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a b s t r a c t 

Obtaining accurate dynamic models of building thermal behaviour requires a statistically solid foundation 

for estimating unknown parameters. This is especially important for thermal network grey-box models, 

since all their parameters normally need to be estimated from data. One attractive solution is to max- 

imise the likelihood function, under the assumption of Gaussian distributed residuals. This technique was 

developed previously and implemented in the Continuous Time Stochastic Modelling framework, where 

an Extended Kalman Filter is used to compute residuals and their covariances. The main result of this 

paper is a similar method applied to a thermal network grey-box model of a building, simulated as an 

electric circuit in an external tool . The model is described as a list of interconnected components without 

deriving explicit equations. Since this model implementation is not differentiable, an alternative Kalman 

filter formulation is needed. The Unscented and Ensemble Kalman Filters are designed to handle non-linear 

models without using Jacobians, and can therefore also be used with models in a non-differentiable form. 

Both Kalman filter implementations are tested and compared with respect to estimation accuracy and 

computation time. The Profile Likelihood method is used to analyse structural and practical parameter 

identifiability. This method is extended to compute two-dimensional profiles, which can also be used to 

analyse parameter interdependence by providing insight into the parameter space topology. 

© 2019 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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1. Introduction 

1.1. Background 

The heating and cooling of buildings consumes a significant

part of the world’s total energy production. While new building

materials and techniques may reduce the energy consumption of

buildings, the renewal rate of buildings is low [1] . Hence, it is im-

portant to study methods that can also reduce energy consumption

in existing buildings. 

Building Energy Management Systems (BEMS) utilising ad-

vanced model-based control methods [2] to forecast the temper-

ature variations of a building in order to predict an optimal se-

quence of control inputs is a promising method for the reduction

of energy consumption. Since the model’s prediction accuracy di-

rectly influences the efficiency of such methods, it is important to
� This research did not receive any specific grant from funding agencies in the 

public, commercial or not-for-profit sectors. 
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evelop accurate models of building thermal behaviour. In addi-

ion to describing the time evolution of the system states and out-

uts, a good model must accommodate descriptions of both mea-

urement noise and process noise [3,4] . This requires a statistically

olid framework for estimating unknown parameters [5] . 

Thermal network models are often used to model the thermal

ehaviour of buildings [1,6–8] . Implemented as Resistor–Capacitor

quivalent circuits, these models offer an intuitive model design

ased on a cognitive understanding of the thermal physics in-

olved. Since, typically, all parameters of such models must be

dentified from data, it is important to investigate parameter iden-

ifiability prior to assuming physical interpretation of the esti-

ated parameter values [8] . 

.2. Previous work 

.2.1. Modelling of dynamic systems 

Models are sometimes classified based on the level of physical

nsight used in their derivation. If the model is mechanistic, i.e.,

ased purely on physical equations, it is classified as white-box .

uch models excel at describing non-linear state transitions and
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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easurements. They also tend to generalise well between similar

ystems [5,9] . An alternative approach is the use of system identi-

cation (SID) methods [3,4,10–12] , where a predetermined model

tructure with unknown coefficients is calibrated using measure-

ents of the system inputs and outputs. This results in a black-

ox model in which no prior physical insight is used, except in the

hoice of input and output measurements, sample time, and the

pproximate model complexity. These models tend to have bet-

er prediction accuracy, but less capability to generalise [5,9] . SID

ethods tend to provide better statistics on the model uncertainty,

hich are typically computed during the calibration process [3–5] .

A third, intermediate, possibility is the grey-box model, which

s based on a simplified model structure constructed using naive

hysical knowledge of the system. Model parameters are calibrated

rom measurements of the system, similarly to black-box models.

rey-box models are often treated in a stochastic framework [5] .

t could be argued that most white-box models include some ap-

roximations and/or need calibration of certain parameters. Hence,

hey can benefit from the application of stochastic grey-box cali-

ration methods. This approach has indeed been claimed as a nat-

ral framework for modelling dynamic systems in general [13] . 

.2.2. The CTSM framework 

Estimation of parameters is essentially an optimisation prob-

em, which requires a well-defined objective function. Several al-

ernatives are used in the literature, such as the deterministic

imulation error approach [1] . A statistically solid alternative for

tochastic grey-box models is found in [5,14] , which is based on

aximising the likelihood function evaluated by computing resid-

als in a Kalman Filter. This method has been previously devel-

ped in a number of publications [5,14–16] and implemented in

he Continuous Time Stochastic Modelling (CTSM) framework [15] .

n CTSM, the residuals needed to evaluate the likelihood func-

ion are computed using an Extended Kalman Filter (EKF) with sub-

ampling of the state transition equations to improve response to

on-linear models [5,15] . The EKF is based on linearising the state

ransitions and/or measurement equations, which requires that the

odel equations are differentiable [17–19] . 

.2.3. Identifiability 

Since thermal network building models are partially based on

hysical knowledge, it is often suggested that the parameters

an be assigned a physical interpretation [1,5,6] . This assumption

hould, however, be verified in the context of parameter identifia-

ility [3,20] . It is well known that models can contain parameters

hat are structurally non-identifiable [3,20] . Further, lack of proper

xcitation of the system during data acquisition may lead to practi-

al non-identifiability [3,8,20–22] . While the model structure may

e designed such that the parameters are intended to have a spe-

ific physical meaning, it is not certain that the estimated parame-

ers support this assumption. A good tool for identifiability analysis

s the profile likelihood method [8,21,22] . 

.3. Overview of paper 

In this paper, a resistor-capacitor equivalent thermal network

odel of a building is expressed as a list of interconnected electri-

al components. The model is simulated in an external tool with-

ut deriving explicit model equations, hence the model cannot be

ifferentiated. This is motivated by the need to simplify experi-

entation with different model structures in a way that could po-

entially be automated. The parameter estimation method from the

TSM framework is adapted to non-differentiable models, which

equires an alternative to the EKF for computing residuals. Both

he Unscented Kalman Filter (UKF) [18] and Ensemble Kalman Fil-

er (EnKF) [23] are compared and considered for the estimation of
esiduals. The explicit model equations are also derived on stan-

ard linear form, and used with a standard Kalman Filter as a base-

ine for comparison. Observe that while the model used here is

inear, the method is not restricted to linear models; the externally

imulated state transitions could well be non-linear. 

A profile likelihood approach is used [22] to analyse parameter

dentifiability. The method is extended to create two-dimensional

rofiles in the form of topological heat maps . These 2D plots are

omputed for all combinations of parameters. In addition to diag-

osing the identifiability of the parameters, these plots allow de-

ection of parameter interdependence. 

The paper is organised as follows. The theoretical basis is dis-

ussed in Section 2 . The model, external simulator and experimen-

al set-up is presented in Section 3 , and the results are presented

nd discussed in Section 4 . 

