowledgements
This work has been supported by Vinnova in the ITEA
OPENCPS and EMPHYSIS projects, and in the Vinnova
RTISIM project. Support from the Swedish Government
has been received from the ELLIIT project. The Open-
Modelica development is supported by the Open Source
Modelica Consortium.

References
Marcus Baur, Martin Otter, and Bernhard Thiele. Modelica Li-

braries for Linear Control Systems. In Francesco Casella,
editor, 7th Int. Modelica Conference, Como, Italy, September
2009. doi:10.3384/ecp09430068.

Kevin Craig, Thomas Kurfess, and Mark Nagurka. Magenetic

Controller Design for a Magnetic Levitation Kit using OpenModelica's Integration with the Julia Language

DOI Proceedings of the 13th International Modelica Conference 311
10.3384/ecp19157303 March 4-6, 2019, Regensburg, Germany

levitation testbed for controls eduction. In Proceedings of the
ASME Dynamic Systems and Control Division, volume 64,
1988.

Peter Fritzson. Principles of Object-Oriented Modeling and
Simulation with Modelica 3.3: A Cyber-Physical Approach.
Wiley-IEEE Press, Piscataway, NJ, second edition, 2015.
ISBN 978-1-118-85912-4.

Anand Ganeson. Design and Implementation of a User Friendly
OpenModelica - Python interface. Master’s thesis, Linköping
University, 2012.

Anand Ganeson, Peter Fritzson, Olena Rogovchenko, Adeel.
Asghar, Martin Sjölund, and Andreas Pfeiffer. An Open-
Modelica Python Interface and its Use in PySimulator.
In Martin Otter and Dirk Zimmer, editors, 9th Int. Mod-
elica Conference, Munich, Germany, September 2012.
doi:10.3384/ecp12076537.

Bernt Lie, Sudeep Bajracharya, Alachew Mengist, Lena Buf-
foni, Arunkumar Palanisamy, Martin Sjölund, Adeel Asghar,
Adrian Pop, and Peter Fritzson. API for Accessing Open-
Modelica Models from Python. In Proceedings of EuroSim
2016, Oulu, Finland, September 2016.

Bernt Lie, Arunkumar Palanisamy, AlachewMengist, Lena Buf-
foni, Martin Sjölund, Adeel Asghar, Adrian Pop, and Pe-
ter Fritzson. OMJulia: An OpenModelica API for Julia-
Modelica Interaction. In Anton Haumer, editor, 13th Int.
Modelica Conference, Regensburg, Germany, March 2019.

Katie A. Lilienkamp and Kent Lundberg. Low-cost mag-
netic levitation project kits for teaching feedback system
design. In Proceedings of the 2004 American Control
Conference, volume 2, pages 1308–1313 vol.2, June 2004.
doi:10.23919/ACC.2004.1386755.

Modelica Association. Modelica - A Unified Object-Oriented
Language for Systems Modeling - Version 3.4. Stan-
dard Specification, April 2017. URL http://www.
modelica.org/.

Martin Otter, Bernhard Thiele, and Hilding Elmqvist. A Li-
brary for Synchronous Control Systems in Modelica. In
Martin Otter and Dirk Zimmer, editors, 9th Int. Mod-
elica Conference, Munich, Germany, September 2012.
doi:10.3384/ecp1207627.

Bernhard Thiele, Thomas Beutlich, Volker Waurich, Martin
Sjölund, and Tobias Bellmann. Towards a Standard-Conform,
Platform-Generic and Feature-Rich Modelica Device Drivers
Library. In Jiří Kofránek and Francesco Casella, editors,
12th Int. Modelica Conference, Prague, Czech Republic, May
2017. doi:10.3384/ecp17132713.

T. H. Wong. Design of a Magnetic Levitation Control Sys-
tem - An Undergraduate Project. IEEE Transactions on
Education, E-29(4):196–200, Nov 1986. ISSN 0018-9359.
doi:10.1109/TE.1986.5570565.

Myung-Gon Yoon and Jung-Ho Moon. A Simple Analog Con-
troller for a Magnetic Levitation Kit. International Journal
of Engineering Research & Technology (IJERT), 5(3):94–97,
March 2016.

Zeltom LLC. Electromagnetic Levitation System - Mathemat-
ical Model, June 2009. URL http://zeltom.com/
documents/emls_md.pdf.

A Listing of the Nonlinear Closed-
Loop MagLev Model

The complete listing of the nonlinear closed-loop Model-
ica model used in Section 5.

model MagLevNLPD
// Parameters MagLev
parameter Real R=2.41, L=15.03e-3,

m=3.02e-3, k=17.31e-9, alpha=2.44,
beta=1.12e-4, gamma=0.26;

// Equilibrium point (values actually
depend on parameters above!)

parameter Real v_e=0.659957,
e_e=2.791198;

// Setting initial conditions to values
at equilibrium point

parameter Real d0=0.02, d_der0=0,
i0=0.273841;

// Variables MagLev
Real d(start=d0, fixed=true),

d_der(start=d_der0, fixed=true),
i(start=i0, fixed=true), v, f, e;

constant Real g=9.81;
// Parameters PD
parameter Real Kp=15, Td=0.05;
parameter Real du_set=0 "Desired

setpoint OP delta voltage of PD
controller";

// Variables PD
Real u,y;

equation
u = du_set - (e - e_e) "Input to the PD

controller (negative feedback loop)";
y = Kp*(u + Td*der(u)) "Ideal PD

controller";
v = y + v_e "Controller output to the

plant";
// Nonlinear MagLev plant equations
f = k*i/d^4 "(1) force applied by the

electromagnet on the levitating
magnet";

e = alpha + beta*1/d^2 + gamma*i "(2)
voltage across the Hall effect
sensor";

der(d) = d_der;
m*der(d_der) = m*g - f "(3) Newton’s

second law that";
v = R*i + L*der(i) "(4) Kirchhoff’s

voltage law";
end MagLevNLPD;

Controller Design for a Magnetic Levitation Kit using OpenModelica's Integration with the Julia Language

312 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157303