. Theoretical basis 

.1. Stochastic model parameter estimation 

Estimation of parameters for a known model structure [17] can

e defined as solving the optimisation problem: 

ˆ θ = arg min 

θ
g ( θ ;M ,K,A ) (1) 

.t. θ ∈ �

ere, M is a predetermined model structure, which is

arametrised by θ ∈ �, where � ⊆ R 

n θ is a set of feasible values

or the model parameters that form inequality constraints for the

ptimisation problem in Eq. (1) . K represents the experimental

onditions, including a set of measurements of system inputs and

utputs. These measurements are used to evaluate the objective

unction g when θ is varied over the feasible set � by a numerical

ptimisation algorithm A . In the sequel, the algorithm Constrained

ptimisation By Linear Approximation (COBYLA) [24] is used. This

lgorithm is gradient free, hence ideal for solving Eq. (1) . COBYLA

lso supports inequality constraints which can be used to impose

he limits of the feasible region � on the parameter estimates. 

Since the model structure M is a representation of a system S,

t is often assumed that S ∈ M ( �) and that consequently there

xists a true parameter vector θ ∗ such that M ( θ ∗) = S. However,

his is rarely the case, especially for simplified grey-box models

ased on a naive physical understanding of the system S . Typi-

ally, the estimate ˆ θ depends on the amount of dynamic informa-

ion in K, the choice of objective function g , and to some extent

n the optimisation algorithm A . Hence, it is necessary to analyse

he identifiability of the estimated parameters. This topic is further

iscussed in Section 2.4 . 

Next, define the continuous time input u t ∈ R 

n u and output

 t ∈ R 

n y , and the corresponding ordered sequences of discrete time

easurements u k and y k taken from the system S: 

 [ N ] = [ y 0 , y 1 , . . . , y N ] (2) 

 [ N ] = [ u 0 , u 1 , . . . , u N ] (3) 

ere, the integer subscripts k = 0 , 1 , . . . , N denote the discrete

ime sampling instants, and the subscript enclosed in [ · ] is used

o indicate an ordered sequence. 

A grey-box model can be expressed as a continuous time

tochastic differential equation (SDE) with a discrete time mea-

urement equation; adopting the notation of [5] : 

x t = f ( x t , u t , t, θ ) d t + σ ( u t , t, θ ) d ω t (4) 

 k = h ( x k , u k , t k , θ ) + e k (5) 

here t ∈ R is the time variable and x t ∈ R 

n x is the continuous

ime state vector. The first and second terms in the s tate transi-

ion equation, given in Eq. (4) , are commonly called the drift and
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diffusion term, respectively [5,25] . The diffusion term expresses the

process noise as the function σ multiplied with the differential of a

standard Wiener process ω t . The discrete time measurement equa-

tion is given in Eq. (5) . 

2.2. Maximum likelihood 

This section gives a summary of the theoretical basis adopted

from the CTSM framework [5,14,15] . The objective function g in

Eq. (1) can be derived from the likelihood function, which is de-

fined as the probability of observing the measurement sequence

y [ N ] when θ and M are known, i.e.: 

L 
(
θ ; y [ N ] , M 

)
= p 

(
y [ N ] | θ, M 

)
(6)

In the sequel, the model structure M is implicitly assumed

known and omitted from the condition. By application of the rule

P ( A ∩ B ) = P ( A | B ) P ( B ) [25] , Eq. (6) can be expanded such that: 

L 
(
θ ; y [ N ] 

)
= 

( 

N ∏ 

k =1 

p 
(
y k | y [ k −1 ] , θ

)) 

p ( y 0 | θ ) (7)

The diffusion term in Eq. (4) , which is assumed to be addi-

tive and independent of the state x , is driven by a Wiener pro-

cess whose differential is Gaussian distributed [5] . Hence, it is rea-

sonable to assume that the conditional probabilities in Eq. (7) can
Table 1 

Comparing equations for UKF (left) and EnKF (right). 

Definitions and initialisation 

ζ (0) 
m = 

λ
λ+ n x 

ζ (0) 
c = 

λ
λ+ n x + 

(
1 − α2 + β

)
ζ (i ) 

m = ζ (i ) 
c = 

1 
2 ( λ+ n x ) , i ∈ { 1 , . . . , 2 n x } 

λ = α2 ( n x + κ) − n x 

ˆ x 0 | 0 = E [ x 0 ] = x̄ 0 

X 0 | 0 = V 

[
x 0 − ˆ x 0 | 0 

]
= X 0 

State propagation 

x 
{ 2 n x +1 } 
k −1 | k −1 

= ς 
(

ˆ x k −1 | k −1 , X k −1 | k −1 

)
x (i ) 

k | k −1 
= f 

(
x (i ) 

k −1 | k −1 
, u k −1 , w̄ k 

)
i ∈ { 0 , . . . , 2 n x } 

ˆ x k | k −1 = 

∑ 2 n x 
i =0 

ζ (i ) 
m x (i ) 

k | k −1 

a ) X k | k −1 = 

∑ 2 n x 
i =0 

ζ (i ) 
c 

(
x (i ) 

k | k −1 
− ˆ x k | k −1 

)
( . . . ) 

T + W k 

Measurement estimate 

x 
{ 2 n x +1 } 
k | k −1 

= ς 
(

ˆ x k | k −1 , X k | k −1 

)
y (i ) 

k | k −1 
= h 

(
x (i ) 

k | k −1 
, u k −1 , ̄v k 

)
i ∈ { 0 , . . . , 2 n x } 

ˆ y k | k −1 = 

∑ 2 n x 
i =0 

ζ (i ) 
m y (i ) 

k | k −1 

Innovation and cross covariance 

Z k | k −1 = 

∑ 2 n x 
i =0 

ζ (i ) 
c 

(
x (i ) 

k | k −1 
− ˆ x k | k −1 

)(
y (i ) 

k | k −1 
− ˆ y k | k −1 

)T 

a ) E k | k −1 = 

∑ 2 n x 
i =0 

ζ (i ) 
c 

(
y (i ) 

k | k −1 
− ˆ y k | k −1 

)
( . . . ) 

T + V k 

K k = Z k | k −1 E −1 
k | k −1 

Aposteriori update c ) 

εk | k −1 = y k − ˆ y k | k −1 

ˆ x k | k = ˆ x k | k −1 + K k εk | k −1 

X k | k = X k | k −1 − K k E k | k −1 K 
T 
k 

a ) Assuming affine noise. (See Remark 3). 
b ) Can be omitted (See Remark 5). 
c ) Mathematically equivalent but not interchangable (See Remark 6). 
e approximated by Gaussian distributions [5,15] . This assumption

an be checked during model validation by testing the residuals for

ormality [3,5] . The likelihood can then be expressed as a multi-

ariate Gaussian distribution [5] , 

 

(
θ ; y [ N ] 

)
= 

⎛ 

⎝ 

N ∏ 

k =1 

exp 

(
− 1 

2 
εT 

k 
E −1 

k | k −1 
εk 

)
√ 

det 
(
E k | k −1 

)(√ 

2 π
)n y 

⎞ 

⎠ p ( y 0 | θ ) (8)

 Kalman Filter may be used to estimate the quantities 

ˆ 
 k | k −1 = E 

[
y k | y [ k −1 ] , θ

]
(9)

k = y k − ˆ y k | k −1 (10)

 k | k −1 = E 

[
εk ε

T 
k 

]
(11)

n the CTSM framework, an EKF is used. In Section 2.3 the alterna-

ive use of UKF and EnKF is discussed. 

Eq. (8) can further be simplified by taking the negative of the

ogarithm; defining the log likelihood function � ( θ ; y [ N ] ): 

 

(
θ ; y [ N ] 

)
= − ln 

(
L 
(
θ ; y [ N ] 

))
(12)

he solution to the optimisation problem is not affected since 

rg max 
θ∈ �

L 
(
θ ; y [ N ] 

)
= arg min 

θ∈ �
� 
(
θ ; y ( N ) 

)
(13)
w 

(i ) 
k 

∼ N ( ̄w k , W k ) , i ∈ { 1 , . . . , n p } 
v (i ) 

k 
∼ N ( ̄v k , V k ) , i ∈ { 1 , . . . , n p } 

x (i ) 
0 | 0 ∼ N ( ̄x 0 , X 0 ) , i ∈ { 1 , . . . , n p } 

ˆ x 0 | 0 = 

1 
n p 

∑ n p 
i =1 

x (i ) 
0 | 0 

X 0 | 0 = 

1 
n p −1 

∑ n p 
i =1 

(
x (i ) 

0 | 0 − ˆ x 0 | 0 
)
( . . . ) 

T 

x i 
k | k −1 

= f 

(
x (i ) 

k −1 | k −1 
, u k −1 , w 

(i ) 
k −1 

)
i ∈ { 1 , . . . , n p } 

ˆ x k | k −1 = 

1 
n p 

∑ n p 
i =1 

x (i ) 
k | k −1 

b) X k | k −1 = 

1 
n p −1 

∑ n p 
i =1 

(
x (i ) 

k | k −1 
− ˆ x k | k −1 

)
( . . . ) 

T 

y (i ) 
k | k −1 

= h 

(
x (i ) 

k | k −1 
, u k −1 , v 

(i ) 
k −1 

)
i ∈ { 1 , . . . , n p } 

ˆ y k | k −1 = 

1 
n p 

∑ n p 
i =1 ̂

 y (i ) 
k | k −1 

Z k | k −1 = 

1 
n p −1 

∑ n p 
i =1 

(
x (i ) 

k | k −1 
− ˆ x k | k −1 

)(
y (i ) 

k | k −1 
− ˆ y k | k −1 

)T 

E k | k −1 = 

1 
n p −1 

∑ n p 
i =1 

(
y (i ) 

k | k −1 
− ˆ y k | k −1 

)
( . . . ) 

T 

K k = Z k | k −1 E −1 
k | k −1 

x (i ) 
k | k = x (i ) 

k | k −1 
+ K k (y k − y (i ) 

k | k −1 
) i ∈ { 1 , . . . , n p } 

b) ˆ x k | k = 

1 
n p 

∑ n p 
i = n p x 

(i ) 
k | k 

b) X k | k = 

1 
n p −1 

∑ n p 
i =1 

(x (i ) 
k | k − ˆ x k | k )( . . . ) T 
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inally, by conditioning on knowing y 0 , and eliminating the scaling

onstants 1 
2 from � ( θ ; θ ; y [ N ] ), the objective function from Eq. (1) is

iven as: 

 ( θ ;M , K ) = 

N ∑ 

k =1 

εT 
k E 

−1 
k | k −1 

εk + ln 

(
det 

(
E k | k −1 

))
(14) 

here the constant term c = N · n y · ln ( 2 π) is dropped. 

.3. Alternative KF formulations 

The popularity of the Kalman Filter has led to a number of

daptions. The Extended Kalman Filter (EKF) is perhaps the most

ommon such adaption and is used in [5] . In the sequel, two other

ell known KF variations are outlined; the Unscented Kalman Filter

UKF) [18] and the Ensemble Kalman Filter (EnKF) [23] . In addition

o better approximations for non-linear models, UKF and EnKF dis-

ense with the computation of Jacobians and therefore do not re-

uire the model to be differentiable [18] . Both filters are listed and

ompared in Table 1 . 

Given the SDE for the state transition as in Eq. (4) , the time

volution of the probability density function (pdf) of the state, p ( x,

 ), is described by the Fokker–Planck equation [23] , also known

s the Kolmogorov forward equation [5] . The multi-dimensional

okker–Planck equation [25] can be expressed as 

∂ p ( x, t ) 

∂t 
+ 

∑ 

i 

∂ 

∂x i 
( f i ( x t , u t , t, θ ) p ( x, t ) ) 

= 

1 

2 

∑ 

i, j 

∂ 2 

∂ x i ∂ x j 
p ( x, t ) 

(
σW σ T 

)
i j 

(15) 

here f i is the i th component of the state transition model. 

In the EKF, the linearised model is used to approximate the

rst moments of this pdf [23] by a Taylor series expansion trun-

ated after the first term [17,19] . In both UKF and EnKF, the Fokker–

lanck equation is instead solved by approximating the solution to

q. (15) using a set of state realisations. The key difference be-

ween the UKF and EnKF is in how that set is constructed. The

KF draws its state realisation set, called sigma points , using the

nscented transform (UT). The UT of an expected state x̄ with co-

ariance X deterministically computes a set of sigma points x { N } =
x ( i ) : i = 0 , 1 , . . . , N 

}
, where the shorthand { · } superscript in-

icates a set and a superscript ( · ) denotes a member. For con-

enience of notation, a UT operator ς ( ̄x , X ) that returns a set of

 = 2 n x + 1 sigma points is defined as 

 

( 0 ) = 

ˆ x (16) 

 

( i ) = 

ˆ x + 

(√ 

( n x + λ) X 

)
i 
, i ∈ { 1 , . . . , n x } (17) 

 

( n x + i ) = 

ˆ x −
(√ 

( n x + λ) X 

)
i 
, i ∈ { 1 , . . . , n x } (18) 

he square root is often implemented using a Cholesky decompo-

ition, and the subscript i denotes the i -th column [17,18] . Note

hat there are different versions of the UT [3,19] , where the one

resented in Eqs. (16) –(18) is used in the sequel. For a Gaus-

ian random variable (GRV), the UT is known to approximate

he pdf p ( x, t ) to third order accuracy, and to the second or-

er for non-Gaussian random variables [17] . The introduction of

= α2 ( n x + κ) − n x in Eqs. (16) –(18) gives a set of tuning param-

ters that can improve approximations of higher order moments

17–19] . 

In contrast to the deterministic UT, the EnKF represents the

tate pdf using a Monte Carlo (MC) sampling method [17,18,23] .

he pdf is approximated as p ( x, t ) = 

dN 
n p 

, where dN is the number

f state realisations in some small unit volume and n p is the total
umber of realisations [23] . The set of realisations, i.e., the ensem-

le, is initially drawn at random using the mean and covariance

f the initial state. Subsequently, each realisation is propagated as

 distinct trajectory, thus making the EnKF equivalent to using a

arkov Chain Monte Carlo (MCMC) method to solve the Fokker–

lanck equation [23] . 

.3.1. Remarks to Table 1 

emark 1. Initialisation for both filters is equivalent if n p is

large”, since the computed ensemble values based on MC sam-

ling converge to the expectation values x̄ 0 and X 0 . 

emark 2. In the UKF, the sigma transform is applied twice to

ompute the sigma points for both apriori and aposteriori state and

ovariance estimates. In the EnKF, the realisations are drawn only

n the initialisation, and subsequently propagated independently. 

emark 3. The process noise w k ∼ N ( ̄w k , W k ) and measurement

oise v k ∼ N ( ̄v k , V k ) enter the UKF and EnKF in different ways. The

odel in Eqs. (4) and (5) assumes affine noise, hence the noise

ovariances are added to the respective propagation equations in

he UKF. For non-affine noise, there are other adaptions of the UKF,

.g., estimating noise by augmenting the state vector, that can be

sed [18] . In the EnKF, a random number generator (RNG) is used

o draw instances of the noise which is subsequently used in the

tate transition and measurement equations for propagation of the

nsemble. 

emark 4. If ζ ( i ) 
m 

= 

1 
n p 

and ζ ( i ) 
c = 

1 
n p −1 in the UKF formulation, the

orresponding equations for estimating mean and covariance from

he realisation set would be identical to EnKF (except for the iter-

tion index) when n p is large and λ = 0 ↔ α = 1 , κ = 0 . 

emark 5. In order to show the similarity of UKF and EnKF, both

lters are formulated with expressions for computing apriori and

posteriori covariance for the state estimate. Observe that for the

KF these are needed in order to compute new sets of sigma

oints, while in the EnKF this computation can be omitted. Indeed,

 fundamental advantage of the EnKF is that it does not require ex-

licit computation of the apriori and aposteriori state estimate co-

ariance matrices, but rather propagates them as approximations

n the ensemble. This is an advantage of the EnKF for models with

 high number of states. 

emark 6. The EnKF aposteriori update of state realisations and

ovariance can be shown to be equivalent to the corresponding

posteriori update in the UKF. However, since EnKF treats the set

f realisation as independent state trajectories, the ensemble must

e updated from apriori to aposteriori state estimates. Hence, the

wo formulations are not interchangeable, despite being mathe-

atically equivalent. 

emark 7. UKF has three hyper parameters, α, κ and β; default

unings are suggested for standard noise models in the UKF lit-

rature. The EnKF has only one hyper parameter: the number of

ealisations n p . 

.4. Profile likelihood 

Parameter estimates are often reported as a point in the param-

ter space �, or as a confidence interval [26] with some stated con-

dence α. An alternative solution is to present the distribution of

he parameters over the feasible range �. Since the estimation of

arameters is based on the likelihood function in Eq. (6) , one attrac-

ive choice for creating parameter distributions is the profile likeli-

ood (PL) method presented in [8,21,22] . This approach was also

uggested by the authors of CTSM [27,28] . The PL method explores

he parameter space by optimising the parameters in two steps,
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rather than simultaneously as in Eq. (1) . For simplicity of notation,

the dependence on y [ N ] is omitted from the log likelihood func-

tion � ( θ ; y [ N ] ) in the sequel. The profile likelihood � PL ( θ i ) is defined

as the minimum log likelihood for θ i when the remaining param-

eters are freely optimised [22,29] : 

� PL ( θi ) = min 

θ j 	 = i 
g 
(
θ j 	 = i ;M , K, θi 

)
(19)

Values of θ i must be chosen prior to optimising the remain-

ing θ j 	 = i [22] . A straightforward solution, if the objective function

g is well behaved within the constraints of �, is to use a brute

force approach with an even sampling of θ i . Alternatively, a two-

sided gradient decent algorithm, using a freely optimised parame-

ter vector as a starting point, can be applied [22,30] . The resulting

likelihood distribution can be plotted as a function of θ i and sub-

sequently analysed according to the definitions of structural and

practical identifiability for likelihood-based confidence intervals [8] .

Unlike the asymptotic confidence interval, which is based on the

curvature of the likelihood function by computation of the Hessian

[8,22] , the likelihood-based confidence interval is computed by ap-

plying a threshold to the likelihood function to compute a confi-

dence region [22,29] . Let { 

θ : � ( θ ) − � 

(
ˆ θ
)

< �α

} 

, �α = χ2 ( α, n df ) (20)

where ˆ θ is a freely estimated, presumed optimal, parameter vector,

and the threshold �α is the α percentile of the χ2 -distribution

with n df degrees of freedom. It follows from Wilks’ theorem

[31] that the logarithm of the likelihood ratio � test statistic 

2 ln ( �) = 2 ln 

⎛ 

⎝ 

L ( θ ) 

L 

(
ˆ θ
)
⎞ 

⎠ = � ( θ ) − � ( ̂  θ ) (21)

can be used to compare two models. The difference in log like-

lihood � ( θ ) − � 

(
ˆ θ
)

is asymptotically χ2 -distributed [22,32] , with

n df equal to the difference in the number of free parameters be-

tween θ and 

ˆ θ . Hence, the PL method uses a χ2 threshold with

n df = 1 . This form of confidence interval allows interpretation of

structural and practical identifiability by inspection of the upper

and lower confidence boundaries [22] . If � ( θ ) is lower than the

threshold in both directions, i.e., the interval at the stated con-

fidence level is unbounded ( ±∞ ), the parameter is classified as

structurally non-identifiable [22] . If � ( θ ) is bounded in one direc-

tion, this indicates practical non-identifiability [22,29] . Profile like-

lihood plots are interpreted similarly. If the plot is lower than the

confidence threshold in both directions or only one, this indicates

structural or practical non-identifiability, respectively. 

2.4.1. Two-dimensional profile likelihood 

The PL method essentially projects the n θ dimensional space

� onto the single parameter θ i , by freely estimating the remain-

ing parameters. Hence, if parameters are not independent, the PL

method tends to overestimate the width of the likelihood-based

confidence interval. A step towards remedying this issue is to mod-

ify the PL method to hold out two parameters rather than one, i.e.,

� PL2 

(
θi , θ j 

)
= min 

θk 	 = i, j 

g 
(
θk 	 = i, j ;M , K, θi , θ j 

)
(22)

This results in a two-dimensional distribution which can be anal-

ysed in a similar way to the one-dimensional PL [22] , using the

definition in Eq. (20) . The PL2 results are plotted as topological

surfaces [22] . This projects the parameter space � onto the plane

of θ i and θ j . In addition to diagnosing identifiability issues, these

plots can be used to diagnose parameter interdependence. Observe

that since ˆ θ has n θ free parameters while the PL2 estimate has
 θ − 2 , this gives n df = 2 for the computation of �α from the χ2 -

istribution in Eq. (20) . 

Applying a confidence threshold to the PL2 method produces

onfidence regions in the ( θ i , θ j ) plane, rather than intervals in

 single parameter. Based on confidence thresholds computed

rom the χ2 distribution, a similar interpretation of these two-

imensional topologies can be applied to diagnose identifiability

y requiring that the region is bounded in all directions. If there

s an unbounded equipotential valley with a log likelihood below

he �α threshold, the parameter is structurally non-identifiable. If

he interval or region is unbounded only in one direction, this in-

icates a practically non-identifiable parameter. Examples of two-

imensional PL plots are given in Section 4 . If parameter interde-

endence is observed, re-parametrisation of the model such that

he interdependency is resolved, may be advisable in order to ob-

ain a model with tighter confidence bounds on the estimated pa-

ameters. 

.4.2. Interpretation of wide confidence regions 

It can be argued that a wide confidence region is indicative of

n identifiability issue even if the region is bounded. If the range of

cceptable parameter values is large, the interpretation of the esti-

ated parameters as being determined by the physical properties

f the system, i.e., S ∈ M ( �) → M 

(
ˆ θ
)

� S, is questionable. 

One possible cause of wide confidence bounds on the estimated

arameters is the presence of nuisance parameters, i.e., parameters

hose value is insignificant for the model estimates. 

.4.3. Effect of constrained parameters 

Observe that solving the two-step optimisation problem in

q. (19) subjected to the constraint θ ∈ � imposes a restriction on

he identified profile � PL ( θ i ). This constraint may skew the results,

ince the remaining parameters θ i 	 = j are only considered within

he region �. If parameters are not independent, the profile of one

arameter may be influenced by the constraints of another. In the

L2 method, the effect of constrained optimisation of parameters

s easier to diagnose, since dependent parameters can be identi-

ed from the topology plots. 

.5. Model validation 

The CTSM method requires evaluation of the residuals to ver-

fy that the assumption of Gaussian distributed residuals is jus-

ified [5,15] . In the CTSM literature, the autocorrelation function

ACF) is used to test for normality of residuals in the time-domain,

hile a cumulative periodogram (CP) is used in the frequency do-

ain [5,8,15] . There are also a number of alternative tests for nor-

ality that can be applied, such as the zero-crossings test or the

olmogorov–Smirnov test [3] . 

. Case study model and simulation 

.1. Model 

A thermal network model of a building can be expressed as a

esistor-capacitor (RC) circuit. These models are based on a naive

hysical understanding of temperature variations in the building

tructure, which entails simplifications that necessarily introduce

odelling errors. The result is a simplified, lumped parameter

odel, which should be treated in the framework of grey-box

odelling, and hence formulated as stochastic differential equa-

ions (SDE) as in Eq. (4) [5] . 

Fig. 1 shows an example of a candidate RC model which was

eveloped to approximate the thermal behaviour of the experi-

ental building discussed in Section 3.2 , partially based on the
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Fig. 1. The R3C2 thermal network model of an experimental building can be ex- 

pressed as a resistor–capacitor equivalent circuit containing three resistors and two 

capacitors. 

Fig. 2. Calibration data for the R3C2 model. The model outputs T b (red) and 

T w (blue) are plotted together with the outdoor temperature input T ∞ (green). The 

input power ˙ Q is plotted separately. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 

Table 2 

Nominal parameter values and min/max limits for resis- 

tances [K/W] and capacitances [J/K]. 

R b R w R g C b C w 

θ 0 0.100 0.100 0.250 1200 k 1200 k 

θmin 0.030 0.030 0.075 360 k 360 k 

θmax 0.170 0.170 0.425 2040 k 2040 k 
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Fig. 3. Illustration of Kalman Filter (KF) with externally simulated (SIM) state prop- 

agation. 
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4C2 model presented in [1] . The model has two outputs: the

oom temperature T b and the wall surface temperature T w 

, and

wo inputs: the consumed power by an electric heating element ˙ Q 

nd the outside temperature T ∞ 

. Five components form the model

tructure: the thermal resistance between room air and wall R b ,

he building envelope R w 

, and the thermal resistance of windows

nd doors R g . The two capacitances C b and C w 

represent the ther-

al capacitance of the building interior and envelope, respectively.

 nominal parameter vector θ0 , listed in Table 2 , is used as the ini-

ial value for parameter estimation. Additionally, the feasible values

egion � is limited by θmin and θmax , which are chosen as 0.3 × θ0 

nd 1.7 × θ0 , respectively. 

.2. Calibration data 

The calibration data used for parameter estimation was ob-

ained from an experimental building located at Campus Porsgrunn

f the University of South–Eastern Norway (USN). The data was

ollected by multiple data acquisition systems, each producing a

eparate data subset, and combined into a consistent dataset in the

reprocessing step. The data was first filtered to remove noise and
ubsequently resampled into a uniform temporal scale. In order to

aintain measurement uncertainty after preprocessing, a random

oise component of covariance 0.1 was added to the temperature

easurements. The resulting data is presented in Fig. 2 . 

.3. RCSimulator 

The choice of model structure for a thermal network model, i.e.,

he RC circuit, usually involves significant experimentation [1,7,16] .

o simplify, and possibly automate, the process of finding appropri-

te model structures, it is useful to simulate such models without

equiring explicit model equations. Since the thermal networks are

odelled as RC circuits, it is natural to look to the electronics field

here circuits are often simulated using tools such as SPICE [33] . A

ircuit simulator can be used to propagate the state, hence replac-

ng the drift term of Eq. (4) , as illustrated in Fig. 3 . Using this set-

p with the parameter estimation method in Section 2.2 requires

 KF implementation that can handle non-differentiable models,

uch as UKF and EnKF. 

A simple circuit simulator is constructed, named RCSimulator

or reference in the sequel. Circuit simulators typically define the

ircuit model as a list of interconnected components, which can

e taken directly from the schematic in Fig. 1 . By convention, all

omponents have two terminals named in and out . Each node is

ssigned an integer index which is used to configure the connec-

ions of the components as a circuit. For example, letting node T b 
ave index 1 and T w 

index 2, the component R b would have in-

ut/output assignment (1,2). For each node in the circuit, Kirchoff’s

ode current law is used to balance the flow in and out of the node

34] . The system of node equations can be written in difference

orm: 

x k + A m 

x k −1 + Bu k = 0 (23)

he contributions from all components are summed together, such

hat rows i in A , A m 

, and B constitute the balance equation

or node i . Eq. (23) is solved for x k at each time-step in or-

er to propagate the state. The only dynamic element is the ca-

acitor, which is implemented using an implicit Euler discretisa-

ion, 
(

dx 
dt 

)
t k 

≈ x k −x k −1 
�t 

, by contributing to both the A and A m 

ma-

rices. Voltage sources are implemented as constraints on the dif-

erence between the states of the two connected nodes. The mea-

urement Eq. (5) can be implemented as measuring the potential

etween selected nodes in the RC circuit. 

The simulation scheme, and in particular the discretisation of

he capacitive elements, could be extended with more accurate

pproximations such as the Runge–Kutta 4th order (RK4) scheme

35] . It is also possible to introduce non-linear components, such

s variable resistors. Observe that while the test case model used

ere is linear, the method of estimating residuals with UKF or EnKF

or externally simulated models has no such restriction. 

.4. Discrete time linear model 

For comparison, the model is also expressed in a standard linear

tate space form 

dx = Ax t + Bu t + Gw t (24) 
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Table 3 

Model representation as list of interconnected com- 

ponents. 

# Kalman Filter Model 

BL KF Eq. (26) (exact) 

1 KF Eq. (24) (exp. Euler) 

2 UKF RCSimulator 

3 UKF Eq. (24) (RK4) 

4 EnKF ( n p = 50 ) RCSimulator, 

5 EnKF ( n p = 500 ) RCSimulator 

6 EnKF ( n p = 20 0 0 ) RCSimulator 

7 EnKF ( n p = 50 0 0 ) RCSimulator 

Table 4 

Freely estimated parameters for each case. 

# R b R w R g C b C w �� 

BL 0.097 0.114 0.136 1642 k 1272 k - 

1 0.100 0.118 0.134 1653 k 1238 k 0.22 

2 0.101 0.119 0.133 1643 k 1220 k −0 . 44 

3 0.100 0.118 0.134 1651 k 1228 k −0 . 11 

4 0.075 0.103 0.133 1969 k 1493 k 121 

5 0.093 0.122 0.201 1633 k 1571 k 32.5 

6 0.080 0.100 0.217 1779 k 1277 k 12.5 

7 0.076 0.091 0.190 1961 k 1663 k 4.51 
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where 

x t = 

[
T b 
T w 

]
, u t = 

[
˙ Q 1 

T ∞ 

]
, B = 

[
1 
C b 

1 
C b R g 

0 

1 
C w R w 

]

A = 

[− 1 
C b R b 

− 1 
C b R g 

1 
C b R b 

1 
C w R b 

− 1 
C w R b 

− 1 
C w R w 

]
and w t ∼ N (0, W ) is the process noise (model error), W is the spec-

tral density of w t and G is a noise distribution matrix which is

assumed constant. Hence Gw t dt is equivalent to the stochastic dif-

fusion term σ ( u t , t, θ ) d ω in Eq. (4) such that GW G 

T = σσ T [5] . 

The model in Eq. (24) is written in continuous time and must

be discretised for use in a computer KF implementation. Assuming

zero order hold (ZOH) on the inputs [36] gives 

d 

dt 

[
x 
u 

]
t 

= 

[
A B 

0 0 

][
x 
u 

]
t 

+ 

[
G 

0 

]
w t (25)

The discrete time equivalent system, again assuming ZOH on in-

puts, gives the difference equation [
x 
u 

]
k 

= 

[
˜ A 

˜ B 

0 1 

][
x 
u 

]
k −1 

+ 

[
˜ G 

0 

]
w k (26)

where w k ∼ N ( 0 , W ) and W is the process noise covariance. On the

interval [ t k −1 , t k [ → �t = t k − t k −1 , Eq. (25) has the known solution[
x 
u 

]
t k 

= exp 

(
�t 

[
A B 

0 0 

])[
x 
u 

]
t k −1 

+ 

[
�x w 

0 

]
(27)

which by direct comparison with Eq. (26) gives the discrete model

matrices ˜ A = e A �T as the upper left sub-matrix and 

˜ B as the corre-

sponding upper right sub-matrix. The diffusion of the states driven

by the process noise w t is here expressed by the term �x w 

which

is yet undetermined. ˜ G is obtained from the expectation 

E 
(
x k | k −1 x 

T 
k | k −1 

)
= X k | k −1 

= 

˜ A X k −1 | k −1 ̃
 A 

T + 

∫ t k 

t k −1 

e Aτ Q c e 
A T τ dτ (28)

where Q c = GW G 

T . This integral can be solved using the Van Loan

method in [37] . Let 

D = exp 

(
�t 

[
−A Q c 

0 A 

T 

])
= 

[
D 11 D 12 

0 D 22 

]
(29)

Then 

Q ( �t ) = 

∫ t k 

t k −1 

e Aτ Q c e 
A T τ dτ = 

˜ G W ̃

 G 

T = D 

T 
22 D 12 (30)

From Eq. (30) it is possible to compute either the process noise

covariance W or the discrete time distribution matrix for the pro-

cess noise ˜ G when the other is known or assumed. Setting ˜ G = I

gives W = Q ( �t ) = D 

T 
22 

D 12 which is equivalent to the result in [5] .

This is also the form typically used in derivation of Kalman Filters

[18,19] , as shown in Table 1 . 

While the primary focus of this paper is on the externally sim-

ulated model, the model in Eq. (26) is used as a baseline for com-

parison with other combinations of Kalman Filter implementations

and model discretisation methods. Other approximations for the

discrete time model can be found using, e.g., explicit Euler or the

RK4 scheme [35] . 

4. Results and discussion 

4.1. Test cases 

Multiple combinations of KF implementations and model state

propagation methods are tested and compared. The various cases,

listed in Table 3 , are compared with a baseline (BL) consisting of

the linear explicit model from Section 3.4 and a standard KF. 
.2. Tuning 

The covariance matrix for the measurement noise V =
iag ( 0 . 1 , 0 . 1 ) is obtained from the calibration data in K. The pro-

ess noise covariance W is often difficult to estimate, hence it is

ypically treated as a tuning parameter. By using the model valida-

ion results, i.e., testing the normality of the residuals as discussed

n Section 4.4 , W = diag ( 0 . 0 04 , 0 . 0 02 ) is found by trial and error.

n alternative solution is to include the elements of W in θ and let

he optimisation algorithm A determine them [5] , in accordance

ith Eq. (14) . 

The UKF and EnKF have some additional tuning parameters.

he default UKF settings α = 10 −3 , κ = 0 , β = 2 as suggested in

17] are used. For the EnKF, the only tuning parameter is the num-

er of realisations n p for which four different values are used, de-

ending on the test cases given in Table 3 . 

.3. Estimated parameters 

The parameters are estimated for each test case by minimising

q. (14) using the residuals and their covariance as obtained from

he KF in each case. The results are shown in Table 4 . The right-

ost column lists the difference in log likelihood, �� , between

ach case and the BL. 

The estimated parameters ˆ θ and corresponding relative log like-

ihood, �� , for Cases 1–3 closely match the results computed

or the baseline, which indicate that the UKF, combined with ei-

her RK4 discretisation or the RCSimulator, correctly estimates the

esiduals for evaluation of the likelihood function in Eq. (8) . 

The results for the EnKF Cases 4 to 7 differ significantly more

rom the BL case, as shown in Table 4 . The parameters are differ-

nt from the BL and also the log likelihood values are significantly

igher than for the BL case. They tend towards the BL case as n p is

ncreased, but at n p = 50 0 0 in Case 7, there is still a significant

ifference. The EnKF is based on a Monte Carlo approximation of

he state distribution p ( x, t ). Hence, the computed residuals and

ovariance are also an approximation. This leads to a significant

eviation from the BL results. The UKF is known to be exact for

inear systems [18] , hence no such deviation from the BL is ob-

erved for Cases 2 and 3, beyond some small deviations resulting

rom differences in state propagation approximations. 
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Fig. 4. Cumulative periodogram with 95% confidence bands for the residuals of the 

outputs T b (red) and T w (blue). (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Deterministic simulation. Measured values (grey) with T b (red) and 

T w (blue). (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

Table 5 

Testing distribution of residuals for normality. 

Output T b T w 

Zero crossing 530 526 

Kolmogorov–Smirnov 0.0232 0.0126 
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Fig. 6. Results from Case 2, using the UKF with RCSimulator. Observed measure- 

ments are plotted in grey, and estimated outputs with two sd error bands in blue: 

T b (top) and T w (bottom). (For interpretation of the references to colour in this fig- 

ure legend, the reader is referred to the web version of this article.) 

Fig. 7. Difference in output T b between Case 1 (red) and Case 2 (blue) and the 

baseline linear KF with exact model discretisation. (For interpretation of the refer- 

ences to colour in this figure legend, the reader is referred to the web version of 

this article.) 

Table 6 

Comparing difference with baseline for each case. 

# RMSE ( �ε) RMSE ( �E ) Runtime 

BL – – 1 . 4 ms 

1 7 . 91 × 10 −4 9 . 49 × 10 −6 1 . 7 ms 

2 7 . 79 × 10 −4 9 . 35 × 10 −6 10 . 4 ms 

3 5 . 5 × 10 −9 5 . 77 × 10 −13 9 . 9 ms 

4 1 . 39 × 10 −1 4 . 88 × 10 −2 0 . 092 s (0 . 078 s ) 

5 4 . 13 × 10 −2 1 . 56 × 10 −2 0 . 88 s (0 . 75 s ) 

6 2 . 14 × 10 −2 7 . 76 × 10 −3 3 . 5 s (3 . 1 s ) 

7 1 . 40 × 10 −2 4 . 70 × 10 −3 9 . 2 s (7 . 9 s ) 
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.4. Model validation and normality tests 

The use of the likelihood function for parameter estimation is

ased on the assumption of Gaussian distributed residuals, hence

he residuals should be tested for normality in order to verify that

ssumption [5] . In the sequel, residuals from Case 2 are used, but

ear identical results are obtained for Cases 1, 3 and BL. Cases 4

o 7 are not considered further in this section. There are several

ests that can be used to validate the normality assumption, such

s the cumulative periodogram (CP) presented in Fig. 4 . Other nor-

ality tests are the zero-crossing count (ZC) and the Kolmogorov–

mirnov (KS) test [3] as listed in Table 5 . The zero-crossing test for

 = 1050 samples gives a 95% confidence interval [3] of (493, 556)

hich covers the test results for both outputs. Similarly, the KS

est gives a critical value of 0.0417, which is higher than the

core for both outputs. Finally, the CP in Fig. 4 indicates that

he residuals are evenly distributed in the frequency domain,

ence giving an approximately linear CP within the 95% confidence

and [8,14,16,38] . After having tuned the process noise covariance

atrix W by trial and error, these tests indicate that the residuals

re well approximated by a Gaussian distribution. 

Another method for validation of a model with estimated pa-

ameters is to perform a deterministic simulation using measured

ystem inputs [3] . If the parameters are reasonable, the model

redictions should approximately agree with the observed output

easurements. The results of such a simulation are presented in

ig. 5 . As shown, the simulation reproduces the system behaviour

rom the calibration data reasonably well, which further validates

he model and the estimated parameter values. 
.5. Comparing Kalman filters 

In this section, the results for all cases in Table 3 are compared

n detail. First, Fig. 6 shows the estimated output for Case 2 plotted

ith an error band of two standard deviations together with the

easured output. A visual inspection of Fig. 6 shows that the es-

imated output ± 2 standard deviations (sd) captures most of the

ariation in the measurements, indicating that the UKF correctly

stimates the covariance of the estimated output. 

Next, the root mean square error (RMSE) is used to compare

he difference between each case and the BL, for both the resid-

als, �ε, and their covariance, �E . The results are presented in

able 6 , together with the runtime of each case. For the EnKF, the

omputation time was measured both with and without (in brack-

ts) computation of apriori and aposteriori covariance. 

Several interesting observations can be made from Table 6 . First,

he quantified RMSE results show that Cases 1 to 3 give simi-

ar results to the BL case. In particular, Case 3 is near identical

o the BL, with an RMSE around 10 −9 . This result shows that the

KF gives near optimal estimates, with the deviations mostly ex-

lained by approximations introduced by the model discretisation

ethod. Further, the results from EnKF differ significantly, even
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Fig. 8. PL1 method for diagnosing parameter identifiability. 

Fig. 9. PL1 method with extended feasible region �. 

Fig. 10. Heat map with isolines at confidence levels 90%, 95% and 99%, from the 

PL2 method. The freely optimised solution ˆ θ is marked by a black dot in all plots. 

All plots cover the entire sub-region of � for their respective parameters. For re- 

duced clutter, the axis labels are only included on the left-most/lower-most plots. 

The figure legend shows that the colour red indicates a relative likelihood close to 

0, while purple indicates a relative log likelihood of 20. Values above 20 are not 

plotted, thus highlighting the most interesting region in the parameter space �. 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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with n p = 50 0 0 , from those obtained by KF and UKF, especially for

low n p . 

To verify the implementation of the RCSimulator, Cases 1 and

2 are compared in Fig. 7 . The error, compared to BL, in residuals

of output T b is similar for Cases 1 and 2, but interestingly with

the opposite sign. This is reasonable since Case 1 uses explicit Eu-
er discretisation of the continuous time model, while the RCSim-

lator, discussed in Section 3.3 , uses implicit Euler approximation

or the capacitance elements. The output T w 

shows the same be-

aviour. 

.5.1. Computation time 

Based on experience with the test case, the objective function

s known to be well behaved in �, hence, a simple brute force

lgorithm is used to draw θ i , and θ j . With a resolution of 100

teps per parameter, the PL2 method requires 10,0 0 0 repeated ex-

cutions of the parameter estimation algorithm per combination of

arameters. With five parameters, there are ten different combina-

ions of parameters which gives a total of 10 0,0 0 0 required execu-

ions. Hence, computational time for this method is significant. The

valuation of Eq. (22) can be efficiently parallelised, which reduces

omputation time. For the test case used in this paper the compu-

ation time per PL2 plot is around 30–60 minutes when the UKF

s used with the RCSimulator on a six-core CPU. For large number

f parameters, the overall computational load may be unpractical.

owever, if the objective function is smooth in �, a lower reso-

ution plot may be sufficient to diagnose parameter identifiability

nd interdependence issues, or at least identify which parameter

ombinations may warrant further study with higher resolution.

urther improvements in computation time may be achieved by

pplying faster maximum likelihood estimation algorithms [39] . 

The runtime of the EnKF, as shown in Table 6 , are orders of

agnitude slower than the UKF cases, while the UKF cases are only

bout six times slower than the standard KF cases. Observe also

hat the overhead of using the external simulator is only around

 ms . Since the EnKF uses a MC sampling of the state distribution

 ( x, t ) in order to solve the Fokker–Planck Eq. (15) , a larger num-

er of realisations is required compared with the UKF [23] . The un-

cented transform used in UKF requires 2 n x + 1 state realisations.

bserve that the computational times in Table 6 are approximately

inear in the number of realisations used for both EnKF and UKF.

his is expected due to the relative similarities of the two KF im-

lementations as indicated in Table 1 . For a simple model such

s the thermal network used here, with n x = 2 , it is not surpris-

ng that UKF far outperforms EnKF in terms of computational effi-

iency. EnKF was after all designed for large scale systems where

 x is very high. 

In the sequel, only the UKF will be considered for further study.

s discussed, the PL method requires a large number of repeated

arameter optimisations, which in turn require an even larger
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Fig. 11. PL2 topology of R b vs R w with extended feasible region �. 
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umber of KF executions. Hence, runtime is of critical importance,

hich excludes the use of EnKF in this case. 

.6. Profile likelihood for Case 2 

The theoretical foundation for the profile likelihood (PL) method

8,22] is discussed, and extended to simultaneously analysing two

arameters in Section 2.4 . In the sequel, both PL methods are ap-

lied to the R3C2 model from Section 3 . Results are obtained using

he configuration in Case 2 from Table 3 . The log likelihood ob-

ained by freely estimating all parameters is used as a reference,

.e., the plots present � PL ( θi ) − � 

(
ˆ θ
)

. 

Fig. 8 shows the parameter profiles from the PL1 method in

q. (19) , with confidence thresholds at stated confidence levels

rom the χ2 distribution with n df = 1 . The topological surfaces

rom the PL2 method in Eq. (22) are plotted as heat maps, with

solines at specified confidence levels from the χ2 distribution

ith n df = 2 , in Fig. 10 . 

As discussed in Section 2.4 , the definition of identifiability used

n [22] requires the likelihood-based confidence interval/region to be

ounded for a prescribed confidence level. Observe from Fig. 8 that

our of the parameters have bounded profiles within the feasible

egion �. However, parameter R w 

is indicated as practically non-

dentifiable, since the profile is below the prescribed thresholds

n the positive direction. However, the PL analysis is computed

ubject to the constraint θ ∈ �. It is not clear from the results if

xtending the feasible values for R w 

would result in a bounded

L also for this parameter. Hence, further examination of R w 

by

idening the feasible region � is required. 

The results from PL2 in Fig. 10 show the same pattern of iden-

ifiability as for the one-dimensional PL plots. At first glance, the

L2 method confirms that parameter R w 

is classified as practically

on-identifiable, while R b has a wide but bounded profile. How-

ver, the PL2 method provides additional insight into the parame-

er domain �. Observe from the plot for R b vs R w 

that the shape of

he log likelihood function of parameter space � ( �) projected onto

he ( R b , R w 

) plane indicates that there is interdependence between

hese two parameters. By comparing the PL1 plot for R b to the PL2

lot for R b vs R w 

and projecting the PL2 results onto the R b axis,

t can be observed that the sharp bend in the PL1 Fig. 8 plot is ac-

ually a consequence of the constraint on R w 

. A similar constraint

rtefact, a sharp bend near the lower end of the feasible range,

an be seen in the PL1 plot for C w 

. It is likely that the observed

opology from Fig. 10 would be extended if the parameter domain

was wider, hence allowing optimal values for R b to be obtained 

bove the constrained profile observed in Fig. 8 . 

Further, the topology obtained from PL2 shows that the width

f the profile from PL1 is significantly overestimated due to the

arameter interdependence. Once either R b or R w 

is obtained, the

rofile of the other parameter is much narrower than what the PL1

ethod suggests. 
.6.1. Extending the parameter space 

Next, the parameter space � is widened by letting the param-

ters extend to six times the nominal value, e.g., θmax = 6 · θ0 . The

L1 results in Fig. 9 now show that all five parameters are iden-

ifiable, i.e. the likelihood profiles cross the confidence threshold

n both directions. Further, the PL2 result for the parameter com-

ination ( R b , R w 

) in Fig. 11 shows that the topology observed in

ig. 10 indeed extends beyond the initial limited parameter space

. 

. Conclusion 

In this paper, the Unscented Kalman Filter (UKF) and the Ensem-

le Kalman Filter (EnKF) have been compared for the purpose of es-

imating residuals and covariance for evaluation of the likelihood

unction. The state transition model was implemented in a non-

ifferentiable external simulation tool, hence requiring a Kalman

lter implementation other than the Extended Kalman Filter (EKF).

he results from applying both filters to the parameter estimation

roblem show that the UKF outperforms the EnKF in both accuracy

nd computational time for this particular model. Since the UKF

equires fewer realisations for few states, this result is expected.

he EnKF was developed to handle large scale dynamic systems

ith a high number of model states and relatively few measure-

ents. Since the underlying case study model is linear, the UKF is

ptimal, limited only by approximations to the state propagation

ethod in the external simulation tool. For models with a larger

umber of states the EnKF may well be a better choice. 

The use of a UKF allowed the likelihood function to be eval-

ated even though the thermal network building model was im-

lemented as a non-differentiable external simulator. Comparing

he results of the externally simulated component list model with

imulations using the explicitly expressed linear equations showed

hat the results are near identical. While the use of the simulator

nd a UKF is about six times slower in computational time com-

ared to the explicit model and a standard KF, the external model

llows for simple manipulation of the component list model struc-

ure. This could potentially be used to automate the construction

f thermal network model structures for the thermal behaviour of

 specific building prior to parameter estimation. 

The profile likelihood (PL) method was applied to the thermal

etwork model to create one- and two-dimensional parameter pro-

le plots. The PL2 plots were used to show that R b and R w 

are in-

erdependent, which caused the PL1 method to overestimate the

idth of their respective profiles. Further, the interdependence of

he parameters also skewed the results of the PL1 method due to

he constraints of the feasible parameter region. Based on the PL2

lots, the parameter region was extended, which resulted in im-

roved likelihood profiles also from the PL1 method. The combi-

ation of one- and two-dimensional likelihood profiles was shown

o provide valuable insight into the parameter domain. These plots

how that all of the parameters are identifiable, but with large con-

dence regions. This indicates lack of dynamic system excitation

n the calibration data, which could be remedied by improved ex-

erimental design, e.g., use of Pseudo Random Binary Sequence as

ctuation. 
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